
Logging technologies in software
design for real-time systems and
simulators

Master’s thesis in Embedded Electronic System Design

LIKAI CHU

NHAT NGUYEN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Logging technologies in software design for
real-time systems and simulators

LIKAI CHU
NHAT NGUYEN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Logging technologies in software design for real-time systems and simulators
LIKAI CHU
NHAT NGUYEN

© LIKAI CHU, NHAT NGUYEN, 2020.

Industrial Supervisor: Henrik Lönn, Volvo Group Trucks Technology
Academic Supervisor: Jan-Philipp Steghöfer, Department of Computer Science and
Engineering
Examiner: Per Larsson-Edefors, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Logging technologies in software design for real-time systems and simulators
LIKAI CHU, NHAT NGUYEN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The aim of this work was to study and develop logging technologies for a software
simulator (ADAPT) and corresponding embedded system on trucks. One of the
targets of our thesis is developing a logging technology for the ADAPT simulation
environment. Another target is to build up a proof of concept that a logging soft-
ware can operate on the real-time systems of trucks.

Both software simulator and embedded system on trucks generate data during oper-
ations. While these data are beneficial for trucks development, the question of how
to log and use the data among the two systems should be researched. Furthermore,
how can we evaluate the results for previous question is also important to establish.

In this thesis, iterative design science approach is being used. By applying this
method, we are constantly developing the logging system as well as evaluating our
design. At the same time, requirements and knowledge base are updated to adapt
with the current progress.

As a contribution of this thesis, a functional logging technology is developed for
the ADAPT system, and the concept of building functional logging software on the
real-time system of trucks is proved.

Keywords: ADAPT Simulator, Logger, Replayer, WCET, Schedulability, real-time
system, AUTOSAR.

v

Acknowledgements
We would like say thank you to our supervisors, Jan-Philipp and Henrik, for their
dedicated supports and patience, a lot of patience with us during this thesis work.
We are also thankful to Vector and aiT companies who kindly support us with their
tools, and of course, the friendly, humorous, generous employee in Volvo GTT.

Likai Chu and Nhat Nguyen, Gothenburg, May 2020

vii

Abbreviation
ASAM Standardization for Automotive Development
AUTOSAR Automotive Open System Architecture
BCET Best Case Execution Time
CAN Controller Area Network
CLI Command Line Interface
ECU Electronic Control Unit
EDF Early Deadline First
EE Electric and Electronic
FMU Functional Movkup Unit
IO Input and Output
LIN Local Interconnect Network
ROS Robot Operating System
RTE Runtime Environment
SWC Software Component
TAT Turn-Around-Time
VSB Virtual Signal Bus

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Formulation . 2
1.2 Goals . 2
1.3 Limitations . 2
1.4 Report Outline . 3

2 Background 5
2.1 Project Background . 5

2.1.1 Project Targets . 5
2.1.2 Further details . 6

2.2 Real-time Systems . 7
2.3 Tasks Schedulability . 7
2.4 WCET Estimation - Approaches and Tools 8

2.4.1 Approaches . 8
2.4.2 Tools . 9

2.5 AUTOSAR . 11
2.6 Software-in-the-loop Platform (ADAPT) 12
2.7 Logging and Replaying Concept on Adapt 13
2.8 Log File Format . 14

2.8.1 CSV . 15
2.8.2 PCAP . 16
2.8.3 ROSBAG . 17
2.8.4 M4F . 18

2.9 AMALTHEA Platform . 20

3 Methods 23
3.1 Iterative Design Science Approach . 23
3.2 Design Choices and Iterations . 24

3.2.1 Iteration 1 . 24
3.2.2 Iteration 2 . 25
3.2.3 Iteration 3 . 25
3.2.4 Iteration 4 . 25

ix

Contents

4 Results 27
4.1 Log file format and structure selection 27

4.1.1 Formats analysis . 27
4.1.2 Format File Comparison . 28
4.1.3 CSV and custom format data structure 29

4.2 Implementation of logger and replayer on Adapt 31
4.2.1 Introduction . 31
4.2.2 Flow Chart . 32

4.3 Components WCET Estimation . 34
4.4 Component Design for hardware simulation 36

4.4.1 Virtual subsystem of EE system on trucks 36
4.4.1.1 Hardware Model . 36
4.4.1.2 Software Model . 37

4.4.2 Tasks allocation and scheduling 38
4.5 Design Evaluations . 40

4.5.1 Logger and Replayer on ADAPT 40
4.5.2 Schedulability Simulation Results 40

5 Conclusion 43
5.1 Discussion . 43
5.2 Conclusion . 44

Bibliography 45

A Appendix A I

x

List of Figures

2.1 A tentative block diagram of our design for two targets: Electrical
and Electronic systems on trucks and Simulator 6

2.2 Measured-base approach for WCET 9
2.3 AbsInt aiT tool analysis process . 10
2.4 AUTOSAR Classic Platform Software Architecture 11
2.5 An overview of ADAPT system . 12
2.6 The mechanism of loading modules 14
2.7 The MDF file tree . 19
2.8 The MDF block structure . 19
2.9 Possible binary layout of DT block 20
2.10 Design Flow using Amalthea platform 21

3.1 Design Science Research Cycles . 24

4.1 The mechanism of the logger . 32
4.2 The mechanism of the replayer . 33
4.3 WCET of the internal process of logger 35
4.4 External storage time cost . 36
4.5 The Hardware model for ECU on trucks 37
4.6 The software OS model . 37
4.7 (a) Console output from ADAPT (b) Console output continued . . . 41
4.8 Simulation Grantt Chart . 42
4.9 Simulation Summary . 42

A.1 Simulation Grantt Chart for maximum WCET variations with EDF . I
A.2 Simulation Summary for maximum WCET variations with EDF . . . I
A.3 Simulation Grantt Chart with OSEK II
A.4 Simulation Summary with OSEK . II

xi

List of Figures

xii

List of Tables

2.1 Possible implementation using CSV format 15
2.2 CSV format example . 15
2.3 PCAP file structure . 16
2.4 PCAP package . 17
2.5 Possible implementation using PCAP format 17
2.6 ROSBAG file structure . 17
2.7 Possible implementation using ROSBAG format 18

4.1 Logging formats comparison . 28
4.2 CSV Data Structure . 30
4.3 Custom format . 30
4.4 The Software Model tasks set . 39

xiii

List of Tables

xiv

1
Introduction

In recent years, logged data becomes increasingly important for truck research and
development process because logged data can contribute to tracking and monitoring
of the trucks, function verification and machine learning for autonomous driving.
However, the process of logging the truck data is quite challenging.

First of all, the amount of data from the trucks nowadays are huge. There are
two reasons for this, firstly trucks are equipped with more Electronic Control Units
(ECUs) as well as more sensors than before, both of them produce useful data that
needs to be collected. Secondly some sensors, especially cameras and Light detec-
tion and ranging (LiDAR) systems, are becoming common in trucks due to their
application in active safety and autonomous driving. And these sensors can produce
data massively, e.g. the camera may produce tens of megabytes of photo per second.
Therefore data collecting requires a process that has high throughput.

Second, the data needs to be arranged in a way that can serve the research and
development of the trucks. That is, in order to have the reproducibility for verifica-
tion and validation, it is usually the case that a specific set of data is needed, e.g. a
set of data reflects the engine information including engine speed, temperature, etc.
To achieve this, the logging process should be able to be customized so that several
types of data can be selected in the same data set. Also, the timing information
should be available for all data so this set can be "replayed", i.e. each data value
can be output in real time to restore the occurred scenario.

Third, logging data means dealing with different environments. In the context of
trucks, different frameworks developed by different suppliers as well as various as-
sets, e.g. software programs running on a simulation environment or ECUs on the
truck, require to be handled properly, i.e. a unified logging solution should be pro-
vided to cope with various components.

Finally, when data is logged from the ECUs or certain hardware on the truck, the
logging process becomes critical to timing because loss of important data can occur
by failing the timing constraints or even a systematical crash that the real-time
system on the ECU stop working.

By researching and implementing novel data logging technologies, we can provide
robust solutions addressing the above logging problems for trucks as well as the
simulation environment provided by Volvo Group, which can help to improve quality

1

1. Introduction

of data logging for trucks and contribute to the truck research and development
process.

1.1 Problem Formulation
There is a need of logging systems for simulators as well as Electrical and Electronic
(EE) systems on trucks. The logged data will be analyzed by many further analyses
and development processes. The data should be organized in some structures or
formats by design entities. In turn, the designs need evaluating properly to prove
for their correctness. Therefore, this thesis seeks systematic solutions by studying
the following research and development (R&D) question:

• How can we log data from a target simulator and real-time systems on trucks?
• How can we replay the data from log file to a simulator so that we can mimic

its internal components’ operation?
• How can we evaluate the logging system corresponding to the design that has

been validated the simulator?

1.2 Goals
This thesis project aims to research and design a prototype or framework which can
provide a unified logging solution of different platforms such as simulator and EE
systems on trucks. The solution will be design to have these characteristics:

• Well-defined and flexible log data structure
• Scalable and extendable configurability
• Robust and efficient log data acquisition
• Proper interfaces with existing system
• Runtime flexibility and integrity

To elaborate, characteristics such as value and unit of the log data are included in
the structure and they can be adjusted under different circumstances. The logging
system is able to capture data from different parts of the platform and can handle
varying size of data sets. Also, the logging process shall be reliable with minimum
failure and have little impact on performance of the target platform. Finally, an
interface for user to customize shall be provided and a real-time analysis is needed.

1.3 Limitations
An end-to-end logging solution may have extensive design considerations, however,
we only focus on collecting, replaying and packaging log data within the objectives
in Section 1.2. Other off-board services or concerns will not be part of the central
focus of this thesis project including:

• Clock synchronization aspects for timestamping in the truck
• Ethical sensitivity concerns of logged data
• Security services for logged data
• Off-board infrastructure of logged data for access portal services

2

1. Introduction

Besides, there are commercial logger solutions which can operate by using additional
devices with certain interfaces to record data from vehicles such as GL Logger [1]
from Vector. However, such logger solutions are usually complete external hardware
systems or devices connected to vehicles. Therefore, the comparison with other
logger devices or systems is limited due to the mismatch of use-cases, environment
and design level. We will evaluate our design by using the in-house simulator and
real-time analysis framework.

1.4 Report Outline
The remaining parts of this thesis follow a structure with Background, Method,
Results and Conclusion. Chapter 2 provides a basic background on the related fields
such as the simulation platform, logging format comparison, real-time systems and
scheduling, software and tools, etc. which are necessary to understand the contents
of the report. In Chapter 3, we describe our research methodology and planning
for the whole project. After that, Chapter 4 presents our results and evaluations
for our design. This chapter also explains our implementation and our benchmarks
used to evaluate the target system. Finally, discussions regarding these results are
conveyed in Chapter 5, which are followed by a few concluding remarks.

3

1. Introduction

4

2
Background

This chapter will present some of project’s backgrounds and theories behind them.

2.1 Project Background

2.1.1 Project Targets
The block diagram shown in Figure 2.1 is the logging scenario in the truck develop-
ment and it is what our logging system design should cope with. In the illustration
of the subsystem shown in the right block of the figure, it is the in-house simulator
(ADAPT [2]) Inside the simulator, the Virtual Data Bus acts as a virtual backbone
network to transfer the data among the different software or emulated hardware
modules which all connected with the bus. While the hardware models simulate all
non-software components behaviors in the real world, software modules give us the
simulated results from ECUs. To realize data acquisition for this simulator, a main
agent logger is needed to collect data from both software and hardware modules.
Also, the logged data shall be reused through a replayer, i.e. software component
for replaying. On the left side of Figure 2.1, the EE system on the trucks is illus-
trated. It is a real-time system running on different ECUs which connect together
using Backbone Networks. While ECUs send their external data to the Backbone
Networks and thus the data can be collected from Controller Area Network (CAN)
networks [3], they keep their internal data (e.g. program states, intermediate re-
sults) separated inside their local memory. It means that the backbone listener
cannot collect the ECUs internal data directly.

To summarize, we can divide the data of this scenario into three categories:
• Simulated data from simulator (e.g., mechanical, electrical, hydraulic, etc.);
• ECUs external data;
• ECUs internal data.

In this project, we have access to the mentioned in-house simulator ADAPT but the
EE systems shown in Figure 2.1 are not accessible. Considering this, we have the
following project targets:

• A logging component and a replaying component operating over ADAPT sim-
ulator should be implemented, which means the simulator data from simulator
can be logged;

• The replayer should be able to reuse the data from the logging counterpart;

5

2. Background

• Both the logger and replayer should meet the characteristics set in the Goals;
• Logging technologies running on truck EE systems should be proved by using

hardware simulation tool, the ECU data may not be acquired directly from
the ECU.

Figure 2.1: A tentative block diagram of our design for two targets: Electrical and
Electronic systems on trucks and Simulator

2.1.2 Further details
For achieving the target of implementing the logging component in the ADAPT
simulator, we can collect data we need from simulator by reading variables from
Virtual Data Bus because the whole simulation runs on the same computer system
with the same memory access. For the replayer, when operating, it shall act as any
node in the simulator as an open loop. Also, It is worth to note that the logged
files can be acquired by prior simulation as well as the real data collected from EE
systems on trucks. By using these data for later simulation steps, developers can
simulate and analyze more extensively for corner cases of trucks’ operation, and thus
improve the development process as well as the product.

For the last target of performing the hardware simulation, we are aiming at the sce-
nario of a single ECU logging agent inside an ECU as it is shown in Figure 2.1. The
reason that it is hard to perform hardware simulations with an intact EE system
containing multiple ECUs is because it requires detailed EE systems information on
trucks and may also vary among different truck models. Instead, the hardware sim-
ulation is performed based on a single commonly-used automotive ECU. Therefore,
the ECU external data mentioned above in Figure 2.1 may be omitted.

Considering this target, the logging agent will be embedded into the system of the
existing ECU and may consume ECU computation time or add more delays which

6

2. Background

may violate the deadline of other tasks. This problem is very serious because it may
cause system crash and hence should be avoided. As a result, real-time analyses
and evaluations (e.g., Amalthea [4]) are needed to verify that the logging agent can
be applicable. And in our case, our resulting implementation from the ADAPT
simulator is considered to be reused upon real-time analyses and evaluations.

2.2 Real-time Systems

As mentioned in the section above, real-time analyses are to be performed as a part
of the hardware simulation. The logging process follows characteristics of a real-time
system which must meet strict timing constraints, i.e., deadlines, in order to provide
a correct service. A real-time system is commonly defined as: “A real-time system
is one in which the correctness of the system depends not only on the logical result
of computation, but also on the time at which the results are generated” [5].

In a real-time system, tasks (i.e., pieces of software) can have hard or soft deadlines.
While missing a hard deadline in a real-time system can result in physical damage
or loss of life in case of automotive system, soft deadlines may be missed without
causing a catastrophic failure, but rather result in reduced quality of the provided
service. In automotive systems, the important tasks in control systems such as
brake-by-wire systems must meet hard deadlines. There are also numerous systems
with soft deadlines, e.g., infotainment or multimedia systems which only experience
reduced quality of service when their tasks miss the deadlines.

Real-time system tasks can be divided into periodic tasks and sporadic tasks de-
pending on how often they are executed in a system. In this thesis, we focus mainly
on periodic tasks since the EE systems on the truck are real-time systems that can
be modeled as τi = {Ci, Ti, Di}, where Ci, Ti, Di represent the corresponding Worst-
Case Execution Time (WCET), period and deadline of a task τi respectively. While
the periods and deadlines of tasks come from the specification of the corresponding
software specification, the WCET depends heavily on the coding nature of the soft-
ware implementation on a specific target hardware. Therefore, the WCET of tasks
should be estimated beforehand for further analyses.

2.3 Tasks Schedulability

As mentioned above, we need to assure that all tasks in a real-time system will meet
their corresponding deadlines. In the process, we will determine whether a task set
of a real-time system can be scheduled so that every instance of a task will complete
by the time constraints. This process is called schedulability analysis and contains
two main aspect which are priority assignment and feasibility test problems. While
priority assignment solves the problem of determining which task has higher priority
to be executing compared with the others, the latter aims to confirm the correctness

7

2. Background

of the result of priority assignments.

One of the earliest studies in this field is the approach from Liu and Layland on suf-
ficient and necessary test using guarantee bound analysis [6]. The authors proposed
and proved that we can assign high priority for tasks which have shorter period
time, that is called Rate Monotonic (RM). In addition, by taking utilization test as
shown below, when the deadline equals the period for each task, we can also confirm
that the task set will always meet deadlines.

URM(n) =
n∑

i=1

Ci

Ti

≤ n(2 1
n − 1), Di = Ti

where n is the number of task in the task set. This test, however, is limited by a
low utilization bound because the absolute bound is log(2) when n→∞.

Another approach is shown in [7] which described the assignment by earliest deadline
first (EDF) for task instances. The guarantee bound for this method is increased to

UEDF (n) ≤ 1, Di = Ti

In this thesis, we will use RM and EDF as task schedulability approaches.

2.4 WCET Estimation - Approaches and Tools
For the real-time systems, the WCET is an important factor since the WCET indi-
cates the longest execution time which is requested to meet the timing constraints.
So how to find out the WCET for real-time systems? Based on the research in [8],
there are two possible ways to determine WCET: dynamic timing analysis and static
timing analysis.

2.4.1 Approaches
The tasks performed by the systems can be dependent on a great amount of con-
ditions and the variation of parameters. Therefore, it can be impossible to explore
all the possible ways to execute the systems and thus the exact WCET of a certain
system is hard to get.

One possible way to calculate the WCET is to use prediction methods(measured-
base approach) [8]. In this method, only a part of the total execution times will
be generated. The Figure 2.2 below gives a brief explanation of the method. In
the Figure 2.2, the white curve depicts the execution times which are observed after
running and the dark curve depicts all the possible execution times of the real-time
system. Through limited times of execution, both maximal and minimal observed
execution time from the result can be determined. Then based on the existing min-
imal and maximal observed execution time, WCET and BCET (best-case execution
time) can be estimated by increasing and decreasing the current observation. So in
the Figure 2.2, we can see a relatively lower BCET and a relatively higher WCET.

8

2. Background

This method has a drawback. Because the margin between the estimated time and
the observed time should be wide enough but also tight, an overestimation or un-
derestimation is still possible.

Figure 2.2: In measured-base approach, the execution time varies depending on
input data or environment [8].

The second method to estimate the WCET is to examining the software without
executing it directly on the hardware. In such an analysis, a software is considered a
set of tasks which are either pieces of source code or disassembled executable bina-
ries. By using timing information about the real hardware that the task will execute
on, we can acquire an upper bound on the time required to execute a given task on
a given hardware platform. This timing bound should be close to the actual WCET.
Such methods are referred to as static methods [8]. This means that, using a static
method, the obtained upper timing bound is larger than the actual WCET because
the timing information from hardware always contain an upper margin. Thus, the
upper timing bound is pessimistic (since it is higher than the actual WCET), and
should be as close as possible to the actual WCET. In fact, this method requires
highly detailed descriptions of the target hardware such as instruction/data caches,
branch prediction and instruction pipelines, CPU pipeline and the whole memory
hierarchy, etc.

2.4.2 Tools
There are various kinds of WCET estimation tools in the market and the methods
they use are largely based on the two methods as described above. Most tools that
we investigated are using the static approach. It includes aiT by AbsInt[9], Bound-
T by Tidorum[10] and Chronos by National University of Singapore[11]. In our
project, you choose the aiT from AbsInt as our WCET estimation tool. It uses the
second approach, i.e., static methods, as we have described above, and the following

9

2. Background

figure shows the process of how analyses are performed.

Figure 2.3: AbsInt aiT tool analysis process

In the first stage as in Figure 2.3, the binaries of the programs are used to construct
an annotated control flow which shows how definitions, instructions, function calls
are arranged within execution as well as other important information required by
later stages of analysis. After the construction of the control flow, value analysis
is performed. In this stage, value ranges are calculated so that indirect memory
accesses can be estimated. After the value analysis, cache analysis is done. It
estimates the cache misses and from that the preemption cost of cache can be cal-
culated. Then the pipeline analysis is performed. In this analysis, the behavior of
the instruction pipeline is analyzed so that the execution times for sets of sequential
instructions are estimated. Finally, in the stage of path analysis, the control flow
can be transformed into an integer linear program. And the solution to it reveals
the WCET estimation.

10

2. Background

2.5 AUTOSAR
In this project, many software and hardware component which we will work with
follow AUTomotive Open System ARchitecture (AUTOSAR [12]) standard. AU-
TOSAR is a standardized automotive software architecture, which also provides a
description of development steps that have to be executed during system develop-
ment. AUTOSAR has defined nine top-level goals: transferability, scalability, broad
variety, open architecture, dependable development, sustainable utilization, various
partner collaboration, functionality standardization and applicability for interna-
tional automotive software as well as automotive ECUs [13].

Figure 2.4: AUTOSAR Classic Platform Software Architecture [13].

AUTOSAR today standardizes two different software platforms namely Classic and
Adaptive platform [13]. In this project we will focus mainly on Classic platform be-
cause our existing systems are using this platform. In Classic AUTOSAR, the appli-
cation software is divided into different Software Components (SWCs), which in turn
consist of runnables [14]. A runnable can be described as a sequence of instructions
that can be executed and scheduled independently i.e., an atomic read-modify-write
operation. This means that each software component is a set of runnables. An SWC
can be viewed as a piece of application software that is independent of the ECU that
it is running on. Many services needed by the SWCs are provided by the Run-Time
Environment (RTE), which in turn uses the AUTOSAR OS and services for the
system, such as memory management and communication frameworks called Basic
Software as seen in Figure 2.4, which shows a high-level view of a system running
AUTOSAR.

In order to execute properly, the runnables will form tasks in runnable-to-task or
partitioning process of AUTOSAR. These tasks define execution units with specific
amount of instructions and dependencies which are derived from read and write
accesses to memory. Each task can become a large independent partition after
this process. The tasks are then assigned in task allocation or mapping process
where they are utilized with given resources in form of hardware. For AUTOSAR

11

2. Background

applications, both partitioning and mapping process must be considered carefully
to search for acceptable solutions which are verified in evaluating or tracing phase.

2.6 Software-in-the-loop Platform (ADAPT)
ADAPT is an integration and simulation framework which has been developed in
the HeavyRoad project of Volvo Trucks AB [2, 15]. This framework is managed
by the ADAPT consortium and implemented in an in-house developed software of
Volvo, which will be used as one of the two main platform targets for Logger and
Replayer modules/components in this thesis project.

Figure 2.5: The ADAPT system consists of Virtual Signal Bus for triggering
components, Interface with other tools or outside environment, SWC and FMU [2].

This platform will play the role of an executor of AUTOSAR SWCs along with
preliminary functions, sensors, actuators, plants and environment in forms of mod-
els. These components are triggered by the ADAPT framework in the simulation.
In the collection phase, they will exchange data over a virtual signal bus, which
can be viewed as a generalization of the AUTOSAR virtual function bus concept.
AUTOSAR application software components are cross-compiled for Windows envi-
ronment and configured by configuration files which define their external connectiv-
ity. In addition to AUTOSAR software components, ADAPT also need Functional
Mockup Units (FMU) components which represent non-software parts. In fact,
FMU modules in ADAPT are based on binaries and interface descriptions accord-
ing to the Functional Mockup Interface standard [16]. Then, ADAPT will trigger
and provide input data into execution phase of FMU and SWC to simulate the re-
sulting data, then collect them in order to exchange the data over the virtual signal
bus again after a certain simulation time [2]. Our designs for Logger and Replayer
will be implemented as integrated modules/components in this platform at the early
phase of this project. A general illustration of ADAPT system is shown in Figure 2.5.

12

2. Background

Modules or components which are used in ADAPT can be SWCs (which are primar-
ily based on the Autosar standard), physical simulation models, logging, and even
interfaces to physical buses and I/O. In order to make all execution information be
inferred from models, AUTOSAR SWCs will need to use templates to define their
interface and triggering properties. By using module wrappers generated from mod-
ule generator in Adapt, we can use the same source code for both simulated modules
and target binaries in simulation thanks to wrapper interfaces. Similarly, there is
a FMU wrapper generator for creating ADAPT wrapper interfaces which will work
with corresponding FMU binaries, based on its specification in the description file.
The wrapper code likewise interacts with the ADAPT simulation core. The ADAPT
system can also communicate with external environment using CAN and Local In-
terconnect Network (LIN) buses as well as IP communication channels such as UDP
or TCP. These features are implemented in communication module which reads and
writes from those communication interfaces. Since the communication concept is
signal based, each module has an interface description file (in XML format) for
declaring which signals are read and written by the module so that ADAPT can
route signals correctly. Users will have to prepare these XML files prior to running
the simulator so that these can be parsed correctly during simulation initialization
[15].

2.7 Logging and Replaying Concept on Adapt
For the design, the function of logging as well as replaying is accomplished by devel-
oping two modules (logger and replayer) which can be run on the ADAPT simulation
platform. The developed modules share the same mechanism of initialization and
communication with other software or FMU running on Adapt. And the mecha-
nism is based on ADAPT module API which can be recognized and used by both
the ADAPT system side (virtual signal bus) and the module side. A brief structure
explaining this mechanism is shown in Figure 2.6.

As it is shown in the Figure 2.6, the structure is divided into three parts: ADAPT
system, Module and External file. The ADAPT system is referred as the VSB (vir-
tual signal bus) along with the human interaction interface called CLI (command
line interface). The CLI provides an interface with various commands that supports
a lot of functions such as initialization, setting signal values and checking signal
values. In Figure 2.6, when user open the CLI, the main function will be started
and the commands and arguments later input by the user will be translated into
function calls in the ADAPT through console executor. The called functions are
located in the system executor and have various utilities including initilization and
updating signal values. In the system executor these functions will be translated
into general APIs of the VSB called VSB APIs. These APIs are provided by the
ADAPT and each of them has a specific and detailed purpose. They provide ways
to communicate with a module and to parse the information of the external XML
file which describes the module.

The bridge between the VSB and the module is the ADAPT module API. It allows

13

2. Background

Figure 2.6: The mechanism of loading modules

the system to call functions inside the module such as initializing the module, calling
step-forward function which includes output data into log files (binary files in the
external file) and receiving and updating signal values from the system. It also
allows the module to call functions defined in the system to send new signal values
into the system.

2.8 Log File Format
The essential information we want to log from ADAPT as well as EE systems on
trucks are:

• Tick (timestamp value): the time unit in ADAPT
• Signal ID: an unsigned integer number for unique signal
• Signal Type: data type of a signal, e.g. integer 16bits, integer 32bits, double,

etc. This information can also be represented by an unsigned integer number.
• Signal Value: the numeric data of the signal at current Tick

For every tick value, there may be more than one signal which needs to be processed.
Therefore, the file format has to satisfy this flexible condition. In general, file
formats can be organized into two main categories, namely text file and binary file.
A binary file can provide a complex structure and well-organized data which can
help increase the speed of data processing. For example, binary file data can provide

14

2. Background

partial access to a specific part of the file based on its memory address for reading
or writing operations. However, text files are easier to handle for our components as
well as more human friendly. In this thesis project, we have considered the following
log file formats:

• CSV (straightforward way to store data, information is represented in ASCII);
• PCAP (binary format, open-source library available, easy to capture and fil-

ter);
• ROSBAG (format used by Robot Operating System (ROS), open-source li-

brary available);
• M4F (open-source specifications available).

2.8.1 CSV
One straightforward way to store the information mentioned above is using text
file. All information will be represented as ASCII (stands for American Standard
Code for Information Interchange) characters. By using this way, we can just use
comma-separated values (CSV) format for our data. Therefore, delimiters, usually
commas, are used to separate each field, each row reflects a record at a certain time
tick and data is represented in plain text. This means that we only need to prepare
and process our data in form of strings for reading or writing log data. This format
is available for many platforms, and hence has an advantage compared with other
formats. In addition, there are no redundant structures in CSV format since each
field is fully defined by users, and external library support is sufficient.

To be practical in ADAPT environment, the possible CSV format can be imple-
mented as shown in Table 2.1. The resulting log file will be the text file which
contains ASCII character strings in m line (row). Each line consists of several fields
corresponding to signals information at a Tick. The very first line of the file may
contain the header which is a explanation for each field in a line. This will be useful
for users who want to read the data visually in text. Then each line afterwards
stores all the signals information under certain timestamp.

Table 2.1: Possible implementation using CSV format

Header in text
Tick 1 Signal ID #1 Signal Type #1 Signal Value #1 ... Signal ID #n Signal Type #n Signal Value #n

...
Tick m Signal ID #1 Signal Type #1 Signal Value #1 ... Signal ID #n Signal Type #n Signal Value #n

Table 2.2: CSV format example

Tick Signal ID #1 Signal Type #1 Signal Value #1 Signal ID #2 Signal Type #2 Signal Value #2
1 1 1 0 2 8 0.0
3 1 1 1 2 8 0.7
5 1 1 0 2 8 1.3

One example of this format for two signals can be seen in Table 2.2. While it’s
quite simple to implement according to description, we can optimize the format to

15

2. Background

reduce redundant or repetitive data. Section 4.1.3 will show the further analysis
and implementation result of this format.

2.8.2 PCAP
PCAP is a binary format used to capture internet packets. It provides the packet-
capture and filtering engines of many open-source and commercial network tools,
including protocol analyzers, traffic-generators, network-testers, etc. In this thesis,
we can use this format for our data because it has libraries supporting many plat-
forms. Actually, we can use libpcap library for software development on ECU, and
use WinPcap library for Windows application [17] as in ADAPT simulator. The
file structure of a PCAP file can be seen in Table 2.3 below. In this structure we

Table 2.3: PCAP file structure

Global Header Packet Header Packet Data Packet Header Packet Data ...

have two types of headers along with packet data. The global header wraps the ba-
sic information related to the whole file, including magic number for detecting the
format, format version, timezone information, etc. Then there is the packet header
which is exclusive for each packet. Inside it we have timestamp and length informa-
tion. Timestamp information provides the regular second-precise timestamp (date
and time) as well as an extra offset in microseconds. Length information includes
captured data length and the original data length from the sender.

In our case, packet won’t be delivered through the internet and the Logger-Replayer
pair corresponding to the Sender-Receiver scenario in PCAP is designed by us.
Therefore, information in global header such as format version can be pre-defined
and the header can be reused. Then, the packet data may contain our log data.

In fact, our log data can be considered as a set of numbers representing Tick, Signal
ID, Signal Type and Signal Value as mentioned at the beginning of Section 2.8.
Therefore, the idea is that if we can arrange our data as a package of bytes in series
for all the fields of log data, we can put it in PCAP packet data. By estimating the
maximum range of numerical value of each field, we can definitely allocate data into
the package by order of byte. As analysis, the estimations are as follows:

• Tick: this field is supposed to be unsigned integer, hence in range from 0 to
232. It can occupy first 4 bytes in the package

• Signal ID: this field has low range from 0 to 256 signals in ADAPT. So, 1
byte occupation is reasonable.

• Signal Type: similar to Signal ID, we will have a limit range of data type in
ADAPT. So, this field consumes next 1 byte.

• Signal Value: the field needs to be allocated in more bytes so that we can
store floating point numbers. Therefore, 8 bytes should be used.

As a result, we can prepare a package of 14 bytes containing our log data properly.
Besides, we should use 16 bytes package in practice for better implementation in
coding. This also add 2 bytes of reservation in case we need to modify the range, or

16

2. Background

we can simply use 2 bytes for each Signal ID and Signal Type field. An illustration
for this approach is shown in Table 2.4

Table 2.4: PCAP package

Tick Signal ID Signal Type Signal Value
4 Bytes 2 Bytes 2 Bytes 8 Bytes

As mentioned above, the package has a static length of 16 bytes. This means that if
we use the package as PCAP packet, the packet length is also static. In summary,
our log information in PCAP will lie in a series of packets and each packet contains a
set of Tick, Signal ID, Signal Type, Signal Value at a certain Tick. To demonstrate,
our idea of how to make use of the PCAP format is shown in Table 2.5.

Table 2.5: Possible implementation using PCAP format

Global Header (incl. version, timezone, etc)
Packet #1 Header (Pre-defined)

Tick Signal ID Data Type Signal Value
Next Packet...

2.8.3 ROSBAG
ROSBAG or BAGS is a file format in ROS. This format is mainly used in ROS
for storing ROS message data due to its convenience in processing, analyzing, and
visualizing various kind of data such as text, image, position coordinates, etc. [18].
A ROS bag file includes an initial line indicating the current version along with a
sequence of records. The record structure can be seen in Table 2.6.

Table 2.6: ROSBAG file structure

Record 1 Record 2
Header Length Header Data Data Length Data Header Length Header Data Data Length Data

Each record can contain a ROS message with different types including chunk, con-
nection, message data, index data, etc. The very first record is called the bag header
record which contains information regarding the "chunk" section and "connection"
section.

All these types contribute to provision of various information and supporting ROS,
however, most of them are not helpful in our case. Among them, only the type
"message data" serves the purpose well since it includes a timestamp and a con-
nection ID in the header that can be used as tick value and signal ID. This means
that we can use the same header indicating the "message data" type of all records
for our data. The logging information will be packaged into the message data of

17

2. Background

consecutive records in the rosbag file. This means that all information of logging
data corresponding to one timestamp (Tick) such as Signal ID, Signal Type, Signal
Value are packed as message data records.

Therefore, if we use package of log data in the same way we analyzed with PCAP
above, our "message data" will contain a set of data needed in ADAPT. Besides,
this type of record does not require strictly defined ROS topic and ROS node, we
can also use pre-defined information for these fields in headers. One example for
this implementation is illustrated below in Table 2.7:

Table 2.7: Possible implementation using ROSBAG format

Header #1 Length (Pre-defined) Header #1 Data (Pre-defined as messages)
Data #1 Length (Pre-defined) Data #1 Data (Package data)

Next Record...

2.8.4 M4F
M4F or MDF is a standard format supported by Standardization for Automotive
Development (ASAM). This format is used to record signal data during measure-
ment, calibration and testing from automotive application such as sensor data, ECU-
internal variables/states, bus traffic in a vehicle network, or internally calculated
values [19]. Therefore, the format is very promising for our research in logging data.
The MDF format organize the whole file in different types of binary blocks, each
one serves a specific purpose. For instance, the identification block (ID) together
with header block (HD) provides an label and description for the entire MDF file.
And smaller unit like signal data block (SD) or Data block (DT) provides the signal
value information in different configurations.

Figure 2.7 will give an overview of MDF file structure. As we can see in the hier-
archical order, the MDF file starts with ID block and its following HD block which
are general information about the file such as global comments, start time of sim-
ulation, etc. The HD block will point to a Data group (DG) block where we refer
to our data and its byte layouts. In fact, DG block gives us two main pieces of
information: the place we put our data in (DT block) and all information that are
necessary to understand and decode the data (Channel Group Block). The Channel
Group (CG) block will, in turn, point to some Channel (CN) blocks so that the data
in each record of DT can be read properly. For example, if we have two CN blocks
(e.g. time and value), the corresponding of these two fields will be defined in each
record of DT block. While MDF supports for storing data in several DT blocks, we
can use just one DT block to store all records for simplicity. Therefore, a simplest
MDF file may contain a set of 7 blocks which are: ID, HD, DG, CG, CN, DT.

Next, a single MDF block structure is shown in Figure 2.8. As it is demonstrated,
the block is divided into three parts: header, links and data section. The block
header contains basic information of the block including the type and the total size

18

2. Background

Figure 2.7: The MDF file tree [19].

Figure 2.8: The MDF block structure [19].

of it. Then the link list is the key part that allows the MDF format to form a
tree structure. Each link is linking to another block. Reflecting this structure to
our logging scenario, we may use the DT block to store all of logging data from
ADAPT. In this case, the DT block contains a simple header and no link. It’s be-
cause our DT block is the last block of the file and will not point to any other block.
The data is then a series of records consisting of our log data for each and every Tick.

19

2. Background

One possible binary layout of DT block for three signals is shown in the Figure 2.9
below: It’s worth to note that the Block Length field in the Block Header section

Figure 2.9: Possible binary layout of DT block

represents the total size of the DT block. So, it will be updated whenever a new
record is added into the block. Besides, the value fields correspond to each Signal
Value for a Tick timestamp. In this implementation, the Signal ID is implicitly de-
fined by order of its field (e.g. value A belongs to Signal ID #1 and so on). Lastly,
Signal Type can be defined in CN blocks.

2.9 AMALTHEA Platform

Amalthea [4] is a model and tool platform for automotive embedded-system engi-
neering and provides integration into established industrial development processes.
In Amalthea, a software unit is called runnable and a set of communicating runnables
provides a desired functionality [20]. In general, Automotive Software projects ex-
ecute the following design flow by iterating parts or the complete flow until the
desired software features and quality are achieved as follows [21]:

• Collect and describe the requirements for product features, tests and depen-
dencies.

• Define the different variants of the final product and their dependencies if
needed since it is inefficient and error prone to develop each variant separately.
We can use tree structure with dependencies for handling multiple variants in
one project as shown in [22].

• Define the architecture of the SW system e.g., based on the AUTOSAR stan-
dard [12].

• Define the behaviour of the different software components. In this step, the
functionality according to the requirements is implemented into software com-
ponents. These components can be verified and simulated to prove their there
correctness.

• Within the variant configuration step, the defined functionality is assembled
into certain packages according to the software architecture under the variant
definition.

After building a set of models for defining the final software product, we can deploy

20

2. Background

them to an appropriate hardware platform (e.g., a microcontroller ECU). Basically,
we can follow these steps:

• Partitioning: The software components are combined to tasks (or runnables)
and these parts are put together to largely independent partitions. This step
is required to be able to distribute the software to the cores of a multicore
ECU [23] or even to different ECUs.

• Mapping: The software partitions are then mapped on the different hardware
resources, e.g., a processing core of an ECU.

• Codegen: Program code is generated from the models by applying automatic
code generators.

• Tracing: The overall system is verified by generating timing traces and com-
paring them to the desired timing of the application.

Figure 2.10: Design Flow using Amalthea platform [4].

The Amalthea platform can support all of these steps as shown in Figure 2.10. In
fact, the platform is proven to be optimal in both partitioning and mapping [24].
Therefore, by using this platform for our project, we can increase the development
efficiency which comes from a reducing in Development cost, Turn-Around-Time
(TAT) and Error rate. As reported in [21], the TAT is estimated to decrease up
to 90% for 8 iterations design works. Moreover, the error detection time within
Amalthea is 95% faster compared with that of Matlab/Simulink, which also helps
to reduce the error rate.

Other R&D projects have also had benefits from Amalthea in many different as-
pects. In [25], authors proposed new partitioning mechanism combined with both

21

2. Background

the tracking and the tracing approach with Amalthea to optimize performance for
their distributed systems. The new approach helped them to reveal errors, prob-
lems and conflicts and improve system’s performance while meeting modern de-
mands, constraints and requirements of distributed systems according to hardware
and software issues such as memory accesses, cores, frequency or semaphores and
timing metrics.

Alternatively, in [26], researchers used Amalthea to evaluate their proposed approach
of task allocation optimization compared with well-known bin-packing approaches
onto a heavy artificial task set. This set consists of 12 real-time tasks and 2,500
runnables, which executes on a processor with three symmetric cores and a clock
frequency of 160MHz each. Similarly, the result in [20] also indicates that Amalthea
helped to reduce significantly the number of iterations and thus the amount of man-
ual work for reaching the design goal which targeted a heavy task set with 234
runnables and 248 communication dependencies. Furthermore, we can take the ad-
vantages of Amalthea platform from its complete continuous tool-chain and open
source Eclipse project called APP4MC in comparison with commercial tools such
as the TA Tool Suite [27]. The TA Tool can provide us an environment for tasks
scheduling simulation and analysis. The tool also support several scheduling algo-
rithms/systems such ash EDF, OSEK, AUTOSAR, etc.

As a result, this platform is suitable for us to develop and evaluate our designs for
the Logger component in the EE system of trucks. However, we need to build the
corresponding AUTOSAR software models for our design in order to adapt with this
platform. The detailed implementation of Logger component based on Amalthea
will be presented in the next Chapters.

22

3
Methods

In this chapter, we will describe the research method which we used in our project.
We also explain the plan and result for each iteration of the research.

3.1 Iterative Design Science Approach
Because the development of the logging system has so many challenges as mentioned
above, it is better to have a model that allow us to divide the project into iterations
of task and thus we can proceed to build a complex system finally. In that sense,
we will apply iterative design science approach based on [28] for the research of
logging technology on trucks. The approach consists of three main cycles which are
Relevance, Design and Rigor cycle.

We may start with Relevance cycle where we identify the requirements of the log-
ging system and define the evaluation criteria of all research results. After having
concrete requirements and criteria, we will perform literature reviews for current log-
ging technologies in Rigor Cycle in order to grab the essential knowledge including
existing methods, processes and theories which can be used as a knowledge base in
our research. For example, the knowledge for ADAPT, WCET tools and Amalthea
will be studied in this cycle in many different iterations. We will also update our
solution after each iteration based on the outcome of our evaluations, experiments,
discussions and results from iteration literature studies or artifacts.

In Design Cycle, we can use this base knowledge to develop the product designs
for the logging system in order to satisfy the requirements from Relevance Cycle.
For each iteration, we define a set of accepting points or local criteria which is a
subset of the acceptance criteria in Relevance Cycle corresponding to the current
research iteration. Then, we use these local criteria to evaluate the current design
or method. The part of studying and selecting the WCET tools is a typical example
of this process, where we have to perform some local evaluations from many existing
WCET tools in order to find out the most suitable one for this project. If we cannot
meet the local evaluation in an iteration of the research, we need to improve the
knowledge base back in Rigor Cycle to update our artifact design. The research step
will move to Relevance again once the design or method satisfy evaluation criteria
in Design Cycle, and will be considered further depending on overall status of the
research.

23

3. Methods

Through this developing model, our research project can proceed in a more robust
way by iterations. Our first few iterations will cover the encoding and annotation
of the log data as well as the basic logging and replay functions. After the basic
functions are satisfied, we will start with more advanced functions including imple-
menting data label, pre-processing in real-time, filtering, etc in the later iterations.
In each iteration, we update both our requirements and knowledge through Rele-
vance cycle and Rigor cycle. Figure 3.1 below shows the summary of our approach.

Figure 3.1: Design Science Research Cycles adopted from [28]

3.2 Design Choices and Iterations

Starting with software designs for logger and replayer components, we followed sev-
eral iterations which are described in the sub-sections below.

3.2.1 Iteration 1

In the first iteration, we investigated the ADAPT system environment. The main
purpose is to analyze and examine the Application Programming Interface (APIs)
provided by ADAPT system itself. For this stage, we had not considered the real-
time property of the design yet because the simulator is a Windows platform’s
software which does not require any real-time constraints. As a result, we only need
to investigate the algorithm, structure of the components and input/output (I/O)
interaction of our design.

Result: After this iteration, we finished the software component design which can
be integrated into the current ADAPT system. The detailed design and analysis are
shown in Section 4.2. The I/O information in this stage are only standard inputs
and outputs from a terminal, which can only proceed manually.

24

3. Methods

3.2.2 Iteration 2
After building the first version of software components and checking the I/O results,
we need to define an efficient file format so that the components can read and write
during their operations. There are some candidates for the format which are CSV,
PCAP, ROSBAG, M4F. We need to investigate their properties as well as advan-
tages/disadvantages for each candidate.

Result: The result is shown in Section 2.8 and Section 4.1. We also tried to imple-
ment these formats into the logger and replayer components. However, we can only
succeed with CSV, PCAP and our custom format which we proposed after trying
implementations these candidates.

3.2.3 Iteration 3
The next step is to establish the virtual EE environment corresponding to the real
trucks system so that we can deploy and evaluate our design in a real-time environ-
ment. We decided to use AMALTHEA and TA Tool Suite for this establishment
because these tools are available and/or easy to get support from Volvo. The sup-
porting toolchain of AMALTHEA and TA Tool Suite is recommended because we
can acquire license from manufacturers in time.

Result: We build up the environment which can build, simulate and evaluate our
design in real-time aspects which is one of our original research question.

3.2.4 Iteration 4
We built up the task set for our system to evaluate the design. At this point, we
need to consider the tools for WCET problem. We tried with some different tools
aiming to WCET estimation namely aiT tool, RapiTime, SWEET, ect. We got some
problems with acquiring licenses for the tools and we could only wait for responses
from the corresponding supplier companies. While other tools seems to be promising
in solving WCET in general case, we decided to use aiT tool for static analysis of
WCET due to their dedicated supports. We also tried and come to design choice of
a custom format at this iteration. The format helps to improve the quality of our
design.

Result: We estimated WCET of logger and replayer in a simple design with static
analysis. From these information, we built up successfully the task set and hence
finish simulation and evaluation properly.

25

3. Methods

26

4
Results

This chapter will present our research and implementation results. It starts with
our design choice of log file format in Section 4.1 followed by Section 4.2 where we
explain our design for ADAPT system. Next, we establish a EE subsystem and
describe our components design within Section 4.4. Last but not least, Section 4.5
will show the evaluations for our designs.

4.1 Log file format and structure selection

4.1.1 Formats analysis
After considering the logging file formats mentioned in Section 2.8, namely CSV,
PCAP, ROSBAG and MDF, we found that some of them (i.e. PCAP, ROSBAG
or MDF) are very promising in logging and replaying ADAPT data thanks to their
dedicated functionalities. Their excellent effectiveness was recognized in many other
research such as [17] or [18]. However, they also have many drawbacks which pre-
vented us to pursue these solutions for log file format.

One problem is that some of them required a complicated design to adapt with the
current software component design in this project. Taking the case of ROSBAG for
an example, it requires a similar setup to ROS to work with. This means that the
ROS messages will be broadcast by a publisher (sender) to subscribers (receiver)
for each topic (message type). This is quite irrelevant for our system which only
collects data from a subsystem.

For MDF case, the problem lied in its complexity and difficulties in implementa-
tion. While the format specifications are an open-source documentations, the shared
external libraries for implementation are limited. This caused many difficulties in
adapting this format into our designs because we mostly build up the design library
from scratch.

In addition, PCAP, ROSBAG and MDF contain many redundant features which
are not our regions of interest such as Internet Protocol (IP) addresses in PCAP,
ROS topics in ROSBAG or generic link list in MDF. Many features consume re-
dundant data which would simply be wasted if applied to our project. Besides, it
is the fact that these formats need to use external libraries may make our design
become too complex for further analysis such as WCET estimation as in Section 4.3.

27

4. Results

CSV format, in the other hand, is very easy to implement thanks to standard li-
braries. However, this format is generally less compact and lacked functionality.
The format also depends on how we construct our data in the file such as what
should be stored in each field, how many character for a data value, etc. If we want
to use this format, we should consider to optimize the data structure beforehand.

4.1.2 Format File Comparison
From analysis above, we can summarize the research on logging format as shown in
the Table 4.1.

Table 4.1: Logging formats comparison

Logging
Format Implementation Size Compact Redundant

Feature

Library
sup-
port

CSV

Simple
implementation.
Information can
be represented
as ASCII with
different field
separated by

commas, so that
the data can be
prepared as

string.

Unlikely to be
small as ASCII
representation is

used.

No redundant
feature as all
the elements in
the format are
either recording
the information

or used for
categorization.

YES

PCAP

Generally easy.
Open-source
libraries are
available and
since they are

written in C, no
extra effort is

need for
implementation.

in a C++
environment.

Smaller size
than CSV as

data is
represented in

binary.

As originally
designed for
network data,
unnecessary
overhead such
as data link
type and
timezone

information are
also included.

YES

28

4. Results

Table 4.1 continued from previous page

Logging
Format Implementation Size Compact Redundant

Feature

Library
sup-
port

ROSBAG

Similar to
PCAP,

open-source
library is

available and
can be used
without too
much effort.

Smaller size
compared to
CSV due to

binary
representation.

ROSBAG
provides a lot of
features such as
reindexing and

com-
press/decompress,
these can be

generally useful
and may not be

used in our
project due to
unnecessarily
complex.

NOT
for
Win-
dows

MDF

Complex file
structure with
more than 20
different data
types makes it

hard to
implement in
our project.

Small memory
consumption
due to binary

storage.

Many data
types are not

necessary to use
in our case.

NOT
for
linux

Therefore, from these analyses, we come to the design choice where CSV is one of our
final solution for logging file because it can be very easy to handle and implement.

4.1.3 CSV and custom format data structure
As mentioned above, we have decided to use CSV as our log data format. However,
CSV consumes a lot of disk space to store data. This leads us to consider a more
efficient structure for our data.

In fact, our signal data can be stored in fields including only Time (tick) and Signal
Value. The idea is that we can define implicitly the information of Signal ID by
organizing data as columns. This means that the value in first column corresponds
to the signal whose ID is 1, and so forth. Besides, the Signal Type can be deter-
mined by the floating point format and the numeric magnitude of the value itself.
For example, an uint8 (unsigned integer 8 bit) value will be in range from 0 to 255,
and no floating point. Besides, when the logger/replayer initialize, they will read
input configurations from xml files in order to unify the list of signals and the order
among them, and hence it’s reasonable for us to implement this format.

Therefore, we can create a CSV structure that is simple enough to reduce the data

29

4. Results

size. The structure can be seen in Table 4.2. The separators (SEP) will be used to
separate each field in CSV format. The preferable SEP, comma (,) character, will
be used in this implementation.

Table 4.2: CSV Data Structure

Tick 1 SEP S1 value SEP S2 value SEP S3 value SEP S4 value ...
Tick 2 SEP S1 value SEP S2 value SEP S3 value SEP S4 value ...

...
Tick n SEP S1 value SEP S2 value SEP S3 value SEP S4 value ...

Although we established a reasonable data structure for CSV, the log file is still not
optimal in size. In fact, the numeric values of Signal Value will be stored as ASCII
strings. This means that we need to use many ASCII characters for rational num-
bers corresponding to Signal Values. For example, the numeric value of "1.2" and
"1.2345" requires respectively three and six characters to represent in CSV. There-
fore, the more significant figures a numeric value has, the more characters we need.

This problem makes us consider the second feasible format which is derived from
the original CSV data structure. If we can organize the data of Tick, Signal ID,
Signal Type and Signal Value in a fixed number of byte data, the information can be
packaged as binary file where data will be stored serially. By this way, we will not
need any separator as in CSV format and help reduce the file size. As a result, our
second solution can also satisfy both simplicity and size requirements.The format is
shown in Table 4.3.

Table 4.3: Custom format

Tick Signal ID Signal Type Signal Value
4 Bytes 4 Bytes 4 Bytes 8 Bytes

At this point, we would like to take a note that we store information explicitly
(Signal ID, Signal Type, Signal Value - Table 4.3) instead of implicitly (only Signal
Value - Table 4.2). The main reason is that when we store information in series
of byte, it’s very difficult to distinguish which byte represents Tick or Signal Value
when we read the log file. This comes from the fact that the total number of signal is
not a constant but a variable from input configuration. Although we use more data
in the log file for the custom format (20 bytes instead of 8 bytes for each signal), it
will help increase performance. This is because we can divide log file into chunks of
20 bytes so that they become easier to process. Actually, the implementation is even
optimized more when we use standard data structure such as vector to implement
the format. Therefore, we will use this structure for further analysis.

30

4. Results

4.2 Implementation of logger and replayer on Adapt

4.2.1 Introduction

As we have mentioned before, the logger and replayer are working as modules inside
the ADAPT simulation platform. To work as a module, a configuration XML file
including the log file information and the signal information will be provided along
with the software. Also, modules inside the simulator provide callback functions by
exposing the external APIs through a Dynamic-Link Library (DLL) file. Among the
external APIs, there is one for initialization in which the configuration file is utilized
to start the execution of the logger and replayer. The configuration file is parsed in
the very beginning of the initialization callback function and both modules perform
the same operation in this part.

After the parsing of the configuration file, the signal information including Signal
Name, Signal ID and Signal Type and the log file information including file name,
the start and end position of data and the file format are extracted. Among all the
information, the one belong to the signal is the most important since it has to be
read every time when the logger is updating the data for a signal or the replayer
is reading data from the log file. In order to save the signal information as well as
achieving better performance when the information needs to be read or updated, we
choose to use the associative container std::map in our case. Associative containers
can be more efficient than sequence containers in accessing value by the key rather
than by value [29] and it suits our case well since the logger and the replayer are
unaware of in which order the information for each signal is stored. By practice, in
the initialization, we do mapping from the signal id to its name, value and decla-
ration for both modules. After mapping the signal characteristics, the initialization
process now differs between the logger and the replayer. In the logger, two more
pre-logging actions have to be done. First, the logger generates a compare string
which is later being used for judging if certain signal data needs to be updated or
not. Then the log file information mentioned above is parsed and stored in the RAM
for later usage. In the replayer, the pre-stored log data is fed by referring to the file
name.

When the init function is finished, the logger and replayer are now operating by
a certain time interval. Regarding the time interval, the simulation environment
maintains the updating of a tick value and the updating rate of the tick value de-
termines the fastest rate both the logger and replayer can operate. In our case, the
fastest rate is one operation per millisecond. To implement this, a step function is
triggered whenever the tick value is updated. And within the function, the logger
writes the information saved in string to the log file and the replayer writes the data
to the simulation environment. However, not all the signals have to be updated
at the highest frequency as it would cost too much computation power as well as
generating redundant data for the log file. To cope with this, a pre-condition, which
only activate the update at desired tick value, is implemented for each signal.

31

4. Results

Except for the init and step external API that we have mentioned before, there are
other APIs for writing signal data to module, writing signal data to system, getting
signal id, etc. The most important that we want to mention here is the one intends
to write signal data to module. It is a callback function which is implemented on
the module side and is for writing signal data from the system to the module. In the
argument list, the simulation environment would supply the signal id and the signal
value to the function. For the logger, these two parameters are taken to update
the output string. However, since replayer is barely mimicking the operation of a
module, this callback function is simply a dummy one.

4.2.2 Flow Chart
For better illustrating our implementation for the logger and replayer, we have the
basic mechanism described in Figure 4.1 and Figure 4.2.

Figure 4.1: The mechanism of the logger

32

4. Results

Figure 4.2: The mechanism of the replayer

33

4. Results

As it is shown in Figure 4.1, when the logger is started, it firstly enters the Init
phase. In the Init phase, an XML file describing the signal receiving and sending
in this module will be loaded and parsed. Also mappings are set up to store signal
information including name, ID, declaration and value. After the Init phase, the
logger will enter a loop to write out data into binary log files for every tick (time
unit in the ADAPT environment). And in each tick, updated signal values from the
system are received and stored in the output buffer.

In the replayer, there is also a Init phase to parse the XML file, set up the mappings
of signal information and extract the information from the log file. And there are
two loops in the replayer. One is a dummy function to receive the new signal values
from the system but do not perform any processing. Another is to sending out signal
values read from the log file to the system for every tick.

4.3 Components WCET Estimation
After we finish logger/replayer designs in Section 4.2, we can reuse these designs in
EE systems on trucks. The problem is that when we design new software compo-
nents in such systems, we need to verify their realtime properties where our designs
must meet both functionality and hard deadline requirements. This required us to
perform WCET for our components in order to evaluate in Section 4.4. As we have
mentioned in Chapter 2, the aiT tool from AbsInt is been used to perform a WCET
estimation for our logging implementation that is intended to be deployed on the
EE systems of trucks.

The aiT tool considers facts including memory accesses upon cache misses, pipeline
states of the processor, etc. However, since the external storage, e.g., hard drive,
varies among different EE systems, file stream I/O operations cannot be covered by
aiT. As a result, we perform the estimation for the logging process without writing
operation towards external storage i.e., the WCET estimation of the internal pro-
cess of the logging component. For the external storage I/O cost, we consider the
practice of an AUTOSAR platform ECU with CAN bus since it is commonly used
in automotive industry. Calculation is made based on existing results.

For the internal process of the logger, it includes initialization, sorting out messages,
etc. In order to analyze our logger implementation exclusively, we have to exclude
the ADAPT environment based on which the component is operating. It creates a
problem since our logger have to set up connection and initial configuration along
with the ADAPT environment to be able to work properly. To resolve this problem,
the dependency of the ADAPT environment has to be removed. As it is described
in the background, our logging software works as a module of the ADAPT system
and the connection between them is the ADAPT module APIs. So instead of calling
APIs from the ADAPT system, alternative functions are implemented and can be
called directly on the logging module (the one used for estimation). Besides, since
external file operation is excluded in the WCET estimation by aiT tool, the parsing

34

4. Results

process which extracts configurations including signal information from XML files
also needs to be dealt with. Alternatively, we hard coded the configuration from
the windshield wiper module which is used within Volvo truck. The result from aiT
for a single signal (using the custom format with 20 bytes per signal) is shown in
Figure 4.3 as below.

Figure 4.3: WCET of the internal process of logger

As we can see in the figure, in the worst case scenario, it takes 16.63 micro seconds
to log the data for a single signal and prepare for the information ready to be stored.

After we acquired the WCET for the internal logging process, we estimated the
external storage I/O timing cost. We refer to a existing implementation [30] of the
AUTOSAR platform with CAN bus for data transfer. As we have mentioned in the
background, the AUTOSAR platform is composed of software components(SWC),
runtime environment(RTE) and basic softwares(BSW). And our logger, as an ap-
plication for the ECU, will be a SWC in the platform running on the RTE. As it is
shown in Figure 4.4 below, in order to write data to the CAN bus, data from the
SWC has to firstly go through RTE and then the communication module which is
one of the BSWs. Finally, the data is written to the CAN bus.

In this implementation that we referred to, the message that is used to transmit
through CAN communication is a 32-bit little-endian CAN message. After sum-
ming up the delay on every stage, it takes in total 36.05 micro seconds to transmit
32 bits of information and thus 9 micro seconds for 1 byte. Therefore, since we are
using the custom log format of 20 bytes, the time cost on the external storage can
be calculated with Equation 4.1 below.

20 bytes× 9µs = 180µs (4.1)

Now, considering the time spent on internal process as well as writing out through
CAN bus, for logging a single signal, the WCET estimation of our logger is 196.63
micro seconds.

35

4. Results

Figure 4.4: External storage time cost [30]

4.4 Component Design for hardware simulation

At this point, we would take a note that we will not evaluate our components directly
on EE system on trucks i.e. real hardware ECUs. This is because the target building
and running on ECUs require more time to implement and evaluation since our
software components will not run solely but in a harmony with all other software
components. In fact, any new software component introducing to EE system on
trucks need testing through many phases. This, however, is out of scope in this
project. Therefore, we establish a virtual subsystem which is a EE system yet
smaller scale as shown in Section 4.4.1. Once we build up such subsystem, we can
simulate for schedulability of our designs in Section 4.5.2.

4.4.1 Virtual subsystem of EE system on trucks
We established a system which can evaluate our design in real-time perspective.
The system will take into account several aspects from hardware, real-time oper-
ating system/scheduler, runables/tasks set, etc. By using supporting features from
AMALTHEA and TA Tool Suite, we can create an environment in which our design
will be examined and evaluated.

4.4.1.1 Hardware Model

The hardware model which we are using in this project is based on Infineon Aurix
TC297T [31] processors. The design choice comes from the fact that these processors
are available and currently in use as platforms for deploying software at Volvo. The
processor includes three cores ECUs operating at 300MHz frequency. The model
can be shown in Figure 4.5.

36

4. Results

Figure 4.5: The Hardware model for ECU on trucks

4.4.1.2 Software Model

In the software model, we use a generic operating system (OS) which using EDF
algorithm as task scheduler. The design choice for EDF algorithm for this stage
comes from the fact that its guarantee bound is 1, i.e. 100% [7], which is relative
higher than that of RM or DM algorithms.

Figure 4.6: The software OS model

After defining OS model, we continue with building the software component model.
This includes the processes/tasks set for the whole system. Obviously, the logger
and replayer components will run along with another software components so that
they will collect and send data with these components. However, the EE systems on
trucks contain a huge amount of software components, which we could not handle
all of them by once.

To perform analysis and evaluation our design, we have to put our design under
some practical situations because the logger and replayer will never work separately
with others. With support from Volvo, we decided to use three software components
which are Brake-by-wire (BBW), Windshield Wiper, and logger/replayer. In this
setup, BBW has higher priority than that of Wiper, logger and replayer. The logger
and replayer will operate alongside with the Wiper and aim to send/collect signals
data from this component. This means that the Wiper will receive signals from

37

4. Results

replayer, perform the corresponding actions while the logger will record the signals
accordingly.

Therefore, we need to analyze the tasks set corresponding to the software compo-
nents above. From the task set, we can perform real-time analysis of the subsystem
so that we determine whether our software components satisfy a hard real-time sys-
tem or not. While the processes/tasks’ properties of BBW and Wiper components
can be obtained from the existing designs of Volvo, those of logger and replayer com-
ponents need to be analyzed from our design. This means that we have to determine
the values of Period(Ti), Deadline(Di) and WCET(Ci) of our components. For con-
venience, in this project, we arbitrarily set the Windshield Wiper (or XFunction for
convenience), logger and replayer to work at a resolution of 1ms which is faster than
normally expected frequency. Also, it’s reasonable to choose Ti = Di = 1ms for the
above three processes since period can be the same with their deadline considering
their usage. The remaining values are WCET properties which were estimated using
AbsInt aiT tool.

At this point, it’s worth to take a note that the WCET estimation values here come
from logger/replayer design using CSV format rather than custom format as shown
in Section 4.3. This is because when we conducted the research through Section
3.2.4, we realized that we could improve design performance with custom format.
In fact, the WCET estimation value of custom format is less than that of CSV for-
mat. This means, if our designs can be scheduled successfully using CSV, we can
do the same for custom format. The reason is that, our designs will cost less time
to finish execution in case of using custom format.

As a result, we built up a tasks set as shown in Table 4.4. The table also introduces
the Utilization value, Ui = Ci

Ti
, which is one of the important measurements for

further analysis.

4.4.2 Tasks allocation and scheduling
The tasks set from Section 4.4.1.2 will be assigned into different processors. In this
stage, we reused the tasks allocation for BBW component as in Volvo’s designs. The
tasks from τ1 to τ11 are pre-assigned into three processors (P0, P1, P2) of the Infineon
Aurix TC297T ECU hardware model. The BBW tasks allocation is shown below:

P0 = {τ1, τ2, τ3, τ4, τ8, τ9, τ10, τ11}, UP 0 = 0.1× 8 = 0.8,

P1 = {τ7}, UP 1 = 0.1,

P2 = {τ5, τ6, }, UP 2 = 0.1 + 0.1 = 0.2

Next, we need to assign remaining processes, namely XFunction, logger and replayer,
into the three processors. We chose the EDF-FF [32],[33] algorithm for this assign-
ment because of several reasons. Firstly, we cannot assign any other task into P0
because the current utilization of this processor is 0.8. If we assign any other task
among wiper, replayer or logger, its utilization value will be larger than 1, which

38

4. Results

Table 4.4: The Software Model tasks set

Task Task ID Ti (ms) Di (ms) Ci (ms) Ui (%)
ABS_FL_Pt τ1 5 5 0.5 0.1
ABS_FR_Pt τ2 5 5 0.5 0.1
ABS_RL_Pt τ3 5 5 0.5 0.1
ABS_RR_Pt τ4 5 5 0.5 0.1
pBrakePedalLDM τ5 2 2 0.2 0.1
pBrakeTorqueMap τ6 3 3 0.3 0.1
pGlobalBrakeController τ7 4 4 0.4 0.1
pLDM_Brake_FL τ8 6 6 0.6 0.1
pLDM_Brake_FR τ9 6 6 0.6 0.1
pLDM_Brake_RL τ10 6 6 0.6 0.1
pLDM_Brake_RR τ11 6 6 0.6 0.1
pWipingFunction τ12 1 1 0.3 0.3
pLogger τ13 1 1 0.36 0.33
pReplayer τ14 1 1 0.35 0.3

Note 1: ABS="Antilock Brake System", p/pt="prototype", LDM="Local De-
vice Manager", FL="Front-Left Wheel", RR="Rear-Right Wheel", and so on.
Note 2: In fact, 1 ms rate of logger/replayer is typically too fast. While
this does not change the methodology, it should be noted that the figures are
unrealistic, and hence, it’s used for demonstrating the system capacity purpose.

will cause failure for the system. This means that we can only allocate the three
processes into another two processors. Secondly, each of P1 and P2 was assigned 1
and 2 tasks respectively, thus we cannot assign all three tasks in to P1 or P2 due
to excess 1 utilization problem. This means that we can only assign three tasks in
1 : 2 ratio into the two processors P1 and P2. Aiming to minimize the resulting total
utilization of each processor, the suitable allocation can be seen below.

P0 = {τ1, τ2, τ3, τ4, τ8, τ9, τ10, τ11}, UP 0 = 0.1× 8 = 0.8,

P1 = {τ7, τ13, τ14}, UP 1 = 0.1 + 0.36 + 0.35 = 0.81,

P2 = {τ5, τ6, τ12}, UP 2 = 0.1 + 0.1 + 0.3 = 0.5

Finally, we can apply the Liu and Layland for RM [6] schedulability test with the
upper bound given by

URM(n) =
n∑

i=1

Ci

Ti

≤ n(2 1
n − 1),

where n is the number of task, for the tasks set. We found that:

UP 0 = 0.8 > URM(6) = 0.735

UP 1 = 0.81 > URM(3) = 0.78

UP 2 = 0.5 < URM(3) = 0.78

39

4. Results

Therefore, the Liu and Layland tests for RM have failed for P0 and P1, and hence,
we should use other algorithm rather than RM or DM. This leads us to use EDF [7]
because

UEDF ≤ 1,

which all three utilization values of the processors can meet. Furthermore, the tests
with EDF upper bound are both sufficient and necessary. As a result, our task set
and allocation are schedulable by the EDF algorithm. In other words, our design can
meet the hard-realtime constraints within this subsystem. Notice that this analysis
here provides a theoretical proof, the actual scheduling policy might not be chosen
freely in real scenario and processors may also need more redundancy with lower
loads.

Again, it’s worth to note that CPU loads as high as 0.8 are not desired regardless
of policy in practice. It’s because the higher CPU loads, the more risk of failure a
system will fail due to less margin load to handle unexpected events such as mem-
ory failures or network failures. Therefore, the methodology as shown above aims
to give a proof of concept that our implementation is feasible, and that our design
can work in theory. The next section will provide an overview on simulations and
practical approaches.

4.5 Design Evaluations

4.5.1 Logger and Replayer on ADAPT
The evaluation phase for Logger and Replayer components on ADAPT is quite
straightforward. We can check manually the results from logged file compared with
predefined expected data. Alternatively, we can evaluate the usage of several format
between the logger and replayer so that the components can read or write the same
data even when they are working with different formats. For example, we can read
logged data from CSV file in Logger and write to file in custom format in Replayer.
The results are shown in Figure 4.7.

The console outputs illustrate the way in which our data are constructed in CSV.
There are series of lines containing numbers and comma characters. The first number
is Tick value followed by signal values. And since only the changed signal value will
be logged, there are empty values (no number shown between two commas). We
also tried to test for the case that we run ADAPT in a long simulation for more
than 20000 ticks. As a result, our design satisfied all requirements for ADAPT and
the functionality is evaluated properly.

4.5.2 Schedulability Simulation Results
As discussion in the beginning of Section 4.4, we need a virtual subsystem so that
we can evaluate our designs. After establishing such system in Section 4.4, we can

40

4. Results

(a) (b)

Figure 4.7: (a) Console output from ADAPT (b) Console output continued

exploit the ability of TA Tool to run the schedulability simulation. One of the ad-
vantages of the tool is that we can try many variants of subsystem and check the
result quickly without manual heavy calculations for schedulability. The tool also
offers some scheduling algorithms/OS such as OSEK [34], pfair [35], AUTOSAR,
etc. In fact the simulation results confirmed our analysis in Section 4.4.2. As we
can see in Figure 4.8 and Figure 4.9, the tasks set meet all requirements and no
violation occurs.

In details, the Gantt chart shows when a task starts and waits for processor (in
gray area), or is being preempted by other tasks (light green area), or executes and
finishes (dark green). The chart also gives us the information for other instances of
a task after its corresponding period.

While all task requirements are fulfilled as shown in Figure 4.9, there is a notation
in the metric column of the result. Here, we used the term "Maximum Response
Time" instead of deadline metric. However, the two terms are equivalent because
the upper limit of response time is the deadline itself. This comes from the fact
that response time is defined as the time from a task starts until its completion.
Therefore, if we set the upper limit of response time as deadline value, they will
become equivalent.

41

4. Results

Figure 4.8: Simulation Grantt Chart

Figure 4.9: Simulation Summary

42

5
Conclusion

5.1 Discussion

In the WCET estimation, since we do not have the hardware to be able to per-
form an accurate calculation, instead, we have to make assumptions as well as refer
to other resources. For instance, we assume that our implementation is based on
CAN network and also we assume that the rebuild of our logger will have minimal
effect on the time consumption. Besides, it’s a fact that the EE system on trucks
is very a complex system consists of many different components. Therefore, if we
work directly with such a system to design a new software component, it would
be a huge workload for us to complete all validating, testing, building phases for
the whole integration process of EE system on trucks. For the future research and
implementation, it would be better to implement the design on the real hardware of
trucks when we have more budget of time so that accurate WCET estimations can
be accomplished.

We also understand that our virtual environment for evaluation, which consists of
BBW, Wiper module, Logger and Replayer, is very specific rather than general.
In practice, there may be more complex components in a system, and hence, our
evaluation is not true for all those cases. However, we also showed an approach
that can be used in case a software developer has to consider to design for different
platforms in which one of them is real-time system. The design choices may vary
yet the method stays unchanged.

In addition, a comparison of the impact of the choice of log file format is also a
very interesting point to investigate for this project. It is the lack of time and tool
supports that prevents us to focus more on this question. In fact, we got WCET
result for two different formats which are CSV and custom format and they does
affect to our designs performance in realtime analysis. The difference should have
come from the format structure in our designs. However, we still cannot explain
in details how and why the format structure affect to their corresponding WCET.
Therefore, this drawback is also an important point if we have chance to continue
this research.

Moreover, in many commercial software products for real-time systems, one can ap-
ply other advanced scheduling algorithm. For example, we can use OSEK [34] in TA
Tool to simulate the schedulability for our tasks set. The results in APPENDIX A

43

5. Conclusion

showed that OSEK can also provide feasibility for our design as EDF does. There-
fore, our design can be used in other systems with different scheduling algorithm as
well.

As a result, we would provide our answers for research question (RQ) we made in
Section 1.1 as follows:

• RQ1: By designing software component for Logger as shown in Section 4.2, we
proposed an approach to collect internal values of signals at every millisecond.
Our software design for Logger meets requirements of ADAPT and EE system
on trucks

• RQ2: Similarly, we proposed a software design for Replayer where the logged
data would be constructed in some file formats and the data is transferred into
the system for each millisecond.

• RQ3: In order to evaluate our software designs in both ADAPT and EE
system on trucks, we proposed a proof of concept for building a subsystem
using the support of Amalthea and TA Suite tool as shown in Section 4.4. By
this way, we proposed a new way of design any new software component for
ADAPT and EE system on trucks.

5.2 Conclusion
This thesis project provides an approach of developing an applicable logging and re-
playing technology for both simulator and real-time systems on trucks. The part for
the simulator is well-implemented and works properly with the ADAPT simulation
environment. It includes a logger that can be configured to listen to a specific set
of signals as well as generating log files in various format, and a replayer which uses
the log file to reproduce the scenario at certain moment. The part for the real-time
systems is done within simulation, we have estimated the timing cost of our logging
technology and performed a hardware simulation that runs our software along with
other truck software without timing violation. By doing this part, we provide a
proof of concept of how the logging technology can be used in the truck EE systems.
It can be used for future hardware level development of the logging technology.

44

Bibliography

[1] Data logging with the gl logger family. https://www.vector.com/int/en/
products/products-a-z/hardware/gl-logger/. Accessed: 2019-03-30.

[2] Kaijser Henrik, Lönn Henrik, and Thorngren Peter. Virtual Integration on
the Basis of a Structured System Modelling Approach. In Proceedings of the
Workshop CARS 2016 - The International Workshops on Critical Automotive
Applications: Robustness & Safety, Göteborg, Sweden, 10 2016.

[3] S. Abbott-McCune and L. A. Shay. Techniques in hacking and simulating
a modem automotive controller area network. In 2016 IEEE International
Carnahan Conference on Security Technology (ICCST), pages 1–7, Oct 2016.

[4] Amalthea - An open platform project for embedded multicore systems. http:
//www.amalthea-project.org/. Accessed: 2019-03-30.

[5] J. A. Stankovic. Misconceptions about real-time computing: a serious problem
for next-generation systems. Computer, 21(10):10–19, Oct 1988.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. In Journal of the ACM, 1973, 1973.

[7] Jia Xu and David Parnas. Scheduling processes with release times, deadlines,
precedence and exclusion relations. IEEE Trans. Softw. Eng., 16(3):360–369,
March 1990.

[8] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold
Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1–36:53, May 2008.

[9] AbsInt. ait worst-case execution time analyzers. https://www.absint.com/
ait/index.htm/. Accessed: 2020-05-28.

[10] Tidorum Ltd. Bound-t time and stack analyzer. http://www.bound-t.com/.
Accessed: 2020-05-28.

[11] National University of Singapore. Chronos. https://www.comp.nus.edu.sg/
~rpembed/chronos/. Accessed: 2020-05-28.

[12] Autosar - Enabling continuous innovations. https://www.autosar.org/. Ac-
cessed: 2019-03-30.

[13] Autosar introduction. https://www.autosar.org/fileadmin/ABOUT/
AUTOSAR_Introduction.pdf. Accessed: 2019-03-30.

[14] F. Khenfri, K. Chaaban, and M. Chetto. A novel heuristic algorithm for map-
ping autosar runnables to tasks. In 2015 International Conference on Pervasive

45

https://www.vector.com/int/en/products/products-a-z/hardware/gl-logger/
https://www.vector.com/int/en/products/products-a-z/hardware/gl-logger/
http://www.amalthea-project.org/
http://www.amalthea-project.org/
https://www.absint.com/ait/index.htm/
https://www.absint.com/ait/index.htm/
http://www.bound-t.com/
https://www.comp.nus.edu.sg/~rpembed/chronos/
https://www.comp.nus.edu.sg/~rpembed/chronos/
https://www.autosar.org/
https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf
https://www.autosar.org/fileadmin/ABOUT/AUTOSAR_Introduction.pdf

Bibliography

and Embedded Computing and Communication Systems (PECCS), pages 1–8,
Feb 2015.

[15] Henrik Kaijser, Henrik Lönn, Peter Thorngren, Johan Ekberg, Maria Hennings-
son, and Mats Larsson. Towards simulation-based verification for continuous
integration and delivery. In 2018 Embedded Real Time Software And Systems
(ERTS), 04 2018.

[16] FMI development group: FMI 2.0. Functional mock-up interface (fmi). www.
fmi-standard.org. Accessed: 2019-03-30.

[17] Fulvio Risso Loris Degioanni, Mario Baldi and Gianluca Varenni. Profiling and
Optimization of Software-Based Network-Analysis Applications. In Proceedings
of the 15th IEEE Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD 2003), Sao Paulo, Brazil, 11 2003.

[18] M. Rojas-Fernández, D. Mújica-Vargas, M. Matuz-Cruz, and D. López-
Borreguero. Performance comparison of 2D SLAM techniques available in ROS
using a differential drive robot. In 2018 International Conference on Electronics,
Communications and Computers (CONIELECOMP), pages 50–58, Feb 2018.

[19] ASAM MDF 2019. Mdf block. https://www.asam.net/standards/detail/
mdf/wiki/. Accessed: 2019-10-30.

[20] Lowinski Martin, Ziegenbein Dirk, and Glesner Sabine. Partitioning embed-
ded real-time control software based on communication dependencies. In In
proceedings of the International Workshop on Modelling in Automotive Soft-
ware Engineering co-located with ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2015), Ottawa,
Canada, September 2015.

[21] C. Wolff, L. Krawczyk, R. Höttger, C. Brink, U. Lauschner, D. Fruhner,
E. Kamsties, and B. Igel. Amalthea — Tailoring tools to projects in auto-
motive software development. In 2015 IEEE 8th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), volume 2, pages 515–520, Sep. 2015.

[22] C. Brink, E. Kamsties, M. Peters, and S. Sachweh. On hardware variability and
the relation to software variability. In 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 352–355, Aug 2014.

[23] D. Fruhner, R. Höttger, S. Köpfer, and L. Krawczyk. Partitioning and map-
ping for embedded multicore system utilization in context of the model based
open source development environment platform amalthea. In Proceedings of the
International Research Conference, Dortmund, Germany, 2014.

[24] Robert Höttger, Lukas Krawczyk, and Burkhard Igel. Model-based automotive
partitioning and mapping for embedded multicore systems. In International
Conference on Parallel, Distributed Systems and Software Engineering 2015,
Istanbul, Turkey, January 2015.

[25] R. Hoettger, B. Igel, and E. Kamsties. A novel partitioning and tracing ap-
proach for distributed systems based on vector clocks. In 2013 IEEE 7th Inter-
national Conference on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS), volume 02, pages 670–675, Sep. 2013.

[26] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha, and J. Mot-
tok. Optimizing the task allocation step for multi-core processors within au-

46

www.fmi-standard.org
www.fmi-standard.org
https://www.asam.net/standards/detail/mdf/wiki/
https://www.asam.net/standards/detail/mdf/wiki/

Bibliography

tosar. In 2013 International Conference on Applied Electronics, pages 1–6, Sep.
2013.

[27] A. Sailer, S. Schmidhuber, M. Hempe, M. Deubzer, and J. Mottok. Distributed
multi-core development in the automotive domain - a practical comparison of
ASAM MDX vs. AUTOSAR vs. AMALTHEA. In ARCS 2016; 29th Inter-
national Conference on Architecture of Computing Systems, pages 1–8, April
2016.

[28] Alan R. Hevner. A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2), 2007.

[29] Pete Becker. Working draft, standard for programming language c++. page
797, 02 2011.

[30] Park and Byoungwook Choi. Design and implementation procedure for an
advanced driver assistance system based on an open source autosar. Electronics,
8:1025, 09 2019.

[31] Infineon Technologies AG. Product brief: Aurix™- tc297t/tc298t/tc299t.
https://www.infineon.com/dgdl/Infineon-AURIX-TC297T_TC298T_
TC299T-PB-v01_00-EN.pdf?fileId=5546d4625696ed76015697b2327f2460.
Accessed: 2019-10-30.

[32] S.K. Dhall and C.L. Liu. On a real-time scheduling problem. In Operations
Research, volume 26, pages 127–140, 1978.

[33] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-case utilization
bound for edf scheduling on real-time multiprocessor systems. In Proceedings
12th Euromicro Conference on Real-Time Systems. Euromicro RTS 2000, pages
25–33, June 2000.

[34] J. Bechennec, M. Briday, S. Faucou, and Y. Trinquet. Trampoline an open
source implementation of the osek/vdx rtos specification. In 2006 IEEE Con-
ference on Emerging Technologies and Factory Automation, pages 62–69, Sep.
2006.

[35] S. K. Baruah and Shun-Shii Lin. Pfair scheduling of generalized pinwheel task
systems. IEEE Transactions on Computers, 47(7):812–816, July 1998.

47

https://www.infineon.com/dgdl/Infineon-AURIX-TC297T_TC298T_TC299T-PB-v01_00-EN.pdf?fileId=5546d4625696ed76015697b2327f2460
https://www.infineon.com/dgdl/Infineon-AURIX-TC297T_TC298T_TC299T-PB-v01_00-EN.pdf?fileId=5546d4625696ed76015697b2327f2460

Bibliography

48

A
Appendix A

Figure A.1: Simulation Grantt Chart for maximum WCET variations with EDF

Figure A.2: Simulation Summary for maximum WCET variations with EDF

I

A. Appendix A

Figure A.3: Simulation Grantt Chart with OSEK

Figure A.4: Simulation Summary with OSEK

II

	List of Figures
	List of Tables
	Introduction
	Problem Formulation
	Goals
	Limitations
	Report Outline

	Background
	Project Background
	Project Targets
	Further details

	Real-time Systems
	Tasks Schedulability
	WCET Estimation - Approaches and Tools
	Approaches
	Tools

	AUTOSAR
	Software-in-the-loop Platform (ADAPT)
	Logging and Replaying Concept on Adapt
	Log File Format
	CSV
	PCAP
	ROSBAG
	M4F

	AMALTHEA Platform

	Methods
	Iterative Design Science Approach
	Design Choices and Iterations
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4

	Results
	Log file format and structure selection
	Formats analysis
	Format File Comparison
	CSV and custom format data structure

	Implementation of logger and replayer on Adapt
	Introduction
	Flow Chart

	Components WCET Estimation
	Component Design for hardware simulation
	Virtual subsystem of EE system on trucks
	Hardware Model
	Software Model

	Tasks allocation and scheduling

	Design Evaluations
	Logger and Replayer on ADAPT
	Schedulability Simulation Results

	Conclusion
	Discussion
	Conclusion

	Bibliography
	Appendix A

