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Validation of Tractor-semitrailer vehicle model based on Bayesian Hypothesis Test-
ing
ATHANASIA MARIA DINEFF
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

Abstract
The development of automated vehicles is the future of the automotive industry, and
it has seen a rapid advance over the past decade. The design of automated vehicles
relies on vehicle models, which predict their responses and control their behavior.
This thesis presents a vehicle model validation framework to evaluate the validity of
a simple (abstract) vehicle model against a complex (implementation) model. The
aim is to quantify the validity of the abstract model and determine its suitability for
an application. The validation procedure uses Bayesian hypothesis testing. First,
two hypotheses are stated; the null hypothesis, which supports the abstract model’s
validity, and the alternative, which rejects the model. Two approaches to Bayesian
hypothesis testing are then studied. The first approach estimates the posterior
distributions of the parameters of interest and evaluates whether the credible interval
includes the null hypothesis. The second approach relies on Bayes factors, which
compare the two hypotheses and indicate the most probable one.

The methods presented are applied on a tractor-semitrailer combination under
the driving context of city driving. The validation framework is evaluated for three
cases of the abstract model. The first case refers to the calibrated model. The
second and third cases concern an incorrectly tuned parameter, with double and
half the calibrated value, respectively. The outcome is that the abstract model is
deemed valid when calibrated, whereas it is invalid when a parameter is incorrectly
tuned. The thesis also discusses the comparison between the two proposed validation
approaches.

Keywords: Bayesian hypothesis testing, Model validation, Vehicle modelling,
Tractor-semitrailer, Bayes factor, Model comparison, Posterior summary
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1
Introduction

Automated vehicles are the focus of interest for the automotive industry. In the last
decade, more and more manufactures and technology companies have been involved
in projects for developing fully automated vehicles [1], and the first samples have
already made their appearance. Both in the transportation and construction sector,
automation can play a vital role in energy efficiency, sustainability, safety, and the
economy in general [2]. The automated vehicles should be able to handle all possible
situations, ensuring the safety of all road users. This leads to more and more complex
vehicle systems. Therefore, the control and safety functions deployed as well as their
effective testing are currently a major area of research and development.

1.1 Modelling in Vehicle automation
Automated vehicles pose a challenge in designing functions and systems that ensure
their safe operation under various conditions. The driving task is dynamic and
while in manual driving the driver can quickly adapt to changes in the driving
environment and respond to different situations, especially the critical ones, the
automated driving must rely on the vehicle systems to do so. These systems and
control functions are designed with the help of vehicle models.

The dynamic vehicle models are the cornerstone in research and development of
vehicles in the automotive industry. Virtual testing of the vehicle performance with
computer models and CAE tools has reduced the need of prototypes and testing
and therefore has contributed to the reduction of the time and cost of the evalu-
ation of the vehicles [3], [4]. Vehicle models are used as virtual prototypes during
the development phase, when the developers can evaluate the vehicle behavior and
design, test and optimize the control functions and other systems [5].

The vehicle models are an area that has been investigated thoroughly. Different
models have been developed, depending on the application, that can vary in terms
of complexity and number of parameters. They can range from a 3 DOF bicycle
model to a multibody system model with hundreds of degrees of freedom (DOFs) and
variables [6]. The simple models have less parameters and are less computationally
demanding, making them the perfect candidate for online applications. However,
they are less accurate when predicting the overall vehicle behavior, under different
driving situations. On the other hand, the more complex models are a more accurate
representation of the actual vehicle and usually provide better predictions, but they
have higher computational costs.

One modelling approach utilizes FEM software, which is known for its high com-
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putational demands. The combination of multibody dynamics and FEM for vehicle
modelling has also been used. Sakuma created two-dimensional non-linear models of
rigid vehicles using a finite element program, and flexible frame modes were included
[7], [8].

Many of the recent vehicle models are complex and include many degrees of
freedom. They are usually developed using multibody dynamics, such as Adams
and TruckSim. A lot of vehicle simulations using Multibody System software are
performed even from the early stages of modelling. These models, however, include
a lot of details, which are not needed for handling simulations and additionally
they are inappropriate when different vehicle configurations are used. According to
Gäfvert and Lindgärde [6], they are usually used for structural studies.

In his doctoral thesis [1], Lima uses two different models, one dynamic and one
kinematic. The first one is used to model the lateral dynamics, while the latter
for the motion planning and the control design. A similar approach is followed by
Hoel and Falcone [9] in their paper to design a controller for low speed maneuvering
for heavy trucks. In their case, however, the dynamic model is an advanced model,
called Virtual Truck Model VTM, developed in Simulink and SimMechanics at Volvo
Group Trucks Technology.

Another vehicle model implemented in Simulink was derived by Gäfvert and
Lindgärde [6]. Based on a simple 4 DOF model of a tractor-semitrailer combination,
they developed a 9DOF model, by including also all the heave, roll and pitch motions
to capture the load transfer. Chen and Tomizuka [10] propose a nonlinear complex
model to simulate the articulated vehicles, which models the roll, pitch and yaw
motions and follows the Lagrangian mechanics approach. They also use this model
to derive a linear one, by performing simplifications and linearizations, based on
which they will design their controllers.

In their paper, Li and Rakheja [11] propose a control approach to enhance the
yaw stability of heavy commercial vehicles, which due to their size and mass center
have lower roll and yaw stability limits than the other vehicles. The vehicle model
used for the controller design was a simple single-track linear model, which was
derived from the linearization of a nonlinear model developed in TruckSim.

It is evident, that due to the reduced number of variables and parameters, the
analytical models are still used a lot in modelling the vehicle dynamics. Even though
they are a simple representation of a vehicle, they enable a better understanding of
the dynamics by the designers.

1.2 Model Validation
The vehicle models must be accurate enough in order to fulfil their intended applica-
tion. This means that they should predict the actual vehicle behavior, within some
acceptable margins of discrepancy, specified for each application. If the behavior
of the vehicle is not predicted correctly with sufficient accuracy, then the functions
created will not perform accordingly and safety will be compromised. Therefore,
the need of validation of the vehicle models is imperative. The vehicle models can
be validated against real systems, by using real driving data, or a reference model.
The reference model is a vehicle model for which the assumption that its predictions
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approach reality is valid.

1.2.1 Definition of Validation
Validation is defined as the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended uses
of the model. It determines whether the simulation outcome fits accurately enough
the behavior of the real system or of the reference model [12]. It is important to
note here that there is no such thing as absolute validity and that a model is always
an approximation of the reality [13]. The validity of a model concerns its limits and
applications. Also, according to Popper [14] a model cannot be validated, exactly
as the scientific theories cannot be proven, thus a model can only be invalidated.
This means that usually instead of attempting to show that a model is valid, the
validation methods focus on proving that the model is not invalid, and therefore
the failure to falsify it. A model is falsified by determining that it is invalid for the
specific application.

1.2.2 Approaches to Validation
Various validation methods have been proposed and used for validating a simulation
model. In the literature both subjective and objective approaches can be found
[15]. The distinction between them is that the subjective are qualitative, whereas
the objective methods are quantitative and utilize mathematical tools or statistical
tests.

One common validation technique is to compare the simulation outputs to the
results of other valid models [15]. Other techniques involve the comparison of the
simulation outputs behavior to the corresponding distribution of the real systems to
determine if they are similar, called event validation [16], or the opinion of people
knowledgeable regarding the simulated system, known as face validation. Similar
to the latter technique are turing tests, where knowledgeable people are asked to
distinguish the model outputs from the system. Historical validation is a technique,
where data for a system is collected and part of it is used to build the model and the
rest to test if it performs as the real system does. Another technique is the internal
validation, which determines the variability of the model under stochastic analysis.
The predictive validation evaluates the similarity between the model’s predictions
and the actual behavior of the system. Tracing can also be used to follow the
behavior of different model entities through the model [15].

Authors of [17] follow a qualitative method of graphical comparison between the
simulated and experimental mean, in either time or frequency domain. This is the
most straightforward and intuitive method, but it can be biased and difficult to
extract a lot of conclusions [18], [19]. Therefore, the use of quantitative measures
is beneficial. Authors in [17] accompany the graphical comparison with the direct
comparison of values, called metrics, including steady state gains, response times,
peak response times and percent overshoots from the time domain data, and peak
frequency, peak amplitude ratio, bandwidth and phase angle in the frequency do-
main. Another quantitative method is the root mean square difference between the
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data (RMS error).
Scoring models are also proposed as a validation method, though they are rarely

used. Sargent [15] discredited it, because of its subjectivity, which can be concealed,
appearing objective, and that it can lead to overconfidence and accepting a model
with flaws. During the validation process, subjective scores are established, which
combined determine category scores and a total score for the simulation. If those
are greater than some passing scores, the simulation is considered valid.

Another validation technique is the sensitivity analysis or parameter variability.
This technique involves the variation of the input or internal parameters to determine
their effect on the model’s output. The relation between the parameters and the
outputs should be the same as the reality and the parameters that have major
impact to the output should be made accurate while building the model. It can
be either qualitative or quantitative [15], [20]. An example of the latter is in [21],
where the authors perform a sensitivity analysis to quantify how the uncertainty of
the entire space of input parameters affect the uncertainty in the output values of
a hypersonic vehicle model using a variance-based technique. Many authors have
worked on quantifying and propagating the uncertainties in the simulation model,
and it is considered as a fundamental step during the validation process [22]–[24].

Statistical and probabilistic methods have also been used widely for validation
purposes. One category of them are methods that are based on the distance between
either the probability density functions (PDFs) or the cumulative density functions
(CDFs) between the simulated model and the validation system [19]. Statistical tests
are used to quantify the difference, such as the Kolmogorov-Smirnov test which mea-
sures the vertical distance between the CDFs [19]. Another validation metric used
by Ling and Mahadevan [25] was the area metric, which utilizes the area between
the simulation and the validation distribution as the measure of the discrepancy
between them.

Hypothesis testing is another approach of quantitative validation, and both con-
ventional/classical and Bayesian methods have been researched. The classical hy-
pothesis test consists of the null hypothesis, which is to be evaluated and a test
statistic, which is computed based on the data and used to determine if the null
hypothesis is rejected based on the evidence [19], [26]. In all the hypothesis tests,
normality is assumed, whereas when this assumption is invalid, either the transfor-
mation of the data to normality or the use of the bootstrap method are suggested
[19].

Bayesian hypothesis testing combines the classical hypothesis testing methods
and the Bayes theorem. The Bayes factor is used to determine if the null hypothesis
is accepted or rejected, depending on if it is higher than unity or not, respectively
[19], [26]. In [27] Jiang and Mahadevan apply the Bayesian hypothesis testing to
a simple structural model. In [28] the probabilistic principal component analysis
in conjunction with multivariate Bayesian hypothesis testing is proposed for the
validation of dynamic systems.

In the automotive industry and research many of the above methods have been
used. Classical methods, such as the graphical comparison and the use of metrics for
validity quantification are the most common ones, however the statistical methods
and the uncertainty quantification have been of key interest in the last years [22].
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1.3 Error measures
Vehicle models can be compared in a deterministic way. In this approach, the mod-
els are simulated for a set of vehicle parameters and inputs and their vector-valued
responses are compared, in time and/or frequency domain. The comparison of the
vehicle responses can be done either qualitatively or quantitatively. The qualitative
comparison of the vehicle models is a standard and wide used methodology, which
involves graphical comparison between the responses of the models. It is often ac-
companied though with a form of error measure. There are different ways to express
the deviation of the responses. Some common measures are the mean absolute error
(MAe)and the Root Mean Square Error (RMSe).

The absolute error of the responses of the abstract model xA and the implemen-
tation model xI is the arithmetic average of the absolute errors |ei| = |xA,i − xI,i|,
where i = 1, .., n and n is the size of the data of the response. It is obvious that this
measure has the same scale as the data, and thus it is known as a scale-dependent
accuracy measure [29]. The RMS error describes the square root of the average
difference of the responses. This measure is once again based on a physical quantity
and thus has the same scale as the data.

Often, the relative (Re) and the percentage error (Pe) of a metric are reported,
to present the deviation in a more obvious way. The relative error is the absolute
error of a metric (|xA−xI |), divided by the absolute value of the metric as calculated
by the implementation model (xI).

The percentage error is the relative error in terms of per 100 [29]. Both of these
errors have no units, which makes the comparisons and conclusions easier to be
drawn.

Finally, another well-known measure of discrepancy between the data and an
estimation model is the sum of squared errors SSe. It is defined as the sum of
the squares of the deviation between the data and the predictions of the estimation
model, divided by its degrees of freedom df [30]. Here, the (statistical) degrees of
freedom refer to the number of independent observations in a data sample available
to estimate a parameter [31]. A low value of SSe indicates a tight fit of the estimation
model to the data. The sum of squared errors is usually used as a goodness-of-fit
measure.

1.4 Aim
Designing and developing automated vehicles is complex task, for which the vehicle
models play a key role. Different models, that vary in complexity, are used for
the designs of control functions. However, the designers are interested in using
only one vehicle model for different tasks and functions. Therefore, it is of high
importance to develop a validation process in order to determine which model is
complex enough to represent the actual dynamics but simple enough to be suitable
for online applications.

The aim of this thesis is to establish a framework for validation of a low complexity
vehicle model, utilizing Bayesian statistics. The purpose is to quantify the model’s
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validity and determine if it is well suited for certain applications. A process is
defined for the validation procedure of an abstract (low complexity) model against
an implementation (reference) model, which can be either a higher complexity model
or experimental data.

The framework can be divided into three stages. The first step is the definition
of a driving context. It is a very important phase of the framework since the choice
of the driving context defines the applicability of the model and sets the limits for
which it is considered valid. The second step concerns the vehicle modelling. Here
the model assumptions and simplifications are made, and the equations of motion
are derived. Finally, the model validation using statistical methods is performed,
with a focus on Bayesian hypothesis testing approach. The validity of the vehicle
model is assessed and quantified based on numerical values, which are the outcome
of the statistical validation methods.

The proposed framework is implemented on a single track linear model of a
tractor-semitrailer vehicle, for a test case of 90 ◦ turn under city driving, and
Bayesian statistical validation methods are used to determine its validity. Addi-
tionally, the validation process is documented in a formal manner for use in other
applications.

1.5 Delimitations
The purpose of the thesis is limited to the evaluation of the validity of vehicle
models. To that end only minor development of a simple model is done. The
high complexity models that are used, were not developed during this project, but
they are provided by VAS. The metrics for describing the vehicle performance and
the driving context under which the vehicle model is evaluated, are not thoroughly
studied, but rather a number of them is rigidly defined and utilized to perform the
model validation. Moreover, the vehicle data gathered and used for validation are
generated by only varying the payload (additional mass), that can be loaded in the
trailer. The study did not research whether this parameter had a significant effect
on the vehicle dynamics, or if other parameters have greater influence on the vehicle
behavior. Additionally, the abstract model was calibrated manually, without using
any automated calibration methods.

As far as the validation is concerned, this study does not cover the comparison of
the abstract model to real driving data. Furthermore, the statistical models used in
the validation methodology were not optimized. More specifically, only a number of
distribution families were available to describe the data. This work did not evaluate
the use of mixtures of distribution to obtain the best fit to the data. Finally, a
univariate hypothesis testing was used, consequently only one unknown parameter
was inferred.

1.6 Thesis Structure
The work in this thesis is structured as follows. Chapter 2 introduces the Bayesian
statistics and hypothesis testing theory on which the validation methodology is
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based. In Chapter 3, the modelling of a single track tractor semi-trailer model is
discussed. In addition, the performance metrics used to describe the vehicle behavior
and response are presented. Chapter 4 analyzes the structure of the validation
methodology, where the Bayesian hypothesis testing approaches from Ch. 2 are
applied on the tractor semi-trailer model derived in Ch. 3. In Chapter 5 the results
of the research conducted in this thesis are outlined. Finally, in Chapter 6 the
conclusions of this work are discussed and summarized, and suggestions for future
research regarding the validation methodology are proposed.
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2
Bayesian statistics

This chapter introduces the basics of the probability theory used in the thesis. The
Bayesian theory is presented and the construction of the Bayesian hypothesis testing
is explained.

2.1 Probability & Bayesian Theory
To better understand the Bayesian methods used in this thesis, it is valuable to go
through some basic concepts of probability theory. Additionally, the fundamental
theory of Bayesian statistics is introduced.

2.1.1 Probability Theory & Distributions
The mathematical definition of probability, as given in [32] is that probabilities
are numerical non-negative quantities, which measure the likelihood of an event
occurring in a random experiment. If the events are mutually exclusive, probabilities
sum to 1 over all possible mutually exclusive events. Therefore, in other words,
probabilities are numbers between 0 and 1, including both extremes, i.e., the [0,1]
interval. From the Bayesian perspective, a probability measures the degree of belief
or the level of uncertainty of a statement or event [32], [33].

A probability distribution is a function that describes how likely different events
are [33]. A variable that can be described by a probability distribution is called
random variable. Variable might be categorical or numerical. A categorical variable
places something into a category. The numerical variables can be distinguished into
two types, namely discrete and continuous. Discrete variables can take only certain
values and continuous variables can take any value from some interval.

The probability distribution function of a discrete variable provides the proba-
bility that the variable is equal to some values. On the other hand, the probability
function of a continuous variable provides probability densities, which can be inter-
preted as providing the relative likelihood that the random variable would equal a
value. For that matter, to get a proper probability, integration between a given in-
terval is required, or in other words the area below the curve, for that interval should
be computed. While probabilities cannot be greater than one, probability densities
can be, whereas the total area under the probability density curve is restricted to
be 1.

Following the notation in [32], p(·, ·) denotes a joint probability density with
arguments determined by the context and p(·|·) a conditional density. The joint
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distribution p(X, Y ), where X, Y random variables, is the probability distribution
that describes the probability that both variables X and Y simultaneously belong
to a specific range or discrete set of values. It is important to distinguish the
joint distribution from the probability distribution of each variable. The individual
probability distribution for each random variable is called marginal distribution and
is denoted as p(·). Given the joint distribution p(X, Y ), the marginal distribution of
X is found when the values of Y are not taken into account. Finally, the conditional
distribution p(X|Y ) describes the probability of X given that Y has a particular
value [34]. To avoid confusion, when Pr(·) is used it refers to the probability of an
event. To describe the distribution that a parameter follows, the symbol ∼ is used,
e.g., if parameter θ follows a normal distribution with mean µ and variance σ2, then
this is written as θ ∼ N(µ, σ2).

A probability distribution is characterized by its moments, which describe the
location, scale and shape of the distribution. The two most important moments are
the first and second. The first moment is a measure of the central location, which is
called expectation (or mean in statistics) and the second is a measure of dispersion
(variance in statistics). The third moment is the skewness, which measures the
asymmetry about the mean. It can be positive, negative, zero or undefined. The
sign of the skewness indicates which tail is bigger; for negative skewness, the tail is
usually on the left side of the distribution, while for positive skewness it is on the
right. When the skewness is zero, it means that the tails on each side balance each
other, and therefore the distribution is symmetric. The magnitude of the skewness
indicates how much difference between the tails exists. The fourth moment, also a
shape measure, is called kurtosis. It describes the heaviness of the distribution tails,
meaning it identifies if the tails contain extreme values.

There are a lot of common families of distribution functions that are used in
statistics. One of the most common distributions is the normal or Gaussian. De-
pending on the variables and the application, different distributions can be used to
describe the events.

2.1.2 Statistical Inference

Statistical inference draws conclusions on unobserved quantities based on numeri-
cal data observed from a population sample. Bayesian inference, specifically, is the
process of reallocating credibility across possibilities. Possibilities are the parame-
ter values in mathematical models, while the credibility assigned to them refers to
weighing how probable a possibility is based on the available knowledge and data.
Initially, the distribution of credibility expresses the prior knowledge. The realloca-
tion of the credibility is then done based on newly observed data. The possibilities
that are consistent with the data gain more credibility, while the rest of them lose
credibility. Bayesian inference computes the posterior credibility by updating the
prior allocation (distribution of credibility), based on the likelihood function (Fig.
2.1) that describes the observed data, using the Bayes’ theorem, described in the
next section.
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Figure 2.1: Bayesian inference: Prior, likelihood and posterior distribution exam-
ple.

2.1.3 Bayes’ theorem
Let θ denote the set of unobserved quantities or population parameters, which are
random variables, and y = (y1, y2, ..., yn) the observed data from a population sam-
ple. The Bayes’ theorem then is given in the Equation 2.1. The left hand term
p(θ|y) is the conditional probability density of θ given the observed data y, which
is called the posterior distribution of θ. On the right hand side of the equation, the
term p(y|θ) is the conditional probability density, or likelihood, of the data y given
that θ is known. The term p(θ) is the prior probability density of θ and the term
p(y) on the denominator is the marginal probability density of data y [33].

p(θ|y) = p(y|θ) p(θ)
p(y) (2.1)

The prior probability distribution p(θ) reflects the knowledge (credibility) about
the unknown parameter θ prior of observing the data y, such as experts’ opinions or
information from previous experiments. If no information regarding the parameter
is available, then the use of ’flat’, or non-informative, priors that do not provide
too much information is selected, since they have the least amount of impact on
the analysis. A number of variations of the beta distribution are commonly used as
non-informative priors. These variations share the properties that the parameters
α, β are equal to each other and less or equal than 1. Such priors are the uniform
distribution (Beta(α = 1, β = 1)), the Jeffreys prior (Beta(α = 0.5, β = 0.5)) and
the Haldane prior (Beta(α = 0, β = 0)), which are illustrated in Figure 2.2 [32],
[33].

Usually, in many problems, there is some knowledge about the values the unknown
parameters can take, for example that it is only positive or restricted to a known
range. In such cases, instead of non-informative priors, weakly-informative priors are
selected. The last category of prior distributions are the informative priors, which
are considered strong priors, and convey a lot of information. They are used when
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good-quality and reliable information is available about the unknown parameter.
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Figure 2.2: Non-informative Priors. 2.2a Uniform prior, 2.2b Jeffreys prior, 2.2c
Haldane prior.

The likelihood p(y|θ) is an expression of the plausibility of the data given the
parameters. It describes the probability distribution of the data y being observed
given the parameters θ. Among other names for the term p(y|θ), are the sampling
model or statistical model, however to avoid confusion, in the thesis, the combination
of the prior (p(θ)) and likelihood functions (p(y|θ)) will be referred to as statistical
model.

The posterior distribution p(θ|y) is the result of the Bayesian analysis, meaning
it is the result of the statistical model and data. The posterior is a distribution
of plausible values of the unknown parameters, conditioned on the observed values,
and not a single value. The posterior distribution represents the updated knowledge
about the parameters, after observing the data, and therefore it can be used as a
new prior when observing new data. Generally, the posterior is the balance between
the prior and the likelihood function, however, when the observed data are stronger
than the prior knowledge, the posterior reflects the likelihood more than the prior.
Therefore, when the size of the data is large enough, the use of different priors will
result in the same posterior.

The last term of the Bayes’ Theorem is the marginal likelihood p(y), which is
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also called evidence. The marginal likelihood refers to the average of the likelihood
across all the values of θ, weighted by the prior [33], [35]. The marginal likelihood
does not depend on θ and, with fixed y, it is considered constant, and functions as a
normalizing constant. For discrete variables, the marginal likelihood is a sum (Eq.
2.2), while for continuous variables it is a integral (Eq. 2.3). The Bayes’ Theorem
(Eq. 2.1) can be used for both discrete or continuous variables, where probability
masses or densities are used, respectively.

p(y) =
∑
θ

p(θ)p(y|θ) (2.2)

p(y) =
∫
p(θ)p(y|θ)dθ (2.3)

Figure 2.3 illustrates the statistical model used in Bayesian statistics. This model,
consisting of the likelihood and the priors on the unknown parameters, is used in the
Bayesian inference to procure the posterior distribution of the unknown quantities.

M(θ)
y ~ p(y|θ)

p(θ)

p(θ|y)
Bayesian

Inference

Figure 2.3: Statistical model M(θ). The data y, which follow the likelihood dis-
tribution p(y | θ) and the priors p(θ) on the unknown parameters θ comprise the
statistical model (here illustrated as inputs). Bayesian inference produces the pos-
terior distribution p(θ | y) of the unknown parameters θ, based on the observed data
y.

2.1.4 Posterior Distribution Summary
The result of the Bayesian analysis is a posterior distribution. Since it is not a single
value, it is useful to summarize it to be able to collect the information provided by
the model and data. One of the usual components of this summary is to report
the most probable value, which is given by the mode of the posterior, meaning the
peak of the distribution. This is accompanied by a measure of dispersion or spread
of the posterior, which is proportional to the uncertainty about the value of the
parameters. A common practice is to report the standard deviation. However, for
non-normal distributions, such as skewed distributions, this can be deceitful, and
thus higher moments should also be reported.

An alternative measure of dispersion is the Highest-Posterior Density (HPD) or
Highest Density Interval (HDI). An HDI is the shortest continuous interval that
covers a given portion of the posterior distribution. The HDI that are commonly
used are the 95% and 50% intervals. The values inside the 95% HDI have higher
credibility than the values outside the HDI, and they have total probability of 95%.
It should be noted, that the Bayesian credible intervals are not the same as the
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frequentist confidence intervals (CI). In the frequentist framework, the parameters
are fixed and the confidence intervals contains or not the true value of the parameter.
The CI does not refer to a distribution over the parameters. On the other hand, in
the Bayesian framework, the 95% credible interval indicates the 95% most probable
values of the parameter, given the data [33], [35], [36].

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86
Parameter Value

0.74  0.82

95% HDI

mean=0.78

100.0% <0.85< 0.1%

0.7 0.85

(a) HDI entirely in ROPE

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86
Parameter Value

0.74  0.82

95% HDI

mean=0.78

81.8% <0.8< 18.2%

0.7 0.8

(b) HDI partially in ROPE

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86
Parameter Value

0.74  0.82

95% HDI

mean=0.78

0.1% <0.72< 100.0%

0.7 0.72

(c) HDI outside ROPE

Figure 2.4: ROPE and 95% HDI location in the Posterior distribution plot of an
unknown parameter θ. The horizontal black and green lines represent the HDI and
the ROPE, respectively. The orange vertical line is the upper limit of the ROPE
interval. 2.4a Statement is accepted, 2.4b Inconclusive - No decision can be made
regarding the statement, 2.4c Statement is rejected.

To make decisions based on the posterior distribution, the above summary is
not enough. To make matters clearer, the use of Region Of Practical Equivalence
(ROPE) is needed to transform the continuous estimation into a dichotomous one,
e.g., yes-no. The ROPE contains the range of values for which the statement or
hypothesis is accepted. Once the ROPE is defined, the decision is based on its com-
parison with the HDI. If the ROPE contains the entire HDI then the statement is
accepted, while if the ROPE does not overlap, it is rejected. In case the ROPE over-
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laps partially with the HDI, then no conclusion can be drawn. Figure 2.4 illustrates
the HDI and ROPE relative position of the posterior distribution of parameter θ.
The black horizontal line represents the ROPE interval, the upper limit of which is
depicted with the vertical orange line, and the green horizontal line depicts the 95%
HDI.

2.1.5 Posterior Predictive Check
The posterior distribution can also be used to evaluate how good the statistical
model is. By default, the model is wrong, but it is useful to understand its limita-
tions, and either acknowledge them or proceed to model modifications and improve-
ments. For that matter, posterior predictive checks can be performed.

The posterior predictive checks make inferences about an unknown but observ-
able quantity ỹ. Before the data y are observed, the distribution of the unknown
observable ỹ is the marginal likelihood given in Equation 2.3, which is here called
the prior predictive distribution. This name is more informative, and it is given be-
cause the distribution is not conditional on any observation (prior) and it refers to a
quantity that is observable (predictive). After the data y are observed, the unknown
observable ỹ can be predicted, and its distribution is called the posterior predictive
distribution (Eq. 2.4). This name is given to indicate that it is conditional on an
observed y (posterior) and it is a prediction of the observable ỹ (predictive) [32].

p(ỹ|y) =
∫
p(ỹ, θ|y)dθ =

∫
p(ỹ|θ)p(θ|y)dθ (2.4)

The posterior predictive checks compare the posterior predictive distribution to
the sample data. The comparison can be qualitative, by comparing the distributions
visually using graphs. A quantitative comparison involves a summary statistic (usu-
ally regarding the location and/or spread) and a quantity to measure the fit of the
posterior predictive check. Such measure is a Bayesian p-value, which is calculated
as the proportion of times that the summary statistic of the posterior predictive
is equal or greater than the one computed from the data. Equation 2.5 calculates
the Bayesian p-value, where Tsim is the simulated statistic and Tobs is the statistic
of the data y. These p-values are just a way of assessing the fit of the posterior
predictive distribution to the dataset, and thus no predefined threshold is used to
indicate statistical significance.When the data and the posterior predictive agree,
the predictive distribution of the statistic should be centered around the statistic
computed from the data. This is translated to the p-value being around 0.5. If
the Bayesian p-value is close to zero or one, the predictions are far away from the
statistic of the data. Therefore, the posterior predictive distribution is biased, and
improvements to the model are necessary. Depending on the context, the acceptable
discrepancies between the predictive checks and the observed data can differ [33].

Figure 2.5 illustrates the meaning of Bayesian p-values. The black dashed line is
the mean value (statistic T ) computed from the observed data, and the blue line is
the posterior predictive distribution of the mean. The computed Bayesian p-value is
equal to 0.25, which is lower than the desired value (0.5). It is apparent from Figure
2.5 that the statistical model predicts lower values of the mean. This is represented
numerically by the p-value.
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Bayesian p-value , Pr (Tsim ≥ Tobs | y) (2.5)
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Figure 2.5: Posterior predictive distribution of mean (summary statistic T ) for
Bayesian p-value of 0.25.

2.1.6 Inference engines
Conceptually, the Bayesian analysis is quite simple. It includes the knowns, which
are the data (y), and are constant, and the unknowns, which are the statistical
parameters (θ), and are random variables, described by probability distributions.
Using Bayes’ theorem, the prior distributions of the parameters (p(θ)) are trans-
formed into the posteriors (p(θ|y)), after observing the data. If this analysis is
carried out analytically, it can yield very complex statistical models, and depending
on the prior and likelihood distributions (p(y|θ)), it might be impossible to acquire
an analytical solution. The reason why the Bayesian problem can be difficult to
solve analytically is the calculation of the marginal likelihood p(y) (denominator in
the Bayes’ theorem), which is usually a very computational demanding integral to
compute (Eq. 2.3).

However, using computational and numerical methods any inference problem can
be solved. These methods are called inference engines. The automation of the in-
ference process can be done using probabilistic programming languages (PPL). In
this thesis, the PyMC3 package [37] for python is used to perform the Bayesian
inference. Generally, in the PPL, the probabilistic model is specified and then the
inference is done automatically. The posterior distribution is usually calculated nu-
merically using one of the algorithms from the Markov Chain Monte Carlo (MCMC)
family, or variational algorithms. Some of the most wide-used algorithms are the
Metropolis-Hastings and Gibbs. In this work, the samplers used are the Metropolis,
for the discrete variables, and the No-U-Turn Sampler (NUTS), for the continuous
variables.

MCMCmethods draw values of θ from approximate distributions and then correct
the draws to better approximate and converge to the desired, stationary, posterior
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distribution p(θ|y). The sampling of the draws is done sequentially, where each
sampled draw depends only on the previous value drawn (Markov Chain). MCMC
methods are usually used when it is not possible, or efficient, to sample directly from
the posterior distribution. They are iterative methods, where it is expected that the
draw at each step of the process becomes closer to the target distribution [32], [33].

The Metropolis-Hastings algorithm is an adapted random walk, with an accep-
tance (or rejection) criterion to converge to the target distribution. The algorithm
involves the following steps.

1. Choose a starting (random) value for the parameter θi (i = 0), for which
p(θ0|y) > 0.

2. For each sequence i(= 1, 2, . . . ), draw a new parameter value θi, that depends
on the previous draw (θi−1), from a transition distribution pi(θi|θi−1). The
transition distribution can be an easy-to-sample distribution, such as a uniform
or a gaussian distribution. Specifically for the Metropolis algorithm (unlike the
generic Metropolis-Hastings), the transition distribution must be symmetric,
which means it satisfies the condition pi(θα|θb) = pi(θb|θα), for all θα, θb and i.

3. Calculate the probability of accepting the new parameter value (θi) using the
Metropolis-Hastings criterion:

Pra(θi|θi−1) = min

(
1, p(θi)pi(θi|θi−1)
p(θi−1)pi(θi|θi−1)

)
(2.6)

4. The new parameter value is accepted if the probability computed in step 3
(Pra) is greater than the value taken from a uniform distribution on the [0,1]
interval, otherwise the previous drawn value is kept.

5. Repeat from step 2 until enough samples are drawn
6. The drawn samples are the approximated target distribution (posterior)
The NUTS algorithm is a variation of the Hamiltonian Monte Carlo (HMC)

algorithm. The HMC is similar to the Metropolis-Hastings algorithm, with the
difference that HMC avoids the use of random walk to propose new parameter
values. HMC algorithm utilizes first-order gradient information to proceed to a new
step, enabling quicker convergence to the target distributions than other more simple
methods (e.g., Metropolis-Hastings or Gibbs). However, HMC is sensitive to two
user-defined parameters; the step size and the number of steps . On the other hand,
NUTS automatically tunes these two parameters. It uses a recursive algorithm to
generate a set of potential points over a wide range of the target distribution and
stops (automatically) when it starts to go back and repeat its steps. NUTS is
usually as efficient (or more) as a fine-tuned HMC algorithm, without the need for
user interference [38].

2.2 Bayesian Hypothesis testing
In [39] hypothesis testing is defined as “a method for testing a claim or hypothesis
about a parameter in a population, using data measured in a sample”. Hypothesis
testing involves two hypotheses, namely the null and alternative hypothesis. The
null hypothesis is the one that is tested to determine if it is true, while the alternative
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hypothesis states what is wrong regarding the null hypothesis. For example, if the
null hypothesis is that θ = 0.5, then the alternative hypothesis can be that θ 6= 0.5.
In classical hypothesis testing, the decision about rejecting the null hypothesis or
not is based on a test statistic, which is a function of the sample data [40].

In the Bayesian context, hypothesis testing again involves two (or more) com-
peting hypotheses and some sample data. For simplicity, the hypothesis testing
framework is described only for the binary univariate case, which includes the null
(H0) and one alternative (H1) hypothesis. The two hypotheses are mutually ex-
clusive. The formulation of hypothesis testing can be divided in two main types,
in terms of the hypothesis statement formulation, namely the point-based and the
interval-based hypothesis testing, which are explained in Chapters 2.2.1 and 2.2.2.

2.2.1 Bayesian Point-based Hypothesis Testing
Let θ0 and θ be the predicted and the true value of an unknown parameter. The θ0
value is predicted by the statistical model M . The point-based hypothesis testing
can be formulated as follows:

H0 : θ = θ0

H1 : θ 6= θ0

In a Bayesian point-based hypothesis testing, the null hypothesis H0 is expressed
as a prior distribution that assigns all credibility only in an infinitely narrow area
around the null value, while all the other parameter values have zero credibility.
The prior distribution of the alternative hypothesis spreads the credibility to other
than the null values of the parameter [36].

The point-based hypothesis testing is quite strict and it is preferred when the
predicted and true value deviate slightly. Otherwise, due to the formulation, if
the values are expected to differ, the null hypothesis is always rejected and no
significant conclusion can be drawn. Additionally, as the sample size increases, the
possibility of rejecting the null hypothesis also rises. A more relaxed formulation of
the hypothesis testing is given by the interval-based hypothesis testing, described in
the next chapter.

2.2.2 Bayesian Interval-based Hypothesis Testing
The generic formulation of the interval-based hypothesis testing, considering only
one alternative hypothesis, is:

H0 : εl ≤ θ ≤ εu

H1 : θ ≤ εl or θ ≥ εu ,

where εl and εu are predefined lower and upper limits of the predicted value of the
unknown parameter θ, respectively, and depend on the application.

The prior distribution of the parameter for each hypothesis should reflect the
above formulation. The credibility, in the null hypothesis, is given to the values
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of the interval [εl, εu], with zero credibility assigned on all the values outside of it
(−∞, εl)∪ (εu,+∞). Equation 2.2.2 illustrates a general formulation of an interval-
based hypothesis testing. In many cases, however, the alternative hypothesis can
be more than one. Additionally, a hypothesis (null or alternative) can have either a
lower or an upper limit or both, or even include more than one intervals. The form
of each hypothesis depends on the evaluated case.

Unlike point-based hypothesis testing, which assesses the equality of two values,
interval-based hypothesis testing tests if the predicted value is within a specified
interval. Moreover, the interval-based formulation provides more consistent results
with increasing sample size [19], [41].

2.2.3 Bayes Factor
The Bayes factor quantifies to what extent one hypothesis is supported compared
to another and it can range from 0 to infinity. Let p(H0) and p(H1) be the priors
for the null and alternative hypothesis respectively, such that p(H0) + p(H1) = 1.
After obtaining the sample data y, these distributions are updated to the posteriors
(p(H0|y), p(H1|y)) using Bayes’ theorem (Eq. 2.1). The ratio of the posterior odds
is shown in Equation 2.7. The likelihood ratio, which is the term inside the brackets,
is defined as the Bayes factor B01 (Eq. 2.8).

p(H0|y)
p(H1|y) =

[
p(y|H0)
p(y|H1)

]
p(H0)
p(H1) (2.7)

B01 = p(y|H0)
p(y|H1) =

∫
p(θ|H0)p(y|θ,H0)dθ∫
p(θ|H1)p(y|θ,H1)dθ (2.8)

One way of interpreting the Bayes factor is continuously, where for example a
Bayes factor equal to 10, means that the sample data support the null hypothesis 10
times more than the alternative hypothesis. The Bayes factor can also be interpreted
discretely. The general idea behind this, is that if the Bayes factor is higher than
1.0, then the null hypothesis is accepted relative to the alternative hypothesis, while
if it is lower than 1.0, the evidence supports the alternative hypothesis more than
the null [41]. This is a very crude methodology, because if the Bayes factor is
slightly larger than 1, the supporting evidence is not enough to conclude that the
null hypothesis is more probable. For that matter, a categorization of the values of
the Bayes factor is needed to illustrate the strength of evidence that support the
null hypothesis (Table 2.1).

It is apparent, that as the value of the Bayes factor increases, so does the con-
fidence in the model/null hypothesis based on the evidence. The confidence κ is
quantified by the posterior probability of the null hypothesis p(H0|y), which can be
found by rearranging Equation 2.7, and it is shown in Equation 2.9 [42].

κ = 100% · p(H0|y) = 100% · B01p(H0)
p(H1) +B01p(H0) (2.9)

If no prior knowledge is available about the hypotheses, equal priors are assumed,
and thus the confidence is simplified to:
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κ = 100% · B01

1 +B01
(2.10)

From Equation 2.10, it is obvious that for a Bayes factor near 0 (B01 → 0) the
confidence in the null hypothesis being accepted is 0%, while when the Bayes factor
approaches infinity (B01 →∞) the model confidence is 100% . The confidence levels
for each category of Bayes factor’s values regarding the level of support in the null
hypothesis are also shown in Table 2.1.

Table 2.1: Categorization of Bayes factor’s values depending on the strength of
evidence [33].

Bayes Factor (B01) Strength of Evidence Confidence κ
1-3 Anecdotal 50-75%
3-10 Moderate 75-90.91%
10-30 Strong 90.91-96.78%
30-100 Very strong 96.78-99%
>100 Extreme >99%

2.2.4 Model Comparison
One framework used for Bayesian hypothesis testing is based on (statistical) model
comparison. According to this, each hypothesis is modelled as a distinct statistical
model, namely the null and the alternative model. Therefore, the decision between
the two hypotheses is translated into selecting one of the models [43].

The model comparison is based on the construction of hierarchical models. Hi-
erarchical or multi-level models include "multiple parameters such that the credible
values of some parameters meaningfully depend on the values of other parameters"
[35]. These models are used when the parameters involved are somehow related
and thus the joint distribution should reflect their connection [32]. The parameters
are organized at different levels, defined by the chain of dependencies, but they all
belong to a joint parameter space.

Let Mm for m ∈ {0, 1} represent the two models, and m be a discrete random
variable, which takes only the values 0 or 1, depending on the model. If m = 0
then the null model M0 is true, whereas if m = 1 then the alternative model M1 is
true. In Chapter 2.1.3, the unknown parameters of a model were denoted as θ, the
prior distribution as p(θ) and the likelihood as p(y|θ). Expanding these notations
to refer to multiple models, the prior and likelihood distributions become pm(θm|m)
and pm(y|θm,m), respectively, where θm are the parameters of model Mm. The
subscript given to the parameters indicate that each model can involve different
parameters.

Each model also has a prior probability p(m) or p(Mm). Considering the joint
parameter space which includes the unknown parameters θm of each model and the
model index m, Bayes’ theorem (Eq. 2.1) is then transformed for multiple models
(Eq. 2.11). The hierarchical modelling enables the transformation of the joint
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parameter space (θ,m), in Eq. 2.11, to dependencies among parameters through
factoring (convert p(y|θm,m)p(θm,m) to ∏m pm(y|θm,m)pm(θm|m)p(m)) [35].

p(θm,m|y) = p(y|θm,m)p(θm,m)∑
m

∫
dθmp(y|θm,m)p(θm,m)

=
∏
m pm(y|θm,m)pm(θm|m)p(m)∑

m

∫
dθm

∏
m pm(y|θm,m)pm(θm|m)p(m)

(2.11)

A simplified representation of the Bayes’ theorem for model comparison, when
marginalized across the parameters of the models, is given in Equation 2.12, [35],
[44]. This form of the Bayes’ theorem is useful to compute the relative credibility
of the models [35].

p(Mm|y) = p(y|Mm)p(Mm)∑
m p(y|Mm)p(Mm) (2.12)

In this hierarchical formulation, the inference reallocates credibility not only
across the values of the parameters of each model, but also across the values of
the ’top-level’ parameter, the model index m. Figure 2.6 illustrates the hierarchical
models used in model comparison, in the form of diagrams. Figure 2.6a depicts the
joint parameter space across all statistical models, reflecting Equation 2.11, before
the factorization. The latter is shown in Figure 2.6b, where the hierarchical model
is factored into distinct statistical models, which are depicted in the blue boxes.
Each statistical model has its own parameters and distributions, however they are
all under the top-level parameter m. Figure 2.6c is a special case, where the dis-
tinct statistical models have the same likelihood, but different prior distributions.
In these figures, the prior distribution of the model index m is presented as a bar
graph over its possible values (m = 0, 1, . . . , n).

Although the inference is done for all the statistical parameters involved, the
hypothesis testing relies only on the inference of the model index and not on the
estimation of the statistical model parameters. The selection of the model, and thus
the hypothesis that is more probable to be true based on the observed data, is done
using the decision rule described in Chapter 2.2.3. The Bayes factor measures the
degree to which the model index changes from prior to posterior. The Bayes factor
in model comparison is defined as the ratio of posterior odds to the prior odds in
Equation 2.13. To avoid confusion, it can also be defined as in Eq. 2.8, as the ratio
of the marginal likelihoods (p(y|M0)

p(y|M1)). However, due to the difficulty in calculating
them and their sensitivity to the priors, the Bayes factor is usually preferred to be
computed using Equation 2.13.

B01 =
p(M0|y)
p(M1|y)
p(M0)
p(M1)

(2.13)
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Figure 2.6: Hierarchical models with hyperparameter a categorical parameter m
with prior p(m). The blue boxes include the distinct statistical models (submodels)
that are being compared. 2.6a Generic concept of a hierarchical model, with param-
eters θm for all submodels, in the joint parameter space. 2.6b Hierarchical model
with two submodels involving different likelihoods. The likelihood and the priors
are reduced into functions of only the parameters θm for each m. 2.6c Special case
of 2.6b, where the two submodels have the same likelihood for all m, but different
priors on the parameters for each m.
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3
Vehicle Modelling in Automation

This chapter introduces the vehicle model that is used in the thesis. Depending on
the application, different aspects of the vehicle behavior are required to be modelled.
Therefore, the vehicle models can be very different for each use case they are designed
for. Their complexity can vary, ranging from a simple linear model, usually used
for designing control algorithms or online applications, to high complexity models,
consisting of multiple subsystems, that can capture the dynamic vehicle behavior to
a great extent. The latter are often used for offline calculations, due to their high
computational demands.

The model to be validated in this work is a simple model, called single track
model of a tractor-semitrailer combination. In the following sections, the equations
of motion and simplifications of the model are presented. The validation of the ab-
stract model was implemented by comparing it to an implementation model, which
is a higher complexity model, provided by VAS.

3.1 Driving Framework
One of the most important parts during the design phase is the definition of the
driving framework. The selection of the framework affects both the modelling and
the validation stage. Therefore, it must be clearly defined at the early stages of the
design process. Different definitions can be found in literature. Many formulations
involve theater references, including terms such as scenes, and actors [45], [46]. The
term scenario is also usually used to describe and substantiate the environment and
conditions of the driving task. Menzel et al. [47] defined three levels of scenarios,
depending on the extent of details involved. However, these definitions can often be
vague or inconsistent.

In this work, the driving framework is composed of different levels of detail re-
garding the driving situations. The first component of the framework is the driving
context. This refers to the type of the road environment, such as urban or high-speed
roads, in conjunction with the vehicular characteristics, which can include speed,
acceleration, or steering angles. This makes the vehicle under study an integral part
of the driving framework. Based on this definition, it is evident that different driving
contexts can include some common vehicular characteristics and therefore overlap
[16].

The driving context contains a set of different driving scenarios, which corre-
spond to different road types and layouts. Examples of scenarios are that the road

23



3. Vehicle Modelling in Automation

is straight, curved, or an intersection. Each driving scenario is specified by the
scene and the driving maneuver(s). The scene contains the scenery and all the
dynamic objects. The scenery includes, but is not limited to, environmental and
weather conditions, such as the ambient temperature, additional information and
characteristics of the road, for instance, road friction, and geographical restrictions.
Stationary elements are also a part of the scenery. These can be traffic lights, signs,
or even buildings. The dynamic objects are elements that are moving or can move
[45]. They can be vehicles, other than the ego one, or pedestrians. Here, the ego
vehicle refers to the vehicle being studied, and optionally, the driver and/or the
control system or automation. The driving maneuvers concern the motion of the
ego vehicle and are defined as a set of one or more actions of the ego vehicle. An
action can be, for example, deceleration, navigation, or steady-state cornering. The
structure of the driving framework used in this thesis is illustrated in Figure 3.1a.

Driving Context 

Scenario

Scenery or ODD Elements

Dynamic Objects

Scene

Maneuvers

(a) Driving Framework Structure

City Driving

Straight Road

Deceleration, then 

accelerationRed light turning 

green

Only ego vehicle

(b) Test Case Example

Figure 3.1: Driving Framework Structure Specification.

A specific scenario under a specified driving context is referred to as a test case.
Each test case can include a different set of maneuvers and scenes, which can be
performed under the selected driving context. An example of a test case is illustrated
in Figure 3.1b. The driving context is city driving and the scenario is that of a
straight road. The scenery contains a traffic light which turns from red to green,
and since no specification is given regarding the environmental and road conditions,
they are defined using typical values and characteristics. No moving objects are
included in this test case and only the ego vehicle is studied. The maneuvers of the
ego vehicle include the actions of deceleration, followed by acceleration. A use case,
on the other hand, refers to the desired behavior and typical usage of the test cases.
An example of a use case can be the automated parking.

3.2 Single Track Model of a Tractor-semitrailer
Combination

Simple vehicle models are very useful, especially in basic analysis, because of the
low computational cost and the low number of parameters. One of the wide-used
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simple models is the single track vehicle model.

3.2.1 Modelling Assumptions
The simplicity of a vehicle model lies in the assumptions that are made during the
design phase. The driving situation under which the model is studied, sets the limits
of the vehicle dynamic behavior, such as the maximum acceleration, and therefore
dictates the assumptions that can be made. Since the assumptions can affect the
behavior of the model, serious consideration is required such that the model captures
and reflects the real dynamics to a certain degree.

In the single track model of a tractor-semitrailer combination, the two tires of an
axle are combined into one single tire, located at the center of the axle in the vertical
center plane (disregarding the height of the CoG from the ground). Moreover,
the tire models are considered linear, where the tire forces are linear functions of
the slip angles. The longitudinal forces are neglected, meaning that no braking
or accelerating forces are considered, and only the lateral forces on the wheels are
taken into account. No aerodynamic forces are included, and the road is assumed
flat. The coupling between the units is considered rigid and only kinematic relations
are used to model it. Finally, only planar motion is concerned, neglecting the vertical
dynamics and load shifting. Figure 3.2 illustrates the single track model of a tractor-
semitrailer combination. The tractor has two axles and the semitrailer three. The
two units are coupled to each other with angle ∆ψ.

 l23.
 l22.

 l21.  lc,21.
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Figure 3.2: Single track model of a tractor-semitrailer combination.

3.2.2 Equations of motion
The equations of motion for the single track model of a tractor-semitrailer combi-
nation in planar motion are derived from Newton’s second law. To describe the
quantities involved in the vehicle model, three different reference frames are used,
namely the global, which is fixed, the unit, and the wheel reference frame. The re-
lation between them is described using rotation matrices. The transformation from
the wheel to the unit frame is done through the matrix Rδ (Eq. 3.1), from the unit
to the global frame through the matrix Rψ (Eq. 3.2) and from unit i to unit i + 1
with the matrix R∆ψ (Eq. 3.3) [16].
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Rδ =
[
cos(δ) − sin(δ)
sin(δ) cos(δ)

]
(3.1)

Rψ =
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(3.2)

R∆ψ =
[
cos(∆ψ) − sin(∆ψ)
sin(∆ψ) cos(∆ψ)

]
(3.3)

The Newton’s second law is applied on each unit i, as shown in Equations 3.4,
3.5. The wheel force on axle j is a vector, containing the forces in the x and y
direction, in the wheel coordinate system (Fw,ij = [Fwx,ij Fwy,ij]T ). These are then
transformed to the unit’s frame (Fvw,ij), with the use of the rotation matrix Rδ,i

(Eq. 3.6).
∑
j

Fv,ij = miai (3.4)

∑
j

Mz,ij = Izz,iψ̈i (3.5)

Fvw,ij = Rδ,iFw,ij ⇒
[
Fvwx,ij
Fvwy,ij

]
= Rδ,i

[
Fwx,ij
Fwy,ij

]
(3.6)

The units in the tractor-semitrailer model are connected through a fifth-wheel
coupling. The coupling forces are defined in the global reference frame as Fec,i =
[Fecx,i Fecy,i]T and they are transformed to the unit reference frame through the Rψ,i

rotation matrix (Eq. 3.7). It should be noted that, according to Newton’s third law,
the rear coupling force of unit i is equal to the front coupling force of the unit i+ 1,
but in opposite direction.

Fvc,i = R−1
ψ,iFec,i ⇒

[
Fvcx,i
Fvcy,i

]
= Rψ,i

[
Fecx,i
Fecy,i

]
(3.7)

The moments about the z-axis on the center of gravity for each unit i are defined
as in Equation 3.8, where rj is the moment arm from the center of gravity to the
corresponding axle.

Mz,ij = rj × Fv,ij (3.8)

In planar motion, the vehicle velocity is defined as v = [vx vy 0]T and the
angular velocity is assumed to be equal to the yaw rate, such that ω = [0 0 ψ̇]T .
The vehicle acceleration is then found as shown in Equation 3.9.

a = ∂v

∂t
+ ω × v ⇒

axay
az

 =

v̇x − ψ̇vyv̇y + ψ̇vx
0

 (3.9)

Therefore, the equations of motion can be written for the tractor as in Equation
3.10 and for the semitrailer as in Equation 3.11. These expressions are for a tractor
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with two axles and a semitrailer with three axles. The first index refers to the unit,
where 1 is for the tractor and 2 for the semitrailer, and the second index to the axle.

Fvwx,11 + Fvwx,12 + Fvcx,12 = m1(v̇x1 − ψ̇1vy1)
Fvwy,11 + Fvwy,12 + Fvcy,12 = m1(v̇y1 + ψ̇1vx1)
Fvwy,11l11 − Fvwy,12l12 − Fvcy,12lc,12 = Izz,1ψ̈1

(3.10)

Fvwx,21 + Fvwx,22 + Fvwx,23 + Fvcx,21 = m2(v̇x2 − ψ̇2vy2)
Fvwy,21 + Fvwy,22 + Fvwy,23 + Fvcy,21 = m2(v̇y2 + ψ̇2vx2)

−Fvwy,21l21 − Fvwy,22l22 − Fvwy,23l23 + Fvcy,21lc,21 = Izz,2ψ̈2

(3.11)

3.2.3 Tire Model, Constitution & Compatibility Relations
Tires play a crucial role in the dynamic behavior of the vehicles [48]. They are the
primary contact between vehicle and road, while the other chassis components affect
the vehicle performance through the tire forces and torques applied over the contact
patch [49]. This, reveals the direct relation of the tire to the vehicle dynamics.

The modelling of the interactions between the tire and the road is a significant
task of the modelling process, which justifies the plethora of tire models developed.
The models can be distinguished between physical and empirical [50]. The physical
models utilize the knowledge of the physical structure of the tire. They can be
simplified, using simple mechanical representation, such as the brush model, or
complex, describing the tire in great detail [48], [50]. The empirical models represent
the tire characteristics through mathematical formulas and interpolation schemes or
tables, through fitting experimental data with regression procedures. The Magic
Formula by Pacejka is an example of an empirical model [48].

The tire forces and torque are function of the slip and the wheel load. In this
thesis, a linear tire model is considered, and thus the lateral force is a linear function
of the lateral slip (Eq. 3.12). The cornering stiffness Cy in Equation 3.12 is propor-
tional to the normal force Fz with proportionality coefficient Ccy, called cornering
coefficient (Eq. 3.13) [51].

Fwy = Cysy (3.12)

Cy = CcyFz (3.13)

The lateral tire slip for the front (steered) and rear axle of unit i is given in
Equation 3.14 and 3.15, respectively.

sy,if = vyi + lif ψ̇

vxi
− δf (3.14)

sy,ir = vyi − lirψ̇
vxi

(3.15)
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3.2.4 Kinematic Relations
The relationship between the motion of the units is established through kinematic
equations, which relate the velocity and the acceleration of each unit based on the
yaw angles between them. The relative velocity of a point P in a moving coordinate
system with origin O is given by the Equation 3.16, where rP O is the distance
between the points P and O [52].

vP = vO + ω × rP O (3.16)

aP = aO + ω × (ω × rP O) (3.17)
To construct the kinematic relation of the velocities, first the velocity vc,i,r at

the rear coupling point of the (first) unit i, is found, using Equation 3.16. It is
then transformed to the reference frame of the unit i+ 1 (vc,i+1,f ) and finally, using
once more Equation 3.16, the velocity of the center of gravity of the unit (vi+1) is
calculated. Using Equation 3.17, the relation of the acceleration of units i and i+ 1
is obtained. For instance, the acceleration at the rear coupling point of unit i is
shown in Equation 3.18.

ac,i,r =

v̇xv̇y
0

+

 0
0
˙∆ψi

×
vxvy

0

+

 0
0
ψ̈i

×
−lc,ir0

0

+

 0
0
˙∆ψi

×

 0

0
ψ̇i

×
−lc,ir0

0


 (3.18)

3.2.5 Final Equations of Single Track Model
The equations for the single track tractor-semitrailer vehicle model are derived using
the relations presented in the previous sections. The resulting set of equations,
however, are not presented here due to space limitations. The system of equations
describing the single track model are nonlinear and can be expressed as ordinary
differential equations of the form:

ẋ = f(x, u) (3.19)

3.3 Performance Metrics
The performance metrics are used to describe the overall behavior of the vehicle.
They are single values that quantify different characteristics of the vehicle’s response.
The performance metrics are chosen based on the driving situation, the vehicle
configuration and the intended application, so that they reveal and summarize the
necessary and important aspects of the vehicle performance.

The metrics can be separated into categories, such as time-series based and quan-
tities of interest (QoI). In the first category, indicators for describing the shape of
responses in time and frequency domain are included. In time domain, the metrics
for transient response that are commonly used are peak time, peak value, rise time,
percent overshoot, and settling time.
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The peak time tp in a step response is the time required for the response y(t)
to reach the first peak, called the peak value (Mp = y(tp)), and it indicates the
responsiveness of the system. The rise time tr is the required time for the response
to rise from the 10% to 90% of its final value (Mf ). The maximum percent overshoot
MOV measures the distance between the peak value and the final value and it is
calculated as in Equation 3.20. The percent overshoot shows the relative stability
of the system.The settling time ts is the time required for the response to reach the
final value and remain within a range around the final value, usually specified as 2%
or 5% [53]. Figure 3.3 illustrates a step response and the aforementioned quantities.

MOV = yp − yf
yf

× 100% (3.20)

tp ts

Time

Mf

Mp

Am
pl

itu
de

MOV

tr

Figure 3.3: Time domain metrics marked in a step response example.

Time domain analysis, however, cannot study efficiently high frequency transient
responses [17]. Therefore, frequency analysis should be implemented. In frequency
domain, the peak amplitude and the corresponding peak frequency, as well as the
eigenfrequencies are usually used. The peak amplitude is the maximum gain, which
is usually defined as the ratio of the output relative to the input. The eigenfre-
quencies, also known as natural frequencies, is the frequencies in which the system
oscillates in the absence of damping.

The metrics defined as quantities of interest depend on the application and the
behavior that is desired to be observed. The quantities of interest can be physical
quantities, common to all vehicles, such as the lateral acceleration or the yaw rate.
They can also be, quantities specific for articulated heavy vehicles. For the tractor-
semitrailer, the common quantities of interest of the lateral performance are the
rearward amplification, the swept path width, the high-speed transient and steady
state off-tracking and the yaw damping coefficient.

The metrics used for describing and assessing the vehicle performance can belong
to different categories simultaneously. It is very common to use a combination of
the above, such as the maximum lateral acceleration, or the rise time of the yaw
rate.

29



3. Vehicle Modelling in Automation

In this work, the metrics that are used for the analysis of the vehicle behavior, are
the peak value and rise time of the lateral acceleration of the tractor and the semi-
trailer at the center of gravity, the peak yaw rate of the tractor and the semitrailer,
the rearward amplification and the peak off-tracking.

The rearward amplification (RWA) is the ratio of the maximum value of a motion
variable of the last vehicle unit to that of the first unit, under a specified steering
maneuver and constant vehicle speed. The motion variable is usually the lateral
acceleration of the center of gravity (Eq. 3.21) or the yaw rate. This metric quantifies
the change of the motion variable from the first unit towards the last unit and
indicates the risk of roll over of the rear units. Higher values show higher risk, and
the best value of RWA is equal to one [54].

RWAay =
amaxy2

amaxy1
(3.21)

When a truck is turning at low speed, the rear wheels do not follow the same
path as the front, and thus the vehicle requires more space, than it would for driving
straight. The low speed off-tracking (LSOT ) is defined as "the distance between the
outermost and innermost paths of mid-points of axles" [51]. This metric expresses
the required road space that the truck needs, when turning, and the lower the speed
the higher the value of the metric [55]. Let Rf and Rr be the path radius for the
front axle of the first unit and the path radius for the rearmost axle of the last unit,
then the LSOT is found using Equation 3.22.

LSOT = Rf −Rr (3.22)
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4
Model Validation through

Bayesian Hypothesis Testing

In this chapter, the methodology used for the vehicle model validation is introduced,
with specific interest on the Bayesian hypothesis testing approach. The methodology
presented is then applied to the tractor-semitrailer model (Chapter 3) following the
theory discussed in Chapter 2.

4.1 Vehicle models for validation
The first step of the model validation is to determine the models used. The imple-
mentation model can be either a high order and complex vehicle model or driving
data acquired through real driving experiments. This thesis implements the val-
idation process using a high order vehicle model, provided by VAS. The abstract
model, i.e. the model to be validated, is the tractor-semitrailer model presented
in Chapter 3. The validation is performed by comparing the dynamic behavior of
those models, in terms of metrics, under a specified driving test case, by utilizing
the methods described in Chapter 2.

4.2 Data generation
In this work, since the implementation model is provided for simulations, a direct
comparison between the chosen metrics of the models is possible. Both models are
simulated with the same vehicle parameter values and the relative difference between
the metrics dx (Eq. 4.1) is used to decide the validity of the abstract model. Here,
x is the performance metric and the indices I, A refer to the implementation and
the abstract model, respectively. The absolute value of the difference (|xA − xI |) is
used, since only the deviation between the metric values is of interest. Moreover,
the parallel simulation of the two models is performed not only for simplicity but
also because some parameters of the abstract model, that change under different
operating conditions, require information provided by the implementation model.

dx = Re = |xA − xI |
xI

(4.1)

To create the data sets required for the statistical analysis in the validation pro-
cess, one parameter of the vehicle models is varied. The additional semitrailer mass,
called payload, is selected, and its distribution is assumed uniform. Through Monte
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Carlo sampling, random payload values are drawn and used to simulate both the
implementation and the abstract model (same values for both models).

There are various reasons for choosing the payload as the varied vehicle parameter.
First, the additional mass changes the normal forces. However, the abstract model
is statically indeterminate since the semitrailer has more than two axles, and thus
the normal forces cannot be found by static equilibrium. For that matter, the
implementation model is simulated first, and the calculated normal forces are then
used as input to the abstract model. Another reason is that the implementation
model includes load sharing between the tractor and the semitrailer, unlike the
abstract model. To incorporate that in the latter, the additional load, in terms of
mass, on each unit i is calculated. Let F old

zi and ∑F new
zi be the normal forces on unit

i before and after the increase of payload, respectively, then the added mass on the
unit is calculated as madd,i = (∑F new

zi −
∑
F old
zi )/g. Finally, the complexity of the

implementation model is restrictive as to which vehicle parameters can be varied.
For the abstract model, the variation of the parameters is straightforward. On the
contrary, the implementation model’s structure includes multiple bodies, which are
interconnected. Changing a parameter that is calculated based on other parameters
(and which are not used in the abstract model), cannot be done in an obvious way.

After the simulation of the models, the relative difference dx for each evaluated
metric x is computed. The relative difference dx is located within the [0, 1] interval,
where 0 corresponds to 0% and 1 to 100%, in terms of relative difference. These
data are then used for the model validation, which is conducted as described in the
following section (Ch. 4.3).

4.3 Bayesian Hypothesis Testing
Both types of hypothesis testing (point- and interval-based) can be used, even when
the available data sets are drawn for different vehicle model parameter values, e.g.,
when dealing with real driving data. The choice between these types depends on
the application, the level of accuracy required, and the hypotheses themselves. As
mentioned in Chapter 2, the point-based approach is stricter, and the null hypothesis
(equality to a single value) is harder to be accepted. The abstract model is expected
to differ from the implementation model. Thus, applying the point-based hypothesis
testing will always deem the abstract model invalid. On the other hand, the interval-
based hypothesis testing is most likely a better approach. For that matter, this thesis
will focus only on the interval-based hypothesis testing.

The validation of the abstract model using the interval-based method requires the
statement of the null (H0) and at least one alternative hypothesis (H1), regarding
the relative difference dx (observed data). The hypothesis testing, in this work, is
applied on the location parameter of the distribution that describes the data. This
distribution is the likelihood p(y|θx), where y = dx is the relative difference of metric
x and θx are the unknown parameters of the likelihood distribution. The likelihood
is found by comparing the data to a set of well-known distribution families, using
the sum of squared errors SSe as the goodness-of-fit measure. SSe is calculated
according to Equation 4.2, where yi is the ith-value of the observed data, ŷi is
the ith-value of the probability density function and df is the statistical degrees of
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Hypothesis Testing on location parameter θl,x (of likelihood) 
H0: θl,x ≤ε, H1: θl,x >ε

Identify the distribution family that describes 
the relative difference (likelihood)

Model simulation

Abstract Model Implementation Model

Calculate relative difference of metrics   

Calculate metrics from abstract model Calculate metrics from implementation model 

Decision Rule

Accept H0 and 
abstract model

Reject H0 and 
abstract model

Yes

No

Figure 4.1: Model Validation Process. The metrics x are calculated from the
vehicle models simulations, and the relative difference dx between them is used in the
hypothesis testing. Based on that the decision about the abstract model’s validity
is made. The decision rule depends on the selected hypothesis testing approach.

freedom. The distribution family that provides the lowest SSe describes the data
best and thus it is chosen as the likelihood distribution. Please note that the set of
distributions evaluated is restricted, by PyMC3 package, which includes a specific
number of available distributions (Appendix A.1).

SSe =
∑(ŷi − yi)2

df
(4.2)

Following the formulation described in Chapter 2.2.2, the interval-based hypoth-
esis testing expression for the relative difference dx between the metrics of each
vehicle model (x) is stated in Equation 4.3. The location parameter of the likeli-
hood distribution of metric x is denoted as θl,x. The null hypothesis (H0,x) involves
only an upper limit (εx), since the data are bounded from below (data are greater
or equal to 0). It should be noted that in this work the hypothesis testing involves
only one statistical parameter (location). However, this formulation can be extended
for multivariate cases, with the addition of statements for the rest of the statistical
parameters θx. The following chapters (Ch. 4.4, 4.5) describe two approaches to the
interval-based hypothesis testing.
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H0,x : θl,x ≤ εx

H1,x : θl,x > εx
(4.3)

4.4 Parameter Estimation
The model validation can be performed through hypothesis testing formulated as
parameter estimation. In this context, the two hypotheses are not stated directly
in the statistical model. More specifically, the relative difference dx of a metric x
is modelled by specifying the likelihood (p(y|θx), y = dx) to describe the data and
the priors for the unknown statistical parameters θx, without taking into account
the hypotheses. After the inference, the posterior distributions (p(θx|y), y = dx)
of the parameters are computed. The hypothesis testing is then applied on these
posteriors and the decision is made based on the posterior summary (HDI, ROPE).
It should be reminded that the data handled are located in the [0, 1] interval.

Set prior distributions on the unknown 
parameters, p(θ)

Define Likelihood p(y|θ), 
p : distribution family of y=dx 

θ : random unknown parameters

ROPE contains 
entire HDI

Accept H0

Reject H0

Yes

Bayesian Inference: Find posterior distribution 
of parameters, p(θ |y) and 95% HDI

Define ROPE to represent H0

Compare 95% HDI of θl,x and ROPE 

Partial overlapNo

Inconclusive

Yes

No

Relative difference 
Data from 

Simulations, y=dx

Figure 4.2: Hypothesis Testing as Parameter Estimation. ...

The parameter estimation method begins with structuring the statistical model
Mx. The first component ofMx is the likelihood of the observed data p(y|θx), where
y = dx is the relative difference of metric x and θx are the parameters of the like-
lihood distribution. Depending on the distribution family used for the likelihood,
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the statistical parameters θx can be different. The second part of the statistical
model is the definition of the prior distributions p(θx) of the parameters θx of the
likelihood. The statistical parameters θx are unknown and the prior distributions of
θx reflect the available knowledge prior of observing the data. The uniform distribu-
tion U(0, 1) is assumed for the location parameter (θl,x), since the data are located
in [0, 1]. The rest of the parameters of the likelihood are either kept constant or
non-informative priors are applied reflecting any existing (or lack of) prior beliefs
and knowledge.

An example of a statistical model (priors and likelihood) is shown in Equation
4.4, for a Normal likelihood (p(y|θx) ∼ N(µx, σx), θx = 〈µx, σx)〉). The standard
deviation σx is considered constant, and only for the location parameter (θl,x = µx) a
prior is defined. The non-informative prior chosen is a uniform distribution p(µx) ∼
U(0, 1). Similar methodology is followed for any other likelihood distribution, that
involves different sets of statistical parameters θx.

Using the inference engines, NUTS for the continuous and Metropolis for the
discrete parameters (Ch. 2.1.6), the posterior distributions of the parameters in
the statistical model are found. The hypothesis testing and decision making are
done based on these posteriors as follows. In Chapter 2.1.4, where the posterior
summary was discussed, two tools were introduced, namely the Highest Density
Interval (HDI) and the Region Of Practical Equivalence (ROPE). These tools are
used to determine if the location parameter θl,x is within the acceptable range. The
ROPE represents the null interval ([0, εx]), while the HDI contains the most credible
values of the location parameter. Only when the ROPE contains the entire HDI, one
can conclude that all the credible values are within the null interval and therefore
the null hypothesis (and the abstract model) can be accepted. In the other cases,
either no conclusion can be made (partial overlap of HDI and ROPE), or the null
hypothesis is rejected (HDI not included in ROPE), as discussed in Chapter 2.1.4.

Mx :
p(y|θx) ∼ N(µx, σx)
p(µx) ∼ U(0, 1)
σx = constant (= std(y))

(4.4)

4.5 Model Comparison of Statistical Models
Similar to the parameter estimation approach, a statistical model representing the
hypothesis testing formulation must be defined. In the model comparison approach,
each hypothesis is modelled as a distinct statistical modelMx,m. Each model is indi-
cated by the model index parameterm, which is a discrete variablem ∈ {0, 1, . . . , n},
and n is the number of alternative hypotheses. In this work, where only one alter-
native hypothesis is considered, the model index is either 0, for the null hypothesis
(Mx,0), or 1 for the alternative hypothesis (Mx,1). Since variable m only takes the
values of 0 or 1, then Pr(m = 1) = 1 − Pr(m = 0). As a reminder, the null hy-
pothesis is that the relative difference of a metric x (dx) is lower than an upper limit
(dx ≤ εx), while the alternative is that d is greater than the limit (dx ≥ εx) (Eq.
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4.3). The distinct statistical models Mx,m are combined into one hierarchical model
Mx, which has as hyper-parameter (top-level parameter) the model index m.

κ ≥ 90%

Accept H0

Yes

Bayesian Inference: Find posterior distribution 
of model index m and parameters, p(θm ,m|y)

Calculate B01 and κ

No

Set hyperprior on model index m 
(p(m=0) = p(m=1) = 0.5)

Define hierarchical statistical model

Reject H0

Relative difference 
Data from 

Simulations, y=dx

For each m

Mm

Define Likelihood pm(y |θm , m), 
pm : distribution family of y=dx

θm : random unknown parameters of model Mm

Set prior distributions on all unknown 
parameters of model Mm , p(θm |m) to 

represent the corresponding hypothesis (Hm)

(m={0,1})

Figure 4.3: Hypothesis Testing as Model Comparison of Statistical Models ....

Figure 4.3 shows the process followed in the model comparison approach. First,
the prior for model index Pr(m) is defined. Model index is sampled from a cat-
egorical distribution. Since no prior knowledge exists regarding which hypothesis
is more probable, equal probabilities are given to the model index values (Pr(m =
0) = Pr(m = 1) = 0.5). For each statistical model Mx,m, the likelihood of the
data and the prior distributions of the parameters must be set. All the hypotheses,
as they are formulated in this work, correspond to the same likelihood of the data
(pm(y|θx,m,m) = p(y|θx,m,m), y = dx), in terms of distribution family. Therefore,
the hierarchical model includes one likelihood, which is shared between the statis-
tical models Mx,m. In each Mx,m, different priors are set on the parameters of the
same likelihood, to reflect the hypothesis Hm.

The prior of the location parameter θl,x,m of the likelihood p(y|θx,m,m) is defined
to represent the hypothesis testing formulation. In modelMx,0, the prior distribution
of θl,x,0 stands for the null interval [0, εx], while in model Mx,1 the prior of θl,x,1
stands for the alternative interval (εx, 1]. The non-informative uniform distribution
is selected for both priors, since no other knowledge exists. For the rest of the
statistical parameters θx,m, the priors are set up as discussed in Chapter 4.4.
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Equation 4.5 shows an example of a hierarchical model Mx, for a Normal likeli-
hood (p(y|θx,m,m) ∼ N(µx,m, σx,m), θx,m = 〈µx,m, σx,m)〉) for the hypothesis testing
in Equation 4.3. The null and alternative hypothesis are assumed to be equally
probable, so the prior probability of model index is 0.5 for each value (0, 1). The
standard deviation is considered constant in both models Mx,0 and Mx,1, so priors
are defined only for the location parameters (µx,0, µx,1). A non-informative uniform
prior is chosen, with bounds defined from the hypothesis formulation. It should be
noted again that this methodology can be applied for any likelihood distribution,
involving different statistical parameters θx,m.

Mx :
Pr(m = 0) = Pr(m = 1) = 0.5

Mx,0 :
p(y|θx,0) ∼ N(µx,0, σx,0)
p(µx,0) ∼ U(0, εx)
σx,0 = constant (= std(y))

Mx,1 :
p(y|θx,1) ∼ N(µx,1, σx,1)
p(µx,1) ∼ U(εx, 1)
σx,1 = constant (= std(y))

(4.5)

The model index and the parameters of each statistical model Mx,m are inferred
using the inference engines and the posterior distributions are computed. The hy-
pothesis testing is then concluded by calculating the Bayes factor, using Equation
2.13 in Chapter 2.2.4. As mentioned before, the Bayes factor B01 and confidence
κ show the strength of the evidence that support or reject the null hypothesis and
the level of confidence in that decision. Based on Table 2.1, conclusions about the
validity of the abstract model can be made. In this work, the abstract model is
considered valid, when the evidence of that are at least strong (κ ≥∼ 90%). Natu-
rally, the selected strength of evidence depends on the application. The higher the
strength the more confidence exists in accepting the abstract model. In this work,
strong evidence are considered sufficient, however for more safety-critical cases very
strong or extreme evidence might be preferred.
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5
Vehicle Models Simulation &

Validation Results

This chapter presents the results of the validation framework, implemented on a
specific test case for a tractor-semitrailer vehicle. The validity of the abstract model
is studied under three cases. The first concerns the calibrated abstract model, while
the other two cases regard the incorrect tuning of a parameter of the abstract model.
The vehicle models are simulated for a 90 ◦ turn with constant speed (30 km/h).

5.1 Model Calibration
The parameter values of the abstract model of a tractor-semitrailer combination
are calibrated based on the implementation model design. Since the latter model
is assumed to correspond to reality, the values of its parameters are used for the
abstract model as well. However, due to the discrepancy in the modelling of the
physical quantities in each vehicle model, some of the parameters are defined ap-
proximately. Table 5.1 presents the parameter values used in the single track model.

Table 5.1: Vehicle parameters values after calibration.

Parameter Value
m1 [kg] 7318.2
m2 [kg] 7030.0
Izz,1 [kgm2] 26264
Izz,2 [kgm2] 82661
l11 [m] 1.00
l12 [m] 2.70
l21 [m] 1.36
l22 [m] 2.66
l23 [m] 3.96
lc,12 [m] 2.12
lc,21 [m] 5.44
Ccy,11 [rad−1] 5.32
Ccy,12 [rad−1] 6.13
Ccy,21 [rad−1] 6.15
Ccy,22 [rad−1] 6.15
Ccy,23 [rad−1] 6.15
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5.2 Test Case - 90 degree Turn
To perform the validation of the tractor-semitrailer model, the 90 degree turn ma-
neuver was selected. The following sections describe the general setup of the test
case, as well as the test case variations that are studied.

5.2.1 Simulation Setup
The driving context under which the 90 degree turn is performed is city driving.
The chosen scenario involves the tractor-semitrailer vehicle to perform a 90◦ left
turn on a flat and dry road (asphalt), without lane markings. The scene does not
include other dynamic objects and the environmental conditions are considered for
a typical day.

To simulate the vehicle models, the steering input profile and the velocity must be
defined. The steering input profile is defined as shown in Figure 5.1. It is generated
using Equation 5.1, for time period of 17 s and maximum amplitude (Aδ) equal to
0.07 rad (∼ 4◦). In Equation 5.1, t0 is 2 s, before which the steering input is 0.
The duration from t0 to t1 and from t2 to t3 is 2.5 s, while the duration of constant
maximum amplitude Aδ is 8 s (t1 = 4.5 s, t2 = 12.5 s, t3 = 15 s). After t3, the
steering input is again 0 for 2 s. As far as the velocity is concerned, it is considered
constant at 30 km/h (∼ 8.33 m/s).

δf =


3Aδ

(t1−t0)2 · t2 − 2Aδ
(t1−t0)3 · t3 , t ≤ t1

Aδ , t1 ≤ t ≤ t2

Aδ − 3Aδ
(t3−t2)2 · t2 + 2Aδ

(t3−t2)3 · t3 , t2 ≤ t ≤ t3

(5.1)
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Figure 5.1: Steering angle input profile.

The payload fraction is chosen as the varied vehicle parameter, which ranges
between 0 and 1, where 0 and 1 are equivalent to 0 tn and 24 tn, respectively. For the
simulations, it is assumed that the payload fraction follows the uniform distribution
payloadF ∼ U(0, 1) (Figure 5.2). The abstract and the implementation model are
simulated simultaneously for each value of the payload. First, the implementation
model is simulated. Because of the structure of the model, the velocity is not exactly
constant, but it is controlled to be around the reference value 30 km/h, using a
simple P controller with gain K = 10. The velocity profile, computed from the
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implementation model, is then used in the abstract model simulation. Moreover,
due to changes in normal forces and the load transfer between the tractor and the
semitrailer in the implementation model, the aforementioned quantities are also used
as input to the abstract model. This is done to avoid additional uncertainties of the
abstract model, since it does not account for the inertia change.
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Figure 5.2: Histogram of payload fraction parameter, sampled from uniform dis-
tribution (payloadF ∼ U(0, 1)).

5.2.2 Test Cases Setup & Vehicle Responses
The first case (TC1) investigated is when the abstract model is calibrated correctly,
and therefore its parameters have the values presented in Table 5.1. Figure 5.3 illus-
trates the lateral acceleration response of the tractor and the vehicle trajectories of
the abstract and implementation models, for zero payload. The abstract model re-
sponses are relatively similar to the ones computed from the implementation model,
and the discrepancies between the vehicle models seem reasonable.
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(a) Tractor lateral acceleration
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Figure 5.3: TC1 (Calibrated Value) - Lateral acceleration of tractor and trajecto-
ries for the abstract (A.M.) and the implementation model (I.M.).

Two more test cases are simulated, both for an erroneous vehicle parameter value
of the abstract model. This parameter is the cornering coefficient of the tractor’s
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front axle (Ccy,11). In the second test case (TC2) the cornering coefficient Ccy,11 is
set as double the calibrated value and equal to 10.64 rad−1. Similarly, in the third
case (TC3) the value of Ccy,11 is tuned to half the calibrated value and equal to
2.66 rad−1. The tractor lateral acceleration and trajectories for zero payload are
illustrated in Figures 5.4 and 5.5 for these two cases, respectively. It is evident,
that when a vehicle parameter of the abstract model has incorrect value, the vehicle
responses greatly differ from those calculated by the implementation model. More
specifically, when the cornering coefficient Ccy,11 equals to double the calibrated
value, the abstract model overestimates the responses. On the other hand, when
Ccy,11 is half the calibrated value, the abstract model underestimates the vehicle
responses.

The additional vehicle state responses for each test case investigated are shown in
Appendix B.1. Table 5.2 summarizes the cornering coefficient values of the tractor’s
front axle for all three test cases under investigation.
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Figure 5.4: TC2 (Double Value) - Lateral acceleration of tractor and trajectories
for the abstract (A.M.) and the implementation model (I.M.).
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Figure 5.5: TC3 (Half Value) - Lateral acceleration of tractor and trajectories for
the abstract (A.M.) and the implementation model (I.M.).
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Table 5.2: Cornering coefficient values of tractor’s front axle for the three test
cases.

Test Case Ccy,11 [rad−1]
TC1 5.32
TC2 10.64
TC3 2.66

5.3 TC1 - Calibrated Parameter Value
The test case investigated here concerns the calibrated abstract model. The likeli-
hood that describes the relative difference between the vehicle models is first iden-
tified and then the two Bayesian hypothesis testing approaches are applied.

5.3.1 TC1 - Likelihood of Data
The histograms of the relative difference dx (observed data) for each metric x are il-
lustrated in Figure 5.6. The data are compared with a set of applicable distributions
(Appendix A.1), using the sum of square error (SSe) as a measure of goodness of
fit, to identify which distribution family describes the data best. Table 5.3 presents
the likelihood distribution family for the relative difference of each metric.

The rearward amplification (RWAay) and the rise time of the tractor’s lateral ac-
celeration (tr,ay1) follow the asymmetric Laplace distribution p(y|θ) ∼ AL(µ, b, κAL).
The hypothesis testing (Eq. 4.3) is implemented on the location parameter (θl,x =
µx), where x is the metric under investigation. The scale (bx) and symmetry (κALx )
parameters are also assumed unknown, and are inferred alongside the location pa-
rameter. The rest of the metrics studied (Mp,ψ̇1

, Mp,ψ̇2
, Mp,ay1 , Mp,ay2 , tr,ay2 and

Mp,LSOT ) follow the beta distribution p(y|θ) ∼ Beta(µ, σ), where µ is the mean
and σ is the standard deviation. The parameter on which the hypothesis testing
is applied is the mean (θl,x = µx), while the standard deviation σx is considered
constant.

It should be noted that the additional parameters inside the likelihood distribu-
tions are not included in the hypothesis testing. They are only inferred to obtain
the correct posterior. The upper limit εx used in the hypothesis testing is shown in
Table 5.4 for each metric x.

5.3.2 TC1 - Hypothesis Testing as Parameter Estimation
(P.E.)

5.3.2.1 TC1 - Statistical Model (P.E.)

The prior distribution of the location parameter µx is assumed uniform, ranging
from 0 to 1, for all the evaluated metrics x (θl,x = µx ∼ U(0, 1)). Metrics Mp,ψ̇1

,
Mp,ψ̇2

, Mp,ay1 , Mp,ay2 , tr,ay2 and Mp,LSOT follow the beta distribution. The standard
deviation σx is considered equal to the standard deviation of the relative difference
of the metric (std(dx)). Equation 5.2 shows the statistical model for the peak value
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Figure 5.6: TC1 - Histogram of relative difference d. 5.6a Peak yaw rate of tractor
Mp,ψ̇1

, 5.6b Peak yaw rate of semitrailer Mp,ψ̇2
, 5.6c Peak lateral acceleration of

tractor Mp,ay1 , 5.6d Peak lateral acceleration of semitrailer Mp,ay2 , 5.6e Rearward
amplification RWAay , 5.6f Rise time of lateral acceleration of tractor tr,ay1 , 5.6g
Rise time of lateral acceleration of semitrailer tr,ay2 , 5.6h Peak low speed off-tracking
Mp,LSOT

44



5. Vehicle Models Simulation & Validation Results

Table 5.3: Likelihood distribution family and parameters of the relative difference
of the evaluated metrics (TC1).

Metric Likelihood Parameters
Mp,ψ̇1

Beta θMp,ψ̇1
=
〈
µMp,ψ̇1

, σMp,ψ̇1

〉
Mp,ψ̇2

Beta θMp,ψ̇2
=
〈
µMp,ψ̇2

, σMp,ψ̇2

〉
Mp,ay1 Beta θMp,ay1

=
〈
µMp,ay1

, σMp,ay1

〉
Mp,ay2 Beta θMp,ay2

=
〈
µMp,ay2

, σMp,ay2

〉
RWAay Asymmetric Laplace θRWAay =

〈
µRWAay , bRWAay , κ

AL
RWAay

〉
tr,ay1 Asymmetric Laplace θay1,tr =

〈
µtr,ay1

, btr,ay1
, κALtr,ay1

〉
tr,ay2 Beta θtr,ay2

=
〈
µtr,ay2

, σtr,ay2

〉
Mp,LSOT Beta θMp,LSOT

=
〈
µMp,LSOT

, σMp,LSOT

〉
Table 5.4: Maximum allowed limit of relative difference of studied metrics.

Metric Limit εx
Mp,ψ̇1

6%
Mp,ψ̇2

6%
Mp,ay1 3%
Mp,ay2 6%
RWAay 3%
tr,ay1 3%
tr,ay2 8%

Mp,LSOT 6%

of tractor’s yaw rate (Mp,ψ̇1
). The statistical models of the other five metrics follow

exactly the same formulation.
The statistical model of the rearward amplification (RWAay) is shown in Equa-

tion 5.3. The scale (bRWAay ) and symmetry (κALRWAay
) parameters are both assumed

to follow a uniform distribution, since no prior knowledge is available. This formu-
lation applies also to the rise time of the tractor’s lateral acceleration (tr,ay1).

MMp,ψ̇1
:
p(y|θMp,ψ̇1

) ∼ Beta(µMp,ψ̇1
, σMp,ψ̇1

)
p(µMp,ψ̇1

) ∼ U(0, 1)
σMp,ψ̇1

= constant (= std(dMp,ψ̇1
))

(5.2)

MRWAay :
p(y|θRWAay ) ∼ AL(µRWAay , bRWAay , κ

AL
RWAay

)
p(µRWAay ) ∼ U(0, 1)
p(bRWAay ) ∼ U(0, 5)
p(κALRWAay

) ∼ U(0, 50)

(5.3)
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5.3.2.2 TC1 - Posterior Predictive Checks

Figure 5.7 illustrates the posterior predictive checks for each evaluated metric x, and
Table 5.5 shows the Bayesian p-values. In each plot in Figure 5.7, the black line is a
KDE (Kernel Density Estimate) of the observed data (dx). A KDE plot is another
visualization method of a dataset’s distribution, comparable to a histogram. The
semitransparent blue lines are KDE plots computed from the posterior predictive
samples. These curves depict the uncertainty in the distribution of the predicted
data [33]. The dashed blue line is the mean posterior predictive curve. Using these
figures, the statistical model can be evaluated in terms of how well it can reproduce
the observed data.

The statistical models in Figure 5.7 cannot predict all the aspects of the observed
data. For example, in Figure 5.7a the posterior predictive KDEs cannot predict
the high density of the observed data (relative difference of the peak tractor’s yaw
rate). The Bayesian p-value is 0.44, which indicates a small bias in the statistical
modelling. Since the p-value is less than 0.5, the observed values are more extreme
than the predicted ones. However, it is still close to 0.5, and therefore the statistical
modelling is accepted. On the other hand, the relative difference of the rearward
amplification has a p-value of 0.15. This indicates that the statistical model cannot
predict the mean of the actual data. Figure 5.7e also shows that the statistical
model fails to capture other aspects, such as the multiple peaks, of the observed
data.

Nevertheless, as far as the evaluation of the location (mean) of the distribution is
concerned, the predictive curves can roughly predict the observed data, at least for
most of the metrics investigated. The metrics, for which the statistical model is re-
jected, are excluded from the decision-making process to avoid incorrect conclusions
about the anstract model’s validity. Therefore, the current statistical modelling
is accepted for this particular use, expect for the rearward amplification RWAay .
Please note that accepting the statistical model does not extend to validating the ab-
stract model. It only means that the statistical modelling is considered good enough
in the context of the study, and thus any decision based on that is satisfactory.

Table 5.5: Bayesian p-values (TC1).

Metric p− value
Mp,ψ̇1

0.44
Mp,ψ̇2

0.44
Mp,ay1 0.57
Mp,ay2 0.43
RWAay 0.15
tr,ay1 0.40
tr,ay2 0.51

Mp,LSOT 0.45
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Figure 5.7: TC1 - Parameter Estimation - Posterior predictive check of relative
difference dx. 5.7a Peak tractor yaw rate Mp,ψ̇1

for ε = 6%, 5.7b Peak semitrailer
yaw rate Mp,ψ̇2

for ε = 6%, 5.7c Peak tractor lateral acceleration Mp,ay1 for ε =
3%, 5.7d Peak semitrailer lateral acceleration Mp,ay2 for ε = 6%, 5.7e Rearward
amplification RWAay for ε = 3%, 5.7f Rise time of tractor lateral acceleration tr,ay1

for ε = 3%, 5.7g Rise time of semitrailer lateral acceleration tr,ay2 for ε = 8%, 5.7h
Peak low speed off-tracking Mp,LSOT for ε = 6%.

5.3.2.3 TC1 - Posterior Distributions and Decision (P.E.)

Figure 5.8 illustrates the posterior distributions of the location parameter (θl,x) of
the relative difference dx of the studied metrics x, using as maximum allowed values
those given in Table 5.4. Here, the results for all metrics are presented, even the ones
that have biased statistical modelling (rearward amplification RWAay). However,
the best practice is to exclude the biased statistical models, in order to ensure the
trustworthiness of the decision regarding the validity of the abstract model.

According to Figure 5.8, the 95% HDI is entirely within the ROPE interval, for
all the evaluated metrics. It should be reminded that the ROPE interval reflects the
range of allowed values of the relative difference (null interval). This means that for
all metrics, the 95% most credible values are within the accepted range. Therefore,
the abstract model can be considered valid (Table 5.6).
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Figure 5.8: TC1 - Parameter Estimation - Posterior of location parameter (θl,x)
of relative difference dx. 5.8a Peak tractor yaw rate Mp,ψ̇1

for ε = 6%, 5.8b Peak
semitrailer yaw rate Mp,ψ̇2

for ε = 6%, 5.8c Peak tractor lateral acceleration Mp,ay1

for ε = 3%, 5.8d Peak semitrailer lateral acceleration Mp,ay2 for ε = 6%, 5.8e Rear-
ward amplification RWAay for ε = 3%, 5.8f Rise time of tractor lateral acceleration
tr,ay1 for ε = 3%, 5.8g Rise time of semitrailer lateral acceleration tr,ay2 for ε = 8%,
5.8h Peak low speed off-tracking Mp,LSOT for ε = 6%.
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Table 5.6: Decision of abstract model’s acceptance for each evaluated model fol-
lowing the Bayesian Hypothesis testing formulated as Parameter Estimation (TC1).

Metric Decision
Mp,ψ̇1

Valid
Mp,ψ̇2

Valid
Mp,ay1 Valid
Mp,ay2 Valid
RWAay Valid
tr,ay1 Valid
tr,ay2 Valid

Mp,LSOT Valid
Final Decision Accepted

5.3.3 TC1 - Hypothesis Testing as Model Comparison of
Statistical Models (M.D.)

5.3.3.1 TC1 - Statistical Model (M.D.)

The difference between the model comparison (of statistical models) and the param-
eter estimation approach lies on the structure of the statistical model, and especially
on the prior distribution of the parameter on which the hypothesis testing is im-
plemented (location parameter θl,x). As mentioned in Chapter 2.2.4, the statistical
model Mx in the model comparison approach is a hierarchical model, where the
model index mx is the hyper-parameter (top-level parameter). Similarly to the pre-
vious section, Equations 5.4 and 5.5 illustrate the statistical models for the relative
difference of tractor’s peak yaw rate (Mp,ψ̇1

) and rearward amplification (RWAay),
respectively.

MMp,ψ̇1
:
Pr(mMp,ψ̇1

= 0) = Pr(mMp,ψ̇1
= 1) = 0.5

MMp,ψ̇1
,0 :
p(y|θMp,ψ̇1

,0) ∼ Beta(µMp,ψ̇1
,0, σMp,ψ̇1

,0)
p(µMp,ψ̇1

,0) ∼ U(0, εMp,ψ̇1
)

σMp,ψ̇1
,0 = constant (= std(dMp,ψ̇1

))
MMp,ψ̇1

,1 :
p(y|θMp,ψ̇1

,1) ∼ Beta(µMp,ψ̇1
,1, σMp,ψ̇1

,1)
p(µMp,ψ̇1

,1) ∼ U(εMp,ψ̇1
, 1)

σMp,ψ̇1
,1 = constant (= std(dMp,ψ̇1

))

(5.4)

49



5. Vehicle Models Simulation & Validation Results

MRWAay :
Pr(mRWAay = 0) = Pr(mRWAay = 1) = 0.5

MRWAay ,0 :
p(y|θRWAay ,0) ∼ AL(µRWAay ,0, bRWAay ,0, κ

AL
RWAay ,0)

p(µRWAay ,0) ∼ U(0, εRWAay )
p(bRWAay ,0) ∼ U(0, 5)
p(κALRWAay ,0) ∼ U(0, 50)

MRWAay ,1 :
p(y|θRWAay ,1) ∼ AL(µRWAay ,1, bRWAay ,1, κ

AL
RWAay ,1)

p(µRWAay ,1) ∼ U(εRWAay , 1)
p(bRWAay ,1) ∼ U(0, 5)
p(κALRWAay ,1) ∼ U(0, 50)

(5.5)

5.3.3.2 TC1 - Posterior Distributions and Decision (M.D.)

Figure 5.9 illustrates the prior and posterior distributions of the model index of the
relative difference of the peak tractor yaw rate Mp,ψ̇1

. The figure depicts how the
prior belief of equal probability of the two hypotheses to be true is updated when
the data (simulated relative difference) are observed. Table 5.7 shows the Bayes
factor B01, confidence κ and decision regarding the validity of the abstract model
for each evaluated metric. It should be reminded that the abstract vehicle model is
considered valid when the Bayesian confidence κ is greater or equal to 90%.

It is evident that the abstract model is valid for each metric. The Bayes factors
approach infinity. This means that the evidence of the null hypothesis being more
probable than the alternative are extreme. Therefore, the confidence in accepting
the abstract model is 100%. These results agree with the ones from the parameter
estimation approach in Chapter 5.3.2.3.
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Figure 5.9: TC1 - Model Comparison of Statistical Models- Prior and Posterior
distributions of model index of relative difference dx of Peak tractor yaw rate Mp,ψ̇1
for ε = 6%.

50



5. Vehicle Models Simulation & Validation Results

Table 5.7: Bayes factor B01, confidence κ and final decision about abstract model’s
validity for each evaluated model, following the Bayesian Hypothesis testing formu-
lated as Model Comparison (TC1).

Metric B01 Confidence κ Decision
Mp,ψ̇1

∞ 100% Valid
Mp,ψ̇2

∞ 100% Valid
Mp,ay1 ∞ 100% Valid
Mp,ay2 ∞ 100% Valid
RWAay ∞ 100% Valid
tr,ay1 ∞ 100% Valid
tr,ay2 ∞ 100% Valid

Mp,LSOT ∞ 100% Valid
Final Decision Accepted

5.4 TC2 - Double Parameter Value
In this test case, the cornering coefficient of the tractor’s front axle (Ccy,11) is set to
double the calibrated value. Similar to test case TC1, the likelihood the describes
the data (relative difference of metrics) is first identified and then the hypothesis
testing is implemented. In the following sections only the most important findings
are presented, while the additional figures are provided in Appendix B.3.

5.4.1 TC2 - Likelihood of Data
Table 5.8 illustrates the likelihood distribution families for the relative difference of
each metric. The families differ from the previous test case (TC1) for almost all of
the metrics, except forMp,ay1 and RWAay. The peak yaw rate of the tractor (Mp,ψ̇1

)
and the semitrailer (Mp,ψ̇2

), as well as the peak lateral acceleration of the semitrailer
(Mp,ay2) follow the Pareto distribution p(y|θ) ∼ Pareto(αP ,m). This particular
distribution contains only a shape (αP ) and a scale (m) parameter. To perform the
hypothesis testing, an algebraic equation that relates the central location (θl,x) to
one of the distribution’s parameters is required. The central location is described
by the mean of the Pareto distribution θl,x = µ, x is the metric under study. Using
Equation 5.6, the shape parameter αP is correlated to the distribution mean µ. The
scale parameter m is considered unknown.

αP = µ

µ−m
(5.6)

The likelihood of the rise time of the tractor’s lateral acceleration (tr,ay1) is a skew
Normal distribution (p(y|θ) ∼ SN(µ, σ, αSN)). The location parameter, on which
the hypothesis testing is applied, is µ. The other two parameters are also assumed
unknown. The rise time of the semitrailer’s lateral acceleration tr,ay2 is described
by a triangular distribution (p(y|θ) ∼ Triang(c, lower, upper)). Here, the location
parameter is the mode c, and the parameters lower and upper are considered con-
stant and equal to the lower and upper bound of the relative difference (lower = 0,
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upper = 1). The peak low speed off-trackingMp,LSOT is described by the Student’s t
distribution (p(y|θ) ∼ t(µ, σ, ν)). The location parameter used in hypothesis testing
is µ and the rest of the statistical parameters are assumed unknown. Finally, the
peak tractor lateral acceleration (Mp,ay2) data is described by the Beta distribution
and the rearward amplification (RWAay) data by the asymmetric Laplace. These
distributions were described in test case TC1 (Ch. 5.3.1) and therefore they will not
be explained here.

Table 5.8: Likelihood distribution family and parameters of the relative difference
of the evaluated metrics (TC2).

Metric Likelihood Parameters
Mp,ψ̇1

Pareto θMp,ψ̇1
=
〈
αPMp,ψ̇1

, mMp,ψ̇1

〉
Mp,ψ̇2

Pareto θMp,ψ̇2
=
〈
αPMp,ψ̇2

, mMp,ψ̇2

〉
Mp,ay1 Beta θMp,ay1

=
〈
µMp,ay1

, σMp,ay1

〉
Mp,ay2 Pareto θMp,ay2

=
〈
αPMp,ay2

, mMp,ay2

〉
RWAay Asymmetric Laplace θRWAay =

〈
µRWAay , bRWAay , κ

AL
RWAay

〉
tr,ay1 Skew Normal θay1,tr =

〈
µtr,ay1

, σtr,ay1
, αSNtr,ay1

〉
tr,ay2 Triangular θtr,ay2

=
〈
ctr,ay2

, lowertr,ay2
, uppertr,ay2

〉
Mp,LSOT Student’s t θMp,LSOT

=
〈
µMp,LSOT

, σMp,LSOT
, νMp,LSOT

〉

5.4.2 TC2 - Hypothesis Testing as Parameter Estimation
(P.E.)

5.4.2.1 TC2 - Statistical Model (P.E.)

The statistical modelling follows the same logic as in test case TC1 (Ch. 5.3.2.1).
The prior distribution of the location parameter is assumed uniform (θl,x ∼ U(0, 1)).
The additional parameters have non-informative priors, and specifically uniform
prior distributions, since no prior knowledge is available.

5.4.2.2 TC2 - Posterior Predictive Checks

The posterior predictive check plots are shown in Figure 5.10 and in Table 5.9, the
Bayesian p-values are presented. The Pareto likelihood (dMp,ψ̇1

, dMp,ψ̇2
, dMp,ay2

) has
Bayesian p-values around 0.8, indicating slight bias, where the predictions are more
extreme than the observations. Nevertheless, the predictive check plots (Fig. 5.10a,
5.10b and 5.10d) illustrate that the predictions follow the curve of the observed data.

Similar remarks can be made for RWAay , tr,ay1 , tr,ay2 and Mp,LSOT . However,
the p-values for these metrics are close to either 0 or 1, suggesting extreme bias.
High Bayesian p-values mean that the predictions are more extreme than the obser-
vations. Figure 5.10e shows that the density of the relative difference of rearward
amplification (dRWAay ) is higher than the predictions, and the predictive KDEs can-
not follow the observed data curve. Additionally, in Figure 5.10f the density of
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the predictive KDEs are quite close to the density of dtr,ay1
. However, they fail to

capture the multiple peaks of the observed data.
The hypothesis testing on the location parameter can still be performed, even

when the statistical modelling is biased. This will require though to take into account
that the modelling predictions are more extreme than the observed data or vice versa.
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Figure 5.10: TC2 - Parameter Estimation - Posterior predictive check of relative
difference dx. 5.10a Peak tractor yaw rate Mp,ψ̇1

for ε = 6%, 5.10b Peak semitrailer
yaw rate Mp,ψ̇2

for ε = 6%, 5.10c Peak tractor lateral acceleration Mp,ay1 for ε =
3%, 5.10d Peak semitrailer lateral acceleration Mp,ay2 for ε = 6%, 5.10e Rearward
amplification RWAay for ε = 3%, 5.10f Rise time of tractor lateral acceleration
tr,ay1 for ε = 3%, 5.10g Rise time of semitrailer lateral acceleration tr,ay2 for ε =
8%, 5.10h Peak low speed off-tracking Mp,LSOT for ε = 6%.

5.4.2.3 TC2 - Posterior Distributions and Decision (P.E.)

The evaluation of the validity of the abstract model is based on the relative position
of the HDI and ROPE in the posterior distribution plot of the location parameter of
each evaluated metric. The same maximum allowed limits are used as in test case
TC1 (Table 5.4).

53



5. Vehicle Models Simulation & Validation Results

Table 5.9: Bayesian p-values (TC2).

Metric p− value
Mp,ψ̇1

0.80
Mp,ψ̇2

0.80
Mp,ay1 0.61
Mp,ay2 0.84
RWAay 0.12
tr,ay1 0.22
tr,ay2 1.00

Mp,LSOT 0.00
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 Posterior dtr, y1
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Figure 5.11: TC2 - Parameter Estimation - Posterior of location parameter (θl,x) of
relative difference d. 5.11a Peak tractor yaw rateMp,ψ̇1

for ε = 6%, 5.11b Rearward
amplification RWAay for ε = 3%, 5.11c Rise time of tractor lateral acceleration
tr,ay1 for ε = 3%.

The abstract model fails to accurately calculate the peak yaw rate and lateral
acceleration of tractor and semitrailer. Figure 5.11a shows that the 95% HDI is out-
side ROPE, where the 95% most credible values are quite greater than the maximum
allowed limit (upper limit of ROPE interval).

On the other hand, the 95% most credible values of the relative difference of
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RWAay, tr,ay2 and Mp,LSOT are within the ROPE interval. Figure 5.11b depicts
the posterior distribution of the location parameter of the rearward amplification
Moreover, no decision can be made for the rise time of tractor’s lateral acceleration
(tr,ay1), since the 95% HDI partially overlaps with the defined ROPE (Figure 5.11c).
It should be reminded that the statistical models of these four metrics are extremely
biased, thus no decision should be based on them.

Note that the abstract model’s overall validity is determined by the metrics that
are important to the intended application. If the abstract model is invalid for at least
one of them, then the model is rejected. Table 5.10 illustrates the final decision based
on the posterior distributions and summary. Failure of computing the peak lateral
acceleration and yaw rate deems the abstract model invalid, when the tractor’s front
axle cornering coefficient is equal to double the calibrated value.

Table 5.10: Decision of abstract model’s acceptance for each evaluated model fol-
lowing the Bayesian Hypothesis testing formulated as Parameter Estimation (TC2).

Metric Decision
Mp,ψ̇1

Invalid
Mp,ψ̇2

Invalid
Mp,ay1 Invalid
Mp,ay2 Invalid
RWAay Valid
tr,ay1 Inconclusive
tr,ay2 Valid

Mp,LSOT Valid
Final Decision Rejected

5.4.3 TC2 - Hypothesis Testing as Model Comparison of
Statistical Models (M.D.)

The statistical modelling of the hypothesis testing as model comparison is similar to
the one described in TC1 (Ch. 5.3.3.1) and therefore is omitted. The next section
presents the decision regarding the validity of the abstract model using the M.D.
approach.

5.4.3.1 TC2 - Posterior Distributions and Decision (M.D.)

Table 5.11 shows the Bayes factor B01, confidence κ and final decision concerning
the abstract model’s validity. The model comparison of statistical models approach
also rejects the abstract model’s computation of the peak lateral acceleration and
yaw rate. For instance, Figure 5.12a clearly shows that the model index probability
of accepting the null hypothesis is 0. On the other hand, the null hypothesis for
the other metrics (RWAay , tr,ay1 , tr,ay2 , Mp,LSOT ) is accepted. Specifically for the
relative difference of tr,ay1 , the model comparison approach is accepting with 100%
confidence the null hypothesis, whereas the parameter estimation approach was
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inconclusive (Fig. 5.12b). Finally, since the abstract model is invalid for at least
one of the metrics, the vehicle model is rejected.

Table 5.11: Bayes factor B01, confidence κ and final decision about abstract
model’s validity for each evaluated model, following the Bayesian Hypothesis testing
formulated as Model Comparison (TC2).

Metric B01 Confidence κ Decision
Mp,ψ̇1

0.00 0% Invalid
Mp,ψ̇2

0.00 0% Invalid
Mp,ay1 0.00 0% Invalid
Mp,ay2 0.00 0% Invalid
RWAay ∞ 100% Valid
tr,ay1 ∞ 100% Valid
tr,ay2 ∞ 100% Valid

Mp,LSOT ∞ 100% Valid
Final Decision Rejected
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Figure 5.12: TC2 - Model Comparison of Statistical Models - Prior and Posterior
of model index of relative difference dx. 5.12a Peak tractor yaw rate Mp,ψ̇1

for ε =
6%, 5.12b Rise time of tractor lateral acceleration tr,ay1 for ε = 3%.

5.5 TC3 - Half Parameter Value
The final case studied concerns the tractor’s front axle cornering coefficient being
set to half the calibrated value. The same methodology as in the previous sections
is followed. First the likelihood distributions describing the data are identified,
followed by the implementation of the two Bayesian hypothesis testing approaches.

5.5.1 TC3 - Likelihood of Data
The likelihood distribution families for the relative difference dx of each metric x are
depicted in Table 5.12. Compared to test case TC1, the likelihood distributions are
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the same for most of the metrics. The beta distribution (p(y|θ) ∼ Beta(µ, σ)) is used
to describe the metricsMp,ψ̇1

,Mp,ψ̇2
,Mp,ay1 ,Mp,ay2 andMp,LSOT , and the asymmetric

Laplace (p(y|θ) ∼ AL(µ, b, κAL)) to describe RWAay and tr,ay1 . However, the rise
time of semitrailer’s lateral acceleration is described by the skew Normal distribution
(p(y|θ) ∼ SN(µ, σ, αSN)).

Table 5.12: Likelihood distribution family and parameters of the relative difference
of the evaluated metrics (TC3).

Metric Likelihood Parameters
Mp,ψ̇1

Beta θMp,ψ̇1
=
〈
µMp,ψ̇1

, σMp,ψ̇1

〉
Mp,ψ̇2

Beta θMp,ψ̇2
=
〈
µMp,ψ̇2

, σMp,ψ̇2

〉
Mp,ay1 Beta θMp,ay1

=
〈
µMp,ay1

, σMp,ay1

〉
Mp,ay2 Beta θMp,ay2

=
〈
µMp,ay2

, σMp,ay2

〉
RWAay Asymmetric Laplace θRWAay =

〈
µRWAay , bRWAay , κ

AL
RWAay

〉
tr,ay1 Asymmetric Laplace θay1,tr =

〈
µtr,ay1

, btr,ay1
, κALtr,ay1

〉
tr,ay2 Skew Normal θtr,ay2

=
〈
µtr,ay2

, σtr,ay2
, αSNtr,ay2

〉
Mp,LSOT Beta θMp,LSOT

=
〈
µMp,LSOT

, σMp,LSOT

〉

5.5.2 TC3 - Hypothesis Testing as Parameter Estimation
(P.E.)

The statistical models are omitted, since they are structured in a similar manner
to the ones presented in Chapter 5.3.2.1. The prior distribution of the location
parameter is assumed uniform (θl,x = µx ∼ U(0, 1)) and the additional parameters
have non-informative priors (uniform distributions).

5.5.2.1 TC3 - Posterior Predictive Checks

Figure 5.13 illustrates the posterior predictive check plots for each statistical model
and Table 5.13 shows the corresponding Bayesian p-values. In this case, the statisti-
cal modelling is a good fit for most of the metrics studied. The posterior predictive
check plot and the Bayesian p-value agree that the statistical modelling is biased
for the rearward amplification (RWAay) and the rise time of the tractor’s lateral
acceleration tr,ay1 . Therefore, a different distribution, other than the asymmetric
Laplace, should be used to describe these relative differences.
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Table 5.13: Bayesian p-values (TC3).

Metric p− value
Mp,ψ̇1

0.49
Mp,ψ̇2

0.52
Mp,ay1 0.52
Mp,ay2 0.49
RWAay 0.15
tr,ay1 0.31
tr,ay2 0.53

Mp,LSOT 0.48
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Figure 5.13: TC3 - Parameter Estimation - Posterior predictive check of relative
difference dx. 5.13a Peak tractor yaw rate Mp,ψ̇1

for ε = 6%, 5.13b Peak semitrailer
yaw rate Mp,ψ̇2

for ε = 6%, 5.13c Peak tractor lateral acceleration Mp,ay1 for ε =
3%, 5.13d Peak semitrailer lateral acceleration Mp,ay2 for ε = 6%, 5.13e Rearward
amplification RWAay for ε = 3%, 5.13f Rise time of tractor lateral acceleration
tr,ay1 for ε = 3%, 5.13g Rise time of semitrailer lateral acceleration tr,ay2 for ε =
8%, 5.13h Peak low speed off-tracking Mp,LSOT for ε = 6%.

5.5.2.2 TC3 - Posterior Distributions and Decision (P.E.)

Similar to test case TC2, the maximum allowed limits given in Table 5.4 are consid-
ered. The final decisions regarding the abstract model’s validity for the evaluated
metrics are presented in Table 5.14. Figure 5.14 illustrates the posterior distribu-
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tions of the location parameter of the relative difference of peak tractor yaw rate
and rearward amplification (dMp,ψ̇1

, dRWAay ).
According to Table 5.4, the abstract model in this test case is invalid for almost all

metrics apart from the rearward amplification and the rise time of tractor’s lateral
acceleration. Only for these metrics, the 95% most credible values are located with
the ROPE. However, as discussed in Chapter 5.5.2.1, these two metrics have poor
statistical modelling, and thus no decision should be based on them.

The decision about the overall validity of the abstract model depends on the
application. For each application, some metrics are more important than others.
The abstract model is considered invalid if it cannot accurately calculate at least
one of them. Here, the abstract model fails for almost all metrics. Therefore, the
vehicle model is rejected.

Table 5.14: Decision of abstract model’s acceptance for each evaluated model fol-
lowing the Bayesian Hypothesis testing formulated as Parameter Estimation (TC3).

Metric Decision
Mp,ψ̇1

Invalid
Mp,ψ̇2

Invalid
Mp,ay1 Invalid
Mp,ay2 Invalid
RWAay Valid
tr,ay1 Valid
tr,ay2 Invalid

Mp,LSOT Invalid
Final Decision Rejected
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Figure 5.14: TC3 - Parameter Estimation - Posterior of location parameter (θl,x)
of relative difference dx. 5.14a Peak tractor yaw rate Mp,ψ̇1

for ε = 6%, 5.14b
Rearward amplification RWAay for ε = 3%.
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5.5.3 TC3 - Hypothesis Testing as Model Comparison of
Statistical Models (M.D.)

In this section only the results of the analysis and the decision of the abstract model’s
validity are shown since the statistical modelling is done in a similar way as before
(Ch. 5.3.3.1).

5.5.3.1 TC3 - Posterior Distributions and Decision (M.D.)

Table 5.11 shows the Bayes factors B01, confidence κ and final decisions regarding
the validity of the abstract model. According to Table 5.11, the abstract model is
invalid for all the metrics except for the rearward amplification and the rise time
of the tractor’s lateral acceleration. As mentioned before, the statistical models of
these two metrics are biased, and thus they should be excluded from the decision-
making process.

Table 5.15: Bayes factor B01, confidence κ and final decision about abstract
model’s validity for each evaluated model, following the Bayesian Hypothesis testing
formulated as Model Comparison (TC3).

Metric B01 Confidence κ Decision
Mp,ψ̇1

0.0 0% Invalid
Mp,ψ̇2

0.0 0% Invalid
Mp,ay1 0.0 0% Invalid
Mp,ay2 0.0 0% Invalid
RWAay ∞ 100% Valid
tr,ay1 ∞ 100% Valid
tr,ay2 0.0 0% Invalid

Mp,LSOT 0.0 0% Invalid
Final Decision Rejected
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6
Conclusions and Future Work

This thesis proposes a methodology for vehicle model validation using Bayesian
statistics, with a specific interest in Bayesian hypothesis testing. Two approaches
of performing the hypothesis testing are implemented. The proposed framework
is applied on a 90 ◦ turn maneuver on a tractor-semitrailer combination model as
proof of concept. This chapter discusses the conclusions of this work and presents
the future work.

6.1 Discussion & Conclusions
The purpose of this thesis was to structure a validation methodology, which com-
pares the vehicle model (abstract) to an implementation model and determines if
the former is applicable for a specific application. For that matter, the methodology
was applied on a tractor-semitrailer combination vehicle model and different metrics
were used to quantify its behavior. The test case selected to evaluate the abstract
model was a left turn under city driving. Three variations of this test case were
investigated.

The first case concerned the calibrated abstract model. By inspecting the vehicle
responses of the abstract and implementation models for zero payload, it was ex-
pected that the former was valid for this particular case. The validation framework
was able to confirm that and it deemed the abstract model valid for each evalu-
ated metric. The other two cases concerned the incorrect tuning of the abstract
model. The vehicle responses under these cases made apparent that the abstract
model could not predict the vehicle behavior correctly. Using the proposed valida-
tion framework, the abstract model was invalidated for most of the metrics, which
is in accordance with what expected.

The statistical modelling used in the Bayesian hypothesis testing is one of the
most critical components of the analysis. The evaluation of these models was per-
formed using posterior predictive checks. The combination of the posterior predictive
check plots and the Bayesian p-values gives an insight as to whether the statistical
model is adequate or not. In the three cases studied, some of the statistical models
were biased. That means that the predicted values were more extreme than the
data or vice versa. For example, in TC2, the rearward amplification observed values
were greater than the predictions. That could lead to accepting the abstract model
even though it is invalid. On the other hand, the peak tractor’s yaw rate predictions
were more extreme than the observations, which could cause invalidation of a valid
vehicle model. To avoid that, different statistical models must be constructed. That
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could include using different priors on the statistical parameters or distributions for
the likelihood. However, this is a time-consuming process, and thus the analysis was
continued with the biased statistical models.

Both approaches in hypothesis testing have their strengths and weaknesses. The
first approach, called the parameter estimation, calculates the posterior distribu-
tions of the parameters of the distribution that describes the data. The data here
refer to the relative difference of the metrics. However, the difference between the
models is a way of describing the uncertainty of the abstract model relative to the
implementation model. Therefore, the parameter estimation approach models the
uncertainty of the abstract model. This is quite useful and a lot of valuable infor-
mation can be extracted. Additional, the posterior distributions can be used as a
prior belief in another similar study and consequently update the belief regarding
the abstract model. On the other hand, the parameter estimation approach can-
not always reach a conclusion. As it was shown in the second test case (TC2), if
the credible interval (HDI) is not entirely within or outside the region of practical
equivalence (ROPE), no decision can be made.

The hypothesis testing as model comparison approach utilizes the Bayes factors.
This approach provides a numerical value which quantifies the validity of the ab-
stract model. Additionally, the Bayes factors can be evidence of not only accepting
the null hypothesis but also of accepting the alternative hypothesis. Therefore, if
a hypothesis testing includes more than one alternative hypotheses, this approach
can determine which of them are more plausible. However, model comparison has
also limitations. Bayes factors are sensitive to priors. In contrast with the parame-
ter estimation approach which is relatively insensitive to different priors, in model
comparison using different priors can lead to different Bayes factors.

6.2 Summary

Concluding, a methodology for vehicle model validation is proposed in this thesis to
answer the high demand of valid vehicle models which are used for various automa-
tion applications. The validation framework presented is comprised of three main
stages. The third stage is the validation process, which utilizes Bayesian hypothesis
testing to compare the abstract to an implementation model. Two approaches of
performing Bayesian hypothesis testing are introduced. The validation framework
is implemented on a tractor-semitrailer combination model as proof of concept for
a 90◦ turn test case, and three cases regarding the tuning of the abstract model are
investigated. The performance of the framework proved to be quite good under all
three cases. The methodology can validate the abstract model, when it is correctly
calibrated, and produce posterior distributions of the statistical parameters that
describe the vehicle performance differences. The two hypothesis testing methods
agree with each other, and the results highlight their advantages and disadvantages.
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6.3 Future Work
This thesis proposes a validation framework and sets its building blocks. The
methodology can be applied for multiple applications. However, it is still at early
stages and further development is required. This section includes recommendations
to enhance the framework’s performance and broaden its application, as well as to
set the path for an automated validation process.

As far as the vehicle model is concerned, the calibration in this work was done
manually. However, it is proposed that the calibration is done by using sensitivity
analysis and then Bayesian calibration. The Bayesian calibration can be done by
constructing an emulator, using Gaussian processes, which emulates the abstract
model at arbitrary input and parameter settings. Then using Bayesian statistics the
vehicle parameters can be calibrated to their real values.

The validation framework handles the comparison of two models, but requires
parallel simulation. This means that the comparison of the abstract model to already
collected data (e.g., real driving data) cannot be done. So far, the hypothesis testing
is done on the mean of the difference of the two models. However, in case no parallel
simulation can be done, the hypothesis testing should be applied on the difference
of the mean of each model. In other words, the null hypothesis will be the equality
of the abstract mean and the implementation mean.

The hypothesis testing formulation should also be revised. In this work, the hy-
pothesis testing was applied on the location parameter of the likelihood. A better
approach would be to use the expected value of the distribution. Moreover, a mul-
tivariate hypothesis testing is recommended to also include in the hypothesis the
dispersion and the skewness.

Another development that is important, is the choice of the likelihood distribu-
tion to describe the data. It is obvious that the distributions used in this thesis,
fail to fit the observed data well. For that matter, two improvements are proposed.
First, the process of fitting a distribution to the data should be changed, in terms
of the process itself and the used goodness-of-fit measure. In the Bayesian frame-
work, the model comparison could be used as the fitting process, where each model
refers to each available distribution. However, this might not be successful, since
a single distribution might be unable to describe the data. Therefore, the second
improvement would be to use combinations of distributions, called mixture models.

Finally, the framework should be tested on multiple test cases, including different
maneuvers to generalize the results.
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A
Distributions

A.1 Distribution Families
The set of distributions that are compared to the evaluated data are given below:

1. Uniform
2. Normal
3. Truncated Normal
4. Half Normal
5. Skewed Normal
6. Beta
7. Exponential
8. Laplace
9. Laplace Asymmetric
10. Student-t
11. Cauchy
12. Gamma
13. Inverse Gamma
14. Weibull
15. Log Normal
16. Chi-sqaured
17. Wald
18. Pareto
19. Exponential Normal
20. Von-Mises
21. Triangular
22. Gumbel
23. Rice
24. Logistic

A.2 Explanation of Continuous Probability Dis-
tributions Used in Test Cases

A.2.1 Asymmetric Laplace
The asymmetric Laplace likelihood is written as p(y|θ) ∼ AL(µ, b, κ). This distri-
bution has three parameters. The first parameter (µ) is the location parameter,
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A. Distributions

the second (b) is the scale parameter and the last one (κ) is the symmetry param-
eter. Both scale and symmetry parameters are positive real numbers (> 0). The
distribution supports x ∈ (−∞,+∞) [37].

The probability density function of the asymmetric Laplace distribution is [37]:

f (x | b, κ, µ) =
(

b

κ+ 1/κ

)
e−(x−µ)bsκs

s = sgn(x− µ)
Mean of distribution [37]:

mean = µ− κ− 1/κ
b

Variance of distribution [37]:

variance = 1 + κ4

b2κ2

A.2.2 Beta
The Beta likelihood is written as p(y|θ) ∼ Beta(µ, σ), where µ is the mean and
σ is the standard deviation. It supports only parameter values between 0 and 1
(x ∈ (0, 1)). The two parameters are bounded as follows [37]:

0 < µ < 1

0 < σ <
√
µ (1− µ)

The beta distribution can be parameterized in terms of alpha and beta, instead
of the mean and standard deviation. The probability density function and the link
between the parameters are the following:

f (x | α, β) = xα−1(1− x)β−1

B(α, β)
where B(α, β): the beta function (normalizing constant)

α = µκ

β = (1− µ)κ

where κ = µ(1− µ)
σ2 − 1

A.2.3 Pareto
The Pareto likelihood is written as p(y|θ) ∼ Pareto(αP ,m). This distribution is a
function of two parameters; the shape α and the scale m parameter. Both param-
eters are positive real numbers (> 0). Pareto distribution supports x ∈ [m,+∞).
The probability density function is the following [37]:

f (x | α,m) = αmα

xα+1
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Mean of distribution [37]:

mean = αm

α− 1 , for α ≥ 1

Variance of distribution [37]:

variance = mα

(α− 1)2 (α− 2)
, for α > 2

A.2.4 Skew Normal
The skew Normal likelihood is written as p(y|θ) ∼ SN(µ, σ, α). The location pa-
rameter is µ, σ is the scale parameter and α is the skewness parameter. The location
and skewness parameters are real, while the scale parameter is positive real (> 0).
The distribution supports x ∈ (−∞,+∞). When α = 0, the skew Normal becomes
a Normal distribution, where µ is the mean and σ is the standard deviation. When
α → ±∞, the skew Normal gives a half Normal distribution When alpha=0 we
recover the Normal distribution and mu becomes the mean, tau the precision and
sigma the standard deviation. In the limit of alpha approaching plus/minus infi-
nite we get a half-normal distribution. The probability distribution function is the
following [37]:

f (x | µ, σ, α) = 2Φ
(x− µ)

√
1
σ2α

φ(x, µ, 1
σ2

)
where Φ(x): the cumulative distribution function and
φ(x): the standard Normal probability density function

Mean of distribution [37]:

mean = µ+ σ

√
1
π

α√
1 + α2

Variance of distribution [37]:

variance = σ2
(

1− 2α2

(α2 + 1)π

)

A.2.5 Student’s t
The Student’s t likelihood is written as p(y|θ) ∼ t(µ, σ, ν). Here, µ is the location
parameter, σ is the scale parameter and ν is the degrees of freedom, also known
as normality parameter. The location parameter is real, while the scale and nor-
mality parameters are positive real numbers (> 0). As the degrees of freedom
increase, σ converges to the standard deviation. Student’s t distribution supports
x ∈ (−∞,+∞). The probability distribution function is the following [37]:
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f (x | µ, σ, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) ( 1
πσ2ν

) 1
2
[
1 + (x− µ)2

σ2ν

]− ν+1
2

s = sgn(x− µ)

A.2.6 Triangular
The triangular likelihood is written as p(y|θ) ∼ Triang(c, lower, upper). Here, c is
the mode, and the parameters lower and upper are the lower and upper limits of the
variable x (x ∈ [lower, upper]), respectively. The probability distribution function
of the Triangular distribution is the following:

f (x | lower, upper, c) =



0 , for x < lower,
2(x−lower)

(upper−lower)(c−lower) , for lower ≤ x < c,
2

upper−lower , for x = c,
2(upper−x)

(upper−lower)(upper−c) , for c < x ≤ lower,
0 , for upper < x

Mean of distribution [37]:

mean = lower + upper + c

3

Variance of distribution [37]:

variance = uuper2 + lower2 + c2 − lower · upper − lower · c− upper · c
18
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B
Additional Figures

B.1 Test Cases - Vehicle Responses Time Series

The following figures illustrate the vehicle responses under the three evaluated test
cases (TC1, TC2 & TC3).
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Figure B.1: TC1 - Calibrated parameter value. Vehicle responses for zero payload
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Figure B.2: TC2 - Double parameter value.
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Figure B.3: TC3 - Half parameter value.
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B. Additional Figures

B.2 Test Case 1 - Calibrated Parameter Value
The following figure illustrate the prior and posterior distributions of the model
index in the hypothesis testing as model comparison of statistical models approach,
under the evaluated test case TC1.
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Figure B.4: TC1 - Model Comparison of Statistical Models - Prior and Posterior of
model index of relative difference dx. B.4a Peak semitrailer yaw rate Mp,ψ̇2

for ε =
6%, B.4b Peak tractor lateral acceleration Mp,ay1 for ε = 3%, B.4c Peak semitrailer
lateral accelerationMp,ay2 for ε = 6%, B.4d Rearward amplification RWAay for ε =
3%, B.4e Rise time of tractor lateral acceleration tr,ay1 for ε = 3%, B.4f Rise time
of semitrailer lateral acceleration tr,ay2 for ε = 8%, B.4g Peak low speed off-tracking
Mp,LSOT for ε = 6%.

B.3 Test Case 2 - Double Parameter Value
The following figures illustrate the under the evaluated test case TC2.
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Figure B.5: TC1 - Histogram of relative difference d. B.5a Peak yaw rate of tractor
Mp,ψ̇1

, B.5b Peak yaw rate of semitrailer Mp,ψ̇2
, B.5c Peak lateral acceleration of

tractor Mp,ay1 , B.5d Peak lateral acceleration of semitrailer Mp,ay2 , B.5e Rearward
amplification RWAay , B.5f Rise time of lateral acceleration of tractor tr,ay1 , B.5g
Rise time of lateral acceleration of semitrailer tr,ay2 , B.5h Peak low speed off-tracking
Mp,LSOT
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Figure B.6: TC2 - Parameter Estimation - Posterior of location parameter (θl,x)
of relative difference d. B.6a Peak semitrailer yaw rate Mp,ψ̇2

for ε = 6%, B.6b
Peak tractor lateral acceleration Mp,ay1 for ε = 3%, B.6c Peak semitrailer lateral
acceleration Mp,ay2 for ε = 6%, B.6d Rise time of semitrailer lateral acceleration
tr,ay2 for ε = 8%, B.6e Peak low speed off-tracking Mp,LSOT for ε = 6%.
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Figure B.7: TC2 - Model Comparison of Statistical Models - Prior and Posterior of
model index of relative difference dx. B.7a Peak semitrailer yaw rate Mp,ψ̇2

for ε =
6%, B.7b Peak tractor lateral acceleration Mp,ay1 for ε = 3%, B.7c Peak semitrailer
lateral acceleration Mp,ay2 for ε = 6%, B.7d Rearward amplification RWAay for
ε = 3%, B.7e Rise time of semitrailer lateral acceleration tr,ay2 for ε = 8%, B.7f
Peak low speed off-tracking Mp,LSOT for ε = 6%.

B.4 Test Case 3 - Half Parameter Value
The following figures illustrate the under the evaluated test case TC3.
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Figure B.8: TC1 - Histogram of relative difference d. B.8a Peak yaw rate of tractor
Mp,ψ̇1

, B.8b Peak yaw rate of semitrailer Mp,ψ̇2
, B.8c Peak lateral acceleration of

tractor Mp,ay1 , B.8d Peak lateral acceleration of semitrailer Mp,ay2 , B.8e Rearward
amplification RWAay , B.8f Rise time of lateral acceleration of tractor tr,ay1 , B.8g
Rise time of lateral acceleration of semitrailer tr,ay2 , B.8h Peak low speed off-tracking
Mp,LSOT
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Figure B.9: TC3 - Parameter Estimation - Posterior of location parameter (θl,x)
of relative difference dx. B.9a Peak semitrailer yaw rate Mp,ψ̇2

for ε = 6%, B.9b
Peak tractor lateral acceleration Mp,ay1 for ε = 3%, B.9c Peak semitrailer lateral
acceleration Mp,ay2 for ε = 6%, B.9d Rise time of tractor lateral acceleration tr,ay1

for ε = 3%, B.9e Rise time of semitrailer lateral acceleration tr,ay2 for ε = 8%, B.9f
Peak low speed off-tracking Mp,LSOT for ε = 6%.
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Figure B.10: TC3 - Model Comparison of Statistical Models - Prior and Posterior
of model index of relative difference dx. B.10a Peak tractor yaw rate Mp,ψ̇1

for ε =
6%, B.10b Peak semitrailer yaw rate Mp,ψ̇2

for ε = 6%, B.10c Peak tractor lateral
acceleration Mp,ay1 for ε = 3%, B.10d Peak semitrailer lateral acceleration Mp,ay2

for ε = 6%, B.10e Rearward amplification RWAay for ε = 3%, B.10f Rise time of
tractor lateral acceleration tr,ay1 for ε = 3%, B.10g Rise time of semitrailer lateral
acceleration tr,ay2 for ε = 8%, B.10h Peak low speed off-tracking Mp,LSOT for ε =
6%.
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