
Implementation and Evaluation of an
Automatic Recommender for Integration

Linlin Wang

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2015:06

Implementation and Evaluation of an Automatic
Recommender for Integration Test Cases

LINLIN WANG

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2015

Implementation and Evaluation of an Automatic Recommender for Integration Test
Cases
Linlin Wang

© Linlin Wang, 2015.

Supervisor: Eric Knauss, Computer Science and Engineering
Ola Soder, Axis Communications
Examiner: Miroslaw Staron, Computer Science and Engineering

Master’s Thesis 2015:06
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

Implementation and Evaluation of an Automatic Recommender for Integration Test
Cases
LINLIN WANG
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Continuous integration promises advantages by enabling software developing organi-
zations to deliver new functions faster. However, implementing continuous integra-
tion, especially in large software development organizations, is challenging because
of organizational, social, and technical reasons. One of the technical challenges is
the ability to rapidly prioritize the test cases which can be executed quickly and
trigger the most failures as early as possible. This thesis propose an automatic rec-
ommender based on mining correlations between outcome of test and source code
changes. The information retrieval measures recall, precision and f-measure, as well
as Matthews correlation coefficient(MCC), as the priority metric in determining this
correlations. The founding of this correlations can be used to select and execute the
recommended test cases instead of a full regression test case, in order to support
the decision processes about which test case that should be executed during the
integration cycles to get as short feedback loops as possible.

Keywords: continuous integration, continuous deployment, data mining

v

Acknowledgements
I would like to thank my supervisor Dr Eric Knauss for his invaluable ideas and
enthusiastic feedback and my examiner Dr Miroslaw Staron. I would also like to
thank Axis communication, especially to my industry supervisor Ola Säder, for
giving me the opportunity to conduct this study based on the generously provided
historical dataset. Special thanks to Dr Riccardo Scandariato for helpful suggestions.

Linlin Wang, Gothenburg, 06,2015

vii

Contents

Nomenclature xi

1 Introduction 1

2 Background and Related Work 3
2.1 Background . 3
2.2 Related Work . 4

2.2.1 Techniques . 4
2.2.1.1 Data Mining . 4
2.2.1.2 Mining Software Repositories (MSR) 4

2.2.2 Test case selection and prioritization 5

3 Methods 7
3.1 Research Purpose . 7
3.2 Research Questions . 7
3.3 Research Methodology . 7

3.3.1 Data structure . 9
3.3.2 Measurements definition . 10
3.3.3 Confusion matrix . 12

3.4 Data Analysis . 12
3.4.1 Data mining tool: WEKA . 12
3.4.2 Data preparation . 13

3.4.2.1 ARFF file . 13
3.4.2.2 Convert instance . 13

4 Case Study 17
4.1 Axis Communications . 17

5 Result and Discussion 19
5.1 Classifier identification . 19
5.2 RQ 1 - Correlation between changes of software artifacts and the

outcome of tests . 19
5.3 RQ 2 - Test cases selection and prioritization 23

6 Conclusion 27
6.1 Future work . 27

ix

Contents

Bibliography 29

x

Nomenclature

ARFF Attribute Relation File Format

ETL Extract, Transformation, Load

KDD Knowledge Discovery in Databases

MCC Matthews correlation coefficient

MSR Mining Software Repositories

PCC Pearson’s correlation coefficient

SD Streamline Development

SVD Singular Value Decomposition

WEKA Waikato Environment for Knowledge Analysis

xi

Contents

xii

1
Introduction

Software organizations nowadays face a market with demands of rapidly changing
requirements and pressure to release high quality software faster and more often.
Continuous integration as an agile practice, increases the frequency of software re-
leases and shortens the feedback cycle [1]. Software testing as the final "quality
gate" for a product and plays an important role in the software lifecycle [2]. It is
an activity to identify correctness, completeness as well as software quality, which
compass the divers developing phases in continuous integration.
Integration testing is a highly resource demanding and time consuming activity,
which calls for being conducted as effective and efficient as possible. The naïve
approach to effective testing is to execute as many tests as possible. However, as
software evolves, the set of tests tends to grow and not all tests will be equally
effective to identify integration problems, some might even become irrelevant over
time. Thus, this maximal testing approach leads to the execution of more tests than
really necessary, which leads to increased cost and waste of other critical resources
[4].
Reducing the number of test cases is one approach for increased efficiency. However,
the task of selecting an effective test suite for each integration cycle to achieve the
goal of efficient testing is challenging [3]. Software-developing organizations are
struggling to find an efficient way of software testing that delivers quality software
products that satisfy the requirements, needs, and expectations of stakeholders and
avoids costly mistakes and oversights, and at the same time reduces cycle time (e.g.
time to market, time to deploy a bug fix, time to give feedback to developers).
The goal of this study is to implement and evaluate an automatic recommender
which will help to select a suitable set of functional regression tests on system level
that balances the need to find integration problems with the need to execute the tests
quickly enough to support the fast pace of continuous integration. The approach
of this study is based on the result of mining historical data about source code
changes and the results of test case execution. This will lead to a statistical model
of (partially hidden) dependencies, represented by a contingency table of test case
execution results and changed software parts that can be visualized using the notion
of a heatmap [5, 6]. The statistical model can support the decision processes about
which test cases that should be executed during the integration cycles to get as short
feedback loops as possible.
To evaluate the automatic recommender, this study focuses on the historical data
provided by cross-functional teams from large organizations working with large soft-
ware products. The case study involves two companies from Sweden; both develop
embedded software using different flavors of agile software development.

1

1. Introduction

This study builds on previous work, by Eric Knauss et al.[21], who explored how
test selection can support continuous integration in large software developing orga-
nizations (currently in submission [21]). This study focus on further advancing that
work by identifying a suitable data mining approach to fulfill the needs established
in the previous work.
The contribution of this study is two-fold: First, to define test case selection as a
problem related to mining software repositories (here: version control management
systems and test result databases). Second, based on the experience with apply-
ing our approach in a company, implement an automatic recommender to share
challenges and possible mitigation strategies.

2

2
Background and Related Work

This section provides the background of this study and a review of related literature.
The background is introduced, followed by a related work section that consists of
related techniques and test case selection and prioritization.

2.1 Background

Nilsson et al. [19] developed a Continuous Integration Visualisation Technique
(CIViT) that provides an overview of end-to-end testing activities. The CIViT
model serves as a solution to the lack of a holistic, end-to-end understanding of
the testing activities and their periodicity in organizations. The model has proven
particularly useful as a basis for discussion, which help to identify problems of cur-
rent testing activities, regarding scope and periodicity, and to reason about suitable
measures and to identify how to best improve their testing activities towards contin-
uous integration. In this paper, we propose complementing the CIViT model with
automated test case recommendation, to support decision making in the following
two scenarios:
Scenario 1 (Continuous Integration) — Integration tests are run at various occa-
sions through-out the development cycle [19]. The reason for running those tests
however changes during the development cycle. The closer to the release, the more
important it is to run all tests and to make sure that no integration problems remain
unnoticed. Finally, when delivering a release to a customer, the software should ide-
ally be without errors. Earlier in the development cycle, however, there are different
needs. Giving developers quick feedback about integration problems they may have
introduced is often more important. When the software product evolves over time,
it becomes more and more time consuming to run all tests, and a delay in feedback
to the developers become an impediment for the anticipated advantages of continu-
ous integration. Automatic test recommendation can help to select only those tests
that are most likely to give information about successful integration, thus allow to
balance the tradeoff between giving fast feedback now vs. giving complete feedback
later.
Scenario 2 (Continuous Deployment) — Continuous deployment allows to deliver
new features to the customer continuously. Normally, such a deployment to the
customer should be thoroughly tested. However, in some cases, it would be good to
deliver a change very fast (i.e. within hours or minutes), for example if it is urgently
expected by a customer. This is only possible if the amount of testing is reduced
for this fast-track deployment. Automated test recommendation supports fixing a

3

2. Background and Related Work

Figure 2.1: Data mining: process of KDD [29].

change request with high priority, deploying it to the customer within hours, and
by this balancing value of fast delivery with the risk of introducing problems.

2.2 Related Work

2.2.1 Techniques

2.2.1.1 Data Mining

Data mining is a automatic or (more usually) semiautomatic process of discovering
patterns in data stored either in databases, data warehouses, or other information
repositories[28]. It is an essential step in the process of Knowledge Discovery from
Database(KDD)[29] (see Figure 2.1).
The opportunities for data mining increase as the data growing in size and machines
that can undertake the searching become commonplace. In practice, prediction and
description are tend to be two high-level primary goals of data mining, which can
be achieved using a variety of particular data mining approaches. Association rules
and frequent patterns, classification, clustering, test mining are four commonly used
techniques in software engineering field [30].

2.2.1.2 Mining Software Repositories (MSR)

Software projects and system continue to grow in size and complexity, changes to
its source code occurs.These changes are done incrementally over the lifetime of a
project by its various developers. Source control system as CSV record the history
of changes to the source code of the software system and stored in a source repos-

4

2. Background and Related Work

itory. Software repositories such as source control repositories, bug repositories,
archived communications, deployment logs and code repositories that hold a wealth
of valuable information and provide a unique view of the actual evolutionary path
taken to realize a software system. The field of Mining Software Repositories(MSR)
is by analyzing the rich data available in software repositories to uncover informa-
tion and assist software developments[23]. Typical MSR process consists of a data
preparation phase and a data analysis phase. Here data preparation refers to as
ETL : Extract, Transformation, and Load [27]. In this thesis both phases of MSR
process will be included and with the main focus on the data analysis phase. Gall
et al. [24] presented that software repositories can support developers pointing out
hidden code dependencies in order to change legacy systems. Graves [25] indicated
that using software change history can support estimating the error probabilities
to ease the evolution of reliable software system. In Chen et al. [26] authors show
that CVS logs serve as a useful source of information that can assist developers in
understanding large systems. Research by Ahmed [22] has demonstrated the value
of mining software repositories in assisting managers and developers in performing
a variety of software development, maintenance, and management activities.

2.2.2 Test case selection and prioritization
A wide variety of approaches have been developed for rendering reuse more cost-
effective via regression test selection [7, 8] and test case prioritization [9, 10, 11, 12].
Yoo and Harman [13] provided a recent survey.
Kim and Porter [14] investigate several regression test selection techniques and pro-
posed a test case selection prioritization approach based on historical test execution
data. Their minimization techniques focus on testing parts of the program that
have changed since the last testing session and their experimental results suggested
that historical fault information is valuable for improving the effectiveness of the
regression testing process in the long term. However, they did not consider contin-
uous integration and it is unclear whether this focus on parts of the code that have
changed will allow to uncover hidden dependencies during integration testing.
Marculescu et al. [17] propose using a set of predefined fitness functions to assess the
suitability of test suite in a potentially vast search space. The approach we proposes
in this study is inspired by this generic approach and aim at defining our fitness
functions based on source code changes, of which we present here a preliminary
version.
Arts et al. [15] and Derrick et al. [16] use formal methods to automatically derive
minimal failing test suites based on formally defined sets of properties. Both ap-
proaches are based on reusing the existing test suite and studying its sensitivity to
capture source code changes to assess the test suite’s quality. The property-based
testing implied by these approaches however requires a formalization of what should
be tested.
Engström et al. [18] provide examples of how EBSE can be applied in industry. In
our case, by looking into changes of software artifacts and correlating those with
test failures, we take into account not only test quality but also hidden technical de-
pendencies in the software. Generally, each component has been tested thoroughly

5

2. Background and Related Work

before integration. If integration errors occur, then because two or more compo-
nents were changed in a way that causes problems when these components are put
together.
Felderer and Schieferdecker [35] present a taxonomy of risk-based testing that pro-
vides a framework to compare risk-based approaches to support test selection. In
our study, we focus on the test case prioritization and selection which is one of the
risk-based testing specifics in test processes.
Adorf et al.[36] defined a Bayes risk(BR) decision criterion for test selection. They
presented a BR-predictor,which takes cost factors, further risk aspects and prior
probabilities into account, to guide decision making of a given quality task. Their
predictors recommend a risk-based selection of quality assurance tasks. And then
prioritize the selected tasks by considering the respective risk decrements by using
BR criterion.

6

3
Methods

This section describes the purpose and approach of this study. It starts with describ-
ing research purposes. Then continues with the research questions, and explaining
the method for constructing the statistical model and suggesting the selection of
test cases. This section ends with data analysis.

3.1 Research Purpose
The main purpose of this study is to understand what extent test failure predic-
tion is possible and what extent this is useful in the test selection for continuous
integration, in order to predict which test cases will fail/change based on a list of
recent changes. To prioritize the selected suitable test cases on system level could
be executed in a short enough period of time to support continuous integration, as
the recommendation for the data provider will be another result of this study.

3.2 Research Questions
The background and related works, together with the purpose of this thesis work,
lead us to the research questions as follows:

RQ1: How strongly do changes of software artifacts correlate with the outcome of
tests on the level of functional integration testing?

Based on the results of research question 1, we plan then to investigate how our
automatic integration test recommender will support continuous integration and
deployment. We thus phrase our second research question as follows:

RQ2: How well the recommendation could be for test cases selection and prioriti-
zation?

3.3 Research Methodology
In our approach we propose to use historical data from automatic integration tests
in continuous integration or continuous deployment environments to automatically
recommend how to prioritize and select tests. In such a scenario we assume that
whenever changes to a module are integrated, the whole software product is build
and integration tests are automatically executed. The historical analysis takes two

7

3. Methods

(a) Example heatmap, relating test failures
and module changes per build.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Test	
 7	
 Test	
 8	
 Test	
 10	
 Test	
 9	
 Test	
 4	
 Test	
 1	
 Test	
 3	
 Test	
 2	
 Test	
 5	
 Test	
 6	

Sum	
 (Tes)ailures)	

(b) Tests, sorted by the amount of total
recorded test failures.

0	

2	

4	

6	

8	

10	

12	

Test	
 10	
 Test	
 4	
 Test	
 7	
 Test	
 1	
 Test	
 2	
 Test	
 8	
 Test	
 9	
 Test	
 3	
 Test	
 5	
 Test	
 6	

Sum	
 (Tes)ailures	
 for	
 selected	

Modules)	

(c) Tests, sorted by the amount of recorded
failures for selected modules (bold in Fig.
3.1 (a)).

Figure 3.1: Illustrative example of approach: Using historical data on integration
test failure and module changes to recommend integration tests.

8

3. Methods

inputs – the list of source code changes (e.g. results from diff in the source code
repository per build) and the results of test case execution (e.g. a list of test cases
executed and the results of the execution per build). The method creates a contin-
gency table which shows how often a test case fail if there is a source code change
in that particular build (see example in Figure 3.1(a), visualized as a heatmap for
better readability [21]).
This contingency table shows which test cases are the most sensitive connected with
changes in which source code modules. The sum of test failures can be interpreted
as test efficiency: The higher the sum of failures per test and module, the more
efficient is this test to identify integration problems in the given module.
In first experiments, we applied a very simple algorithm for test case recommenda-
tion, based on two principles:

Principle 1: Tests that recently failed are likely to fail again

In the simplified example in Figure 3.1, we would start by sorting the tests by the
amount of failures recorded in our database (see Figure 3.1(b)). If, with respect to
our two application scenarios, an organization would have time to run three out of
ten integration tests, we would recommend to run Tests 7, 8, and 10.

Principle 2: There are hidden dependencies between modules and tests
that can be exploited to improve recommendations

To further improve the recommendations, we also aim at taking into account the
sensitivity of the integration tests to specific modules. In our example, if we know
that Module 1, 5, and 7 were recently changed, we could prioritize the tests only
by the test failures recorded for these specific modules (see Figure 3.1(c)). Thus,
if the organization in the example would again aim to run 3 tests, we would now
recommend Tests 10, 4, and 7.
In preliminary evaluation, this simple algorithm yields mixed results. First, while
the accuracy for recommending tests for many builds is very promising, in between
there is a number of builds for which our recommendations are bad. Second, while
the overall accuracy quickly improves with each build for which we can analyze
test failures and module changes, at some point the performance decreases again,
presumably once too much data is considered.
In the remainder of this section, we will present a more suitable schema than the
heatmap for analyzing the historical data, define how we plan to measure accuracy
of integration tests recommendation can be measured, and then how we plan to
address them in our experimental setup.

3.3.1 Data structure
The historical data consist of a list of source code changes and the results of test
case execution for each build. To allow systematic analysis of the historical data,
we suggest a schema with modules and test cases in the columns and build dates
as rows. For each build date and module, table shows whether the module changed

9

3. Methods

in that particular build. For each date and test case, table shows the result (not
executed, failed, succeeded). For example as shown in Table 3.1.

3.3.2 Measurements definition
In order to find the optimal test case we use he information retrieval measures recall,
precision, f-measure, and Matthews correlation coefficient(MCC). These measure is
based on four categories of results:

1. True positives(TP): The set of tests that are both recommended by the rec-
ommender system and failed according to the ground truth.

2. False positives(FP): The set of tests that is recommended but did not fail
according to the ground truth.

3. True negatives(TN): The set of tests that are not recommended and that did
not fail according to ground truth.

4. False negatives(FN): The set of tests that are not recommended but should
have been, as they failed according to the ground truth.

Recall indicates the percentage of the tests that were recommended and failed with
respect to the ground truth. A high recall (close to 1) is important, because otherwise
tests that would have failed will be omitted.

recall = | TP |
| TP | + | FN | (3.1)

Precision indicates the percentage of the tests that were recommended which actu-
ally failed. A high precision (close to 1) corresponds to a relative speedup of testing
by eliminating the need to run tests that do not provide new knowledge about the
quality of the system.

precision = | TP |
| TP | + | FP | (3.2)

Recall and precision relate to each other. The easiest way to get a high recall is to
simply recommend all tests. In that case, all tests that could fail are selected but
the precision is minimal and no execution time is saved.

Table 3.1: Proposed structure of historical data about source code changes and
test failures for automatic integration test case recommendation.

Date M1 M2 . . . Mn T1 T2 . . . Tm

2015/01/03 nc nc . . . c s f . . . n
2015/01/04 c ig . . . c f f . . . s

For M = Module: nc = No changes, c = Changes, ig = not presented

For T = Test Case: s = Succeeded, f = Failed, n = not executed

10

3. Methods

Under the assumption that both precision and recall are equally important, it makes
sense to compute the f-measure (the geometric mean of recall and precision), defined
as:

f-measure = 2 ∗ recall ∗ precision
recall + precision (3.3)

The f-measure allows comparing the overall performance and this allows to choose
the optimal set of test cases to run given the changed source code modules and the
contingency table from historical analysis.
The Matthews correlation coefficient(MCC), as a contingency matrix method of
calculating coefficient(PCC) [38], is in essence a correlation coefficient between the
observed and predicted classifications. It returns a value between -1 and +1. Ac-
cording to Rumsey [37], a coefficient that is

• +1.0 indicates a perfect prediction which tests that are recommended by the
recommender system and failed according to the ground truth.

• +0.70 or higher indicates a very strong positive relationship.

• +0.40 to +0.69 indicates strong positive relationship.

• +0.20 to +0.39 indicates moderate positive relationship.

• +0.19 to -0.19 indicates no or negligible relationship.

• -0.20 to -0.29 indicates weak negative relationship.

• -0.30 to -0.39 indicates moderate negative relationship.

• -0.40 to -0.69 indicates strong negative relationship.

• -0.70 or lower indicates very strong negative relationship.

• -1.0 indicates total disagreement between prediction and observation.

If any of the four sums in the denominator is zero, the denominator can be arbitrarily
set to one; this result can be shown to be the correct limiting value.

MCC = TP ∗ TN − FP ∗ FN

((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2 (3.4)

For the continuous integration this measure is crucial as it enables automated selec-
tion of test cases. Together with the ability of automatically adjust the contingency
table (along with each integration/test cycle), this approach reduces the effort for
test planning and increases the chances of finding defects already during the inte-
gration.

11

3. Methods

3.3.3 Confusion matrix
The confusion matrix contains information about actual and predicted classifications
done by a classification system. It reports how good the classifications is in terms
of what it gets right and what it gets wrong. Weka as the classification system for
this study is presented in Section 3.4.1.
Table 3.2 shows a confusion matrix for a three class classifier. Each column of the
matrix represents the instances in a predicted class, while each row represents the
instances in an actual class. The positive value that the classifier has predicted as
positive is true positive(TP); positive value that the classifier predicted as negative
is false negative(FN), which is the sum of values in the corresponding row excluding
TP; negative value that classifier predicted as negative is true negative (TN), which
is the sum of all columns and rows for the certain class excluding the class’s column
and row; and negative value the classifier predicted as positive is false positive(FP),
which is the sum of values in the corresponding column excluding TP. For instance,
in Figure 3.2, AA is the true positive value of class A; (AB+AC) is the false negative
value of class A; (BB+BC+CB+CC) is the true negative value of class A; (BA+CA)
is the false positive value of class A.

Predicted
A B C

Actual
A AA AB AC
B BA BB BC
C CA CB CC

Table 3.2: Confusion matrix for a three class classifier

3.4 Data Analysis

3.4.1 Data mining tool: WEKA
The workbench WEKA, stands for Waikato Environment for Knowledge Analysis,
provides a uniform interface to many different learning algorithms, along with data
pre-processing methods. It provides three main ways to work on mining problem:
the Explore,the Experimenter and the KnowledgeFlow.
The Explorer (Figure 3.2) for applying transformation and algorithms to the data,
Which consist of 6 different tabs: Preprocess for loading and manipulate the data
being acted on, Classify for operating the Classification and regression algorithms,
Cluster for learning Cluster algorithms for the data, Associate for learning associ-
ation rules algorithms for the data, Select attribute for learning attribute selection
algorithms and select the most relevant attributes in the data, and Visualize for
visualizing the relationship between attributes. The Experimenter for controlling
experiments, which allows user to design algorithms, run experiments and analyze
result that are statistically significant over multiple runs. The knowledge Flow for
graphically designing a pipeline for the state problem, which includes the loading and
transforming of input data, running of algorithms and the presentation of results.

12

3. Methods

Figure 3.2: Weka explorer interface

3.4.2 Data preparation
3.4.2.1 ARFF file

In order to operate with Weka, an ARFF file is needed. It is a standard way of
representing dataset which involves two distinct sections: Header and Data. The
header of the ARFF file contains the name of the relation, a list of the attributes
and their types. The data section contains the data declaration line and the actual
instance lines.Attribute values for each instance are delimited by commas. They
must appear in the order that they were declared in the header section. Figure3.3
shows an example file in arff form.

3.4.2.2 Convert instance

For both modules and tests package, the type of attribute is class. Modules package
attributes have 3 classes : nc, c and ig. nc denotes a no changed module. c denotes
a changed module. ig denotes different types of padding, for example if a package
was not used, which will not be considered in this study. Three classes in the tests
package are s, f and n, where s denotes a successful test. f denotes a failed test. n
denotes a test not be executed. For instance, in the historical dataset, SHA1 hash
(packages in Git) or a tag of some sort (packages in CVS) are valid IDs. If changes
in the code have occurred then the hash/tag will not be the same in the next test
run. In this case, the instance hash code/IDs will be converted to f or c in the arff
file(see Figure3.4).

13

3. Methods

Figure 3.3: Example of arff file

In final arff file, name of modules and tests will be the attributes. And it’s corre-
sponding values will be the instances in this case.

14

3. Methods

(a) Origenal arff file (Before convert)

(b) Converted arff file (After convert)

Figure 3.4: Example of convert instances

15

3. Methods

16

4
Case Study

This study was conducted with the collaboration of a company called Axis Commu-
nications, which will be introduced in the following sections shortly.

4.1 Axis Communications
Axis Communications is an IT company offering network video solutions for pro-
fessional installations. The company is the global market leader in network video,
driving the ongoing shift from analog to digital video surveillance. Axis products
and solutions focus on security surveillance and remote monitoring, and are based
on innovative, open technology platforms. The agile principles with frequent deliv-
eries to the main branch and empowered software development teams are mainly
used on the software development processes in Axis. Cross functional teams that
include designers, architects and testers take the responsibility for a large part of
the development process. Test selection promises to help with optimizing time and
other resources needed for integration testing at certain parts of this process.
Axis provides two dataset files: result file and package file, in csv format, which are
the log of testing and module execution result of one year long. The result file has
tests in the columns and dates as rows. It records the test result with three types:
did not execute, failed, and succeeded. There are also minuses in the file which
means that there is no data available for some reason. For instance, 1 denotes an
unknown error occurred; 2 denotes the test was skipped; 3 denotes the test does
not exist. In our study, the different minuses will be treat as the same value. The
package file has modules in the columns and dates as rows. It has the hashed key
to mark the statue of the module. If the changes in the code have occurred then
the hashed code will not be the same in the next test run, which the module will be
record as change.
Overview of the data structure in package file as shown in Figure 4.1. The x-
axis represents the number of module changes. The y-axis represents the number of
modules. There are 933 module instances in the package file and totally 163 changes
occurred. 68% which is 631 out of 933 module instances has no change at all, and it
is not included in Figure 4.1. 11.7% module instances only changed one time. There
is one module instance changed 23 times in total, which has the maximum time of
change. Figure 4.2 shows the data structure in result file. The x-axis represents
the number of test failures. The y-axis represents the number of tests. There are
919 test instances in the result file and 358 records of test failure in total. 86.7%
which is 798 out of 919 test case succeed without any failure, and it is not included

17

4. Case Study

0	

20	

40	

60	

80	

100	

120	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 20	
 23	

Module	
 a)ributes	

	

Number	
 of	
 recorded	

changes	

Figure 4.1: Data structure in package file.

0	

5	

10	

15	

20	

25	

1	
 2	
 3	
 4	
 5	
 6	
 8	
 10	
 11	
 15	
 17	
 16	
 19	
 18	
 21	
 20	
 23	
 22	
 25	
 26	
 32	
 54	

Test	
 a'ributes	

Number	
 of	
 recorded	

failures	

Figure 4.2: Data structure in result file.

in Figure 4.2. 5.5% test instances has less than 10 failures. The test instance that
has less than 30 failures are around 2.8%. There is only one test that has maximum
number of failure which is 54.

18

5
Result and Discussion

In this section, the results of the evaluation are presented and discussed, according
to the method proposed in section 3.3. The structure is divided with the aim of
clearly answering the research question that presented in section 3.2.

5.1 Classifier identification

RandomForest and NaiveBayes are two classifier for the first experimentation. The
Naive Bayes approach is known to handle missing data quite well, as it considers
attributes separately both at model construction time and prediction time [20].
Thus, if a data instance has a missing value for an attribute, it can be ignored
while preparing the model, and ignored when a probability is calculated for a class
value. Compared with Naive Byes approach, RandomForest at most of the time
given better result than NaiveBayes, even though it requires far more processing
time than NaiveBays. As an example result shown in Figure 5.1, by selecting the
same system test attributes as class, the accuracy by RandomForest (Figure 5.1(a))
is higher than the one by NaiveBays (Figure 5.1(b)). For instance, the MCC of class
s, in 5.1(a) is 31.4% whereas in 5.1(b) is 10.0%; the f-Measure of class s, in 5.1(a) is
87.3% while in 5.1(b) is 82.6%.
Therefor, we decided to use RandomForest classifier for later experimentation in
order to get consistent and marked improvements in accuracy. Classifiers that been
used during the study followed the conventional 10-fold cross validation. Data is
broken into 10 sets of size n/10. 9 datasets use for training the classifier and 1 for
testing. The process repeat 10 times and take a mean accuracy.

5.2 RQ 1 - Correlation between changes of soft-
ware artifacts and the outcome of tests

In general, we got good prediction result of test success rather than test failure. In
other words, changes of software artifacts are stronger correlate with test success
than test failure on the level of functional integration testing.
Figure 5.2 displays the overview of the evaluation output. We found among total
919 test case, there are 32% of test cases has no value of any measurements. In the
following result, we did not include these 32% of test cases. The result is presented
in two scenarios as showing below:

19

5. Result and Discussion

(a) Result of Random forest classifier.

(b) Result of NaiveBays classifier.

Figure 5.1: Example result of select a system test attribute as the class to apply
RandomForest and NaievBayes classifier, with full dataset in the package file.

20

5. Result and Discussion

32%	

68%	

All	
 the	
 values	
 of	

measurements	
 =	
 0	

Not	
 all	
 the	
 values	
 of	

measurements	
 =	
 0	

Figure 5.2: Overview of result.

Scenario 1 : f-measure
In order to evaluate how good the classifier in predicting test success or failure,
we evaluated the 68% (which is 623) of f-measure of class s and class f which is
illustrated in Figure 5.3. An overview of the comparison of f-measure of class s and
class f is shown in Figure 5.4.
By going into details, as shown in Figure 5.3(a), for f-measure of class s nearly 96%
of test cases are over 0.75; around 4% of test cases are between 0.50 and 0.74; less
than 1% of test cases are between 0.25 and 0.49. According to Figure 5.3(b), for
f-measure of class f, less than 1% of test cases are between 0.50 and 0.74; almost
13% of test cases are between 0.25 and 0.49; 87% of test cases are between 0 and
0.24.

Scenario 2 : MCC
In order to evaluate whether we could trust the prediction, we checked the MCC of
class s and f. An overview of MCC of class s and class f comparison is shown in
Figure 5.6. Figure 5.5 illustrates the comparison in detail.
As can be seen from Figure 5.5, for MCC of class s(5.5(a)), almost 31% of test
cases are over 0.70; 26.5% of test cases are between 0.40 to o.69; around 42% of test
cases are between 0.20 to 0.39; only less than 1% of test cases are between -0.19 to
0.19. Which means that, for the relationship between the predicted test success and
actual test success, nearly 31% of test cases have very strong positive relationship;
around 42% of test cases have moderate positive relationship; less than 1% of test
cases have no or negligible relationship.
Figure 5.5(b) shows the result of MCC of class f. For MCC of class f, only 1.3% of
test cases are between 0.40 and 0.69; almost 12.5% of test cases are between 0.20
and 0.39; around 86% of test cases are between -0.19 and 0.19. This implies that,
for relationship between predicted test failure and actual test failure, there are only

21

5. Result and Discussion

0.2%	

4.2%	

95.7%	

F-­‐measure(s)	

0.25~0.49	

0.50~0.74	

>	
 0.75	

(a) f-Measure of class s.

87.0%	

12.8%	

0.2%	

F-­‐measure(f)	

0~0.24	

0.25~0.49	

0.50~0.74	

(b) f-Measure of class f.

Figure 5.3: f-Measure of class s and class f.

22

5. Result and Discussion

0~0.24	
 0.25~0.49	
 0.50~0.74	
 >	
 0.75	

F-­‐measure(s)	
 0	
 1	
 26	
 596	

F-­‐measure(f)	
 542	
 80	
 1	
 0	

0	

100	

200	

300	

400	

500	

600	

700	

N
um

be
r	
 o

f	
 t
es
t	
 c
as
es
	

F-­‐measure	
 of	
 class	
 s	
 and	
 class	
 f	

Figure 5.4: Comparison of f-measure of class s and class f.

1.3% of test cases have the strong positive relationship; 12.5% of test cases have
the moderate positive relationship; nearly 86% of test cases have no or negligible
relationship.

5.3 RQ 2 - Test cases selection and prioritization
This section answers the second research question related to the test cases selection
and privatization based on the test effectiveness of module change. We defined three
types of test cases Firstly, we defined four types of test cases. Then, we discussed
how good our recommendation about test cases selection and prioritization. Table
5.1 shows four types of test cases and the corresponding recommendation for test
case selection.

Types of test cases How to identify Recommendation strategy
Type I Mainly ignored Ignore
Type II No failure in data Do not execute

Type III-a
Have failure in data
MCC(s) >= 0.4
f-measure(s) >= 0.75

Use the classifier

Type III-b Have failure in data
MCC(s) <0.4 Unknown

Table 5.1: Four types of test cases.

As we mentioned in the beginning of 5.2, among total 919 test case, there are 32% of
test cases has value zero for all the measurements. Those test cases are only stated
as "ignore" in the log. In other words, those 32% of test cases could be ignored since

23

5. Result and Discussion

0.6%	

42.2%	

26.5%	

30.7%	

MCC(s)	

-­‐0.19~0.19	

0.20~0.39	

0.40~0.69	

>	
 0.70	

(a) MCC of class s.

86.4%	

12.4%	

1.3%	

MCC(f)	

-­‐0.19~0.19	

0.20~0.39	

0.40~0.69	

(b) MCC of class f.

Figure 5.5: MCC of class s and f.

24

5. Result and Discussion

-­‐0.19~0.19	
 0.20~0.39	
 0.40~0.69	
 >	
 0.70	

MCC(s)	
 4	
 263	
 165	
 191	

MCC(f)	
 538	
 77	
 8	
 0	

0	

100	

200	

300	

400	

500	

600	

N
um

be
r	
 o

f	
 t
es
t	
 c
as
es

MCC	
 	
 of	
 class	
 s	
 and	
 class	
 f	

Figure 5.6: Comparison of MCC of class s and class f.

Type	

Ⅰ	

Type	

Ⅱ	

Type	

Ⅲ-­‐a	

Type	

Ⅲ-­‐b	

Number	
 of	
 test	
 cases	
 296	
 502	
 40	
 81	

0	

100	

200	

300	

400	

500	

600	

N
um

be
r	
 o

f	
 t
es
t	
 c
as
es
	

Four	
 types	
 of	
 test	
 cases	

Figure 5.7: Four types of test cases and the corresponding amounts.

25

5. Result and Discussion

0.00	
 	

0.20	
 	

0.40	
 	

0.60	
 	

0.80	
 	

1.00	
 	

1.20	
 	

Te
st
75
	

Te
st
29
8	

Te
st
36
7	

Te
st
44
9	

Te
st
45
3	

Te
st
45
7	

Te
st
46
1	

Te
st
46
5	

Te
st
46
9	

Te
st
47
3	

Te
st
20
	

Te
st
89
	

Te
st
97
	

Te
st
12
5	

Te
st
12
9	

Te
st
13
3	

Te
st
13
7	

Te
st
15
7	

Te
st
18
9	

Te
st
19
4	

Te
st
19
8	

Te
st
20
2	

Te
st
20
6	

Te
st
21
0	

Te
st
21
4	

Te
st
21
8	

Te
st
22
2	

Te
st
22
6	

Te
st
23
5	

Te
st
26
7	

Te
st
31
8	

Overview	
 of	
 Type	
 Ⅲ

 MCC	
 (S)	
 	

 Recall(S)	
 	

 Precision(S)	
 	

Figure 5.8: Overall recommendation evaluation of TypeIII.

it will not be affected by any changes of module and it has been always stated as
"ignore". We define this type of test cases as Type I.
By analyzing the 68% of test cases, we found that, there are 502 out of 623 test
cases that have no failure in the history log (see Figure 5.7). Those test cases are
stated as either "success" or "ignore" but not "fail". We define this type of test cases
as Type II. This type of test case could always not be executed since it will either be
succeed or be ignored once it be executed, and will not be affected by any changes
of the module.
We define test cases, which have record failures in data and MCC value of class s
is over 0.4 together with f-measure of class s is over 0.75, as Type III-a. For those
test cases that have record failures in data but the MCC of class s is lower than 0.4
even thought the f-measure of class s is over 0.7, we have not yet figure out how to
deal with them. We define this type of test cases as Type III-b.
Figure 5.8 shows the recommendation tendency of Type III. The average recall is
over 0.90, while precision is around 0.76. Which means that Only 6% of the test cases
that fail were not recommended and only 23% of the test cases we did recommend
but do not fail.

26

6
Conclusion

This study set out to find the correlation between the changes of software artifacts
and outcome of tests on the level of functional integration testing and what extent
this is useful in the test selection for continuous integration. Through a single case
study that carried out at Axis Communications, correlation between the changes
of software artifacts and outcome of tests were found, four types of test cases were
defined for test case selection based on the information retrieval area (f-measure and
MCC), and recommendation strategy were conducted.
In relation to RQ1 - correlation between the changes of software artifacts and out-
come of tests on the level of functional integration testing, we found out that the
changes of software artifacts are more correlated with test success rather than test
failure. The quality of the founding is increasing with more dataset take into ac-
count for the experiment. However, the quality of the dataset is hard to ensure.
For instance, refactoring by the development teams can reduce the impact of hidden
technical dependencies on test failure over time.
In relation to RQ2 - test cases selection and prioritization, according to historical log
of the test case, the test cases were categorized in four types. Test cases that mainly
have recorded as ignored could be ignore as always. Test cases that have no failure
record would not be executed. Test cases that have recorded failures in the data
and for which the classifications score MCC values for s over 0.4 as well as f-measure
of class s over 0.75, could use the classifier. Unfortunately, our classifier was not
good enough to deal with the test cases with MCC of class s under 0.4. Given this
strategy, nearly 87% of test cases are recommended to not be executed (because
they did not fail in history). 13% of test cases can be prioritized based on the data
mining approach used in this thesis. Results differ from strong recommendations
(based on the MCC) to moderate recommendations, but in average show a moderate
to strong relationship to actual test success (avg. MCC = 0.40). In average, the
recall is around 0.93, which means that only 7% of the tests that fail will not be
recommended, while the precision is around 0.76, which means that out of the
recommended test cases, only 24% will not fail.

6.1 Future work
This case study focused on studying a single company. It would be interesting to
involve multiple companies. This in order to see if the results found are unique to the
studied company or could apply to other companies as well. Also, for future study,
how would the result be if consider the interrelationship of software artifacts and

27

6. Conclusion

tests (e.g. if a certain test case fail in response to two or more modules changing
simultaneously.). For instance, consider a hidden technical dependency between
Module M1 and Module M2. During a refinement of M1, a bug could be introduced
that does not yet surface, as M2 does not rely on a correct implementation in this
particular case. The integration tests on the first build with the new version of M1
therefore does not produce test failures. Later, M2 is refined and after integration,
Test T3 starts to fail. Association Rule Learning promises better ability to discover
the relation between modules on different level of continuous integration testing, and
how dependencies affect the outcome of tests,According to Witten [20]. Finally, it
would also be beneficial to further investigate to take into account business value.

28

Bibliography

[1] Goodman, D., Elbaz, M.: It’s not the pants, it’s the people in the pants, learnings
from the gap agile transformation what worked, how we did it, and what still
puzzles us. In: Agile Conference AGILE 2008, pp. 112-115 (August 2008).

[2] Dustin, E. (2002). Effective Software Testing: 50 Ways to Improve Your Software
Testing, Addison-Wesley,Boston.

[3] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[4] Dustin, E., Rashka, J., & Paul, J. (1999). Automated software testing: Intro-
duction, Management, and Performance, Addison-Wesley, Boston, MA.

[5] M. Staron, J. Hansson, R. Feldt, A. Henriksson, W. Meding, S. Nilsson, and C.
Hoglund, "Measuring and visualizing code stability-a case study at three com-
panies," in Software Measurement and the 2013 Eighth International Conference
on Software Process and Product Measurement (IWSM-MENSURA), 2013 Joint
Conference of the 23rd International Workshop on. IEEE, 2013, pp. 191-200.

[6] R. Feldt, M. Staron, E. Hult, and T. Liljegren, "Supporting software decision
meetings: Heatmaps for visualizing test and code measurements," in Software
Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO Con-
ference on. IEEE, 2013, pp. 62-69

[7] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software
systems. In Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2004

[8] L. White and B. Robinson. Industrial real-time regression testing and analy-
sis using firewalls. In Proceedings of the International Conference on Software
Maintenance, Sept. 2004

[9] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effec-
tive and scalable prioritisation incorporating expert knowledge. In Proceedings
of the Eighteenth International Symposium on Software Testing and Analysis,
pages 201-212, 2009

[10] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments
of test case prioritization techniques. IEEE Transactions on Software Engineer-
ing, 32(9), Sept. 2006.

29

Bibliography

[11] S. Elbaum, D. Gable, and G. Rothermel. The impact of software evolution
on code coverage. In Proceedings of the International Conference on Software
Maintenance, pages 169-179, Nov. 2001

[12] M. Staats, P. Loyola, and G. Rothermel. Oracle-centric test case prioritization.
In Proceedings of the International Symposium on Software Reliability Engi-
neering, pages 311-320, Nov. 2012.

[13] S. Yoo and M. Harman. Regression testing minimisation, selection and priori-
tisation: A survey. Software Testing, Verification and Reliability, 22(2), 2012.

[14] J. M. Kim and A. Porter. A history-based test prioritization technique for
regression testing in resource constrained environments. In Proceedings of the
International Conference on Software Engineering, pages 119-129, May 2002.

[15] T. Arts, J. Hughes, J. Johansson, and U. Wiger, "Testing telecoms software
with quviq quickcheck," in Proceedings of the 2006 ACM SIGPLAN workshop
on Erlang. ACM, 2006, pp. 2-10.

[16] N. Walkinshaw, K. Bogdanov, J. Derrick, and J. Paris, "Increasing functional
coverage by inductive testing: a case study," in Testing Software and Systems.
Springer, 2010, pp. 126-141.

[17] B. Marculescu, R. Feldt, and R. Torkar, "Practitioner-oriented visualization in
an interactive search-based software test creation tool," in Software Engineering
Conference (APSEC, 2013 20th Asia-Pacific. IEEE, 2013, pp. 87-92

[18] E. Engstrom, R. Feldt, and R. Torkar, "Indirect effects in evidential assessment:
a case study on regression test technology adoption," in Proceedings of the 2nd
international workshop on Evidential assessment of software technologies. ACM,
2012, pp. 15-20.

[19] A. Nilsson, J. Bosch, and C. Berger, "Visualizing testing activities to support
continuous integration: A multiple case study," in Agile Processes in Software
Engineering and Extreme Programming. Springer, 2014, pp.171-186

[20] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine
Learning Tools and Techniques (3rd ed.). US: Morgan Kaufmann.

[21] E. Knauss, M. Staron and W. Meding and O. Söder, A. Nilsson, and M. Castell,
"Supporting Continuous Integration by Code-Churn Based Test Selection," in
Workshop on Rapid Continuous Software Engineering (RCoSE ’15), Florenz,
Italy,2015,in submission.

[22] A.E.Hassan,"Mining Software Repositories to Assist Developers and Support
Managers," ICSM 2006: 22nd IEEE International Conference on Software Main-
tenance, September 24, 2006 - September 27. 2006, Philadelphia, PA, United
states: IEEE Computer Society , 2006. 339-342. Print.

[23] A. E. Hassan. The road ahead for mining software repositories. In FoSM: Fron-
tiers of Software Maintenance, pages 48–57, October 2008.

30

Bibliography

[24] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In Proceedings of the 14th International Conference on
Software Maintenance, Bethesda, Washington D.C., Nov. 1998.

[25] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting fault inci-
dence using software change history. IEEE Transactions on Software Engineering,
26(7):653–661, 2000.

[26] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A. Michail.
CVSSearch: Searching through source code using CVS comments. In Proceedings
of the 17th International Conference on Software Maintenance, pages 364–374,
Florence, Italy, 2001.

[27] V. Panos , S. Alkis, and S. Spiros. Conceptual modeling for ETL processes.
In DOLAP ’02: Proceedings of the 5th ACM international workshop on Data
Warehousing and OLAP, pages 14–21, New York, NY, USA, 2002. ACM.

[28] J. Han, M. Kamber, Data Mining: Concepts and Techniques, London:Academic
Press, 5, 2001.

[29] Sapphire, Large Scale Data Mining and Pattern Recognition,1999

[30] Q. Taylor,C. Giraud-Carrier, Applications of data mining in software engineer-
ing, Int. J. Data Analysis Techniques and Strategies, Vol. 2, No. 3, 2010

[31] B. Livshits and T. Zimmermann, Dynamine: finding common error patterns by
mining software revision histories, SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,
pp. 296–305, 2005.

[32] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do ´ changes induce fixes?”
in MSR ’05: Proceedings of the 2005 international workshop on Mining software
repositories. New York, NY, USA: ACM, 2005, pp. 1–5.

[33] H. Kim and N. Nachiappan, Empirically Detecting False Test Alarms Using As-
sociation Rules. In Companion Proceedings of the 37th International Conference
on Software Engineering,2015.

[34] Imola K.Fodor, A survey of dimension reduction techniques, center
for Applied Scientific Computing,Lawrence Livermore National Laboratory
P.O.Box808,L560, Livermore,CA, 2002.

[35] Felderer M, Schieferdecker I. A taxonomy of risk-based testing. International
Journal on Software Tools for Technology Transfer(STTT) 2014; 16(5):559–568.

[36] H. Adorf, M. Felderer, M.Varendorff, R.Breu, A Bayesian Prediction Model for
Risk-Based Test Selection.

[37] Deborah J. Rumsey (2011). Statistics For Dummies, 2nd Edition. Canada: Wi-
ley Publishing, Inc.. chapter 10.

31

Bibliography

[38] POWERS, D.M.W. . (2011). EVALUATION: FROM PRECISION, RECALL
AND F-MEASURE TO ROC, INFORMEDNESS, MARKEDNESS & CORRE-
LATION . Journal of Machine Learning Technologies . 2 (Issue 1), p37-63.

32

	Nomenclature
	Introduction
	Background and Related Work
	Background
	Related Work
	Techniques
	Data Mining
	Mining Software Repositories (MSR)

	Test case selection and prioritization

	Methods
	Research Purpose
	Research Questions
	Research Methodology
	Data structure
	Measurements definition
	Confusion matrix

	Data Analysis
	Data mining tool: WEKA
	Data preparation
	ARFF file
	Convert instance

	Case Study
	Axis Communications

	Result and Discussion
	Classifier identification
	RQ 1 - Correlation between changes of software artifacts and the outcome of tests
	RQ 2 - Test cases selection and prioritization

	Conclusion
	Future work

	Bibliography

