
Accelerating computations for dark
matter direct detection experiments
via neural networks and GPUs
Master’s thesis in Physics

HANNA OLVHAMMAR

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Master’s thesis 2023

Accelerating computations for dark
matter direct detection experiments

via neural networks and GPUs

HANNA OLVHAMMAR

Department of Physics
Division of Subatomic, High Energy and Plasma Physics

Chalmers University of Technology
Gothenburg, Sweden 2023

Accelerating computations for dark matter direct detection experiments via neural
networks and GPUs
HANNA OLVHAMMAR

© HANNA OLVHAMMAR, 2023.

Supervisors: Riccardo Catena and Einar Urdshals
Examiner: Riccardo Catena

Master’s Thesis 2023
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv

Accelerating computations for dark matter direct detection experiments via neural
networks and GPUs
HANNA OLVHAMMAR
Department of Physics
Chalmers University of Technology

Abstract
There is indisputable evidence for the existence of dark matter (DM). Examples are
the rotation curves of galaxies, the velocity dispersions of galaxy clusters and dark
matter density measurements. One of the biggest questions in physics today con-
cerns the nature of dark matter, and the most promising theory is that dark matter
consists of one or more new particle species. To discover the nature of dark matter
particles, they need to be inferred from collider experiments or found via indirect or
direct detection. Since none of these alternatives has led to conclusive results within
the current theoretical frameworks, new approaches should be investigated. In this
thesis, sub-GeV dark matter particles are studied through interactions in direct de-
tection experiments described with an effective field theory (EFT). More specifically,
dark matter-induced electronic transition rates in crystal detectors are studied. The
rate of electronic transitions is described with EFT scattering amplitudes, which
introduce many model-independent coupling strengths. By computing transition
rates corresponding to different sets of EFT parameters, direct detection data can
be used for inferring properties of dark matter particles without relying on any
specific theoretical framework. Since the computation of the electronic transition
rates is very expensive, the aim of this thesis is to implement a deep neural network
for fast predictions of transition rates. Furthermore, since the neural network re-
quires a large data set for training, the generation of training data was accelerated
using computations on graphics processing units (GPUs). I developed two neural
networks, one with the DM mass as input and one with the DM mass and two
EFT coupling strengths as inputs, that are about 600 times faster than the original
computations and capture the overall behaviour of the transition rates. However,
the relative error of the predictions has a standard deviation of about 30% with a
mean of around 0%. On the other hand, the GPU computations are about 16 times
faster than the original computations and have negligible error while being able to
compute transition rates corresponding to all 28 coupling strengths. I conclude that
there is great potential for using both neural networks and GPUs for dark matter
research, and suggest further improvements.

Keywords: Dark matter, transition rate, direct detection, machine learning, neural
networks, GPU, CUDA, parallelisation, crystal detector

v

Acknowledgements
I would like to thank my supervisors, Riccardo and Einar, for trusting me with this
interesting project. You always showed confidence in my ability to work indepen-
dently and encouraged me to implement new ideas, even when they diverged from
the original plan.

I would also like to thank my family and friends, who have supported me un-
conditionally not only during my work on this thesis but throughout the last five
years.

Hanna Olvhammar, Gothenburg, June 2023

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim and outline of the thesis . 3

2 Theoretical description of electronic transition rates 5
2.1 The general transition rate . 5

2.1.1 The scattering matrix . 5
2.1.2 The general transition rate . 10
2.1.3 Expansion in the electron momentum-to-mass ratio 11
2.1.4 Expansion with effective field theory 14

2.2 The electronic transition rate in crystals 15
2.2.1 Crystal wave function formalism 15
2.2.2 Rewriting the scattering amplitude 18
2.2.3 The total electronic transition rate in crystals 20
2.2.4 The dark matter and crystal response functions 22
2.2.5 Electron-hole pair formalism 23

3 Parallelising the computations 25
3.1 The data generation program . 25
3.2 From Python to C++ . 26
3.3 The GPU program . 27

3.3.1 Parallelisation principles . 28
3.3.2 The electronic transition rates with GPUs 29

4 Developing the artificial neural network 31
4.1 The theory of artificial neural networks 31

4.1.1 The neural network layout . 31
4.1.2 Training the neural network 33
4.1.3 Preprocessing the data . 34
4.1.4 Preventing overfitting . 34

4.2 Implementing the neural network . 35
4.2.1 Electronic transition rates as a neural network problem 35
4.2.2 Preprocessing . 35
4.2.3 The layout of the neural network 38

ix

Contents

5 Results and discussion of the implementations 41
5.1 The neural network with mχ as input 41

5.1.1 The loss function . 41
5.1.2 The behaviour of the neural network model 42
5.1.3 The accuracy of the neural network 44

5.2 The neural network with mχ, cs
7 and cl

7 as
inputs . 47
5.2.1 The behaviour of the model in the three-input case 47
5.2.2 The accuracy of the predictions 49

5.3 Summary and comparison of improvements 51

6 Discussion and outlook 53
6.1 Improving the results . 53

6.1.1 The performance of the GPU program 53
6.1.2 The performance of the neural network 53

6.2 Expanding the project . 55
6.3 Conclusions . 55

Bibliography 57

x

1
Introduction

While the nature of dark matter (DM) is unknown, there is strong experimental
evidence for its existence. This chapter provides an introduction to the subject of
dark matter research, both in terms of evidence and current experimental methods.
Furthermore, the aim and outline of the thesis are specified.

1.1 Background
Immense contributions to physics were made in the 20th century, resulting in the-
ories such as quantum physics, the standard model and general relativity. While
these theories have become well-established and explain a wide range of observed
phenomena, several questions remain about the nature of our universe. One con-
cerns the massive, invisible substance thoroughly confirmed by experiments: What
is dark matter?

When measuring the dynamical properties of galaxies, it has become apparent
that they behave as if they have a much larger mass than what could be accounted
for by visible objects. There have been many attempts at explaining this invisible
mass throughout cosmological history; Could there exist astrophysical objects that
are not visible with our current technology? Is there something wrong with our
current dynamical models? Or could the mass be accounted for by new, undiscovered
particles that do not interact with light? The latter suggestion has become the most
promising in the last decades, and the mystical particles are said to constitute so-
called dark matter.

There is an abundance of evidence for the existence of DM. One of the most
important signs of DM on a galactic scale is the galactic rotation curves, i.e. the
graph for the rotational velocity of a galaxy as a function of the distance from the
galaxy centre. While Newtonian dynamics predict that the rotation curve decreases
inversely proportional to the distance from the galaxy centre outside the optical
galaxy disk, observations show that the rotation curves are in fact flat in that area
[1]. This implies that there are massive halos outside the optical disk, so-called DM
halos.

Other evidence for the existence of DM is the velocity dispersion of astrophysical
objects in galaxies. For example, observations of the velocity dispersions of dwarf
spheroidal galaxies show larger mass-to-light ratios than expected, which imply the
existence of DM halos [2]. Velocity dispersions in galaxy clusters are also strong
evidence for DM [3]. Furthermore, quantifications of the dark matter content in the
Universe can be found with cosmic microwave background measurements [4].

1

1. Introduction

The leading theory today is that a new type of particle constitutes DM [5]. Many
suggestions have been proposed and ruled out as possible DM particles in the last
decades, but some remain. Today, the most relevant DM candidates are stable,
non-relativistic, electrically neutral and unaffected by strong interactions [5]. One
candidate is the axion, a particle that should solve the problem of CP violation in
the standard model. Supersymmetric particles, such as the neutralinos, are also
widely studied DM candidates. In the last decades, the weakly interacting massive
particle (WIMP) has become increasingly interesting, particularly from an experi-
mental perspective [1]. To find the DM particles, they need to be experimentally
confirmed. The particles can be discovered either through production in an acceler-
ator experiment, indirect detection of DM annihilation processes, or direct detection
of DM particles interacting with detector targets [6].

Since the LHC was finalised in 2008, there have been opportunities for finding
traces of DM particles. The DM particle would then be inferred from missing trans-
ferred momenta, but no such events have been registered yet [6]. It is still possible
to find DM particles and other particles beyond the standard model, for example
with the increased performance of the High Luminosity LHC upgrade expected to
start operating in 2029 [7].

Indirect detection experiments aim to detect products of DM particle annihila-
tion. The greatest sources for such signals exist in places with large DM densities,
such as galactic centres and halos, close cluster galaxies or dwarf galaxies [6]. The
product of the self-annihilation process can be pairs of vector bosons, quarks, pho-
tons and other combinations of standard model particles. There have been many
efforts to detect DM signals through indirect detection, but there have not appeared
any clear signals of DM decay. In the cases where signs of DM decay have been pos-
sible, it is still unclear if these signals are caused by DM or whether they originate
from other astrophysical phenomena [6].

Direct detection experiments are used to detect events where a DM particle
interacts directly with the detector target. It has become one of the most promising
experimental methods for finding DM particles since many of the DM particles in
our galaxy should pass through Earth [1]. Their main purpose has been used to
detect WIMPs through nuclear recoil, where a DM particle scatters elastically off
detector nucleons [6]. These experiments have not yet led to conclusive results, but
the possibility of detecting lighter DM particles that scatter off electrons bound by
crystal targets has become an increasingly interesting approach [8].

Today, there are several candidates for DM particles that all obey different theo-
retical frameworks, and the goal is to test them experimentally. Instead of studying
the theories individually, it is convenient to introduce an effective field theory (EFT).
In short, EFTs can be described as theories that adequately, but not exactly, describe
a physical phenomenon by giving higher importance to certain operators, not unlike
a perturbation theory. Most importantly, they can provide model-independent de-
scriptions of scattering processes in direct detection experiments [9]. This introduces
a large set of coupling strengths in substitution of a smaller set of model-dependent
parameters but has the advantage of e.g. combining all WIMP interactions in one
framework.

The power of using EFTs is that when experimental data appears for DM, the

2

1. Introduction

data can be used for estimating the EFT parameters. The parameters can be es-
timated with Bayes’ theorem, which can relate the probability of a set of EFT
parameters to the likelihood of the experimental data, i.e. the distribution of data
given a set of EFT parameters. In direct detection experiments with crystal de-
tectors, the data is the electronic transition rates in the crystal targets. When
such data appears, the distribution of the electronic transition rates for different
sets of EFT parameters needs to be found. Obtaining this distribution can be very
computationally expensive.

1.2 Aim and outline of the thesis
In this thesis, the electronic transition rates in crystal direct detection targets in-
duced by sub-GeV DM particles are studied. The scattering process is described
with an EFT for the scattering amplitude, which introduces a set of EFT coupling
strengths. With the DM mass and EFT coupling strengths as input parameters,
the electronic transition rates can be computed numerically for different numbers
of electron-hole pairs created in the crystal, which was previously performed with
a classical Python program. With the purpose of speeding up the computation of
the transition rates, an artificial neural network (ANN) was developed. By training
the ANN once, a model is created that can repeatedly be used to quickly predict
transition rates for different sets of input parameters. Furthermore, the alterna-
tive of using graphics processing units (GPUs) to accelerate the computations was
investigated.

First, the general electronic transition rate for bound electrons is derived in
Chapter 2. The resulting scattering amplitude is then specified for the case of elec-
trons bound in crystals. The chapter concludes with an expression for the transition
rate that is used in numerical computations.

Based on the theory of Chapter 2, the transition rates were previously computed
in a classical Python program. The intention was for the Python program to gen-
erate a training set for the ANN, which in turn is used to speed up predictions of
transition rates. However, the Python program itself can be made faster by using
C++ and GPU parallelisation. This procedure is outlined in Chapter 3. In Chap-
ter 4, the fundamentals of ANNs are reviewed. Then the theory is applied in an
implementation of an ANN for computing the electronic transition rates derived in
Chapter 2. The layout of the ANN developed in this thesis is then presented and
discussed.

The results of the ANN are presented in Chapter 5, specifically the accuracy and
speed. The speed results for the parallelisation of the data generation scripts are
also presented and compared to the ANN. The thesis is concluded with Chapter 6,
where the results are discussed. Furthermore, improvements and possible extensions
of this thesis are suggested.

3

1. Introduction

4

2
Theoretical description of
electronic transition rates

To be able to accelerate the interpretation of direct detection experiments, the gov-
erning theory for how DM particles interact with detectors needs to be reviewed.
Since this thesis concerns crystal detectors, the central process is DM-electron inter-
actions. More specifically, the rate of electronic transitions in the detector crystals
that are induced by DM scattering is studied.

The electronic transition rates are first derived on a general level and are then
specified for the case of crystals. The chapter concludes with a summary of the
specific observable that is used for numerical calculations, namely the electronic
transition rates as a function of the number of electron-hole pairs created in the
crystal. Natural units, i.e. c = ℏ = 1, are used throughout the whole thesis.

2.1 The general transition rate

We begin by studying the general electronic transition rate for DM-induced exci-
tations of bound electrons. Then it can easily be applied to the case of electrons
bound by crystals in Section 2.2. This section largely follows Reference [10].

First, the scattering matrix of the process is derived. Then we proceed by find-
ing the transition rate and conclude the section with a concise expression for the
scattering amplitude involving the form factors.

2.1.1 The scattering matrix

The scattering matrix, or S-matrix, describes the transition from an initial state
|i⟩ to a final state |f⟩ in a scattering process [11]. Since the electronic transition
rate is closely related to the S-matrix, this section is devoted to finding the general
S-matrix element for DM scattering against bound electrons. See Figure 2.1 for an
example. This process is inelastic and corresponds to a DM particle exciting an
electron bound by e.g. a nucleus or a crystal. For the inelastic case, we can define a
total state for the DM particle and the electron by a three-dimensional momentum
for the DM particle, p, and an electron state, |e⟩. Following the notation used in
Reference [10], we define the initial state |i⟩ ≡ |e1,p⟩ = |e1⟩ ⊗ |p⟩ which transitions
into the final state |f⟩ ≡ |e2,p′⟩. The electronic states are the energy eigenstates
of the electron energy, with eigenenergies E1 and E2, respectively. As in Reference

5

2. Theoretical description of electronic transition rates

Figure 2.1: An illustration of a dark matter particle, χ, scattering against an
electron bound by a nucleus. In the scattering process, the electron transitions into
a higher energy level in the atom.

[12], we normalise in a non-relativistic way such that

⟨p|p⟩ = (2π)3δ(3)(0) =
∫

d3x ≡ V (2.1)

where V is a divergent volume factor that will cancel for all physical observables.
Similarly, ⟨e1|e1⟩ = ⟨e2|e2⟩ = V while ⟨e1|e2⟩ = ⟨p|p′⟩ = 0. The dimension of V is
energy−3.

Before writing down the general S-matrix element, we develop the Hamiltonian
framework for our time-dependent, interacting DM-electron system. We use the in-
teraction picture of quantum mechanics, which is based on the Schrödinger equation

i
d
dt |Φ(t)⟩ = HI(t) |Φ(t)⟩ , (2.2)

where |Φ(t)⟩ is our DM-electron state that transitions from |i⟩ to |f⟩ with time, and
HI(t) is the interaction Hamiltonian in the interaction picture [13]. The interaction
picture Hamiltonian is non-zero during the finite transition time for our state, but
zero in the initial and final states. It is related to the interaction Hamiltonian in
the Schrödinger picture, HI

S, via

HI(t) = eiH0
StHI

Se
−iH0

St, (2.3)

where H0
S is the interaction-free Hamiltonian in the Schrödinger picture [13, Eqs.

(6.12-6.13)]. Since we assume that the transition is adiabatic, i.e. that there is only
interaction during the transition between |i⟩ and |f⟩ but no interaction when the
system is in |i⟩ or |f⟩, the initial and final states must be eigenstates of H0

S [10].
The Hamiltonian, H, in terms of the Hamiltonian density, H , is

H =
∫

d3xH , (2.4)

and since H0
S is space-independent we have∫

d3xHI(t) =
∫

d3xeiH0
StH I

S e
−iH0

St (2.5)

6

2. Theoretical description of electronic transition rates

The transition rate is related to the S-matrix element ⟨f |S |i⟩, as will be de-
scribed further in Section 2.1.2. The general S-matrix can be expressed with the
Dyson expansion [13, (6.23)],

S =
∞∑

n=0

(−i)n

n!

∫
. . .
∫

d4x1d4x2 . . . dx4
nT {HI(x1)HI(x2) . . .HI(xn)} . (2.6)

It includes the time-ordering operator, T, which orders the Hamiltonian densities
such that the latest operator is placed to the left [11]. The first term in the expansion
is just S(0) = 1, which implies that the first term in the S-matrix is ⟨f |i⟩ ∝ δfi.
This corresponds to the case of no transition and is not interesting. To derive the
transition rate, we use the first non-trivial S-matrix element in the expansion,

Sfi ≡ ⟨f |S(1) |i⟩ = −i ⟨f |
∫

d4xHI |i⟩ = −i
∫

d4x ⟨f |HI |i⟩ . (2.7)

Since the space-time integral over the Hamiltonian density is dimensionless and
the overlap of the two-particle states contribute with V 2, the dimension of Sfi is
energy−6.

Now, by inserting the momentum and electronic state expressions for the initial
and final state, as well as using (2.5), we get

Sfi = −i
∫

d4x ⟨e2,p′| eiH0
StH I

S e
−iH0

St |e1,p⟩ . (2.8)

Using the fact that |i⟩ and |f⟩ are eigenstates of H0
S with eigenenergies Ei and Ef ,

we get

Sfi = −i
∫

d4x ⟨e2,p′|H I
S |e1,p⟩ ei(Ef −Ei)t

= −i
∫

d3x ⟨e2,p′|H I
S |e1,p⟩

∫
tei(Ef −Ei)t

= −i2πδ(Ef − Ei)
∫

d3x ⟨e2,p′|H I
S |e1,p⟩ .

(2.9)

In the last step, we inserted the useful property∫
dteixt = 2πδ(x), (2.10)

which follows from the definition of a Fourier transform. Furthermore, by inserting
the completeness relation ∫ d3ℓ

(2π)3 |ℓ⟩ ⟨ℓ| = 1 (2.11)

twice, where |ℓ⟩ are chosen as eigenstates of the Hamiltonian for an unbound elec-
tron, we find

Sfi = −i2πδ(Ef − Ei)
∫

d3x
∫ d3ℓ

(2π)3

∫ d3ℓ′

(2π)3 ⟨e2|ℓ′⟩ ⟨ℓ′,p′|H I
S |p, ℓ⟩ ⟨ℓ|e1⟩

= −i2πδ(Ef − Ei)
∫ d3ℓ

(2π)3

∫ d3ℓ′

(2π)3 ⟨e2|ℓ′⟩ ⟨ℓ|e1⟩
∫

d3x ⟨ℓ′,p′|H I
S |p, ℓ⟩ .

(2.12)

7

2. Theoretical description of electronic transition rates

Figure 2.2: An illustration of a dark matter particle, χ, scattering against a free
electron. In contrast to the case of a bound electron, the electron state can now be
fully expressed with its momentum.

To be able to derive a transition rate from (2.12), we need to evaluate the H I
S

matrix element. As is soon demonstrated, it is beneficial to look at the elastic
scattering of a DM particle against a free electron; see Figure 2.2. In this case, we
can denote the initial and final electron states with the electron momentum while
keeping the notation for the DM particle, such that |i⟩ ≡ |ℓ,p⟩ and |f⟩ ≡ |ℓ′,p′⟩.
Their eigenenergies with respect to H0

S are Ẽf ≡ Eℓ′ + Ep′ and Ẽi ≡ Eℓ + Ep [10].
With these energies, the first order free S-matrix element in the Dyson expansion
can be found analogously to (2.9),

Sfree
fi = −i2πδ(Ẽf − Ẽi)

∫
d3x ⟨ℓ′,p′|H I

S |ℓ,p⟩ . (2.13)

In this expression, we recognise the H I
S matrix element from (2.12). To be able

to substitute this element we use an expression for the non-trivial free S-matrix
element from Reference [11, (4.73)],

Sfree
fi = i(2π)4δ(4)(p′ + ℓ′ − p− ℓ) M(ℓ,p, ℓ′,p′)√

2Ep′2Eℓ′2Ep2Eℓ

= i(2π)4δ(Ẽf − Ẽi)δ(3)(p′ + ℓ′ − p− ℓ) M(ℓ,p, ℓ′,p′)√
2Ep′2Eℓ′2Ep2Eℓ

.

(2.14)

This expression contains the scattering amplitude, M, for the DM-scattering by a
free electron. In the second step we used that the 4-momenta p′, ℓ′, p and ℓ are
on-shell, which means p′0 = Ep′ , ℓ′0 = Eℓ′ , p0 = Ep and ℓ0 = Eℓ. The factor
1/
√

2Ep′2Eℓ′2Ep2Eℓ is not in Reference [11], since they use a relativistic normal-
isation that corresponds to ⟨p|p⟩ = 2Ep(2π)3δ(3)(0) (compare [11, (2.36)] to our
(2.1)). We correct with this factor because M is assumed to be calculated using
Feynman rules with relativistic normalisation.

8

2. Theoretical description of electronic transition rates

By comparing (2.13) to (2.14), we see that∫
d3x ⟨ℓ′,p′|H I

S |ℓ,p⟩ = −(2π)3δ(3)(p′ + ℓ′ − p− ℓ)

× M(ℓ,p, ℓ′,p′)√
2Ep′2Eℓ′2Ep2Eℓ

.
(2.15)

Finally, this can be inserted into (2.12) so that

Sfi = i2πδ(Ef − Ei)
∫ d3ℓ

(2π)3

∫ d3ℓ′

(2π)3 ⟨e2|ℓ′⟩ ⟨ℓ|e1⟩

× δ(3)(p′ + ℓ′ − p− ℓ) M(ℓ,p, ℓ′,p′)√
2Ep′2Eℓ′2Ep2Eℓ

= i2πδ(Ef − Ei)
∫ d3ℓ

(2π)3 ⟨e2|ℓ + q⟩ ⟨ℓ|e1⟩

× M(ℓ,p, ℓ + q,p− q)√
2Ep′2Eℓ′2Ep2Eℓ

,

(2.16)

where we introduced the transferred momentum in the scattering process, q ≡
p − p′. The integral over ℓ′ was resolved by the three-dimensional Dirac delta,
which imposed ℓ′ = ℓ + q.

We can introduce wave functions for the electronic states,

ψ1(ℓ) ∝ ⟨ℓ|e1⟩ ,
ψ2(ℓ + q) ∝ ⟨ℓ + q|e2⟩ ,

(2.17)

which need to preserve probability [14]. Using Eqs. (2.1) and (2.11), we have

| ⟨ℓ|e1⟩ |2 =
∫ d3ℓ

(2π)3 ⟨e1|ℓ⟩ ⟨ℓ|e1⟩ = ⟨e1|e1⟩ = V, (2.18)

and similarly | ⟨ℓ + q|e2⟩ |2 = V , so we must have

ψ1(ℓ) = 1√
V
⟨ℓ|e1⟩ ,

ψ2(ℓ + q) = 1√
V
⟨ℓ + q|e2⟩ .

(2.19)

Let us denote the electron mass by me and the DM particle mass by mχ. By
exchanging the brackets in (2.16) with these wave functions in the non-relativistic
limit, where 2Ep′2Eℓ′2Ep2Eℓ = 16m2

χm
2
e, we get

Sfi = i2πδ(Ef − Ei)
V

4mχme

∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)ψ1(ℓ)

×M(ℓ,p, ℓ + q,p− q).
(2.20)

With this, we have an expression for the general S-matrix element in terms of the
scattering amplitude and the wave functions for bound electrons bound. This will
now be used to derive the electronic transition rates and will be specified for electrons
bound by crystals in Section 2.2.

9

2. Theoretical description of electronic transition rates

2.1.2 The general transition rate
The probability for the transition |e1,p⟩ → |e2,p′⟩ between two definitive states is

P = |Sfi|2

V 4 . (2.21)

The factor 1/V 4 is needed to normalise the probability since we have discretised
momenta [8]. For Sfi, we use (2.20). Now we want to calculate the probability of
a transition from a specific state with DM momentum p to a state with final DM
momentum in the interval (p′,p′ + dp′). The number of such final states is [13]

N = V d3p′

(2π)3 = V d3q

(2π)3 , (2.22)

which leads to the total transition probability,

P(p) = P ·N = |Sfi|2

V 4
V d3q

(2π)3 . (2.23)

To be able to square the energy Dirac delta in (2.20), we define a divergent factor

T ≡
∫

dt =
∫ T/2

−T/2
dt, (2.24)

similarly to how we defined V , and use Reference [13, Eqs. (8.4-8.5)] for large T to
show that

[2πδ(Ef − Ei)]2 = T (2π)δ(Ef − Ei). (2.25)

Now the expression for Sfi in (2.20) can be inserted into (2.23) so that

P(p) = 2πδ(Ef − Ei)
1

16m2
χm

2
e

Td3q

(2π)3V

×
∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)M(ℓ,p,q)ψ1(ℓ)

∣∣∣∣∣
2

.

(2.26)

The transition rate is defined as the transition probability per unit time, i.e.
P(p)/T , so the divergent time factor in the transition probability is cancelled. The
divergent volume V is defined such that it contains exactly one DM particle, which
means that the unit density for DM particles is 1/V [13]. Thus, we can define
the transition rate per unit DM density as VP(p)/T . To get back to a transition
rate, we now multiply this quantity by the local number density for DM particles,
nχ = 0.4 GeV/cm3/mχ [10]. Finally, we get the total transition rate by allowing
all combinations of incoming and outgoing momenta. This requires integrating the
transition rate over the incoming DM particle velocity distribution, fχ(v), and the
transition momentum q [10],

R1→2 = 2πδ(Ef − Ei)
nχ

16m2
χm

2
e

∫ d3q

(2π)3

∫
d3vfχ(v)|M1→2|2, (2.27)

10

2. Theoretical description of electronic transition rates

where

|M1→2|2 ≡
∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)M(ℓ,p,q)ψ1(ℓ)

∣∣∣∣∣
2

(2.28)

and the bar over the squared transition amplitude corresponds to averaging over in-
coming spin states and summing over outgoing spin states [11]. Following Reference
[10], we use the velocity distribution

fχ(v) = 1
Nescπ3/2v3

0
exp

[
−(v + v⊕)2

v2
0

]
Θ(vesc − |v + v⊕|) (2.29)

with
Nesc ≡ erf(vesc/v0)− 2(vesc/v0) exp

(
−v2

esc/v
2
0

)
/
√
π (2.30)

and v0 = 220 km/s, vesc = 544 km/s, v⊕ = 244 km/s.
Equation (2.27) is the transition rate for the case of DM-electron scattering for

bound electrons and will be used in Section 2.2. Before proceeding to the case of
electrons bound by crystals, however, the scattering amplitude can be simplified.

2.1.3 Expansion in the electron momentum-to-mass ratio

The total transition rate is given by (2.27), so the rest of this chapter is dedicated
to rewriting (2.28). Here, we make a general expansion that can be used in the case
of electrons bound by crystals.

Up until this point we have been working with the incoming and outgoing DM-
and electron momenta p′, ℓ′, p and ℓ. However, since DM-free electron scattering
is characterised by momentum conservation and Galilean invariance, only two of
these momenta are independent [8]. We have introduced the transferred momentum
q = p− p′, but we can also choose an independent momentum proportional to [9]

v⊥
el = p + p′

2mχ

− ℓ + ℓ′

2me

= p
mχ

− p− p′

2mχ

− ℓ + ℓ + q
2me

= vrel,in −
q
2

(
1
mχ

+ 1
me

)

= vrel,in −
q

2µχe

,

(2.31)

where we used ℓ′ = ℓ + q [10]. We introduced the reduced mass of the DM particle
and electron, µχe, and the relative incoming velocity

vrel,in = p
mχ

− ℓ

me

. (2.32)

11

2. Theoretical description of electronic transition rates

The relative outgoing velocity is

vrel,out = p′

mχ

− ℓ′

me

= p
mχ

− p− p′

mχ

− ℓ + q
me

= vrel,in −
q
µχe

.

(2.33)

This leads to the initial and final kinetic energies ECM
i = µχev2

rel,in/2 and ECM
f =

µχev2
rel,out/2 in the centre of mass frame. In elastic scattering processes, energy

conservation implies

v2
rel,in = v2

rel,out

=
(

vrel,in −
q
µχe

)2

= v2
rel,in −

2(vrel,in · q)
µχe

+ q2

µ2
χe

,

(2.34)

which leads to

vrel,in · q = q2

2µχe

. (2.35)

Now it is apparent why v⊥
el is a good choice of independent momentum; in elastic

processes,

v⊥
el · q = 0. (2.36)

The scattering amplitudeM can now be expressed using only q and v⊥
el . In the

non-relativistic limit, we can expand M in the electron momentum-to-mass ratio,
|ℓ|/me ≪ 1 [8],

M(q,v⊥
el) ≈

[
M(q,v⊥

el)
]

ℓ=0
+
(

ℓ

me

)
·
[
me∇ℓM(q,v⊥

el)
]

ℓ=0
. (2.37)

From this point onward, we write M ≡ M(q,v⊥
el). The scattering amplitudes on

the right-hand side of (2.37) will be expressed using an effective theory in Section
2.1.4. In preparation for that, we further simplify the expression here.

To begin with, we can insert (2.37) in (2.28) to get

|M1→2|2 =
∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)

[
Mℓ=0 +

(
ℓ

me

)
· (me∇ℓM)ℓ=0

]
ψ1(ℓ)

∣∣∣∣∣
2

, (2.38)

12

2. Theoretical description of electronic transition rates

which can be rewritten as

|M1→2|2 =
∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)Mℓ=0ψ1(ℓ)

∣∣∣∣∣
2

+ 2 Re
{[∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)Mℓ=0ψ1(ℓ)

]

×
[∫ d3ℓ

(2π)3ψ2(ℓ + q)
(

ℓ

me

)
· [me∇ℓM∗]ℓ=0 ψ

∗
1(ℓ)

]}

+
∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)

(
ℓ

me

)
· [me∇ℓM]ℓ=0 ψ1(ℓ)

∣∣∣∣∣
2

.

(2.39)

by expanding the square of the two terms. Since the scattering amplitudes are
evaluated at ℓ = 0, they can be moved out of the integrals so that

|M1→2|2 = |M|2ℓ=0

∣∣∣∣∣
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)ψ1(ℓ)

∣∣∣∣∣
2

+ 2meRe
{
Mℓ=0

[∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)ψ1(ℓ)

]

× [∇ℓM∗]ℓ=0 ·
[∫ d3ℓ

(2π)3ψ2(ℓ + q)
(

ℓ

me

)
ψ∗

1(ℓ)
]}

+m2
e

∣∣∣∣∣[∇ℓM]ℓ=0 ·
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)

(
ℓ

me

)
ψ1(ℓ)

∣∣∣∣∣
2

.

(2.40)

This motivates the definitions of the general electron wave function overlap integrals,
or form factors [10],

f1→2(q) ≡
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)ψ1(ℓ) (2.41)

and
f1→2(q) ≡

∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)

(
ℓ

me

)
ψ1(ℓ). (2.42)

By inserting these in (2.40), we get

|M1→2|2 = |M|2ℓ=0 |f1→2|2 + 2meRe
[
Mℓ=0f1→2 [∇ℓM∗]ℓ=0 · f∗

1→2

]
+m2

e|[∇ℓM]ℓ=0 · f1→2|2,
(2.43)

or even more concisely,

|M1→2|2 =
{
|M|2 |f1→2|2 + 2meRe (Mf1→2∇ℓM∗ · (f1→2)∗) +m2

e|∇ℓM · f1→2|2
}

ℓ=0
.

(2.44)
Expressing the scattering amplitude with the form factors enables a factorisation
between the scattering properties, which are contained in M, and the material-
specific properties contained in the form factors. It will also make the step from the
general transition rate to the crystal transition rate more clear.

13

2. Theoretical description of electronic transition rates

2.1.4 Expansion with effective field theory

We have seen that the scattering amplitude can be described with the independent
variables v⊥

el and q. Furthermore, it is characterised by the spin operators Se and
Sχ for the electron and DM particle, assuming the DM particle has intrinsic spin [9].
We already expanded the scattering matrix in the electron momentum-to-mass ratio
in Section 2.1.3. To express the scattering amplitudes in the expanded expression,
such as the right-hand side of (2.44), we use effective theory [10, 8, 9].

An effective theory can model a physical phenomenon with a large set of param-
eters in a perturbative manner, in contrast to relying on a specific underlying theory
[15]. In the case of DM research, effective theories have the advantage of being able
to explore different DM particle candidates by altering the coefficients of the effec-
tive theory. It is outside the scope of this thesis to investigate effective theories in
detail, therefore the effective theory used in this thesis will just be presented here.

Using the EFT described in References [8, 9] corresponds to writing the scattering
amplitude as

M(q,v⊥
el) =

∑
i

(
cs

i + cℓ
i

q2
ref
|q|2

)
⟨Oi⟩, (2.45)

where Oi are interaction operators, and cs
i and cℓ

i are short- and long-range inter-
action coupling strengths. The reference momentum qref is defined as qref ≡ αme,
where α is the fine structure constant. The angled brackets in (2.45) denote the ma-
trix element for an interaction operator acting on the initial and final two-component
spinors ξλ and ξλ′ for the electron state, and ξs and ξs′ for the DM particle state,
i.e.

⟨Oi⟩ ≡ ξs′
ξsOiξ

λ′
ξλ. (2.46)

In this thesis, we follow Reference [10, 8] and use operatorsOi that describe fermionic
DM particles up to first order in v⊥

el and second order in q. These operators are
[8, 9] 

O1 = 1χ1e,

O3 = i1χSe · (q × v⊥
el),

O4 = Sχ · Se,

O5 = iSχ · (q × v⊥
el)1e,

O6 = (Sχ · q)(Se · q),
O7 = 1χ(Se · v⊥

el),
O8 = (Sχ · v⊥

el)1e,

O9 = iSχ · (Se × q),
O10 = i1χ(Se · q),
O11 = i(Sχ · q)1e,

O12 = Sχ · (Se × v⊥
el)

O13 = i(Sχ · v⊥
el)(Se · q)

O14 = i(Sχ · q)(Se · v⊥
el)

O15 = iO11[(Se × v⊥
el) · q].

(2.47)

14

2. Theoretical description of electronic transition rates

Since O2 = 1χ1e(v⊥
el)2 is not linear in v⊥

el , it is excluded in the set of operators used
here. From (2.45) we see that these 14 operators lead to a total of 28 short- and
long-range coupling strengths.

Before applying the effective theory to express the scattering amplitude, the
transition rate for crystal targets will be derived. It is not until we arrive at a
final crystal transition rate that the effective theory will enter, in the form of DM
response functions; see Section 2.2.4.

2.2 The electronic transition rate in crystals
The transition rate in (2.27) together with (2.44) is general and can be applied to
any target material in a direct detection experiment. In this section, the transition
rate is specified for the case of crystal targets. To this end, a formalism for electrons
bound to crystals is set up, followed by a specification of the scattering amplitude.
Then, the new framework is applied to (2.27). This section largely follows References
[10, 8].

2.2.1 Crystal wave function formalism
Specifying the electrons to be bound by crystals corresponds to specifying the form
factors, and thus wave functions, in (2.44). These electrons exist in the valence
bands of the crystal in the initial state and transition to the conduction bands for
the final state. See Figure 2.3. Thus, we define the electronic state by its energy
band index, j, and its wave vector, k, in the first Brillouin zone (BZ). Note that
these k are not the electron momenta, but the wave vectors of a Bloch wave. They
can also be interpreted as the quantum number of an electronic state [16].

The electronic transition can be described as jk→ j′k′. The initial band index
j spans over all valence bands in the crystal, while the final band index j′ spans over
all conduction bands. With the normalisation of the wave functions introduced in

Figure 2.3: An illustration of the case of a dark matter particle, χ scattered against
an electron bound by a crystal. In this case, the electron transitions from the valence
band j into the conduction band j′.

15

2. Theoretical description of electronic transition rates

(2.19), the electronic position space wave function at x can be expressed as a sum
over the reciprocal lattice vectors G,

ψjk(x) = 1√
V

∑
G
uj(k + G)ei(k+G)·x, (2.48)

and analogously for ψj′k′ [16]. Preservation of probability for the position space
wave function leads to a condition for the coefficients uj,

∫
V

d3x|ψjk|2 =
∫

V
d3x

∣∣∣∣∣ 1√
V

∑
G
uj(k + G)ei(k+G)·x

∣∣∣∣∣
2

= 1
V

∫
V

d3x
∑
G
|uj(k + G)|2

=
∑
G
|uj(k + G)|2

≡ 1,

(2.49)

where Parseval’s formula was used in the second step [17, (3.22)].
In Section 2.1, V was referred to as a divergent volume; here it becomes the vol-

ume of the crystal detector, such that V = NcellVcell where Vcell is the unit cell volume
and Ncell is the number of unit cells in the crystal. We have Ncell = Mtarget/Mcell
where Mtarget is the total detector target mass and Mcell is the mass of a single unit
cell. Both germanium and silicon have face-centred diamond-cubic crystal struc-
tures, which means there are eight atoms in each unit cell, i.e. Mcell = 8mSi/Ge. The
unit cell crystal structure of silicon and germanium consists of several copies of two
base cell components; an empty cell, and a cell with a total of two atoms. In some
literature, such as Reference [8], the mass of the non-empty base cells (2mSi/Ge) is
referred to as Mcell. This is consistent with what is stated here, as long as Ncell is
changed accordingly.

Let Rjk→j′k′ denote the transition rate in (2.27) expressed with the position space
wave functions. This is the transition rate for electrons in specific energy bands and
quantum states, but the relevant observable in DM direct detection experiments is
the full electronic transition rate in crystals [8]. Thus, we need to sum Rjk→j′k′

over both the input and output crystal volume and electron wave vectors as well as
energy bands and spin states,

Rcrystal = 2
∑
jj′

∫
BZ

V d3k

(2π)3

∫
BZ

V d3k′

(2π)3 Rjk→j′k′ . (2.50)

The factor of two is caused by double occupancy in each crystal conductive band
since each energy band can contain one spin-up and one spin-down electron.

Since we are using position space wave functions instead in (2.50), we need
to express (2.28) in terms of position space wave functions. The momentum and
position space wave functions are related with a Fourier transform,

ψ1(ℓ) =
∫

d3xψjk(x)e−iℓ·x. (2.51)

16

2. Theoretical description of electronic transition rates

Thus, we can rewrite the scalar form factor in (2.41),
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)ψ1(ℓ) =

∫ d3ℓ

(2π)3

∫
d3x′ψ∗

j′k′(x′)ei(ℓ+q)·x′
∫

d3xψjk(x)e−iℓ·x

=
∫

d3x
∫

d3x′ψ∗
j′k′(x′)eiq·x′

ψjk(x)
∫ d3ℓ

(2π)3 e
−iℓ·(x−x′)

=
∫

d3x
∫

d3x′ψ∗
j′k′(x′)eiq·x′

ψjk(x)δ(3)(x− x′)

=
∫

d3xψ∗
j′k′(x)eiq·xψjk(x),

(2.52)

where we used (2.10) in the third step and resolved the Dirac delta in the last step.
As for rewriting the vectorial form factor in (2.42), we have the following Fourier
transform property [18, F11],

F
{(

ℓ

me

)
ψ1(ℓ)

}
(x) = i∇x

me

F{ψ1(ℓ)}(x)

= i∇x

me

ψjk(x)
(2.53)

or (
ℓ

me

)
ψ1(ℓ) =

∫
d3x

i∇x

me

ψjk(x)e−iℓ·x. (2.54)

This implies that (2.42) can be written as
∫ d3ℓ

(2π)3ψ
∗
2(ℓ + q)

(
ℓ

me

)
ψ1(ℓ) =

∫
d3xψj′k′(x)eiq·x i∇x

me

ψjk(x). (2.55)

Finally, we see that by defining the scalar

fjk→j′k′(q) ≡
∫

d3xψ∗
j′k′(x)eiq·xψjk(x) (2.56)

and the 3-vector

fjk→j′k′(q) ≡
∫

d3xψj′k′(x)eiq·x i∇x

me

ψjk(x), (2.57)

we can write (2.44) in terms of the electronic wave functions for crystals,

|Mjk→j′k′ |2 =
{
|M|2 |fjk→j′k′|2 + 2meRe

[
Mfjk→j′k′∇ℓM∗ · (fjk→j′k′)∗

]
+m2

e|∇ℓM · fjk→j′k′ |2
}

ℓ=0
.

(2.58)

The scattering amplitude is now expressed in terms of the position space electronic
wave functions for crystals. However, before computing the total transition rate, we
can simplify the scattering amplitude.

17

2. Theoretical description of electronic transition rates

2.2.2 Rewriting the scattering amplitude
To find the total transition rate corresponding to (2.58), it turns out that it is
beneficial to extract a three-dimensional Dirac delta. We start by writing the form
factors more explicitly using the expressions for the crystal wave functions from
(2.48). Then (2.56) becomes

fjk→j′k′(q) = 1
V

∫
d3x

[∑
G′
u∗

j′(k′ + G′)e−i(k′+G′)·x
]
eiq·x

[∑
G
uj(k + G)ei(k+G)·x

]

= 1
V

∑
GG′

u∗
j′(k′ + G′)uj(k + G)

∫
d3xei(k−k′+G−G′+q)·x

= (2π)3

V

∑
GG′

u∗
j′(k′ + G′)uj(k + G)δ(3)(k− k′ + G−G′ + q),

(2.59)

where (2.10) was used in the last step. Similarly, (2.57) becomes

fjk→j′k′(q) = 1
V

∫
d3x

[∑
G′
u∗

j′(k′ + G′)e−i(k′+G′)·x
]
eiq·x i∇x

me

[∑
G
uj(k + G)ei(k+G)·x

]

= −(2π)3

meV

∑
GG′

u∗
j′(k′ + G′)uj(k + G)δ(3)(k− k′ + G−G′ + q)(k + G),

(2.60)

where we let the gradient act on the rightmost exponential in the second step.
To extract a Dirac delta from (2.58), we need to extract it from each of its three

terms. To begin with, we have

|fjk→j′k′ |2 = fjk→j′k′f ∗
jk→j′k′

= (2π)3

V

∑
FF′

u∗
j′(k′ + F′)uj(k + F)δ(3)(k− k′ + F− F′ + q)

× (2π)3

V

[∑
GG′

u∗
j′(k′ + G′)uj(k + G)δ(3)(k− k′ + G−G′ + q)

]∗

.

(2.61)

Since we are summing over an infinite number of reciprocal lattice vectors G′ and
F′, we can shift them so that we sum over ∆G ≡ G′−G and ∆F ≡ F′−F instead.
Then
|fjk→j′k′|2 = fjk→j′k′f ∗

jk→j′k′

= (2π)6

V 2

∑
F∆F

u∗
j′(k′ + F + ∆F)uj(k + F)δ(3)(k− k′ + q −∆F)

×
∑

G∆G

[
u∗

j′(k′ + G + ∆G)uj(k + G)
]∗
δ(3)(k− k′ + q −∆G)

= (2π)6

V 2

∑
∆F∆G

δ(3)(k− k′ + q −∆F)δ(3)(k− k′ + q −∆G)

×
∑
F
u∗

j′(k′ + F + ∆F)uj(k + F)
[∑

G
u∗

j′(k′ + G + ∆G)uj(k + G)
]∗

.

(2.62)

18

2. Theoretical description of electronic transition rates

We see from the two Dirac deltas that we only get non-zero terms when ∆F = ∆G,
and by resolving the delta containing ∆F we get a factor of V/(2π)3. Furthermore,
by defining [8]

f ′
jk→j′k′ ≡

∑
G
u∗

j′(k′ + G + ∆G)uj(k + G) (2.63)

we see that

|fjk→j′k′ |2 = (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)f ′
jk→j′k′(f ′

jk→j′k′)∗

= (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)|f ′
jk→j′k′ |2.

(2.64)

Regarding the second term in (2.58), we observe in a similar way that

fjk→j′k′fjk→j′k′ = −(2π)6

meV

∑
FF′

u∗
j′(k′ + F′)uj(k + F)δ(3)(k− k′ + F− F′ + q)

×
[∑

GG′
u∗

j′(k′ + G′)uj(k + G)δ(3)(k− k′ + G−G′ + q)(k + G)
]∗

= −(2π)3

meV

∑
∆G

δ(3)(k− k′ + q −∆G)
∑
F
u∗

j′(k′ + F + ∆G)uj(k + F)

×
[∑

G
u∗

j′(k′ + G + ∆G)uj(k + G)(k + G)
]∗

= (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)fjk→j′k′(f ′
jk→j′k′)∗,

(2.65)

where
f ′
jk→j′k′ ≡ −

1
me

∑
G
u∗

j′(k′ + G + ∆G)uj(k + G)(k + G). (2.66)

Lastly, we rewrite the last term in (2.58). Using the same procedure of simplifying
the sums, we obtain

|(∇ℓM)ℓ=0 · fjk→j′k′|2 = [(∇ℓM)ℓ=0 · fjk→j′k′)] [(∇ℓM)ℓ=0 · fjk→j′k′)]∗

= −(2π)3

m2
eV

∑
∆G

δ(3)(k− k′ + q −∆G)

× (∇ℓM)ℓ=0 ·
∑
F
u∗

j′(k′ + F + ∆G)uj(k + F)(k + F)

×
[
(∇ℓM)ℓ=0 ·

∑
G
u∗

j′(k′ + G + ∆G)uj(k + G)(k + G)
]∗

= (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)
∣∣∣(∇ℓM)ℓ=0 · f ′

jk→j′k′

∣∣∣2 .
(2.67)

19

2. Theoretical description of electronic transition rates

Finally, we can use Eqs. (2.64), (2.65) and (2.67) in (2.58) to extract a Dirac
delta in the scattering amplitude,

|Mjk→j′k′ |2 = (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)

×
(
|M|2

∣∣∣f ′
jk→j′k′

∣∣∣2 + 2meRe
[
Mf ′

jk→j′k′(∇ℓM)∗
ℓ=0 · (f ′

jk→j′k′)∗
]

+m2
e|(∇ℓM)2

ℓ=0 · fjk→j′k′|2
)

≡ (2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)
∣∣∣M′

jk→j′k′

∣∣∣2.

(2.68)

This is the last property needed before proceeding with computing the transition
rate.

2.2.3 The total electronic transition rate in crystals
We are now equipped to derive the total crystal transition rate in terms of the
crystal form of the scattering amplitude developed in the last section. Equation
(2.50) together with (2.27) and (2.68) leads to the total transition rate

Rcrystal = 2
∑
jj′

∫
BZ

V d3k

(2π)3

∫
BZ

V d3k′

(2π)3 2πδ(Ef − Ei)
nχ

16m2
χm

2
e

×
∫ d3q

(2π)3

∫
d3vfχ(v)(2π)3

V

∑
∆G

δ(3)(k− k′ + q −∆G)
∣∣∣M′

jk→j′k′

∣∣∣2. (2.69)

To begin with, the energy Dirac delta can be simplified. In the non-relativistic
limit, the eigenenergies of the initial and final states are given by the total energy
of the system. This corresponds to the rest masses, the kinetic energy for the DM
particle and the energy of the electron. With initial and final electron energy Ejk
and Ej′k′ , we get

Ei = mχ +me + p2

2mχ

+ Ejk = mχ +me + mχv
2

2 + Ejk,

Ef = mχ +me + p′2

2mχ

+ Ej′k′ = mχ +me + |mχv− q|2

2mχ

+ Ej′k′ ,

(2.70)

where v = |v| is the initial speed of the DM particle. We can also introduce a
relative angle θqv between v and the transferred momentum q such that

Ef − Ei = ∆Ejk→j′k′ + |mχv− q|2

2mχ

− mχv
2

2

= ∆Ejk→j′k′ + q2

2mχ

− v · q

= ∆Ejk→j′k′ + q2

2mχ

− qv cos θqv,

(2.71)

20

2. Theoretical description of electronic transition rates

where ∆Ejk→j′k′ ≡ Ej′k′ − Ejk and q = |q|. Now, by reorganising (2.69) and
inserting (2.71), we find

Rcrystal = πV nχ

4m2
χm

2
e

∫
d3q

∫
BZ

d3k

(2π)3

∫
BZ

d3k′

(2π)3

∑
jj′∆G

δ(3) (k− k′ + q −∆G)

×
∫
d3vfχ(v)δ

(
∆Ejk→j′k′ + q2

2mχ

− qv cos θqv

) ∣∣∣M′
jk→j′k′

∣∣∣2. (2.72)

If we define [8]
ξ = q

2mχv
+ ∆Ejk→j′k′

qv
, (2.73)

we can also write

δ

(
∆Ejk→j′k′ + q2

2mχ

− qv cos θqv

)
= δ(qv(cos θ − ξ)) = 1

qv
δ(cos θ − ξ). (2.74)

For the scattering process to occur we must have v ̸= 0, and from the leftmost
energy Dirac delta in (2.74) we see that q = 0 would imply that there is no electronic
transition. Thus, it is safe to divide by qv.

We continue by evaluating the velocity integral in (2.72) [8]. With polar coordi-
nates, ∫

d3v =
∫

dvv2
∫ 2π

0
dϕ
∫ 1

−1
d cos θ, (2.75)

the velocity integral can be written as

Γjk→j′k′ ≡
∫

dvv
∫ 2π

0
dϕ
∫ 1

−1
d cos θfχ(v)1

q
δ(cos θ − ξ)

∣∣∣M′
jk→j′k′

∣∣∣2. (2.76)

In general, the velocity distribution fχ(v) is not spherically symmetric, but for
simplicity, we now approximate fχ(v) = fχ(v) [12, App. A.2]. Then it is possible
to use the Dirac delta to evaluate the integral over θ such that

Γjk→j′k′ ≈
∫

v≥vmin
dvv2fχ(v)

v

∫ 2π

0
dϕ
∣∣∣M′

jk→j′k′

∣∣∣2
cos θ=ξ

. (2.77)

As a consequence, the lower limit of the velocity integral was moved up from 0 to
vmin ≡ ξv, since v ≥ vmin ensures that cos θ = ξ = vmin/v ≤ 1. As in Reference [8],
we define the squared transition amplitude averaged over the azimuthal angle,

∣∣∣M′
jk→j′k′

∣∣∣2
cos θ=ξ

≡ 1
2π

∫ 2π

0
dϕ
∣∣∣M′

jk→j′k′

∣∣∣2
cos θ=ξ

, (2.78)

so that
Γjk→j′k′ ≈ 2π

∫
v≥vmin

dvv2fχ(v)
v

∣∣∣M′
jk→j′k′

∣∣∣2
cos θ=ξ

. (2.79)

Moreover, we introduce the operator η̂ which acts as

η̂ [Cg(v)] = C
∫

|v|≥vmin
d3v

fχ(v)
v

g(v) (2.80)

21

2. Theoretical description of electronic transition rates

on a constant C and an arbitrary function g(v) of the incoming DM-velocity [8]. If
g(v) and fχ(v) were isotropic, then spherical coordinates lead to

η̂ [Cg(v)] = 4πC
∫

v≥vmin
dvv2fχ(v)

v
g(v) (2.81)

and we can write
Γjk→j′k′ ≈ 1

2 η̂
[∣∣∣M′

jk→j′k′

∣∣∣2
cos θ=ξ

]
(2.82)

Inserting this approximation of the velocity integral in (2.72), we find that

Rcrystal = πV nχ

8m2
χm

2
e

∫
BZ

d3k

(2π)3

∫
BZ

d3k′

(2π)3

∑
jj′∆G

×
∫

d3q
1
q
δ(3) (k− k′ + q −∆G) η̂

[∣∣∣M′
jk→j′k′

∣∣∣2
cos θ=ξ

]
.

(2.83)

The last step is to involve the effective theory description of the scattering amplitude.

2.2.4 The dark matter and crystal response functions
Equipped with the expression for the electronic transition rate in crystal detectors
in (2.83), we are finally able to connect the transition rate to the effective theory
presented in Section 2.1.4. Inspired by (2.83), let us define the l-th crystal response
functions [8]

Wl(q,∆E) = (4π)2Vcell∆E
∑

jj′∆G

∫
BZ

d3k

(2π)3

∫
BZ

d3k′

(2π)3Bl

× δ(3)(k− k′ + q −∆G)δ(∆Ejk→j′k′ + ∆E),
(2.84)

where
∆E ≡ q2

2mχ

− qv cos θqv. (2.85)

and Bl are terms containing f ′
jk→j′k′ and f ′

jk→j′k′ ; see [8, (38 − 42)]. The factor of
∆E outside the integrals makes Wl dimensionless.

Because of the structure of the crystal response functions, it is apparent that
they can replace parts of (2.83). In fact, it can be shown that the transition rate
can be written as a sum of products between the crystal response functions and the
DM response functions, Rl, such that [8]

Rcrystal = nχNcell

128πm2
χm

2
e

∫
d(ln ∆E)

∫
d3q

1
q
η̂(q,∆E)

r∑
l=1

Re [R∗
l (q, v)Wl(q,∆E)]

(2.86)

The (dimensionless) DM response functions are given in Reference [8, App. C],
and are functions of the EFT coupling strengths ci introduced in (2.45). This thesis
concerns only silicon and germanium target materials, for which the relevant number
of response functions is r = 5 [8]. It is out of the scope of this thesis to discuss the

22

2. Theoretical description of electronic transition rates

crystal and DM response functions in detail. Instead, it is emphasised that the
transition rate can be written in terms of the response functions in this way and
that this is how the transition rate depends on the EFT.

With the transition rate expressed in this way, we can continue by evaluating
the integral over transferred momenta, q. By using spherical coordinates for q as
in (2.75), we find

Rcrystal = nχNcell

128πm2
χm

2
e

∫
d(ln ∆E)

×
∫

dqqη̂(q,∆E)
r∑

l=1
Re

[
R∗

l (q, v)W l(q,∆E)
]
,

(2.87)

where

W l(q,∆E) ≡
∫

dΩWl(q,∆E)

=
∫

dΩ
∫

dq′Wl(q′,∆E)δ(q′ − q)

= 1
q2

∫
d3q′Wl(q′,∆E)δ(|q′| − q).

(2.88)

We introduced a new integral over |q′| to be able to simplify the three-dimensional
Dirac delta in (2.84), since∫

d3q′δ(3)(k− k′ + q′ −∆G)δ(|q′| − q) = δ(|k− k′ −∆G| − q). (2.89)

This leads to

W l(q,∆E) = (4π)2Vcell∆E
q2

∑
jj′∆G

∫
BZ

d3k

(2π)3

∫
BZ

d3k′

(2π)3Bl

× δ(|k− k′ −∆G| − q)δ(∆Ejk→j′k′ + ∆E).
(2.90)

Equation (2.87) is the final expression for the crystal responses that is used in the
numerical implementations.

2.2.5 Electron-hole pair formalism
The final transition rate is given by (2.87). The aim of this project is to develop a
GPU program and to model this transition rate by implementing a neural network,
and in these ways accelerate the computations of the transition rate. The quantity
that will be studied is the transition rate as a function of the number of electron-hole
pairs. When an electron transitions from the valence band to the conduction band,
an electron-hole pair appears. Consequently, the number of electron-hole pairs, Q,
depends on the available energy, ∆E, in the scattering process [8],

Q = 1 + ⌊(∆E − Egap)/ε⌋ (2.91)

as well as the tabulated values of the valence-conduction band gap, Egap, and the
required energy to create an electron-hole pair for the specific target material, ε. In
our case, the target material is either silicon or germanium.

23

2. Theoretical description of electronic transition rates

Since the number of electron-hole pairs is a floor function of the deposited energy,
there is a continuum of energies that corresponds to the same number of electron-hole
pairs. Thus, the transition rate as a (discrete) function of the number of electron-
hole pairs corresponds to integrating over the range of ∆E that leads to the given
Q. This is the quantity that will result from the neural network.

24

3
Parallelising the computations

The aim of this thesis is to accelerate the numerical computations of the electronic
transition rate that was derived in Chapter 2. In this thesis, it is done both with par-
allelisation and with ANNs. This chapter describes the general idea for computing
the transition rates, as well as the procedure for the speed improvements developed
in this thesis. The full repository for the implementations presented in this thesis is
published on Github, at HannaOlvhammar/Accelerating_DM_computations. The
Python program from Section 3.1 is in the directory named ”original”, the unparal-
lelised C++ program from Section 3.2 is in the ”cpp_cpu” directory, and the GPU
program from Section 3.3.2 is in the ”cuda” directory.

3.1 The data generation program

To compute the electronic transition rates numerically, (2.87) is used. The integrals
in (2.87) are computed as Riemann sums, which, in a computer program, translate
to for-loops that sum over the integral variables. The first program that was created
for computing the electronic transition rates was written in Python1 and is referred
to as the Python program in this thesis. While both the programming language and
general structure of this program are experimented with in this thesis, the idea for
computing the transition rate remains. Algorithm 1 shows the pseudo-code for the
computations common to all of the programs studied in this thesis and is based on
(2.87) and associated sections.

The crystal response functions, W l, the integrated range of the transferred mo-
mentum, q, and the range of transition energies, ∆E, were all generated in separate
files which have remained unaltered in this thesis. The outputs of those files are
read and used in the computations of the integrals included in the transition rate,
Rcrystal.

The electronic transition rates are stored in a matrix, Rcrystal, with nD rows and
nQ columns and all elements initialised to zero. The outermost for-loop in Algorithm
1 loops over all nD input data samples, such that for each set of input parameters
one row in the transition rate matrix is computed. When the for-loop over the
transition energies, ∆E, is performed, the number of possible electron-hole pairs, Q,
is computed. Based on the result, the corresponding column in the transition rate
matrix is computed. Inside all for-loops and if-statements, the integrand in (2.87)
is computed and added to the corresponding element in the matrix Rcrystal. This

1The program was written by my co-supervisor Einar Urdshals.

25

3. Parallelising the computations

Algorithm 1 The pseudo-code for generating transition rates given a set of inputs
1: for iD < nD do ▷ For each data sample
2: for all ∆E in pre-generated range do ▷

∫
d(∆E)

3: Q← 1 + ⌊(∆E − Egap)/ε⌋ ▷ (2.91)
4: if Q < nQ then ▷ Possible transitions for given Q
5: for all q in pre-generated range do ▷

∫
q

6: vmin ← ∆E/q + q/2mχ ▷ vmin = ξv, see (2.73)
7: if vmin < vesc + v⊕ then
8: Call functions for computing Rl(q, v) and η̂(q,∆E)
9: x← qη̂(q,∆E)∑r

l=1 Re
[
R∗

l (q, v)W l(q,∆E)
]

▷ (2.87)
10: Rcrystal[iD, Q]← Rcrystal[iD, Q] + x · constants
11: end if
12: end for
13: end if
14: end for
15: end for

way, each iteration of the for-loops adds a term to the sum for the specific matrix
element, performing the Riemann sums that replace the integrals in (2.87).

The input parameters in this thesis are either the DM mass, mχ, which enters in
the constants on line 12 of Algorithm 1, or the EFT coupling strengths which enter
in the DM response functions, Rl.

3.2 From Python to C++
The primary aim of this thesis was to accelerate numerical computations for DM
research using ANNs. To develop the ANN, large amounts of training data in
different formats needed to be generated. To speed up the development process of
the ANN, the Python program for generating data could be optimised.

It became apparent that the Python program did not utilise any tools that
were specific to Python or were more convenient and readable in Python compared
to C++. Python libraries such as Scikitlearn and SciPy can be very valuable in
scientific programming, but the only significant library used in the Python program
was NumPy. NumPy is a numerical library for Python that is written in optimised
C code, and all NumPy functions used in the Python program are accessible as C
functions [19]. Therefore, the Python program could easily be rewritten in C++.

There are several reasons that C++ is faster than Python in general. One is that
Python is an interpreted language while C++ is a compiled language. This means
that each time a Python program runs, the code must be parsed, interpreted and
executed [20]. In contrast, a C++ program needs to be compiled once to produce
an executable file. The executable file is then written in machine language that
very efficiently runs on the computer it was compiled on, as many times as needed.
Another reason is that Python types are stored as objects, which can make e.g. a
large array of floats consume a lot more memory, and thus time, than a C++ array
[21]. Using the NumPy library can prevent this sort of overhead, however.

26

3. Parallelising the computations

One way to speed up the Python program is to use just-in-time compilation,
which is provided by e.g. the library Numba. Numba provides a decorator for
Python functions such that the first time a function with a just-in-time decorator
is called, Numba compiles the function and translates it into machine code [22].
The machine code is then executed every time the function is called in the program.
Numba was used for all functions in the original Python program with the purpose of
speeding up the computations without changing the overall structure of the program.

It would seem that a Python program using Numba would be as fast as a C++
program, but this is not always the case. Numba can prove to be faster than naively
implemented C++ code, which in our case could mean a line-by-line translation of
the Python code into C++. However, optimised C++ code with advanced compiler
options for optimisation can be faster than Python code with Numba functions [23].
This motivated an attempt to write the Python program in C. While C could be
used instead of C++ in this thesis, some functions such as probability distributions
and array handling are more convenient to use in C++.

In the C++ program, the overall structure for computing the electronic transition
rates in Algorithm 1 remained. However, the code was optimised in several ways.
Some examples include decreasing the number of function calls, removing repeated
computations and decreasing the number of involved files. These improvements
could also have been implemented in the Python program. What could not be
done as easily in Python was to optimise memory usage, which in C++ consisted
of carefully allocating and freeing memory for the necessary arrays. Furthermore,
the O3 optimisation compiler flag was used in the C++ program, providing further
automated optimisation [24].

The most important improvement in the structure of the program was to vec-
torise computations. Vectorising computations can be described as the difference
between a for-loop that calls a function in each iteration and a single call to a func-
tion that contains the for-loop. The latter is a vectorised function, which not only
provides a speed gain by decreasing the number of function calls; the compiler can
optimise the execution of the function so that each iteration is run in parallel on the
central processing unit (CPU) [25].

Writing the Python program in C++ made the generation of the electronic
transition rates about twice as fast; see Section 5.3. Having already vectorised
computations in C++, the possibility for further seed-ups was recognised in the
form of GPU computations.

3.3 The GPU program

There are ways to improve the performance of the data generation programs running
on the CPU, such as optimising the program and writing it in C++, as was discussed
in Section 3.2. In this section, the method of using GPUs to accelerate computations
is presented. First, the principles of parallel computing are reviewed, and then
the GPU implementation for accelerating the computation of transition rates is
presented.

27

3. Parallelising the computations

3.3.1 Parallelisation principles
Both the CPU and GPU are used to perform computations for different purposes.
The CPU is specialised in executing fast sequential instructions from e.g. the op-
erating system or the calculator; the CPU has a high clock speed. The GPU is
mainly used for parallel instructions, such as rendering thousands of polygons si-
multaneously in a computer game. In Section 3.1, the Python program runs on the
CPU. This means that each iteration of the for-loop is fast, but that the instruc-
tions are executed sequentially. If the iterations were instead executed in parallel,
the for-loop could be performed faster. Naturally, this requires that the iterations
are independent.

The execution of an instruction is performed on a so-called thread. In a non-
parallel program, all computations are executed on the same thread. In parallel
computations, several threads are used to execute the instructions in parallel. It
is possible to parallelise computations on the CPU, but even though the CPU has
access to tens of threads, the GPU has access to thousands of threads [26]. This
means that the GPU has a much higher capability of speeding up large for-loops
with parallelisation. On the other hand, it has a lower clock speed than the CPU.

A program can be parallelised by importing tools from libraries such as OpenCL
or CUDA [27, 26]. In this thesis, CUDA is used. Computations can be performed
on the GPU by communicating with the GPU from the CPU. In CUDA, this is done
through the following procedure:

1. Allocate arrays on the CPU (e.g. with malloc()).

2. Initialise the CPU arrays to their desired values.

3. Allocate arrays on the GPU (with cudaMalloc()).

4. Copy the contents of the CPU arrays to the GPU arrays (with cudaMemcpy()).

5. Call the GPU function and execute instructions in parallel on the GPU.

6. Copy the contents of the GPU arrays to the CPU arrays (with cudaMemcpy()).

7. Use the CPU arrays to e.g. save data in a separate file.

Allocating memory and copying data is computationally expensive, and provides a
time overhead for the program. Consequently, the GPU program is not faster than
the CPU program until a large enough amount of GPU threads are utilised.

There are some requirements for running computations on the GPU. First, to
be able to run the relevant functions on the GPU they need to be either possible
to call from the CPU, or callable only from the GPU. Such functions require the
__global__ or __device__ declaration specifier, respectively [26]. Second, all of
the GPU functions need to be gathered in a separate CUDA file marked with the
.cu extension. Third, all of the relevant files need to be compiled with the CUDA
compiler, nvcc [26]. Lastly, the code needs to be restructured both on the CPU-end
to be able to call the GPU functions, and from the GPU-end to be able to assign for-
loop iterations to different threads. The procedure for the CPU is mostly described
with the memory transfer process above.

28

3. Parallelising the computations

Figure 3.1: An illustration of the GPU software architecture [28].

For the GPU, the code needs to be executed simultaneously on different threads.
The threads can be either one-, two- or three-dimensional and are organised in
thread blocks, which in turn can have up to three dimensions and are organised in
so-called grids. The grids can also be up to three-dimensional. Figure 3.1 illustrates
the structure of the threads in one dimension. When using CUDA for GPU paral-
lelisation, variables such as the thread index, block index and block size (also called
block dimension) for each of the three dimensions are available to the thread that
is executing the instruction. These variables can then be used in the code to assign
different iterations of a for-loop to different threads. A practical example of how
this type of code can look is given in Section 3.3.2, in the context of computing the
electronic transition rates.

3.3.2 The electronic transition rates with GPUs
When accelerating the computation of electronic transition rates that was presented
in Section 3.1, only the for-loop over data points was altered in Algorithm 1. This
loop usually requires more iterations than the loops over transition energy and mo-
mentum and was thus deemed best suited for parallelisation as a first step.

Algorithm 2 contains the GPU equivalent of the data sample for-loop in Algo-
rithm 1 for one-dimensional threads. In line 1 of Algorithm 2, the value of the
iteration variable iD is determined by which thread is executing the lines. Based
on the block index, the size of the block and the index of the thread in that block,
the iteration variable for the loop is determined, similar to how a matrix element
is accessed in a row-major array. Compare to the layout in Figure 3.1. Line 2 in
Algorithm 2 ensures that the iteration variable is smaller than nD, to handle cases

29

3. Parallelising the computations

Algorithm 2 The GPU equivalent of line 1 in Algorithm 1
1: iD ← blockIdx.x · blockDim.x + threadIdx.x ▷ Uses GPU variables
2: if iD < nD then ▷ Replaces the for-loop
3: . . .
4: end if

where there are more available threads than iterations.
The speed-up given by using parallelisation on GPUs is presented in Chapter 5.

However, since the concept of multidimensional threads and blocks has been pre-
sented in this chapter and Algorithm 1 contains three for-loops, it is clear that the
program can be further accelerated by utilising more dimensions of the GPU soft-
ware. This type of layout was explored in this thesis but because of time constraints,
it is instead suggested as an extension of this program.

The GPU program was first developed to accelerate the generation of data used
for training the ANN presented in Chapter 4. However, the GPU program as a
standalone program has proven to be a good alternative method for accelerating
the computation of the electronic transition rates, independent of using ANNs. The
transition rates computed in the GPU program are equal to the ones computed by
the Python program. Furthermore, the GPU program can compute transition rates
corresponding to all 28 EFT coupling strengths without any increment in execution
time; it has been written in a way that transfers all EFT coupling strengths from
the CPU to the GPU regardless of whether most or none of them are initialised to
zero. This will turn out to be an advantage compared to the ANN.

30

4
Developing the artificial neural

network

The purpose of this thesis is to accelerate the computations of DM-induced elec-
tronic transition rates in crystal detectors. The underlying theory of this process
was discussed in Chapter 2, and a numerical implementation based on GPUs was
presented in Chapter 3. In this chapter, the method of training and improving an
ANN is discussed.

This chapter starts with an introduction to the theory of ANNs, specifically
with a review of the concepts and tools that were needed to build the ANN in this
thesis. Next, the ANN developed for predicting the transition rates is discussed
and motivated. Chapter 5 provides the results for the ANN model presented in this
chapter, and further motivates some choices of the setup in the context of desirable
results. The files used to train and analyse the ANN presented in this chapter can
be found on Github, at HannaOlvhammar/Accelerating_DM_computations in the
”ann” directory.

4.1 The theory of artificial neural networks
Before developing the ANN, it is important to understand the theory of neural
networks. This section reviews the most important concepts needed for developing
and improving an ANN for a regression problem, but are not specific to the problem
of computing transition rates.

4.1.1 The neural network layout
Inspired by the neural networks in the human brain, ANNs consist of a number of
connected neurons. In science, ANNs are used to create models. The idea is that the
ANN can learn and improve itself when training on new information, analogously
to how neurons can make new connections in the brain.

Let si(t) denote the state of a neuron i at a time step t, such that it indicates
the level of activity for the neuron [29]. This neuron can then be connected to other
neurons in a neural network, where the strength of the connection from neuron i to
neuron j is measured by the weight wij. The state of a neuron at time step t+ 1 is
then updated based on its connection to other neurons via an activation function,
g,

si(t+ 1) = g(bi), (4.1)

31

4. Developing the artificial neural network

Figure 4.1: A schematic of a single neuron, indexed with i, in an ANN. It receives
inputs from N other neurons at time step t, each with their assigned weights. The
weights are then used to compute the output of neuron i, which becomes the input
for other neurons in the network at time step t+ 1.

where b is a local field defined as

bi =
N∑

j=1
wijsj(t)− θi, (4.2)

and −θi are biases. See Figure 4.1 [29].
The neurons in an ANN are placed in layers. In a feed-forward ANN, the states

and weights of the neurons in the first layer of the ANN are the ones that determine
the states of the neurons in the second layer via the activation function. The most
simple form of an ANN consists of one input layer and one output layer. The number
of neurons in the input layer is simply the number of input parameters for the model,
and the number of neurons in the output layer is the number of outputs from the
model. The neuron states sj(t) in the first layer will then correspond to the input
values in the data.

A deep ANN has one or more layers of neurons between the input and output
layers, so-called hidden layers. If there are two hidden layers, they can be thought
of as modelling two functions f (1) and f (2) such that the ANN in total models a
function f = f (2)(f (1)), see Figure 4.2 [30].

When an ANN is training, or learning, it repeatedly sends data through the neu-
ral network layers, assesses the performance of the model, and processes the data
again. When all the data has been processed once by the neural network, one epoch
has been performed.

32

4. Developing the artificial neural network

Figure 4.2: An example of the layers of an ANN. It has one input layer, two hidden
layers and one output layer. The hidden layers model two functions f (1) and f (2)

such that the total model of the ANN becomes f = f (2)(f (1)).

4.1.2 Training the neural network
To be able to train an ANN, one first needs to define the requirements for a good
model. In regression problems, the most common way to quantify the accuracy of
a model is with the mean squared error (MSE),

L
(k)
MSE = 1

nD

nD∑
i=1

(
y

(k)
i −O

(k)
i

)2
, (4.3)

where O(k)
i are the outputs predicted by the ANN after epoch k for nD data samples.

The y(k)
i are the data samples of the output parameter, commonly called labels; the

input parameters are commonly called features. The loss function is computed after
each epoch and is used to optimise the input weights for the following epoch. The
loss function in (4.3) depends on the weights wij through the outputs O(k)

i , and
therefore the loss function is minimised by adjusting the weights accordingly [29].

The minimisation is usually performed with gradient descent methods such that
new weights are updated by using the previous weight wij according to

w′
ij = wij + δwij, (4.4)

where the descent step is given by

δwij = −ηdLMSE

dwij

(4.5)

33

4. Developing the artificial neural network

and the learning rate η is set when initialising the ANN [29]. It is common to use
stochastic gradient descent for the minimisation step, as is done in this project, to
decrease the risk of getting stuck in local minima. In the case of stochastic gradient
descent, the sum over samples in (4.3) is removed; instead, one sample is randomly
selected for each of the weight updates. This also means that stochastic gradient
descent is significantly faster. While the loss function does not necessarily decrease
in a single iteration, the sample average of δwij is still negative [29].

4.1.3 Preprocessing the data
It is recommended to preprocess the input data and, if necessary, the output data
for the ANN. Most importantly, shifting and scaling the input data to a zero mean
and unit variance usually makes the ANN perform better [29]. While preprocessing
can remove information from the data, shifting and scaling the data leads to better
performance for the ANN in general. One reason for this is that large mean values
and variances in the input data can lead to a steep gradient for the loss function.
We also see from the local field in (4.2) that large input values can lead to large
local fields, which in turn can lead to saturated neurons in the layer following the
input layer.

Furthermore, some ANN implementations may assume that the data is dis-
tributed in a standard way. For example, L1 and L2 regularisation methods can
assume that the labels are distributed with zero mean and unit variance [31].

4.1.4 Preventing overfitting
When an ANN leads to a model that performs well only on the data set that it has
trained on, the ANN is said to have overfitted. This happens when the ANN gives
too much importance to specific data samples and not the overall behaviour of the
data set, and can be caused by e.g. an excessive amount of neurons in the ANN.

One way to prevent overfitting is to use cross-validation, where the data set
is split into a training set and a validation set [29]. The ANN is only trained on
the training set, while the validation set is used for checking the performance of
the ANN on data it has not been trained on. In particular, the loss function (see
Section 4.1.2) can be monitored for both the training set and the validation set
during training. Overfitting then becomes apparent when the loss function starts
increasing for the validation set while it is decreasing for the training set. Monitoring
the loss function in this way provides a good basis for the appropriate number of
epochs for the training of the ANN, since the training can be stopped before the
validation loss starts increasing.

Another way to prevent overfitting is with regularisation. Regularisation schemes
typically add terms to the loss function for the training set, which can lead to the
training loss being larger than the validation loss. This is important to be aware of
when comparing the training and validation loss. One example of a regularisation
method is the use of drop-out, where a certain fraction of neuron weights in each
hidden layer is set to zero, while the rest of the neurons are updated as usual. The
neurons that are ignored vary in each step of the ANN. The reason for using drop-

34

4. Developing the artificial neural network

out is that it simulates averaging the results of several different networks, which has
been shown to prevent overfitting [29]. Other examples of regularisation methods
are pruning, weight decay and batch normalisation, but they are not explored in
this thesis [29].

4.2 Implementing the neural network
With the concepts presented in Section 4.1, we are equipped to design and implement
an ANN. Since the purpose of the ANN is to speed up the computation of electronic
transition rates, this section starts with connecting the transition rate formalism of
Chapter 2 to the theory of ANNs discussed in Section 4.1. Then, the preprocessing
of the data and the setup of the ANN developed in this thesis is presented and
motivated. While this chapter connects more to the theoretical description of ANNs,
Chapter 5 provides examples of desirable results for the ANN and further motivates
some choices of the ANN design.

4.2.1 Electronic transition rates as a neural network prob-
lem

In this report, the DM-induced electronic transition rates in detector crystals are
studied. For this purpose, the DM mass, mχ, and the EFT coupling strengths cs

7
and cl

7 were chosen as the input parameters, while the output data is the transition
rates for a given number of electron-hole pairs in the crystal. A neural network with
only mχ as the input parameter was also developed, with cs

7 = 1 and the rest of the
EFT coupling strengths set to zero. Mainly the neural network with three input
parameters is discussed in this chapter, but the results of both the one-input and
the three-input ANNs are presented in Chapter 5.

In previous works, the O1 operator has been widely studied because of its sim-
plicity. Here, the EFT is further investigated by studying the O7 coupling strengths,
since it is clear from (2.47) that the O7 interactions have a relatively simple rela-
tionship between the spin and velocity properties of the scattering process. In the
ideal case all 28 EFT coupling strengths from Section 2.1.4 would be included, but
by limiting the number of input parameters the ANN is more easily analysed and
improved as a first step. See Section 6.2 for further discussion. Since the transition
rates for up to nQ = 10 electron-hole pairs are studied, there are also nQ output pa-
rameters. This constitutes a regression problem, where the ANN produces a model
f : Rnp → RnQ [30]. In this case, there are np = 3 input parameters.

To be able to train the ANN, a large amount of data needed to be generated.
As discussed in Chapter 3, a Python program was written in preparation for this
project but was accelerated using GPUs. Thus, the data samples needed to train
the ANN were obtained with the GPU program from Section 3.3.2.

4.2.2 Preprocessing
The input data for the ANN in this project consisted of different values for the
DM mass mχ and the EFT coefficients cs

7 and cl
7. The masses were generated in

35

4. Developing the artificial neural network

Figure 4.3: An example of an unaltered distribution of DM masses that were
randomly generated with a logarithmically uniform distribution. The y-axis shows
the frequency of the rates generated with a mass corresponding to the (logarithmic)
x-axis.

a logarithmically uniform manner in the range of 1 MeV to 1000 MeV, while the
(dimensionless) cs

7 and cl
7 coefficients were uniformly generated in the range 0 to

1. All of the other EFT coefficients were set to zero. The output data is the
corresponding rates for up to nQ = 10 electron-hole pairs, so the dimension of the
input data is three while the output data has a dimension of ten.

As discussed in Section 4.1.3, the input data need to be preprocessed, especially
the large range of logarithmically distributed DM masses. Since the transition rates
follow an almost logarithmic distribution in the range 0 to 107 in the relevant units,
it turned out to be beneficial to normalise the output data too. When building
the ANN and testing the effect of different normalisation procedures, the following
method performed the best: Both the input and output data were first transformed
into uniform distributions between 0 and 1, and then transformed to adopt a zero
mean and unit variance. Each of the features and labels was normalised individ-
ually, and the transformations were saved as objects and re-used when performing
an inverse transformation. The transformations were performed with the Python
package Scikit-learn [32]. Figure 4.3 shows a distribution of DM masses generated
randomly with a logarithmically uniform distribution, before any transformations
have been applied to the data.

The data was first transformed into a uniform distribution using the Scikit-
learn class sklearn.preprocessing.QuantileTransformer [33]. See Figure 4.4
for an example of the transformed masses. This is a non-parametric transformation
from a distribution of a feature or label generated with a random variable X and

36

4. Developing the artificial neural network

Figure 4.4: The distribution of DM masses after a quantile transformation has been
applied to the distribution in Figure 4.3. The masses are now uniformly distributed
in the interval [0, 1].

cumulative distribution function F into a desired distribution G. The quantile
function corresponding to the distribution G is then given by

QG(p) = min {x ∈ R : p ≤ G(x)} . (4.6)

The transformationQG(F (X)) then gives the desired output because of the following
observations: (1) If F (X) is continuous then F (X) will be uniformly distributed in
[0, 1], and (2) if Y is a random variable with uniform distribution in [0, 1] then
QG(Y) has distribution G [34]. Thus, QG(F (X)) will have the distribution G. In
this project, G is a uniform distribution in the interval [0, 1].

Secondly, the class sklearn.preprocessing.StandardScaler from Scikit-learn
was used to transform the data into a uniform distribution with zero mean and unit
variance [31]. See Figure 4.5. The features and labels were transformed individually
from a distribution of samples x into samples z via z = (x − x̄)/σx, where x̄ is the
sample mean and σx is the sample standard deviation.

The original features and labels are easily recovered by applying the inverse
transformations; first the inverse of the standard scaler, and then the inverse of the
quantile transformer. Any data transformation procedure alters the data and leads
to information losses. In this case, the quantile transformer distorts correlations and
distances within and across features or labels [34]. This has not led to any apparent
problems with the data used in this project, but it is important to be aware of.
Without the quantile transformer, the data could not be processed by the ANN.

One of the greatest advantages of using the quantile transformer followed by the
standardising transform is that they can be used on different types of data. For

37

4. Developing the artificial neural network

Figure 4.5: After applying a standardising transformation to the distribution in
Figure 4.4, the DM masses are distributed uniformly with zero mean and unit vari-
ance. This is the type of distribution that works well with machine learning routines.

example, both the logarithmically uniform masses and the uniform EFT coupling
strengths can be processed with the same types of transformations as the transition
rates.

4.2.3 The layout of the neural network
The file containing the ANN layout is made up of three parts: Preprocessing the
data, training the ANN, and visualising the performance of the ANN.

The data is generated in a separate file, which outputs the set of parameters
corresponding to the set of transition rates for different numbers of electron-hole
pairs. In this project, the set of features is {mχ, c

s
7, c

l
7}, while there are nQ = 10

labels for each set of parameters. The data is generated for the specified number of
data samples and is then loaded in the ANN file.

The features, X, and the labels, Y, are loaded in the ANN file. Before training
the ANN, the data is preprocessed. First, they are split into a training set and a
validation set using sklearn.model_selection.train_test_split() from Scikit-
learn [35]. This function shuffles the feature-label pairs and assigns 67% of the
initial data set into a training set {X_train, Y_train} and 33% into a validation set
{X_val, Y_val}. For the remainder of this thesis, the ”data size” refers to the number
of samples before splitting the data. The data set is shuffled to remove any bias
that could be introduced by the generation of the data. Lastly, the normalisation
procedure described in Section 4.2.2 is applied. In particular, the transformations
of the features and labels are given by transforming the training sets, and these
same transformations are then used on the validation set. This ensures that the

38

4. Developing the artificial neural network

validation set does not affect the ANN in any way and that the validation set has
followed the same normalisation procedure as the data that the ANN has been
trained with. The latter is a requirement for using the ANN. Furthermore, when
using the ANN for predictions outside of a training context, no labels are given to the
ANN but the ANN will output normalised rates. This means that the normalisation
transformations need to be found from a training set, and then applied as inverse
transformations on the output of the ANN.

After the data has been preprocessed, the ANN can be trained. In this project,
Tensorflow Keras is used to build and train a multilayer perceptron ANN [36]. In
particular, the class tensorflow.keras.model.Sequential() is used [37]. The
ANN consists of four layers: One input layer with np neurons, one hidden layer
with 16 neurons, a second hidden layer with 32 neurons, and one output layer with
nQ neurons. The hidden layers were activated with the rectified linear unit (ReLU)
activation function, defined as g(b) = max(0, b), which is a good choice for regression
problems. The output layer has no activation. After the layout of the neuron layers
is defined, the model is built and compiled with an Adam optimiser and MSE loss
function. The Adam optimiser uses stochastic gradient descent, which is described
in Section 4.1.2.

This setup proved to perform relatively well for both np = 1 and np = 3, with
nQ = 10. A summary is presented in Table 4.1. When the above steps have
been performed, the ANN is saved and used for predictions of rates Y given input
parameters X. These predictions are then compared to the validation set labels. A
detailed discussion on the results of the ANN is given in Chapter 5.

Table 4.1: Summary of the setup and parameter choices for the ANN developed
in this project.

ANN layers Input layer np neurons
Hidden layer 16 neurons (ReLU)
Hidden layer 32 neurons (ReLU)
Output layer nQ neurons

Optimiser Adam

Loss function MSE

Learning rate 0.001

Number of epochs 30

39

4. Developing the artificial neural network

40

5
Results and discussion of the

implementations

In this chapter, the results of implementing the ANNs and a GPU accelerated pro-
gram for speeding up the computations of electronic transition rates in direct de-
tection experiments are presented. The first two sections cover the accuracy of the
predictions, first in the simpler case of having only the DM mass as an input param-
eter, and then in the extended case of adding two EFT parameters. The chapter
concludes with a section comparing the speed of the neural network, the GPU im-
plementation and the original program. All results in this chapter were produced
for silicon crystal detectors.

5.1 The neural network with mχ as input
As a first step in developing the neural network, only the DM mass was an input
parameter. All EFT coupling strengths were set to zero with the exception of
cs

7 = 1. First, the training of the neural network is discussed. Then the performance
is studied first qualitatively, then quantitatively.

5.1.1 The loss function
When exploring different layouts for the ANN, the MSE was an important indication
of the performance; see Section 4.1.2. Therefore, the MSE was plotted for both the
training and validation data as a function of the number of performed epochs for
the ANN. Figure 5.1 shows the MSE during training for both the training and
validation data with the layout summarised in Table 4.1, for np = 1 parameter and
up to nQ = 10 electron-hole pairs. This ANN was trained on 105 data samples.

In the figure, we see that the MSE for the training set is decreasing and flattening,
as expected, but that it is also decreasing for the validation set. While the MSE
for the validation set usually starts to increase as a result of overfitting in most
applications, it does not for this problem. The labels have no error since they have
been generated with a separate, very accurate program, which means that some
degree of overfitting still keeps the ANN predictions close to the generated labels.
In this project, overfitting was identified by the validation MSE fluctuating heavily.
This could happen when the number of hidden layers or neurons in each hidden
layer was too large, for example.

The converged value for the MSE is also visible in Figure 5.1. When the training

41

5. Results and discussion of the implementations

Figure 5.1: The MSE for both the training and validation data as a function of
the number of performed epochs in the ANN. Both of the MSE functions decrease
and flatten as the number of epochs increases. This particular figure was produced
with the layout of Table 4.1 for np = 1, nQ = 10, and 105 data samples.

and validation MSE had converged, the MSE was around 0.005. This number was
deemed good enough, while higher numbers were considered as indications that the
current setup was not optimal. For example, the MSE converged towards around
0.2 when the neural network was first developed.

It is also apparent that the MSE converges relatively quickly, which motivated
the choice of training the ANN during just 30 epochs. It is possible to let the MSE
converge slower by decreasing the learning rate for the gradient descent optimisation,
but this did not improve the performance of the ANN in any noticeable way.

5.1.2 The behaviour of the neural network model
After the ANN was trained, its performance could be further assessed by visually
inspecting the behaviour of the model, i.e. the predictions of the transition rates as
a function of the DM mass. The DM mass was randomly generated in the interval
106 − 109 eV with a logarithmically uniform distribution, while cs

7 = 1 with the rest
of the EFT coupling strengths set to zero. The results in this section were produced
with the setup presented in Table 4.1 with 105 data samples.

The advantage of having only one label was that it enabled a more intuitive in-

42

5. Results and discussion of the implementations

Figure 5.2: The electronic transition rate in silicon detectors as a function of the
DM mass when cs

7 = 1 for Q = 3. The blue circles represent the validation data and
the orange curve represents the ANN prediction. The ANN predicts the behaviour
of the transition rates well over the whole range of masses.

depth analysis of the ANN. With only one label, the transition rate corresponding
to a certain number of electron-hole pairs, Q, could easily be plotted against the
DM mass. This proved to be a powerful tool in analysing different layer layouts in
the ANN. In Figure 5.2, the transition rate as a function of mχ in the case of Q = 3
is shown as an example. The blue circles represent the validation labels, while the
orange curve represents the ANN prediction. In this figure, the prediction closely
follows the behaviour of validation data on the whole interval. When developing the
ANN, it was important that this kind of plot showed (1) that there were no large
fluctuations for the prediction (a sign of overfitting), (2) that the prediction followed
the behaviour of the labels at the endpoints of the interval of mχ, and (3) that the
prediction performed well around the peak of the transition rate function. These
seemed to be the most problematic areas when developing the ANN. The fact that
Figure 5.2 and similar figures for different values of Q fulfil these three requirements
motivated the ANN setup in Table 4.1.

43

5. Results and discussion of the implementations

Figure 5.3: The electronic transition rate in crystal detectors as a function of
the number of electron-hole pairs, Q, when cs

7 = 1. The generated transition rate
is represented by the blue graph, while the ANN prediction is represented by the
orange graph. This type of figure is further indication that the ANN performs well.

After the MSE and the transition rates as a function of mχ had been monitored,
the transition rates as a function of Q were analysed for specific values of mχ. Figure
5.3 shows the transition rate as a function of Q with mχ = 10 MeV and cs

7 = 1. The
blue curve shows the transition rates predicted by the ANN and the orange curve
shows the generated transition rates. The figure shows that the ANN predicts the
behaviour of the transition rates very well, and performs better for the lower values
of Q than the higher.

5.1.3 The accuracy of the neural network
Finally, the accuracy of the predictions was quantified by the relative error for
prediction i,

error(i) ≡ prediction(i)− generated(i)
generated(i) . (5.1)

With this quantity, we can find the distribution of errors made by the ANN when it
predicts the transition rate for a set of input parameters. Figure 5.4 illustrates the
distribution of prediction errors when the ANN predicts the transition rates for 103

input samples and Q = 3, together with the mean, median and standard deviation

44

5. Results and discussion of the implementations

Figure 5.4: The distribution of errors, see (5.1), for 103 predictions made by the
ANN in Table 4.1 in the case of only mχ as an input parameter. This figure is
an example of the error distribution for Q = 3 and both rates equalling zero and
outliers (errors over 10) were removed. For Q = 3, there were 12 outliers out of 103

predictions.

of the predicted transition rates. The figure was produced by removing outliers, i.e.
predictions with an error larger than 10, for illustration purposes. Since the ANN
is excellent at predicting when the transition rate is zero, those predictions were
removed for the sake of being able to use the error defined in (5.1). The median was
also included since it is more robust to outliers and can give a better indication of
the most frequent errors than the mean.

From Figure 5.4, it is observed that while the mean error is very close to zero, the
standard deviation is relatively large. The error distributions for all values of Q look
similar to Figure 5.4 with different values for the statistics. The main similarities
are that the mean and median are usually negative, that the larger errors are usually
overestimations, and that the number of outliers increases for larger values of Q. In
the figure for Q = 3, we see that there is one occurrence out of 103 when the ANN
produces a prediction that is off by a factor of 5. There were also 12 occurrences
out of 103 predictions when the error was larger than 10. Furthermore, there exists
a very small risk for extremely big (positive) outliers. For example, when the ANN
predicts 106 transition rates, one of the predictions can have a positive error of the
order 1000.

45

5. Results and discussion of the implementations

Figure 5.5: The mean, median and standard deviation of the prediction error, see
(5.1), made by the ANN for different values of Q in the case of one input parameter,
mχ. The mean and median tend to be close to zero but negative, and the standard
deviation seems to increase for larger values of Q.

Figure 5.5 shows the mean, median and standard deviation for the prediction
errors for different values of Q. It is accompanied by Table 5.1, which includes
the specific numbers for the error statistics for up to Q = 5. Again, errors larger
than 10 and transition rates equalling zero were excluded. The graphs for the
mean and median in the figure shows that the ANN tends to slightly underestimate
the transition rates. It is also apparent that the standard deviation increases for
larger values of Q. As previously mentioned, the number of large overestimations
increases for larger values of Q, which explains why the mean stays close to zero
when the median seems to decrease for larger values of Q. This completes the
picture of the general behaviour of the ANN; there are more underestimations than
overestimations, but the large outliers are always overestimations.

Finally, it is clear that the picture painted by Figures 5.4 and 5.5 fits well with
the predictions in Figure 5.3. In Figure 5.3, the predictions are good for up to
Q = 5, but then get increasingly worse. It is also important to note that while the
standard deviation of the prediction error is relatively large for the different values
of Q, an error of e.g. 0.2 makes little difference in a figure such as Figure 5.3. This
highlights the fact that the ANN is very good at predicting the behaviour of the
transition rates on a qualitative level.

46

5. Results and discussion of the implementations

Table 5.1: The median, mean and standard deviation of the one-input ANN pre-
diction error for up to Q = 5.

Q 1 2 3 4 5

Median −0.0060 −0.13 −0.048 −0.15 −0.15

µ −0.028 −0.010 −0.013 −0.098 0.027

σ 0.13 0.57 0.30 0.27 0.66

5.2 The neural network with mχ, cs7 and cl7 as
inputs

The second version of the ANN accepts three input parameters; the DM mass, mχ,
and the EFT coupling strengths cs

7 and cl
7. The mass was generated randomly with

a logarithmically uniform distribution in the range 106 − 109 eV as in Section 5.1,
while the (dimensionless) coupling strengths were generated uniformly in the range
0− 1. The other coupling strengths were set to zero. The ANN layout presented in
Table 4.1 was used in this section, for 106 data samples and now with np = 3.

To analyse the performance of the ANN for this layout, a similar procedure
to the case of Section 5.1 is followed. First by getting a sense of the quality of
the predictions by plotting the transition rates as a function of Q and then by
quantifying the prediction error for different values of Q.

5.2.1 The behaviour of the model in the three-input case

When training the ANN for three input parameters, the first step was to study the
loss function in exactly the same way as in Section 5.1.1. However, in this case, it
is hard to interpret the performance of the ANN based on results such as Figure
5.2, since the transition rates now vary with three different parameters. Instead,
with the knowledge that the layout in Table 4.1 worked well in the case of one
input parameter, the three-input ANN was based on the network developed for the
one-input ANN.

The top figure of Figure 5.6 is the equivalent of Figure 5.3 in the case of three
input parameters. For the more complex case of including two EFT parameters, the
prediction made by the ANN is relatively good. It does not appear as accurate as in
the one-input case, but it captures the overall behaviour of the electronic transition
rates well. Furthermore, it seems to be better at predicting the electronic transition
rates for larger values of Q.

The middle figure of Figure 5.6 illustrates the transition rates predicted by the
ANN for long-range interactions, when cs

7 = 0 and cl
7 = 1 for mχ = 10 MeV. This

is a significant improvement from the case of just one input parameter; while the
one-input model does seem more accurate, the three-input ANN has learned to
distinguish between the effects of short- and long-range interactions. Even though

47

5. Results and discussion of the implementations

Figure 5.6: The ANN prediction of electronic transition rate as a function of the
number of electron-hole pairs, Q, and the directly generated transition rates for
different combinations of the three input parameters. All three show mχ = 10 MeV.
Top shows cs

7 = 1, cl
7 = 0; middle cs

7 = 0, cl
7 = 1; bottom cs

7 = 0.5, cl
7 = 0.5.

48

5. Results and discussion of the implementations

the order of the transition rates for the short- or long-range interactions vary dra-
matically between the top two figures of 5.6, the bottom figure shows that the ANN
can even predict transition rates based on a mix of cs

7 and cl
7.

5.2.2 The accuracy of the predictions
As in the case of the one-input model in Section 5.1, (5.1) is used to quantify the
error. Figure 5.7 shows the distribution of the prediction errors made by the three-
input ANN when predicting the transition rates for 103 data samples. As in the
one-input case, predictions equalling zero as well as errors over 10 were removed
when analysing the distribution of errors. In total, the ANN usually produces less
than 10 outliers when predicting 103 transition rates for all values of Q. This is
about the same frequency as in the one-input case. In Figure 5.7, there were no
outliers.

Since Figure 5.6 only shows single predictions made by the ANN, Figure 5.7
complements it by showing the full spectrum of errors. It shows that the ANN
seems to systematically underestimate the electronic transition rates for Q = 0,
which is slightly visible in Figure 5.6. Furthermore, the distribution of errors is
not completely contained around the mean; there are many occurrences where the

Figure 5.7: The distribution of errors, defined in (5.1), for the predictions made
by the ANN when Q = 1. This ANN was trained on 106 data samples, and 103

transition rates were predicted to generate this figure.

49

5. Results and discussion of the implementations

Figure 5.8: The prediction error, see (5.1), for different Q made by the ANN
trained on 106 data samples. The errors were produced for a data set containing
103 data samples. The outliers, i.e. errors larger than 10, and rates equalling zero
were removed from the data set.

predictions are far from zero.
In Figure 5.8, the mean, standard deviation and median of the distribution of

prediction errors are shown for different values of Q. It is not as clear as in Figure
5.5 that the standard deviation of the errors increases for larger values of Q, as was
suspected from Figure 5.6. There also seems to be a larger offset from a zero mean,
further indicating that the three-input ANN is not as accurate as the one-input
ANN.

Finally, Table 5.2 shows the means, standard deviations and medians correspond-

Table 5.2: The median, mean and standard deviation of the three-input ANN
prediction error for up to Q = 5.

Q 1 2 3 4 5

Median −0.11 −0.11 −0.097 −0.012 −0.035

µ −0.091 −0.12 −0.12 −0.031 −0.043

σ 0.30 0.21 0.20 0.17 0.23

50

5. Results and discussion of the implementations

ing to Figure 5.8. This can be compared to Table 5.1, where it becomes apparent
from the mean and median that the three-input ANN systematically underestimates
the transition rates to a higher degree, at least for the first five values of Q. On the
other hand, the difference between the standard deviations is less than expected.

5.3 Summary and comparison of improvements

Finally, the speed of all implementations discussed in this thesis can be compared.
The speed was found by measuring the execution time for each program as a function
of the number of computed (or predicted) transition rates. In Figure 5.9, the speed of
the Python program (Section 3.1), the C++ program running on the CPU (Section
3.2), the C++ program running on the GPU (Section 3.3.2) and the three-input
ANN (Section 4.2.3) are presented. The ANN used the GPU program for generating
the training data. For this figure, all four implementations computed the electronic
transition rates corresponding to different values for mχ, cs

7 and cl
7 when the other

EFT coupling strengths were set to zero. The speed results were obtained on a
computer with an AMD Ryzen 7 3750H CPU and an Nvidia GeForce GTX 1660 Ti
GPU.

As expected, for larger numbers of computed transition rates the original Python

Figure 5.9: A speed comparison of the Python program, the C++ CPU program,
the GPU program and the ANN predictions.

51

5. Results and discussion of the implementations

program is the slowest implementation, followed by the C++ CPU program which
is about twice as fast as the Python program. The GPU program is the slowest im-
plementation for a low number of computed transition rates but eventually becomes
much faster than the Python program. This is because of the memory transfer over-
head that was discussed in Section 3.3.1, but the large amount of available threads
makes the GPU program very powerful for a larger amount of computed transition
rates.

In Table 5.3, the execution times used to generate Figure 5.9 are presented.
Some time measurements were left out for the C++ CPU and Python programs
since they are very computationally costly. Now, it becomes clear that the GPU
program is about 16 times faster than the Python program, and that the ANN is
about 600 times faster than the Python program for 104 computed transition rates.
For 106 computed transition rates, the ANN is about 160 times faster than the GPU
program. Note that the time for training the ANN is not included, but since it is a
one-time computation and it is less than one hour, it is not relevant for the speed
comparisons. The results are further discussed in Chapter 5.

Table 5.3: The execution times for the four implementations as a function of the
number of transition rates computed.

nD 1 10 100 1000 104 105 106

ANN 3s 3s 3s 3s 4s 9s 56s

GPU 23s 24s 38s 1min5s 2min1s 15min49s 2h30min

CPU 10s 11s 25s 2min44s 25min33s – –

Python 18s 19s 41s 4min21s 38min34s – –

52

6
Discussion and outlook

In this chapter, the results obtained in Chapter 5 are discussed in detail. First,
improvements are suggested both for the GPU and ANN implementations. Then
possible expansions of the thesis are presented, followed by the final conclusions of
the results in this thesis.

6.1 Improving the results
The full details of the results achieved in this thesis are presented in Chapter 5.
In this section, the results are further discussed and possible improvements are
suggested.

6.1.1 The performance of the GPU program
The GPU program was developed with the purpose of speeding up the data gener-
ation for the ANN. However, it turned out that the GPU program could compete
with the ANN both in speed and accuracy. The GPU program does not introduce
any error in comparison to the Python program, meaning that the error statistic
defined in (5.1) is zero for all data samples generated by the GPU. However, the
ANN is currently significantly faster than the GPU program.

As mentioned in Section 3.3.2, only one-dimensional threads were used in the
GPU program. If more dimensions were to be used, there is great potential for the
GPU to be even faster. With the added accuracy of the GPU program, GPUs are
a strong contender for the fastest method of computing electronic transition rates.
Furthermore, the speed results presented in this thesis were obtained on a personal
laptop GPU. If the code were to be optimised for a powerful high-performance GPU
instead, the results could improve significantly.

6.1.2 The performance of the neural network
While the final ANNs predicted the overall behaviour of the electronic transition
rates as a function of both one and three parameters very well, it was challenging to
achieve high accuracy with the setup in Table 4.1. When going from the one-input
ANN to the three-input ANN, it was not obvious that the two networks should have
the same setup in regard to the number of hidden layers and the number of neurons in
each hidden layer. Therefore, many different setups were explored; examples include
up to five hidden layers, up to a hundred neurons in the hidden layers, different ratios

53

6. Discussion and outlook

of neurons between the hidden layers and different regularisation schemes. These
options were investigated with the aim of achieving higher accuracy for the ANN
while studying the MSE during training and the behaviour of the ANN such as in
Figure 5.6. These attempts usually led to overfitting, or in some cases a good model,
but never as good as for the setup in Table 4.1. This is probably because the setup
of one input neuron, 16 in the first hidden layer, 32 in the second and 10 neurons
in the output layer is not that different from having three input neurons. In other
words, the setup that worked best for the one-input ANN is probably the one that
is also best for the three-input ANN. This might not be the case if there were e.g.
10 input neurons, however.

The final version of the one-input ANN was developed by letting the ANN train
on 105 data samples. Before choosing this size of the data samples, the performance
based on 104 data samples was investigated. In that case, the result corresponding
to Figure 5.3 showed that the ANN was somewhat good at predicting the transition
rates, but not as well as when the ANN had trained on 105 data samples. Therefore,
the ANN was also trained on 106 data samples to investigate if a larger training
data size could improve the results further. This did not lead to any apparent
improvement in the accuracy; instead, the ANN performed as well as when it trained
on 105 data samples. For the same reasons, the three-input ANN was also trained on
107 data samples, in contrast to the final ANN that was trained on 106 data samples.
Again, this did not lead to any significant improvement in the ANN predictions.

Even though the ANN layouts are very similar, the one-input ANN performs
slightly better than the three-input ANN. This is most likely because the introduc-
tion of two EFT parameters drastically increases the complexity of the transition
rate model. While the current layout for the ANN does not seem to be possible to
further improve, there are still many aspects that can be investigated to increase
the accuracy of the ANN. Most importantly, only different layouts of a multilayer
perceptron ANN have been investigated in this thesis. Naturally, the next step in
improving the accuracy of the ANN is to implement different architectures. This
becomes especially relevant when the dimension of the input parameter space in-
creases.

Lastly, the ANN makes very fast predictions, as is presented in Section 5.3.
While there was no significant difference in the prediction speed between the one-
input and three-input ANNs, it is possible that the predictions become slower when
more input parameters are added. Since the current ANN is about 160 times faster
than the GPU program, however, the prediction speed for a larger number of input
parameters is not concerning. The challenging aspect could instead be the time
for training the ANN. The training time has not been discussed in this thesis since
it has always been negligible; always under ten minutes for both ANNs, and it is
only performed once before a model is produced that can predict transition rates.
However, the training time increases with the training data size. Since the data size
had to be increased when going from one input parameter to three, it is strongly
suspected that more training data is needed when more parameters are added as
inputs. This makes the training time relevant. There are ways to adjust the training
of the ANN developed in this thesis, such as changing the batch size, but it would
also be interesting to implement an ANN that is trained on the GPU.

54

6. Discussion and outlook

6.2 Expanding the project

With this thesis, the advantages of using GPUs and ANNs to accelerate computa-
tions of electronic transition rates have been demonstrated. Furthermore, there is a
high potential for improvements in accuracy.

To simplify the analysis of the ANN, a one-input and then a three-input ANN
were developed. However, a total of 28 EFT coupling strengths were presented in
Section 2.1.4. To fully describe the DM-electron scattering process with this EFT, all
coupling strengths should be included as input parameters. A reasonable first step
could be to include the O8 interactions since it is another simple operator containing
both spin and velocity dependence, other thanO7. Since the complexity of the model
increases significantly with every added parameter, I believe the best procedure
consists of adding a few input parameters at a time and evaluating the performance
of the new ANN; this was the procedure used in this thesis, and studying the one-
input ANN significantly facilitated the development of the three-input ANN. This
is probably also the case for developing ANNs with other architectures.

The reason for generating the c7 coupling strengths uniformly in the range 0− 1
was that since they originate from the same operator, O7, any relative difference
between cs

7 and cl
7 larger than a few orders of magnitude would lead to one coupling

strength clearly dominating over the other, as is seen in (2.45). If more EFT coupling
strengths would be added as inputs to the ANN, they might need to be generated
logarithmically to account for differences in magnitude between different operators.

Furthermore, parameters other than the coupling strengths can be added as
inputs to the ANN. For example, the velocities v0, v⊕ and vesc in Section 2.1.2 could
be further probed by using them as input parameters for the ANN.

A natural extension of this project would be to apply the ANN for interpre-
tations of direct detection experiments. The reason for computing the electronic
transition rates was to obtain a likelihood function describing the distribution of
the transition rates depending on different sets of input parameters, which can then
be used for parameter estimation via Bayes’ theorem. Now that there exists a GPU
parallelised program as well as a ANN for computing the electronic transition rates,
the performance for evaluating the likelihood function can be analysed.

Finally, this thesis has demonstrated two methods of significantly accelerating
computations for DM-electron scattering in crystal detectors. Since these methods
are not specific to the physical phenomenon studied in this thesis, they can be
applied to other research areas that depend on fast computations. In particular, the
results of this thesis have shown that both GPU computations and ANN predictions
are fast, viable options for modelling the behaviour of an EFT-based theory.

6.3 Conclusions

With this thesis, two approaches have been implemented for accelerating the com-
putation of electronic transition rates in crystal direct detection experiments. The
use of both GPUs and ANNs for scientific purposes is relatively new, and has been
applied here for the purpose of advancing dark matter research.

55

6. Discussion and outlook

The ANN was able to learn the behaviour of the electronic transition rates as
a function of the DM mass and two EFT coupling strengths. This implementation
provided a speed-up of a factor of 600 compared to the program used prior to this
thesis. The ANN still makes prediction errors but could be well-suited for e.g. distin-
guishing transition rates corresponding to different sets of input parameters. With
further improvements, the ANN could become even more accurate and eventually
provide a very fast, highly accurate model for the electronic transition rates.

The GPU program proved to be a strong competitor to the ANN. It is about
16 times faster than the previous implementation for computing the electronic tran-
sition rates with the same accuracy as the previously used program. This means
that the GPU program is both fast and highly accurate, and there are several sug-
gestions in this thesis for how the GPU computations could be further accelerated.
Furthermore, the speed of the GPU program does not depend on the number of
non-zero EFT coupling strengths; the program developed in this thesis transfers all
28 coupling strengths to the GPU regardless of whether they are initialised to zero
or randomly generated. This means that the GPU program gives a speed-up of a
factor of 16 that computes the electronic transition states described by the whole
EFT. Thus, the GPU program is fully prepared to be used for parameter estimation
using direct detection experimental data.

56

Bibliography

[1] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: evidence, candidates
and constraints,” Physics Reports, vol. 405, no. 5-6, pp. 279–390, jan 2005.
[Online]. Available: https://doi.org/10.1016%2Fj.physrep.2004.08.031

[2] P. Côté, M. Mateo, E. W. Olszewski, and K. H. Cook, “Internal kinematics of
the andromeda ii dwarf spheroidal galaxy,” The Astrophysical Journal, vol. 526,
no. 1, p. 147, nov 1999. [Online]. Available: https://dx.doi.org/10.1086/307999

[3] F. Zwicky, “Republication of: The redshift of extragalactic nebulae,” General
Relativity and Gravitation, vol. 41, no. 1, pp. 207–224, Jan. 2009.

[4] W. Hu and S. Dodelson, “Cosmic microwave background anisotropies,” Annual
Review of Astronomy and Astrophysics, vol. 40, no. 1, pp. 171–216, sep
2002. [Online]. Available: https://doi.org/10.1146%2Fannurev.astro.40.060401.
093926

[5] G. Bertone and D. Hooper, “History of dark matter,” Reviews of
Modern Physics, vol. 90, no. 4, oct 2018. [Online]. Available: https:
//doi.org/10.1103%2Frevmodphys.90.045002

[6] T. M. Undagoitia and L. Rauch, “Dark matter direct-detection experiments,”
Journal of Physics G: Nuclear and Particle Physics, vol. 43, no. 1, p. 013001,
dec 2015. [Online]. Available: https://doi.org/10.1088%2F0954-3899%2F43%
2F1%2F013001

[7] CERN. (2023) High luminosity lhc project. [Online]. Available: https:
//hilumilhc.web.cern.ch/

[8] R. Catena, T. Emken, M. Matas, N. A. Spaldin, and E. Urdshals,
“Crystal responses to general dark matter-electron interactions,” Physical
Review Research, vol. 3, no. 3, aug 2021. [Online]. Available: https:
//doi.org/10.1103%2Fphysrevresearch.3.033149

[9] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, “The
effective field theory of dark matter direct detection,” Journal of Cosmology
and Astroparticle Physics, vol. 2013, no. 02, pp. 004–004, feb 2013. [Online].
Available: https://doi.org/10.1088%2F1475-7516%2F2013%2F02%2F004

[10] R. Catena, T. Emken, N. A. Spaldin, and W. Tarantino, “Atomic responses
to general dark matter-electron interactions,” Physical Review Research,

57

https://doi.org/10.1016%2Fj.physrep.2004.08.031
https://dx.doi.org/10.1086/307999
https://doi.org/10.1146%2Fannurev.astro.40.060401.093926
https://doi.org/10.1146%2Fannurev.astro.40.060401.093926
https://doi.org/10.1103%2Frevmodphys.90.045002
https://doi.org/10.1103%2Frevmodphys.90.045002
https://doi.org/10.1088%2F0954-3899%2F43%2F1%2F013001
https://doi.org/10.1088%2F0954-3899%2F43%2F1%2F013001
https://hilumilhc.web.cern.ch/
https://hilumilhc.web.cern.ch/
https://doi.org/10.1103%2Fphysrevresearch.3.033149
https://doi.org/10.1103%2Fphysrevresearch.3.033149
https://doi.org/10.1088%2F1475-7516%2F2013%2F02%2F004

Bibliography

vol. 2, no. 3, aug 2020. [Online]. Available: https://doi.org/10.1103%
2Fphysrevresearch.2.033195

[11] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory.
Boulder, CO: Westview, 1995.

[12] R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, and T.-T. Yu,
“Direct detection of sub-gev dark matter with semiconductor targets,” 2015.
[Online]. Available: https://arxiv.org/abs/1509.01598

[13] F. Mandl and G. Shaw, Quantum field theory, 2nd ed. Hoboken, N.J: Wiley,
2010, oCLC: ocn460050759.

[14] J. J. Sakurai and J. Napolitano, Modern quantum mechanics, 3rd ed. Cam-
bridge: Cambridge University Press, 2021.

[15] J. Fan, M. Reece, and L.-T. Wang, “Non-relativistic effective theory of
dark matter direct detection,” Journal of Cosmology and Astroparticle
Physics, vol. 2010, no. 11, pp. 042–042, nov 2010. [Online]. Available:
https://doi.org/10.1088%2F1475-7516%2F2010%2F11%2F042

[16] P. Hofmann, Solid state physics: An introduction, 2nd ed. Weinheim, Germany:
Wiley-VCH, 2015.

[17] G. B. Folland, Fourier analysis and its applications. Rhode Island, USA:
American Mathematical Society, 2009.

[18] L. Råde and B. Westergren, Mathematics handbook for science and engineering,
5th ed. Lund, Sweden: Studentlitteratur, 2004.

[19] C. R. H. et al, “Array programming with NumPy,” Nature, vol.
585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available: https:
//doi.org/10.1038/s41586-020-2649-2

[20] IBM. (2010) Compiled versus interpreted languages. [On-
line]. Available: https://www.ibm.com/docs/en/zos-basic-skills?topic=
zos-compiled-versus-interpreted-languages

[21] I. Turner-Trauring. (2023) Massive memory overhead: Numbers in python
and how numpy helps. [Online]. Available: https://pythonspeed.com/articles/
python-integers-memory/

[22] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2833157.2833162

[23] T. M. G. of Michigan State University. (2017) Numba versus c++. [Online].
Available: https://murillogroupmsu.com/numba-versus-c/

58

https://doi.org/10.1103%2Fphysrevresearch.2.033195
https://doi.org/10.1103%2Fphysrevresearch.2.033195
https://arxiv.org/abs/1509.01598
https://doi.org/10.1088%2F1475-7516%2F2010%2F11%2F042
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-compiled-versus-interpreted-languages
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-compiled-versus-interpreted-languages
https://pythonspeed.com/articles/python-integers-memory/
https://pythonspeed.com/articles/python-integers-memory/
https://doi.org/10.1145/2833157.2833162
https://murillogroupmsu.com/numba-versus-c/

Bibliography

[24] G. GCC. (2023) Options that control optimization. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

[25] I. Evgueny Khartchenko. (2023) Vectorization: A key tool
to improve performance on modern cpus. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html

[26] Nvidia, CUDA C++ Programming Guide, 2021, https://docs.nvidia.com/
cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf.

[27] K. Group. (2023) Opencl. [Online]. Available: https://www.khronos.org/
opencl/

[28] H. O. et al, “Snabba beräkningar av elastisk proton-neutronspridning med
en grafikprocessor,” 2021. [Online]. Available: https://odr.chalmers.se/items/
bdeec4ba-81f1-47d5-b22d-ca34ffc08d49

[29] B. Mehlig, Machine learning with neural networks: An introduction for scien-
tists and engineers, 1st ed. Cambridge ; New York, NY: Cambridge University
Press, 2022.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[31] Scikit-learn. (2023) Standardscaler class definition. [On-
line]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html

[32] F. e. a. Pedregosa, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] Scikit-learn. (2023) Quantilestransformer class definition. [On-
line]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.html

[34] ——. (2023) Preprocessing data with a non-linear transformation. [On-
line]. Available: https://scikit-learn.org/stable/modules/preprocessing.html#
preprocessing-transformer

[35] ——. (2023) Data splitting function definition. [Online]. Avail-
able: https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.train_test_split.html

[36] Keras. (2023) Keras: A tensorflow api. [Online]. Available: https://keras.io/

[37] ——. (2023) Keras sequential slass. [Online]. Available: https://keras.io/api/
models/sequential/

59

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.intel.com/content/www/us/en/developer/articles/technical/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://www.intel.com/content/www/us/en/developer/articles/technical/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html
https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://odr.chalmers.se/items/bdeec4ba-81f1-47d5-b22d-ca34ffc08d49
https://odr.chalmers.se/items/bdeec4ba-81f1-47d5-b22d-ca34ffc08d49
http://www.deeplearningbook.org
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-transformer
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-transformer
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://keras.io/
https://keras.io/api/models/sequential/
https://keras.io/api/models/sequential/

Bibliography

60

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Background
	Aim and outline of the thesis

	Theoretical description of electronic transition rates
	The general transition rate
	The scattering matrix
	The general transition rate
	Expansion in the electron momentum-to-mass ratio
	Expansion with effective field theory

	The electronic transition rate in crystals
	Crystal wave function formalism
	Rewriting the scattering amplitude
	The total electronic transition rate in crystals
	The dark matter and crystal response functions
	Electron-hole pair formalism

	Parallelising the computations
	The data generation program
	From Python to C++
	The GPU program
	Parallelisation principles
	The electronic transition rates with GPUs

	Developing the artificial neural network
	The theory of artificial neural networks
	The neural network layout
	Training the neural network
	Preprocessing the data
	Preventing overfitting

	Implementing the neural network
	Electronic transition rates as a neural network problem
	Preprocessing
	The layout of the neural network

	Results and discussion of the implementations
	The neural network with m_X as input
	The loss function
	The behaviour of the neural network model
	The accuracy of the neural network

	The neural network with m_X, c7s and c7l as inputs
	The behaviour of the model in the three-input case
	The accuracy of the predictions

	Summary and comparison of improvements

	Discussion and outlook
	Improving the results
	The performance of the GPU program
	The performance of the neural network

	Expanding the project
	Conclusions

	Bibliography

