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Abstract
Developing new variants by cloning is fast and simple, but as the drawbacks outweigh
the early benefits, the clones must be re-engineered into an integrated platform. The
challenging re-engineering process is hindered by the lack of effective tool support,
because variant integration is an architectural concern, and contemporary merge
tools being used for the task operate on source code as plain text. In this thesis,
the recently proposed process of intention-based variant integration is evaluated
on the subject systems Marlin, BusyBox and Vim. We replay actual integration
merges using the intentions language to verify that it can be used in a real setting,
followed by a controlled experiment comparing the efficiency of integration in the
prototype tool INCLINE and an unstructured two-way merge tool. The results
show that the intentions can capture the changes in the 35 sampled integration
merges. The controlled experiment shows that for intention-based integration, fewer
edit operations are required, but more actual time, and no difference can be observed
for the number of defects inserted. This lays the foundation for tool improvement
and subsequent user studies of intention-based integration in software product lines.

Keywords: software product lines, variability, clone management, re-engineering,
software merging, controlled experiment, empirical software engineering.
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1
Introduction

Highly configurable software systems stem from the need of adapting software to fit
different hardware or to meet specific customer demands. Such software systems can
be developed in two orthogonal strategies: clone-and-own, and integrated platform.
Clone-and-own is a quick and simple approach to create new variants of software,
by cloning the entire source code of a project and making the required small-scale
changes. The integrated platform approach instead offers systematic reuse, but
requires significant engineering effort to adopt, which is costly. When the number
of clones in a clone-and-own setting spirals out of control, the cloned variants must
be re-engineered into a single integrated platform from which the variants can be
derived. By adopting an integrated platform, maintainability can be increased and
duplication of effort reduced [1], [2].
Legacy systems using clone-and-own are abundant. Since rewriting them is not
a viable option in industrial settings, re-engineering them from clone-and-own to
an integrated platform is required at some point. This re-engineering process of
variant integration, is typically performed using revision control systems and diff
tools, meaning that practitioners undertake the task similarly to the task of soft-
ware merging. The developer performing the merge must manually handle both the
variability and potential conflicts on a source code level [3], [4], while features are
in fact an architectural concern. This mismatch of abstraction levels means that
feature integration is a complex task, and performing it manually is time-consuming
and error-prone [5]. Understanding the patterns of such conflict resolution and vari-
ability management, and abstracting it away from the source code, considering the
intentions of the developer, allows for development of variability-aware integration
tools.
This thesis evaluates a prototype variability-aware variant integration tool, called
INCLINE, based on a novel domain specific language for specifying the integra-
tion goal in terms of so-called intentions. The domain specific language is validated
based on data obtained from mining the open-source 3D-printer firmware Marlin.
Based on this, the tool prototype is extended and refined. Using a controlled exper-
iment, the prototype tool is evaluated comparing it to an unstructured two-way diff
tool, using variant integration tasks sampled from the UNIX utilities distribution
BusyBox and the text editor Vim.
The following research questions are investigated:
Q1 Completeness: Does the set of intentions suffice for variant integration? We

perform this verification step in order to assert that the intentions language
can be instantiated to capture actual witnessed merges from real scenarios.
This seeks to establish the completeness of the language.
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1. Introduction

Q2 Efficiency: Is there a benefit over manual integration with a diff tool? Our
goal is that time effort, required edit operations, and code quality can be
improved by a workflow incorporating the intention-based integration tool,
which we summarize as the overall beneficence of the tool.
We conjecture that a workflow with INCLINE is more efficient than a manual
workflow.

Q3 Qualitative differences: How is the integration process different using the
intention-based integration tool? This is an investigation into the perceived
and evident qualitative differences of the two integration approaches.

To answer the research questions, we first mine highly configurable open source
systems for variant integration merges, and analyze them to show that the inten-
tions are capable expressing the witnessed merges, meaning that they are complete
(Q1). We then perform a controlled experiment using students, measuring their
editing efficiency and defects introduced when integrating variants in Eclipse CDT
and INCLINE (Q2). The qualitative differences between unstructured integration
and intention-based integration are elicited from participants in the controlled ex-
periment using questionnaires and screen recordings (Q3).
This thesis contributes:

• a dataset of variability-related merges from Marlin,
• data from a preliminary internal tool evaluation with three participants,
• empirical data on the variant integration using our prototype intention-based

variant integration tool with 16 student participants, and
• a qualitative investigation into the differences between intention-based and

manual variant integration
The thesis is structured as follows: Chapter 2 outlines the background and rationale
of variant integration. The methodology for data collection and experiments is
presented in Chapter 3. Chapter 4 contains the results from the data collection of
variant integration examples. The results of the empirical evaluation is reported in
Chapter 5. Chapter 6 contains a discussion on inferences and validity threats to the
study. Chapter 7 concludes with an outlook on future work.
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2
Background

This chapter introduces revision control systems, followed by feature-oriented soft-
ware development and software product line engineering concepts and challenges.
After that, an introduction to projectional editing is given. The chapter concludes
with a description of the intention language for variant integration, and the proto-
type variant integration tool using the language.

2.1 Revision Control Systems
A revision control system is used to manage the revisions and variants of a software
system as it evolves over time. Revisions represent the state of the source code at a
particular point in time, and are used as the basis for subsequent revisions. As such,
revisions can evolve or develop in isolation or in interaction with other revisions, and
any revision might have several different subrevisions. The operation of combining
functionality from diverging revisions, by combining their changesets into a new
revision, is known as merging. A recurring problem is that whenever incompatible
concurrent divergent changes have occurred, a merge conflict arises, meaning that
the system cannot infer which changes to apply because both are equally valid [3],
[4], [6]. In order to resolve this conflict, the task is delegated to the user.
Revision control systems can be divided into two classes: unstructured revision con-
trol systems that operate on plain text; and structured revision control systems that
rely on structure and semantics of the document being stored in order to leverage
this knowledge for merge conflict resolution [3], [4]. The former has reached popu-
larity due to being language independent; examples of such revision control systems
include Git, Subversion, and CVS, while structured revision control systems are
mainly of academic interest, since they are not language independent [4]. Apel et
al. [4] introduce the concept of a semistructured revision control system, and in par-
ticular the semistructured merge, which combines the strengths of the two classes,
while minimizing their inherent weaknesses.

2.1.1 Merging
Since separate development tasks are carried out in parallel by different developers
concurrently, contemporary revision control systems are optimistic, meaning that
each developer can work on their own personal copy of a particular artifact [3]. In
practice, this means that two different developers can change the same file at the
same time. Merging is the process that occurs whenever parallel changes to the
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2. Background

same file are reconciled to a new revision, combining the changes. In cases where
the merging algorithm cannot infer how to apply the parallel changes because they
conflict, the resolution task is delegated to the user. Contemporary revision control
systems use three-way merging, which minimizes the number of conflicts that must
be delegated, because evolution can be inferred [3]. The name three-way merge
comes from its input of three revisions: the two revisions of the software artifact to
be merged; and their common ancestor revision [3]. A two-way merge takes only
the two revisions to be merged as input, meaning that all differences between the
two artifacts must be reconciled manually by the user – none can be inferred.

2.1.2 Forks

Historically, the term forking had a negative connotation, signifying a community
schism or split causing subsequent independent divergent development efforts [2].
Today, forking (creating a fork, a clone or duplicate of an entire project) is an
integral part of open-source software communities [7], [2]. Forking is an explicit
part of modern social revision control platforms, such as Github or Bitbucket [8].
Making forks a first-class citizen enables traceability and facilitates forking as a part
of a pull-based development model [2]. In this model, changes are propagated across
the ecosystem dynamically, using pull requests [7], [8], [2]. In projects that employ
a pull-based development model, any individual can create a fork and apply their
desired changes, locally and decentralized. To spread their changes, possibly back
into the mainline, they submit a pull request, indicating to the mainline developers
that they should consider pulling and integrating the fork, should the quality be
sufficient. During the lifetime of the pull request, it is possible that evolution occurs
on the mainline – it is then up to the requester to maintain their changes compatible
with the evolved mainline.

2.2 Features and Variability

This section explains the complicated relationship between variants, features, and
variability.

2.2.1 FOSD and SPLE

Feature-Oriented Software Development (FOSD) is a paradigm for constructing
large-scale software systems [9]. In FOSD, features are first-class citizens of the
implementation of a software system [9]. As such, a highly configurable system is
composed of a set of enabled features, which constitute the resulting system. A Soft-
ware Product Line (SPL) is the set of software systems that can be derived from a
set of features. Both FOSD and Software Product Line Engineering (SPLE) enable
systematic reuse of components [9], [10], meaning that they alleviate the negative
aspects of clone-and-own by consolidating features.
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2. Background

2.2.2 What is a Feature?
The definition of what a feature is can be viewed from the problem space or the
solution space, as defined by Czarnecki and Eisenecker [11], where the problem space
contains domain-specific abstractions that describe the requirements and intended
behavior of a software system, and the solution space contains implementation-
oriented abstractions defining how those requirements are met and the behavior is
implemented [9]. There is a mapping from the problem space onto the solution
space. From the problem space viewpoint, a feature is defined as “a prominent
or distinctive user-visible aspect, quality, or characteristic of a software system or
systems” [12], whereas from the solution space, a feature is defined as “a structure
that extends and modifies the structure of a given program in order to satisfy a
stakeholder’s requirement, to implement and encapsulate a design decision, and to
offer a configuration option” [13]. The common denominator of both types is that
a feature is always a logical unit of a system, delineated from other parts of it.
Numerous additional definitions of feature in the literature on the spectrum from
problem space to solution space are reported in [9] and [14].
These theoretical definitions are complemented by contemporary industrial notions
on what constitutes a feature in a recent empirical study by Berger et al. [14].
This study shows that the meaning of a feature also varies among companies, but
underlines that features should be distinct and well-delineated units of the system.
Additionally, in practitioner settings, the origins of features are closely related to the
business of the company; features can be customer-specific changes to a product, or
arise from a particular market demand [14].

2.2.3 Software Variants and Variability
Variants of a software are created to fulfill different requirements in similar products
[10], [2]. Conceptually, the source code is altered in some way, to achieve different
behavior. From a feature-oriented perspective, one or more features can be grouped
inside a variant, and in FOSD and SPLE, any product is defined in terms of the
features it is composed of [9]. The fastest way to create a variant of a software system
is to copy the entire source code and make the required changes. This strategy is
known as clone-and-own, where small-scale changes are made to a large-scale copy
in order to create a new variant [2].
Orthogonal to variability through clones stands integrated variability. By centraliz-
ing all variant code in one common repository, distinct variants are instead derived by
composing features. In the source code, this is realized by language-level constructs
guarding the feature code, meaning that behavior can be enabled or disabled at
compile-time (C preprocessor #ifdef statement) or runtime (regular if-statements,
design patterns). The inclusion of a particular feature into a variant is dictated by
an associated boolean presence condition, enabling or disabling code based on the
selected feature configuration. This also enables the possibility to compose variants
with arbitrary features, as opposed to clone-and-own, which requires one cloned
project for each variant.
There is a tradeoff between time effort and maintainability with respect to the two
variability strategies. Clone-and-own has low initial costs, but does not scale due
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2. Background

to the inherent impact on the maintainability of a large number of clones, since
each new variant requires a new clone [10]. An integrated platform, on the other
hand, requires significant up-front commitment and investment into architecture
and infrastructure enabling systematic reuse [10].
In the context of software ecosystems, a common manifestation of variants is forks,
which are repository-scale clones of an original codebase, called the mainline. For
forked variants, the variability lies in an array of repository clones with minor
changes in them, altering the desired behavior. Using pull requests, the features
within forks can be propagated across the ecosystem, integrated or adapted by oth-
ers or become part of the mainline [2], using a pull-based development model [7].
The open-source 3D-printer firmware project Marlin uses both forks (clone-and-
own) and integrated variability (features using #ifdefs) in parallel [2], meaning
that it can be used to study features originating in forks (cloned variants), being
integrated into the mainline with variability.

2.2.4 Platform Re-engineering
A recent mapping study on the topic of re-engineering legacy applications into SPLs
by Assunção et al. identifies 119 publications in the field [15]. Most of these fo-
cus on variant detection and analysis to facilitate feature identification and feature
location within systems, which is a prerequisite for moving from clone-and-own to
an integrated platform. Antkiewicz et al. [10] propose a strategy for migration
from clone-and-own with low-risk, step-by-step adaption of an integrated platform
through what they call virtual platform.
Using the terminology of Buckley et al. [6], cloned variants represent divergent
changes being developed asynchronously in parallel [3], [2]. Integrating forked vari-
ants back into an integrated mainline platform (analogue to migrating from clone-
and-own to integrated platform) has the advantages of increased maintainability;
features and bug-fixes being consolidated; and reducing unintentional code dupli-
cations [1], [2]. Since forks are inherently decentralized with respect to both or-
ganization and actual code base, knowledge and effort can be lost if they are not
circulated back into the ecosystem [2], [8]. Currently, the process of integrating
variants is based on manual unstructured merging, relying fully on the developer to
create a semantically correct merge [3], [4]. An open-source proxy for this is merging
forks back into the mainline in a pull-based development model [7], since the pull
requests come from large scale-clones with small-scale changes.

2.3 Projectional Editing
Projectional editors differ from traditional parser-based editors in what is edited,
and how. A traditional editor operates on a text buffer, that is eventually parsed
by a compiler, given that it contains well-formed syntax. A projectional editor, on
the other hand, operates directly on an abstract syntax tree (AST), meaning that
it does not have to be parsed [16]. The benefit is that only legal tokens can be
entered into a projectional editor – it is impossible to achieve syntax errors, but
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2. Background

the disadvantage is that navigation and manipulation of the AST structure can be
unintuitive.
When editing variational software, comprehension can be increased by viewing the
source code of a subset of features, and filter out the source code of other features
[17]. In source code with annotated features (e.g., C preprocessor), issues with
alignment arise because the hidden code still impacts the indentation hierarchy [18].
In a projectional editor, the rows can be placed with correct alignment, because
there, the indentation is semantic rather than syntactic.
However, the usability of projectional editors has long been questioned. Berger et al.
[19] have previously conducted a controlled experiment using students and industrial
developers, to determine their editing efficiency in the projectional editor Jetbrains
MPS, compared to a traditional parser-based editor. The participants are given four
simple programming tasks to complete by editing a provided program, transforming
it into a solution. They find that with training, projectional text editing is in fact
more efficient than parser-based text editing.

2.4 Intention-based Variant Integration
Today, a developer performing a feature-related merge in a revision control system
must make ad hoc decisions on the final result, with respect to presence condi-
tions over source code [17]. This means that the concern of the developer is at
the source-code level, dealing with fundamental language constructs defining the
presence conditions of particular code blocks. We note that feature integration is
a concern on the architectural level, while the merge is performed line-by-line on
the source-code level. The mismatch between the architectural concern and the
abstraction level on which it is carried out ensures that the integration (or merge)
process is time consuming and has a high risk of introducing defects. Because of
the mental overhead involved in considering multiple variants and their control flow,
variability-related code is more defect-prone. Previous studies show that variability
is detrimental for program comprehension [5], [20], [21], [22], [23], [24].
We propose to address the mismatch of abstraction levels by introducing a domain
specific language (DSL) capturing the semantics of the feature integration. In par-
ticular, the language describes the outcome that the developer wants to achieve.
Examples include “keep this functionality” or “remove this functionality”. We sub-
sequently refer to these concepts simply as the intentions of the developer. Each
intention carries a mapping to actual operations that are performed on the source
code. The semantics of the intentions language ensures the integrity of the under-
lying code upon which operations are applied to. This intentions language is the
basis for creating a tool to aid the integration process structurally [3], [4]. With
proper tool support, the integration process can become more efficient from time
consumption, risk, and quality perspectives. Indeed, tool support has shown to
reduce variability errors in previous studies [25].
The intentions and their underlying transformations can be described using choice
calculus, a formal notation for variational software, independent of programming
language [26], [27]. In the implementation, this can be realized as conditional com-
pilation (C preprocessor) or design patterns that support variability (object-oriented
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Variant : Mainline
# ifdef ULTIPANEL

uint8_t lastEncoderBits ;
uint32_t encoderPosition ;
#if PIN_EXISTS(SD_DETECT)

uint8_t lcd_sd_status;
#endif

# endif

menu_t cM = lcd_status_scrn ;
bool ignore_click = false;

Variant : Fork
# ifdef ULTIPANEL

uint8_t lastEncoderBits ;
int8_t encoderDiff;

uint32_t encoderPosition ;
#if (SDCARDDETECT > 0)

bool lcd_oldcardstatus;
#endif

# endif

menu_t cM = lcd_status_scrn ;

Variations inlined :
# ifdef ULTIPANEL

uint8_t lastEncoderBits ;
#ifdef FORK

int8_t encoderDiff ;
#endif
uint32_t encoderPosition ;
#ifdef FORK

#if SDCARDDETECT > 0
bool lcd_oldcardstatus ;

#endif
#else

#if PIN_EXISTS ( SD_DETECT )
uint8_t lcd_sd_status ;

#endif
#endif

# endif

menu_t cM = lcd_status_scrn ;
# ifndef FORK

bool ignore_click = false ;
# endif

Figure 2.1: Upper row: variant sources with differences highlighted. Lower row:
inlined variational AST of the same variants in INCLINE, with presence condition
FORK. Example adapted from [28].

languages). Intentions could also be mapped to the source-code operations identified
by Stanciulescu et al. in [17].
Gousios et al. point out that an important improvement for the merging process is
tool support in terms of work prioritization and estimated time for merging [8]. Tool
support for proper variant-aware integration is also a prerequisite for the capability
of migrating cloned product lines to an integrated platform through the virtual
platform approach [10].
The work on the intentions language and the prototype tool INCLINE, built on
top of Jetbrains MPS, has been carried out jointly between Max Lillack, S, tefan
Stănciulescu, Wilhelm Hedman, Thorsten Berger, and Andrzej Wąsowski, and is
described in [28]. The intentions language is designed as a DSL for variant integra-
tion, the key concept of which is intentions. Intentions are inplace transformations
on a variational AST. The complete formal definition of the intentions language is
given in [28]. A recapitulation with visual examples of the intentions and the effect
of their associated AST transformation is given in Appendix A. In INCLINE, the
two variants being integrated are inlined into a single variational AST, with the
differences between them wrapped in the presence condition FORK. An example is
shown in Figure 2.1. Subsequently, this inlined notation is used.
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3
Methodology

This chapter describes the data collection of merge samples and the empirical eval-
uation of the intentions language and intention-based variant integration tool IN-
CLINE.

3.1 Data Collection
We choose Marlin as our initial source of merge examples, because previous work
has identified important concepts in the Marlin ecosystem that we build upon,
and because of access to the authors of [2], [17]. Two methods for collecting data
from open-source ecosystems have been used: one for gathering a ground truth
for how variant integration is achieved through merging, and one for procuring
smaller scale authentic integration candidate scenarios. We denote the output of
the former method merge examples and the output of the latter method integration
scenarios. The merge examples are used for understanding the context and execution
of the variant-integrating merge. They can also be replayed for validation, since
they represent the ground truth outcome of the two merge parents. As such, the
merge examples serve as an important validation tool. However, since the merge
examples are extracted from a three-way merging tool, they are disadvantageous
for replaying in INCLINE, since three-way information is not available in that
environment. To this end, we use the integration scenarios, which are free from
three-way contamination, but are instead taken out of their context and are scaled
down. They are now described in detail.

3.1.1 Collecting Ground Truth Merge Examples
To identify and validate the integration intentions we analyze variant-related merges
and extract common patterns. We begin by retrieving all merges and discard those
that merged without conflicts. Merge instances with conflicts signify a syntactic
conflict which is an indicator of potential feature integration. In order to investigate
further, for each of these merges, we save the state of the entire source tree at the
following revisions: a) after the merge, i.e. the result, b) in the first parent, i.e. the
head, and c) in the second parent, the merge head. We call this triple of source trees
the related artifacts of the merge, the relationship between its parts is shown in Fig-
ure 3.1. Retaining and inspecting the source trees of the parents allows for insights
to be gathered, and in particular the ability to replay the merge in order to reach the
known result. Note that the search space, the entire set of merges encompasses all
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3. Methodology

merges, that is, merges that occurred in a fork but were subsequently merged into
the mainline are also included. We do not use the --first-parent option to Git,
which would discard such further merges residing in recursive parents, and instead
use only the first parent when finding merges. The merges that are included by this
broader search scope originate either from ordinary feature merging or from pull
requests where the branch of the requester is out of date.
When the related artifacts from each merge have been collected, we inspect them
and discard merges with any of the following properties: a) all conflicts occurred
in non-source-code artifacts, b) at least one artifact cannot be compiled, c) there
are only whitespace changes between the merge parents, or d) contain some project-
specific uninteresting changes (see Section 4.1 for examples of what uninteresting
entails in practice).

m Result

p1 Headp2Merge head

Merge base

Related artifacts

tim
e

Figure 3.1: Merge commit context. The merge commit m has two parents, p1 and
p2. The entire state of the source tree is gathered, in these three commits. These
source sets are denoted result, head, and merge head. This triple of source tree sets
constitute the related artifacts of the commit m.

3.1.2 Creating Authentic Integration Scenarios

Since the merge examples discussed in the previous section would be replayed with-
out three-way information, and are potentially very large, it is desirable to have a
neutral and concentrated basis for task creation, referred to as integration scenarios.
The contents of integration scenarios are based on variant integration examples from
the ecosystem (mainline and forks), with the diff chunks consolidated so that there
is not an abundance of code with no changes. Additionally, changes may originate
from several different source files, and can have syntax and semantics changed. The
structure of the source chunks, and the conflict resolution ground truth is left in-
tact. Since these scenarios are to be used in experiments, the goal is that the result
should encompass ca. 50 LOC, as to minimize navigation overhead in the file for
the experiment participants.

10



3. Methodology

3.2 Completeness Evaluation

To verify the completeness of the intentions language, we replay all the identified
integration commits, and apply intentions to resolve them. The criterion for a
successful replay is that the result of the created intention-based resolution is se-
mantically identical (with respect to the C preprocessor) to the ground truth merge
resolution. As input to the completeness evaluation, we use the variability-related
merge examples from Marlin, which are guaranteed to have well-formed syntax.
The completeness evaluation is limited to examples from Marlin, but achieves
generality because of the sampling across source-files and forks. This theoretical
sampling of merges is employed, as it is impossible to ensure that the evaluated set
is representative of the set of all variant integrating merges. The objective is to
answer the first research question:
Q1 Does the set of intentions suffice for variant integration?

3.3 Internal Evaluation

As a prestudy for the controlled experiment, we perform an internal evaluation with
the three tool developers, exploring how tooling and tasks should be set up for the
experiment. There are two types of tasks: to replaymerge examples, and to integrate
actual forks with the mainline. The characteristics of these tasks are shown in Table
3.1. All metrics relate to the inlined model of the programs [28] (cf. Figure 2.1).
Integrated LOC signifies the LOC of the source code with inlined variants. Chunks
is the number of variation blocks from the variants. Variable LOC (VLOC) is LOC
count of lines under a presence condition containing the literal FORK – i.e. the LOC
count inside the chunks in the inlined model – in particular, these are the lines that
must be manipulated by the participants. The merge tasks are chosen from the set
of merge examples in Marlin, and the forks are chosen based on the findings of
Stănciulescu et al. [2]. It does not matter whether they are still actively maintained
or not, because we set the task at the HEAD of the fork, and then compare with the
latest common ancestor commit #ancestor between fork and mainline, and devise
a resolution strategy for the task.
Each developer performs 3-4 tasks, at least one of each kind. Each task consists of a
number of input files from the two variants being integrated, together with a textual
description of what the integration goal is. The integration task is performed once
in the unstructured two-way merge tool of Eclipse CDT and once in INCLINE.
The number of edit operations required per task in each editor is saved for analysis,
as is the resulting output file. In INCLINE, the edit operations are counted once
for applying an intention, and for undoing an intention, regardless of the number
of nodes selected. In Eclipse, the edit operations are counted once per completed
action of insertion, cloning, deletion, and undoing (cf. Berger et al. [19]). The
output files are compared to the ground truth, and checked for defects introduced.
Syntactic differences are allowed, so long as the content is similar semantically with
respect to the C preprocessor.

11
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Table 3.1: Internal evaluation task characteristics.

Name Type Files Integ. LOC #chunks VLOC
08856d9 Merge 1 1029 16 312
17de96a Merge 1 929 33 392
2daa859 Merge 2 4019 152 1107
3116271 Merge 1 146 6 51
373f3ec Merge 1 2663 106 749
46f80e8 Merge 1 130 2 2
47c1ea7 Merge 1 3400 242 2391
esenapaj Fork 3 14909 196 754
jcrocholl Fork 1 4803 40 364
STM32 Fork 3 7670 159 966

3.4 Controlled Experiment

This sections describes the experimental design and setup, together with the inte-
gration scenarios from BusyBox and Vim, that are the subject programs in the
experiment. Before the experiment, we elicit the background of the participants
through a questionnaire containing Likert-scale questions about how familiar they
are with certain programming languages and merging techniques and tools. The
questions are listed in Appendix C.

3.4.1 Objective
To establish the beneficence of an intention-based integration strategy in general,
and INCLINE in particular over two-way merging in Eclipse CDT, we evaluate the
tool using subject programs from other sources than Marlin, since Marlin was
used to elicit the set of intentions. The purpose of the controlled experiment is to
answer the following two research questions. Additionally, we formulate hypotheses
related to Q2:
Q2 Is there a benefit over manual integration with a diff tool?

H1 Integration in INCLINE is faster than in Eclipse CDT.
H2 Integration in INCLINE requires fewer edit operations than in Eclipse

CDT.
H3 Integration in INCLINE does not lead to more defects than in Eclipse

CDT.
Q3 How is the integration process different using the intention-based integration

tool?
To answer these questions, we let participants integrate variants using two different
tools, while controlling the confounding factors of developer competence and learn-
ing. We measure completion time, required edit operations, and defects inserted,
and aggregate this as the benefit of a tool. The exploratory question of the differ-
ences between processes of intention-based integration over two-way merging has no
hypotheses.
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3.4.2 Treatments
In order to study the beneficence of intention-based integration, we let each par-
ticipant solve one task using the ordinary unstructured two-way merge tool inside
Eclipse CDT, and one task using INCLINE. The two treatment levels are thus
Eclipse CDT, denoted Ecl and INCLINE, denoted INC.

3.4.3 Subjects
Participants. The experiment is performed with N = 16 participants: 15 graduate
students, and one Ph.D. student. All participants had programming experience,
and more than half had more than one year of industrial experience. Regarding
integration, all participants were familiar with the Git version control system, and
were familiar with ordinary software merging.
Programs. Using the process for collecting authentic variant integration scenarios,
we prepare two sample programs to be used in the experiment: P1, based on Busy-
Box, and P2, based on Vim. These two programs are created as condensed versions
of the changeset of a particular fork variant, for brevity and comprehension during
the experiment. This should be understood as selecting the most suited changes
across the files, and placing them in a single file, in order to not waste valuable time
for the participants on long blocks without any changes, as to keep the programs
brief. Table 3.2 lists the characteristics of the subject programs, using the same met-
rics as in the prestudy described in Section 3.3. Integrated LOC is the line count
after the variants have been inlined, Chunks is the number of variability blocks, and
Variable LOC (VLOC) is the LOC count within the chunks.
We choose BusyBox and Vim as representative subjects because they are highly-
configurable open source systems, and have been subjects in previous studies [29],
[30], [31], [32].

Table 3.2: Characteristics of the programs P1 and P2.

Prg Origin Integ. LOC #chunks VLOC
P1 BusyBox 74 8 37
P2 Vim 50 5 32

3.4.4 Design
The experiment is a 2×2 within-subjects counterbalanced Latin square design [33].
Each developer performs two tasks with the treatment order and program order
randomized in order to reduce learning effects. Table 3.3 shows the base Latin
square. Since developers are assigned at random, no further permutation of the
treatments in the 2×2 Latin square is required, since the two other possible com-
binations would be redundant with respect to program order and treatment. The
benefit of a within-subject design is the reduced number of required subjects par-
ticipating in the experiment and the fact that every subject is exposed to every
treatment and program. This however comes at the cost of carryover effects, in this
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3. Methodology

case particularly learning effects. We therefore employ a counterbalanced design,
where the order of the tasks is randomized.

Table 3.3: Latin square instance (2×2).

INC Ecl

Ecl INCD1

D2

P1 P2
programs

de
ve
lo
pe
rs

3.4.5 Execution
Before the participants are given their tasks, we present a simple tutorial on integra-
tion and variability, and demonstrate how to solve a sample task in each editor. All
of tutorials were prerecorded to ensure that all participants receive the same intro-
duction, regardless of which session they attend. Before solving the INCLINE task,
the participants are given a warmup task to understand navigation in a projectional
editor, and the application of intentions inside the editor. A cheat sheet with exam-
ples of intentions is also provided. An instance of a task sheet is shown in Appendix
B.
During the tasks, the screens of the participants are recorded, which allows measure-
ment of the task completion time. Using the same measurements as in the prestudy,
described in Section 3.3, both treatment tools are instrumented to output logs with
information about keystrokes and menu usage, thereby measuring the required edit
operations. Last, the resulting integrated source files created by the participants are
collected, to measure the number of defects.
After the experiment, participants fill in a questionnaire with closed and open ques-
tions about their perceptions of INCLINE and intention-based integration com-
pared to two-way unstructured integration in Eclipse CDT. The qualitative answers
are categorized using open coding [34]. The questions are listed in Appendix C.

3.4.6 Analysis
The Mann-Whitney U-test is used to test the significance of differences between
the treatment groups. Cliff’s delta is used to calculate the effect size, particularly
because it does not require normality.
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4
A Dataset of Integration Examples

This chapter reports on the data collection from Marlin, demonstrates replayed in-
tegrations using intentions, and reports the completeness of the intentions language.

4.1 Variability-related Merges from Marlin

In Marlin, we retrieve all 2065 merges, and extract those that were merged with
conflicts, yielding 49 merges. We discard 2 merges that had conflicts only in non-
source-code files (documentation), 2 that conflicted due to whitespace changes, 3
that conflicted due to configuration changes1. Another 3 merges are discarded be-
cause some related artifact had syntax errors and could not be compiled. Addi-
tionally, 4 merges are discarded because they simply accept the mainline changes
as evolution, i.e. empty changeset, and are therefore uninteresting. This is sum-
marized in Table 4.1. The remaining 35 merge commits are used for subsequent
analysis of integration scenarios and a subset are used for replaying in our internal
tool evaluation.

Table 4.1: Marlin merge commit statistics

Commit range: 99653ff..2ed1331
Nbr. of commits 7,254
↪→ Nbr. of merge commits 2,065

↪→ Nbr. of conflict merge commits 49
Documentation conflicts –2
Whitespace changes only –2
Configuration changes –3
Syntax errors –3
Evolution – no merge –4

↪→ Nbr. of useful/relevant merge commits 35

1While configuration management is indeed an important part of FOSD, in these cases, the
developers have mistakenly committed their personal 3D-printer configurations into a configuration
template file while committing other relevant changes, cf. Stanciulescu et al. [2].
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4.2 Replaying Merges with Intentions
This section demonstrates the replaying of selected chunks from Marlin. We
present examples of differences from both evolution and features being reconciled.
Refer to Appendix A for the recapitulation on the intentions DSL.
Figure 4.1 shows how a change from the mainline is accepted as evolution. Figure
4.2 shows how a change from the mainline is discarded as evolution. The snippet in
Figure 4.3 accepts a change from the fork as a feature. In Figure 4.4, two mutually
exclusive changes from the mainline and fork are integrated as a feature. Last, we
show the composition of intentions in Figure 4.5.

# include " watchdog .h"
# ifndef FORK

#include "language.h"
# endif
# include " Sd2PinMap .h"

# include " watchdog .h"
# include " language .h"
# include " Sd2PinMap .h"

Figure 4.1: Keep intention applied (left) to replay a change from 47c1ea7
::temperature.cpp, ground truth and outcome (right).

# ifndef FORK
unsigned long ms = millis();

# endif
if ( temp_meas_ready == true ) {

[...]
}

if ( temp_meas_ready == true ) {
[...]

}

Figure 4.2: Remove intention applied (left) to replay a change from 47c1ea7
::temperature.cpp, ground truth and outcome (right).

# ifdef FORK
static float delta[3] = 0.0, 0.0, 0.0;

# endif
static float offset [3] = {0.0 , 0.0 , 0.0};

# ifdef DELTA
static float delta [3] = {0.0 , 0.0 , 0.0};

# endif
static float offset [3] = {0.0 , 0.0 , 0.0};

Figure 4.3: KeepAsFeature(DELTA) intention applied (left) to replay a change
from 373f3ec::Marlin_main.cpp, ground truth and outcome (right).

4.3 RQ1: Does the set of intentions suffice for
variant integration?

The intentions language can be used to replay all 35 variability-related merges in
the Marlin mainline. From these, certain chunks were listed above to illustrate
the use of intentions in real scenarios.
RQ1. The proposed set of intentions indeed suffice for variant integration.
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# ifndef FORK
if ([...]) {

plan_buffer_line ([...]);
}

# else
float difference [ NUM_AXIS ];
for ( int8_t i=0; i < NUM_AXIS ; i++) {

difference [i] = destination [i] -
current_position [i];

}
# endif

# ifndef DELTA
if ([...]) {

plan_buffer_line ([...]);
}

# else
float difference [ NUM_AXIS ];
for ( int8_t i=0; i < NUM_AXIS ; i++) {

difference [i] = destination [i] -
current_position [i];

}
# endif

Figure 4.4: AssignFeature(DELTA) intention applied (left) to replay a change from
373f3ec::Marlin_main.cpp, ground truth and outcome (right).

# ifndef FORK
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);

# else
SERIAL_ECHOLN("PID Autotune start");

# endif

SERIAL_ECHOLN ( MSG_PID_AUTOTUNE_START );

Figure 4.5: Keep and Remove intentions applied (left) to replay a change from
47c1ea7::temperature.cpp, ground truth and outcome (right).
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5
Empirical Evaluation

This chapter contains the results from the internal evaluation prestudy of IN-
CLINE, and the results of the controlled experiment, along with the quantitative
data from the experiment and post-experiment questionnaire. The results are tied to
the the research questions about beneficience of INCLINE and differences between
the intention-based and manual integration processes.

5.1 Internal Evaluation
The results from the internal evaluation are shown in Table 5.1. We report the
number of defects introduced by the developer in the integration in both tools, and
the number of required editing operations for both tools.

Table 5.1: Internal evaluation results.

Name Defects Ecl Defects INC Operations Ecl Operations INC
08856d9 0 0 4 1
17de96a 1 2 13 5
2daa859 2 5 14 5
3116271 1 1 15 5
373f3ec 4 3 35 7
46f80e8 1 0 0 1
47c1ea7 1 1 5 4
esenapaj 5 2 271 185
jcrocholl 0 2 116 44
STM32 1 5 93 122

Note that substantially fewer operations are required when using intentions, com-
pared to the operations required when using an ordinary merge tool, and that there
is no particular difference in number of defects between editors. However, the larger
tasks consume up to an hour of time to finish, because of the large number of
changes, and because the integration goal has to be interpreted. We also note that
without being onboarded in projectional editing and INCLINE, the participants
will not be able to perform even the most rudimentary operations.
Based on these experiences, we draw three conclusions that are incorporated into
the experiment design for the controlled experiment: the integration goal should be
provided verbatim, rather than being described in abstract terms, cf. [19]; the tasks
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5. Empirical Evaluation

must be smaller so that they can be performed in a reasonable time for participants;
and, subjects will require training in INCLINE.

5.2 Controlled Experiment
This section first reports the quantitative data from the metrics and statistical
tests from the controlled experiment, followed by quantitative data from the post-
experiment questionnaire. We recorded more than 8 hours of screen recordings, and
collected questionnaire responses from all 16 participants.

5.2.1 Editing Efficiency
Figure 5.1 shows the distributions of the completion times, with Table 5.2 showing
the average completion times, the significance tests, and effect sizes. In analogue to
this, the distributions of the edit operations is shown in Figure 5.2, and the average
edit operations, significance tests, and effect sizes shown in Table 5.3.
For completion times, the Mann-Whitney U-test shows a significant difference across
both subject programs, with large effect sizes. We thus find no support for H1: Inte-
gration in INCLINE is faster than in Eclipse CDT, in fact observing the opposite.
For edit operations, INCLINE requries fewer median operations, but only the
BusyBox task shows a significant difference, while no significant difference can be
observed for Vim. There is thus support for H2: Integration in INCLINE requires
fewer edit operations than in Eclipse CDT.
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Figure 5.1: Task completion times in seconds. (Violin plot, dot denoting median.)

5.2.2 Defects
The number of completetely defect-free integrations is reported per program and
editor in Figure 5.3, corresponding to the zero bin in the histogram of number

20
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Table 5.2: Average completion times, significance tests, and effect sizes.

Prg INC Ecl Significance Effect size
BusyBox 711 433 Mann-Whitney: W = 7, p = .007 Cliff’s delta: d = 0.78
Vim 733 302 Mann-Whitney: W = 7, p = .001 Cliff’s delta: d = 1
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Figure 5.2: Required edit operations.

of defects of Figure 5.4. For defects, we do not provide any statistical tests for
significant difference between the two treatments, because of the many zero samples.
Instead, we provide a graph of errors per participant in Figure 5.5. In it, we note
that participants E, F, and L have committed multiple mistakes, with both editors.
The defects are categorized in Table 5.4. In Eclipse, most defects are related to
presence conditions, while in INCLINE, overdeletion and overlooking variability
are the most common sources of defects. From the Figures 5.4 and 5.5, we infer
that INCLINE does not perform worse than Eclipse CDT with respect to inserted
defects, supporting H3: Integration in INCLINE does not lead to more defects than
in Eclipse CDT.
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Figure 5.3: Number of completely correct integrations.
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Table 5.3: Average edit operations, significance tests, and effect sizes.

Prg INC Ecl Significance Effect size
BusyBox 15 43 Mann-Whitney: W = 0, p = .001 Cliff’s delta: d = −1
Vim 17 23 Mann-Whitney: W = 23, p = .37 Cliff’s delta: d = −0.28
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Figure 5.4: Histogram of count of defects introduced.

5.2.3 Post-experiment Opinions

The quantitative results from post-experiment questionnaire with opinions of the
benefit of INCLINE is shown in Figure 5.6. INCLINE is perceived as faster and
as facilitating the detection and correction of defects introduced in the integration.
Intention-based integration is not viewed as complex, and all intentions are perceived
as intuitive.

5.3 RQ2: Is there a benefit over manual integra-
tion with a diff tool?

Recall that the overall benefit is the aggregate of completion time, the edit operations
required, and the defects inserted. For both tasks, there is a significant difference
with respect to actual completion time, with high effect sizes. There is however a
significant difference in the required number of edit operations for one task, with a
large effect size, while for the other task it is lower, but not significantly so. There is
no comparable difference in the number of defects inserted between the two editors,
and INCLINE does not perform worse in that respect.
RQ2. Intention-based variant integration is beneficial with respect to edit opera-
tions, comparable in number of defects, but worse in total time, compared to manual
integration with a two-way diff tool.
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Figure 5.5: Defects per participant.

Table 5.4: Defects by category.

INCLINE Eclipse CDT
Overdeleted chunk 5 Incorrect presence condition 4
Variability not handled 3 Inverted presence condition 2
Incorrect variant accepted 1 Overdeleted chunk 1
Non-removed chunk 1 Non-removed chunk 1

Illegal syntax 1

5.4 RQ3: How is the integration process different
using the intention-based integration tool?

This section identifies differences among INCLINE and Eclipse CDT, by analyzing
the open questions of the post-experiment questionnaire, screen recordings, and
quantitative data from the experiment. From these, three major themes emerged:
editing, intentions semantics, and integration support.

5.4.1 Editing
INCLINE does not allow manual text insertion, instead relying fully on the inten-
tions to transform the AST. Participants do not see this as a limitation, instead
commending it as making the integration less-error prone (eg., “easier [to] avoid
[...] bugs [...] and subtle differences” [r3], and “harder to make syntatic mistakes”
[r11]).
A repeated criticism (or encouragement) is to create keyboard shortcuts for inten-
tions in INCLINE, to increase the editing speed.
RQ3. The lack of free-text editing in INCLINE is not seen as a drawback.

5.4.2 Intentions Semantics
There is a noticeable tendency among participants to overselect, selecting an entire
#ifdef-structure, rather than the nodes inside them when applying intentions. Note
that this is related to the semantics of the intentions, as opposed to editing.
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Figure 5.6: Post-experiment questionnaire opinions. Refer to Appendix C for the
full questions.

Since the intentions are applied in a particular order, certain combinations of inten-
tions will cancel out the effect completely, which leads to confusion: (eg., “hard to
grasp how multiple conflicting intentions are prioritized” [r3]). A recurring pattern
is that developers apply both the Keep and KeepAsFeature intentions on nodes,
without any result, as the Keep intention is an identity of the KeepAsFeature in-
tention.
Overall, the perceived drawback of using INCLINE is the learning curve of the
intentions semantics over the well-known paradigm of free-text editing (eg., “Involves
a learning curve that copy and paste does not.” [r14]). Compare also proficiency in
free-text editing contra structured projectional editing to Berger et al. [19].
RQ3. Integration with intentions requires knowledge of the semantics. No similar
knowledge is required in an unstructured editor.

5.4.3 Integration Support
Variant integration is given explicit concern in INCLINE. The perceived benefits
noted are: a) that the developer has a concrete list of all variation points that need to
be integrated, and can be sure that all have been handled (eg., “you wont forget part
of the integration” [r16], and “It offers a nice way to work through the variabilities
while making it hard to make any stupid mistakes.” [r8]), b) that the views and
preview help to understand the integration (eg., “It gives a better overview and it
is easier to know where the differences are.” [r7], and “the preview [...] and the
projections [are] hugely helpful” [r11]).
Participants conjecture that INCLINE is more beneficial than two-way merging
in files larger than those in the tasks (eg., “Incline for longer periods of time and
on larger projects. Manual for shorter statements.” [r9], and “If it was a large
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scale project I would feel more comfortable with INCLINE.” [r6]). Indeed, for future
variant integration tasks, 12 respondents would prefer to use INCLINE.
RQ3. A systematic integration approach is enabled by the fact that all variability
is explicit in INCLINE, aided by the preview and projection views. None of this is
available in an unstructured editor.
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6
Discussion

This chapter provides selected inferences from the results, and reports on the validity
threats to the completness evaluation and controlled experiment.

6.1 Inferences
Editing efficiency. Interestingly, no participant identifies the projectional editing
node selection as a disadvantage of INCLINE, and no participant struggles with
it. This is in line with the findings of Berger et al. [19], showing that users are
proficient inside a projectional editor after a short training session.
Completion times for tasks are categorically in favor of Eclipse CDT. Since a re-
search prototype cannot compete with the user interface design capacities of a large
project such as Eclipse, we argue that the required edit operations is a more inter-
esting metric for comparison. However, all variability is made explicit in INCLINE,
meaning that actions such removing a chunk requires an explicit editing operation,
whereas in an unstructured editor, it incurs no additional edit operation – since
no action must be undertaken on the particular chunk at all. The two approaches
are therefore not analogous in causes of editing operations. However, with larger
samples, these differences should even out. To be sure, with better interface design,
the completion times in INCLINE should decrease compared to Eclipse CDT.
Defects. Even though the experiment is inconclusive with respect to statistics
regarding defects, integration in INCLINE is viewed as less error-prone among
the participants (cf. Figure 5.6). It is interesting that the participants are prefer
support and find the structured approach favorable, rather than going in blind into
an unstructured tool. Tools aside, there is also the aspect of the subject, and as
seen in Figure 5.5, three subjects introduce defects in both tools. For INCLINE,
the defects related to overlooked variability (cf. Table 5.4) can easily be reduced to
zero by forcing the developer to handle each variation point. Overall, the defects
produced in the controlled experiment might not be representative of real integration
defects, since the participants have a clear integration goal.
Benefit of intention-based approach. Recall the internal evaluation performed
by the three developers of INCLINE, who must be said to be experts on the tool and
its usage. For those, substantially larger tasks, fewer edit operations were required
in INCLINE than in Eclipse CDT. Additionally, the opinions of the experiment
participants, who were not experts, are pointing towards a perceived benefit in IN-
CLINE, with respondents conjecturing that the intention-based approach is more
effective than the unstructured approach on larger files in realistic settings. To move
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away from conjectures, and further investigate the benefit of intention-based variant
integration, the next step should be a user study replicating the controlled experi-
ment, using subject developers that are familiar with the tool and SPL engineering.
In the post-experiment questionnaire, the learning curve of INCLINE is a recur-
rently listed disadvantage, but in the same questionnaire the intentions are being
judged as intuitive (Figure 5.6). It therefore seems that the learning curve is quite
short. None the less, participants in subsequent studies should be properly trained
on the intentions formalization and the usage of INCLINE.

6.2 Threats to Validity

This section reports on the threats to validity in the study. No validity threats are
reported for the internal evaluation, as it has only been used to guide the experiment
design, and its results have not been used to answer the research questions. In
general, we recommend that replication studies should be carried out at a larger
scale, with practitioners.

6.2.1 Internal Validity

Required knowledge. Since no domain knowledge was required for conducting the
integration tasks, having no previous knowledge of the projects or domains is not a
disadvantage. No previous knowledge of the editors was required, as all participants
were shown the same introductory videos, explaining how to complete an example
task in the editor they would use.
Selection bias. The participants are randomly assigned to programs and treat-
ments in the Latin square, minimizing selection bias. Additionally, each participant
is exposed to both programs, and both treatments.
Carryover effects. Since two tasks are performed consecutively, it is possible
that carryover effects influence the outcome of the second task, in particular the
positive carryover effect of learning. To mitigate any carryover effects, we used a
counterbalanced design, where the order of the two tasks are randomized.
Social desirability bias. Students participating in the experiment may have been
overly positive in their post-experiment questionnaire responses, since they want to
encourage and commend the author. The possibility has however been decreased by
making the questionnaire completely anonymous.

6.2.2 Conclusion Validity

Carryover effects. A counterbalanced design is used to diminish carryover effects –
but, there could still be effects of asymmetric skill transfer occurring in such a design
– meaning that a particular order of tasks or treatments yield carryover effects, while
the other does not. This has not been taken into account in the statistical analysis.
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6.2.3 External Validity
Choice of subject programs. We chose Marlin, BusyBox, and Vim for the
subject programs because they are well-known, highly configurable systems, and
representative of industrial counterparts [32]. The completeness evaluation is made
using all N = 35 examples from Marlin, but could be expanded to other ecosys-
tems that have the same level of traceability for integration commits. There is no
indication that the Marlin project employs specific merge strategies for integration
commits, as such we argue that the intentions language is complete based on the
evaluation. In the controlled experiment, we choose one integration scenario from
BusyBox and Vim each, to expand from the Marlin-centric view.
Larger programs. In a real setting, files would naturally be larger than ca. 50
LOC, but since larger programs would take longer time to integrate, it would be
harder to attract participants to the experiment. As such, the controlled experiment
experiment is tailored towards internal validity, because of the tradeoff in experiment
design between internal and external validity [35]. For integrating files beyond 50
LOC, there could be a different relationship between the effects observed in the
controlled experiment.
Students as subjects. The participants in the controlled experiment were M.Sc.
and Ph.D. students from Chalmers University of Technology, more than half with
industrial experience. Previous studies have shown that graduate students can be
used as proxies for professional developers [36]. In addition, all participants were
familiar with integration techniques and tools.
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7
Conclusion

We presented an empirical evaluation of the novel variant integration language and
tool INCLINE, investigating the completeness of the language, and the beneficence
of the tool, measuring editing efficiency and error frequency in variant integration.
The completeness analysis is based on variant integration commits mined from the
open source 3D-printer software Marlin. The editing efficiency and error frequency
are evaluated using a controlled experiment with 16 students that perform variant
integration tasks using the unstructured two-way merging tool in Eclipse CDT and
INCLINE on subject programs derived from BusyBox and Vim. The controlled
experiment is designed to reduce learning effects and optimize for internal validity.
For completeness, all variant integration commits in Marlincan be replayed using
the intentions language. Our results show that INCLINE does not perform worse
than two-way merging in the number of defects introduced, but that fewer edit-
ing operations are required in INCLINE. However, it should receive an overhaul
with respect to usability, since the task completion time using it was much longer
compared to that of Eclipse CDT.
We are optimistic that this is a stepping stone towards proper variant integration tool
support that can be used in the re-engineering of software product lines (eg., virtual
plaform [10]). More in-depth studies of variant integration should be conducted, in
two directions: open-source, using the developers of Marlinor projects similar to
it, to elicit their insights in a pull-based setting; and professional developers working
with re-engineering clone-based product lines. With an improved user interface and
with developers comfortable with intention-based integration, INCLINE should
prove beneficial to the software product line re-engineering process with respect to
time, editing operations, and defects.
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A
Intention Language Examples

Adapted from the examples in [28]. The left hand side of the figures shows AST
projection with nodes with applied intentions highlighted . The right hand side of
the figures shows AST projection after application and transformation.

# ifndef FORK
int servo_e1[] = SE

int servo_e2[] = SEA
# else

int16_t servo_e1 = SE
int16_t servo_e2 = SEA

# endif

int servo_e1 [] = SE
int servo_e2 [] = SEA
# ifdef FORK

int16_t servo_e1 = SE
int16_t servo_e2 = SEA

# endif

Figure A.1: Keep intention (left) and result (right). Note condition rewriting.

# ifndef FORK
int servo_e1[] = SE

int servo_e2[] = SEA
# else

int16_t servo_e1 = SE
int16_t servo_e2 = SEA

# endif

# ifdef FORK
int16_t servo_e1 = SE
int16_t servo_e2 = SEA

# endif

Figure A.2: Remove intention (left) and result (right). Note condition rewriting.

# ifndef FORK
int servo_e1[] = SE

int servo_e2[] = SEA
# else

int16_t servo_e1 = SE

int16_t servo_e2[] = SEA
# endif

int servo_e1 [] = SE
int servo_e2 [] = SEA

Figure A.3: Keep intention with implicit Remove intention (left) and result
(right). Applying both intentions at once is user interface sugar offered in INCLINE,
and is not a part of the original intentions DSL.
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A. Intention Language Examples

# ifndef FORK
int servo_e1[] = SE

int servo_e2[] = SEA
# else

int16_t servo_e1 = SE

int16_t servo_e2[] = SEA
# endif

int servo_e1 [] = SE
int servo_e2 [] = SEA

Figure A.4: Remove intention with implicit Keep intention (left) and result
(right). Applying both intentions at once is user interface sugar offered in INCLINE,
and is not a part of the original intentions DSL.

# ifdef FORK
card.pauseSDPrint();
serial . writeln (" Aborted ");

# endif

# ifdef SDSUPPORT
card. pauseSDPrint ();

# endif
# ifdef FORK

serial . writeln (" Aborted ");
# endif

Figure A.5: KeepAsFeature intention applied with argument SDSUPPORT (left)
and result (right).

# ifdef FORK
card. pauseSDprint ();

# endif

# ifdef SDSUPPORT
card. pauseSDprint ();

# endif

Figure A.6: AssignFeature intention applied with argument SDSUPPORT (left) and
result (right).
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B
Controlled Experiment Tasks

A sample task sheet is given below, for participants in the group with Vim in
INC followed by BusyBox in Ecl, cf. Latin square of Figure 3.3.

Task: Startup 

1. Start recording the screen of the VM using the menu option View -> Video Capture. 
2. Log into the account you’ve been assigned with the same password as the 

username. 

 

  

Task INCLINE: Warmup 

Integration goal: 
 

#include ​"Marlin.h" 
#define ​VERSION_STRING ​"1.0.0" 
 

float ​current_position[NUM_AXIS] = { ​0.0​, ​0.0​, ​0.0​, ​0.0 ​}; 
#if ​defined(BARICUDA) 
int ​ValvePressure=​0​; 
int ​EtoPPressure=​0​; 
#endif 

 

static float ​destination[NUM_AXIS] = { ​0.0​, ​0.0​, ​0.0​, ​0.0 ​}; 
#if ​defined(DELTA) 
static float ​delta[​3​] = {​0.0​, ​0.0​, ​0.0​}; 
#endif 

 

void ​process_commands() { 
#if ​!defined(DELTA) 
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], 

current_position[Z_AXIS], current_position[E_AXIS]); 

#else 

calculate_delta(current_position); 

plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); 

#endif 

} 

 

#if ​defined(DELTA) 
void ​calculate_delta(​float ​cartesian[​3​]) { 
   delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) 

       - sq(DELTA_TOWER1_X-cartesian[X_AXIS]) 

       - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS]) 

       ) + cartesian[Z_AXIS]; 

   delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) 

       - sq(DELTA_TOWER2_X-cartesian[X_AXIS]) 

       - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS]) 

       ) + cartesian[Z_AXIS]; 

   delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD) 

       - sq(DELTA_TOWER3_X-cartesian[X_AXIS]) 

       - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS]) 

       ) + cartesian[Z_AXIS]; 

} 

#endif 

   
 

III



B. Controlled Experiment Tasks

Task: INCLINE 

You will now perform an integration in the INCLINE tool. Your task is to transform the 
provided code into the integration goal, provided below, using intentions. 
 

1. Launch MPS from the desktop. 
2. From the project structure on the left, find the Examples solution, open the 

integrated-*.c​ file. 
3. Arrange the views (​Ctrl+Alt+Shift+V​) and proceed with applying intentions to reach 

the integration goal (next page). 
4. When you are satisfied, save the file in ​~/results/incline.c​ using the menu 

“Tools -> Export C++ File”. 
 

 

  

Task INCLINE: Vim 

Integration goal: 
 

static char ​*(p_bg_values[]) = {​"light"​, ​"dark"​, NULL}; 
static char ​*(p_nf_values[]) = {​"bin"​, ​"octal"​, ​"hex"​, ​"alpha"​, NULL}; 
#if ​defined(FEAT_CMDL_COMPL) 
static char ​*(p_clcot_values[]) = {​"menu"​, ​"menuone"​, ​"longest"​, ​"noinsert"​, ​"noselect"​, 
NULL}; 

#endif ​/* defined(FEAT_CMDL_COMPL) */ 
static char ​*(p_ff_values[]) = {FF_UNIX, FF_DOS, FF_MAC, NULL}; 
 

options[] = 

#if ​defined(OS2) 
(char_u *)​"/c"​, 
#else 

(char_u *)​"-c"​, 
#endif ​/* defined(OS2) */ 
 

#if ​defined(FEAT_CMDL_COMPL) 
/* Don't allow recursive cmdline mode when busy with completion. */ 

if ​(clpum_compl_started || clpum_compl_busy || clpum_visible()) 
{ 

EMSG(_(e_secure)); 

return ​NULL; 
} 

clpum_compl_clear();    ​/* clear stuff for clpum */ 
#endif ​/* defined(FEAT_CMDL_COMPL) */ 
 

switch ​(c) { 
case ​K_UP: 
#if ​defined(FEAT_CMDL_COMPL) 
if ​(clpum_visible()) 
showmode(); 

#endif ​/* defined(FEAT_CMDL_COMPL) */ 
#if ​defined(FEAT_CMDHIST) 
i = hiscnt; 

#endif ​/* defined(FEAT_CMDHIST) */ 
beep_flush(); 

} 

 
  

Task: Eclipse 

You will now perform an integration task in Eclipse CDT. Your task is to merge the two 
variant files you are provided with into the integration goal, provided below. We will use 
RCPTT to record editing actions. 
 

1. Launch RCPTT from the desktop. 
2. The file called ​recording​ should already be open. 
3. On the bottom panel labeled Application, right click the item “​org.eclipse…​” and 

press Run. 
4. In the RCPTT instance, press the “Record” button. The RCPTT instance will 

minimize. 
5. Open the workspace folder ​task​, select the mainline and fork files in it. 
6. Right click and select “Compare With -> Each other”. 
7. A diff view is opened. The files can be swapped from left to right if they are on the 

opposite side of what you would prefer. 
8. The diff view is editable, so you may make any manual edits you like, as well as 

using the tools available in the diff view. Proceed with applying edits until you reach 
the integration goal (next page). 

9. When you are satisfied, save the resulting file in ​~/results/eclipse.c​. (It is not 
enough to just leave it in the workspace.) 

10. Stop recording your actions in the RCPTT window by pressing the red button. 
 

 

  

Task Eclipse: BusyBox 

Integration goal: 
 

    
#if​ defined(ANDROID) || defined(__ANDROID__) 
#define​ endgrent() ((​void​)0) 
struct​ timex; 
pid_t getsid(pid_t pid); 
int​ stime(​const​ time_t *t); 
int​ sethostname(​const​ ​char​ *name, size_t len); 
#ifdef​ READAHEAD 
int​ adjtimex(​struct​ timex *buf); 
int​ pivot_root(​const​ ​char​ *new_root, ​const​ ​char​ *put_old); 
ssize_t readahead(​int​ fd, off64_t offset, size_t count); 
#endif 
#endif 
 
#if​ ENABLE_SELINUX 
#include​ ​<selinux/selinux.h> 
#include​ ​<selinux/context.h> 
#ifdef​ FLASK 
#include​ ​<selinux/flask.h> 
#include​ ​<selinux/av_permissions.h> 
#endif 
#endif 
 
extern​ loff_t ​bb_copyfd_eof​(​int​ fd1, ​int​ fd2) FAST_FUNC; 
extern​ loff_t ​bb_copyfd_size​(​int​ fd1, ​int​ fd2, loff_t size) FAST_FUNC; 
extern​ ​void​ ​bb_copyfd_exact_size​(​int​ fd1, ​int​ fd2, loff_t size) FAST_FUNC; 
extern​ ​void​ ​complain_copyfd_and_die​(loff_t sz) NORETURN FAST_FUNC; 
 
#define​ OFF_T_MAX ( ( off_t ) ~ ( ( off_t ) 1 << ( ​sizeof​ ( off_t ) * 8 - 1 ) ) ) 
 
struct​ ​BUG_off_t_size_is_misdetected​ { 
char​ ​BUG_off_t_size_is_misdetected​[​sizeof​(off_t) == ​sizeof​(uoff_t) ? 1 : -1]; 
}; 
 
#ifdef​ BIN 
#define​ LIBBB_DEFAULT_LOGIN_SHELL ​"-/bin/​sh​" 
#else 
#define​ LIBBB_DEFAULT_LOGIN_SHELL ​"-/​sbin​/​sh​" 
#endif 
 
#ifndef​ _LARGEFILE64_SOURCE 
/* For lseek64 */ 
#define​ _LARGEFILE64_SOURCE 
#endif 
 
#ifdef​ BIN 
putenv((​char​ *) ​"SHELL=/bin/​sh​"​); 
#else 
putenv((​char​ *) ​"SHELL=/​sbin​/​sh​"​); 
#endif 

 
 

 
  

IV



C
Questionnaires

Question types annotated with prefix and color: Likert-scale , Open , Choice .

C.1 Registration Questionnaire

1. C How many years of programming experience do you have?
2. C How many years of professional programming experience do you have?
3. L How familiar are you with C and the C preprocessor?
4. L How familiar are you with Java?
5. L How familiar are you with merging?
6. L How familiar are you with diffing?
7. L How familiar are you with the UNIX patch tool?
8. L How familiar are you with pull requests?
9. C Which version control systems do you have experience with?
10. C Do you have previous experience with projectional editing?

C.2 Post-experiment Questionnaire

1. L Integration with INCLINE is faster than in Eclipse.
2. L I make fewer mistakes in INCLINE than in Eclipse.
3. L Mistakes are easier to notice in INCLINE than in Eclipse.
4. L Mistakes are easier to fix in INCLINE than in Eclipse.
5. L INCLINE is a mature tool.
6. L Intention-based integration is not complex.
7. L The Keep intention is intuitive.
8. L The Remove intention is intuitive.
9. L The Implicit Keep/Remove intentions are intuitive.
10. L The Keep as Feature intention is intuitive.
11. L The Assign Feature intention is intuitive.
12. O Which intentions did you find the most useful?
13. O What are the advantages of using intentions for variant integration com-

pared to manual integration with Eclipse?
14. O What are your perceived disadvantages of using intentions for variant in-

tegration compared to manual integration with Eclipse?
15. O Are there any possible improvements to intention-based integration or in

particular INCLINE?

V



C. Questionnaires

16. O How would you prefer to perform a variability-related integration?
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