
Detecting Jamming and Interference in
Airborne Radar Using Convolutional
Neural Networks
Master’s thesis in Complex Adaptive Systems

ERIK WALLIN

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis

Detecting Jamming and Interference in Airborne
Radar Using Convolutional Neural Networks

ERIK WALLIN

Department of Electrical Engineering
Signal processing research group

Chalmers University of Technology
Gothenburg, Sweden 2019

Detecting Jamming and Interference in Airborne Radar Using Convolutional Neural
Networks
ERIK WALLIN

© ERIK WALLIN, 2019.

Supervisors: Albert Nummelin and Dennis Sångberg, Saab Surveillance
Examiner: Thomas Rylander, Department of Electrical Engineering

Master’s Thesis
Department of Electrical Engineering
Signal processing research group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: DRFM jamming in a range-doppler map from an airborne radar.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Detecting Jamming and Interference in Airborne Radar Using Convolutional Neural
Networks
ERIK WALLIN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Dealing with different forms of radar jamming is a central challenge in air-to-air
combat. Jamming is a collection of techniques used for obstructing desired target-
detection in an enemy radar. This thesis studies the possibilites of detecting jam-
ming in radars by training a convolutional neural network with synthetic radar-data
generated by software. This particular convolutional neural network is designed
to classify range-doppler maps from airborne radars into four different classes: no
jamming, noise jamming, DRFM jamming, and interference. A suitable network
architecture and values for hyperparameters are found by iterative experimental
studies. The final classification accuracy on a test set is 96.75%. This achieved
accuracy suggests that convolutional neural-networks can be used to detect radar
jamming with good results.

Keywords: airborne radar, radar jamming, ECCM, DRFM, machine learning, con-
volutional neural networks.

v

Acknowledgements
I would like to thank my supervisors, Albert Nummelin and Dennis Sångberg, for
support and guidance throughout this thesis work. I would also like to thank my
examiner, Thomas Rylander, for valuable comments and feedback. Finally, I would
like to thank Magnus Enger and Saab Survaillance for giving me the opportunity to
write this thesis and to conduct my work at their facilities.

Erik Wallin, Gothenburg, July 2019

vii

Contents

List of Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Jamming in range-doppler maps . 1
1.3 Machine learning on radar data . 4
1.4 Ethical and societal aspects . 4
1.5 Aim . 4
1.6 Scope and limitations . 5
1.7 Thesis overview . 5

2 Airborne radar and electronic countermeasures 7
2.1 Fundamentals of the pulse-doppler radar 7

2.1.1 Pulse-repetition interval . 7
2.1.2 Windowing . 11
2.1.3 Pulse compression . 11
2.1.4 Processing signals into a range-doppler map 12
2.1.5 Radar cross-section . 15
2.1.6 Ground clutter . 15

2.2 Electronic countermeasures . 18
2.2.1 Noise jamming . 18
2.2.2 Digital radio frequency memory 20

2.2.2.1 False targets . 20
2.2.2.2 Reverse pulses and fast sweep 20
2.2.2.3 Pulse repetition . 23
2.2.2.4 Non-coherent pulse-repetition 24

2.3 Interference . 25
2.4 Electronic counter countermeasures 26

3 Neural networks 29
3.1 Machine learning and supervised learning 29

3.1.1 Model parameters and hyperparameters 29
3.1.2 Overfitting . 30

3.2 Basic elements of neural networks . 30
3.2.1 Activation function . 31

3.3 Convolutional neural networks . 32

ix

Contents

3.3.1 Convolutional layer . 32
3.3.2 Pooling layers . 34
3.3.3 Classification layer . 34
3.3.4 Architecture summary . 35

3.4 Setting the network parameters . 37
3.4.1 Loss function: categorical cross-entropy 37
3.4.2 Training using back propagation 38

3.4.2.1 Stochastic gradient descent 38
3.4.2.2 Adam optimizer . 39

3.5 Training data, validation data, and test data 40
3.6 Regularization in a convolutional neural network 41

3.6.1 Weight decay . 41
3.6.2 Monitoring validation loss . 42

3.7 Convolutional neural networks for radar data 42

4 Generating synthetic radar-data 45
4.1 Obtaining training data . 45
4.2 The amount of training data . 46
4.3 Simulation software . 46
4.4 Data classes and parameter selections 47

4.4.1 Class: No jamming . 49
4.4.2 Class: Interference . 50
4.4.3 Class: Digital radio frequency memory 50

4.4.3.1 False targets . 50
4.4.3.2 Reverse pulse . 51
4.4.3.3 Fast sweep . 51
4.4.3.4 Pulse repetition . 52
4.4.3.5 Partial pulse-repetition 52
4.4.3.6 Non-coherent pulse-repetition 52

4.4.4 Class: Noise jamming . 53
4.5 Using synthetic data to train convolutional neural networks 53

5 Model design 55
5.1 General considerations and method 55
5.2 Image resizing and normalizing . 56
5.3 Smoothing the validation loss . 57
5.4 Finding a set of layers . 58
5.5 Finding batch size . 63
5.6 Finding optimizer settings . 64
5.7 Final model . 66

6 Classification results 69
6.1 Final training-runs . 69
6.2 Performance on test set . 71
6.3 Analysis of classification errors . 71

7 Conclusion 75

x

Contents

7.1 Main findings and discussion . 75
7.2 Further work . 76

7.2.1 Transferring a network trained on synthetic data to real-world
data . 76

7.2.2 Analysis and improvements of computational times 77
7.2.3 Using additional input-parameters 77
7.2.4 Using complex data . 78
7.2.5 Finding jammed regions in the range-doppler map 78
7.2.6 Using time-dependent data . 78

Bibliography 79

xi

Contents

xii

List of Abbreviations

DRFM Digital radio frequency memory
CNN Convolutional neural network
PRI Pulse-repetition interval
PRF Pulse-repetition frequency
RCS Radar cross-section
ECM Electronic countermeasures
EW Electronic warfare
JNR Jamming-to-noise ratio
ECCM Electronic counter-countermeasures
ReLU Rectified linear unit
SGD Stochastic gradient-descent

xiii

List of Abbreviations

xiv

1
Introduction

This introduction initially provides some background and motivation for the work
conducted in this thesis. This is followed by sections on radar jamming and machine
learning to further explain the problem statement and why there is a demand for
the work in this thesis. The last sections provide limitations of this thesis and give
an overview of its different chapters.

1.1 Background

A central aspect of modern air-combat is the fight between radars on both sides.
Both detecting the enemy with the own radar, and remaining undetected in the
enemy radar are key aspects for success in air combat.
One way to obstruct the enemy from making valuable radar-measurements is to
employ radar jamming. Jamming is a collection of methods with the purpose of
injecting noise or false information into the enemy radar. In large-scale battles
there is also a risk of unintentional jamming between friendly aircraft in the form of
interference. Interference can happen when radars operate too close to each other
at the same radio frequency.
To counter jamming, the radar both needs to identify the presence of jamming and
what kind of jamming it is being exposed to. There are some traditional methods for
handling jamming but these are often limited to the most basic types of jamming. At
the same time, jamming methods are quickly becoming more advanced which creates
a demand for more developed and accurate methods to counter jamming [1].
The objective for this thesis is to investigate the possibilities of developing techniques
for countering radar jamming (including advanced jamming-techniques), using mod-
ern methods from the field of machine learning. The use of machine learning in radar
contexts has not been thoroughly studied but is considered by some radar experts
to have promising potential.

1.2 Jamming in range-doppler maps

An essential step of signal processing in radars is the construction of range-doppler
maps. These image-like maps show received signal strength with respect to range

1

1. Introduction

and range rate. A peak in a range-doppler map can indicate the presence of a target
at the given range and range rate. The signal strength is typically given in decibel.
An example of a range-doppler map which includes a target is given in figure 1.1.
This figure also presents the colorbar that is used throughout this thesis (but is not
shown in all subsequent figures).

Range rate

R
an

ge

Min

Max
Signal strength in dB

Figure 1.1: A typical range-doppler map. The sharp peak of signal strength in
the upper middle part of the range-doppler map indicates the presence of a target
at that given range and range rate. The vertical line at the right edge of the map is
ground clutter. The signal strength is given in dB as shown by the colorbar.

Jamming either masks targets in range-doppler maps or creates deceptive patterns
and targets that make it difficult to detect true targets. Target masking is generally
achieved through noise jamming and deceptive patterns or targets are achieved
through jamming with digital radio frequency memory (DRFM). An example of
noise jamming in a range-doppler map is shown in 1.2 and an example of DRFM
jamming can be seen in figure 1.3.
There exists traditional model-based methods used for detecting and countering
noise jamming, but it is difficult to create model-based methods to handle DRFM
jamming. It is however often possible for a trained radar-expert to identify DRFM
jamming by looking at the range-doppler map.

2

1. Introduction

Range rate

R
an

ge

Figure 1.2: Noise jamming in a range-doppler map. The radar receiver is jammed
by strong noise-signals that obstructs target detection.

Range rate

R
an

ge

Figure 1.3: DRFM jamming in a range-doppler map. The radar receiver is jammed
by deceptive signals that create false targets or misleading patterns in the range-
doppler map.

3

1. Introduction

1.3 Machine learning on radar data

Machine learning is the collective name for statistical methods that use a set of train-
ing data to create a model for making predictions on unseen data. Machine learning
has historically been successful in situations where it is unrealistic or impossible to
create explicit algorithms for automating tasks that traditionally are carried out by
humans. Some examples are natural-language processing, speech recognition, and
image analysis [2, 3, 4].

Classification of radar data is an example of a task that often is successfully accom-
plished by humans, but is difficult to automate with explicit instructions. This makes
the classification problem of radar data a good candidate for machine learning. In
particular methods designed for image-like data should be especially applicable to
this problem, knowing that radar data can be presented as image-like range-doppler
maps.

The current most popular and successful method for image classifications is convo-
lutional neural networks (CNNs) [5]. CNNs have also been used to classify vehicles
based on data from a frequency-modulated continuous-wave radar [6].

1.4 Ethical and societal aspects

Development of new technology is often accompanied by issues related to ethics
and sustainability. This thesis deals with defense technology: a field where these
matters are especially present. While defense technology is instrumental in ensuring
the safety of nations, it is also subject to the risk of being used incorrectly for the
wrong reasons. In order to minimize this risk, it is important to consider ethical
and societal implications while conducting studies in this field.

This thesis in particular is focused on technology related to surveillance and sur-
vivability for aircraft. Improving these qualities leads to greater capabilities for
accomplishing the main objective of defense technology: protecting nations against
acts of aggression. To prevent undesirable use of the results in this thesis, any clas-
sified data or information are excluded. Furthermore, any work building on this
thesis which might include classified data and information will follow strict regula-
tions with respect to security and export control.

1.5 Aim

The purpose of this thesis is to develop a model to identify and classify jamming in
radar data. The approach is to use machine learning based on convolutional neural
networks to build a categorical classifier. Such a classifier should make important
improvements to the possibilities of countering radar jamming.

4

1. Introduction

1.6 Scope and limitations

The work in this thesis is limited to processing of digital data generated by an
airborne radar. The thesis does not engage in any aspects of the hardware concerning
radars or analog signal-processing methods. The scope of this work is also limited
to processing of synthetic data, i.e. data generated by software.

1.7 Thesis overview

This thesis is composed of seven chapters. Following this introductory chapter
comes two theory-themed chapters: the first on airborne radars and the second
on machine learning with neural networks. These chapters provide the necessary
theoretical backgrounds for the reader to understand the methods and results of the
remaining chapters.
The fourth chapter describes the methods used for generating synthetic radar-data
with focus on parameter selections for different data classes. The fifth chapter deals
with the design of the machine-learning model: finding a good network architecture,
setting hyperparameters, and selecting an optimizer. The following sixth chapter
presents the classification results of the final model on a set of test data together with
some learning history. The final seventh chapter gives conclusions from the obtained
results and discusses possibilities of further work following this thesis.

5

1. Introduction

6

2
Airborne radar and electronic

countermeasures

This chapter provides an introduction to some radar concepts that are important
for this thesis. We begin by covering some radar fundamentals: properties of pulse-
doppler radars, ground clutter, and pulse compression. We then move on to describe
the concept of electronic countermeasures and a few methods in this field that are
central throughout the thesis. The last section explains interference in radars.
The discussions in this chapter are inspired by George W. Stimson’s Introduction to
Airborne Radar [1]. This book is recommended for further reading on the topics in
this chapter.

2.1 Fundamentals of the pulse-doppler radar

Combat aircraft are in general equipped with a radar system of pulse-doppler type in
order to detect enemies in air-to-air combat. The radar emits pulses of electromag-
netic signals at a certain carrier frequency. An aircraft that is hit by these signals
cause reflections that return to the radar receiver. By measuring these reflections,
enemy targets can be detected by the radar system.
The pulse-doppler technique allows for measurements of both the range and the
range rate of the target. The range to the target is determined by measuring the
time delay of the radar echo. The range rate of the target is determined by measuring
frequency shifts of echoes from a coherent train of pulses. Measurements of both
range and range rates makes it possible to differentiate between moving targets and
returns from the ground or other stationary objects.

2.1.1 Pulse-repetition interval

Each pulse train emitted by a pulse-doppler radar has a specified pulse rate. The
time between each pulse transmission is called the pulse-repetition interval (PRI).
The PRI is an important parameter which influences many characteristics of the
pulse-doppler radar.
A radar pulse travels with the speed of light. A reflected signal travels both to the
reflecting surface of the target, and back to the radar receiver. The round-trip time

7

2. Airborne radar and electronic countermeasures

for a reflected signal is thus
τ = 2r

c0
(2.1)

where r is the distance to the target and c0 is the speed of light. If however the
round-trip time for a reflected signal is larger than the PRI, it is difficult to say
whether the echo comes from the first pulse, or one of the subsequent pulses. The
maximum range for which we have unambiguous range measurements, ru, is thus
the maximum range for which the echo from one pulse reaches the receiver before
the next pulse is transmitted:

ru = c0TPRI

2 . (2.2)

Figure 2.1 gives a visualization of how range ambiguities arise in pulsed radars.

Time

T
ra
ns
m
it
te
d
pu

ls
es

PRI

R
ec
ei
ve
d
pu

ls
e

Round-trip time 1

Round-trip time 2

Round-trip time 3

Figure 2.1: If the range to the target is larger than the maximum unambiguous
range ru, it is difficult to determine which of the transmitted pulses is causing the
reflection. Here we see an example where the received echo can be a reflection from
three different transmitted pulses.

To measure the range rate of detected targets, the radar makes use of the doppler
effect. The doppler effect causes frequency shifts in the reflected signal if the relative
velocity between the radar and target is not zero. The shift in frequency of the echo
follows

∆f = −2ṙf
c0

, (2.3)

where ṙ is the rate of change of the distance between the radar and the target (a
positive ṙ means the target is moving away from the radar), f is the radar carrier-
frequency, and c0 is the speed of light.

8

2. Airborne radar and electronic countermeasures

In order to measure frequency shifts in the reflected signal, a Fourier transform is
applied to the train of pulse echoes. The Fourier transform converts the radar echoes
from the time domain to a frequency spectrum. A central property of the pulse-
doppler radar is the coherency of the emitted pulse train: the pulses have a constant
phase difference. This allows for the Fourier transform to be applied across the full
pulse train, making it possible to detect frequency shifts that otherwise would be
too small to measure in a single pulse.
The frequency spectrum obtained from the Fourier transform shows the frequency
content of the received signal. A peak in this spectrum indicates that the trans-
formed time signal contains a periodic component of the given frequency. The
spectrum obtained from a pulse-doppler radar has a peak corresponding to the fre-
quency shift caused by the velocity of the target aircraft, f + ∆f , but also peaks
shifted by multiples of the pulse repetition frequency (PRF, the inverse of the PRI).
These peaks are often referred to as sidelobes and have frequencies given by:

f + ∆f + nfPRF where n = ±1,±2,±3, (2.4)

These sidelobes are caused by the discontinuities in the pulse train, which add
frequency content to the signal that differs from the actual radio frequency. To avoid
unambiguous range-rate measurements caused by the sidelobes, the PRF needs to
be high enough so that the frequency sidelobes are placed outside of what is realistic
for the operating conditions.
Another parameter that turns out to be important for the properties of the frequency
spectrum is the number of pulses in the pulse train, N . The resolution of the
frequency spectrum is defined by the width of the frequency peaks. The null-to-null
width of the frequency peaks is

fpeak width = 2fPRF

N
. (2.5)

So in order to achieve high resolution range-rate measurements, N needs to be
high. The effects of the PRF and N on the frequency spectrum are summarized in
figure 2.2.
We can conclude that the choice of PRI is of great importance for both range
and velocity measurements. If we choose a low PRI the spectral sidelobes in the
frequency spectrum have high separation, but the maximum unambiguous range
measurement is low. If we instead choose a high PRI we can measure range at
greater distances, but the spectral sidelobes are close to the true frequency peak.
This causes ambiguities in the target range-rate measurement.
The choice of PRI is always a trade-off between accuracy in range measurements or
velocity measurements and air-to-air operation generally requires switching between
multiple PRI values to resolve ambiguities in range and range-rate measurements.
Choosing the number of pulses, N , for each PRI is thus a trade-off between resolution
in the frequency spectrum and how quickly we can resolve ambiguities.
A typical PRI for air-to-air combat is in the order of magnitude 100 µs and the
number of pulses for one PRI is typically a few hundred.

9

2. Airborne radar and electronic countermeasures

Frequency

PRF

2fPRF/N

Figure 2.2: The frequency spectrum obtained by Fourier transforming the radar
returns from a pulse-doppler radar. The spectrum has sidelobes at both sides of the
true frequency peak. These sidelobes are separated by the PRF. The null-to-null
bandwidth of the frequency peaks is 2fPRF/N and is what defines the resolution of
the frequency spectrum.

10

2. Airborne radar and electronic countermeasures

2.1.2 Windowing

One way to reduce sidelobes in the frequency spectrum is to apply windowing. This
is done by multiplying the radar signal with some window function before applying
the Fourier transform [7].
The window function is zero outside a specified interval and is typically “bell shaped”
with a maximum in the middle of this interval. If the input signal is N samples
long, it is common to make the window function non-zero for N samples. This way
the windowing can be applied to the entire input signal.
One common window function is the Gaussian window:

w(n) = exp
−1

2

(
n−N/2
σN/2

)2

for 0 ≤n ≤ N, zero elsewhere
σ ≤ 0.5,

(2.6)

where n is the sample number and σ is a scaling parameter. The Gaussian window
with σ = 0.4 is shown in figure 2.3.

0 N

0.2

0.4

0.6

0.8

1

Samples, n

A
m
pl
itu

de

Figure 2.3: A Gaussian window-function with σ = 0.4.

If we have a discrete input signal s(n), 0 ≤ n ≤ N , we multiply this element
wise with w(n) before applying the Fourier transform. This reduces the frequency
sidelobes that arise from Fourier transforming a finite time and discrete signal.

2.1.3 Pulse compression

The possibilities of detecting targets with a radar system are greatly related to the
signal strength of the target echoes. As a radar pulse propagates to the target and
back, its power is attenuated with a factor proportional to r−4. If the received
echo is too weak, we are not able to detect it in the presence of noise and ground

11

2. Airborne radar and electronic countermeasures

clutter. To achieve large detection ranges we must therefore use large transmission
powers.
There are two obvious ways to increase the power output of the radar. The first
way is to increase the duty factor (the ratio of the pulse length and PRI) by making
the pulse length longer. The second way is to increase the peak power of each pulse.
However increasing the pulse length leads to a lower resolution in range measure-
ments: the range resolution is approximately half of the pulse length. Increasing
the peak power to very high powers might also be practically impossible because of
the high demands it puts on the radar transmitter.
The way we keep high detection ranges combined with fine range resolution is instead
through pulse compression. Pulse compression is achieved through first applying
some form of encoding to the transmitted pulse. Received echoes are then passed
through a filter that compresses pulses that match the transmission encoding into
narrow pulses of high power. This way we can transmit longer pulses to achieve
high transmitted power and long detection ranges, without limiting the resolution of
range measurements. The concept of pulse compression is shown in figure 2.4.

Filter

Received pulse

Compressed pulse

Figure 2.4: An illustration of pulse compression. The radar echo is passed through
a filter in the receiver. If the echo matches the pulse-compression encoding, it is
compressed to a shorter pulse of higher peak power.

The most basic application of pulse compression is through linear frequency-modulation.
In linear frequency-modulation, the transmitted pulse has a linearly increasing or de-
creasing carrier frequency. The echoes that reach the radar are then passed through
a filter that introduces a delay proportional to the carrier frequency. This way the
beginning of the pulse is delayed longer than the end of the pulse and the pulse is
compressed into a shorter pulse of higher peak power. There also exists non-linear
pulse encodings that can be used for pulse compression.

2.1.4 Processing signals into a range-doppler map

To obtain meaningful information from the radar echoes, we need to process the
received signals into a useful format. An often instrumental part of this process-
ing is the construction of range-doppler maps. These maps show the strength of
the received echoes with respect to range and range rate in a readable form. In

12

2. Airborne radar and electronic countermeasures

actual airborne radar applications, the range-doppler maps are typically used as
input for some target-detection process. The target-detection process in turn out-
puts detection data that are presented to the radar operator. The construction of
range-doppler maps involves a combination of the techniques that are already briefly
covered in this chapter.
A pulse-doppler radar emits trains of pulses and listens for echoes between pulse
transmissions. Each pulse train has a specified number of pulses, N . This means
that each pulse train also hasN listening intervals. Every listening interval is divided
into discrete time steps. These discrete time steps can be directly translated to travel
distance of the radar pulses, and are thus often referred to as range gates. A typical
size of the range gates is around 100 m. The number of range gates, M , in each
listening interval depends on the radar PRI and pulse length.
The radar stores the received signal in each range gate as a complex number (after
applying pulse compression), whose real and imaginary parts represent two orthog-
onal components of the raw signal. These components are often referred to as
I/Q data. The radar stores the IQ values for all range gates in all listening intervals,
resulting in a M ×N -array of complex numbers. Each row of this array represents
one range gate, and each column represents one listening interval (or pulse). To
transform the columns of this array from the time domain to the velocity domain,
we apply the Fourier transform to every row (scaled by some window function).
The output of the Fourier transform is complex: the magnitude represents the signal
strength, and the argument represents the signal phase. Range-doppler maps of the
type included in this thesis show the magnitude of the complex Fourier spectrum.
Additionally, the magnitude is typically transformed into a decibel scale in order to
bring out features of the data in a large range of values. For example, the decibel
scale can allow a weak target echo to be visible in the presence of strong ground
clutter.
Figure 2.5 shows how an array of I/Q data is transformed to a range-doppler map
by applying the Fourier transform.

13

2. Airborne radar and electronic countermeasures

Pulses

R
an

ge
ga
te
s

Range rate

R
an

ge
ga
te
s

M
in

M
ax

Signal strength in dB

Fourier transform
applied on each row

Figure 2.5: The left panel shows the magnitude of the recorded I/Q data in all
range gates for every pulse of a pulse train. This particular example shows data
from a pulse train with 151 pulses and 105 range gates. The right panel shows the
result of applying the Fourier transform to every row of the data in the left panel.
The Fourier transform is applied on the complex data, not on the magnitude which
is shown in the figure. The Fourier transform translates the time dependent data
from each listening interval to the velocity domain. We see that a horizontal line
of strong radar returns in the left panel is transformed into a single peak with an
observable range rate in the right panel. Both panels use a decibel scale, as shown
by the colorbar.

14

2. Airborne radar and electronic countermeasures

2.1.5 Radar cross-section

The strength of target returns are determined by many factors. The power of the
radar emitter and the distance to the target are two important aspects that are
already mentioned. Another important factor is the radar cross-section (RCS) of
the target. This factor is usually expressed in m2 and is a measure of how visible
a target is to radars. A larger RCS means the target is more easily detected by
radars.
Many aspects of the target influence its RCS, some of these are:

• The geometric area of the target
• The geometric shape of the target
• The surface material of the target
• The radar wavelength

Airborne fighter-radars typically operate in the X band, which means using carrier
frequencies around 10 GHz. Typical RCS values for radars in the X band are 2-3 m2

for small fighter-planes and up to 100 m2 for cargo aircraft [8].

2.1.6 Ground clutter

The radar not only receives echoes from enemy targets, but also from the ground.
The echoes from the ground are often called ground clutter. Part of this clutter is
echoes from the direction in which the radar antenna is pointing, mainlobe clutter.
However all antennas also have sidelobes that receive returns from directions other
than the mainlobe direction. The sidelobes generally receive ground return from
large areas of the ground beneath the aircraft. The mainlobe and sidelobe clutters
are illustrated in figure 2.6. The sidelobe return from the ground directly beneath the
aircraft is called altitude return and is stronger than the other sidelobe clutter.

Radar main-beam direction

Mainlobe clutterSidelobe clutter

Figure 2.6: The radar receives undesired echoes from the ground. These returns
are often called ground clutter. Ground echoes from the mainlobe direction are
called mainlobe clutter. Clutter from other directions are sidelobe clutter.

The profile of the ground clutter depends on multiple factors: e.g. the antenna
direction, the altitude of the aircraft, the velocity of the aircraft, and the PRI of the
radar:

15

2. Airborne radar and electronic countermeasures

• The antenna direction impacts the strength and the doppler shift of the main-
lobe clutter. If the antenna is pointing up there might be no mainlobe clutter.
If the antenna is pointing toward the horizon, the mainlobe clutter covers a
wide span of ranges but has a concentrated doppler shift. If the antenna is
pointing down at a steep angle, the mainlobe clutter has a greater spread of
doppler shifts but is more concentrated in range.

• The altitude of the aircraft determines the strength of the altitude return.
• The velocity of the aircraft determines the doppler shifts of the clutter: the

ground is stationary so all doppler shifts of the ground clutter are due to the
velocity of the aircraft. The doppler shift of the ground echoes are determined
by the radial component of the relative velocity between the ground and the
aircraft.

• The PRI of the radar sets the span for unambiguous range and range-rate
measurements and thus determines how the ground that falls outside these
spans is interpreted by the radar.

Examples of ground clutter with different antenna directions are shown in figure 2.7,
2.8 and 2.9.

Range rate

R
an

ge

Figure 2.7: Ground clutter when the radar antenna is pointed at a slight
downward-angle. The clutter creates a blob that has some spread in both range
and range-rate.

16

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.8: Ground clutter when the radar antenna is pointed toward the horizon.
The clutter is concentrated to a narrow span of range rates but is spread across the
full span of ranges. This creates a vertical line in the range-doppler map.

Range rate

R
an

ge

Figure 2.9: A range-doppler map from a radar with the antenna pointed up toward
the sky. No strong returns from the ground are received.

17

2. Airborne radar and electronic countermeasures

2.2 Electronic countermeasures

Since radar operation is such an important element of air-to-air combat, it is natural
that that methods for preventing valuable radar measurements have emerged. The
purpose of these methods might be to prevent the own aircraft from being detected,
or to provide deceptive signals that in other ways confuse the enemy radar. The
collective name for these methods is electronic countermeasures (ECM) or simply
jamming. A system which implements ECM techniques is usually referred to as an
electronic warfare-system (EW system).

2.2.1 Noise jamming

One of the more simple ECM techniques is noise jamming. Noise jamming raises the
levels of background noise against which target echoes has to compete, which might
leave weak target-echoes undetected. The power levels of noise jamming is often
specified by a jamming-to-noise ratio (JNR) given in dB. This value is the ratio of
the signal strengths of the jamming noise and the background noise. A higher JNR
means higher jamming power.
The noise can be distributed uniformly both in the time and frequency domain. It
can be also be concentrated to a certain frequency band or certain time intervals.
Jamming with continuous white noise raises the background over the whole range-
doppler map. This type of jamming is effective and easy to implement, but the
transmitted energy from the EW system needs to be distributed over all frequencies
which limits the peak power, making target returns “burn through” the noise at a
longer range.
To raise the noise power-levels, the frequency of the transmitted noise can instead
be limited to a more narrow frequency band. We expect the target returns to lie in a
frequency band centered around the enemy radar carrier frequency, so to maximize
the power we can to limit the noise to these frequencies. This technique is called
spot noise jamming. The noise might still cover the entire range-doppler map of the
enemy radar but the noise levels are higher.
To further concentrate the noise power we can limit the noise to certain time in-
tervals, so that the noise covers a range span we expect the target to be in. This
technique is called range-bin masking.
Jamming with continuous noise is shown in figure 2.10 and jamming with range-bin
masking is shown in figure 2.11.

18

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.10: Noise jamming with continuous noise. The noise covers the whole
range-doppler map. The noise in this range-doppler map is not strong enough to
mask the ground clutter, but it likely covers weak target echoes.

Range rate

R
an

ge

Figure 2.11: Noise jamming with range-bin masking. To increase the noise levels,
the jamming is restricted to a limited range interval. The jamming can mask target
echoes within this range span.

19

2. Airborne radar and electronic countermeasures

2.2.2 Digital radio frequency memory

Digital radio frequency memory, or DRFM, is a jamming technique in which the
received pulse is recorded and stored digitally. The stored pulse can then be modified
with frequency shifts, modulations and time delays before it is transmitted back one
or multiple times to the enemy radar. DRFM can be used to create false targets
in the enemy radar, or to create deceptive patterns in radar data that confuse the
enemy’s signal-processing methods. Because of its digital elements, the DRFM
jammer is flexible and can be used in many ways. The DRFM techniques that are
used in this thesis are covered in the following sections.

2.2.2.1 False targets

A DRFM jammer can be used to create false targets in the enemy radar. To do this,
the EW system stores the received pulse and sends it back with some frequency shift
and time delay. This creates an echo that looks like the true target but is located
at a false location in the range-doppler map. This technique can be used to create
multiple false targets in the enemy radar, and it is common to add some gain to
the false targets to make them stronger than the true target. An example of false
targets in a range-doppler map is shown in figure 2.12.

Range rate

R
an

ge

Figure 2.12: DRFM jamming with false targets. The enemy EW system transmits
signals that look similar to true targets but at false ranges and range rates.

2.2.2.2 Reverse pulses and fast sweep

In addition to shifting the frequency and adding time delay, we can modify the
DRFM pulse in further ways. One example is to reverse the transmitted pulse in

20

2. Airborne radar and electronic countermeasures

time domain. This makes the pulse not match the filter for pulse compression when
it reaches the enemy radar receiver. So instead of appearing as a concentrated peak,
it is extended in range.
Another way to modify the pulse is through fast sweep. With this technique the
DRFM system speeds up the recorded pulse and repeats it an integer number of
times (the fast-sweep factor) in the same time as the recorded pulse length. This
technique is shown schematically in figure 2.13. Depending on the pulse compression
of the enemy radar-receiver, the fast-sweep pulse appears as some pattern in the
enemy radar-doppler map.

f
(t

)

t

Incoming pulse Pulse after fast sweep with factor 3

T

f
(t

)

t T

Figure 2.13: Schematic visualization of the fast-sweep technique. The incoming
pulse has length T . The pulse is then squeezed in time so that it can be repeated an
integer number of times during time T when it is transmitted by the EW system.
The number of times the pulse is repeated is called the fast-sweep factor. In the
figure the fast-sweep factor is 3.

Examples of DRFM jamming with reverse pulses and fast sweep in range-doppler
maps are shown in figure 2.14 and 2.15.

21

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.14: DRFM jamming with reverse pulses. The reverse pulses create false
targets that are stretched in range.

Range rate

R
an

ge

Figure 2.15: DRFM jamming with fast sweep. The fast-sweep pulses appear as
vertical patterns in the range-doppler map.

22

2. Airborne radar and electronic countermeasures

2.2.2.3 Pulse repetition

A more simple form of DRFM jamming is to simply record the received pulse and
repeat it a number of times with or without time delay. This creates a train of false
targets at the same doppler frequency as the true target but at different ranges. The
EW system can repeat the full pulse, which creates false targets that look similar
to the true target. It can also repeat a fraction of the recorded pulse, which creates
targets with some deformations because these pulses do not fully match the pulse
compression of the receiving radar.
Examples of how pulse repetitions look in range-doppler maps are shown in fig-
ure 2.16 and 2.17.

Range rate

R
an

ge

Figure 2.16: DRFM jamming with pulse repetition. Here, the full pulse is re-
peated, creating false targets at the same range rate as the true target. The false
targets are separated uniformly in range with a distance determined by the time
between transmitted jamming pulses.

23

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.17: DRFM jamming with pulse repetition. Only a fraction of the re-
ceived pulse is repeated by the EW system for this range-doppler map. The partial
pulses do not fully match the pulse compression of the radar, creating some range
distortions in the jamming.

2.2.2.4 Non-coherent pulse-repetition

Another simple form of DRFM jamming is a non-coherent pulse-repetition. In this
technique, an incoming pulse is recorded and repeated with some time delay. The
same pulse is then repeated with the same time delay after each of some speci-
fied number of subsequent pulses. After these repetitions, a new incoming pulse is
recorded and repeated in the same way as before with the same time delay.
Because the same pulse is reused multiple times, the DRFM pulses are not fully
coherent with the receiving radar. This creates a frequency shift in the DRFM
pulses relative the true target. The result is that this DRFM technique creates a
number of false targets with different frequency shifts, but with the same range
shift. An example of DRFM jamming with non-coherent pulse-repetition is shown
in figure 2.18.

24

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.18: DRFM jamming with non-coherent pulse-repetitions. The DRFM
pulses create a horizontal line of false targets. These targets have different frequency
shifts as a result of the non-coherency with the receiving radar. The range shift is
determined by the time delay of the jamming pulses.

2.3 Interference

Interference is phenomenon which can happen when two or more radars operate close
to each other at the same radio frequency. Pulses from one radar are received by
another radar and might clutter the range-doppler map. Interference is not strictly
jamming because it generally happens undesirably between friendly sources, but it
creates similar problems in the way that it obstructs desired target detection.
The interference patterns in the resulting range-doppler maps look different depend-
ing on the PRIs and pulse encodings of the interfering radars. A typical result from
interference is that a number of vertical lines are created in the range-doppler map;
an example of this is shown in figure 2.19.

25

2. Airborne radar and electronic countermeasures

Range rate

R
an

ge

Figure 2.19: Interference in a range-doppler map. Interference can be interpreted
as a type of unintentional jamming that can happen when friendly radars operate
close to each other. Interference typically appears as vertical lines in the range-
doppler map.

2.4 Electronic counter countermeasures

There is a natural demand for methods to counter ECM or to exploit its weaknesses.
These methods are logically called electronic counter-countermeasures (ECCM).
Noise jamming in particular has a few traditional exploitation points. While it often
obstructs measurements of range and velocity, it also acts as a beacon that exposes
the direction to the jamming aircraft. In this way the jamming can be exploited to
track the angle of the enemy aircraft.
By observing the direction of the noise jamming, there are also ways to passively
approximate the range to the jamming aircraft. This can be done by e.g. measuring
the angular rate of the jamming and comparing this to changes in the own-radar’s
velocity, or by employing triangulation with angle measurements of the jamming
from different positions.
Another way to reduce the vulnerability to noise jamming is to use a guard antenna
with low antenna-directivity. If the signal received by the guard antenna is stronger
than the signal from the main antenna, we can assume that the radar is being
jammed in one of its sidelobes.
There are no traditional ECCM techniques to counter DRFM jamming. However a
trained radar-operator can often distinguish between true targets and false targets
or deceptions from DRFM jamming because the DRFM signals often look unnatural
or very strong compared to a true target.

26

2. Airborne radar and electronic countermeasures

Interference between allied aircraft can often be avoided by using transponder sys-
tems to shift the carrier frequencies of the interfering radars. There also exists
techniques to remove the interference pulses from the received signals by measuring
the PRI and pulse width of the interfering pulses.
An important first step for successful ECCM is to identify what kind of jamming the
radar is exposed to. Because the techniques to counter jamming differ for different
jamming techniques or interference, it is crucial to know what kind of jamming or
interference that is being received by the radar. When the incoming radar signals
are correctly classified as a certain type of jamming or interference, it becomes easier
to decide any further actions to take.
The demand for correctly classified radar data in the field of ECCM is the motivation
for this thesis. The next chapter covers theory on machine learning with neural
networks, in particular image classifications with convolutional neural networks.
These techniques are in subsequent chapters used to classify radar data.

27

2. Airborne radar and electronic countermeasures

28

3
Neural networks

This chapter presents theory on machine learning and neural networks, in particular
convolutional neural networks. The chapter begins by giving some background on
machine learning and providing fundamental theory on neural networks. It then goes
on to cover elements of convolutional neural networks in more detail, together with
central concepts regarding neural networks such as back propagation, optimizers,
data splits, and regularization.

3.1 Machine learning and supervised learning

Machine learning is a group of statistical methods that are used to automate some
task based on a set of data, rather than by explicit instructions. Common tasks for
machine-learning methods are regression and classification. These both fall under
the category of supervised learning, where data has both input and output.

The common procedure for a supervised learning-algorithm is to build some form of
function for mapping new input to corresponding output based on a set of training
data where both the input and output are known. Data for which both the input
and output are known are often referred to as labeled data [9].

3.1.1 Model parameters and hyperparameters

The process of training usually involves setting the internal model parameters using
some statistical or iterative technique. The model parameters are what determine
the “skill” of the model: the model makes predictions based on the values of its
model parameters. The model parameters might need to be initialized manually
but are generally not further modified by the practitioner.

In contrast to the model parameters we have the hyperparameters. The hyperpa-
rameters are set prior to training and are part of the model design. The values of
the hyperparameters are not modified by the training process and optimal values
for the hyperparameters are generally not known. The hyperparameters are thus
typically set by the practitioner based on prior experience, trial and error, or by
copying values from research [9].

29

3. Neural networks

3.1.2 Overfitting

Supervised learning is in various degrees subject to the risk of overfitting. Overfitting
can happen when the algorithm tries to learn a function which is too complex or when
there is noise in the output labels. What often happens in the case of overfitting
is that the algorithm memorizes the training examples instead of generalizing and
identifying patterns and trends, leading to errors when producing output labels for
new unseen input examples. Techniques that aim to avoid or reduce overfitting are
often referred to as regularization [9].

3.2 Basic elements of neural networks

One of the current most popular methods for supervised learning is artificial neural
networks, which will be referred to throughout this thesis as simply neural net-
works.
Neural networks consist of a set of nodes or neurons, divided between a set of layers.
The layers are ordered and the neurons between two adjacent layers are connected
by a set of scalar weights. The first layer is the input layer and the last layer is
the output layer. The layers in between are called hidden layers. The number of
neurons in the different layers and the number of layers are hyperparameters that
are set by the practitioner. Figure 3.1 shows a schematic visualization of a neural
network with one hidden layer.

Hidden
layer

First
layer

weights

Second
layer

weightsInput
layer

Output
layer

Figure 3.1: A neural network with four input neurons, one hidden layer with five
neurons and two output neurons. Each neuron in one layer is connected to every
neuron in the next layer by a set of weights: one weight for each connection.

Each neuron has an input and an output. The input is the weighted sum of the
output from the neurons in the previous layer. The output is this weighted sum fed
through some non-linear activation function g(x). The forward propagation from
layer i with n neurons to layer j with m neurons can be defined by

oj = g (wijoi + bij) . (3.1)

30

3. Neural networks

oj is a 1 × m-vector with the outputs of the neurons in layer j. Likewise, oi is
containing the outputs of layer i in a 1× n-vector. The matrix wij is of size m× n
and contains the weights between layer i and j. bij is of size 1 × n and contains a
set of biases that are used to shift the activation function g which is applied element
wise to the resulting 1 × m-vector. The computational step consisting of forward
propagation from one layer of neurons to the following layer of neurons is often
referred to as a fully-connected layer.
The number of neurons in the input layer is generally the same as the number of
features of the input data. Likewise, the number of output neurons is often the
same as the number of output features, or the number of classes in a classification
problem.
The features of the input data often have different ranges or scales, leading to some
features being dominant in the weighted sums of the forward propagation. It is
thus standard procedure to normalize the input in some way before feeding it to the
network [9].

3.2.1 Activation function

Using a non-linear activation-function is what allows a neural network to map non-
linear relationships between the input and the output. Historically, functions like
the sigmoid or the hyperbolic tangent have been common in neural networks. How-
ever in modern applications, these are often replaced by the rectified linear unit
(ReLU) [9]:

f(x) = max(0, x). (3.2)
The ReLU activation offers great computational simplicity which is an important
aspect for the performance of large neural-networks. The ReLU function is shown
in figure 3.2.

x

f(x)

Figure 3.2: The rectified linear unit (ReLU): f(x) = max(0, x). This is the
most common activation function in neural networks today. The main reason is the
function’s computational simplicity, which is important to reduce the computational
heaviness of large-scale neural-network applications.

The activation function for the output neurons is in general different from the ac-
tivation function for the other layers. In classification problems where the number
of output neurons correspond to the number of classes, it is common to use softmax
as the final activation. The softmax function takes a vector of k real numbers and
normalizes it to a pseudo probability-distribution of k different probabilities in the

31

3. Neural networks

interval (0,1) that together sum to unity. If il are the input values of the output
neurons where l = 1, . . . , k, the softmax activation is given by

softmax(il) = exp il∑ exp im
. (3.3)

The class corresponding to the neuron with the highest output is normally chosen
as the output class [9].

3.3 Convolutional neural networks

Convolutional neural networks is a type of neural network designed for spatially
dependent data. Typical types of data suited for CNNs are sound, text, and images.
Image classification in particular have made great improvements in recent years with
the help of CNNs; CNNs have been the dominant technique for top scores in the
benchmark image classification challenge ILSVRC [5].
The main component of a CNN is the convolutional layer. There is at least one
convolutional layer in a CNN but typically more. The convolutional layer is followed
by an activation function. In addition to the convolutional layer, a CNN can contain
e.g. pooling layers and fully-connected layers. In the case of image classification,
the input to the CNN is an image and the output is a class.

3.3.1 Convolutional layer

The convolutional layer is the central component of a CNN. The convolutional layer
takes an input tensor with a width, height and depth and convolves it with one or
more filters. The depth of the filters is the same as the depth of the input tensor but
the width and height of the filter are hyperparameters and determine the kernel size.
The elements of the filters are real numbers and are the weights of a CNN.
The convolutional part consists of sliding the filters over the input tensor, taking the
dot product of the filter with the different segments of the input tensor. The result
of the dot product is placed at the corresponding position in the output tensor. A
bias term specific to the filter is typically also added to the dot product:

segment of input tensor · filter + bias term. (3.4)
The output of a convolutional layer is sometimes referred to as a feature map. The
convolving operation is illustrated in figure 3.3, however here without including any
bias term.
The depth of the output tensor equals the number of filters in the convolutional
layer. The width and height are determined by the kernel size of the filters, the
amount of zero padding to the input tensor, and the stride. Zero padding can be
used by adding zeros to the edges of the input tensor. This is done in order to enable
the filters to be applied further out on the edges and corners of the input tensor.
The stride on the other hand defines how far the filter is moved in each sliding step,
both in horizontal and vertical direction. The use of zero padding and stride are
shown in figure 3.4 [9].

32

3. Neural networks

1 1 1 0 0 0 1 1
1 1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 -1 1
0 1 -1 0 1 -1 0 1
1 1 1 1 1 -1 -1 0
-1 0 0 1 0 0 1 1
-1 1 1 0 -1 1 -1 1
1 -1 1 0 1 0 0 -1

Input tensor

1 0 1
-1 0 0
1 -1 1

Filter

× =
-1 0 1
-1 0 0
0 -1 0

Product

-2

Σ

Output feature-map

Figure 3.3: The convolutional step of a convolutional neural network. We take a
filter of some size (3 × 3 in the figure). We “slide” the filter over the whole input
tensor and take the dot product between the filter and each segment of the input
tensor. The result of the dot product at each position is placed at the corresponding
position in the output tensor.

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

. . .

Filter

Figure 3.4: An input tensor to a convolutional layer of width and height 9 × 9.
The input is padded with two layers of zeroes. The filter has size 5× 5. The arrows
denote how the filter is moved in each sliding step. The step distance is a parameter
called stride and has a horizontal and a vertical component. In the figure the stride
is 2 in both directions. The size of the filter, the amount of zero padding and the
stride determine how the width and height of the tensor are changed when passed
through the convolutional layer. In the figure the width and height of the output
are 5× 5.

33

3. Neural networks

3.3.2 Pooling layers

Pooling layers are common in CNNs. Their main function is to reduce dimension-
ality of the tensors passed through the network, making the computational loads
lighter.
The most common pooling layer is the max-pooling layer. This layer applies a max
filter to regions of the input tensor and places the results at the corresponding
positions in the output tensor. The intuition behind the max-pooling layer is that
it extracts the “extreme” features of the input tensor, which are likely to play an
important role in the classification of the data instance.
Common practice is to use max-pooling layers with non-overlapping filters of size
2 × 2. This reduces the width and height of the input tensor by half. The max-
pooling layer is illustrated in figure 3.5. Note that this kind of pooling layer is
only applied in the width- and height dimensions; the depth of the input tensor is
preserved.

2 2 0 0 4 -1 -4 1
0 -1 1 -3 4 -1 3 3
2 4 -1 4 -2 3 -4 -4
1 4 1 1 -3 4 4 3
4 -2 2 -3 3 4 4 -1
0 4 -4 -1 0 -2 -1 2
1 -3 -2 -1 -4 -3 -2 -3
0 4 -3 0 1 2 2 -3

Input

2

4

max

max

Max-pooled output

Figure 3.5: The max-pooling layer of a convolutional neural network. A max filter
is applied to regions of the input tensor. These regions are usually non-overlapping
but cover the whole input. The result of the max filter is placed at the corresponding
position in the output tensor. In the figure, the pooling regions are of size 2× 2 and
the regions are non-overlapping. The result is that an input of size 8 × 8 is down
sampled to size 4× 4.

The pooling layer has no trainable parameters. How many pooling layers that are
used and where they are placed can vary from different applications. It is however
common to use max-pooling after every two or three convolutional layers [10].

3.3.3 Classification layer

At the end of a CNN there needs to be a layer that makes the final classification. This
can be done in many ways, but a current popular way is to use global average pooling
on the output from the final convolutional layer into a single final fully-connected
layer [11].

34

3. Neural networks

The global-average-pooling layer takes the average of every width-height plane in
the input tensor, reducing an input size of h × w × d to 1 × 1 × d. The idea
behind the global-average-pooling layer is that it detects the presence of features
regardless of their position in the width-height plane. The motivation for this is
that image classification typically is a translation-invariant problem: the objects or
features that make an image belong to a certain class can be at any position in
the image. Furthermore, the global-average-pooling has the advantage of reducing
the computational complexity of the network and has no trainable parameters or
hyperparameters [12].
The global-average-pooling layer is often followed by a fully-connected layer with the
number of output neurons corresponding to the number of classes in the classification
problem. The output-neurons of this layer are fed into a softmax activation-function
that gives the final output-scores. The argmax of these scores are typically selected
as the output class [11].
The structure of the classification layer described above is shown in figure 3.6.

w

h

d

Final feature-tensor

Global average pooling

1× 1× d

1× 1× nclasses

Figure 3.6: A common structure for a classification layer in a CNN. Global average
pooling is applied to the final feature-tensor of size w×h×d. This is done by taking
the average of each w× h-matrix making the result a one-dimensional vector of size
d. The elements of this one-dimensional vector are then used as nodes in a final
fully connected layer where the number of output nodes correspond to the number
of classes in the classification problem.

3.3.4 Architecture summary

A CNN often consists of a series of convolutional layers, activation functions, and
pooling layers, followed by a classification layer. An example CNN is given in fig-
ure 3.7. This is a CNN for image classification that takes input images of size
64× 64× 1 (gray scale). It has three convolutional layers each with 16 filters of size
5 × 5. All the convolutional layers are followed by ReLU activations. It has one
max-pooling layer with filter size 2× 2. The final ReLU activation is followed by a
global-average-pooling layer into a fully-connected layer with four output nodes cor-
responding to four different classes. The final activation function is softmax.

35

3. Neural networks

Input image

Convolutional layer
16 filters 5× 5

Stride 1 with zero padding

ReLU activation

Convolutional layer
16 filters 5× 5

Stride 1 with zero padding

ReLU activation

Max pooling
Pooling region 2× 2

Stride 2

Convolutional layer
16 filters 5× 5

Stride 1 with zero padding

ReLU activation

Global average pooling

Fully connected layer

Softmax activation

Output

64× 64× 1

64× 64× 16

64× 64× 16

64× 64× 16

64× 64× 16

32
×

32
×

16

32× 32× 16

32× 32× 16

1× 1× 16

1× 1× 4

1× 1× 4

Figure 3.7: An example of a CNN architecture. The dimensions of the inputs and
outputs of each layer are denoted on the arrows. The input to the network is a gray-
scale image of size 64 × 64. The network has three convolutional layers each with
16 filters of size 5× 5. The convolutional layers use unity strides and zero padding
so that the width and height of the input is preserved. Each convolutional layer is
followed by a ReLU activation layer. The second convolutional layer is followed by a
max-pooling layer that down samples the width and height from 64× 64 to 32× 32.
The final ReLU activation is followed by a global-average-pooling layer. The output
of this layer is fed to a fully-connected layer that outputs the final output neurons.
In this figure we have four output neurons each representing one class. The output
of the fully connected layer is fed to a softmax activation-function that gives us the
final output-scores for each class.

36

3. Neural networks

3.4 Setting the network parameters

The output of a neural network is a function of its internal parameters: primarily by
the weights and biases. This section covers the training process that adjusts these
parameters so that the network makes correct predictions.
The most common way to train a neural network is to make the training process
into an optimization problem. This is done by introducing a loss function. The loss
function acts as measure of the network performance: a lower loss indicates a better
performance. The loss is a function of some labeled data set x containing training
examples, and the network parameters θ:

L(θ, x). (3.5)
The optimization problem thus becomes the problem of finding the set of network
parameters θ that minimizes L(θ, x):

argmin
θ

L(θ, x). (3.6)

This optimization problem can be solved by some iterative optimization algorithm.
Common techniques are various methods based on gradient-descent optimization [9].

3.4.1 Loss function: categorical cross-entropy

There are different loss functions suitable for different types of problems. This thesis
focuses on categorical classifications and the most common loss function for categori-
cal classification-problems is the categorical cross-entropy. Categorical cross-entropy
can be used to measure the dissimilarity between a true probability distribution and
an estimated probability distribution. Greater cross entropy means larger differences
between the two distributions.
With a discrete true distribution p(x) and an estimation of this distribution q(x),
the cross entropy Lce between these distributions is

Lce = −
∑
all x

p(x) log q(x). (3.7)

In a context of supervised classification, p is zero for all classes except the true class
for which it is one. If we denote the network output for the true class qtrue the cross
entropy becomes

Lce = − log qtrue. (3.8)
We can see that the cross entropy is zero if the output for the true class is one, and
it goes toward infinity if the output approaches zero.
However, we generally have more than one sample in supervised learning. The loss
is typically calculated as an average of the cross entropies across all the training
samples:

Lce = − 1
N

N∑
i=1

log qtrue,i (3.9)

where N is the number of training samples and qtrue,i is the output for the true class
for training sample i [9].

37

3. Neural networks

3.4.2 Training using back propagation

One of the key techniques for efficient training of a neural network is back propa-
gation. Back propagation provides a computationally efficient way to calculate the
partial derivatives of the loss with respect to each network parameter. The main
idea behind back propagation is to apply the chain rule step wise, starting at the
loss function propagating backwards through the network. The back-propagation
algorithm is not covered in detail in this thesis; an extensive description of back
propagation is provided by Goodfellow, Bengio and Courville in their book Deep
Learning [9].
To obtain the gradients of the network parameters, we feed some of the training
data through the network to evaluate the loss. It is generally not possible to feed all
training samples through the network simultaneously because of memory limitations.
Instead, the training data is divided into batches with some batch size which denotes
the number of training samples that are fed through the network for one set of
parameter updates.
When one batch is fed through the network, the loss is evaluated on this batch and
the gradients are calculated with back propagation. The network parameters are
then updated according to some optimizer to lower the loss. After one update, the
next batch is fed through the network and the parameters are updated once more.
This procedure is repeated until some stopping condition is reached. It is common
to set a total number of epochs as stopping condition. This number denotes how
many times all training samples are fed through the network.
Prior to the iterative update process, the weights and biases of the network need to
be initialized. This is typically done by sampling from some random distribution,
e.g. a Gaussian or uniform distribution, or by setting parameters to zeros. The
training process is summarized in the list below:

1. Initialize the network parameters with some random distribution.
2. Feed one batch of training data through the network.
3. Evaluate the loss on the batch based on the network output.
4. Calculate the gradients of the loss with back propagation.
5. Update the network parameters according to an update rule from some opti-

mizer.
6. Repeat step 2 to 5 until a set number of epochs is reached, or when some other

stopping condition is satisfied.

3.4.2.1 Stochastic gradient descent

The most fundamental optimization-method for neural network is stochastic gradient-
descent (SGD). Stochastic gradient-descent works just like normal gradient descent
with the exception that is uses an approximation of the gradient, based on the train-
ing batches that are described above. When the batch size equals the full training
set, stochastic gradient descent is the same as regular gradient descent. The update

38

3. Neural networks

step given by SGD is

θt ← θt−1 − η∇θt−1L(θ, xbatch) (3.10)

where θ are the network parameters, η is the scalar learning rate, ∇θt−1L(θ, xbatch)
are the gradients of the loss (evaluated at θt−1), and xbatch is the current training
batch. The learning rate η is a hyperparameter.

There are many variants of SGD and other optimizers that are inspired or based on
SGD. One variant that is recommended in the Stanford course CS231n: Convolu-
tional Neural Networks for Visual Recognition by Andrej Karpathy [13] is SGD +
Nesterov momentum. The update steps in this optimizer are:

θ̃ ← θt−1 + αv

g ← ∇θ̃L(θ, xbatch)
v ← αv − ηg
θt ← θt−1 + v.

(3.11)

This optimizer uses a moment vector v and a scalar momentum-parameter α that
help the optimizer avoid getting stuck in local minima. It also employs an interme-
diate update θ̃ to evaluate the gradient after the velocity is applied. The velocity v
needs to be initialized and α is a hyperparameter [9].

It is common to use SGD optimizers with some form of decay applied to the learning
rate. This means that the learning rate is lowered by some decay parameter γ
as a function of the training iteration t. One way to do this is though stepwise
decay:

η = η0

1 + γt
(3.12)

where η0 is the initial learning rate [14]. The motivation is that a larger learning
rate at the beginning of the training process quickly gives a rough estimation of a
good parameter-set. A smaller learning rate later in the training process can then
fine tune these parameters with smaller update-steps.

3.4.2.2 Adam optimizer

One of the current most popular and optimizers for large neural-networks is the
Adam optimizer. Adam is different from SGD in that it maintains different learning
rates for different parameters. These learning rates are in addition adaptive and are
changed as the learning progresses depending on the results. The update rules in

39

3. Neural networks

the Adam optimizer are

g ← ∇θt−1L(θ, xbatch)
m← β1m+ (1− β1)g
v ← β2v + (1− β2)g2

m̂← m

(1− βt1)
v̂ ← v

(1− βt2)

θt ← θt−1 −
ηm̂√
v̂ + ε

.

(3.13)

This optimizer has the scalar hyperparameters η, β1, β2 and ε. η is the learning
rate, β1 and β2 are exponential-decay parameters in [0, 1) for the moment vectors. ε
is a small positive number to avoid division by zero. It uses moment vectors m and
v that are initialized to zero [15].
The original paper that introduces the Adam optimizer [15] recommends the default
values for the hyperparameters

η = 0.001
β1 = 0.9
β2 = 0.999
ε = 10−8.

(3.14)

In studies where different optimizers are compared, Adam with its default param-
eters has been shown to be a good choice for most large neural-network applica-
tions [16, 13].

3.5 Training data, validation data, and test data

To properly evaluate the performance of a supervised learning-algorithm, we gen-
erally need to divide the available data into different sets. Just by looking at the
performance on the training data, it is impossible to know if there has been any
overfitting during training.
To get around this problem, we introduce a validation set and a training set. The
training set contains the data samples that are used by the training algorithm to
update the model parameters. The validation set is in contrast not seen by the
training algorithm; it is only used for monitoring the performance of the model. If
the performance is high on the training set but not on the validation set, there is
a high chance that there has been overfitting during training. On the other hand,
if the performance is high on both sets, it is a good indication that the model has
reached a good generalization that works on unseen data.
Performance on the validation set is a good measure for setting hyperparameters
and determining the model architecture. However, if all hyperparameter selections

40

3. Neural networks

and the model architecture are based on the same validation set, there is a risk that
the model overfits also on the validation data. Thus we need to introduce a third
data set: the test set.
The test set is used for a final performance evaluation when all hyperparameters
have been set and the model architecture is finalized. The test set should not
be used in any way by the training algorithm or to make any decisions regarding
hyperparameters or model architecture. It should only be used to give an honest
performance measure of the final model.
How the available data are divided into these three different data sets can vary,
and depends on both the amount of available data and the nature of the data.
The training set is however generally the largest of the three. Typical ranges for
percentages of the total data allocated for validation- and test sets seem to be around
10-20%, while the rest of the data are put in the training set [9].

3.6 Regularization in a convolutional neural net-
work

Techniques with the aim to reduce or prevent overfitting are known as regularization.
A CNN has, just as any supervised learning-algorithm, the risk to overfit on training
data and considerations need to be put in how to reduce and avoid this risk.
A common cause of overfitting is that the model is too complex for the data it is
being used for. In a very deep network it might be easier for the model to memorize
the training examples instead of mapping simple relationships between the input
and output. This can also happen if the training set is too small.
A first step to reduce overfitting is thus to use as much training data as possible,
while keeping the model as simple as possible. The model complexity can then be
increased by e.g. adding more convolutional layers until the performance on the
validation set is no longer increasing [9].

3.6.1 Weight decay

Weight decay is a common technique for regularization in neural networks. Weight
decay puts a penalty on large weights by adding the L2-norm of the weights (and
sometimes biases) to the loss function, scaled by a weight-decay parameter λ:

L̃ = L+ λ

2 |θ|
2. (3.15)

This reduces the risk of some parameters becoming very large, making the remaining
parameters underutilized [9].
Weight decay in CNNs is used with success both by Krizhevsky in [4] and by Si-
monyan and Zisserman in [10]. Both papers reported the use of weight-decay pa-
rameter λ = 5 · 10−4.

41

3. Neural networks

Typical values for λ in fully-connected layers range between 0 and 0.1 and are often
a negative power of 10, e.g. λ = 0.01 or λ = 0.001 [17].

3.6.2 Monitoring validation loss

The most important way to detect and prevent overfitting is to monitor the per-
formance on the validation set. The performance on the validation set is typically
monitored during the entire training process. A sign of overfitting is that the loss
on the training set is decreasing but the loss on the validation set is increasing.
This scenario is shown in figure 3.8. If this happens, we need to introduce more
regularization to the model e.g. by adding weight decay, increasing the amount of
training data, or making the network architecture more simple.

Epochs

Loss

Training loss

Validation loss

Overfit

Epochs

Loss

Training loss

Validation loss

Good fit

Figure 3.8: The left panel shows a case of overfitting during training. The training
loss is decreasing but the validation loss has a minimum. After the minimum in
the validation loss the model is no longer generalizing but instead memorizing the
training data. The right panel shows a case of a good fit. Both the training and
validation loss are decreasing until they stabilize around the same point. It is normal
that the validation loss is slightly higher than the training loss even in a good fit.

It is possible that the model has reached a good generalization before it starts
overfitting. In that case we simply want to ignore the training progress after the
point of overfitting. This can be done by continuously saving the model parameters
each time a new minimum for the validation loss is reached during training. The
final set of parameters is then the one that gave the lowest validation loss. By
employing this technique, sometimes referred to as early stopping, we can allow
some degree overfitting as long as a good generalization is found at some point
during training [9].

3.7 Convolutional neural networks for radar data

This chapter has reviewed the fundamentals of machine learning, neural networks
and in particular convolutional neural networks. The goal of this thesis is to create a

42

3. Neural networks

machine-learning model that can identify and classify jamming in radar data. This is
done by using range-doppler maps as “image inputs” to a CNN. The CNN is trained
to classify the range-doppler maps into classes that correspond to different types of
jamming, in addition to a class which represents non-jammed radar data.
Most of the techniques described in this chapter are used to some degree in the
remaining chapters to create this classification model. Especially chapter 5 describes
how hyperparameters and CNN architecture are chosen for the model used in this
thesis. The next chapter covers how synthetic radar data are generated with the
purpose of creating a labeled data-set for this classification task.

43

3. Neural networks

44

4
Generating synthetic radar-data

This chapter covers the process of providing necessary labeled radar-data in order
to train a CNN. The first two sections discusses general aspects regarding real vs.
simulated data, and the amount of data needed. The chapter then continues with a
brief description of the software used to generate radar data in this thesis. It then
goes on to cover the different data classes that are generated by the software, and
how parameters for these data classes are set. The theory behind many of the radar
concepts in this chapter is described in chapter 2.

4.1 Obtaining training data

Having sufficient labeled data of high quality is a crucial element of any supervised
learning-algorithm. The training data are what makes it possible for the model to
make predictions on unseen data. The amount of data is generally important to
reduce overfitting and to cover the full distribution of possible data instances. It is
also important to use data with little noise: if many of the labels in the training set
are incorrect, the model will learn errors.
Obtaining labeled data for machine-learning tasks is however not a trivial task. A
common situation is that there are much real data available, but these data are
unlabeled. To use these data they must first be labeled in some way. Typically this
needs to be done manually, which quickly becomes time consuming.
An alternative is to generate labeled synthetic data that are supposed to resemble
real data as much as possible. When compared to manually labeling a large data
set, this is often a quick and easy way to obtain large amounts of labeled data. A
risk when using synthetic data is that the synthetic data might not fully represent
all features of their real counterpart, as a result of using simplified models. This can
lead to errors if a model trained on simulated data is used to make predictions on
real data.
Real and synthetic data can also be used in combination. One way to do this is to
first train the model on a large set on synthetic data. The resulting model is then
fine tuned on a smaller set of labeled real data. The fine-tuning part is basically
a second training phase with another data set, possibly with a smaller learning
rate. The intuition behind this method is that the first training phase can teach the
model the general features of the data that are possible to represent with simulation

45

4. Generating synthetic radar-data

models. The fine-tuning phase can then make the model learn features of the real
data that are not represented in the synthetic data [9].
The work in this thesis uses synthetic data exclusively. The reason for this is mainly
the security classifications covering real radar-data from combat aircraft.

4.2 The amount of training data

The amount of labeled data needed to obtain good results from a classification model
varies from different problems. We generally need the same amount of training
instances in all different classes. If the training set is heavily unbalanced, the model
might learn to always predict the class with the most training instances because this
is an easy way to achieve a low loss.
How many instances that are needed for each class depends on the data distribu-
tions for the different classes. More complex distributions require more training
examples to cover all features and properties belonging to the different classes. It
is generally never a disadvantage to have more training data than needed, other
than some increased computational complexity. The benchmark data set for image
classifications, ImageNet, contains several hundred instances per class [5].
For this thesis, 1200 data instances per class are generated. This number should be
large enough to give a good representation of each class, without requiring unman-
ageable computational times to be generated.
All range-doppler maps in the figures of this thesis are instances from the data set
generated by the methods described in this chapter.

4.3 Simulation software

The software used to generate synthetic data for this thesis is a Matlab-program
written at Saab Surveillance. This software is designed to simulate radar data from
an airborne radar. The software takes user-defined scenarios and generates radar
data based on a set of given parameters. The software has features to generate
target returns, ground clutter, noise jamming, interference and DRFM jamming.
However, the models used in this software do not include effects from e.g. rain and
engine-induced vibrations.
For this thesis, the software is used to generate range-doppler maps of different
classes. All of these classes correspond to different types of jamming except one class
which contains non-jammed range-doppler maps. Each class has its own generative
model and a set of parameters. Some of these parameters are randomized for each
data instance. This way, a data set can be created where all data instances look
different, but all instances of a certain class share some basic features that are unique
for its class.
The main limitation of this software when used for this thesis are its features for
DRFM jamming. Only a few basic DRFM techniques were implemented in the latest

46

4. Generating synthetic radar-data

version of this software. Some additional DRFM techniques had to be implemented
specifically for this thesis work and some had to be modified.

4.4 Data classes and parameter selections

The data set used in this thesis contains four different classes. These classes are
also the classes that we want the machine-learning model to identify. These classes
are:

• No jamming
• Interference
• Noise jamming
• DRFM jamming

All of these classes have parameters that are randomized for each data instance, and
parameters that are constant for all data instances in the class. Some parameters
are class specific and some are common for all classes. The parameters common
for all data classes are given in table 4.1. The values in this table are chosen to be
reasonably realistic for typical conditions of air combat.

47

4. Generating synthetic radar-data

Table 4.1: Parameters that are common for all data classes. Parameters that are
constant have a value in the “constant” column. The parameters that are random-
ized have values in the columns for min- and max value. The randomized parameters
are uniformly randomized within the specified ranges for each data instance.

Parameter Min value Max value Constant value

Own altitude [m] 3000
Own velocity [m/s]

(parallel to the ground) 250

PRI [µs] 40 200
Number of pulses 100 200

Elevation angle [degrees]
(radar main-beam) -10 20

Probability of
target presence 50%

Distance to target [m] 300 40 000
Range rate of target [m/s]
(relative own aircraft) -1000 100

RCS of target [m2] 3 20
Linear frequency
modulation [MHz] 0.04

Circular frequency
modulation [MHz] 1.1

Duty factor 0.1
Radio frequency [GHz] 9.7

48

4. Generating synthetic radar-data

The presence of a target in each data instance is random with the probability 50%
(except for in the class DRFM). A maximum of one true target is placed in each
range-doppler map. Any target is placed in the direction of the own-radar main-
beam with randomized, range, range rate and RCS.

The elevation angle defines the direction in which the radar main-lobe is pointing.
This parameter is the angle between the horizontal plane of the aircraft and the
radar main-lobe, as shown in figure 4.1. The radar is however never angled to the
left or right.

Radar main-beam direction

θ

Figure 4.1: The elevation angle θ is the angle between the horizontal plane of the
aircraft and the radar main-beam direction. It is positive if the radar is looking
down at the ground and negative if the radar is looking up.

The window function used for the entire data set is the Taylor window, which is
a popular window function for radar applications. We use a Taylor window with
sidelobe suppression SL = -60 dB. A detailed description of the Taylor window
is given in Spotlight Synthetic Aperture Radar: Signal Processing Algorithms by
Carrara, Goodman and Majewski [7].

The pulse compression used by the simulated radar is through a combination of
linear frequency-modulation and circular frequency-modulation. This encoding is
defined by a linear modulation-frequency and a circular modulation-frequency. This
pulse compression technique is covered in the book Modern Radar Systems by
Meikle [18].

4.4.1 Class: No jamming

The class no jamming contains range-doppler maps with only ground clutter and
targets. All the parameters are selected as in table 4.1. The ground clutter in these
range-doppler maps look different depending on the randomized elevation angle and
PRI. The targets are placed at random ranges and range rates in each range-doppler
map.

49

4. Generating synthetic radar-data

4.4.2 Class: Interference

In the class interference, we add interference from another radar. The PRI of the
interference is random but the pulse encoding of the interference, the gain of the
interference (JNR), and the duty factor of the interference are constant. The pa-
rameters unique for the interference class are given in table 4.2.

Table 4.2: Parameters specific for the class interference.

Parameter Min value Max value Constant value

Interference PRI [µs] 4 200
Interference duty factor 0.3

Interference linear
frequency modulation [MHz] 0.1

Interference circular
frequency modulation [MHz] 2.0

JNR (interference) [dB] 30

4.4.3 Class: Digital radio frequency memory

In the DRFM class, the own radar is being jammed with some form of DRFM
jamming. A true target is always present in this class. The DRFM class has six
different sub categories that are described in the sections below. Each instance of the
DRFM class is randomly placed in one of the sub categories with equal probabilities.
These sub classes are however not visible to the learning algorithm; we want the CNN
to classify all of these sub categories as simply DRFM. More detailed descriptions
of the different DRFM types are given in chapter 2.
The only parameter that is common to all DRFM instances is the random linear
gain of the DRFM signals (relative the target returns). This parameter is given in
table 4.3.

Table 4.3: The range for the random linear gain which is common for all DRFM
types.

Parameter Min value Max value Constant value

DRFM linear gain 1 30

4.4.3.1 False targets

The DRFM technique false targets places false targets that look like true targets in
the receiving radar. The false targets are shifted in range and range-rate relative to

50

4. Generating synthetic radar-data

the true target. The shifts are randomized for each false target. Also the number
of false targets is randomized. The parameters for this DRFM type are given in
table 4.4.

Table 4.4: Parameters for the DRFM technique: false targets.

Parameter Min value Max value Constant value

Number of
false targets 10 20

Range delay [m] -5000 5000
Range-rate shift [m/s] -300 300

4.4.3.2 Reverse pulse

The reverse-pulse technique flips the incoming pulse and sends it back a number
of times with shifts in range and range rate. This technique works much like false
targets with the addition of the pulse flip. The parameters for this technique are
given in table 4.5.

Table 4.5: Parameters for the DRFM technique: reverse pulse.

Parameter Min value Max value Constant value

Number of
false targets 10 20

Range delay [m] -5000 5000
Range-rate shift [m/s] -300 300

4.4.3.3 Fast sweep

The fast-sweep technique speeds up the incoming pulse and creates a new pulse
with repeated copies of the incoming pulse. The number of repetitions is specified
by the fast-sweep factor. The fast-sweep pulse is then sent back as false targets much
like in the false-targets technique. The parameters for this technique are given in
table 4.6.

51

4. Generating synthetic radar-data

Table 4.6: Parameters for the DRFM technique: fast sweep.

Parameter Min value Max value Constant value

Number of
false targets 10 20

Range delay [m] -5000 5000
Range-rate shift [m/s] -300 300

Fast sweep factor 2 4

4.4.3.4 Pulse repetition

The pulse-repetition technique records the incoming pulse and repeats it a number
of times without any frequency shifts. The only parameter for this technique is the
number of repetitions, which is given in table 4.7.

Table 4.7: Parameters for the DRFM technique: pulse repetition.

Parameter Min value Max value Constant value

Number of pulse
repetitions 5 20

4.4.3.5 Partial pulse-repetition

The technique partial pulse-repetition works just like the pulse-repetition technique
with the exception that only a fraction of the incoming pulse is recorded (start-
ing from the beginning of the pulse). This fraction is an additional randomized
parameter for this DRFM type. The parameters for this technique are given in
table 4.8.

Table 4.8: Parameters for the DRFM technique: partial pulse-repetition.

Parameter Min value Max value Constant value

Number of pulse
repetitions 5 20

Fraction of
pulse recorded 0.2 0.5

4.4.3.6 Non-coherent pulse-repetition

In non-coherent pulse-repetition, one pulse is recorded and repeated with some de-
fined time delay after some number of subsequent pulses. Then a new pulse is

52

4. Generating synthetic radar-data

recorded and the process is repeated. This technique creates false targets with dif-
ferent frequency shifts but with the same range shift. The only parameter for this
technique is the number of times one pulse is “reused”. The range for this parameter
is given in table 4.9. The time delay of the jamming pulses are uniformly random-
ized from zero to the PRI of the incoming pulses (but the same for all jamming
pulses).

Table 4.9: Parameters for the DRFM technique: non-coherent pulse-repetition.

Parameter Min value Max value Constant value

Reuse number 5 15

4.4.4 Class: Noise jamming

In the noise-jamming class, the own radar is being jammed by noise jamming. This
class includes both jamming with continuous noise and range-bin masking. The
two types are selected for each data instance with equal probability. The parame-
ters in this class are the jamming-to-noise ratio (JNR) and the length of the range
interval that is jammed for range-bin masking. These parameters are given in ta-
ble 4.10.

Table 4.10: Parameters for the noise-jamming class. Continuous noise and range-
bin masking are selected with equal probability for each data instance.

Parameter Min value Max value Constant value

JNR [dB] 30 50
Jamming interval [m]
(for range-bin masking) 200 1000

4.5 Using synthetic data to train convolutional
neural networks

The radar data generated by the methods described in this chapter are used as
training data for a CNN in the following chapters; the range-doppler maps of the data
set are used as input instances for the CNN. The next chapter covers the process of
selecting network architecture and tuning hyperparameters. The subsequent chapter
gives the classification results from the final model.
Note that the parameter values given in this chapter are chosen to somewhat resem-
ble real-world scenarios, but the values can probably be adjusted further to make
the data even more realistic. The classification results on this data set are still likely
to give a good indication of how a CNN performs on data of similar nature (real
data or synthetic data with other parameter values).

53

4. Generating synthetic radar-data

54

5
Model design

This chapter covers the design process of the CNN model used to classify radar
data. The chapter begins with covering general considerations when designing a
CNN classifier. The chapter continues with a description of the method used for
finding a suitable model-design in this thesis. It then presents results from the
model design-process which eventually lead to a final model-design. This chapter
largely acts as an application of the theory on neural networks which is presented
in chapter 3, on the radar data which are generated in chapter 4.

5.1 General considerations and method

Model design is a central challenge in supervised learning. There is no single model
that works well for all tasks. Every distinct supervised learning-task requires thought
and work with regard to model design and tuning of hyperparameters to make the
model suitable for the particular problem.
The design of a CNN classifier is no exception. A too large network yields over-
fitting or leads to unmanageable computational heaviness. A too small network
leads to poor classification performance. Additionally there is a large set of other
hyperparameters that all need to be set to achieve good results.
The brute-force method for finding a good model-design is to try every different
possible model and look for the one that gives the best results. We however quickly
realize that there exists an infinite number of possible network architectures and
hyperparameter combinations. Some restrictions need to be put on how we vary the
different hyperparameters.
The model-design process in this thesis mainly focuses on three aspects of the model,
which all are expected to be of importance for the model performance. These
are:

• CNN architecture:
– The number of convolutional layers
– Kernel size for the convolutional layers
– The number of filters in the convolutional layers
– Whether to use max-pooling or not

• Batch size

55

5. Model design

• Optimizer settings: which optimizer to use and hyperparameters for this opti-
mizer

Other hyperparameters that are not investigated, such as choice of activation func-
tion, parameter initializations, convolutional stride etc. are set to values that are
commonly cited for well-performing models in other research.
The method used in this thesis is to first test combinations of different layers in the
CNN, without changing optimizer settings or batch size. By observing the validation
loss during training of the different models we get a rough idea of what combinations
of layers that yield good results. In the next step we make small tweaks to the models
in order to increase the performance. The changes that are made to the models are
based on the training characteristics from the previous results. The changes might
be e.g. adding a layer, adding some regularization, or adding training epochs.
When a good set of layers has been found, we try this model with different batch
sizes to see if the results can be improved. In the final step we use the best batch
size and try different optimizer settings to see if we can improve the results even
further.
The motivation behind this described method is that we expect the CNN architec-
ture to be the most sensitive property of the model, with regards to achieved loss.
The architecture is also likely the property of the model that is most specific to
the particular problem of this thesis. For these reasons, we make the selection of
architecture the first step of this method. The batch size and choice of optimizer are
also expected to affect the results and are therefore studied in the next steps. These
hyperparameters are however likely less problem specific and can thus be set to
commonly-cited values while we study the more problem specific architecture in the
first step. Remaining hyperparameters might also be important for the results, but
can not all be studied because of time restrictions. Instead, we use commonly-cited
values that have been used with good results for other applications.
The data set of 1200 instances per class generated in the previous chapter is used
to create the training, validation and test sets. The test set contains 100 instances
of each class. The validation set is 15% of the remaining data randomly selected.
The training set is the other 85%.

5.2 Image resizing and normalizing

CNNs generally need input of a fixed size. However, the size of the range-doppler
maps differ based on different PRIs and different number of pulses.
To make all range-doppler maps the same size, we employ image resizing through
bilinear interpolation. The range-doppler maps in the data set of this thesis have
widths and heights of roughly 100-200 “pixels”. All maps are resized to size 64× 64
before they are fed to the CNN. This size seems large enough to preserve key features
of the original range-doppler maps. A larger size could have been used but that
would lead to increased computational complexity. An example of a range-doppler
map before and after resizing is shown in figure 5.1.

56

5. Model design

Range rate

R
an

ge

Original size: 103 x 256

Range rate

R
an

ge

Resized to 64 x 64

Figure 5.1: The left panel shows a range-doppler map of size 103× 256. The right
panel shows the same range-doppler map after it has been resized to size 64 × 64.
We see that some details are lost in the resizing, but the main features of the range-
doppler map are preserved.

In addition to the requirement of equally-sized input, we also want the data values
to be of similar scales and ranges. This is achieved through first translating all
elements of the range-doppler maps so that the mean value of each map is zero.
Then through scaling of all values so that the standard deviation of the elements in
each range-doppler map is unity.

5.3 Smoothing the validation loss

The most important quantity to observe during training is the validation loss. The
validation loss is the best indication of how the model performs on unseen data
so we generally look for the models that achieve the lowest validation loss during
training.
The validation loss as a function of training progress is however sometimes noisy to
various degrees. This can be a result of stochastic errors in the batch approximation
of the loss function when performing optimization iterations. It can also be a result
of the validation set being smaller than the training set, not giving an as accurate
representation of the data distribution as the larger training set on which we perform
the optimization.
We generally want to ignore the noise and instead look for the trends in the validation
loss. This is achieved through smoothing the validation loss with a cubic Savitzky-
Golay filter. The window size used in the filter is 31. More information on the
Savitzky-Golay filter can be found in Numerical Recipes in C: The Art of Scientific
Computing by Press, Teukolsky, Vellerling and Flannery [19].
En example of a noisy validation-loss curve which is smoothed by the Savitzky-Golay
filter is shown in figure 5.2.

57

5. Model design

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

Training epoch

Lo
ss

Validation loss
Smoothed validation-loss

Figure 5.2: Validation loss as a function of training epoch, together with the
validation loss smoothed by a Savitzky-Golay filter. The validation loss is sometimes
noisy. The smoothing is done to more easily analyze the general trends of the
training progress.

5.4 Finding a set of layers

The first step in the model design-process for this thesis is to find a good set of
layers for the CNN. This is done by testing combinations of different layer-types
and different number of layers while keeping the batch size and optimizer settings
constant. Parameters that are varied in this first step with corresponding values
that are tested are:

• The number of convolutional layers:
1, 2 and 3

• The number of filters in each convolutional layer:
16 and 32

• The kernel size of the filters:
3× 3, 5× 5 and 7× 7

• With or without max-pooling layers
The values for these parameters are selected so that they are similar to values used
in famous CNN architectures [13]. Using only up to three convolutional layers is
however shallow compared to many other CNN applications. The motivation for
this is that we rather start with a too simple network of low computational loads to
later increase the complexity if needed, instead of the other way around. The models
which include max-pooling layers have max-pooling layers between all convolutional
layers. However the models with only one convolutional layer do not use any max-
pooling layer, because that would be redundant.
All of the models tested use a final classification-layer of the type described in
chapter 3: the output from the last convolutional layer is fed into a global-average-

58

5. Model design

pooling layer which in turn provides the input for the final fully-connected layer. The
convolutional layers of the models all use stride 1 with zero padding so that the width
and height of the inputs are preserved. The activation for all convolutional layers is
ReLU. All the initial weights in the models throughout this thesis are sampled from
the Glorot uniform-distribution and all biases are initialized to zeros [20].
The performance of the different models are analyzed based on some measures cal-
culated mainly from the smoothed validation loss. These measures are:

• The minimum value for the smoothed validation loss for the entire training
progress.

• The noise in the validation loss: calculated as the standard deviation of the
difference between the validation loss and the smoothed validation loss.

• Minimum epoch: at which training epoch the minimum value for the smoothed
loss is reached.

• The overfit difference: the difference between the minimum smoothed validation
loss and the maximum smoothed validation loss reached after the minimum.

• The training time to complete the set number of training epochs.
We basically look for models which reach a low validation loss quickly with low
noise. The overfit difference is a measure of how much the model is overfitting after
the minimum is reached. It does not have to be a problem that the model overfits
if a low minimum is reached before the point of overfitting, but the overfit measure
can help with identifying the models which might need added regularization.
The first set of training runs is done with a constant batch size of 32 and with the
Adam optimizer using the default hyperparameter-values. Every model is trained
for a total of 300 epochs. The results are given in table 5.1.

59

5. Model design

Table 5.1: Results from the first architecture search. The table is sorted by as-
cending minimum smoothed validation-loss from top to bottom. The kernel size is
denoted by a single number because the filters have square sizes with sides of this
length. We see that the lowest losses are achieved with models using 3 convolutional
layers and no max-pooling layers. The Adam optimizer with the default parameters
and a batch size of 32 is used for all models. Each model is trained for 300 epochs.
The time it takes to complete the training for each model is given in the column
Training time.

Kernel
size

Nr conv
layers

Nr filters
per layer

Max
Pooling

Min val loss
smoothed

Min
epoch

Overfit Noise
Training
time

7 3 16 No 0.113 165 0.050 0.033 4h 31m
7 3 32 No 0.115 129 0.270 0.127 8h 26m
5 3 32 No 0.115 149 0.150 0.052 4h 46m
5 3 16 No 0.116 204 0.030 0.024 1h 55m
3 3 32 No 0.122 214 0.030 0.023 1h 46m
5 3 16 Yes 0.127 122 0.139 0.038 23m
7 2 32 No 0.130 189 0.032 0.027 4h 29m
5 3 32 Yes 0.131 66 0.240 0.032 49m
5 2 32 No 0.133 241 0.019 0.021 2h 19m
7 2 32 Yes 0.140 187 0.080 0.040 1h 59m
5 2 32 Yes 0.143 296 0.005 0.026 44m
3 3 32 Yes 0.147 86 0.198 0.051 20m
3 3 16 Yes 0.148 243 0.034 0.032 9m
7 3 32 Yes 0.149 48 0.272 0.041 2h 4m
7 2 16 Yes 0.151 210 0.040 0.029 55m
5 2 16 Yes 0.152 260 0.025 0.023 22m
7 3 16 Yes 0.159 64 0.257 0.063 1h 4m
3 2 32 Yes 0.160 291 0.059 0.026 18m
3 3 16 No 0.161 255 0.016 0.029 48m
7 2 16 No 0.162 300 0.000 0.028 2h 25m
5 2 16 No 0.170 300 0.000 0.023 1h 6m
3 2 32 No 0.174 300 0.000 0.021 58m
3 2 16 No 0.176 300 0.000 0.017 31m
3 2 16 Yes 0.188 283 0.012 0.023 8m
7 1 32 0.272 294 0.004 0.010 53m
7 1 16 0.306 300 0.000 0.006 42m
5 1 32 0.325 292 0.006 0.010 19m
5 1 16 0.358 300 0.000 0.007 12m
3 1 32 0.442 300 0.000 0.006 9m
3 1 16 0.458 300 0.000 0.005 6m

60

5. Model design

We see that more layers generally seem to give a lower minimum smoothed validation
loss. Max-pooling layers reduce the training times significantly but most of the best
performing models are without max-pooling layers. Many models overfit to various
degrees. Overfitting seems to happen more in the deeper models.
The noise is larger in the deeper models. Most of the one-layer models have low
noise. The one-layer models also reach their minimum at the end of the training
progress, which indicates that a lower validation loss could be reached with more
training epochs.
As a next step we try to improve some of the models by increasing the number of
training epochs, adding weight decay, or adding convolutional layers.
The models for which we add weight decay are some of the well-performing models
that have some degree of overfitting. These are:

Kernel size: 7× 7
Nr. convolutional layers: 3
Nr. filters: 16
No max pooling

• Kernel size: 5× 5
Nr. convolutional layers: 3
Nr. filters: 32
No max pooling

•

Kernel size: 5× 5
Nr. convolutional layers: 3
Nr. filters: 16
With max pooling

• Kernel size: 5× 5
Nr. convolutional layers: 3
Nr. filters: 32
With max pooling

•

Weight decay is added to all weights and biases with weight-decay parameter λ =
5 · 10−4 for the convolutional layers and λ = 10−3 for the final fully-connected
layer.
More convolutional layers are added to 3-layer models that have a low degree of
overfitting; if no overfitting is happening, the model could possibly benefit from
increased complexity. The 3-layer models with low overfitting are:

Kernel size: 5× 5
Nr. filters: 16
No max pooling

• Kernel size: 3× 3
Nr. filters: 32
No max pooling

•

These settings are tested in the next step with 4 and 5 convolutional layers in-
stead.
The models that reach their minimum validation loss at the end of the training
progress can likely benefit from being run for a larger number of training epochs.
We therefore run some of these models again with a larger number of training epochs.
These models are:

Kernel size: 5× 5
Nr. convolutional layers: 2
Nr. filters: 32
With max pooling

• Kernel size: 7× 7
Nr. convolutional layers: 2
Nr. filters: 16
No max pooling

•

Kernel size: 5× 5
Nr. convolutional layers: 2
Nr. filters: 16
No max pooling

• Kernel size: 7× 7
Nr. convolutional layers: 1
Nr. filters: 32

•

61

5. Model design

The results from the second run are shown in table 5.2. We quickly note that added
weight decay did not increase the performance of any model, adding weight decay
instead made the minimum loss larger. We see that the model which gives the lowest
smoothed validation loss is:

• Kernel size: 3× 3
Nr. convolutional layers: 4
Nr. filters: 32
No max pooling

This model also has a relatively low training time compared to the other models
that give low losses. Adding a fifth layer with these settings does not improve the
performance of the model, so 4 convolutional layers seems to be a good choice when
using these parameters. None of the models for which we increased the number
of training epochs reached low enough losses to compete with the best performing
models.

Table 5.2: Results from the second architecture search. The rows are sorted by
ascending minimal smoothed validation-loss from top to bottom. In this set of runs,
some models have added convolutional layers, some models have added weight decay,
and some models are run for more training epochs. Adding weight decay did not
improve the models. The lowest smoothed validation loss is achieved with kernel
size 3× 3, 4 convolutional layers, 32 filter per layer, no max-pooling layers, and no
weight decay. All models use the Adam optimizer with default hyperparameters and
batch size 32.

Kernel
size

Nr conv
layers

Nr filters
per layer

Max
Pooling

Weight
decay

Min val loss
smoothed

Epochs
Min
epoch

Overfit Noise
Training
time

3 4 32 No No 0.098 300 129 0.125 0.036 2h 33m
5 4 16 No No 0.111 300 80 0.127 0.046 2h 51m
7 3 16 No No 0.113 300 165 0.050 0.033 4h 31m
5 3 32 No No 0.115 300 149 0.150 0.052 4h 46m
5 3 16 No No 0.116 300 204 0.030 0.024 1h 55m
3 5 32 No No 0.120 300 84 0.200 0.033 3h 20m
3 3 32 No No 0.122 300 214 0.030 0.023 1h 46m
5 2 16 No No 0.123 1200 998 0.038 0.020 4h 26m
5 3 16 Yes No 0.127 300 122 0.139 0.038 23m
5 3 32 Yes No 0.131 300 66 0.240 0.032 49m
7 2 16 No No 0.132 600 411 0.028 0.027 4h 37m
5 5 16 No No 0.135 300 65 0.298 0.040 3h 44m
5 2 32 Yes No 0.142 600 199 0.077 0.028 1h 29m
7 1 32 No 0.177 2400 2377 0.003 0.011 6h 35m
5 3 32 Yes Yes 0.182 300 88 0.042 0.026 48m
5 3 16 Yes Yes 0.189 300 253 0.027 0.033 23m
7 3 16 No Yes 0.189 300 245 0.024 0.032 4h 20m
5 3 32 No Yes 0.196 300 136 0.029 0.031 4h 48m

62

5. Model design

5.5 Finding batch size

The next hyperparameter to study is the batch size. In the previous section we
found a well-performing architecture using kernel size 3× 3, 4 convolutional layers,
32 filters in each layer without any max-pooling layers. In this section we take this
architecture and try different batch sizes to see if we can improve the results even
further. The optimizer we use is still Adam with the default hyperparameters.
The previously used batch size is 32. We now try some batch sizes smaller and
larger than this number. It is common for batch sizes as powers of 2 offer better
run times [9]. We therefore try the batch sizes: 8, 16, 32, 64, 128, and 256. The
number of training epochs for each batch size is set so that the validation loss seems
to reach its minimum value before the end of training.
The results from using different batch sizes are shown in table 5.3. This table also
includes the unsmoothed minimum validation-loss. We see that increasing batch size
also increases training times. This is expected because a larger batch size requires
more training examples to be fed through the CNN in order to make one update
step. We also see that a larger batch size seems to make the validation loss less noisy.
This is likely because a larger batch size gives a better approximation of the loss
function, leading to less randomness in the update steps. The lowest unsmoothed
validation-loss is reached with the largest batch-size.

Table 5.3: Results from models using different batch sizes. All models use kernel
size 3 × 3, 4 convolutional layers, 32 filters per layer, and no max-pooling layers.
The Adam optimizer with default hyperparameters is used for all models. The
lowest unsmoothed validation loss is reached with batch size 256. The noise in the
validation loss seems to decrease with increased batch size.

Batch size Min val loss
Min val loss
smoothed

Epochs
Min
epoch

Overfit Noise
Training
time

256 0.085 0.100 1200 890 0.044 0.023 10h 5m
64 0.093 0.102 300 207 0.041 0.029 2h 52m
32 0.094 0.098 300 129 0.125 0.036 2h 33m
8 0.101 0.142 300 53 0.238 0.044 2h 34m

128 0.103 0.127 600 414 0.080 0.028 5h 30m
16 0.105 0.132 300 68 0.190 0.029 2h 38m

We see no clear correlation between achieved losses and batch size, other than that
the lowest loss is achieved with the largest batch size. On the other hand, the
decrease in noise from using a larger batch size makes it seem that it is better to use
larger batch-sizes for more predicable results. Increasing the batch size even further
could possibly lead to even lower losses and less noise. This would however lead to
large computer memory requirements and even longer training times. We use batch
size 256 from this point forward because of the low achieved loss and low noise while
still keeping training times manageable.

63

5. Model design

5.6 Finding optimizer settings

The final step in the model design-process is to try different optimizer settings. We
have until now only used the Adam optimizer with the default hyperparameters. We
now try to adjust some of these hyperparameters. We also try the optimizer SGD
+ Nesterov momentum. The different optimizer-settings are tried on a CNN with 4
convolutional layers, 32 filters in each layer, 3× 3 filter size, no max-pooling layers,
using batch size 256. These are the best settings from the previous sections.
The default hyperparameters for the Adam optimizer are

η = 0.001
β1 = 0.9
β2 = 0.999
ε = 10−8.

(5.1)

We try both a larger learning rate η = 0.01 and a smaller learning rate η = 0.0001
(with the other parameters as default). The documentation for the machine-learning
framework Tensorflow suggests some tuning of ε and proposes the values ε = 0.1 and
ε = 1.0 [21]. These values are also tested (with the other parameters default).
We also run one model with the optimizer SGD + Nesterov momentum. The hyper-
parameters used for this optimizer are learning rate η = 0.1, momentum α = 0.8,
learning rate decay γ = 0.1/1200 (calculated as learning rate divided by number of
training epochs). These values are selected because they lie in common ranges of
values cited in other research [9].
The number of training epochs is 1200 for all different optimizer settings, except for
Adam with η = 0.0001 which is run for 2400 epochs because we expect a smaller
learning rate to make the training slower.
The results from the different optimizer settings are shown in figure 5.3. Because
of the different characteristics of the validation-loss curves, the data is now plotted
instead of presented in tables.

64

5. Model design

0 1,200
0

0.5

1

Va
lid

at
io
n
lo
ss

Adam, default | Min loss = 0.085

0 1,200

0.5

1

1.5
Adam, ε = 0.1 | Min loss = 0.168

0 1,200
0

5

10

Va
lid

at
io
n
lo
ss

Adam, η = 0.01 | Min loss = 0.101

0 2,400

0.5

1

1.5
Adam, η = 0.0001 | Min loss = 0.133

0 1,200
0.6

0.8

1

1.2

1.4

Training epoch

Va
lid

at
io
n
lo
ss

Adam, ε = 1 | Min loss = 0.640

0 1,200
0

1

2

3

Training epoch

SGD + Nesterov | Min loss = 0.134

Figure 5.3: The validation loss during training when using different optimizers.
The values denoted min loss are the minimum losses reached during the full training
progress for the respective optimizers. The training times are ∼11 hours for the
sessions with 1200 epochs and ∼22 hours for Adam with η = 0.0001 that is run for
2400 epochs.

65

5. Model design

The minimum validation loss is still reached with the Adam default settings. A
larger ε makes the training progression much slower than with the default ε. Using
η = 0.01 makes the validation loss descend quickly but it later jumps to large
values.
Using η = 0.0001 makes the validation loss smooth but the validation loss never
reaches very low values. It is however not clear that this curve yet has reached
its minimum at the end of training. Maybe using even more training epochs for
η = 0.0001 could decrease the loss further, but this would lead to large training
times.
SGD + Nesterov momentum gives a noisy validation loss with many sharp peaks.
The minimum validation loss is also not very low. Maybe this optimizer can be
improved by tweaking the hyperparameters.
We can conclude that the Adam optimizer with its default parameter values seems
to be a good optimizer for the classification problem in this thesis. It provides
reasonable training times and reaches low losses.

5.7 Final model

The experiments in this chapter has led to a final CNN architecture, optimizer
setting, and set of hyperparameters that seems suitable for the radar data used in
this thesis. These are:

• CNN architecture:
– 4 convolutional layers
– 3× 3 sized filters
– 32 filters in each layer
– No max-pooling layers and no weight decay

• Batch size: 256
• Optimizer: Adam optimizer with the default hyperparameters

The final CNN-architecture is shown in figure 5.4. ReLU is used as activation for all
convolutional layers. All convolutional layers use stride 1 with zero padding so that
the width and height of the input is preserved. The CNN ends with a global average
pooling layer into a fully connected layer with a softmax activation, as described in
chapter 3.
The next step is to train this model and use the early stopping technique to save
the model parameters that gives the minimum validation loss during training. The
models are trained five times because the random starting conditions might lead
to different minima. The saved model with the lowest validation loss is then used
to predict the data samples in the test set to give a final score of the model accu-
racy.

66

5. Model design

Range-doppler map

Convolutional layer
32 filters 3× 3

Stride 1 with zero padding
ReLU activation

Convolutional layer
32 filters 3× 3

Stride 1 with zero padding
ReLU activation

Convolutional layer
32 filters 3× 3

Stride 1 with zero padding
ReLU activation

Convolutional layer
32 filters 3× 3

Stride 1 with zero padding
ReLU activation

Global average pooling

Fully connected layer

Softmax activation

Output

64× 64× 1

64× 64× 32

64× 64× 32

64× 64× 32

64
×

64
×

32
1× 1× 32

1× 1× 4

1× 1× 4

Figure 5.4: The final CNN architecture resulting from the model design-process.
This architecture seems suitable for the radar data in this thesis. The dimensions
of the inputs and outputs for each layer are denoted on the arrows. The CNN has 4
convolutional layers, each with 32 filters of size 3× 3. It has no max-pooling layers.
The output of the final convolutional layer is fed into a global average pooling layer
which provides the input for a fully connected layer with the final softmax activation
giving the output scores.

67

5. Model design

68

6
Classification results

This chapter presents the classification results for the best model design from the
previous chapter. A model is trained from scratch five times and the best iteration
is selected to be evaluated on the test set. The classification results on the test set
are then presented as a confusion matrix. The chapter ends with a discussion of the
classification results.

6.1 Final training-runs

The model design-process in the previous chapter gave us the model settings:
• CNN architecture:

– 4 convolutional layers
– 3× 3 sized filters
– 32 filters in each layer
– No max-pooling layers and no weight decay

• Batch size: 256
• Optimizer: Adam optimizer with the default hyperparameters

We now run five training runs with these settings (with different randomized initia-
tions of the model parameters). Each run is 1500 training epochs long to make sure
that the validation loss has reached its minimum at the end of training. We use the
early-stopping technique to save the parameters that gives the lowest validation loss
in each run.
The results from the five runs are given in table 6.1. The lowest validation loss
obtained in these runs is 0.0874 from run number 1, which is slightly larger than
the previous minimum of 0.085 with the same settings (but the parameters that
gave this minimum were not saved). We actually observe relatively large differences
between the minimum validation-losses from the different runs, which indicates that
the starting condition for the optimization has a significant influence over the re-
sults.

69

6. Classification results

Table 6.1: Results from the final training-runs. The runs use the same model
design, but are initialized with different randomized model-parameters. The lowest
validation loss is achieved in run nr. 1. We see that the difference between the
minimum losses from different runs are relatively large. This shows that the initial
parameter initialization affects the training results.

Run nr. Minimum
validation loss Training time

1 0.0874 13h 32m
2 0.1003 13h 28m
4 0.1059 13h 26m
5 0.1064 13h 37m
3 0.1132 13h 31m

The validation loss and the training loss as functions of training epoch for run num-
ber 1 are plotted in figure 6.1. The training progress behaves much like what we
expect from a well-performing model. The training loss is continuously decreasing
with some noise. The validation loss is slightly larger than the training loss and
decreases until around training epoch 900 where some overfitting starts to happen.
The validation loss is slightly more noisy than the training loss. At the final few
training epochs, we observe a sharp peak in the validation loss. This peak is ac-
companied by a smaller peak in the training loss. This peak is after the point of
overfitting and does not matter for the saved model, but it shows that small update
steps can lead to large jumps in the loss.

0 500 1,000 1,500

0

0.5

1

1.5

Training epoch

Lo
ss

Validation loss
Training loss

Figure 6.1: The training progression for the best run (run nr. 1). The training
loss has an initial quick decrease. After epoch ∼100 it is decreasing steadily with
little noise. The validation loss is more noisy than the training loss and is slightly
higher than the training loss for the large part of the training progress. A minimum
of 0.0874 is reached in the validation loss around epoch ∼900. After this minimum,
the model starts to overfit.

70

6. Classification results

6.2 Performance on test set

The final performance-measure for the obtained model is the performance on the
test set. The saved model from run number 1 is used to predict all the samples in
the test set. These predictions are compared with the true labels to evaluate the
final performance-scores.
The loss evaluated on the test set is 0.0989. This is slightly larger than the validation
loss, but only ∼13% larger. The accuracy on the test set is 96.75%. The true labels
versus the predicted labels are shown in table 6.2 as a confusion matrix. We see
that the model performs well on the range-doppler maps containing interference and
noise jamming, with 99/100 samples for interference and 100/100 samples for noise
jamming correctly classified. Most of the errors arise for the no-jamming and the
DRFM classes, with 93/100 respectively 95/100 samples correctly classified.

Table 6.2: Confusion matrix for the classification results on the test set of 400
data samples. The confusion matrix shows true labels versus predicted labels. The
sum of the diagonal elements is the number of total correct predictions. We see that
most incorrect predictions happen by mixing up instances belonging to classes no
jamming and DRFM.

Predicted class
No jamming Interference DRFM Noise jamming

T
ru
e
cl
as
s No jamming 93 0 7 0

Interference 0 99 1 0
DRFM 5 0 95 0

Noise jamming 0 0 0 100
Accuracy: 387/400, 96.75%

6.3 Analysis of classification errors

Most of the incorrectly classified instances belong to the classes no jamming and
DRFM. We can look at some of these incorrectly classified range-doppler maps to
get an idea of why the model makes the incorrect classifications.
Figure 6.2 shows an incorrectly classified instance from the no jamming-class which
is classified as DRFM. The ground clutter in this range-doppler map is relatively
weak and has a few “peaks”. The peaks in the ground clutter are probably inter-
preted by the model as false targets from DRFM jamming, which can explain the
incorrect prediction. The other incorrectly classified range-doppler maps from the
no jamming-class look similar to this example.
An incorrectly classified instance from the DRFM class is shown in figure 6.3. This
instance is classified as no jamming. We see that no DRFM jamming is visible in
this range-doppler map. The jamming is likely covered by the strong ground clutter.
This makes the incorrect classification of this range-doppler map reasonable.

71

6. Classification results

Range rate

R
an

ge

Figure 6.2: A range-doppler map in the test set belonging to the class no jamming
(resized to 64 × 64). This instance is incorrectly classified as DRFM. A possible
explanation is that the ground clutter has “peaks” that might be interpreted as
false targets by the CNN.

Range rate

R
an

ge

Figure 6.3: A range-doppler map in the test set belonging to the class DRFM
(resized to 64 × 64). This instance is incorrectly classified as no jamming. The
DRFM jamming is not visible in the range-doppler map. It might be covered by the
ground clutter or has disappeared for some other reason.

72

6. Classification results

Another incorrectly classified DRFM instance is shown in figure 6.4. This instance
is also classified as no jamming. The DRFM jamming is visible in this range-doppler
map, but it is weak and located on the border of the map (the lower right part).
Most other DRFM instances in the data set have much more obvious jamming.
The output scores from the model on this sample are ∼0.7 for no jamming and
∼0.3 for DRFM, which indicates that the model shows some uncertainty. The other
incorrectly classified DRFM instances look similar to figure 6.3 and 6.4.

Range rate

R
an

ge

Figure 6.4: A range-doppler map in the test set belonging to the class DRFM
(resized to 64 × 64). This instance is incorrectly classified as no jamming. Signals
that likely are DRFM jamming are visible in the lower right part of the range-doppler
map. These signals are however weak. The weak signals in combination with the
fact that the signals lie on the border of the map provide a possible explanation for
the incorrect classification.

73

6. Classification results

74

7
Conclusion

This final chapter summarizes the main conclusions that can be drawn from this
thesis work. It also suggests further work that can be done within this field.

7.1 Main findings and discussion

The most important finding of this thesis is the fact that it seems possible to achieve
high classification accuracies on radar data using CNNs. In this thesis we reach a
classification accuracy of 96.75% on a test set. A jamming classifier with an accuracy
this high should be useful in real-world applications, possibly to support already ex-
isting ECCM techniques or to provide guidance for radar operators. Further studies
are required to investigate if similar accuracies can be reached on non-synthetic data.
However, the results in this thesis make the prospects promising.
One interesting finding is that many of the classification errors that the model
makes on the test set are errors that also a human likely would make. This implies
that the CNN model looks for features in the image similar to how a human does.
Even though these particular errors makes the achieved accuracy lower, they give
a valuable indication of how we can expect a CNN to behave when used for range-
doppler maps. If it is impossible for a human to make a certain classification, it is
probably also impossible for a CNN.
The model-design process proves to be a time-consuming, and in some regards diffi-
cult task. There are many hyperparameters that can be tweaked and it is difficult to
find optimal values for all of them, especially when the models require long training-
times. The results are however not very sensitive to all hyperparameters. We note
that low losses are achieved with many different types of CNN architectures. The
model design that we finally settle for is a CNN with kernel size 3×3, 4 convolutional
layers, 32 filters in each layer, and with no max-pooling layers. Although, we can
probably reach similar final classification-accuracies with architectures other than
this one.
The final training-runs from which we choose the final model are made with the
same model design but with different parameter-initializations (sampled from the
same distribution). The results from these runs show that the parameter initializa-
tion impacts which minimum loss is reached during training. The results on which
we base the model design-decisions are also dependent on randomized parameter-
initializations. However, during the design process we only run each model once

75

7. Conclusion

(mainly because of time limitations). Going through the same model design-process
again with new samplings of the initial parameters for each model could therefore
maybe lead to settling for a different final model-design. It is probably better to
run each model a few times for more robust results.
There are also hyperparameters or model designs that are not at all studied in this
thesis, e.g. different distributions for parameter initializations, different activation
functions, and combinations of convolutional layers with different kernel sizes and
number of filters. There are many ways the model design-process could be been done
differently, which possibly could lead to different final results. The results from the
model design-process in this thesis should however give a good general indication of
what kind of models are well-suited for the radar data that we study. For example
using a CNN with only one or two convolutional layers is likely not enough for
good results, no matter how well we tune all other hyperparameters. Using many
more convolutional layers than three or four probably also does not lead to good
results.
Apart from the model design-process, a large part of the work in this thesis is
centered around generating labeled data. Machine-learning methods are data driven,
so it natural that much time of a machine-learning study is spent on work related to
data management. The main challenge with regards to data for this thesis were the
parameter selections for the data generation. The parameters need to be chosen both
so that different data classes are distinguishable and so that the data is relatively
realistic. If the synthetic data is too disparate from real data, the results do not
provide a good indication of how a similar model can perform on real data.

7.2 Further work

There is a lot of potential for further work following this thesis. Some examples are
given in the sections below.

7.2.1 Transferring a network trained on synthetic data to
real-world data

A radar-jamming classifier is only useful in real-world applications if it works on real-
world data. Training a model that works on real likely requires a labeled data-set
of real-world data. Unless this kind of data set already exists, these labels probably
need to be added manually, which can become a time-consuming task.
One way to get away with a smaller data set of labeled real-world data is to first
pre-train a model on synthetic data which are generated to resemble the real-world
counterpart as much as possible. The model can then be fine-tuned on the real-
world data-set. The fine-tuning process can likely benefit from a smaller learning
rate because we expect the model parameters reached in the pre-training phase to
be somewhat close to a good parameter-set for the real-world data.

76

7. Conclusion

7.2.2 Analysis and improvements of computational times

The computational times required for both training and using the model in this thesis
are of great interest. Reducing the training times can allow us to train more models
and therefore more easily tune hyperparameters. A significant improvement to the
training times obtained in this thesis can likely be achieved through parallelization
on a GPU. The model training in this thesis is all carried out on a CPU. Training
of neural networks has great potential for parallel computing, and can thus benefit
from the large number of cores on a GPU [4].
The computational requirements for making predictions are very low compared to
training times [9]. An analysis of computational times required for making model
predictions in a real-world application can however still be of significance. In a real-
world application, predictions need to made in real time on radar hardware, where
other signal processing is already taking place. Any further added computational
task need to be ensured not to overload the capacity of the hardware.

7.2.3 Using additional input-parameters

The model in this thesis only uses the range-doppler map as input data. One option
is to use additional parameters as inputs to the network. Such parameters could
be e.g. the PRI and the direction of the radar main-lobe for each range-doppler
map. These parameters could provide the network with additional information that
could simplify the classifications. Additional parameters can be added to the output
features of the CNN as inputs to a final network of fully-connected layers as shown
in figure 7.1.

Range-doppler map CNN

Features from CNNAdditional parameters

Network of fully connected layers

Output

Figure 7.1: Additional parameters can be combined with image features from
a CNN. This can be done by feeding both the image features and the additional
parameters to a network of fully-connected layers.

77

7. Conclusion

7.2.4 Using complex data

When constructing range-doppler maps, only the amplitude data of the Fourier
transform is used. The output of a Fourier transform is actually complex with
information about both the signal amplitude and phase at given frequencies. The
model in this thesis uses only the amplitude data and therefore ignores any phase
information. One option is to instead feed complex data to the CNN. The additional
phase information can possibly simplify the classifications.

7.2.5 Finding jammed regions in the range-doppler map

A useful addition to classifications of jammed range-doppler maps would be to detect
the regions of the map in which jamming occurs. This problem falls under the cate-
gory of image segmentation. Image segmentation is the problem of assigning labels
to each pixel in an image, where the pixels sharing a label also share some charac-
teristics. A modern method that can be used for this is Mask R-CNN [22].

7.2.6 Using time-dependent data

In reality, radar data are part of time-dependent events. Information about previous
states can likely be used to make predictions about the current state. A future goal
can be to use a machine-learning model which includes some form of time-analysis.
Methods for this kind of machine learning are however not very far developed.
Modern machine-learning techniques for visual recognition are generally limited to
analysis of still images.

78

Bibliography

[1] HD Griffiths, Christopher Baker, and David Adamy. Stimson’s introduction to
airborne radar. Scitech Pub Incorporated, 2014.

[2] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foun-
dations of statistical natural language processing. MIT press, 1999.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian
Kingsbury, et al. Deep neural networks for acoustic modeling in speech recog-
nition. IEEE Signal processing magazine, 29, 2012.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211–252, 2015.

[6] Samuele Capobianco, Luca Facheris, Fabrizio Cuccoli, and Simone Marinai. Ve-
hicle Classification Based on Convolutional Networks Applied to FMCW Radar
Signals, pages 115–128. 01 2018.

[7] W Carrara, R Goodman, and R Majewski. Spotlight Synthetic Aperture Radar:
Signal Processing Algorithms,(ser. Artech House remote sensing library). Nor-
wood, MA, USA: Artech House, 1995.

[8] Mirabel Cerqueira Rezende, Inácio Malmonge Martin, Roselena Faez, Marcelo
Alexandre Souza Miacci, and Evandro Luıs Nohara. Radar cross section mea-
surements (8-12 ghz) of magnetic and dielectric microwave absorbing thin
sheets. Revista de Fısica Aplicada e Instrumentaçao, 15(1):24–29, 2002.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[10] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

79

Bibliography

[12] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[13] Karpathy. Cs231n, convolutional neural networks for visual recognition. https:
//github.com/cs231n/cs231n.github.io, 2019.

[14] Keras - deep learning for humans. https://github.com/keras-team, 2019.
[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.
[16] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.
[17] Max Kuhn and Kjell Johnson. Applied predictive modeling, volume 26. Springer,

2013.
[18] Hamish Meikle. Modern radar systems. Artech House, 2008.
[19] WH Press, SA Teukolsky, WT Vellerling, and BP Flannery. Numerical recipes

in c: The art of scientific computing, 1999.
[20] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256, 2010.

[21] Tensorflow - an end-to-end open source machine learning platform. https:
//github.com/tensorflow, 2019.

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

80

https://github.com/cs231n/cs231n.github.io
https://github.com/cs231n/cs231n.github.io
https://github.com/keras-team
https://github.com/tensorflow
https://github.com/tensorflow

	List of Abbreviations
	Introduction
	Background
	Jamming in range-doppler maps
	Machine learning on radar data
	Ethical and societal aspects
	Aim
	Scope and limitations
	Thesis overview

	Airborne radar and electronic countermeasures
	Fundamentals of the pulse-doppler radar
	Pulse-repetition interval
	Windowing
	Pulse compression
	Processing signals into a range-doppler map
	Radar cross-section
	Ground clutter

	Electronic countermeasures
	Noise jamming
	Digital radio frequency memory
	False targets
	Reverse pulses and fast sweep
	Pulse repetition
	Non-coherent pulse-repetition

	Interference
	Electronic counter countermeasures

	Neural networks
	Machine learning and supervised learning
	Model parameters and hyperparameters
	Overfitting

	Basic elements of neural networks
	Activation function

	Convolutional neural networks
	Convolutional layer
	Pooling layers
	Classification layer
	Architecture summary

	Setting the network parameters
	Loss function: categorical cross-entropy
	Training using back propagation
	Stochastic gradient descent
	Adam optimizer

	Training data, validation data, and test data
	Regularization in a convolutional neural network
	Weight decay
	Monitoring validation loss

	Convolutional neural networks for radar data

	Generating synthetic radar-data
	Obtaining training data
	The amount of training data
	Simulation software
	Data classes and parameter selections
	Class: No jamming
	Class: Interference
	Class: Digital radio frequency memory
	False targets
	Reverse pulse
	Fast sweep
	Pulse repetition
	Partial pulse-repetition
	Non-coherent pulse-repetition

	Class: Noise jamming

	Using synthetic data to train convolutional neural networks

	Model design
	General considerations and method
	Image resizing and normalizing
	Smoothing the validation loss
	Finding a set of layers
	Finding batch size
	Finding optimizer settings
	Final model

	Classification results
	Final training-runs
	Performance on test set
	Analysis of classification errors

	Conclusion
	Main findings and discussion
	Further work
	Transferring a network trained on synthetic data to real-world data
	Analysis and improvements of computational times
	Using additional input-parameters
	Using complex data
	Finding jammed regions in the range-doppler map
	Using time-dependent data

	Bibliography

