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Reconfigurable-Rate Product Decoders for Rate-Adaptable Optical Networks
VIKRAM JAIN

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Optical communication systems use forward error correction (FEC) to reduce the
bit-error rate (BER) of the received information bits. The legacy optical links were
designed to operate at fixed data rate and never changed parameters during the
course of their operation. However, recently rate-adaptable optical systems which
can vary parameters over time have gained considerable attention in the research
community. These systems can vary their parameters based on the traffic require-
ments or operator decision. To cater to such systems, FEC schemes which can vary
code rate and coding gain are required. For example, if the transmission channel
noise is low, lower coding gain is required which means that the code rate can be
increased. In this work, we introduce a multi-rate product decoder that can operate
in different modes governed by the code rate and the decoding iterations. The im-
plemented multi-rate product decoder provides an estimated net coding gain range
of 9.96-10.46 dB at a post-FEC BER of 1071, The decoder is synthesized in a 28 nm
FD-SOI process technology and provides high throughputs in excess of 300 Gbps,
reaching 1.6 Tbps for one mode of operation. It also exhibits very low decoding
latencies of below 100 ns for all modes of operation. With an efficient clock gating
strategy, the power dissipation incurred is below 1 W which corresponds to an energy
dissipation per information bit of 1.5 pJ/bit.

Keywords: Forward error correction, Rate-adaptive optical communication systems,
Product decoders, multi-rate FEC, coding gain, High-throughput systems.
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1

Introduction

Optical communication, in the last few decades, has seen a dramatic increase in
the throughput with the development of improved optical devices and technologies.
Throughput of 10 Gbps and beyond has become prevalent in today’s fiber optical
communication systems [1]. However, at such data rates, these systems are marred
by several optical impairments and require techniques like forward error correction
(FEC) to compensate for the degradation of optical signal-to-noise ratio (OSNR) [2].
When used in optical communication systems, the FEC chips are required to pro-
vide high throughput, low post-FEC bit-error-rate (BER) below 107'* and high net
coding gain® [3]. Introduced in wavelength-division multiplexing optical systems to
compensate for amplified spontaneous noise caused by optical amplifiers [4], the first
FEC schemes were termed as the first-generation and provided net coding gain in
the range of 6dB [3]. As the throughput scaled to 10 Gbps, other optical impair-
ments such as nonlinear effects, chromatic dispersion and polarization mode disper-
sion started gaining dominance over other fiber impairments [5]. Second-generation
FEC schemes were able to combat these types of impairments and provided a net
coding gain of around 8 dB [6]. Today, the throughput and transmission distance
for optical systems have become much larger and with that new requirements are
being administered. Optical transparency or elimination of optical signal regenera-
tion using opto-electronic devices is becoming a primary constraint. With the lack
of solely optical devices for error correction, FEC chips are providing transparent
end-to-end systems with the third-generation FEC schemes having coding gain of
10 dB and beyond [7].

Traditionally, wireline and wireless communication systems were designed to
operate at a specific information bit rate and never changed over the course of their
lifetimes unless replaced by another device [8]. Due to their fixed-rate design, sev-
eral of their parameters, such as the code used in FEC, the modulation scheme or
constellation and the power or strength of the transmitted signal, remained fixed. A
detailed description of such communication systems and their parameters is intro-
duced in chapter 2. In wireless communication systems, however, this has changed
over the years and the fixed systems are being replaced with adaptive technolo-
gies capable of adapting transmission parameters based on the current state of the
channel. The adaptivity is introduced to increase the reliability of transmission by
lowering the bit rate. This trend has not caught up at the same pace for the opti-
cal communication systems owing to a more static transmission medium. However,

!The net coding gain is defined as the improvement in signal-to-noise ratio over an uncoded
transmission for a certain bit-error rate taking into consideration the redundant bits added for
decoding operation.



1. Introduction

there has been a gradual shift towards dynamic transmission system in optical net-
works with the concept of elastic optical networks (EON) garnering a lot of interest
in the research community.

The EON paradigm has become the engine driving new flexible and adaptive
optical networks which can address the challenge of transmission of data with vary-
ing bandwidth demands and reliability [9]. These EON networks are implemented
using flexible transceivers which can adapt their parameters based on the channel
conditions. Some important parameters that are being considered for flexibility in-
clude: modulation formats (BPSK, QPSK, 16-QAM), data rate, and FEC code rate
(ratio of number of information bits to total block length). In this work, we focus on
the last parameter, i.e., the FEC code rate which can be made flexible by varying
the overhead of the code (OH), the ratio of number of parity bits to number of
information bits. Ideally, variation in overhead translates into an improvement in
net coding gain at the cost of lowering the throughput [10].

1.1 Problem statement and Delimitations

FEC chips are used in optical communication systems to reduce the post-FEC BER
below 10! which provides protection against several noise sources in optical fibers.
FEC chips also reduce the required signal transmission power as the errors can be
corrected at the receiver and the signal does not require high transmission power to
overcome the channel noises. The future optical networks are predicted to become
flexible with the ability to vary their parameters based on the channel conditions.
Thus, FEC chips used in these flexible optical networks are also required to support
flexibility in the form of variable code rate or OH. These next generation FEC chips
should also be able to support the increasing throughput requirements of the optical
networks. At the same time, the FEC chips should be energy-efficient with low
energy dissipation per information bit such that they do not become the bottleneck
in terms of energy dissipation in the optical communication system.

1.2 Related Works

We present some of the works that have been published in the topic of flexible-rate
FECs and which are relevant to our understanding. Zou et al. [11] presented a rate-
adaptive FEC scheme based on low-density parity check (LDPC) codes implemented
on a field-programmable gate array (FPGA). The scheme is claimed to achieve a net
coding gain of 11.83 to 12.25dB at a post-FEC BER of 107! using shortening of
LDPC codes to obtain an overhead range from 25 to 42.9 %. However, the through-
put of the design is too low for optical communication and the power dissipation
is above 1.2 W. Sugihara et al. [12] developed a rate-adaptive FEC scheme by con-
catenating an LDPC code and a Bose-Chaudhuri-Hocquenghem (BCH) code. The
design entails six code overheads in the range of 25.5 to 149.5 % obtained by using
row-splitting for LDPC code and shortening for BCH code. The net coding gains
reported for these code rates are from 12.0 to 13.5dB with a throughput range from
50 to 100 Gbps. However, these results are obtained in simulation and no hardware

2



1. Introduction

implementation is reported. Gho et al. [13] proposed a rate-adaptive modulation
and FEC scheme with serially concatenated Reed-Solomon codes and hard-decision
decoding using shortening and puncturing to attain variable code rates. The de-
sign also uses an inner repetition code with soft combining to provide further code
rate variation. Simulation results suggest a throughput of maximum 200 Gbps with
highest net coding gain of 7.6dB. Rasmussen et al. [14] demonstrated that rate-
adaptive coding can provide power reduction of up to 75% by reducing code rate
during periods of low load. The result sets an important precedence in using FEC
chips for reduction in power consumption.

1.3 Approach

The works described in section 1.2 are a class of rate-adaptive FEC chips which
have utilized soft-decision decoding which results in a more complex design with
target throughputs that are lower than design considerations for fiber optic com-
munication systems. Considering that our multi-rate FEC design is proposed to
provide high throughputs, we have chosen hard-decision based decoders [15]. The
multi-rate decoder implementation proposed in this work consists of twelve modes of
operation defined by the selection of overhead and decoding iterations. Overheads
from 21 to 40 % using shortening of component codes are considered. The selection
of overhead is based on the requirement of the system to provide throughputs of
around 400 Gbps. It can also be noted that overheads above 60 % have been shown
to provide diminishing returns in terms of coding gains [16]. The number of decod-
ing iterations considered range from three to five. We do not consider extending the
number of Iterations beyond five since it provides diminishing return in terms of net
coding gain and also lowers the information throughput [7].

To familiarize the reader with the concept of error-control codes, specifically
FEC codes, in chapter 2 we will first introduce the theory behind channel codes
and the methods used for encoding and decoding of these codes. In chapter 3, we
will deal with the implementation strategy employed for the Reconfigurable-Rate
product decoder. In chapter 4, we introduce the evaluation method used in this
work. Followed by the preliminary results obtained from the implementation and
performance analysis in chapter 5. Finally, a conclusion will be drawn at the end of
the report.
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Introduction to Coding Theory

In this chapter, an introduction to the theory and terminology used in channel coding
is provided. We begin with the introduction to the principle of digital communica-
tion, error-control, forward error-correction, finite fields, followed by a deeper un-
derstanding of Bose-Chaudhuri-Hocquenghem (BCH) codes and their encoding and
decoding process and finally an introduction to product-code memory and product
decoding.

2.1 Error-Control Coding

Digital communication systems are ubiquitous in a person’s day-to-day activities
and are used in technologies like cell phones, digital television via satellite or cable,
internet through wired (Ethernet, optical fiber, etc.) and wireless (WiFi, WiMax,
etc.) media, data storage including optical drives and flash drives. In general, digital
communication systems consist of a source transmitting data over a channel to a
destination, as shown in Fig. 2.1. The transmission can occur from one location to
another (space domain) or it can occur by storing the data at one time and retrieving
it at some time later (time domain) [17,18].

CHANNEL

SOURCE DESTINATION

Figure 2.1: Point-to-point digital communication system.

An ideal communication system is characterized by reliability of transmission,
i.e., the probability of obtaining the exact data, transmitted by the source, at the
destination is 1. In reality, the transmission medium or channel is not a perfect
medium but it introduces noise into the transmission data. If the strength of the
noise is enough to alter the value of the original data stream, the destination will re-
ceive erroneous data. Shannon formalized this communication problem and derived
a framework shown in Fig. 2.2 [19]. A source encoder converts the incoming infor-
mation bits either into a different form or into a more efficient stream by removing
redundant bits, i.e., compression. The channel encoder then adds redundancy to the
data stream. The resulting data stream is now considered to be coded. When the
channel decoder receives the coded data symbols it uses the redundant bits to de-
tect and correct some of the errors. This addition of redundancy to the information
symbols is called error-control coding or forward error-correction (FEC) [20].
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SOURCE DESTINATION
SOURCE SOURCE
ENCODER DECODER
CHANNEL CHANNEL
ENCODER CHANNEL DECODER

Figure 2.2: Block diagram of digital communication system formalized by Shan-
non.

FEC is widely used in digital communication systems and derives its name
from the facts that coding of data stream is done prior to the transmission and that
any bit errors occurring due to channel noise are corrected at the receiving end of
the system. The strictly forward nature of FEC provides higher channel-utilization
efficiency, compared to protocols based on re-transmission, such as automatic repeat
request (ARQ), limited only by the code rate of the FEC. On the other hand, one of
the shortcomings of FEC is that if the bit errors are higher than the error-correction
capability of the decoder then un-corrected errors are propagated in the decoded
data [21].

Selection of FEC code is dependent on several parameters such as net coding
gain (NCG), type of channel error, error-correction capability, code rate, code length,
complexity, and throughput. The NCG is an important parameter which provides an
estimate of transmitted signal power reduction when using coding. NCG is defined
as the reduction in the ratio of energy per information bit (£;,) to the noise power
density (Ny) — known as Ej,/Ny — when compared to an uncoded system. FEj/Nj
is estimated at a particular bit-error rate (BER), where BER is the ratio of number
of bit errors to the number of transmitted bits in a certain time. Type of channel
errors also plays an important role when selecting the FEC scheme. In general,
there are broadly three error types: random errors, burst errors and byte errors.
Random errors, as the name suggests, occur in an unpredictable manner across the
data stream. Burst errors occur over a set of information symbols. Finally, byte
errors are a subset of burst error which occur over a byte of data symbols. These
errors can occur independently or a combination of two or three errors can also
happen. Each error type has an equivalent FEC scheme for effective detection and
correction of errors, and one scheme for resolving a type of error may not be effective
for another type of error [22].

Error-correction capability, code rate, complexity and throughput are param-
eters that define the implementation of the design and have to be considered for
trade-off to obtain the best possible design. For example, increasing the error-
correction capability will decrease the code rate and provide better coding gain but
at the same time increases the complexity of the decoder. Increase in complexity
increases the area of the decoder which in turn increases the power consumption.

6



2. Introduction to Coding Theory

Therefore, the selection of FEC scheme requires finding a good trade-off of the above
parameters to attain high coding gain at high throughput and low complexity.

2.2 Modelling Channel Coding

A simple model of a transmission channel is shown in Fig. 2.3. A binary message u,
comprising of k£ bits and denoted by u = uy, us, ..., uy is sent to the channel encoder.

— Y S| ENCODER —E° :q_\

Figure 2.3: Model of channel coding showing the encoder converting information
message u to codeword c. In the transmission channel, channel noise e is added to
transmitted codeword. At the decoder the received information data, y, is decoded
and converted back to the original codeword ¢ or the message .

Error-correcting codes can be divided into two sub-classes: block codes and
convolutional codes. Block coding is performed on incoming information blocks
independently and is a memoryless operation, i.e., the codewords are independent
of each other. On the other hand, convolutional coding is a memory-based operation
in which the output of the encoding depends not only on the current information
bits but also on the previous information or codeword bits [21].

In block codes, using some rule, the channel encoder converts the received
message into a binary codeword, ¢ of length n bits and denoted by ¢ = {cy,c2,...,Cn}
such that n > k. The number of redundant bits added to the message is, thus, n—k:
called parity or check bits. The resulting code rate of such FEC is then denoted by
R, where R = k/n [21].

The codeword is then transmitted over the channel and at the receiver a binary
message of length n is received which is denoted by y, y = {y1,¥2,...,¥n}, and is
called the received vector. This received vector is then decoded by the channel de-
coder and translated either to the transmitted codeword ¢ to produce the estimated
codeword ¢ or to the transmitted message u to produce the estimated message .
If the channel is noiseless then the received codeword y is equal to the transmit-
ted codeword c. In a noisy channel, noise is added to the transmitted codeword to
produce the received codeword as given by y = ¢ + e, where e is the channel error
vector and is given by e = {e;, e, ..., e, } [21].

Decoding of the received codeword can be divided into two classes: hard-
decision (HD) and soft-decision (SD) decoding. HD decoding is a straightforward
technique in which the decoder decides whether each bit of the transmitted code-
word was a ’0” or "1’ in the received vector y. On the other hand, SD decoding entails
complex algorithms which exploit reliability to decide each bit of the received vec-
tor from a multi-valued set of quantization levels. SD decoding can provide higher
coding gains than HD decoding but is complex to implement. In this work, our aim

7
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is to achieve high throughput and low power consumption, so henceforth, we will
consider only HD decoding [21].

2.3 Finite Fields

Finite fields or Galois fields are an algebraic concept that is commonly used in
error-control codes. A field is a set of finite elements on which addition, subtrac-
tion, multiplication and division can be applied such that the resulting element
of the above operation is an element of the same set, assuming that addition and
multiplication are associative, commutative and distributive [20].

A Galois field, GF(q), is a type of algebraic field in which the value of ¢ must
be a prime number or a power of prime number. When applied to binary codes, the
Galois field considered is also a binary field, GF'(2™), where the elements of the field
are binary elements of size m. The primitive element in the Galois field is denoted
by a and each nonzero element 3 of the field can be defined as an integer power of
a such that, 8 = o', where 0 < i < 2™ — 2 [20]. The primitive element « is a root
of an irreducible polynomial in the Galois field, called the primitive polynomial and
represented by p(z), such that p(a) = 0.

Two important operations that will be performed on the elements of the GF
during decoding are addition and multiplication. Addition and multiplication of
elements in GF(2) are modulo-2 operations, which can be further simplified to
XOR operations (addition) and AND operations (multiplication). An example of
modulo-2 operation applied to addition and multiplication is shown in Table 2.1.

Table 2.1: Modulo-2 addition and multiplication.

dlol1 ®Jol1
0 |01 o [ofo
1 (1]0 1|01

Elements of a Galois field are represented in three possible forms; power, poly-
nomial and vector. A GF table consists of the elements of GF(2™) in all the three
representations. The GF table begins with the element o corresponding to 1 in
polynomial representation and binary "1’ in vector representation. The first m con-
secutive elements of the table are then populated by shifting the bit "1’ to the left
until the MSB of the vector is "1 at the my, element (o™ !). The (m+ 1), element
a™ is calculated by using the primitive polynomial and its property that the prim-
itive element is a root of the primitive polynomial, p(ar) = 0. The element a™*! is
calculated by multiplying a with its predecessor a™. This process continues until
all the required elements of the GF' table are populated.

A simple example of generating the elements of a GF' table is presented in the
text to follow. Let us design a GF table for a GF(23) field. Here, m = 3 and the
primitive polynomial defined for this field is given by p(a) = 1 + a + o®. The first
element of the GF table is a® = 1 or 001 The second element, obtained by left
shift of the binary '1’, is ‘010’ or a!. Similarly, the third element is a2 or 100’

8
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To obtain the fourth element or a?

below,

, we will use the primitive polynomial as shown

pla)=14+a+a®>=0
— o’ =1+a

Now, to obtain the fifth element we multiply o with o as shown below,

044204'043

=a-(1+a)
=a+a’

This multiplication of o with its previous element continues till the last element
of the table is obtained.

a =0«
=a-(a+a?)
= o’ +a?

=1+a+a

066206'065

=a-(1+a+a?)
=a+a’+a?
=a+a’+1+a
=1+a?

In terms of vector representation, bitwise XOR and AND operations are per-
formed to obtain the o™ element and beyond. For example,

d=1+a
Vector : 001 ® 010 = 011

oz4:oz—|—oz2

Vector : 010 ® 100 = 110

The GF table obtained for GF(2?) is shown in Table. 2.2.
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Table 2.2: GF table for GF(2?) elements.

Power | Polynomial | Vector
al 1 001
al « 010
o? a? 100
a? 1+ a 011
ot a+ o? 110
o’ l+a+a?| 111
al 1+ a? 101

2.4 BCH Codes

BCH codes [23] are a class of random error-control cyclic codes (cyclic shift of a
codeword gives another word belonging to the same set of codewords) that are used
in many error-control coding systems due to their efficiency in correcting random
errors and also due to their simpler decoding process using an algebraic method
known as syndrome decoding. A BCH code can be expressed by the set of parameters
BCH(n, k, t), where n is the block length, & is the number of information bits, and ¢
is the number of errors that can be corrected. Another important parameter is the
minimum distance, d, which is the distance between two codewords or the number
of positions where two codewords differ. Primitive narrow-sense binary BCH codes
are defined using a primitive element «, where « is an element of the Galois field,
GF(2™), with m being a positive integer. For these codes, their parameters are
related as,

n=2"-1
n—k=m-t
Amin > 2-t+1

where n is the block length, k is the number of information bits, ¢ is the number of
errors that can be corrected and d is the minimum distance.

These codes are also called t error-correcting BCH codes. Other important pa-
rameters of interest include code rate, defined as the ratio of number of information
bits to the number of bits in the code block, R = %, and the overhead defined as
OH=7 -1

2.5 Encoding of BCH Codes

Encoding of a linear block code such as BCH codes can be performed by using a
generator matrix, GG, of the code. The incoming message is multiplied, modulo-2,
with the generator matrix to form the code.

c=u-G (2.1)

10



2. Introduction to Coding Theory

where u is the message of length k and c is the resulting code of length n.

2.6 Algebraic Decoding of BCH Codes

As shown in Fig. 2.4, BCH decoding involves three major phases; calculate syn-
drome, solve key equation and locate error. Syndromes reflect the presence of errors
in the received data bits and are used to solve key equation using an error-locator
polynomial. This polynomial is then fed to the Chien search, which computes the
roots of the polynomial by substituting the primitive elements o of the Galois field,
where ¢ is an integer from 0 to n, into the polynomial. The roots of this polyno-
mial represent the error locations and in the next step the bit at these locations are
flipped to correct the error [21].

»| synoroME | | SOwEKey | ] CALCULATE | | ERROR

> >1ERROR LOCATION[> —>
CALCULATION EQUATION CORRECTION
Q (CHIEN SEARCH)

> BUFFER

Figure 2.4: Algebraic decoding of BCH codes.

2.6.1 Syndrome Calculation

Syndromes indicate the presence of one or more errors in the received codeword. A
value of '1” in the syndrome indicates an error, but the location of the error cannot
be computed from the syndrome. For finding the location, the syndromes are fed
into the key-equation solver block. Syndromes for linear block codes are calculated
using the following equation,

S=y-H" (2.2)

where S = {S1,Sa, ..., Sa¢} is the syndrome vector, y is the received vector and H
is the parity check matrix of the code with H” representing the transpose. For a
t-error correcting code, a total of 2t syndromes are required to be calculated.

The parity check matrix, H, for a t error-correcting code is as shown below,

11
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[ qnt a2 . ad? a1
aQ(nfl) a2(n72) ot a? 1

H= |1 30=2) = o6 o3 1
20D Q2D g g2 )

Each element of the syndrome, 5; is calculated using the following equation,

Si=yla") =yo+yi-a' +yo- o +y,y - (1<i<2t)

We defined in section 2.2, the received codeword as a modulo-2 addition of
codeword and error vector, y(x) = c(x) + e(z). Substituting this in the above

syndrome calculation we get,

S; = c(a’) + e(a?)

By definition of parity check matrix, codeword multiplied with H is always
equal to zero and thus the above equation becomes,

S; = e(a’)

Assuming that v (v < ¢) number of errors have occurred in the received code-
word at the positions given by ji, jo, ..., Ju, the error polynomial can then be repre-

sented as:

—p. N1 .yl o pde
e(x) =ej -2 +ej -2+ . +ej T

Thus,

Si — ejl . O/(jl) + 6]'2 . O/(]ﬁ) + ...+ ejv . ai(jv)
=g (@) g () 4 e, (o)
The 2t syndromes are, thus, calculated as,
S1= 5 (@) g (0F) + b, (o)

S = i (@) e (@)t e, (@)

Sz =ej - () +ej, - () + ... + e, - (@)

S = €5 - (1) ey (@)% + ey, - () (2.3
For binary BCH codes, the elements of the error vector are essentially 1. The
set of equations shown in eq. 2.3 can be simplified further with only a/t, a2, ..., a9

as the unknowns.
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2. Introduction to Coding Theory

2.6.2 Key-equation Solver

The 2t syndromes form a system of linear equations or key-equations shown in
eq. 2.3. A solution to the equations will provide the error location. However,
solving such large set of equations, especially when ¢ is large, becomes a tedious
process. Instead, the equations are solved indirectly by using a polynomial whose
coefficients are derived from the syndromes. This polynomial is called an error-
locator polynomial and is denoted by A(z) whose degree depends on the value of ¢.
The roots of the error-locator polynomial are the reciprocals of a/t, a2, ... adv.

Mz) = Mt 4+ . 4 Aoz Mz + Ao (2.4)

Several algorithms can be used to find a solution to the key-equations, by
forming the error-locator polynomial, such as Euclidean, Berlekamp-Massey and its
optimized forms. A more simpler algorithm used in high-throughput systems is the
Peterson algorithm [24].

Peterson Algorithm

The Peterson algorithm is a non-iterative approach for computing the error-
locator polynomial [24]. Syndromes and the coefficients of the error-locator poly-
nomial are related to each other by Newton’s identity and a resultant system of
linear equations are derived from this property [25]. The system of equations can
be succinctly expressed in a matrix form as,

1 0 0 0 ... 0 o | [MN] [ =5 |
S, S 1 0 ... 0 0 Ao — S,
Sy Ss S, S ... 0 0 |-|[x| =] —5s
|Sor—2 Sai—g Sa—a So—s ... So—y Sz—w—1| [Mv] | —S2—1)
— A.\=S (2.5)

Initially, the value of v is set to ¢t and the matrix A is constructed. If ¢ errors
have occurred then the determinant of A will be non-zero and in that case, eq. 2.5
is solved. If the determinant is zero, then fewer than ¢ errors have occurred and the
last two rows and two rightmost columns of the matrix A are deleted. The same
procedure is repeated till the determinant is non-zero and then eq. 2.5 is solved to
derive the coefficients, as shown in Fig. 2.5.
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Compute S from y

Construct A

Y

No
|A] = 0? Solve AA =S

Yes

Delete last 2 rows/
columns in A

Figure 2.5: Flowchart for Peterson’s algorithm used to generate error-locator poly-
nomial using syndromes.

For smaller values of ¢, the solution is straightforward as shown in the results
below [25].

Single error-correction

=1
)\1 = Sl
Double error-correction
Ao =1
)\1 == Sl
S5+ 53
Ay = —— =
2 S,
Triple error-correction
N =1
)\1 - Sl
512 - S3+ S5
A= —(G——3—
Ss + S5

)\3253+S?+51'>\2
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Four error-correction

A =1
>\1 = Sl
S1(S7 + S7) + S3(S7 + Ss)
27 S5(ST+ Ss) + Si(ST + S5)
A3 =S3+ S5+ 51 Ao
S-S54 S5+ (S7+S3) - As
S1

A

Inverse-free Peterson algorithm

The Peterson algorithm shown in the previous section requires an inverse (di-
vide) operation which makes the key-equation solver complex to implement in hard-
ware. A reformulation of the equations obtained from Peterson’s algorithm can
be done by multiplying the equations of the coefficients with their denominator on
both sides [26]. This eliminates the division operation and reduces the complexity
significantly.

Triple error-correction

Ao =S} + 53

A =51 Ao

Ay =57+ S5+ 55

A3 = A5+ 51 Ay (2.6)

Four error-correction

Ao = S3(S7 + S5) + S1(S7 + S5)

A =51 X

Ay = S1(S7 + S7) + S5(S7 + 5)

Ay = Si S5+ 828, + S5(S% + 52)

Ay = S3(ST 4 57) + S3(ST + Sy - S2 4 S7) + S5(S) + 5% - S5+ S5) (2.7)

2.6.3 Chien Search

The roots of the error-locator polynomial are calculated using a commonly used
algorithm called Chien search [27]. As stated earlier, Chien search computes the
roots of the polynomial by substituting the primitive elements o of the Galois field,
where i is an integer from 0 to n — 1, into the error-locator polynomial A(z). The
element o' is a root of the polynomial if A\(a) = 0, where i represents the position
of the error.

To demonstrate the working of Chien search algorithm, let us assume that
BCH(15,7) with ¢ = 2 is used. Let us also assume that the process of key-equation
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2. Introduction to Coding Theory

solver has generated the error-locator polynomial based on the received codeword as
A(x) = 1+ a®z + 2% The algorithm starts by substituting  with the first element
of Galois field, GF(2%), a® = 1 into the polynomial.

M) =1+a" 1+12
=1+a+1

— o3

Since A(1) # 0, the first element is not the root of the equation. This process is
repeated by substituting a, 2, ..., o'* into the polynomial and the roots are obtained
at a* and o'l

)\(a4):1+a13-0¢4+0¢8
=1+a'"+ab
=1+a"” -a®+a®
=1+a*+1+0a°
=0

Note: Addition in GF is a modulo-2 or XOR operation, so addition of similar
element is 0. The values of o' is derived from the GF table.

/\(Q{H) -1 +O[13 . Oéll +a22

=1+a* +a”
=1+a% -’ +a'-a”
=1+a’+a’
=l+a+a®+1+a+a?
=0

Thus, there are errors at the positions 4 and 11 of the received codeword. A
simple bit flip at these positions is then used to correct the error.

2.7 Varying Code Properties

The overhead (or code rate) of component codes can be varied by using the following
methods [22]:

o Shortening : Process of removing some information bits from the codeword
during the encoding process. The removed bits are then never transmitted
over the channel. The information bits can be removed either at the MSB or
the LSB, keeping the number of parity bits intact. Shortening results in an
increased overhead from the original code—the mother code. It is well known
that by increasing the code overhead, coding gain can be increased at the cost
of throughput [28]. The shortened BCH codes are denoted by the parameters
ns =n — s and ky; = k — s, where s is the number of bits shortened.
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e Lengthening : Process of introducing additional information into the code-
word, keeping the number of parity check bits unchanged. The resulting code-
word is represented with parameters n; = n + ([ and k; = k + s. Lengthening
lowers the overhead, decreasing the coding gain but increasing the information
throughput.

o Extending : Extending the code means additional bits are introduced to the
parity check bits. The resulting code are represented with n, = n + e and
k. = k. Extending increases the overhead and improves the coding gain.

o Puncturing : Process of removing parity bits and substituting erasures. Punc-
turing decreases the overhead and the resulting code is represented with n, =
n —p and ke = k.

o Augmenting : Process of adding codewords to the set of codewords C. The
resulting minimum distance of the code becomes lower than the original.

o Expurgating : Process of removing codewords from the set C. Minimum
distance of the resulting code increases from the original.

2.8 Product-code Memory

A product-code memory can be formed by combining smaller component codes [29—
31]. The resulting concatenated codes can provide higher error-correction capability
than the component codes. A product-code memory is constructed by encoding
information bits row-wise, using a row component code, followed by column-wise
encoding, using column component codes, as shown in Fig. 2.6a. The twofold en-
coding over both data and parity gives a resulting minimum distance which is the
product of minimum distance of individual component codes and is given by d; - ds.

k1 ni-ki ki-s n1-ki

k2 INFORMATION BITS ROW CHECK

k2-s INFORMATION BITS | ROW CHECK

no-k CHECK ON| n2-k2 CHECK ON
2°K2 COLUMNS CHECK i COLUMNS CHECK e
(a) Original product-code memory (b) Shortened product-code memory

Figure 2.6: Product-code memory is a n; X ny memory as shown in (a). In (b),
the resulting memory with shortening applied is shown.

Product decoding can be implemented using a product-code memory which is
iteratively decoded by row and column component decoders. Incoming data bits
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2. Introduction to Coding Theory

are loaded into the memory as row and column codes. The code from the rows are
then forwarded to the decoder where errors are corrected and the corrected code
is written back. This is followed by a similar process for the column codes. This
process is then repeated for a number of iterations to remove the errors [32].

An advantage of product-code memory over using long FEC codes is that by
employing low-complexity component codes in the product-code memory, the com-
plexity of the product decoder is reduced since smaller component decoders are
required. In contrast, the long FEC codes require much more complex component
decoders with higher n, k and t. Component code selection plays a vital role not only
on the error-correction performance, but also on the speed and encoding/decoding
complexity of the product decoder.

To form a product-code memory, let there be two BCH component codes,
BCH(ny, k1,t1) and BCH(ns, ks, t3). A product-code memory is formed by the con-
catenation of the two component codes. The product-code memory formed is an
ny X ny matrix, with information bits forming a k; x ky matrix inside it, as shown
in Fig. 2.6a. The code rate of the resulting product-code memory is a product of

the code rate of individual component codes, R = Ry - Ry = 7’2—11 . 7%, the overhead is
OH = OH; - OH, = % — 1, and the error-correction capability is t1 - t5. A similar

process is applied when using shortened BCH codes to construct the product-code
memory. The shortened product-code memory becomes a (n; — s) X (ny — §) matrix
with the enclosed information being reduced to a (k; — s) x (ky — s) matrix, as
shown in Fig. 2.6b. Since in shortening, the shortened bits are never transmitted
the component decoders corresponding to the shortened bits are removed, resulting
in reduced hardware.

2.9 Coding Gain

Coding gain is one important metric used to evaluate a FEC coding scheme. Coding
gain is defined as the reduction in Ej,/Ny from uncoded to coded system to obtain
a particular error rate, where FEj is the average energy of transmission per bit and
Ny is the noise power density. In a nutshell, coding gain is the reduction in signal
power (lower Ej,/Ny) required to achieve the same BER as would have been achieved
without the coding, since the errors can be corrected. The net coding gain of a coded
system is measured at the decoder output and is the coding gain achieved taking
into consideration the redundant bits added for decoding operation. Throughout
this work, net coding gain will be used to evaluate the FEC performance. Fig. 2.7
represents a typical example of deriving net coding gain from the BER vs E,/Ny
plot.
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BER vs. Eb/No with Best Curve Fit

T T T T T T T
Uncoded
Coded
10 '5 =
nd
(1]
m
10710 |
NET CODING GAIN =10.08 dB
10 ‘15 -
Il Il

Eb/No (dB)

Figure 2.7: BER vs E,/N, plot showing an example of deriving net coding gain.
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3

Implementation of the Multi-rate
Product Decoders

In this chapter, we describe the architecture of the product decoders implemented
during this work starting with the baseline design on which the multi-rate scheme
is applied. Followed by the architecture of the multi-rate product decoder. We look
at individual modules and the added design over the baseline design. Finally, an
extension design with variable error-correction capability is presented.

3.1 Baseline Design

The architecture and the implementation of the baseline fixed-rate product decoder
is borrowed from a recently published staircase decoder [15]. Instead of using a
staircase memory, a product-code memory is used. The basic block diagram of
the fixed-rate product decoder is shown in Fig. 3.1. SYND represents the syndrome
calculation unit, KES represents the key-equation solving unit, while CHIEN handles
Chien search, as described in section 2.6. Central to the product decoder is the
product-code memory which is an array that stores the incoming codewords as
described in section 2.8. In this design, the product-code memory is symmetric, i.e.,
n =mn; = ny and k = k; = ko, however, asymmetric codes (codes with different code
lengths) can also be used but that would require using different Galois field (GF)
component decoders.

<—— CHIEN

n-k »
- SYND —3» KES

Figure 3.1: Block diagram of baseline product decoder. The baseline decoder

consists of a product-code memory and n component decoders with SYND, KES
and CHIEN unit.

21



3. Implementation of the Multi-rate Product Decoders

A total of n BCH component decoders are used for decoding the codes, provid-
ing a highly parallel decoding operation. As stated in section 2.8, a state machine
is used for iterative decoding, in which all the row codewords are decoded by the
component decoders and the errors are corrected followed by decoding of all the
column codewords and the errors are corrected in the product-code memory. This
process is repeated for a number of iterations, at the end of which the codewords in
the product-code memory are outputted.

3.1.1 Clock Gating in Baseline Design

The baseline design uses extensive clock gating to provide an energy-efficient design.
The component decoders used are pipelined with a pipeline stage after the SYND
unit and another pipeline stage before the CHIEN unit. The syndrome unit indi-
cates presence of errors if the syndrome calculated is non-zero. For any component
decoder, if the syndrome calculated is zero then the codeword is believed to be error-
free. In that case, the component decoder pipeline is disabled. This prevents the
unwanted decoding computation when no errors are present. If all the syndromes of
the n component decoders are zero then the codewords in the product-code memory
are believed to be correct and the product-code memory is clock gated.

3.1.2 Syndrome Calculation

Syndrome calculation is done as described in section 2.6.1 by multiplying the in-
coming codeword, y, with the transpose of parity check matrix H. Fig. 3.2 outlines
a block diagram of syndrome calculation as implemented in hardware. The parity
check matrix is generated in MATLAB using an in-built function, cyclgen(n,ply),
where n represents the code length and ply is the generator polynomial. The gener-
ator polynomial is also generated using a function in MATLAB, bchgenpoly(n,k),
with £ being the number of information bits.

Elements of H and syndrome belong to the GF(2™) but the symbols used for
the input data are binary and, thus, multiplication and addition can be simplified
to AND and XOR operations respectively. As seen in the figure, the elements of
y are ANDed with the elements of each row in H and the results are element-wise
XORed to produce the syndromes. This process is repeated for all the columns of
H to obtain 2t syndromes each of size m. Only odd syndromes are calculated due
to a property of the Galois field [25].
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INPUT

A4

YoHoo"

YiHi' f—oo OR SYNDROME(0)
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Yo-yHen-1)0
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SYNDROME(2mt)

YOHO(zt—l)T j_»
—

YIHI(Zt-l)T -
. XOR

—

Y

Y(n-1)
Hen-1)2t-1)'

Figure 3.2: Block diagram of syndrome calculation in baseline design showing the
vector-matrix multiplication of incoming codeword and transpose of parity check
matrix.

3.1.3 Key-equation Solver

The syndromes obtained in the syndrome calculation module are forwarded to the
key-equation solver to generate the error-locator polynomial as explained in sec-
tion 2.6.2. Since the elements of the syndromes are defined in GF(2"), multipli-
cation is done in polynomial basis using the Mastrovito algorithm and are called
finite-field multipliers (FFM) [33]. The odd syndromes are used to generate the co-
efficients of the error-locator polynomial as per eq. 2.6. The error-locator polynomial
is then forwarded to the Chien search for finding its roots.
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3.1.4 Chien Search

Chien search is used to solve the error-locator polynomial by finding the roots of
the polynomial as described in section 2.6.3. A root of the polynomial represents
an error at the position represented by the power of the GF' element substituted
into the polynomial. Fig. 3.3 shows a block diagram for computing the error vector
using Chien search. The input to the Chien search unit are the coefficients generated
in the KES unit. Each coefficient is multiplied with a power of a derived from the
error-locator polynomial. This process is done for each bit of the n bit codeword. For
example, the error-locator polynomial for t = 3 code is represented by the equation,

)\(l’) = )\31‘3 + )\21’2 + )\1I + )\Q

For the first bit, x is replaced with «. The coefficient \; is multiplied with
a, Ay is multiplied with a? and A5 is multiplied with o?®. For the second bit, x is
replaced with a? and the coefficient \; is multiplied with o2, X is multiplied with
a* and \; is multiplied with a® and so on till the n* bit. All the multiplications
are done in polynomial basis using FFMs. The resulting products are XORed and
then a bitwise OR operation is applied to generate the error vector bits. The output
error vector is an all zero vector with '1’s at the position where error has occurred.
This vector is then used to correct errors in the product-code memory.
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~

KES COEFFICIENT 1 1
KES COEFFICIENT 2
o FFM “
KES COEFFICIENT 3 XOR BITWISE ERROR_OUT(n-1)
o FFM OR
KES COEFFICIENT 4 |
FFM
03
n
o FFM
—L BITWISE ERROR_OUT(0)
XOR
e FFM OR
- FFM j

N }

Figure 3.3: Block diagram of Chien search in baseline design showing the substi-
tution of primitive element o’ into the error-locator polynomial at each bit position.

3.2 Multi-Rate Product Decoder Architecture

Multi-rate FEC can be implemented in two ways: rate-adaptive systems and multi-
rate systems. Rate-adaptive systems are designed such that the decoder can calcu-
late the post-FEC BER at runtime. If the post-FEC BER value is higher than a
threshold then information is relayed back to the transmitter over a feedback line.
When transmitter receives this information, it reduces the code rate to increase the
coding gain. The presence of the feedback mechanism introduces a latency into the
system which is detrimental to high speed operation in optical links. In this thesis,
we implement a multi-rate system which operates in different modes of operation
defined by varying code rate and the decoding iterations. Since multi-rate systems
are non-adaptive in nature, code rates and decoding iterations have to be varied
manually at the transmitter. The configuration data for the code rate or decoding
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iteration can be carried by a special field in the frame of optical transport network
(OTN) such that any change in code rate or iteration can be relayed to the decoder
at the receiver. When the decoder receives a configuration change, a simple state
machine can be used to dynamically switch the code rate.

In this work, the code rate is varied by using shortening of the component
codes which varies the overhead. Decoding iterations of the product decoder is
implemented as a variable in the product decoding state machine. Modes can also be
based on varying the block length of the codes, but chip area increases rapidly with
larger codes and also the amount of unused memory portions for smaller block length
modes increases. Also, with block length the parameter m of the Galois field GF'(2™)
changes which changes the applicable finite-field arithmetic. The implication of this
is that separate component decoders for higher block length are required in addition
to the existing component decoders, increasing the area and complexity of the design.

The baseline component decoders are fully parallel which means that intro-
ducing reconfigurability does not affect system throughput as there are no feedback
loops in the baseline design. We introduce reconfigurability to the baseline design
presented in section 3.1 and the resulting multi-rate product decoder (MRPD) ar-
chitecture is shown in Fig. 3.4. The codes selected in this work are BCH(255, 231)
for both row and column to fulfill the requirement of high throughput and high cod-
ing gain. A detailed description of the choice is provided in section 3.4. Thus, the
product memory is an n X n array with information bits forming an inner array of
dimensions k x k. The control logic handles the different modes of decoder operation,
including different overheads/rates and different number of iterations. The control
logic is applied only to the product-code memory, SYND and the CHIEN unit.
The KES unit, on the other hand, is left unaltered because the KES unit does not
change with varying code-rates but only when there is a change in error-correction
capability ¢.

k n-k
Y coNTROL | ~ 77
1
: Y
1
1
’ ~ <———| CHIEN
v :
1
1
1
\J
n-k >
- SYND _) KES
>

Figure 3.4: Block diagram of multi-rate product decoder. Control unit is added
to the baseline design to handle the modes of operation.

3.2.1 Product-code Memory

The product-code memory forms the backbone of the product decoder. Incoming
information bits are stored into the product-code memory by storing the code bits
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into columns of the memory matrix. When shortening is applied, by replacing the
information bits with zeros, the corresponding memory matrix is reduced as shown in
Fig. 2.6b. In the baseline design, when shortening is applied by removing information
bits, the corresponding part of the product memory is also removed. The resulting
product-code memory is an n—sxXn—s array with a k—sx k—s information array (s
is the number of shortened bits). However, in the multi-rate design, the shortened
bits cannot be removed but rather have to be disabled. The shortened bits are
flushed and gated such that any switching activity at these positions is prevented.
Gating also helps in providing a power-efficient design since the switching activity
is prevented at the shortened part of the memory.

A bit mask of size n is used for gating the memory, such that at the shortened
bit positions the bits of the mask are set to 1 or 0 (the shortened bits are based on
the mode selected), as shown in Fig. 3.5. The incoming data bits are then ANDed
with the bit mask and stored into the product-code memory as rows and columns.
This ensures that the shortened bits are set to 0 which prevents switching activity
at these positions. Also, the presence of gating of incoming signal to be stored into
the product-code memory flushes the shortened part of memory when switching
between different modes, especially when moving from longer to shorter codes.

EELECT IN{n-1)
MASK(n-1)

o ’\
NG
1 V / k n-k
| —
IN(n-2) —
EELECT
MASK(n-2)
0 Ny >
1 l/l(' 1
| — ! i k
i l n-k
' . IN(O)
SELECT ! :
o '\|\‘
IN(n-1)| IN(n-2) IN(0)

Figure 3.5: Product-code memory for MRPD design with the gating mechanism
to handle shortening.

3.2.2 Syndrome Calculation

Syndromes, as described in section 2.6.1, are calculated using s = y - H”, where s
is the syndrome, y is the received codeword and H is the parity check matrix. As
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explained in section 3.1.2, the equation can be simplified to form an XOR tree such
that each syndrome is a set of XOR operations of the codeword bits at positions
where the parity check matrix is 1. When shortening is applied to the design, a
number of lower XOR operations (equal to the number of shortened bits) can be
removed from the hardware.

In the multi-rate design, the full XOR tree is retained and when shortening
is applied, the codeword is shifted to the most significant bits (MSBs). This is
achieved by using a set of multiplexers in the SYND unit (Fig. 3.4), as shown in
Fig. 3.6. The incoming codeword bit signals are multiplexed such that the MSB
of the shortened code (n — s — 1) is always at the MSB of the mother code and
the lower significant bits (equal to shortened bits s) are set to 0 to prohibit signal
switching. The variable s represents the number of shortened bits and s = 0, s1, s2
and s3 for the four modes. The resulting set of bits are passed to the XOR tree,
which generates a set of 2t syndromes of size m bits.

SELECT
IN(n-1 ( )
IN((n—(l—s%;) IN_DATA(n)
IN(n-1-s
IN(n-1-s3) . SYND_OUT(0)
7 SeLECT -
Iy EL”%% — )IN_DATA(n-1) SYND;OUT(1)
N-s2-2) —— |
IN(n-s3-2) —_~ SYNDROME '
i CALCULATION |
SELECT | SYND_OUT(2mt)
IN(O) IN_DATA(0)
0 —
-/

Figure 3.6: Syndrome calculation unit for MRPD design. A set of multiplexers are
used to shift the incoming message and passed to the baseline syndrome calculation.

3.2.3 Chien Search

The error-locator polynomial generated in the KES unit (Fig. 3.4) is forwarded to the
CHIEN unit where « is substituted into the polynomial, as described in section 2.6.3.
section 3.1.4 describes the implementation of Chien search in the baseline design.
Finite-field multipliers (FFM) are used to multiply the coefficients with incremental
degree of «, the resulting values are then XORed together to form the value of the
polynomial. A value of zero for the polynomial represents an error at that position.
The CHIEN unit is designed to be fully parallel to achieve high throughput. Due to
its parallel nature, n -t FFMs are used for every component decoder. To support all
modes of operation, all n-t FFMs are available in the hardware making it necessary
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to utilize gating to prevent unnecessary computation and power dissipation.

At the shortened bits (s) positions for which the computation is not required,
the coefficients are ANDed with enable signals, as shown in Fig. 3.7. The enable
signals are set to 0 or 1 depending on the selected mode of operation. For exam-
ple, when the SELECT is 00 (base OH), none of the coefficients are gated. When
SELECT is 01, GATED__1 is set to zeros, i.e., the coefficients for the s1 bits at the
upper bit positions are disabled. When SELECT is 10, GATED 1 and GATED 2
are set to zeros, i.e., the coefficients for the s1 and s2 bits at the upper bit positions
are disabled. Finally, when SELECT is 11, GATED 1, GATED 2 and GATED 3
are set to zeros, i.e., the coefficients for the sl1, s2 and s3 bits at the upper bit
positions are disabled. The resulting coefficients are then sent to the baseline Chien
search described in section 3.1.4. In this way, the inputs to the FFMs are set to 0
and any unnecessary computation is prevented. Finally, the resulting error signal is
shifted back to the LSB using the set of multiplexers shown in Fig. 3.7.
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SELECT(0)
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SELECT(1)
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ERROR(s1)

ERROR(0)
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Figure 3.7: Chien search for MRPD design with gating to handle shortening at
the input and multiplexers at the output to shift the error signal.

3.3 Multi-rate, Multi-¢ Product Decoder

The MRPD design described in section 3.2 is based on fixed error-correction ca-
pability with ¢ = 3. By increasing ¢ a further improvement of coding gain can be
achieved, but with the increase in ¢ comes an increase in area and power dissipation.
An extension design, multi-rate, multi-¢ product decoder (MRMTPD), was designed
with varying code rate, decoding iteration and a variable ¢ between three and four.
The design of MRMTPD is similar to the MRPD with two major difference; the
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selection of OHs for the design when operated with ¢ = 4 and an ability to vary t.
The OHs that were selected with ¢ = 4 were: the base OH of 30 %, OH 33%, OH
41 % and OH 49 %. The selection of these OHs are governed by the lower limit of
the base OH and higher limit of achieving high throughputs. When operated with
t = 3, the OHs remained the same as selected in the MRPD design. Due to the
difference in the OHs between the t = 3 and ¢ = 4 operations, additional hardware
was included into the product-code memory, SYND unit and the CHIEN unit. Also,
the KES unit was replaced with a design with reconfigurable ¢.

3.3.1 Product-code Memory

Similar to section 3.2.1, the product-code memory of the MRMTPD includes a
gating mechanism operated based on the selection of OH. However, due to difference
in actual values of OHs, additional multiplexers were added to generate masks in
the case of t = 4, as shown in the Fig. 3.8. A set of multiplexers, with the flag ECC
as the select signal, were then used to select between the ¢t = 3 or ¢ = 4 mask. For
example, when operating with ¢ = 3 and mode 2 of 25% OH (n = 227,k = 203),
28 bits at the upper bit positions have to be masked. On the other hand, when
operating with ¢ = 4 and mode 2 of 33% OH (n = 239,k = 207), only 16 bits of
upper bit positions have to be masked. Due to the difference in the OHs, the same
set of multiplexers cannot be used for both the ts and hence two set of multiplexers
are used whose output is then selected based on the value of .
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Figure 3.8: Product-code memory for MRMTPD with additional multiplexers to
handle t = 4 mode of operation.

3.3.2 Syndrome Calculation

Fig. 3.9 shows the hardware implementation of the syndrome calculation unit in
the MRMTPD design. Two sets of multiplexers, each for the OHs for different ¢,
are used to shift the incoming data to the MSB. The output from the two sets are
sent to another multiplexer which selects the shifted data based on the t selected
and sends the output to the syndrome calculation unit described in section 3.1.2.
When operating in ¢ = 4 mode, the number of syndromes calculated are four (only
odd syndromes), while in ¢ = 3 mode, three syndromes are calculated. So, the
baseline syndrome calculation unit is required to calculate four syndromes to fulfill
the requirement. But, when operating in ¢ = 3 mode the fourth syndrome is not
required and, thus, should be gated. A multiplexer is used to set the inputs to fourth
syndrome calculation to zero to prevent switching activity and reducing the power
dissipation.
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Figure 3.9: Syndrome calculation unit for MRMTPD with additional multiplexers
to handle t = 4 mode of operation.

3.3.3 Key-equation Solver

As the MRMTPD design is a multi-t design, the KES unit of the product decoder
should be made reconfigurable. Fig. 3.10 shows a block diagram of the implemen-
tation of the KES unit in the MRMTPD design. The coefficient generation blocks
shown are similar to the baseline design described in section 3.1.3 and consists of
coefficient generation for ¢ = 3 and ¢ = 4. Implementation of the coefficient genera-
tion for t = 3 was presented in section 3.1.3. A similar strategy is applied for ¢t = 4
with the implementation of eq. 2.7.

A multiplexer with ECC selection signal, shown in Fig. 3.10, is used to shut
down the calculations in the ¢ = 4 coefficient generation block by setting the input
to this block to zero when the design operates with ¢ = 3. However, when operating
in t = 4 mode, the t = 3 coefficient generation block is not disabled because a
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lot of the terms generated in ¢ = 3 coefficient generation block are re-used in the

= 4 coefficient generation. Finally, at the output a set of multiplexers based on
the operating ECC are used to select the relevant coefficient values and forwarded
to the CHIEN unit.

ECC

COEFFICENT_1

\ECC

| FFMs FOR t = 4 |
COEFFICIENTS COEFFICENT 2
SYND | —

\Ecc

COEFFICENT_3

ECC
FFMs FORt = 3 \L

COEFFICIENTS —
COEFFICENT_4

\Ecc

(0 COEFFICENT_5
/

Figure 3.10: Reconfigurable KES unit for the MRMTPD design with additional
multiplexers to handle ¢ = 4 mode of operation.

ECC

3.3.4 Chien Search

The CHIEN unit of the MRMTPD is similar to the CHIEN unit of MRPD design
described in section 3.2.3, with the addition of hardware to handle different set of
OHs of t = 3 and t = 4 modes. Fig. 3.11 shows a block diagram of the Chien
search as implemented in hardware. KES coefficients coming from the KES unit
are gated at the positions of shortened bits. Due to the difference in OHs for t = 3
and ¢t = 4, the number of shortened bits are also different which means that the
same set of gated signals cannot be used. As seen in Fig. 3.11, a set of additional
multiplexers (MUXES) is used to select the gated coefficient based on the ¢ mode.
For example, when operating with ¢ = 3 and mode 2 of 25% OH, the number of
shortened bits is 28. But with ¢ = 4 and mode 2 of 33 %, the number of shortened
bits is 16. The bits from 17 to 28 have to be multiplexed such that when operating
with ¢ =4 GATED _ 1 at these bits are replaced with GATED 2. This is applied to
all the modes and the output of the gated coefficients is sent to the baseline CHIEN
SEARCH module. At the output, shifted signals for both the ¢ = 3 and ¢ = 4 case
are generated and based on the ECC mode the final error signal is outputted.
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Figure 3.11: Chien search for MRMTPD with additional multiplexers to handle
t = 4 mode of operation.

3.4 Design Consideration

To fulfill the combined requirement of high coding gain and operation at high
throughput, a product-code with BCH(255,231) component codes is selected for
t = 3 and BCH(255,223) component codes are selected for ¢ = 4 code. The
BCH(255) codes have higher number of information bits than the lower BCH(127)
codes and even with high decoding latency the information throughput will be high.
On the other hand, BCH(255) codes will require less hardware than BCH(511) codes
making them ideal for our requirement. We have confined the design to t = 3 and
t = 4, as these have been shown to ensure coding gains above 10dB [34]. Product
decoders with ¢ = 2 have a higher error floor which leads to a lower coding gain at
the required post-FEC BER of 107!%. The multi-rate scheme applied is based on
the selection of code overheads (OH) and number of decoding iterations to achieve
a useful range of code rates. The modes of operation used for the ¢ = 3 design are:

base OH of 21 %, OH 25 %, OH 33 % and OH 40 %. Table 3.1 provides a summary
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of code parameters for ¢ = 3 used in this work. For ¢ = 4, the modes of operations
are: base OH of 30 %, OH 33%, OH 41 % and OH 49%. Table 3.2 represents the
code parameters for t = 3.

The number of decoder modes is extended further by varying the number of
iterations from three to five. The design trade-off is such that the more iterations, the
higher the coding gain and the lower the throughput. For example, more iterations
can be combined with a lower-rate code to yield higher coding gain. The decoding
iterations are limited to five because it has previously been reported that more than
five iterations yields diminishing coding gain return [34].

Table 3.1: Product and component code parameters for ¢ = 3

n | k
Product-code overhead = 21 % | 255 | 231
Product-code overhead = 25 % |227|203
Product-code overhead = 33 % |180|156
Product-code overhead = 40 % | 155|131

Table 3.2: Product and component code parameters for ¢t = 4

n | k

Product-code overhead = 30 % |255|223
Product-code overhead = 33 % (239|207
Product-code overhead = 41 % (202|170
Product-code overhead = 49 % | 177|145
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Evaluation Method

Considering that chip area and power dissipation are issues for reconfigurable archi-
tectures, in which extra circuits are needed to support the change between modes,
we have implemented and evaluated the multi-rate product decoder in the frame-
work of an application-specific integrated circuit (ASIC). Also, in order to meet the
demand to have high throughput, ASIC platforms are selected for this design. A
simple flow graph showing the process of evaluation is shown in Fig. 4.1.

VHDL
IMPLEMENTATION

\

\4

FUNCTIONAL
VERIFICATION

\4

BER PLOT IN

BER ANALYSIS > MATLAB

A

\4

SYNTHESIS

\4

TIMING
VERIFICATION

\4 \4

POST SYNTHESIS
FUNCTIONAL > SAIF FILE
VERIFCATION

Y

POWER ANALYSIS [

Figure 4.1: Flow graph for evaluation of designs.

The design of the product decoder is undertaken using VHDL. The design
is simulated for functional verification using a VHDL testbench (Testbench 1) in
Cadence Incisive. The testbench is used to generate uniformly-distributed data
which are encoded using a product encoder. To simulate a binary-symmetric channel
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in VHDL, a random number generator is used to generate errors with a probability
corresponding to the input signal-to-noise ratio (SNR). The errors are then added to
the encoded data which are passed through the decoder to verify its operation. If the
decoded data is not equal to the encoded data, then an error counter is incremented
and the error count is printed on the console using assert statement. A timestamp
is printed on the console by the testbench at the end of each block decoding. Using
the difference in timestamps between two consecutive block decoded, we calculate
the block decoding latency. The throughput is calculated by dividing the number
of information bits (k?) with the block decoding latency.

A second testbench (Testbench 2) which generates random error with proba-
bility given by input SNR and adds the error to a datastream of zeros is used for
BER analysis. A bash script is used to sweep the input SNR which is passed to the
testbench. The erroneous data is then passed through the decoder and the output
is compared with a zero vector. The number of ones present in the decoded data
provides the error count. The post-FEC BER is calculated by dividing the error
count by the number of bits in all the decoded blocks, where number of bits in all
the decoded blocks is calculated by multiplying the number of decoded blocks with
n?. The results of the post-FEC BER are extrapolated in MATLAB using the func-
tion berfit to obtain the BER plot. For optical communication, a common target
post-FEC BER is 107% and, thus, this threshold is used to define the net coding
gain (NCG) in this work.

The net coding gain estimated using the VHDL implementation is used for the
selection of the overheads. A MATLAB code for product decoder was written but
the built-in functions for decoding BCH codes were unable to support shortening.
Thus, it was decided to use VHDL simulations to select the values of OHs. The
target of selection of the overhead was to generate a wide range of OHs such that
the highest possible OH can support the requirement of high throughput. The
intermediate OHs were selected such that a minimum of 0.1dB of coding gain is
available between any two OHs selected.

After the BER analysis, the VHDL code is synthesized. The design is syn-
thesized in Cadence Genus to a low-leakage library of a 28-nm 0.9-V fully-depleted
silicon-on-insulator (FD-SOI) process technology, using the slow-slow corner and a
temperature of 125 °C with the effort set to high. Based on an architectural analysis,
the target clock rate is set to 610 MHz. The clock gating parameter of the synthe-
sis environment is set to true. When the clock gating is enabled in the synthesis
tool, the tool handles the insertion of clock gating into the design. On a successful
synthesis, the Verilog netlist and the SDF constraint file are generated. The timing
report is used to verify that the design meets the timing constraint set during the
synthesis. The area report from Cadence Genus provides the total area of the de-
sign as well as area of individual modules. Post-synthesis functional verification is
performed on the Verilog netlist using Testbench 2.

Testbench 2 is used to generate a switching activity file called SAIF file. When
generating the SAIF file, the input SNR to the testbench is set to the value derived
from the BER plot at the threshold of 107!° for a particular mode of the product
decoder. In Cadence Incisive the Verilog netlist, the SDF constraint file and the
testbench are imported and an SAIF file is generated. In the Genus environment,
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the technology libraries are set to the typical-typical corner at a temperature of
25°C. Clock gating is enabled, the clock tree buffers are set and the max clock tree
fanout is set to 20. The SAIF file is then read into the Genus environment and using
the report power functionality of the tool the power report is generated. In addition,
clock-tree power is also estimated in Genus by providing the chip area derived during
synthesis. The total power is then derived by adding the average power obtained
from the power report and the clock tree power report. This process is then repeated
for all the twelve modes of operation of the MRPD design, the MRMTPD design
and for the baseline design. The energy dissipation per information bit is derived
by taking the ratio of the energy dissipated during 1 second to the information
throughput (Gbps).

The complete process of functional verification, BER and power analysis is
performed individually for all the modes of operation of the MRPD design. For
comparisons to prior art, we also analyze the performance of a fixed-rate product
decoder and a product decoder based on the conventional iterative approach of
SiBM [35,36]. The SiBM product decoder was synthesized and simulated with error-
correction capability of ¢ = 3 and the fixed-rate product decoder was synthesized
and simulated with both t = 3 and ¢t = 4. Also, an extension design with multi-rate,
multi-t product decoder (MRMTPD), is implemented and simulated with both ¢t = 3
and t = 4.
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Results

In this section we describe the results obtained from evaluations performed on the
VHDL decoder implementation. The section begins with the results obtained for the
evaluation of the baseline design as described in section 3.1, followed by evaluation
results of the multi-rate product decoder (MRPD) (section 3.2) and the multi-rate
multi-t product decoder (MRMTPD) (section 3.3).

5.1 Reference Designs

The algorithm used in the key-equation solver (KES) plays an important role in
terms of throughput and power dissipation of the decoder. In general, Berlekamp-
Massey (BM) and its different optimizations like simplified inverse-free BM (SiBM)
are iterative in nature and require at least ¢ clock cycles to compute the error-locator
polynomial. This iterative operation has a detrimental effect on the decoder as it
lowers the throughput and increases the energy dissipation due to increased number
of cycles. Thus, approaches such as Peterson and direct-solution or inverse-free
Peterson algorithms which compute the error-locator polynomial in a single cycle
are important alternatives to the iterative approach.

As discussed in chapter 4, evaluation of two designs were carried out. First
was the implementation of a fixed-rate product decoder (FRPD) based on the
BCH(255,231) component codes and using direct-solution Peterson KES [37]. The
FRPD design was evaluated with error-correction capability ¢ = 3, called FRPDI,
and t = 4, called FRPD2. Second was the implementation of a product decoder
with SiBM based KES with ¢ = 3. Table 5.1 provides the results obtained when
the designs were evaluated with decoding iteration of four and their corresponding
base OHs. These designs are used as baselines for the design considerations when
implementing the multi-rate designs.

In our implementations, the product decoder with SiBM achieved throughputs
that were 40 % lower than those of the FRPD1. In terms of power dissipation also,
the SiBM approach had 10 % more power dissipation than the FRPD1 with the
energy dissipation per information bit being 77 % higher for SIBM. However, with
increasing ¢ this observation may not hold true as the direct-solution approach scales
faster in terms of area and power dissipation than does the SiBM approach.
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Table 5.1: Evaluation results of FRPD1, FRPD2 and SiBM designs at number of
iterations = 4 and base OH

FRPD1 |FRPD2|SiBM

Cell area (mm?) 6.69 9.11 7.54
Code rate, R 0.82 0.76 0.82
Throughput (Gbps) 1252 1167 |775.16
Block decoding latency (ns) 42.61 42.61 |68.838
Power @ BER 107'° (mW) 788.49 | 1305.56 | 866,62

Energy @BER 107'* (pJ/info. bit)| 0.63 1.11 1.12
Estimated net coding gain (dB) 10.055 10.5 10.08

5.2 Multi-rate Product Decoder

We evaluated our MRPD design for BER analysis considering three cases: number
of iterations equal to three, four and five. In each case, all the four modes based on
OH were evaluated. Figs 5.1-5.3 show the post-FEC BER as a function of E;,/N, for
three, four and five iterations respectively. Assuming three, four and five iterations,
Fig. 5.4 shows the output BER as a function of E,/N, for the extreme decoder
modes, i.e., 21 % and 40 % OH. Coding gain range estimated are 0.31 dB, 0.33 dB
and 0.38 dB for three, four and five iterations respectively. A wider range of 0.5 dB
can be achieved if the decoder is operated with three iterations at the base OH and
with five iterations at 40 % OH. In addition, the net coding gains (at a post-FEC
BER of 1071?) for different iterations and the decoder modes are shown in Table 5.2,
Table 5.3 and Table 5.4.

The range of coding gain depends on the block length of the component codes.
In this design, the minimum coding gain is limited by the overhead of the block
length of the mother code, i.e., BCH(255,231), which is 21 %. Conversely, the up-
per limit of coding gain, i.e., the highest OHs is limited by the constraint of achieving
high throughputs. The coding range could be extended further by utilizing higher
OH, but this has the drawback of reducing the throughput. Another alternative to
increase coding gain range is to utilize longer components codes, e.g., BCH(511, 484),
whose product decoder has a baseline OH of 11 %; but this leads to a more complex
decoder with higher energy dissipation. Another design aspect that can be consid-
ered for increasing the coding gains is to increase the error-correction capability ¢.
However, increasing t increases the coding gains of individual modes, but the range
would remain the same.
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Figure 5.1: BER as a function of E,/N, for iteration = 3.
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Figure 5.2: BER as a function of E,/N, for iteration = 4.

Tables 5.2-5.4 presents the results of the multi-rate product decoder imple-
mentation operated at iteration equal to three, four and five respectively. There are
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Figure 5.3: BER as a function of E,/N, for iteration = 5.
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Figure 5.4: BER as a function of Ej/Nj.

implications of a varying code overhead at the circuit level: When implementing a
decoder having a mother code on top of which a varying overhead is introduced,
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the support for flexible code overheads increases the circuit area [16]. The area
of MRPD design increases to 8.78 mm? when multi-rate hardware is added to the
FRPD1 design which had an area of 6.69 mm?. So, the area cost for introducing this
flexibility is 31 % over the FRPD1 design with the same configuration. Note that
this increase in area is for having all the four modes of operation in one design. If
fixed designs are used then the number of chips required will be equal to the number
of modes of operation and each design has its own area cost. Variation in number
of iteration provides a more resource-efficient alternative to obtain variable coding
gains at fixed code rates. However, it cannot provide the large range in coding gain
obtainable by a multi-rate design. But, a combination of OH and iteration variation
can provide several modes with a wider range of operation.

Table 5.2: Evaluation Results of MRPD with iteration = 3

Overhead 21% | 25% | 33% | 40 %
Cell area (mm?) 8.78

Code rate, R 0.82 | 0.79 | 0.75 | 0.71
Throughput (Gbps) 1628 | 1257 | 742 | 523
Block decoding latency (ns) 32.78 | 32.78 | 32.78 | 32.78
NCG @BER 10-'% (dB) 9.96 | 10.05 | 10.16 | 10.27
Power @ BER 1071 (mW) 940.61[821.75|598.51|523.52
Energy @ BER 1071 (pJ/info. bit)| 0.58 | 0.65 | 0.81 1.0

Table 5.3: Evaluation Results of MRPD with iteration = 4

Overhead 21% | 25% | 33% | 40 %
Code rate, R 0.82 | 0.79 | 0.75 | 0.71
Throughput (Gbps) 1252 | 967 | 571 | 402
Block decoding latency (ns) 42.61 | 42.61 | 42.61 | 42.61
NCG@BER 107% (dB) 10.055| 10.14 | 10.24 | 10.38
Power @ BER 1071 (mW) 829.75(767.59|524.88|460.63
Energy @ BER 1071 (pJ/info. bit)| 0.66 | 0.79 | 0.92 | 1.14

Table 5.4: Evaluation Results of MRPD with iteration = 5

Overhead 21% | 25% | 33% | 40 %
Code rate, R 0.82 | 0.79 | 0.75 | 0.71
Throughput (Gbps) 1017 | 785 | 464 | 327
Block decoding latency (ns) 52.44 | 52.44 | 52.44 | 52.44
NCG @BER 107 (dB) 10.08 | 10.23 | 10.35 | 10.46
Power @ BER 1071 (mW) 769.76|710.14{479.181422.08
Energy @ BER 1071 (pJ/info. bit)| 0.76 | 0.9 | 1.03 | 1.29
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Operating clock frequency plays a major role in the selection of number of iter-
ations and OH for generating modes of operation. In our design, with the operating
frequency of 610 MHz, we were able to achieve a lowest throughput of 327 Gbps
when the product decoder was operated with five iterations and 40 % OH. In order
to ramp up the throughput to, for e.g., 400 Gbps, with the same configuration, the
operating clock frequency required is 750 MHz. When implemented at such a high
clock frequency, however, the cost in terms of area and power consumption increases
by 20 %.

The component decoders are implemented as fully block-parallel resulting in
high-speed block decoding with latency below 100 ns and estimated throughputs as
high as 1.6 Thps when operating with three iterations and base OH mode. Moreover,
owing to the use of clock gating, the design is highly energy-efficient with energy
per information bit being below 1.5 pJ/bit for the MRPD design.

Another important aspect to consider is the use of high-speed libraries when
synthesizing the design. The results reported above were evaluated with the MRPD
design synthesized with a low-power or low-leakage CMOS library. Using a high-
speed or low-threshold voltage CMOS library can provide required throughputs at
a lower area cost. When implemented with high speed libraries, the MRPD design
reduced in area by 10 % but it resulted in a power dissipation increase of 20 % with
an increase in leakage power from 1% of total to 8.7 % of total power. The increase
in power dissipation due to leakage power was not sufficient to consider power gating
and the increase in total power (dynamic and static) weakened the case of using high
speed library in the MRPD design.

5.3 Multi-rate, Multi-t Product Decoder

The MRMTPD design described in section 3.3 was evaluated with ¢t = 3 and ¢ = 4,
decoding iteration of four and at their respective base OHs. The evaluation results
are shown in Table 5.5.

Table 5.5: Evaluation Results of MRMTPD with iteration = 4

Error-correction capability t=3 ‘t =4
Cell area (mm?) 14.01
Overhead 21% | 30%
Throughput (Gbps) 1252 | 1167
Block decoding latency (ns) 42.61 | 42.61
NCG @BER 107% (dB) 10.055| 10.5
Power @ BER 107'° (mW) 1108 | 1687
Energy @BER 107" (pJ/info. bit)| 0.88 | 1.44

The MRMTPD design dissipated 33 % more power than the MRPD with the
same configuration with ¢ = 3. Ideally, both the designs should have the same
power dissipation as during ¢ = 3 mode of operation the circuits for ¢ = 4 mode
are disabled. But the MRMTPD design has an overall increase in area of 60 %
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over the MRPD design which increases the power dissipation due to wire load. The
MRMTPD design can increase the coding gain range but the increase in area and

power consumption could be the limiting factor when using this design. The area
of MRMTPD increased by 54 % over the FRPD2 design.
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Discussion

The primary goal of this thesis was to introduce flexibility in the baseline design
keeping the area and power dissipation cost of adding the additional circuit to a
minimum. The results obtained from evaluation of our multi-rate product decoder
design were promising with a 31 % increase in area and 5 % increase in power dissi-
pation from the fixed-rate product decoder, both designs operated at base OH and
number of iterations equal to four. The cost of area and power dissipation of adding
reconfigurability was not very high.

It is hard to compare our results on net coding gain with the works presented
in section 1.2 as these designs were based on SD decoding which is inherently high
performing in terms of net coding gain. However, when we compare the throughput
and power dissipation, our design has much better performance owing to the fact that
HD decoding is suitable for high-throughput systems. However, the high throughput
comes at a cost of a large chip area.

In order for the optical networks to reach very high throughput of 300 Gbps
and above, all the modules used in these networks must be able to support the
throughput, which is not the case in the present optical network. Our design can be
used in the future when the optical networks have the capability to reach such high
throughput. In the present system we can trade off the high throughput to reduce
the area of the chip further. This can be done by reducing the number of component
decoders by sharing component decoders between two or more codewords.

6.1 Limitations

The baseline component decoders used in the MRPD design are highly parallel
providing high-throughput operation but at the cost of area. When synthesizing the
designs in the Cadence environment, the time required for the synthesis to complete
varied based on the size of the chip, with the MRMTPD design taking the maximum
time of upto 64 hours for completion. Due to the large synthesis time, analysis of
the designs took several hours. Simulations for obtaining BER plots were also time
consuming as low post-FEC BER of 107! were hard to obtain. Emulation of the
product decoder on an FPGA can be used to reach such low post-FEC BER, but
the product decoders are too large to fit on any FPGA that was available to us.
Smaller codes can be used to fit on the FPGA but the net coding gain would be
lower for such codes.
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6.2 Future Work

In this thesis work, the power analysis was done by simulating the synthesized design
in Cadence Genus. Though the power analysis results from these tools are highly
reliable, experimental results can authenticate the power results. In the future, the
MRPD and MRMTPD designs can be placed and routed and a possible tapeout can
be considered. The chip can be used to provide empirical data to corroborate the
synthesis results.

A design aspect that was proposed for this thesis work was to use assymetrical
product-code memory with component codes of different block lengths. However,
when using different block length the finite-field arithmetic used in component de-
coders also changes which means that different component decoders are required. A
solution to this problem would be to use flexible field component decoders and this
can be considered for future solution.
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Conclusion

In this thesis, we have implemented a multi-rate product decoder (MRPD) specif-
ically designed for future rate-adaptable optical communication systems. The de-
coder is synthesized using 28 nm FD-SOI process technology. The resulting product
decoder has a coding gain range of 9.96-10.46 dB. The decoding latency obtained
from the evaluation are very low with a maximum of 52.45 ns. The different modes of
the product decoder operate at above 300 Gbps throughput with maximum achiev-
able throughput of 1.6 Tbps.

With an efficient clock gating implementation, the design is highly energy-
efficient with energy dissipation per information bit from 0.58 to 1.29 pJ/bit. Power
dissipation of the different modes are sub 1 W. All of this is achieved with an area
cost of 31 % over the fixed-rate product decoder with ¢t = 3 design. Keeping in mind
that when using fixed-rate product decoders, different chips are required for different
modes, the area cost of introducing reconfigurability can be ignored. The MRPD
can be used in rate-adaptable optical communication systems to vary the code rate
and decoding iterations to achieve higher throughput at the cost of coding gain and
vice versa. Also, increasing the OH decreases the power consumption and could be
used during periods of low load or traffic.

Finally, the multi-rate, multi-t product decoder design (MRMTPD) imple-
mented can deliver a much higher coding gain range but area of the chip can be a
limiting factor. But with the same reasoning as above, the area cost can be over-
come by the advantages of having such a multi-rate, multi-¢ design providing a wide
range of coding gain and throughput.
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