
h
v

h

v
h

v

h
v

h

s

s
s

s

s
s

s

s

Y

Y

X

Z

X

Z

Tensor network based decoders
for topological stabilizer codes
with diverse qubit error rates

Master’s thesis in EMMNano

YINZI XIAO

DEPARTMENT OF NANOTECHNOLOGY

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Master’s thesis 2023

Tensor network based decoders
for topological stabilizer codes
with diverse qubit error rates

YINZI XIAO

Department of Nanotechnology
Chalmers University of Technology

Gothenburg, Sweden 2023

Tensor network based decoders for topological stabilizer codes
with diverse qubit error rates
YINZI XIAO

© YINZI XIAO, 2023.

Supervisor: Mats Granath, University of Gothenburg
Examiner: Mats Granath, University of Gothenburg

Master’s Thesis 2023
Department of Nanotechnology
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Diagram illustration of algorithm steps in BSV decoder of XYZ2 code.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv

Tensor network based decoders for topological stabilizer codes
with diverse qubit error rates
YINZI XIAO
Department of Nanotechnology
Chalmers University of Technology

Abstract
To get a reliable and robust computing result for quantum computers, quantum error
correction (QEC) is necessary, and various protection codes have been developed.
Among them topological stabilizer codes are gaining promise for QEC, because
their global properties provided by the topological code structure help protect the
logical qubits from noises. While only local measurements are required which makes
them possible to be implemented in existing quantum hardware, a decoder needs
to be applied to map measurements to error correcting operations. Improving the
decoder helps in reducing the logical failure rate of the code. In this master thesis
project, a tensor network based decoder which supports decoding certain types of
stabilizer codes with diverse qubit error rates is developed, and is used to research
the scenarios for stabilizer codes with diverse error rates and the multi-level decoding
for concatenated codes such as the XYZ2 code.

Keywords: quantum error correction, surface code, tensor network, non-IID error.

v

Acknowledgements
First I want to express my sincere gratitude to the examiner and supervisor of my
master thesis project, Prof. Mats Granath. Thank you for all the guidance and help
you offered during this project. You can always provide good suggestions when I
were struggling in various kind of problems during the project, and I hope that I
can learn from you to become a better researcher in my future study. I also want
to thank Basudha Srivastava and Moritz Lange for their valuable suggestions and
discussions. Then I want to thank all of my friends here in Gothenburg, especially
Veronika Beliaeva and Eduardo Bardales. We have been classmates and good friends
for almost two years during our master study, and my life in Gothenburg would be
much less joyful if I don’t have your company. Finally I want to thank my parents.
Even though I could only see you through video calls, I know for sure that you are
standing by my side and giving me support, as you’ve been always doing since I was
a little kid.

The simulations and part of the codes written in this project are based on the python
package qecsim. Computations were enabled by resources provided by the Chalmers
Centre for Computational Science and Engineering (C3SE).

Yinzi Xiao, Gothenburg, June 2023

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Quantum Computing . 1

1.1.1 Axioms of quantum mechanics 1
1.1.2 Representation . 2

1.1.2.1 Dirac notation . 2
1.1.2.2 Linear Algebra . 3

1.1.3 Qubit . 4
1.1.3.1 Classical bit . 4
1.1.3.2 Qubit . 5
1.1.3.3 Bloch sphere . 5

1.1.4 Operators . 6
1.1.4.1 Identity operator . 6
1.1.4.2 Pauli operators . 7
1.1.4.3 Other common operators 8

1.1.5 Composite system . 9
1.1.5.1 States in a composite system 9
1.1.5.2 Operators in the composite system 9

1.2 Quantum Error Correction . 10
1.2.1 Classical error correction . 10
1.2.2 Challenges of quantum error correction 11
1.2.3 Three-qubit repitition code . 11

1.2.3.1 Three-qubit bit-flip code 12
1.2.3.2 Three-qubit phase-flip code 13
1.2.3.3 Nine-qubit Shor code 13

1.2.4 Stablizer formalism . 14
1.2.5 Surface code . 15

1.3 Tensor Network . 16
1.4 Simulation . 18

2 Theory 19
2.1 XZZX code . 19
2.2 YZZY code . 20
2.3 XYZ2 code . 21
2.4 Maximum-likelihood decoder . 25

ix

Contents

2.5 Matrix product states-based decoder 28

3 Methods 35
3.1 Error Model . 35

3.1.1 Independent and identically distributed error model 35
3.1.2 Independently and non-identically distributed error model . . 37
3.1.3 Hashing bound . 37

3.2 MPS decoder for the XYZ2 code . 37
3.2.1 Code realization of the YZZY code 38
3.2.2 Code realization of the MPS decoder for the YZZY code . . . 38
3.2.3 Correctness check of the MPS decoder for the YZZY code . . 40
3.2.4 Code realization of the MPS decoder with INID error model . 42
3.2.5 Correctness check of the MPS decoder with the INID error

model . 44
3.2.6 Code realization of the MPS decoder for the XYZ2 code . . . 46

3.3 Error threshold . 48

4 Result 51
4.1 Results of the MPS decoder for the XYZ2 code compared with ana-

lytical results . 51
4.2 Results of the MPS decoder for the XYZ2 code compared with results

obtained by the EWD decoder . 52
4.3 Threshold of the XYZ2 code compared with the YZZY code 54

5 Conclusion 59

Bibliography 61

x

List of Figures

1.1 The Bloch sphere. 6
1.2 Circuit diagram for the parity measurement. 12
1.3 Surface code with distance d = 5. The left, center and right fig-

ures respectively show the stabilizer, logical X operator and logical Z
operator of the code. 15

1.4 Example diagrams for low-order tensors: vector vi (left), matrix Mij

(center) and three-dimensional tensor Tijk (right). 16
1.5 Example diagrams for tensor contractions. 17
1.6 Example diagram for MPS. 17
1.7 Example diagram for MPO. 17

2.1 Rotated surface code with distance d = 5. The left, center and right
figures respectively show the stabilizer, logical X operator and logical
Z operator of the code. 19

2.2 XZZX code with distance d = 5. The left, center and right figures
respectively show the stabilizer, logical X operator and logical Z op-
erator of the code. 20

2.3 YZZY code with distance d = 5. The left, center and right figures
respectively show the stabilizer, logical Y operator and logical Z op-
erator of the code. 21

2.4 Transformation from the YZZY code to the XYZ2 code. 22
2.5 XYZ2 code with distance d = 3. The left, center and right figures

respectively show the stabilizer, logical X operator and logical Z op-
erator of the code. 22

2.6 XYZ2 code with distance d = 3. These two figures show that the
logical Y operator in the XYZ2 code can be expressed by pure Z or
Y operators on every data qubit. 23

2.7 Variations of the XYZ2 code with distance d = 3. Left and right
figure respectively has the link stabilizers YY and ZZ. 24

2.8 Neighbour relation for edge e with vertices v(e), w(e) and plaquettes
p(e), q(e). 29

2.9 Extended surface code lattice with d = 3. It can be also seen as the
tensor network used for calculating the coset probabilities. 30

2.10 s, h and v tensors in the tensor network. 31
2.11 Partition of the tensor network by column. Here is an example for

the d = 3 surface code . 33

xi

List of Figures

3.1 Illustration of algorithms steps in the MPS decoder for the XYZ2

code. An error on the XYZ2 code is mapped to a corresponding error
on the YZZY code, and then the coset probability is calculated using
the modified MPS decoder. 38

3.2 Example with the d = 3 XZZX code of sample recovery (right) for
the error syndrome (green) caused by the actual error chain (left). . . 39

3.3 Transformation of tensor network based on rotated surface codes. The
original tensor network extending from rotated surface codes (top-
left) is inconvenient for tensor contractions. A transformation of split-
ting every s node into 4 nodes (top-right) and absorbing these nodes
into neighbouring h or v nodes (bottom-left) is then applied to the
original tensor network. The transformed tensor network (bottom-
right) is available for implementing the contraction algorithm of the
MPS decoder. 41

3.4 Logical failure rate vs physical error rate, pure X(Y) noise comparing
the XZZX and YZZY codes and decoders. 42

3.5 Logical failure rate vs physical error rate, pure Z noise comparing the
XZZX and YZZY codes and decoders. 43

3.6 Logical failure rate vs physical error rate, depolarizing noise compar-
ing the XZZX and YZZY codes and decoders. 43

3.7 The diagonal Y⊗d operator (left) is the only logical operator con-
taining only Pauli Y in the YZZY code. As a consequence, for pure
Y noise any syndrome has only two error chains in different classes
(center, right) which differ only on the diagonal. 45

3.8 Logical failure rate vs error probability, (modified) pure Y noise for
d = 3 the YZZY code. 46

3.9 Logical failure rate vs error probability, (modified) pure Y noise for
d = 7 the YZZY code. 47

3.10 Example of estimation method for error threshold. 50

4.1 Logical failure rate vs physical error rate, pure X noise for the XYZ2

code comparing simulation results (solid lines with point marker) with
analytical results (dashed lines). 52

4.2 Logical failure rate vs physical error rate, pure Y noise for the XYZ2

code comparing simulation results (solid lines with point marker) with
analytical results (dashed lines). 53

4.3 Logical failure rate vs physical error rate, pure Z noise for the XYZ2

code comparing simulation results (solid lines with point marker) with
analytical results (dashed lines). 53

4.4 Logical failure rate vs physical error rate, depolarizing noise for the
XYZ2 code comparing two approximate maximum-likelihood decoders. 54

4.5 Logical failure rate vs physical error rate, X-bias η = 10 noise for the
XYZ2 code comparing two approximate maximum-likelihood decoders. 55

4.6 Logical failure rate vs physical error rate, Y-bias noise η = 10 for the
XYZ2 code comparing two approximate maximum-likelihood decoders. 55

xii

List of Figures

4.7 Logical failure rate vs physical error rate, Z-bias noise η = 10 for the
XYZ2 code comparing two approximate maximum-likelihood decoders. 56

4.8 Estimated threshold pc for the XYZ2 and the YZZY code as a function
of bias η of X-biased noise. 56

4.9 Estimated threshold pc for the XYZ2 and the YZZY code as a function
of bias η of Y-biased noise. 57

4.10 Estimated threshold pc for the XYZ2 and the YZZY code as a function
of bias η of Z-biased noise. 57

xiii

List of Figures

xiv

1
Introduction

This chapter introduces the relevant background knowledge for this thesis. Section
1.1 briefly discusses some necessary knowledge for quantum computing; Section 1.2
introduces the theory and some examples of quantum error correcting codes; Section
1.3 gives an introduction of tensor networks and section 1.4 discusses the simulation
software and packages used in this thesis.

1.1 Quantum Computing
This section introduces the basic knowledge needed for quantum computing, which
includes the axioms of quantum mechanics, the representation of quantum states
and quantum operators, the concept of qubit (quantum bit) and common quantum
operators used in quantum computing and quantum error correction.

1.1.1 Axioms of quantum mechanics
There are multiple sets of axioms which build the foundation of quantum mechanics.
The following relates closely to the content in this thesis.

Axiom of state and superposition: A quantum system is related to a complex
vector space H (Hilbert space). The properties of a quantum system can be com-
pletely described by a quantum state vector |ϕ⟩ in this Hilbert space. As a result,
any quantum state can be formed by the superposition of two or more quantum
states; and the superposition of any two or more quantum states will form a new
quantum state.
Axiom of observable: For every physical property A of a quantum system, there
exists an associated Hermitian operator Â (which is usually called an observable)
which acts in the Hilbert space H of this quantum system. Each measurement result
of this physical property must be an eigenvalue of this Hermitian operator, and the
corresponding quantum state for this eigenvalue is the state of this quantum system
after measurement.
Axiom of evolution: The time evolution of a closed quantum system can be
described by a unitary operator Û(t, t0), such that for any state |ϕ0⟩, the state |ϕ⟩
can be obtained by: |ϕ⟩ = Û(t, t0) |ϕ0⟩ ;∀t, t0.
Axiom of composite system: Consider two quantum system A and B. If the
Hilbert space of system A and B is denoted as HA and HB, the Hilbert space of the

1

1. Introduction

composite system AB is the tensor product of HA and HB: HA⊗HB. If the state of
system A and B is |ϕA⟩ and |ψB⟩, the state of composite system AB is |ϕA⟩ ⊗ |ψB⟩.

1.1.2 Representation
In this thesis, quantum states and operators are usually represented in the form of
Dirac notation or vectors and matrices. This section introduces the denotation and
calculation of these two representations.

1.1.2.1 Dirac notation

State:
In Dirac notation, a quantum state is denoted as a ket: |ϕ⟩, which represents a vector
in the Hilbert space H. According to the axiom of superposition, the superposition
of several quantum states will form another state inside the Hilbert space:

|c⟩ = a |a⟩+ b |b⟩ , (1.1)

where a and b are complex numbers and |a⟩ and |b⟩ are state vectors.

For each Hilbert space, there’s a corresponding dual vector space H∗, and the dual
vectors in this space is denoted as a bra: ⟨ϕ|. This dual vector space is used to
describe properties of the inner product between states:

⟨u|v⟩ = ⟨v|u⟩∗ ∈ C. (1.2)

If a ket |u⟩ satisfies ⟨u|u⟩ = 1, then this ket is called normalized. If two kets |u⟩ and
|v⟩ satisfy ⟨u|v⟩ = 0, then these two kets are called orthogonal with each other.

Operator:
In Dirac notation, an operator is denoted as a capital character with a hat: Ô.
Sometimes it is also common to skip the hat for convenience: O. An operator acts
on a quantum state, usually transforming it into another different state. If the result
of the action is the same state with some complex value, then the state and value
are called eigenstate and eigenvalue of this operator.

An operator can also act on a bra state in the dual vector space. Consider an
operator Â which acts on a ket state |ϕ⟩ in H and generates a new ket state |ϕ′⟩ =
Â |ϕ⟩. The corresponding bra state ⟨ϕ′| in H∗ is defined as:

⟨ϕ′| = ⟨ϕ| Â†, (1.3)

where Â† is called the Hermitian conjugate of operator Â. If an operator Ĥ satis-
fies: Ĥ = Ĥ†, this operator is called a Hermitian operator. Every physical property
must correlate with a Hermitian operator (also called an observable), and all the
eigenvalues of a Hermitian operator are real numbers.

Operators can also be generated by the outer product of ket and bra states:

2

1. Introduction

|u⟩ ⟨v| = (|v⟩ ⟨u|)†. (1.4)
It’s easy to see that |u⟩ ⟨v| is indeed an operator by acting it on a state |ψ⟩:

(|u⟩ ⟨v|) |ψ⟩ = |u⟩ (⟨v|ψ⟩) = (⟨v|ψ⟩) |u⟩ , (1.5)
since it transforms |ψ⟩ into |u⟩.

1.1.2.2 Linear Algebra

Orthonormal complete basis:
Consider a discrete Hilbert space H. It is possible to find a collection of states
{|ϕi}⟩ = {|ϕ1⟩ , |ϕ2⟩ , · · · , |ϕN⟩}, such that every state in H can be represented by
this collection:

|Ψ⟩ =
N∑

i=1
ci |ϕi⟩ ,∀ |Ψ⟩ ∈ H. (1.6)

If all states in this collection are orthonormal:

⟨ϕi|ϕj⟩ = δij, (1.7)
then this collection of basis is called the orthonormal complete basis. This basis is
very useful: since it’s complete, it can describe all states in H; since it’s orthonormal,
the calculation rules between states and operators are very easy and are identical
with those in linear algebra.

Vector:
Because the norm of a state doesn’t influence any of its physical properties, one can
require every state in a Hilbert space to be normalized. Then by Equation 1.6, every
state in this Hilbert space can be uniquely represented by the coefficients {ci}. This
yields the column vector representation for a ket state:

|Ψ⟩ =

c1
c2
...
cN

 . (1.8)

Similarly, a row vector representation can be used for the bra states in the dual
vector space:

⟨Ψ| = (c∗
1 c∗

2 · · · c∗
N). (1.9)

It’s natural to define the inner product of a bra and a ket state under this represen-
tation:

⟨Ψ|Ψ⟩ = (c∗
1 c∗

2 · · · c∗
N)

c1
c2
...
cN

 = |c1|2 + |c2|2 + · · ·+ |cN |2, (1.10)

3

1. Introduction

since the basis is orthonormal.

Matrix:
Operators in the Hilbert space can also be represented by the basis:

Ô =
N∑

i=1

N∑
j=1
|ϕi⟩ ⟨ϕi| Ô |ϕj⟩ ⟨ϕj| , (1.11)

by using this property of orthonormal complete basis:

N∑
i=1
|ϕi⟩ ⟨ϕi| = Î , (1.12)

where Î is the identity operator.

Therefore, by denoting the coefficients ⟨ϕi| Ô |ϕj⟩ as cij, one can represent the oper-
ator coefficients in a matrix form. Because these coefficients identically define the
operator, this matrix actually represents the operator in the given basis:

Ô =

c11 c12 · · · c1N

c21 c22 · · · c2N
...
cN1 cN2 · · · cNN

 . (1.13)

It’s easy to verify that the calculation for the operator acting on bra and ket states
under this representation follows the rules in linear algebra as well. Note that this
representation is not unique, since one can choose different basis for the given Hilbert
space. Then, the representation for the same state or operator may change due to
the different choice for basis.

1.1.3 Qubit
The qubit (quantum bit) is the elementary unit in quantum computing, which is
essentially a two-level quantum system. Based on the type of quantum system,
there are several types of qubits, including superconducting qubits, spin qubits,
photonic qubits and so on. Those will not be discussed in this thesis, but only the
mathematical or abstract properties of a qubit.

1.1.3.1 Classical bit

Before discussing the qubit, it’s good to first discuss the classical bit. The classical
bit is the basic unit in classical information theory. It has two states, which are
often denoted 0 and 1. A classical bit can either be in state 0 or state 1, and can
only be in one state at a time.

4

1. Introduction

1.1.3.2 Qubit

Unlike a classical bit, a qubit is defined in a two-dimensional Hilbert space H2. It has
two computational basis states, which are often denoted |0⟩ and |1⟩, and infinitely
many states, which can be represented as the superposition of |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ , (1.14)
where α and β are complex numbers, and are often required to obey |α|2 + |β|2 = 1
in order to normalize |ϕ⟩.

By the definition given in Section 1.1.2.2, the basis states can be written in vector
notation as:

|0⟩ =
(

1
0

)
; |1⟩ =

(
0
1

)
, (1.15)

and |ψ⟩ can also be written in vector notation as:

|ψ⟩ = α

(
1
0

)
+ β

(
0
1

)
=
(
α
β

)
. (1.16)

The bra state ⟨ψ| in dual vector space can be written as:

⟨ψ| = α∗(1 0) + β∗(0 1) = (α∗ β∗). (1.17)
The inner product of |ψ⟩ and ⟨ψ| is:

⟨ψ|ψ⟩ = (α∗ β∗)
(
α
β

)
= |α|2 + |β|2, (1.18)

which is often set to be 1 to normalize the state.

1.1.3.3 Bloch sphere

The Bloch sphere is a good tool to visualize a qubit. In order to map a qubit to the
Bloch sphere, one can first transform α and β by two real parameters θ and ϕ:

|ψ⟩ = cos
θ

2 |0⟩+ eiϕsin
θ

2 |1⟩ =
(

cos θ
2

eiϕsin θ
2

)
, (1.19)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

It is easy to prove that this transformation still satisfies the normalization of the
state. After this transformation, all (pure) qubit states can be mapped to the sur-
face of a sphere, which is called the Bloch sphere (Fig. 1.1).

The north and south pole of the Bloch sphere represent the two basis states |0⟩
and |1⟩. Parameter θ portrays the amplitude of the coefficients and ϕ portrays the
relative phase of the coefficients. Rather than the computational basis |0⟩ and |1⟩,
one can also choose other bases to represent the Hilbert space, for example the two
states on the positive and negative side of x axis:

5

1. Introduction

Figure 1.1: The Bloch sphere.

|+⟩ = 1√
2

(|0⟩+ |1⟩) ; |−⟩ = 1√
2

(|0⟩ − |1⟩), (1.20)

and the two states on the positive and negative side of y axis:

|+i⟩ = 1√
2

(|0⟩+ i |1⟩) ; |−i⟩ = 1√
2

(|0⟩ − i |1⟩). (1.21)

Here they are represented by |0⟩ and |1⟩, but since they are complete bases, they
can also represent |0⟩ and |1⟩. For example:

|0⟩ = 1√
2

(|+⟩+ |−⟩) ; |1⟩ = 1√
2

(|+⟩ − |−⟩). (1.22)

1.1.4 Operators
As mentioned in Section 1.1.2 before, operators can act on states and transform
them into other states. In quantum computing, it’s also common to call an operator
a gate, corresponding to the term used in classical computing. This section will
introduce a few important operators which act on a single qubit.

1.1.4.1 Identity operator

The identity operator is often denoted as Î or simply just I by convenience. The
result of its action on a state is still the same state. In the case of a single qubit,
one can represent it with basis states |0⟩ and |1⟩:

I = |0⟩ ⟨0|+ |1⟩ ⟨1| =
(

1
0

)
(1 0) +

(
0
1

)
(0 1) =

(
1 0
0 1

)
. (1.23)

6

1. Introduction

For simplicity, operators in the rest of this thesis will mainly use the matrix repre-
sentation of the computational basis. It’s easy to observe that the matrix represen-
tation of the identity operator is just the identity matrix, which acts on any vectors
trivially.

1.1.4.2 Pauli operators

Pauli operators are very important in qubit computation. They can be written as:

X = |0⟩ ⟨1|+ |1⟩ ⟨0| =
(

0 1
1 0

)
, (1.24)

Y = −i |0⟩ ⟨1|+ i |1⟩ ⟨0| =
(

0 −i
i 0

)
, (1.25)

Z = |0⟩ ⟨0| − |1⟩ ⟨1| =
(

1 0
0 −1

)
. (1.26)

X, Y, Z are also often written as σ1, σ2, σ3. Identity operator I is sometimes written
as σ0.

The eigenvalues for all Pauli operators are either 1 or -1, and the eigenstates for
each Pauli operator are |+⟩ and |−⟩ for X, |+i⟩ and |−i⟩ for Y and |0⟩ and |1⟩ for
Z. Therefore, the spectrum decompositions of Pauli operators are:

X = |+⟩ ⟨+| − |−⟩ ⟨−| ,
Y = |+i⟩ ⟨+i| − |−i⟩ ⟨−i| ,
Z = |0⟩ ⟨0| − |1⟩ ⟨1| .

(1.27)

Based on the chosen basis, the form of these Pauli operators can actually transform
from each other. For example if one choose |+⟩ and |−⟩ to be the basis:

|+⟩ =
(

1
0

)
; |−⟩ =

(
0
1

)
, (1.28)

then the matrix representation of X in this basis will become:

X =
(

1 0
0 −1

)
, (1.29)

while Z will become:

Z =
(

0 1
1 0

)
. (1.30)

Besides what’s discussed above, Pauli operators also have the following properties:

Pauli operators are Hermitian:

X = X†, Y = Y †, Z = Z†. (1.31)

7

1. Introduction

The inverse of Pauli operators are themselves:

X2 = Y 2 = Z2 = I. (1.32)

Pauli operators anti-commute with each other:

{X, Y } = {Y, Z} = {Z,X} = O, (1.33)

where {A,B} = AB + BA is defined as the anticommutor of the two operators A
and B, and O is the empty operator, which acts on any state and results in nothing.

The product of two different Pauli operators will give the third Pauli operator:

XY = iZ, Y Z = iX, ZX = iY. (1.34)

The three Pauli operators, along with the identity operator, form a complete basis
for all operators in the single-qubit Hilbert space H2. Therefore, any single-qubit
operator A can be represented as a linear combination of Pauli operators and the
identity operator:

A = a0I + a1X + a2Y + a3Z, (1.35)

where ai are complex coefficients. If all ai are real, then the operator is a Hermitian
operator.

Using Pauli operators as generators, one can get the single-qubit Pauli group P1:

P1 = ⟨X, Y, Z⟩ = {cf |f ∈ {I,X, Y, Z}, c ∈ {±1,±i}}. (1.36)

1.1.4.3 Other common operators

The Hadamard operator (gate) H can be obtained by adding the X and Z gate:

H = 1√
2

(X + Z) = 1√
2

(
1 1
1 −1

)
. (1.37)

The Hadamard gate can transform states between bases |0⟩, |1⟩ and |+⟩, |−⟩, and
is often used to create superposition at the beginning of a quantum algorithm.

The Z gate gives a phase factor -1 to the state |1⟩. With similar effects, the S gate
and the T gate respectively give a phase factor i and exp(iπ/4) to the state |1⟩:

S =
(

1 0
0 i

)
, T =

(
1 0
0 exp(iπ/4)

)
. (1.38)

They also have the relation:

Z = S2, S = T 2. (1.39)

8

1. Introduction

1.1.5 Composite system

1.1.5.1 States in a composite system

Consider two qubits A and B. The bases for A and B are {|0⟩A , |1⟩A} and {|0⟩B , |1⟩B},
separately. Since these two bases can represent all pure states for qubit A and B:

|ψ⟩A = a0 |0⟩A + a1 |1⟩A ,
|ψ⟩B = b0 |0⟩B + b1 |1⟩B ,

(1.40)

then consider the composite system AB. Based on the axiom in Section 1.1.1, any
product states in the system AB can be written as:

|ψ⟩A ⊗ |ψ⟩B =a0b0 |0⟩A ⊗ |0⟩B + a0b1 |0⟩A ⊗ |1⟩B
+a1b0 |1⟩A ⊗ |0⟩B + a1b1 |1⟩A ⊗ |1⟩B .

(1.41)

Therefore, one can find that the basis for composite system AB can simply be the
tensor product of the bases in system A and B:

{|i⟩A ⊗ |j⟩B} = {|i⟩A |j⟩B} = {|ij⟩}, i, j = 0, 1, (1.42)

where the right two forms are usually used for simplicity.

By the definition of tensor product in linear algebra, it’s also easy to write the vector
form of the composite system basis:

|00⟩ =

1
0
0
0

 , |01⟩ =

0
1
0
0

 , |10⟩ =

0
0
1
0

 , |11⟩ =

0
0
0
1

 . (1.43)

One can generalize this to an n-qubit system, where the basis is:

{|i⟩⊗n |i = 0, 1} = {|00 · · · 0⟩ , |00 · · · 1⟩ , · · · , |11 · · · 1⟩︸ ︷︷ ︸
2n

}, (1.44)

which can be written in the vector form in a 2n vector space.

1.1.5.2 Operators in the composite system

Similar to states, operators in the composite system can be written as a (sum of)
tensor product of operators in each subsystem. Using the two qubit system AB as
an example, and consider a CNOT gate which flips qubit B (target qubit) if the
state of qubit A (control qubit) is |1⟩ and acts trivially if the state of control qubit
is |0⟩. It can be written as:

CNOT = |0⟩A ⟨0|A ⊗ IB + |1⟩A ⟨1|A ⊗XB. (1.45)

Expressing everything above with the linear algebra representation, the matrix form
of the CNOT gate is:

9

1. Introduction

CNOT =
(

1
0

)
(1 0)⊗

(
1 0
0 1

)
+
(

0
1

)
(0 1)⊗

(
0 1
1 0

)

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
(1.46)

For n-qubit systems, Pauli operators can be generalized as n-fold tensor products of
single-qubit Pauli operators, and they form the n-qubit Pauli group Pn:

Pn = {cf1 ⊗ f2 · · · ⊗ fn|fj ∈ {I,X, Y, Z}, c ∈ {±1,±i}}. (1.47)

For elements in the n-qubit Pauli group, it’s common to omit the tensor product sign
⊗ and even the identity operators which act on some qubits to simplify the expres-
sion. For example, the below expressions equivalently denote an n-qubit operator
where Z operator acts on the second and the third qubit:

I ⊗ Z ⊗ Z · · · ⊗ I︸ ︷︷ ︸
n

= IZZ · · · I = Z2Z3. (1.48)

1.2 Quantum Error Correction
Based on the content introduced in the last section about quantum computing,
this section introduces the concept of quantum error correction (QEC), some basic
examples of QEC, the stabilizer formalism and the surface code.

1.2.1 Classical error correction
Basically, the strategy used in classical error correction is straightforward: encode
one bit redundantly by copying the initial bit several times, such that a few errors
occurring in the copied bits won’t affect the encoded information overall.

The simplest classical error correction code is the three-bit repetition code. It simply
encodes bits by repeating them:

0L = 000; 1L = 111. (1.49)

Here 0L and 1L are the encoded bits, which are also called codewords.

Only bit-flip errors could happen on classical bits. Consider a bit-error happens on
the second bit, and transforms the codewords as follows:

0L → 010; 1L → 101. (1.50)

Now one observes the bit string after the error happening, and finds that the second
bit has a different value. When the error probability is not large, it’s natural to
conclude that the error happened on the second bit, since it has a different value

10

1. Introduction

from the other two bits. Then, to correct the error, one manually flips the second
bit again, and the bit string is corrected from the bit-flip error and returns to the
correct codeword.

Consider the physical error probability p for each of the three bits. The probability
for one bit getting flipped is 3p(1 − p)2, and the probabilities for two bits getting
flipped is 3p2(1 − p). Therefore, if 3p(1 − p)2 > 3p2(1 − p), which is p < 1/2, it is
more reasonable to consider that the error bit is the one which has a different bit
value rather than the other two bits which have the same bit values.

Hence, as long as only one error occurs on these three bits, one can always correct it.
Then, the logical failure rate Pf for the encoded bit would be the sum of probabilities
where two errors or three errors happen on the bit string: pL = 3p2(1− p) + p3. If
pL < p, which leads to p < 1/2, the three-bit repetition code will reduce the error
probability.

1.2.2 Challenges of quantum error correction
It’s not possible to correct errors on qubits with the same strategy used in classical
error correction. The major challenges of QEC are:

1. Qubits can not be copied. By the no-cloning theorem [1], there doesn’t exist
a unitary operator which can transform a state |ϕ⟩ into an arbitrary unknown
state |ψ⟩: U |ϕ⟩ |ψ⟩ ×= c |ψ⟩ |ψ⟩. For classical error correction, the essential
part of the encoding strategy is copy.

2. Qubits lose superposition after measurements. After measuring a quantum
state, it will collapse into an eigenstate of the measurement observable. For
example, after measuring Z on α |0⟩+ β |1⟩, the state collapses into either |0⟩
or |1⟩ and thus loses its superposition.

3. Qubits have infinite possible errors. Unlike classical bits, which only have
bit-flip errors, any single-qubit operator can be an error acting on a qubit.
Therefore, there is a lot more to consider for quantum errors.

The study of QEC is to tackle these challenges and find a way to correct quantum
errors while protecting the encoded information. Following a different strategy from
classical encoding and using the quantum properties of qubits, different kinds of
QEC codes are created for correcting quantum errors. The next section will start
from the simplest QEC code, and then introduce some definitions in QEC.

1.2.3 Three-qubit repitition code
The three-qubit repitition code is the simplest QEC code. Here we introduce two
types of three-qubit codes, that one can only correct for a single bit-flip (X) error and
the other can only correct for a single phase-flip (Z) error. However, by combining
these two types of codes together, it can correct any possible single-qubit errors. We
start with the three-qubit bit-flip code.

11

1. Introduction

|0⟩

Figure 1.2: Circuit diagram for the parity measurement.

1.2.3.1 Three-qubit bit-flip code

Consider an arbitrary single-qubit state |ϕ⟩ = α |0⟩ + β |1⟩. In order to protect it
from bit-flip (X) errors, one encodes it with three qubits as:

|ϕ⟩3 = α |000⟩+ β |111⟩ . (1.51)

Note that the encoded (logical) state is not a repeated clone of state |ϕ⟩, which is
|ϕ⟩⊗3 = (α |0⟩+ β |1⟩)⊗3.

Here |0⟩L = |000⟩ and |1⟩L = |111⟩ are called the codeword basis states. The state
space spanned by the codeword basis states is called the codespace. Any error-free
logical states fall into the codespace.

Error action
Consider an X error happens on the second qubit and transforms the logical state
into:

X2 |ϕ⟩3 = (I ⊗X ⊗ I)(α |000⟩+ β |111⟩) = α |010⟩+ β |101⟩ . (1.52)

Error detection
It’s not possible to measure a single qubit in the logical state, since the superposition
will be destroyed after the measurement. For example, if one measures Z for the
second qubit and gets the value 1, the logical state will collapse from α |010⟩+β |101⟩
to |010⟩, and it’s impossible to get the coefficients back from this state anymore.

However, one can do the so called parity measurement, by adding an ancillary qubit
and using CNOT gates as shown in Fig. 1.2. In the circuit diagram, each line
represents a single-qubit state; the dots and cross circles respectively represent the
control parts and target parts of CNOT gates, and the meter represents the mea-
surement of the ancillary qubit in the computational basis (measurement of Z).

This parity measurement is equivalent to measuring the observable Z ⊗ Z on the
first two qubits:

(Z ⊗ Z) |00⟩ = |00⟩ , (Z ⊗ Z) |11⟩ = |11⟩ ,
(Z ⊗ Z) |01⟩ = − |01⟩ , (Z ⊗ Z) |10⟩ = − |10⟩ .

(1.53)

12

1. Introduction

It gives the same result for the parity measurement, where the even parity is asso-
ciated with eigenvalue +1, and the odd parity is associated with eigenvalue -1.

Therefore, in the three-qubit bit-flip code, one performs parity measurement Z1Z2
and Z2Z3 on the logical qubit. Given that the logical qubit after X2 error is |ϕ⟩3,err =
α |010⟩+β |101⟩, the result of the parity measurement is -1 for both Z1Z2 and Z2Z3:

Z1Z2 |ϕ⟩3,err = − |ϕ⟩3,err ,

Z2Z3 |ϕ⟩3,err = − |ϕ⟩3,err .
(1.54)

The important thing is that these measurements won’t destroy the superposition of
the logical qubit, since |ϕ⟩3,err is an eigenstate for both Z1Z2 and Z2Z3.

Error decoding
The result of the parity measurements is called a syndrome. If the logical state stays
in the codespace, all syndromes should be +1; if a syndrome is -1, this syndrome
is said to be lighted or lit. Here two syndromes are both lighted, which means the
second qubit has a different value from the other two. Two types of errors X2 and
X1X3 correspond to these syndrome values. If the error probability for each qubit
is the same and not too large, it’s more likely that the error is X2 than X1X3.

Error correction
After getting the conclusion that most likely an X error happens on the second
qubit, one caan just apply an X gate to the second qubit to correct the error state
back to the initial state:

X2 |ϕ⟩3,err = (I ⊗X ⊗ I)(α |010⟩+ β |101⟩) = α |000⟩+ β |111⟩ . (1.55)

1.2.3.2 Three-qubit phase-flip code

A phase-flip error Z gives an additional π phase to |1⟩, but it also flips |+⟩ and |−⟩
with each other:

Z |0⟩ = |0⟩ Z |1⟩ = − |1⟩ ;
Z |+⟩ = |−⟩ Z |−⟩ = |+⟩ .

(1.56)

Therefore, using a similar strategy, the encoded qubit of the three-qubit phase-flip
code is given by:

|ϕ⟩3 = α |+ + +⟩+ β |− − −⟩ . (1.57)

By analysing the measurement results of X1X2 and X2X3, one can correct a single
Z errors by applying another Z gate to the same qubit where error occurs.

1.2.3.3 Nine-qubit Shor code

The nine-qubit Shor code [2] combines the three-qubit bit-flip and phase-flip codes
into one code:

13

1. Introduction

|ϕ⟩9 = α |+⟩3 |+⟩3 |+⟩3 + β |−⟩3 |−⟩3 |−⟩3 , (1.58)
where

|+⟩3 = |000⟩+ |111⟩√
2

;

|−⟩3 = |000⟩ − |111⟩√
2

.

(1.59)

By this combination, the Shor code can correct for single-qubit X,Z and XZ errors.
Since Y can be expressed as the product of X and Z, noticing that any single-qubit
error can be seen as a rotation of a qubit on the Bloch sphere, and measurements
will project it to the discrete X, Y or Z errors, the Shor code can correct for any
single-qubit errors.

1.2.4 Stablizer formalism
The three-qubit code, the Shor code, along with the surface code which will be dis-
cussed in the next subsection, are all examples of a particular class of QEC codes
called the stabilizer codes. The stabilizer formalism is a great tool to study these
codes. It has clear rules, and can be used to avoid the complex expression for many-
qubit states.

Define H = (C2)⊗n as the Hilbert space of all data qubits, which refers to the qubits
used to encode the logical qubits in the QEC codes. The codespace H0 is a subspace
of H. It is defined as

H0 = {ψ ∈ H : gψ = ψ|∀g ∈ G}, (1.60)
where G is the stabilizer group. It is an Abelian subgroup of the n-qubit Pauli group
P , such that for any gi, gj ∈ G, gigj = gjgi, i.e. [gi, gj] = 0.

A stabilizer code is defined by a minimal complete set of m generators gi of G:

G = ⟨g1, g2, · · · , gm⟩ (1.61)
and a pair of logical operators (XL,j, ZL,j) for each encoded logical qubit j which
satisfies

XL,j, ZL,j ∈ C(G)\G and XL,jZL,j = −ZL,jXL,j, (1.62)
where ∈ C(G)\G means in C(G) but not in G. By the above definitions, the stabilizer
code encodes k = n −m logical qubits with n data qubits. The code distance d is
defined as

d = min
P ∈C(G)\G

wt(P), (1.63)

where wt(P), called the weight of P , is the number of qubits that P acts on non-
trivially, where P is some logical operator of this stabilizer code. The stabilizer code

14

1. Introduction

can detect up to d− 1 errors and correct up to (d− 1)/2 errors. The code is labeled
by [[n, k, d]].

To decode the stabilizer codes, parity measurements are done on g1, g2, · · · , gm.
The measurement results are eigenvalues ±1, and can be described by a syndrome
s = (s1, s2, · · · , sm), where (−1)si = ±1. A recovery operator needs to be given to
bring the corrupted state back to the codespace based on the syndrome s.

1.2.5 Surface code
Topological stabilizer codes are a class of stabilizer code where logical qubits are
encoded with topological properties. Among all the topological stabilizer codes, the
surface code (which contains the planar code with a fixed boundary and the toric
code with a periodic boundary) [3, 4, 5] may be the most famous one. A [[n, 1, d]]
surface code [5] is defined by a d × d lattice with n = d2 + (d − 1)2 data qubits.
Fig. 1.3 shows an example of d = 5 surface code. As one can see from the left
figure, stabilizers of the surface code can be classified into two types. The first type
is called the plaquette stabilizer, where 4 data qubits and their edges form a square,
and the stabilizer will act with Pauli Z operator on these 4 qubits; the second type
is called the vertex stabilizer, where 4 data qubits and their edges form a cross,
and the stabilizer will act with Pauli X operator on these 4 qubits. On the lattice
boundary the stabilizers only have weight 3 instead of 4.

Logical X and Z operators of the surface code can be defined as a vertical line of
X operators and a horizontal line of Z operators, as shown in the center and right
figures of Fig. 1.3. It is not hard to find out that these logical operators commute
with all stabilizers but anti-commute with each other, which satisfies the stabilizer
formalism. In Chapter 2 we will introduce some other topological stabilizer codes,
but they are all based on the surface code.

X X

X

X

Z Z

Z

Z

Z

Z

Z

X

X

X

X

X

X

X

X Z Z Z Z Z

Figure 1.3: Surface code with distance d = 5. The left, center and right figures
respectively show the stabilizer, logical X operator and logical Z operator of the

code.

15

1. Introduction

1.3 Tensor Network
One can think of tensors as high-dimensional arrays. Vectors and matrices can be
considered as 1-dimensional and 2-dimensional arrays, while tensors can have more
dimensions. Tensors are often denoted by a capital character with several indices,
where the number of indices represents their dimension. For example a 3-dimensional
tensor can be denoted as Tijk.

However in the tensor algebra, this kind of notation is usually not very conve-
nient, since tensor contractions often need a lot of symbols. Here is an example:
Cil = ∑

j

∑
k AijkBjkl. By using the tensor diagram, things will be a lot easier. Here

are two rules for tensor diagrams according to [6]:

1. Tensors are denoted by shapes, and tensor indices are denoted by lines ema-
nating from these shapes.

2. Connecting two index lines implies a contraction, or summation over the con-
nected indices.

Based on these two rules, Fig. 1.4 shows the diagram representation for the vector
vi, the matrix Mij and the tensor Tijk, and Fig. 1.5 shows the diagram representa-
tion for tensor contractions ∑j Mijvj and ∑j TijklVjm.

vi M ji T j

k

i

Figure 1.4: Example diagrams for low-order tensors: vector vi (left), matrix Mij

(center) and three-dimensional tensor Tijk (right).

Here, we introduce two special tensor networks which will be later used in Section 2.5.
The matrix product state (MPS) [7] represents a tensor with N indices by factorizing
it into a chain-like product of three-index tensors. A MPS can be expressed in the
tensor diagram notation in Fig. 1.6. Alternatively, this MPS can be expressed in
traditional expression as

T ijklm =
∑

b1,b2,··· ,b5

Ai
b1A

j
b1b2A

k
b2b3A

l
b3b4A

m
b4 , (1.64)

where bi, called the bond dimensions or virtual dimensions, are contracted, and each
tensor A can be different from each other. The inner product of two MPSs in the

16

1. Introduction

M vji T V

l

j
k

i m

Figure 1.5: Example diagrams for tensor contractions.

same space will result in a number.

Figure 1.6: Example diagram for MPS.

A matrix product operator (MPO) is a tensor network where each tensor has two
external indices as well as two internal indices contracted with neighboring tensors
in a sequence manner. A MPO can be expressed in the tensor diagram notation in
Fig. 1.7 and be expressed in traditional expression as

Oijklm
i′j′k′l′m′ =

∑
b1,b2,··· ,b5

Ai
i′b1A

j
j′b1b2

Ak
k′b2b3A

l
l′b3b4A

m
m′b4 . (1.65)

Figure 1.7: Example diagram for MPO.

17

1. Introduction

Intuitively, if one thinks of an MPS as a ‘vector’ in some high dimensional space,
an MPO is the generalization to the case of a ‘matrix’ acting in the same space.
Therefore, when an MPO acts on an MPS in the same space, the result will be a
new MPS.

1.4 Simulation
The simulation results and the code construction are based on the python package
qecsim [8], [9] and its extension [11]. Qecsim is a Python3 library for simulating
quantum error correction using stabilizer codes, allowing additional definitions of
codes, error models and decoders. Based on this package, we develop codes and
decoders for the YZZY code and the XYZ2 code, which are further discussed in
Chapter 3. The simulations are run on clusters provided by Chalmers Centre for
Computational Science and Engineering (C3SE).

18

2
Theory

This chapter mainly discusses the theoretical background of this thesis. Section
2.2 introduces the XZZX code, which is a variant of the standard surface code;
Section 2.3 then introduces the YZZY code, which is very similar to the XZZX code
yet has a connection to the XYZ2 code which is discussed in Section 2.5. Section
2.4 introduces maximum-likelihood decoders and Section 2.5 introduces the MPS
decoder, an approximate maximum-likelihood decoder based on tensor networks.

2.1 XZZX code
Before discussing the XZZX code, it’s good to first introduce the rotated surface
code [10]. The rotated surface code is generated by rotating the code lattice 45◦

with respect to the grid of the standard surface code introduced in Subsection 1.2.5.
After the operation, the resulting code can be presented equivalently in Fig. 2.1,
which is an example of the rotated surface code with distance d = 5. If we consider
a square code, i.e. the number of rows and columns are the same in the code lattice,
then [[n, k, d]] = [[d2, 1, d]] for the rotated surface code.

X

X

X

X

X

X

Z

Z

Z

Z

Z Z

X X X X X Z

Z

Z

Z

Z

Figure 2.1: Rotated surface code with distance d = 5. The left, center and right
figures respectively show the stabilizer, logical X operator and logical Z operator of

the code.

In the rotated surface code, there exist two kinds of stabilizers: plaquette stabilizers
and boundary stabilizers. Plaquette stabilizers are formed with four-qubit oper-
ations, which are XXXX and ZZZZ alternating on neighbouring plaquettes. For
example, in the left side of Fig. 2.1, the left-top plaquette has a stabilizer XXXX,

19

2. Theory

and the left-bottom plaquette has a stabilizer ZZZZ. For a distance d rotated surface
code, there are (d− 1)2 plaquette stabilizers. Boundary stabilizers are formed with
two-qubit operations XX and ZZ. They are drawn as arc connections between some
neighbouring qubits, and XX(ZZ) boundary stabilizers are next to ZZZZ(XXXX)
plaquettes. For a distance d rotated surface code, there are 2(d− 1) boundary sta-
bilizers. Examples of the logical operator X and Z for the rotated surface code are
also shown in Fig. 2.1. It’s easy to verify that these operators commute with all
stabilizers but anti-commute with each other.

The XZZX code [11, 12] is an alternative code based on the rotated surface code.
What it does is simply acting with a Hardmard gate on every alternating qubit. The
code parameters remain the same under this transformation, so for the XZZX code
it still has [[n, k, d]] = [[d2, 1, d]], which is the same for the rotated surface code. An
example of the XZZX code with code distance d = 5 is shown in Fig. 2.2.

X

Z

Z

X

ZX X Z X Z X

Z

X

Z

X

Z

Figure 2.2: XZZX code with distance d = 5. The left, center and right figures
respectively show the stabilizer, logical X operator and logical Z operator of the

code.

The plaquette stabilizers for the XZZX code are identical in every plaquette, as
XZZX. The boundary stabilizers can be seen as a ‘part of’ the plaquette stabilizers,
which can be XZ or ZX depending on its position. Logical operators are also shown
in Fig. 2.2. Comparing with the rotated surface code, there are just additional
Hardamard gates acting on alternating qubits in the code lattice.

2.2 YZZY code
The YZZY code has exactly the same structure as the XZZX code. The only dif-
ference is that X and Y operators are exchanged in these two codes. Therefore, all
the X operators in stabilizers and logical operators of the XZZX code becomes Y
operators in the YZZY code. For the same reason, the X logical operator in the
XZZX code becomes the Y operator in the YZZY code after transformation, but
the X logical operator in the YZZY code can be easily constructed by multiplying
logical Y and Z operators. One example of the YZZY code with d = 5 is shown in

20

2. Theory

Fig. 2.3.

Y

Z

Z

Y

ZY Y Z Y Z Y

Z

Y

Z

Y

Z

Figure 2.3: YZZY code with distance d = 5. The left, center and right figures
respectively show the stabilizer, logical Y operator and logical Z operator of the

code.

Starting from the YZZY code, one can obtain the XYZ2 code [13] by doubling the
number of qubits with each pair of qubits stabilized by an XX operator.

First consider mapping the qubit states from |0⟩ to |++⟩ and |1⟩ to |−−⟩. Pauli
operators acting on the single qubit will be mapped to:

I → II or XX,

X → ZZ or Y Y,

Y → Y Z or ZY,

Z → XI or IX.

(2.1)

Then, consider a YZZY plaquette. After this mapping it will become a weight-six
stabilizer XYZXYZ. The correlating picture is shown in Fig. 2.4. Applying this
mapping to the entire YZZY code, one then obtains the XYZ2 code. Compared
with the YZZY code which has [[n, k, d]] = [[d2, 1, d]], XYZ2 code has [[n, k, d]] =
[[2d2, 1, d]], since the number of qubits has been doubled, while the logical Z operator
is a pure X chain with length d across the code.

2.3 XYZ2 code

The XYZ2 code is a simplest version of the ‘matching codes’ presented by Wootton
[14, 15]. The matching codes are formed on hexagonal lattices which include link
stabilizers between pairs of vertices, where each vertex uniquely matches another
vertex. As discussed in the last Section, the XYZ2 code can be seen as a transfor-
mation from the YZZY code. This is also the decoding strategy that we used, and
its details will be discussed in Section 3.2.6. One example of the XYZ2 code with
d = 3 is shown in Fig. 2.5.

21

2. Theory

Figure 2.4: Transformation from the YZZY code to the XYZ2 code.

X

X

Z

Y

Y

Z

Y

Z
X

X

X

X X X

Y

Z

Y

Z

Y

Z

Figure 2.5: XYZ2 code with distance d = 3. The left, center and right figures
respectively show the stabilizer, logical X operator and logical Z operator of the

code.

22

2. Theory

The stabilizers in the XYZ2 code can be classified into three types. For every hexag-
onal plaquette there is a weight-six XYZXYZ stabilizer; for each vertical link there
is a weight-two XX stabilizer; at the code boundary, there exists boundary XYZ
stabilizers. Therefore for 2d2 size code, there are (d − 1)2 plaquette stabilizers, d2

link stabilizers and 2(d−1) boundary stabilizers. In total there are 2d2−1 stabilizers
for constraint, so the XYZ2 code encodes one logical qubit.

The logical X operator is defined as an X chain horizontally crossing the bottom
qubits on the hexagonal plaquette, therefore for 2d2 size code, the distance for logical
X operator is d. The logical Z operator is defined as a ZY chain vertically crossing
the link qubits, and its distance is 2d for 2d2 size code.

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Figure 2.6: XYZ2 code with distance d = 3. These two figures show that the
logical Y operator in the XYZ2 code can be expressed by pure Z or Y operators on

every data qubit.

The logical Y operator can be expressed as a product of logical X and Z operators.
However, in the XYZ2 code one can use stabilizers to form the logical Y operator
as pure Z or Y operations on all data qubits, as shown in Fig. 2.6. Comparing Fig.
2.5 and Fig. 2.6, it’s easy to see that the pure Z operator acting on all data qubits
anti-commutes with the logical X and Z operators. At the same time, one can prove
that it commutes with all stabilizers in the code, therefore it’s indeed the logical Y
operation. Applying all the link stabilizers XX to it, one can get the other form of
the logical Y operator composed by only Y operators. Note that only when Z or
Y operators are acting on all data qubits can they become logical operators. This
leads to the conclusion that under the pure Z or Y noise, the distance of the XYZ2

code is 2d2.

23

2. Theory

Apart from defining the vertical link stabilizer to be XX, one can also choose YY
and ZZ to be the link stabilizer, but the plaquette and boundary stabilizers need to
be changed as well. Fig. 2.7 shows these two variations of the XYZ2 code. Actually
these two variations can be considered as mappings from the YZZY code by replacing
|0⟩ to |+i+ i⟩ and |1⟩ to |−i− i⟩ for the XYZ2 code with YY link stabilizers and
replacing |0⟩ to |00⟩ and |1⟩ to |11⟩ for the XYZ2 code with ZZ link stabilizers.
Respectively, the Pauli operations acting on the single qubit will be mapped to:

I → II or Y Y,

X → ZZ or XX,

Y → ZX or XZ,

Z → Y I or IY

(2.2)

for the case of YY link stabilizers and:

I → II or ZZ,

X → XX or Y Y,

Y → XY or Y X,

Z → ZI or IZ

(2.3)

for the case of ZZ link stabilizers.

Y

Y

X

Z

Z

X

Z

X
Y

Y

Y

Z

Z

Y

X

X

Y

X

Y
Z

Z

Z

Figure 2.7: Variations of the XYZ2 code with distance d = 3. Left and right
figure respectively has the link stabilizers YY and ZZ.

As shown in [13], the XYZ2 code has a unique syndrome direction for isolated X,
Y and Z errors because of the structure of its hexagonal plaquette. Compared with

24

2. Theory

the XZZX code, the XYZ2 code has a higher threshold for biased-error model and a
lower sub-threshold logical failure rate under Y-bias noise with the same code size,
where the threhold and logical failure rate are used for performance evaluation, and
they are defined in the next section. With the same number of data qubits, the
XYZ2 code needs fewer auxiliary qubits for stabilizer measurements than the XZZX
code, yet the weight-six plaquette stabilizers also need a better connectivity between
data qubits.

2.4 Maximum-likelihood decoder
This section basically follows the statement in [16]. Consider a QEC code with size
n. Define H = (C2)⊗n as the Hilbert space for all data qubits in the code and P the
n-qubit Pauli group:

Pn = {cf1 ⊗ f2 · · · ⊗ fn|fj ∈ {I,X, Y, Z}, c ∈ {±1,±i}}. (2.4)

The stabilizers of the code belong to the stabilizer group G, where G ⊂ P and
−I /∈ G. Since any state in the codespace should remain invariant under the action
of any stabilizer, the codespace H0 is defined as:

H0 = {ψ ∈ H : gψ = ψ|∀g ∈ G}. (2.5)

Then consider a Pauli noise which can be described by a linear map ρ→ N (ρ):

N (ρ) =
∑
f∈P

P (f)fρf †, (2.6)

where ρ and N (ρ) are the density matrix of code states before and after the action
of the Pauli noise, and P is the probability distribution of the Pauli group. Because
the initial code state is in the codespace H0, the density matrix should satisfy
gρg† = ρ for any g ∈ G. Therefore, when fG = hG, one has fρf † = hρh†, where
fG ≡ {fg|g ∈ G} is called a left coset of G in the language of group theory. This is
because when fG = hG, one can find a g0 ∈ G, so that f = hg0. It’s easy to show:

fρf † = (hg0)ρ(hg0)† = h(g0ρg
†
0)h† = hρh†. (2.7)

Therefore, when f = hg0, f and h are both elements in this coset. One can prove
that P is a disjoint union of cosets Ci = fiG, where fi is a chosen element in Ci. By
classifying errors into different cosets which has the same action on the codespace,
one can reform Equation 2.6 into:

N (ρ) =
∑

i

P (fiG)fiρf
†
i , (2.8)

where the sum goes over all cosets of G and P (fG) is the sum of probability distri-
bution of all Pauli operators in the coset, which we define as the coset probability:

P (fG) =
∑
g∈G

P (fg). (2.9)

25

2. Theory

What the maximum-likelihood decoder (MLD) does is to calculate every coset prob-
ability based on the syndrome after measuring all stabilizers in the code, and pick
one representative operator f from the coset which has the largest coset probability.
As long as the actual error e is contained in the picked coset, the decoding is suc-
cessful, since f can be expressed as a product of the actual error and a stabilizer:
f = eg. Because the decoder always picks the coset with the largest coset probabil-
ity as the answer, it is called the maximum-likelihood decoder.

More precisely, consider {g1, · · · , gm} as generators of the stabilizer group G. These
generators commute with each other, and measurements of these generators will give
results of eigenvalues gi = ±1, which can be described by a syndrome si ∈ {0, 1},
such that gi = (−1)si , as discussed in Section 1.2.4. Therefore, by measuring all the
generators one can get a syndrome vector s = {s1, · · · , sm} ∈ {0, 1}m. Considering
all generators to be independent, there will be 2m different configurations for the
syndrome vector. The full Hilbert space H can be decomposed into a direct sum of
subspaces with different syndrome configurations:

H =
⊕

s∈{0,1}m

Hs, (2.10)

where Hs = {ψ ∈ H : giψ = (−1)siψ|i = 1, · · · ,m}, and the codespace H0 is just
the subspace where all syndromes are zero: si = 0|i = 1, · · · ,m. Define that a Pauli
operator f ∈ P has syndrome s iff fgi = (−1)sigif for all i = 1, · · · ,m. That is
to say, when the Pauli operator commutes with a stabilizer, the stabilizer will give
a 0 syndrome; when it anti-commutes with a stabilizer, the stabilizer will give a 1
syndrome. One can check that for each Pauli operator which has syndrome s, it has
to be in the coset f(s)C(G), where f(s) is a representative operator with syndrome
s, and C(G) is called the centralizer of G:

C(G) = {f ∈ P : fg = gf |∀g ∈ G}. (2.11)

It’s easy to show that G ⊂ C(G), since all stabilizers commute with each other. Not
rigorously speaking, one can consider C(G) as the direct sum of the stabilizer group
G and the logical operators, since logical operators also commute with all stabilizers.
Consider a stabilizer code with one logical qubit, where XL, YL, ZL ∈ C(G)\G are the
logical operators. Each coset of C(G) can be decomposed into four disjoint cosets of
G:

f(s)C(G) = CI(s) ∪ CX(s) ∪ CY (s) ∪ CZ(s), (2.12)

where

CI(s) = f(s)G, CX(s) = f(s)XLG,
CY (s) = f(s)YLG, CZ(s) = f(s)ZLG.

(2.13)

After the measurements of all independent stabilizer generators defined in the code,
there will be a syndrome representing some information of the error, and the error
state N (ρ) will be projected to the corresponding syndrome subspace Hs. The
syndrome can only give the information that the error e is contained in the coset

26

2. Theory

f(s)C(G). To successfully correct the error, one also needs to determine in which
CP (s), where P = I,X, Y, Z the error is contained. Using Equation 2.8, 2.12 and
2.13, one can write the corrupted code state after syndrome measurements as:

ρ(s) =P (CI(s))f(s)ρf(s) + P (CX(s))f(s)XLρXLf(s)
+P (CY (s))f(s)YLρYLf(s) + P (CZ(s))f(s)ZLρZLf(s),

(2.14)

where we assume all errors and logical operators are Hermitian for simplicity, yet the
equation will have a similar form if they are not. From this equation, the effective
noise model on the observed syndrome can be considered as applying an error from
f(s), f(s)XL, f(s)YL, f(s)ZL with probability P (CI(s)), P (CI(s)), P (CY (s)), P (CZ(s)).
Therefore, the best strategy for decoding is to assume the occurring error as the most
likely among these four errors, i.e. the error which has the largest probability to
happen. Since Pauli operators are unitary, it’s equivalent to choosing one operator
in the most likely coset, denoted as CML within four cosets CI(s), CX(s), CY (s), CZ(s),
as the recovery operator. The decoding strategy can be summarised in pseudocode
as follows:

Algorithm 1 Maximum-Likelihood Decoder
Input: syndrome s ∈ {0, 1}m

Output: recovery operator r ∈ P
f(s)← one Pauli operator which has syndrome s
P (CI(s)← ∑

g∈G P (f(s)g)
P (CX(s)← ∑

g∈G P (f(s)XLg)
P (CY (s)← ∑

g∈G P (f(s)YLg)
P (CZ(s)← ∑

g∈G P (f(s)ZLg)
CML ← C ∈ {CI(s), CX(s), CY (s), CZ(s)} with maximum P (C)
r ← one Pauli operator in CML

After applying the recovery operator to the corrupted code state, the final state
after decoding will be rρ(s)r. The MLD can correctly find the coset of G where the
actual error is in and correct the error with probability

Psuccess =
∑

s∈{0,1}m

P (CML(s)). (2.15)

Performance of the stabilizer codes and decoders can be evaluated by the logical
failure rate Pf of the codes, which is the probability that the decoder fails in cor-
recting errors. It’s easy to see that Pf = 1− Psuccess. Naturally codes and decoders
with lower logical failure rate have better performance.

When plotting the logical failure rate Pf versus the error probability p (the proba-
bility that errors can act on the code, detailed definition in Subsection 3.1.1) of the
same code with several different code distances, there will be a cross point of the
curves. Let the error rate of the cross point be pc. When p < pc, Pf will become
smaller as code distance becomes larger; when p > pc, Pf will become larger as
code distance becomes larger. This is because when increasing the code distance,
the code can be more robust against errors; but it also makes the decoder harder

27

2. Theory

choosing a suitable recovery operator to correct the code. Actually the error rate
of the cross point is called the threshold, and it can also be used for performance
evaluation. Codes and decoders with larger threshold have better performance.

2.5 Matrix product states-based decoder
Exact MLD is nearly unusable as code size goes larger. Therefore, approximate
MLDs are used in practice. The matrix product states-based decoder presented by
Bravyi, Suchara and Vargo [16] is an approximate MLD. In the following content
we will call it the MPS decoder for convenience. The key idea is that the form
of coset probabilities can be constructed as a tensor network defined by the code
structure. During the contraction of the tensor network, one can do a truncation
to approximate the calculation results. There is also another type of approximate
MLD which is based on Metropolis-based Monte Carlo sampling [17, 18, 19]

This section only briefly discusses how the MPS decoder creates the tensor network
for calculating coset probabilities and the approximate algorithm it used for tensor
contractions. For detailed description of how the MPS decoder works, please refer
to the original paper of the MPS decoder [16].

Denote fG one of the cosets CI(s), CX(s), CY (s), CZ(s) defined in Equation 2.8. The
MLD needs to calculate the coset probability P (fG). Denote P1 the probability
distribution of the error model. For example,

P1(X) = P1(Y) = P1(Z) = p/3, P1(I) = 1− p (2.16)

for depolarizing error model with error probability p. Consider the error model as
independent and identically distributed (IID), the coset probability can be expressed
as

P (fG) =
∑
g∈G

∏
e

P1(fege), (2.17)

where the sum goes over all stabilizers in the stabilizer group and the product goes
over all edges of the code lattice. For example, consider the code as the standard
surface code, any stabilizer g can be parameterized by binary variables αv, βp ∈
{0, 1} representing whether g contains vertex stabilizer Av and plaquette stabilizer
Bp which are defined in Section 1.2.5. Such that

g(α; β) =
∏
v

(Av)αv ·
∏
u

(Bu)αu , (2.18)

where we define (Av)0 = (Bu)0 ≡ I by convention, and this equation holds since
all vertex and plaquette stabilizers form a complete generator set for the stabilizer
group of the surface code. Denote e some edge on the lattice which has neighbouring
vertices v(e), w(e) and plaquettes p(e), q(e). For horizontal and vertical edges there
will be two different geometric configurations, as shown in Fig. 2.8. Denote ge the

28

2. Theory

restriction of g acting on the qubit at edge e, then ge only depends on four binary
variables αv(e), αw(e); βp(e), βq(e):

ge(α; β) = ge(αv(e), αw(e); βp(e), βq(e)), (2.19)

where ge(i, j; k, l) is a function of variables i, j, k, l ∈ {0, 1}. For example, ge(i, j; k, l) =
X iXjZkZ l for the surface code.

p(e)

q(e)
v(e) w(e)e p(e) q(e)

v(e)

w(e)

e

Figure 2.8: Neighbour relation for edge e with vertices v(e), w(e) and plaquettes
p(e), q(e).

We can rewrite the expression of coset probability with parameters α, β:

P (fG) =
∑

α

∑
β

T (α; β), (2.20)

where the sum goes over α, β ∈ {0, 1}d(d−1) corresponding to all possible configura-
tions of αv, βp, and

T (α; β) =
∏
e

P1(fege(αv(e), αw(e); βp(e), βq(e))). (2.21)

The right side of Equation 2.20 can be written as the contraction of a properly de-
fined tensor network based on the extended lattice as shown in Fig. 2.9. There are
three types of nodes s, h and v in the extended lattice. s nodes represent locations
of stabilizers or ancillary qubits and h, v nodes represent data qubits at horizontal
and vertical edges of the original code lattice as shown in Fig. 2.8. The edges in the
extended lattice are called links to avoid confusion with edges in the original code
lattice.

Consider a specific pair of variables α and β. Duplicate the corresponding values
αv and βp onto every link connected to the nodes v and p of type s, then a labeling
of these links can be established using the binary variable γ(α; β). Because of the
stabilizer property, it is required that all links connected to any s node carry identical
labels, and this link labeling is called valid. From Equation 2.21, T (α; β) is a product
of objects

Te(α; β) ≡ P1(fege(αv(e), αw(e); βp(e), βq(e))), (2.22)

29

2. Theory

h s h s h

s v s v s

h s h s h

s v s v s

h s h s h

Figure 2.9: Extended surface code lattice with d = 3. It can be also seen as the
tensor network used for calculating the coset probabilities.

where e represents horizontal or vertical edges in the original code lattice, but one
can also think of them as h or v nodes in the extended lattice with a valid link
labeling. By writing Te(α; β) as a function of γ, which is Te(α; β) = Te(γ), one can
rewrite Equation 2.20 as

P (fG) =
∑

valid γ

∏
e∈h,v

Te(γ), (2.23)

where the product encompasses all h and v nodes, while the summation covers only
valid link labelings. To encompass all possible link labelings, one can broaden the
sum by introducing additional terms Te(γ) ∈ 0, 1 linked to nodes e of type s. These
terms are structured so that Te(γ) = 1 iff all links linked to node e bear identical
labels, and conversely, Te(γ) = 0 when this condition isn’t met. Therefore

P (fG) =
∑

γ

∏
e∈h,v,s

Te(γ), (2.24)

where the product encompasses all nodes within the extended lattice, while the
summation spans across all possible link labelings. Notably, each term Te(γ) is
exclusively dependent on the labels of links connected to node e. Therefore, the
right side of Equation 2.24 can be view as the contraction of a tensor network
defined by the collections of tensor Te(γ). The tensor network will have the same
diagram as Fig. 2.9, yet in the tensor network picture, each node will represent
a tensor and the link between tensors represents tensor contraction. Diagrams of
different tensors Te(γ) are shown in Fig. 2.10 and the tensor elements are shown in
Equation 2.25:

30

2. Theory

s(i, j, k, l) =
{

1 if i = j = k = l,
0 otherwise,

h(i, j, k, l) = P1(fege(j, l; i, k)),
v(i, j, k, l) = P1(fege(i, k; j, l)),

(2.25)

where all tensor indices i, j, k, l take value 0,1. Certain indices of tensors located
at the network’s boundary may be absent, and it can be checked by observing the
links incident to them in the network. Observe that in Equation 2.25, the arrange-
ment of arguments in ge is swapped between h and v. This is simply because for h
nodes, vertex stabilizers are located on the left and right and plaquette stabilizers
are located on the top and bottom, while for v nodes, vertex stabilizers are located
on the top and bottom and plaquette stabilizers are located on the left and right.

s

i

j

k

l h

i

j

k

l v

i

j

k

l

Figure 2.10: s, h and v tensors in the tensor network.

After constructing the tensor network, we then consider its contraction. Contrac-
tions can be done by rows or by columns. Here we consider the contraction by
columns, but contraction by rows would be equivalent after a rotating transfor-
mation of the tensor network. Examine the partition of the tensor network, as
illustrated in Figure 2.11. Define MPS(χ) and MPO(χ) as the sets of matrix prod-
uct states (MPS) and matrix product operators (MPO) characterized by a sequence
of 2d − 1 tensors with bond dimension χ. Then columns V1, H2, V2 shown in Fig.
2.11 define MPO in MPO(2). Columns H1, H3 define MPS in MPS(2). In general
all internal columns will define MPO and the boundary (first and last) columns will
define MPS. The contraction of an adjacent pair of columns is equivalent to mul-
tiplying the corresponding MPOs. As a consequence the coset probability can be
written as

P (fG) =
〈
Ĥd

∣∣∣ V̂d−1 · · · Ĥ2V̂1

∣∣∣Ĥ1
〉
, (2.26)

where Ĥi, V̂i represent the corresponding MPO(MPS) of column Hi, Vi. The right
side of Equation 2.26 can be approximated. In the MPS decoder the algorithm
proposed in [20] is used. The precision of the algorithm’s approximation is governed
by a parameter χ ≥ 2, and the algorithm will become exact as χ grows exponen-
tially with the code distance d. The algorithm calculates the column product in a
left-to-right manner, with each step producing a state ψ ∈ MPS(χ). This state can

31

2. Theory

be characterized by an array of 2d − 1 tensors, each having dimensions 2 × χ × χ,
amounting to a total of O(dχ2) parameters. For each step, state ψ is updated by
ψ → Ĥiψ/V̂iψ according to which MPO acts on the state, and the calculation time
is O(dχ2). The action of MPO(χ) will map state ψ from MPS(χ) to MPS(2χ),
therefore a truncation algorithm described in [21] is applied to confine the bond
dimension to no larger than χ. The truncation occurs through the computation of
the Schmidt decomposition of the state, where only the χ largest Schmidt coeffi-
cients are preserved. For more details of the truncation algorithm used in the MPS
decoder, please refer to [16]. The truncation algorithm takes time O(dχ3), and this
truncation needs to be done for each step in the approximation algorithm, i.e. for
each column in the tensor network. Therefore the total time running for approxima-
tion algorithm is O(d2χ3) = O(nχ3), where n is code size. The above algorithm can
be summarised in Algorithm 2, where truncate() is the truncation algorithm which
takes as input state ϕ ∈MPS(2χ) and returns state ψ ∈MPS(χ) approximating ϕ.

Algorithm 2 Approximate contraction algorithm [16]
Input: Pauli operator f
Output: Approximation of P (fG)
ψ ← Ĥ1
for i = 1 to i = d− 2 do
ψ ← truncate(V̂iψ)
ψ ← truncate(Ĥi+1ψ)

end for
ψ ← truncate(V̂d−1ψ)
return ⟨Ĥd |ψ⟩

The coset probability P (fG) for given Pauli operators f, fXL, fYL, fZL will be cal-
culated by Algorithm 2 and then used in Algorithm 1 to choose the most likely coset
CML, which has the largest coset probability P (C).

32

2. Theory

H1 V1 H2 V2 H3

h s h s h

s v s v s

h s h s h

s v s v s

h s h s h

Figure 2.11: Partition of the tensor network by column. Here is an example for
the d = 3 surface code

33

2. Theory

34

3
Methods

This chapter describes the methods used in this thesis. Section 3.1 describes the
definition and properties of the error models; Section 3.2 describes the MPS decoder
for the XYZ2 code which is developed in the thesis project, but it also contains the
description of how to build codes for the YZZY code and the decoder which supports
INID error model. Section 3.3 describes the numerical method used in this thesis to
get an estimated threshold.

3.1 Error Model
This section describes the error models used in this thesis. Section 3.1.1 describes
standard error models that are independent and identically distributed (IID), which
means different types of errors are independent with each other, and the error prob-
abilities are the same for all data qubits in the QEC code. Section 3.1.2 introduces
non-IID error model, but in here we only focus on independent and non-identically
distributed error model, which means the errors are still independent for each error
type, but the error probabilities can be different for each data qubit in the QEC
code. Considering real devices or concatenated QEC codes, this type of error model
is relevant.

3.1.1 Independent and identically distributed error model
Consider a generally IID error model, which has Pauli noise

N =
n⊗

i=1
Ni, (3.1)

where

Ni(ρ) = (1− p)ρ+ pXXρX + pY Y ρY + pZZρZ (3.2)

for all i ∈ 1, · · · , n. p = pX +pY +pZ is called the error probability or error rate, and
pX , pY , pZ are the probabilities for X, Y and Z errors. Often the probability that
no error happens 1− p is denoted as pI . Together p⃗ = (pI , pX , pY , pZ) is called the
probability distribution of the error model. If there is only one type of noise which
has non-zero error probability, then the error model is called the pure error model.
There are three types of pure error model, which are:

Pure X/Bit-flip error model:

35

3. Methods

pI = 1− p, pX = p, pY = 0, pZ = 0. (3.3)

Pure Y/Bit&Phase-flip error model:

pI = 1− p, pX = 0, pY = p, pZ = 0. (3.4)

Pure Z/Phase-flip error model:

pI = 1− p, pX = 0, pY = 0, pZ = p. (3.5)

If three types of noise have the same error probability, then the error model is called
the depolarizing error model:

Depolarizing error model:

pI = 1− p, pX = p/3, pY = p/3, pZ = p/3. (3.6)

It’s straightforward to express the probability distribution for pure noise and depo-
larizing noise on the Pauli group. There is

P (f) =
{

(1− p)n−|f |p|f | iff ∈ PP ,
0 otherwise (3.7)

for pure noise, where P ∈ {X, Y, Z}, |f | = wt(f) is the weight of f and PP ⊂ P
represents the subgroup generated only by operator P ∈ {X, Y, Z}, and

P (f) = (1− p)n−|f |(p/3)|f | (3.8)

for depolarizing noise.

In this thesis we also consider one type of error model called the biased error model
[22]. It is similar with the depolarizing error model. However, it has an axis or biased
error which has a larger error probability than the other two errors which have the
same error probability. For example, in Z-biased error model, we define η as the ra-
tio of Z error probability with non-Z error probabilities, such that η = pZ/(pX +pY).
Therefore we can express the error probabilities of

Z-biased error model:

pI = 1− p, pX = p

2(η + 1) , pY = p

2(η + 1) , pZ = ηp

(η + 1) . (3.9)

When η = 1/2, the error model will become the depolarizing error model; when
taking the limit η → ∞, the error model will become the pure Z error model.
For the X-biased error model and Y-biased error model, define η as pX/(pY + pZ)
and pY /(pZ + pX), the probability distribution can be similarly expressed as above.
Biased error model is worth considered since it’s less regular compared to the pure
error model or depolarizing error model, but it can fall back to these two cases with
certain η.

36

3. Methods

3.1.2 Independently and non-identically distributed error
model

Here we also consider non-IID error model. To be more precise, in this thesis we only
consider independently and non-identically distributed error mode, and we refer to
it as INID error model showed through this thesis. A generally INID error model
has Pauli noise

N =
n⊗

i=1
Ni, (3.10)

where

Ni(ρ) = (1− pi)ρ+ pX,iXρX + pY,iY ρY + pZ,iZρZ, (3.11)

where pi = pX,i + pY,i + pZ,i is the error probability of each data qubit in the QEC
code, and they can have different values.

3.1.3 Hashing bound
The quantum capacity denotes the maximum rate at which quantum information
can traverse a noisy quantum channel [23]. A theorem states the existence of a
stabilizer code capable of achieving the hashing bound R = 1 − H(p⃗) for a Pauli
channel [24]:

ρ→ pIρ+ pXXρX + pY Y ρY + pZZρZ, (3.12)

where p⃗ = (pI , pX , pY , pZ) is called the probability vector and H(p⃗) is the entropy of
the probability vector, which has the form:

H(p⃗) = −
∑

j∈{I,X,Y,Z}
pjlog2pj

= −pI log2pI − pX log2pX − pY log2pY − pZ log2pZ .

(3.13)

For any IID error model, there is an error probability p to make hashing bound go to
zero by random coding. This probability is referred to the zero-rate hashing bound
and is served as a benchmark for code capacity thresholds.

3.2 MPS decoder for the XYZ2 code
This section talks about the methods used for the code realization of the MPS
decoder for the XYZ2 code. In short the strategy is to first map the error chain in
XYZ2 code to the YZZY code by reversing the mapping relationship introduced in
Section 2.3. This will lead to decoding INID errors on the YZZY code. Therefore,
one only needs to consider building a MPS decoder for the YZZY code which also
supports decoding INID error models. Fig. 3.1 illustrates the strategy pipeline.

37

3. Methods

h
v

h

v
h

v

h
v

h

s

s
s

s

s
s

s

s

Y

Y

X

Z

X

Z

Figure 3.1: Illustration of algorithms steps in the MPS decoder for the XYZ2

code. An error on the XYZ2 code is mapped to a corresponding error on the YZZY
code, and then the coset probability is calculated using the modified MPS decoder.

3.2.1 Code realization of the YZZY code
The Class RotatedPlanarYZCode for the YZZY code is based on the code of the
Class RotatedPlanarXZCode for the XZZX code which is available in [11, 25].
Since the YZZY code and the XZZX code are highly similar, only the definitions of
stabilizers and logical operators needs editing. Editing stabilizers and logical opera-
tors is followed by the content mentioned in Section 2.2 and Section 2.3: Stabilizers
in the XZZX code are XZZX in every plaquette, while stabilizers in the YZZY code
are YZZY in every plaquette; Logical X and Z operators in the XZZX code are de-
fined as a horizontal and vertical chain with alternating X and Z, while in the YZZY
code logical Y and Z operators are defined as a horizontal and vertical chain with
alternating Y and Z. Note that in the YZZY code, logical X operator is replaced by
logical Y operator to maintain its symmetry with the XZZX code. The logical X op-
erator in the YZZY code can be defined as the product of logical Y and Z operators.
After these editing, we realize the definition of the Class RotatedPlanarYZCode.

3.2.2 Code realization of the MPS decoder for the YZZY
code

The code realization of the MPS decoder for the XZZX code in [25], defined by the
Class RotatedPlanarXZRMPSDecoder, can be concluded as follows: Given the
information of code and error syndrome, a sample recovery operator is created by
applying a path of X operators between each plaquette identified by the syndrome
to the code boundary. This can assure that the sample recovery operator f and
the actual error e has the same syndrome, i.e. f ∈ eC(G). See Fig. 3.2 for an
example: The actual error e on the left side will lead to the syndrome where si = 1

38

3. Methods

X

Y X X

X

Figure 3.2: Example with the d = 3 XZZX code of sample recovery (right) for
the error syndrome (green) caused by the actual error chain (left).

is marked in green; the sample recovery operator with all X operators constructed
by the simple strategy will have the same syndrome as the actual error. Once the
sample recovery operator f is found, the problem becomes to choosing an operator
from sample operators f, fXL, fYL, fZL to be the final recovery operator based on
Algorithm 1. Based on Algorithm 2, to calculate the approximate coset probabilities
of these sample operators, one needs to first build tensor networks based on the code
structure and the sample operators, and then the networks are contracted by the
contraction algorithm.

One note for tensor networks of the rotated surface codes is that because the links
between s nodes and h, v nodes are rotated (See top-left figure of Fig. 3.3), the
contraction algorithm in Section 2.5 can not be implemented on the original ten-
sor network. This can be solved by splitting each s node in the original network
into 4 nodes (See top-right figure of Fig. 3.3) and then absorbing these nodes into
neighbouring h or v nodes (See bottom-left figure of Fig. 3.3). After this transfor-
mation, the modified tensor network (See bottom-right figure of Fig. 3.3) fits the
form on which the contraction algorithm can be applied. The details and code im-
plementation of this tensor network transform is available in the source code of Class
RotatedPlanarRMPSDecoder [9]. In short, the definition for Class Rotated-
PlanarXZRMPSDecoder can be described in pseudocode as shown in Algorithm
3.

Due to the symmetry of the YZZY code and the XZZX code, the overall algorithm
is the same for Class RotatedPlanarYZRMPSDecoder and Class RotatedPla-
narXZRMPSDecoder, as shown in Alogrithm 3. However, two parts in the code
need to be modified: the first part is that for the YZZY code, the sample recovery
operator is found by constructing a path of Y operators, compared with the XZZX
code which uses X operators; the second part is that when creating h, v nodes for
the XZZX code, a plaquette stabilizer XZZX is used for representing the restriction
of g onto h, v nodes gh(v):

39

3. Methods

Algorithm 3 RotatedPlanarXZRMPSDecoder
Input: code C, error model EM , syndrome s
Output: recovery operator r
f ← simple recovery operator defined by s
sample paulis SP ← {f, fXL, fYL, fZL}
for sample pauli sp in SP do

create h, v, s nodes based on C, sp and EM
transform h, v, s nodes into H,V nodes
calculate coset probability P (spG) by Algorithm 2

end for
pick CML by Algorithm 1
r ← spML ∈ CML

return r

gh(v) = X i ⊗ Zj ⊗ Zk ⊗X l for the XZZX code (3.14)

where i, j, k, l ∈ {0, 1} are the values of s node indices neighbouring the h or v node.
The representation has the same form for h and v nodes because the stabilizers
for the XZZX code are identical for all plaquettes. While for the YZZY code, a
stabilizer YZZY is used for representing gh(v):

gh(v) = Y i ⊗ Zj ⊗ Zk ⊗ Y l for the YZZY code. (3.15)

In addition there are some other minor modifications in the source code not discussed
in the thesis. To compare the source codes, see [25] and [26].

3.2.3 Correctness check of the MPS decoder for the YZZY
code

Several test cases are used to check the correctness of the MPS decoder for the YZZY
code. Due to the symmetry of the XZZX and the YZZY code, the performance of the
XZZX and the YZZY code with the MPS decoder should have the same performance
if the error models used in these two codes satisfy:

pI,XZZX = pI,Y ZZY ,

pX,XZZX = pY,Y ZZY ,

pY,XZZX = pX,Y ZZY ,

pZ,XZZX = pZ,Y ZZY ,

(3.16)

where (pI,XZZX , pX,XZZX , pY,XZZX , pZ,XZZX) = p⃗XZZX is the probability distribu-
tion of the error model used in the XZZX code and (pI,Y ZZY , pX,Y ZZY , pY,Y ZZY , pZ,Y ZZY) =
p⃗Y ZZY is the probability distribution of the error model used in the YZZY code.

Here three (pairs of) error models are used for the consistency check: pure X(Y),
pure Z and depolarizing error model. Fig. 3.4, Fig. 3.5 and Fig. 3.6 show the logical
failure rate Pf of pure X(Y), pure Z and depolarizing error model as a function of

40

3. Methods

h v h

v h v

h v h

s s

s s

s

s

s

s

s → or
s s

s s

s s

s s

H ≡ h

s s

s s

V ≡ v

s s

s s

H V H

V H V

H V H

Figure 3.3: Transformation of tensor network based on rotated surface codes.
The original tensor network extending from rotated surface codes (top-left) is

inconvenient for tensor contractions. A transformation of splitting every s node
into 4 nodes (top-right) and absorbing these nodes into neighbouring h or v nodes

(bottom-left) is then applied to the original tensor network. The transformed
tensor network (bottom-right) is available for implementing the contraction

algorithm of the MPS decoder.

41

3. Methods

Figure 3.4: Logical failure rate vs physical error rate, pure X(Y) noise comparing
the XZZX and YZZY codes and decoders.

physical error rate p for the XZZX and YZZY code with 3 different code distances d.

All curves representing the same code distance d are the same for the XZZX code
and the YZZY code with their corresponding error models in all three figures. This
is a strong evidence that the codes written for the YZZY code and the MPS decoder
for the YZZY code work properly.

3.2.4 Code realization of the MPS decoder with INID error
model

Modifying the MPS decoder to INID error models is very easy to achieve in prin-
ciple: notice that the way for creating tensor networks in Class RotatedPla-
narYZRMPSDecoder can be describe in pseudocode as shown in Algorithm 4.

Here the probability distribution p⃗ = (pI , pX , pY , pZ) is the probability distribution
of Pauli operators (I,X,Y,Z) of the error model with certain error rate p. When
creating the tensor network, the same p⃗ is used for all nodes, i.e. all data qubits,
since the nodes in modified tensor network corresponds to data qubits in the code
lattice. For INID error model, the probability distribution can be represented by a
list of p⃗i, where the list size equals the number of data qubits in the code.

Therefore when creating the tensor network, use the list of probability distribution

42

3. Methods

Figure 3.5: Logical failure rate vs physical error rate, pure Z noise comparing the
XZZX and YZZY codes and decoders.

Figure 3.6: Logical failure rate vs physical error rate, depolarizing noise
comparing the XZZX and YZZY codes and decoders.

43

3. Methods

Algorithm 4 Creating tensor network
Input: code C, probability distribution p⃗, sample pauli f
Output: tensor network tn
tn← empty numpy array with size defined by C
for node i in tn do

if node i = H then
create H node based on p⃗ and f
tn[i]← H node

else if node i = V then
create V node based on p⃗ and f
tn[i]← V node

end if
end for
return tn

List(p⃗) instead of just p⃗ as the input variable, and use the ith probability distribu-
tion p⃗i when creating the ith node of the tensor network. This is the key point for
supporting decoding INID error model, and some other parts in the code of Class
RotatedPlanarYZRMPSDecoder also needs to adapt to this change. The mod-
ified code will form another Class RotatedPlanarYZRINIDMPSDecoder, not
only because it can decode for INID error model, but also when using it, one has
to use the list of probability distributions List(p⃗) rather than just the error model
EM as one of the input variables. So the ways of using these two decoders are
different. However, when all elements in List(p⃗) are identical, the INID error model
will coincide with the IID error model.

3.2.5 Correctness check of the MPS decoder with the INID
error model

To check the correctness of the MPS decoder with the INID error model, we con-
sider pure Y noise on the YZZY code. For the YZZY code, there’s only one logical
operator containing only Pauli Y, which is the diagonal Y⊗d operator. An example
of this operator is shown in the left side of Fig. 3.7. As a consequence, for any
syndrome there exists only two error chains in different classes, and they differ only
on the diagonal (Fig. 3.7). Therefore, the logical failure rate for the YZZY code
under pure Y noise should be irrelevant with non-diagonal qubits. Then assume one
of the diagonal qubit is ideal and never has error. This will allow the decoder never
fail for decoding, since there will be only one error chain excluding the ideal qubit
that corresponds to the syndrome.

Now consider the following four error models. The first error model is the pure Y
error model as discussed in Subsection 3.1.1:

p⃗ = (1− p, 0, p, 0) for all data qubits, (3.17)

where p⃗ = (pI , pX , pY , pZ) is the probability distribution, and p, the error rate, is

44

3. Methods

Y

Y

Y

Y

Y

Y

YY

Figure 3.7: The diagonal Y⊗d operator (left) is the only logical operator
containing only Pauli Y in the YZZY code. As a consequence, for pure Y noise any
syndrome has only two error chains in different classes (center, right) which differ

only on the diagonal.

a variable. The second and third error model are INID error models, where the
non-diagonal data qubits have a fixed error rate and the error rate for diagonal data
qubits is a variable:

p⃗ = (1− p, 0, p, 0) for diagonal data qubits;
p⃗ = (0.9, 0, 0.1, 0) otherwise

(3.18)

for the second error model and

p⃗ = (1− p, 0, p, 0) for diagonal data qubits;
p⃗ = (0.5, 0, 0.5, 0) otherwise

(3.19)

for the third error model.

The fourth error model is also INID. It is almost the same as the pure Y error model,
except that the first diagonal data qubit is ideal and its error rate is 0:

p⃗ = (1, 0, 0, 0) for the first diagonal data qubit;
p⃗ = (1− p, 0, p, 0) otherwise.

(3.20)

According to the discussion above, if we plot the curves of the logical failure rate
versus error rate for these four error models, the first, second and third error model
should have the same curve, because only the error rate for non-diagonal data qubits
are different in these error models, and they don’t contribute to the decoding fail-
ures; the fourth error model should always have a zero failure rate, because one of
the diagonal data qubits is ideal, the syndrome and error chain are in one-to-one
correspondence and the decoding will never fail.

If the MPS decoder with the INID error model works correctly, it should give the
same results as discussed above. In Fig. 3.8 and Fig. 3.9 for two different code
distances, we can see that the curves for the first, second and the third error models
are identical, and the failure rate for the fourth error model is always zero. These

45

3. Methods

Figure 3.8: Logical failure rate vs error probability, (modified) pure Y noise for
d = 3 the YZZY code.

results strongly support the correctness of the MPS decoder with the INID error
model.

3.2.6 Code realization of the MPS decoder for the XYZ2

code
The strategy of realizing the MPS decoder for the XYZ2 code can be illustrated with
Fig. 3.1: First consider XYZ2 code with some IID error model with probability dis-
tribution p⃗ = (pI , pX , pY , pZ); then consider an error chain, that follows this error
model, which is acting on the XYZ2 code. Using the mapping relation mentioned in
Section 2.3, the XYZ2 code, along with the error chain and probability distribution,
can be mapped to the YZZY code.

Consider one vertical link in the XYZ2 code. There can be 16 different cases for the
action of the error chain on it:

II,XX,ZZ, Y Y, Y Z, ZY,XI, IX,

ZI, Y X, IZ,XY,XZ, IY, Y I, ZX,
(3.21)

where these 16 cases are divided into 2 groups: the first group corresponds to the
without link syndrome case, i.e. the error chain commutes with the link stabilizer
XX, and the second group correspond to the with link syndrome case, i.e. it anti-
commutes with XX.

46

3. Methods

Figure 3.9: Logical failure rate vs error probability, (modified) pure Y noise for
d = 7 the YZZY code.

For the without link syndrome case, one can just reverse the mapping relation in
Section 2.3 to map a two-qubit Pauli operator on the vertical link to a single-qubit
Pauli operator:

I ← II or XX,

X ← ZZ or Y Y,

Y ← Y Z or ZY,

Z ← XI or IX,

(3.22)

with a mapped probability distribution for this single qubit:

p′
I = pIpI + pXpX ,

p′
X = pZpZ + pY pY ,

p′
Y = pY pZ + pZpY ,

p′
Z = pXpI + pIpX .

(3.23)

For the with link syndrome case, it is not possible to directly map the two-qubit
Pauli operator to a single-qubit Pauli operator, since they are not in the mapping
relation in Section 2.3. However, notice that if one puts an extra Z operator on the
first qubit of the vertical link, the with link syndrome case can be transformed into
the without link syndrome case. For example, ZI → II, Y X → XX, etc. Therefore,

47

3. Methods

by purposely adding an extra Z operator on the first qubit of the vertical link, one
can map a two-qubit Pauli operator to a single-qubit Pauli operator:

I ← ZI or Y X,

X ← IZ or XY,

Y ← XZ or IY,

Z ← Y I or ZX,

(3.24)

with a mapped probability distribution for this single qubit:

p′
I = pZpI + pY pX ,

p′
X = pIpZ + pXpY ,

p′
Y = pXpZ + pIpY ,

p′
Z = pY pI + pZpX .

(3.25)

This leads to two different probability distributions for the two cases. By doing this
mapping to every vertical link in the XYZ2 code, the error chain and probability
distribution in the XYZ2 code are mapped to the YZZY code. However, because the
probability distribution of each qubit in the YZZY code can be in either of the two
cases, it corresponds to a INID error model. After mapping to the YZZY code with
the INID error model, one can just use the MPS decoder for the YZZY code with
the INID error model as discussed in Subsection 3.2.2 and 3.2.4 to give a suggested
recovery operator for the corresponding error. The overall decoding strategy is de-
scribed in Algorithm 5, where an error e is generated by the given error model; the
probability distribution p⃗ is defined by the given error model; the function Map()
maps the error and probability distribution of the IID error model in the XYZ2 code
to errors and probability distributions of the INID error model in the YZZY code.

Note that even though here we only discussed decoding the XYZ2 code with the
IID error model, decoding the XYZ2 code with the INID error model can also be
realized with ease: the only thing needs modifying is to change the input probability
distribution into a list of probability distributions which can describe the INID error
model.

3.3 Error threshold
The numerical method introduced in [27] is used in this thesis to give an estimation
of the error threshold pc. Define a correlation length ξ = (p − pc)−ν , where ν is a
critical exponent characterizing the divergence of ξ at p = pc. For code distance d
large enough, the performance of the code is expected to be controlled by the ratio
d/ξ. The logical failure rate is a function of the scaling variable

x = (p− pc0)d
1

ν0 . (3.26)
Consider doing Taylor expansion around the actual threshold pc, i.e. x = 0, the
function can be truncated to the few first power series. Here we are using a quadratic
model, where f = Ax2+Bx+C. By fitting all the data from different code distances

48

3. Methods

Algorithm 5 MPS decoder for XYZ2 code
Input: code C, error e, probability distribution p⃗
Output: recovery operator r
emap, List(p⃗)← Map(e, p⃗)
map C from XYZ2 code to the YZZY code
get syndrome s from emap

f ← simple recovery operator defined by s
sample paulis SP ← {f, fXL, fYL, fZL}
for sample pauli sp in SP do
tn← empty numpy array with size defined by C
for node i in tn do

if node i = H then
create H node based on List(p⃗)[i] and sp
tn[i]← H node

else if node i = V then
create V node based on List(p⃗)[i] and sp
tn[i]← V node

end if
end for
calculate coset probability P (spG) by Algorithm 2

end for
pick CML by Algorithm 1
r ← spML ∈ CML

return r

49

3. Methods

Figure 3.10: Example of estimation method for error threshold.

into this model, we can find pc and v which make the best fit of this model. This
method can be described in pseudocode as follows:

Algorithm 6 Estimation of error threshold
Input: code distance d, error rate p, logical failure rate pf

Output: estimation of error threshold pcest

for all data with different code distance d do
x← (p− pc0)d1/ν0

f ← Ax2 +Bx+ C
end for
fit pf with function f
pcest ← optimized fitting parameter pcopt for pc0

return pcest

Since the truncation for Taylor expansion is only valid when the error rate p in all
data is close to the actual threshold pc, in practise we first plot the logical failure
rate pf versus the error rate p for several code distances d with a wide range of p
to estimate the threshold pc by observation; then use some error rates p which lie
in a narrow range of p symmetric to pc, along with their corresponding d and pf , as
the fitting data. Fig. 3.10 gives an example of this fitting method, where the left
figure shows pf versus p, and the right figure shows pf versus the scaling variable
x and the fitting function f(x) versus x with the optimized parameters. From the
right figure, all the re-scaled data fit well with the quadratic model, and gives an
estimation value for threshold pc = 0.472, which is reasonable referred to the left
figure.

50

4
Result

This chapter presents the main results of this thesis project. Section 4.1 presents
the results we get for the XYZ2 code by using the MPS decoder with pure error
models. These results are compared with the analytical results discussed in [13]
as the evidence of correctness for the MPS decoder for the XYZ2 code; Section
4.2 presents the results we get for the XYZ2 code by using the MPS decoder with
depolarizing and biased error models. These results are compared with the results
from the EWD decoder [19, 28]. These results are used to study the performance of
the MPS decoder for the XYZ2 code; Section 4.3 shows the threshold of the XYZ2

code and the YZZY code as a function of η for X, Y and Z-biased error models.

4.1 Results of the MPS decoder for the XYZ2

code compared with analytical results
As discussed in [13], the logical failure rate for the pure X noise can be analytically
given by

Pf,X(p) =
d∑

n=⌈d/2⌉
Cn

d p
n
op

d−n
e , (4.1)

where ⌈x⌉ is the ceiling function, which represents the least integer larger than or
equal to x; Cn

d = d!/((d − n)!n!) is the combinatorial number of (d, n); po and pe

stand for the probability of errors with odd parity and even parity on a link, which
is given by the following equation:

po = 2p(1− p),
pe = (1− p)2 + p2.

(4.2)

The logical failure rate for the pure Y/Z noise can be analytically given by

Pf,Y/Z(p) =
N∑

n=N/2
Cn

Np
n(1− p)N−n − 1

2C
N/2
N pN/2(1− p)N/2, (4.3)

where N = 2d2 is the number of data qubits in the XYZ2 code. Fig. 4.1, Fig. 4.2
and Fig. 4.3 show the failure rate Pf versus the error rate p for the pure X, pure
Y and pure Z noise for the XYZ2 code with several different code distances. The
solid lines with point marker represent the simulation results obtained by the MPS
decoder for the XYZ2 code, where χ = 12; 50 different error rates and 10000 runs

51

4. Result

Figure 4.1: Logical failure rate vs physical error rate, pure X noise for the XYZ2

code comparing simulation results (solid lines with point marker) with analytical
results (dashed lines).

are used for the simulation of each error rate, and the dashed lines represent the
analytical results. As we can see, the simulation results show great consistency with
the analytical results, except for some small fluctuations due to the limited number
of running cases for the simulation.

4.2 Results of the MPS decoder for the XYZ2

code compared with results obtained by the
EWD decoder

We also use the MPS decoder for the XYZ2 code with depolarizing, X-bias, Y-bias
and Z-bias error models with η = 10. Since analytical expressions for these error
models are not known, we use another decoder, called effective weight and degener-
acy (EWD) decoder [19] for performance comparison.

The plots of the logical failure rate as a function of physical error rate under different
error models for the XYZ2 code obtained by the MPS and EWD decoders are shown
in Fig. 4.4, Fig. 4.5, Fig. 4.6 and Fig. 4.7. The solid lines with point marker
represent the simulation results obtained by the MPS decoder, where χ = 12; 30
different error rates and 10000 runs are used for the simulation of each error rate; the
dashed lines represent the results obtained by the EWD decoder, where 25 different
error rates and 10000 runs are used for the simulation of each error rate. From these

52

4. Result

Figure 4.2: Logical failure rate vs physical error rate, pure Y noise for the XYZ2

code comparing simulation results (solid lines with point marker) with analytical
results (dashed lines).

Figure 4.3: Logical failure rate vs physical error rate, pure Z noise for the XYZ2

code comparing simulation results (solid lines with point marker) with analytical
results (dashed lines).

53

4. Result

Figure 4.4: Logical failure rate vs physical error rate, depolarizing noise for the
XYZ2 code comparing two approximate maximum-likelihood decoders.

plots, we can see that the results obtained by the MPS decoder share the same
trend with those obtained by the EWD decoder. However, we find that for larger
code distances, the MPS decoder gives a lower sub-threshold logical failure rate and
larger threshold than the EWD decoder. As there is an (unknown) lower bound to
the logical failure rate given by the exact MLD, this means that the MPS decoder
is more accurate.

4.3 Threshold of the XYZ2 code compared with
the YZZY code

To estimate the threshold as a function of η for the XYZ2 code and the YZZY code,
we get the results in Fig. 4.8, Fig. 4.9 and Fig. 4.10 for the X-biased, Y-biased
and Z-biased noise with the zero-hashing bound for comparison. The expression
for the hashing bound is discussed in Subsection 3.1.3 and the numerical method
used for the threshold estimation is discussed in Section 3.3, where four different
code distances d = 25, 29, 33, 37 with 7 different error rates around the estimated
threshold for each code distance and 10000 runs for the simulation of each error rate
are used. These results match with the results in the XZZX code paper [11], if one
considers the symmetry of the XZZX code and the YZZY code, and extend them
to the XYZ2 code.

54

4. Result

Figure 4.5: Logical failure rate vs physical error rate, X-bias η = 10 noise for the
XYZ2 code comparing two approximate maximum-likelihood decoders.

Figure 4.6: Logical failure rate vs physical error rate, Y-bias noise η = 10 for the
XYZ2 code comparing two approximate maximum-likelihood decoders.

55

4. Result

Figure 4.7: Logical failure rate vs physical error rate, Z-bias noise η = 10 for the
XYZ2 code comparing two approximate maximum-likelihood decoders.

Figure 4.8: Estimated threshold pc for the XYZ2 and the YZZY code as a
function of bias η of X-biased noise.

56

4. Result

Figure 4.9: Estimated threshold pc for the XYZ2 and the YZZY code as a
function of bias η of Y-biased noise.

Figure 4.10: Estimated threshold pc for the XYZ2 and the YZZY code as a
function of bias η of Z-biased noise.

57

4. Result

58

5
Conclusion

This thesis project studied the principle of the tensor network based MPS (matrix
product states-based) decoder and the code structure of qecsim python package,
and developed codes for the MPS decoder for the YZZY code; the MPS decoder
with the INID (independent but non-identical distributed) error model; the MPS
decoder for the XYZ2 code, and some other practical features based on qecsim and
its extension code qsdxzzx. The correctness of the MPS decoder for the YZZY code
is checked by comparing simulation results with the XZZX code; the correctness
of the MPS decoder with the INID error model is checked by observing results for
several special INID error models.

Combining the MPS decoder for the YZZY code with the INID error model and the
mapping algorithm for the XYZ2 and YZZY code, we develop a two-step decoder to
decode the XYZ2 code. The performance of the XYZ2 code for several error models
is studied with this two-step decoder. For pure error models, the results fit well
with analytical results; for depolarizing and biased noise, the results obtained by
the MPS decoder have lower sub-threshold logical failure rate and larger threshold
than the results obtained by the EWD (effective weight and degeneracy) decoder.
The threshold as a function of different error models is also studied. With the con-
struction of these codes, other studies focusing on the YZZY and the XYZ2 code on
INID error models with the MPS decoder can be done.

One note is that the results shown in this thesis may not be fully correct, because
we have found that for biased noise with large η, the estimated threshold is strongly
dependent on the code distances d used in the numerical method: when d becomes
larger, estimated threshold will become lower. Also, to obtain a statistically more
reliable result, the number of simulation runs needed increases for large η, because
when η and d are both large, the difference of logical failure rates between different
d is very small, and the data fluctuation will significantly affect the accuracy of
the estimated threshold. The reason for the threshold dropping with d seems very
interesting, and is being further investigated [29].

59

5. Conclusion

60

Bibliography

[1] Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned.
Nature, 299(5886), 802-803.

[2] Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer
memory. Physical review A, 52(4), R2493.

[3] Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals
of physics, 303(1), 2-30.

[4] Bravyi, S. B., & Kitaev, A. Y. (1998). Quantum codes on a lattice with bound-
ary. arXiv preprint quant-ph/9811052.

[5] Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface
codes: Towards practical large-scale quantum computation. Physical Review A,
86(3), 032324.

[6] https://tensornetwork.org/diagrams/
[7] Oseledets, I. V. (2011). Tensor-train decomposition. SIAM Journal on Scientific

Computing, 33(5), 2295-2317.
[8] Tuckett, D. K. (2020). Tailoring surface codes: Improvements in quantum error

correction with biased noise (Doctoral dissertation).
[9] David K. Tuckett, qecsim: Quantum error correction simulator, 2021,

https://qecsim.github.io/.
[10] Horsman, C., Fowler, A. G., Devitt, S., & Van Meter, R. (2012). Surface code

quantum computing by lattice surgery. New Journal of Physics, 14(12), 123011.
[11] Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T., & Brown,

B. J. (2021). The XZZX surface code. Nature communications, 12(1), 2172.
[12] Wen, X. G. (2003). Quantum orders in an exact soluble model. Physical review

letters, 90(1), 016803.
[13] Srivastava, B., Kockum, A. F., & Granath, M. (2022). The XYZ2 hexagonal

stabilizer code. Quantum, 6, 698.
[14] Wootton, J. R. (2015). A family of stabilizer codes for anyons and Majorana

modes. Journal of Physics A: Mathematical and Theoretical, 48(21), 215302.
[15] Wootton, J. R. (2017). Demonstrating non-Abelian braiding of surface code

defects in a five qubit experiment. Quantum Science and Technology, 2(1),
015006.

[16] Bravyi, S., Suchara, M., & Vargo, A. (2014). Efficient algorithms for maximum
likelihood decoding in the surface code. Physical Review A, 90(3), 032326.

[17] Wootton, J. R., & Loss, D. (2012). High threshold error correction for the
surface code. Physical review letters, 109(16), 160503.

[18] Hutter, A., Wootton, J. R., & Loss, D. (2014). Efficient Markov chain Monte
Carlo algorithm for the surface code. Physical Review A, 89(2), 022326.

61

Bibliography

[19] Hammar, K., Orekhov, A., Hybelius, P. W., Wisakanto, A. K., Srivastava,
B., Kockum, A. F., & Granath, M. (2022). Error-rate-agnostic decoding of
topological stabilizer codes. Physical Review A, 105(4), 042616.

[20] Murg, V., Verstraete, F., & Cirac, J. I. (2007). Variational study of hard-core
bosons in a two-dimensional optical lattice using projected entangled pair states.
Physical Review A, 75(3), 033605.

[21] Schollwöck, U. (2011). The density-matrix renormalization group in the age of
matrix product states. Annals of physics, 326(1), 96-192.

[22] Aliferis, P., & Preskill, J. (2008). Fault-tolerant quantum computation against
biased noise. Physical Review A, 78(5), 052331.

[23] Lloyd, S. (1997). Capacity of the noisy quantum channel. Physical Review A,
55(3), 1613.

[24] Wilde, M. M. (2013). Quantum information theory. Cambridge university press.
[25] https://bitbucket.org/qecsim/qsdxzzx/
[26] https://github.com/yinzi-xiao/yzzy-xyz-code
[27] Wang, C., Harrington, J., & Preskill, J. (2003). Confinement-Higgs transition

in a disordered gauge theory and the accuracy threshold for quantum memory.
Annals of Physics, 303(1), 31-58.

[28] https://github.com/QEC-project-2020/EWD-QEC
[29] Srivastava, B., Xiao, Y. Z., & Granath, M. (2023). Code-capacity thresholds

for surface codes under biased noise. In preparation.

62

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	Introduction
	Quantum Computing
	Axioms of quantum mechanics
	Representation
	Dirac notation
	Linear Algebra

	Qubit
	Classical bit
	Qubit
	Bloch sphere

	Operators
	Identity operator
	Pauli operators
	Other common operators

	Composite system
	States in a composite system
	Operators in the composite system

	Quantum Error Correction
	Classical error correction
	Challenges of quantum error correction
	Three-qubit repitition code
	Three-qubit bit-flip code
	Three-qubit phase-flip code
	Nine-qubit Shor code

	Stablizer formalism
	Surface code

	Tensor Network
	Simulation

	Theory
	XZZX code
	YZZY code
	XYZ2 code
	Maximum-likelihood decoder
	Matrix product states-based decoder

	Methods
	Error Model
	Independent and identically distributed error model
	Independently and non-identically distributed error model
	Hashing bound

	MPS decoder for the XYZ2 code
	Code realization of the YZZY code
	Code realization of the MPS decoder for the YZZY code
	Correctness check of the MPS decoder for the YZZY code
	Code realization of the MPS decoder with INID error model
	Correctness check of the MPS decoder with the INID error model
	Code realization of the MPS decoder for the XYZ2 code

	Error threshold

	Result
	Results of the MPS decoder for the XYZ2 code compared with analytical results
	Results of the MPS decoder for the XYZ2 code compared with results obtained by the EWD decoder
	Threshold of the XYZ2 code compared with the YZZY code

	Conclusion
	Bibliography

