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ABSTRACT 
 
Accurate brain tissue segmentation is important in the context of neuroimaging, 
especially for quantitative analysis such as volume measurements. The volumetric 
analysis of different parts of the brain is useful in assessing progress or remission of 
various diseases, e.g. the Alzheimer's and epilepsy. The common way to segment brain 
images is by using structural Magnetic Resonance Imaging (MRI) signals alone such as 
T1, T2 and proton density. To potentially enhance the brain tissue segmentation the use 
of additional channels from other MRI techniques could be introduced. 
 
In this thesis we investigate brain tissue segmentation of MR images using Diffusion 
Tensor Imaging (MR-DTI) data. Three-class problem was studied where the brain 
volume voxels were classified into one of the three main tissue types: gray matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF). Different diffusion tensor based 
features were extracted from the raw DTI data and investigated with respect to 
discrimination power. In addition, several feature sets were generated by forward 
selection and backward elimination. The image segmentation was performed using k-
means algorithm with a modified combination of bootstrap, cluster center initialization, 
and early stopping criterion. Different hierarchical classification schemes were 
evaluated. 
 
The best segmentation results were obtained using the feature set consisting of 
anisotropy features and one the diffusion tensor eigenvalues, with total class reference 
based AUC=0.73 (Dice index CSF=0.56, GM=0.67, WM=0.72). The proposed 
modification of k-means resulted in up to two times faster execution times, compared 
with the standard k-means algorithm. Using hierarchical classifier led to higher 
segmentation accuracy compared to the one-step classifier. The developed algorithm 
could be used for unsupervised brain tissue segmentation. However, to obtain higher 
segmentation accuracy the fusion with structural MR data may be required. 
 
Index Terms: brain tissues, image segmentation, k-means clustering, multi-class 
classification, magnetic resonance, diffusion tensor imaging  

v 
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1   INTRODUCTION 
 
 
 

1.1   Introduction  
 
Segmentation is known as one of the main techniques used for investigation the 
structure and function of the brain. In segmentation, the objective is to partition the 
brain volume into a number of predefined tissues. The most common modalities used in 
brain tissue segmentation are conventional/structural Magnetic Resonance (MR) 
signals: T1-weighed, T2-weighted, and proton density (PD) [1,2]. An alternative data 
source is Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) technique [3,4], 
which is based on detecting the diffusion of the water molecules in the brain tissues. 
The ability of the DTI to discern the white matter tracts in the human brain is a basic 
purpose of the clinical investigations such as white matter fiber tracking [5], 
tractography of the limbic system [6], schizophrenia diagnosing [7], brain tumor 
detection [8] and volumetric analysis of cerebrospinal fluid and gray matter. The three 
tissues, white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF), occupy 
almost all of the brain volume, thus discrimination of these tissues allows us to extend 
the brain study to the entire brain.  
 
The use of MR-DTI for brain tissue segmentation purpose is still rare and mostly used 
for detection of white matter tracts [5-8].  Some studies have included DTI-data for 
brain tissue segmentation, however only a few features have been used as 
discriminatory parameters [9]. Therefore there is a need to investigate a larger number 
of DTI-based features in the context of tissue segmentation and compare with the 
segmentation results based on structural MR features. 
 
In this work, we focus on brain tissue segmentation using MR-DTI data, where all three 
major brain tissues including white matter, gray matter, and cerebrospinal fluid are 
taken into account. As discriminatory parameters we consider twelve DTI-based 
features extracted from diffusion tensor data (eigenvalues, scalar invariants, relative and 
fractional anisotropy, volume ratio and fraction, and skewness) and twelve multi-feature 
sets proposed by feature selection step.  As the segmentation method we investigate the 
k-means clustering algorithm, which belongs to unsupervised learning methods. In the 
k-means algorithm, the segmentation results are affected by the initial position of the 
cluster's center-points. Thus to potentially enhance the segmentation results, the original 
k-means algorithm is modified by introducing a combination of bootstrap and cluster-
center initialization. Beside these modifications, to reach the same segmentation 
accuracy in a shorter time, early stopping criterion is proposed. 
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1.2   Aims and Objectives 
 
The aim of the thesis was to: 
 

1. Develop an unsupervised method for brain tissue segmentation based on 
diffusion tensor imaging data. 

2. Evaluate the performance of the method using synthetic and real clinical data. 
3. Compare the DTI-based segmentation with segmentation based on structural 

magnetic resonance data. 
 

1.3      Thesis organization 
 

The thesis is organized as follows. Chapter 2 gives a medical background on human 
brain, significant parts of the diffusion tensor imaging, and MR modalities. Chapter 3 
summarizes previous research works conducted in areas related to the brain tissue 
segmentation and diffusion tensor imaging. Chapter 4 presents the characteristic of the 
input data.  In Chapter 5 the data analysis and segmentation methods used in the Thesis 
are presented. The experimental results are shown in Chapter 6 and discussion is 
conducted in Chapter 7. Finally, Chapter 8 gives the conclusion and suggests future 
work. 
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2   BACKGROUND 

 
 
 

2.1   Brain Anatomy 
 
To study the interested brain tissues by MR-DTI data, we need to know about the 
anatomy of these tissues which are cerebrospinal fluid (CSF), gray matter (GM), and 
white matter (WM). 
 
CSF is a colorless liquid which surrounds and fills the space in the brain. It supports the 
brain and maintains pressure in the skull. Also it carries some substances into/out of the 
brain. CSF is held by four ventricles within the brain (see Figure 2.1) [10].  
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: CSF pathway and ventricles of the brain. 
 
WM and GM are opposing tissues. WM comprises myelinated nerve fibers and is a 
pathway for signals from one region to another region of the cerebrum also between the 
cerebrum and lower brain centers. GM comprises both nerve fibers and nerve cell 
bodies. In Figure 2.2 the WM and GM are denoted [11]. 
 

 
 

 
 
 

 
 

Figure 2.2: White matter and Gray matter within the brain.  

Gray matter
White matter



14 
 

2.2   Diffusion Tensor Imaging 
 
To make the research more understandable the significant parts of the diffusion tensor 
imaging (DTI) are presented in this section. 
 
2.2.1 Diffusion Types 
 
Diffusion of the water molecules is performed in an ellipsoid form. If this diffusivity 
has the same values for each direction, it is termed diffusion isotropic, otherwise it is 
termed diffusion anisotropic [12].  
 
The diffusion is characterized by a diffusion tensor matrix with corresponding 
eigenvalues [13]. In isotropic diffusion all the eigenvalues (λ1, λ2, λ3) are equal in all the 
directions (i.e. λ1=λ2=λ3) and it is spherical form, see Figure 2.3a. An anisotropic 
diffusion has two common models. In the first model, two eigenvalues are large and the 
third one is almost zero (e.g. λ1=λ2, λ3≈0) and it is planar form, see Figure 2.3b. The 
second model is linear form and has one large eigenvalue and the others are almost zero 
(e.g. λ3>>λ1= λ2≈0), see Figure 2.4c. 
 
 
 
 
 
 
  
 
 

 
Figure 2.3: Three diffusion forms: (a) Spherical, (b) Planar, (c) Linear. 

 
2.2.2 Calculating the Diffusion Tensor 
 
In MR-DTI diffusion of the water molecules is calculated for each voxel at several 
directions. The diffusion value is measured by the Stejskal-Tanner sequence with two 
strong symmetrical gradient pulses. First gradient pulse causes a phase shift for all the 
spins. This phase shift is inversed by the second one. Whereas Brownian motion 
interferes during the time period (∆), these two phase shifts are not equal. Therefore, the 
signal is lost, see Figure 2.4 [14]. The dependence of the spin density is eliminated with 
two independent measurements of diffusion weighted images. One measurement 
without diffusion weighting and one with diffusion weighting, which are calculated by 
equation 2.1. 
 

bDeSS  0               2.1 

where S0 is measurement without diffusion weighting, S is measurement with diffusion 
weighting, D is a diffusion value in the voxel, and b is the diffusion weighting factor. 

(a)                            (b)                              (c)
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2.3   Diffusion Tensor Based Features 
 
Several measures of diffusion anisotropic have been proposed [17-21]. In this project 
twelve measures/features are used in the subsequent segmentation experiments. These 
features are presented below.  
 
a) Eigenvalues (λ1, λ2, λ3) 

These parameters describe how the spherical shape of the eigenvalues (λ1, λ2, λ3) 
reform to ellipsoid shape. 
 
b) Ratio of Eigenvalues 

Simple index for detecting the diffusion anisotropic/isotropic is the ratio between 
the largest and the smallest eigenvalues as the following equation, 
 

3

1




ratioA   Aratio ≥ 1             2.6 

 
c) Relative Anisotropy 
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d) Fractional Anisotropy 
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e) Scalar Invariants I1 , I2 , I3  
 

   I1 = λ1 +λ2 +λ3             2.9 

I2 = λ1 λ2+λ2 λ3+λ3 λ1           2.10 

I3 = λ1 · λ2 · λ3               2.11 
 
f) Volume Ratio (VR)  

 











 3

1

327
I

IVR             2.12 
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g) Volume Fraction (VF) 

 
3
13

3
1 )27( IIIVF             2.13 

 
h) Skewness of λ 

     
3

3
3

3
2

3
1  

Skew       2.14 

 

Table 2.1: Summary of the extracted features. 

Eigenvalues λ1 , λ2 , λ3  

Ratio of Eigenvalues 
3

1


ratioA   Aratio ≥ 1       
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Scalar Invariants I1 , I2 , I3 
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I3 = λ1 · λ2 · λ3 
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2.4   MRI Modalities 
 
The conventional Magnetic Resonance Imaging (MRI) [22,23] is another type of 
imaging. Different contrasts of the deep tissues in vivo are used to quantify and localize 
the tissues by MRI.  
 
Three types of MR imaging are defined as T1, T2, and Proton Density (PD). The 
principles of generating the T1, T2, and PD are based on the behaviors of different 
molecules (specifically water and fat molecules) within the echo time (TE) and 
relaxation time (TR). These MRI modalities are illustrated below. 
 
2.4.1 T1 Modality 
 
In T1 imaging the TR and TE times have short period. The relaxation of fat molecules is 
even faster than that in water molecules. Thus in the short TE period, almost all the fat 
molecules align with the static magnetic field. However, the water molecules are unable 
to perform that. Therefore, the fat molecules generate more radio frequency signals than 
the water molecules and the obtained image has brightness at the fat and darkness at the 
other regions [22].  
 
Figure 2.5 shows T1 image; it is seen WM is brighter than CSF; and contrast of GM is 
in the middle of these two regions. 
 

 
Figure 2.5: T1 image. 

 
 
2.4.2 T2 Modality 
 
In T2 imaging the TR and TE times have long period. Thus within the long relaxation 
period both of the fat and water molecules have enough time to align with static 
magnetic field. In total the generated radio frequency signals by the water molecules 
have higher values than the fat molecules. Thus the obtained image is bright at the water 
and dark at the other regions [22].  
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Figure 2.6 shows T2 image; it is seen CSF is brighter than WM; and contrast of GM is 
in the middle of these two regions. 
 

 
Figure 2.6: T2 image. 

 
2.4.3 Proton Density Modality 
 
In this type of imaging, the data acquisition from differences in the amount of available 
spins (hydrogen nuclei in water) with short TE and long TR, is carried out. The spin of 
water molecule is higher than that in fat molecule. Thus in short TE the water molecules 
have more spins than fat molecules. Within the long relaxation period both of the fat 
and water molecules have enough time to align with static magnetic field. However, the 
water molecules have more spins and generate more radio frequency signals than the fat 
molecules [22]. Because of the short TE the radio frequency signals of the water and fat 
molecules are close. Thus the contrast between the fat and water regions is low.  
 
Figure 2.7 shows PD image is brighter in the fat region (WM) in comparison with T2 
image (Figure 2.6); and it is brighter in water region (CSF) in comparison with T1 
image (Figure 2.5).  
 

 
Figure 2.7: PD image. 
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3   LITERATURE REVIEW 

 
 
 
Diffusion tensor imaging is mostly used for tractography of neural tracts [24-26] and 
few research projects have been carried out for the brain tissue discrimination. In what 
follows some of the reported research projects on DTI and tissue discrimination are 
reviewed. 
 
Bazin et al. (2009) investigated the WM tracts on DTI data. Markov Random Field 
(MRF) was proposed to model the diffusion properties [27]. In addition the belief 
propagation technique was used to estimate the WM tracts in each voxel.  Several 
datasets from an atlas, five healthy subjects, and seven multiple sclerosis patients were 
used. In the evaluation of the algorithm on ten atlas images and nine major tracts, the 
authors report the DSI values ranging from 0.32 to 0.73. The highest DSI value was 
reported for the cortico-spinal tract (CST). 
 
Cai et al. (2006) carried out another research [28]. The study was conducted on 18 MRI 
brain datasets. Cai investigated 15 brain tissue structures (nine GM and six CSF 
structures). The segmentation was performed by Narrowband Level Set and pattern 
classification methods based on maximum a posteriori (MAP) probability framework. 
The results were evaluated by the gold standards which provided by expert radiologists. 
The obtained mean DSI value for the ventricle structures (CSF) was over 0.70 and for 
the GM structures was over 0.60.  
 
Han et al. (2009) performed an investigation to discriminate the CSF, WM, and GM 
tissues [29]. Han used three segmentation methods/tools: graph-cuts, FSL-FAST tool, 
and thresholding. Segmentation was performed on ten real DTI data and the results were 
compared with manual segmentation which had been done by a physician expert. In the 
segmentation procedure, at the first step the CSF/non-CSF regions were discriminated 
from the third eigenvalue (λ3). Then the discriminated CSF regions were masked from 
the fractional anisotropy (FA) feature. Then after the obtained data were segmented into 
the WM and GM (non-WM). The mean DSI values were CSF= 0.88, GM= 0.77, and 
WM= 0.90. 
 
Liu et al. (2007) did another research to discriminate WM, GM, and CSF tissues [30]. 
The segmentation was performed on ten DTI data. The Expectation-Maximization (EM) 
algorithm was combined with Hidden Markov Random Field model (HMRF) to 
perform the WM/non-WM and CSF/non-CSF classifications. For CSF discrimination 
Apparent Diffusion Coefficient (ADC) and three eigenvalues (λ1, λ2, λ3) were used; also 
WM tissue was discriminated by these features: FA, relative anisotropy (RA), and 
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volume ratio (VR). In this study the CSF/non-CSF regions were obtained from the ADC 
and three eigenvalues. Also the WM/non-WM regions were obtained from FA, RA, and 
VR features. The Simultaneous Truth and Performance Level Estimation (STAPLE) 
algorithm was utilized to estimate the combination of the discriminated regions to 
discern CSF, WM, and GM tissues. As a final results the obtained DSI values were 
CSF= 0.61, GM= 0.88, and WM= 0.90.  
 
The reviewed articles are summarized in Table 3.1. 
 

Table 3.1: Overview of selected articles. 

Author and Title Year Methods 
Results 
(DSI) 

Bazin et al. 
Belief Propagation Based 
Segmentation of White Matter Tracts 
in DTI [27] 

2009
- Belief Propagation 
- Markov Random Field 
(MRF) 

CST= 0.73 
(WM tract) 

Cai et al. 
Evaluation of Two Segmentation 
Methods on MRI Brain Tissue 
Structures [28] 

2006

- Narrow Band Level 
Set Method  
- Pattern classification 
method based on 
maximum a posteriori 
(MAP)  

CSF= 0.70 
GM= 0.60 

Han et al. 
An Experimental Evaluation of 
Diffusion Tensor Image 
Segmentation Using Graph-Cuts [29] 

2009
- Graph-cuts, 
- FSL-FAST tool  
- Thresholding 

WM= 0.90 
GM= 0.77 
CSF= 0.88 

Liu et al. 
Brain Tissue Segmentation Based on 
DTI data [30] 

2007

- Expectation 
Maximization (EM) 
- Hidden Markov 
Random Field (HMRF) 

WM= 0.90 
GM= 0.88 
CSF= 0.61 

 
The results reported in the above reviewed articles are compared with the experimental 
results of the present project in Chapter 6. 
 
 



22 
 

. 
 

 
 
4   MATERIAL 

 
 
 

4.1   Input Data 
 
In the segmentation experiments two types of datasets were used: 
 
Dataset 1: real data and Dataset 2: simulated data 
 
Dataset 1: real data, DTI and T1 modality 

These data have been gathered at the Sahlgrenska University Hospital at Göteborg 
from a healthy person (30-year) with these details:  

 
DTI data: {Size: 128×128×56, Number of Directions: 15, Technique: DwiSE,  
by Philips instrument, Maximum Diffusion b value: 1000 (s/mm2)} 
 

 
 

Figure 4.1: DTI image, third eigenvalue (λ3), axial layer #90. 
 
 

 T1 data: {Size: 256×256×196, Voxel volume: 1 mm3, Philips instrument: 1 Tesla 
 Scanning Sequence: 'GR', Color Type: 'grayscale'} 
 

 
 

Figure 4.2: Real T1 Image, axial layer #90. 
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Dataset 2: simulated data, T1, T2, and PD modalities 
These data have been collected from the Brainweb site [31]. The data with the 

following specifications were used in the experiments: 1mm slice thickness, brain 
volume size 181×217×181 voxels, zero noise level, and zero intensity non-uniformity. 
 

   

Figure 4.3: Simulated data  from left to right are: T1, T2, and PD. 
 

4.2   Ground Truth 
 
A reference or ground truth (GT) segmentation for each dataset was obtained as follows. 
For Dataset 1, an experienced physician, manually segmented the data into the three 
tissue classes: CSF, GM, and WM. For Dataset 2, the ground truth was obtained from 
the nine tissue classes defined in the synthetic data. The used labels for the three classes 
were: cerebrospinal fluid, gray matter, and white matter. The obtained ground truth 
segmentations, were used in the performance evaluation of the segmentation algorithms. 
 

4.3   Data Format 
 
The MRI data have several protocols/formats: NIFTI, DICOM, and MINC which are 
briefly illustrated below.  
 
NIFTI. This protocol is focused on fMRI but the other MR instruments use it as well 
[32]. NIFTI stands for Neuroimaging Informatics Technology Initiative. The file 
extension in this format is nii. The real DTI data in the current study, are in this format. 
 
DICOM. The data acquisition from the MRI instrument is in this format. The file 
extension in this format is dcm [33]. DICOM stands for Digital Imaging and 
Communications in Medicine. The real T1 data in the current study, is in this format.  
 
MINC. This data format was especially designed for the medical imaging. The file 
extension in this format is mnc [34]. The simulated data in this study, are in this format. 
 
Data Conversion. The three above mentioned formats can be converted to each other 
by suitable software or Matlab functions. The collected original data in this project are 
in three formats: NIFTI, MINC, and DICOM. The NIFTI format was selected as the 
common format; and all the brain data volumes were converted to this format. In the 
conversion process the MINC file was converted to NIFTI using mnc2nii program. Also 
for converting the DICOM to NIFTI, software of Chris Rorden Company [35] was used. 
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5   METHODS 

 
 
 

5.1   Brain Volume Preprocessing 
 
In the current project the following preprocessing were applied:  
 
Diffusion matrix extraction. The DTI probes the diffusion properties of water 
molecules in tissues such as magnitude, direction, and anisotropy. These data are 
collected from different directions by DT-MRI and gathered in several brain volumes. 
The collected data cannot be engaged directly in the segmentation procedure and data 
preprocessing, to extract the diffusion matrix (D-matrix), is required. The procedure was 
performed using FSL’s FDT tool as follows [36]: 
 

 Eddy current correction. The MR-DTI works with high magnetic field. 
Therefore, during the brain imaging eddy current is induced within the tissues. 
Thus image reconstruction gets distortion geometrically and the image is 
blurred. For this reason, at the first step, this artifact was removed from the data. 

 
 Brain extraction. Brain tissues were interested in this project thus the skull was 

removed by the FSL Brain Extraction Tools (BET). 
 

 Construct diffusion tensors. In this process from all the gathered brain 
volumes, one brain volume was extracted in which each voxel was characterized 
with a D-matrix [36]. 

 
 
 
 
 

 
Figure 5.1: FSL’s FDT Tool process for D-matrix extraction from the raw DTI data. 

 
Registration. Another applied preprocessing procedure is registration. In this project to 
evaluate the results of the DTI segmentation, ground truth obtained from the T1 image 
of the brain. To have possibility to compare DTI and T1 data, these data need to overlap 
as best possible. Thus to align the DTI image on T1 image (GT), DTI data was 
registered with T1 data by FSL’s FLIRT tool [36]. 

 

Raw Data 
Eddy Current 

Correction 
Brain Extraction 

(BET) 
Construct 

diffusion tensors 
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5.2   Feature Extraction  
 
The feature extraction is significant part of the project. As mentioned before by the help 
of FDT-FSL tool, three eigenvalues (λ1, λ2, λ3) were extracted. These eigenvalues 
values were used to measure the other features such as mean of diffusion (λ), fractional 
anisotropy (FA), relative anisotropy (RA), volume ratio (VR), volume fraction (VF), 
scalar invariants (I1, I2, I3), and skewness of λ (Skew), based on the mentioned formulas 
in Chapter 2 (equations 2.6 to 2.14).  
 

5.3   Feature Normalization  
 
The feature normalization can be done in different ways [37]. Within this project the 
data values were normalized into [0, 1] interval according to equation 5.1. 
 

minmax

min

FF

FF
NF




             5.1 

 
where: NF is normalized feature, F is original feature value,  
Fmin is the minimum feature value, and Fmax is the maximum feature value. 
 

5.4   Feature Selection 
 
The main idea behind the feature selection is, choosing a subset of the features which 
has more influence on discrimination of interested tissues. The advantages of feature 
selection are such as reducing the dimension of the feature space which may speed up 
the segmentation procedure, improving the results’ quality, and keeping the relevant 
features. Feature selection methods and fundamental algorithms are presented below. 
 
5.4.1 Forward Selection and Backward Elimination Methods 
 
There are two major methods for feature selection: forward selection and backward 
elimination. 
 
Forward Selection. It begins with choosing the variables one by one with respect to 
decrease the feature selection criterion the most. The process is terminated when 
addition of variable does not significantly decrease the criterion [38]. 
 
Backward Elimination. The process is started with all the variables and attempts to 
eliminate the variables one by one with respect to decrease of the criterion. The process 
is ended when elimination of variable does not significantly decrease the criterion [38]. 
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5.4.2 Feature Selection Criterions  
 
Feature selection procedure was performed using the following criterions, implemented 
in the Pattern Recognition Tools package (PRTools) [39]:  
 

 Minimum of estimated Mahalanobis distances (mMaha) 
 Sum of estimated Mahalanobis distances (sMaha) 
 Minimum of squared Euclidean distances (mEucl) 
 Sum of squared Euclidean distances (sEucl) 

 

5.5   Segmentation Methods 
 
In the current project the segmentation was performed using k-means clustering 
algorithm. The standard k-means method was run with different centroid initializations 
and stopping criterion values. We call this variant as modified k-means. In the following 
we give a description of the standard k-means algorithm and our modifications.    
  
5.5.1 Standard k-means clustering algorithm 
 
The k-means clustering algorithm is an iterative unsupervised clustering algorithm. The 
main idea of this algorithm is to define K centroids, one for each cluster. The algorithm 
attempts to place the centroids as much as possible far away from each other. As it was 
mentioned the k-means with different centroid initializations and stopping criterion 
values, is used which we call standard and modified k-means. 
 
The standard k-means clustering algorithm is formulated as follows [40]: 
 
A dataset of n observations is assumed S={X1, X2,…, Xn}; each one is p-dimensional. 
This dataset is going to be divided into K sets of clusters: C1, C2, …, CK. The objective 
function to be minimized is, 
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where:       

  T
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                       : number of objects in kC  
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The following steps are involved in the process of finding minimum value of the 
objective function in equation 5.2:  
 
1) Initialization. K objects from dataset are randomly selected. These objects represent 
initial group of centroids (in this project, K=3). 
 
2) Clustering. Each object is assigned to the group that has the closest centroid. For this 
purpose the following equation was fulfilled at each iteration i,    

 

min)(  i
kjX                  5.3 

where:  j = 1, …, n   and   i: iteration number      Note:  sign  is the norm 

 
3) Updating. When all objects were grouped, the centroids are updated with the 
following equation, 

 KkX
C

i
kCj ji

k

i
k ,...,2,1

1
)(

)(
)(          5.4 

 
4) Termination. Steps 2 and 3 are repeated until the centroids no longer move.  
 
5.5.2 Modified k-means clustering algorithm 
 
The standard k-means clustering algorithm is modified into the modified k-means 
clustering algorithm by changing the initialization and stopping criterion.  
 
5.5.2.1 Initialization  
 
The k-means clustering algorithm is an iterative method for dividing a dataset into K set 
of clusters and trying to shift the initialization centroids into the local optimal point. 
Therefore, the optimal segmentation is influenced by the initialization centroids [41]. 
Regarding to the investigations which have been performed with different initialization 
methods in [40], bootstrap method gave better results. Therefore, the bootstrap method 
was selected in this project. It consists of the following steps [42]:  

 
1- Dataset is divided into several subsets (in this project the dataset was divided 

into four subsets). 
2- The segmentation on each subset is performed. In this part the initialization 

centroids are selected by cluster center initialization which is explained in next 
section. 

3- The last centroids of the subsets are chosen. 
4- Initialization centroids for the final clustering step (step 2, section 5.5.1) are 

selected from the centroid set in step 3 (in this project K=3 thus three distant 
initialization points are selected). 
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5.5.2.2 Cluster Center Initialization 
 
Cluster center initialization method is a method to clarify the dense centers of the 
datasets. These dense centers are considered as the initialization points. Corresponding 
to the number of clusters, the dense centers are selected (e.g. in this project three dense 
centers are picked up from the dataset). The procedure is explained below [41]: 
 

1. It is assumed that the dataset has normal distribution. 
2. The mean (μ) and standard deviation (σ) of dataset are computed. 
3. The area under the normal curve is computed with the following formula. 

 A= (2s-1)/(2K)   where:  s=1, 2,…, K and K is number of clusters 
4. The z value corresponding with A is calculated. 

Since in this project there is a three-class problem (K=3). The percentiles z1, z2, 
and z3 is computed in a way that the area under the normal curve from: 

 - ∞ to z1 is equal to 1/6   (i.e. z1 = - 0.9672) 
 - ∞ to z2 is equal to 1/2   (i.e. z2 = 0) 
 - ∞ to z3 is equal to 5/6   (i.e. z3 = 0.9672) 

5. The dense centers are computed by xi = μ + σ zi  where: i=1,…,K. 
 
5.5.2.3 Stopping criterion 
 
The second modification was carried out on the stopping criterion. According to our 
experiences, to terminate the segmentation procedure, it is not necessary to obtain equal 
objective function values for two consecutive iterations. However, it is good enough 
that the difference of these objective functions become smaller than a stopping criterion 
value. In this manner, the execution time of the segmentation is decreased. Therefore, 
selecting a stopping criterion to fulfill both accuracy and execution time is important. 
 

5.6   Hierarchical and Non-hierarchical Classifier 
 
The three-class problem in this study can be solved by different segmentation schemes. 
Here two schemes have been investigated: hierarchical classifier and one-step classifier. 
 
Hierarchical classification scheme. The segmentation procedure is performed in 
several steps. At first brain tissues are segmented into WM/non-WM. Then non-WM is 
segmented into CSF and GM (non-CSF), see Figure 5.2. 
 
 
 

 
 
 
 
 

Figure 5.2: Hierarchical two-stage classification scheme. 

Brain

Non-WMWM 

GMCSF



29 
 

One-step classification scheme. In this scheme, the classification is performed in one-
step and the image is segmented into K cluster at once, see Figure 5.3. 
  
 
 
 
 
 

Figure 5.3: One-step classification scheme. 
 

5.7   Segmentation Performance Evaluation Methods 
 
To evaluate the segmentation results, the following segmentation performance measures 
were used: confusion matrix (CM), dice similarity index (DSI), ROC curve, 
Multi-class ROC graph, and Multi-class AUC.  
 
5.7.1 Confusion Matrix  
 
The confusion matrix (CM) is a square matrix which is obtained by comparing the 
segmented data with reference/ground truth. The rows and columns of CM have been 
named with the same hierarchy. Each column, represents the instances in predicted class 
and each row, represents the instances in actual class [43]. In the CM the values on the 
main diagonal represent correct classification while the off-diagonal values represent 
misclassifications. Thus as much as the density of the values is concentrated on the 
main diagonal, the segmentation results are more accurate. Figure 5.4 shows an example 
of a 2×2 CM. 
 

 
Actual Value 

 p n 

Prediction 
Outcome 

p 
True Positive 

(TP) 
False Positive 

(FP) 

n 
False Negative 

(FN) 
True Negative 

(TN) 
 

Figure 5.4: Confusion matrix for two-class classifier. 
 
5.7.2 Dice Similarity Index 
 
Dice similarity index (DSI) is a similarity measure over sets [44]. The maximum DSI 
value is one which corresponds to a perfect segmentation. It is obtained from the CM by 
the following equation.  
 

FNFP2TP

TP
DSI




2
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5.7.3 ROC Curve 
 
Receiver Operating Characteristic (ROC) curve is a graphical plot of the false positive 
rate (FP) versus true positive rate (TP). The FP and TP values are plotted on the X-axis 
and Y-axis respectively. The best results correspond to high TP value and low FP value 
which on the ROC curve, these points are placed on the top left corner [45].  
 
In Figure 5.5 number of operating points are depicted on the ROC curve and the most 
accurate result is represented by a blue circle. 

 

 
Figure 5.5: ROC curve and The most accurate point (blue circle). 

 
5.7.4 Multi-class ROC Graph 
 
The multi-class ROC graph, changes n×n CM into the number of 2×2 CMs depending 
on the number of possible pairs. Then each pair of the objects (2×2 CMs) in the form of 
a ROC curve, is sketched. This process is performed for all the possible pairs [45]. 
Since in this project a three-class problem is investigated three-class ROC graph is 
required. Where a 3×3 CM is generated and turned into three 2×2 CMs as follows: 
 

CM = 
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CM3 = 
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aaaaaa
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Each of the above 2×2 CMs is sketched based on ROC curve’s rule and three points are 
obtained. Therefore, for each 3×3 CM or three-class problem, three points are obtained. 

O 

The 3×3 CM is turned into three 2×2 CMs: 
CM1, CM2, and CM3 
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5.7.5 Multi-class AUC 
 
The discriminability of a pair of classes is assessed by the Area Under ROC Curve 
(AUC). In the multi-class problem for each pair, an AUC value is obtained and the total 
AUC value is calculated by the following equation [45].  
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where AUC(ci) is the area under the class reference ROC curve for class ci also  is 
the reference class’s prevalence in the data: 
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Maximum possible AUC value is one and the AUC may be judged as follows [46]: 
 

 Fair; when AUC value is higher than 0.70. 
 Good; when AUC value is higher than 0.80.   
 Excellent; when AUC value is higher than 0.90. 

 
 

  

 CM (confusion matrix) 
 
n: total number of classes  
    (in this project n=3) 
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6   EXPERIMENTAL RESULTS 

 
 
 
In this Chapter the data analysis and segmentation results obtained from two datasets 
which are: (1) DTI-volume from a real patient (2) MR-volume from the simulated brain. 
 
In DTI-volume we did not have access to the ground truth (GT) of the whole real brain 
volume. Thus the segmentation experiments were carried out on seven slices which 
were manually segmented by an expert physician. However, in simulated brain we had 
access to GT for the whole brain. 
 

6.1   Feature Extraction and Feature Selection 
 
In the feature extraction procedure, twelve univariate features from DTI raw data were 
extracted (according to the equations 2.6 to 2.14). Also the feature selection led to the 
twelve multi-feature sets, obtained from the univariate features.  
 
Table 6.1 shows the results of the feature selection procedure. The feature selection 
criterions were applied to select the best feature sets for different classification schemes. 
In the experiments, tissue labels from the expert ground truth were used.    
 

Table 6.1: The results of the feature selection by different methods. 

No. Feature Set (FS) Criterions Goodness Classifier 

1 RA, λ1, λ3, Skew, λ2 sMaha GM (72.84) 

One-step 
2 FA, λ1, λ2, I1, Skew mMaha GM (72.90) 

3 FA, RA, λ1, I3 sEucl CSF (73.35) 

4 FA, λ1, λ3, I2 mEucl WM (66.91) 

5 FA, I1 sEucl WM (69.18) 

Wm/ 
non-Wm 

6 FA, RA, λ3 mEucl WM (76.12) 

7 λ3, Skew, λ2, FA, I1 Mahas WM (72.33) 

8 λ3, Skew, λ2, FA, I1, I2, I3 mMaha WM (68.56) 

9 λ3, I2, I1, I3, λ1 sEucl WM (67.16) 

10 FA, RA, λ3, I3 sMaha GM (73.15) 
CSF/ 

non-CSF 
11 FA,VR, λ3, λ1, RA, I3 mMaha GM (78.58) 

12 FA, RA, λ1, VR mEucl CSF (74.16) 

 
For the three-class problem, the best subset was selected by “sEucl” (sum of the 
Euclidian distances) criterion and resulted in a 4-element dataset: FS4= {FA,RA,λ1,I3}. 
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For discrimination between WM and non-WM the subset was selected by “mEucl” 
(minimum Euclidian distances) criterion. The suggested dataset contained three 
features: FS6= {FA, RA, λ3}. Finally, for CSF vs. non-CSF tissue, the best dataset 
containing six elements was obtained by “mMaha” (mean of the Mahalanobis distance) 
criterion: FS11= {FA, VR, λ3, λ1, RA, I3}. 
 

6.2    Visualization of Input Feature 
 
From the DTI raw data more than ten univariate features were extracted. The selected 
univariate features of one axial layer (layer #85) are presented in Figure 6.1. 
 

 
Figure 6.1: Selected input features, axial layer #85,  

the features’ names are mentioned at the top of the images 
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6.3   Data Analysis 
 
In this section, discrimination and distribution of the input data are investigated using 
scatterplots and density functions. 
 
6.3.1 Scatterplots 
 
In Figure 6.2 we present the scatterplots for pairs of univariate features of axial layer 90: 
(λ1, RA), (I1, Aratio), (I3, RA), etc. 
 

 
Figure 6.2: Scatterplots for pairs of univariate features and axial layer #90. 

 
The scatterplots show that the class-conditional distributions are widely overlapping 
each other. The feasible pair for WM discrimination is (λ1, RA), for GM discrimination 
is (I1, Aratio), and for CSF discrimination is (I3, RA). 
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6.3.2 Density Functions 
 
Here the distribution of twelve univariate features of axial layer 90 by density functions 
and joint pdfs, using kernel method (Parzen density estimation) are investigated. Thus it 
can be visually assessed if some of the features possess a good discrimination power. 
 

 
 

  
 

  
Figure 6.3: Density functions of CSF (red line), GM (green line), and WM (blue line) 

plus joint pdf (black dash line) for univariate features, axial layer #90. 
 

Figure 6.3 shows the tissues are not well separated. This fact was proved by Figure 6.2 
as well. Based on the above density functions, appropriate univariate feature for WM 
discrimination seem to be third eigenvalue (λ3), for GM discrimination Aratio, and for 
CSF discrimination RA. 
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6.4   Real DTI Volume Segmentation 
 
In this section the results of the real DTI volume segmentation are presented. The 
experiments have been performed on the selected axial layers of the brain volume, using 
twelve univariate features and twelve feature sets. The segmentation was performed by 
the modified and standard k-means algorithms with one-step and hierarchical classifiers; 
and the segmentation performance was evaluated using DSI and AUC measures. 
 
6.4.1 Real DTI Data Segmentation based on One-step Classifier 
 
The results of DTI volume segmentation based on one-step classifier are presented 
below. At first the DSI values and afterward the AUC values of the three-class 
segmentation are sketched.  
 
6.4.1.1 DSI Values Analysis 
 
The DSI values of the three-class problem, by both modified and standard k-means 
clustering algorithms using one-step classifier are presented in Figures 6.4 to 6.6.  
 

 
Figure 6.4: DSI values of 24 feature sets for CSF discrimination by both modified and 

standard k-means clustering algorithms using one-step classifier method. 
 

 
Figure 6.5: DSI values of 24 feature sets for GM discrimination by both modified and 

standard k-means clustering algorithms using one-step classifier method. 
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Figure 6.6: DSI values of 24 feature sets for WM discrimination by both modified and 

standard k-means clustering algorithms using one-step classifier method. 
 
The analysis of the Figures 6.4, 6.5, and 6.6 led to the following conclusions: 
 
For CSF discrimination the best DSI value (0.50) was obtained using the feature set 6 
(FS6= {FA, RA, λ3}) and the modified k-means. For GM discrimination the best DSI 
value (0.68) was obtained using Aratio feature and the standard k-means. Finally, the 
best DSI value of the WM discrimination (0.69) was obtained using the third eigenvalue 
(λ3) and modified k-means. The exact values of the DSI values were presented in 
Appendix I. 
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6.4.1.2 AUC Values Analysis 
 
The total AUC values of three-class problem by both modified and standard k-means 
clustering algorithms, using one-step classifier are presented in Figure 6.7.  

 
Figure 6.7: The total AUC value of 3-class problem obtained using modified k-means 

(red line) and standard k-means (blue dash line). (a-g) AUC values of seven axial layers 
{70,75,80,85,90,95,100}. (h) the mean AUC of all these layers. 

 
For both modified and standard k-means, the best AUC value (0.73) was obtained from 
the feature set 6: FS6= {FA, RA, λ3}. Also the best mean AUC value of features (0.67) 
was obtained from layers 95 and 100. The exact mean AUC values are presented in 
Appendix II. 
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6.4.2 Real DTI Data Segmentation based on Hierarchical Classifier 
 
The hierarchical classifier (refer to section 5.6) is the second approach for the real DTI-
volume segmentation. The DSI values of the segmentation with both modified and 
standard k-means algorithms are sketched in Figure 6.8.  

 
Figure 6.8: DSI values of segmentation by both modified and standard k-means 

clustering algorithms using hierarchical classifier on 24 feature sets  
for these tissues: (a) CSF (b) GM (c) WM. 

 
The best DSI value for CSF discrimination (0.88) was obtained using the volume ratio 
(VR) and modified k-means. For GM discrimination, the best DSI value (0.79) was 
obtained by the standard k-means, using the feature set 10: FS10= {FA, RA, λ3, I3}. 
Finally, the best DSI value of the WM discrimination (0.81) was obtained using the I3 
feature and standard k-means (see Appendix III for the exact DSI values). 
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6.4.3 One-step vs. Hierarchical Classifier 
 
To compare the outcomes of the one-step and hierarchical classifiers, the mean DSI 
values of the CSF, GM, and WM of each feature, for both modified and standard k-
means algorithms were calculated. These values were depicted in Figures 6.9 and 6.10. 
The exact DSI values were presented in Appendix I and Appendix III.  
 

 
Figure 6.9: Mean DSI values of 3-class problem by modified k-means 

using hierarchical and one-step classifiers. 
 

 
Figure 6.10: Mean DSI values of 3-class problem by standard k-means 

using hierarchical and one-step classifiers. 
 
The most accurate mean DSI value (0.71) was obtained for the hierarchical classifier by 
modified k-means using feature set 7: FS7= {λ3, Skew, λ2, FA, I1}.  
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6.5   Real MRI vs. DTI Data Segmentation 
 
The AUC values of real MR-volume (T1 modality) versus the mean AUC values of the 
DTI features which have been obtained from segmentation, using one-step classifier, 
were investigated. Different performance evaluation methods are utilized and presented 
as follows.  
 
Figure 6.11 shows three-class ROC graphs for T1 data and feature set 4 (FS4= {FA, λ3, 
λ1, I2}). For T1 data the WM/non-WM classifier and for FS4 the CSF/non-CSF 
classifier has the highest AUC value. Total AUC value for T1 data is 0.91 and it is 0.73 
for FS4. 

 
Figure 6.11: ROC graph of axial layer #95: (a) T1 modality, (b) FS4 feature. 

 
Table 6.2 shows the mean AUC values of all the features, for each layer for both 
modified and standard k-means. These results were depicted in Figure 6.12. The best 
mean AUC value of DTI features (0.67) was obtained from axial layers 95 and 100; also 
for MR-volume the best AUC value (0.91) was obtained from axial layer 95, for both 
modified and standard k-means. See Appendix II for the exact AUC values.  
 

Table 6.2: Mean AUC values of the DTI features and AUC of T1 modality by both 
modified and standard k-means using one-step classifier of seven layers. 

Layer# 
Modified k-means Standard k-means 

DTI T1 DTI T1 

70 0.61 0.88 0.60 0.88 

75 0.63 0.88 0.63 0.87 

80 0.61 0.86 0.61 0.86 

85 0.65 0.86 0.65 0.85 

90 0.64 0.90 0.65 0.90 

95 0.67 0.91 0.67 0.91 

100 0.67 0.88 0.67 0.89 
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Figure 6.12: AUC values of one-step classifier on DTI data (red line) and MR data 

(blue dash line) by (a) Modified k-means, (b) Standard k-means. 
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6.6   Simulated MRI Data Segmentation 
 
In this section segmentation results of simulated data are presented. Segmentation has 
been performed on selected axial layers of three MR modalities (T1, T2, PD) and whole 
T1 brain volume. 
 
6.6.1 Selected Layers Segmentation 
 
Here the segmentation results of nine axial layers (35, 40, 75, 80, 85, 90, 95, 100, 145) 
of T1, T2, and PD modalities by modified k-means with one-step classifier are 
presented. 

 
Figure 6.13: DSI of 3-class segmentation by modified k-means using one-step classifier 

on nine axial layers (35,40,75,80,85,90,95,100,145) of three modalities:  
(a) T1 modality, (b) T2 modality, (c) PD modality. 

 
Figure 6.13 shows, in T1 modality maximum DSI value for CSF is 0.99, for WM is 
0.99, and for GM is 0.98. In T2 modality maximum DSI value for CSF is 0.98, for WM 
is 0.97, and for GM is 0.94. In PD modality maximum DSI value for CSF is 0.92, for 
WM is 0.98, and for GM is 0.93. 
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  (a)        (b)      (c)          (d) 
 

Figure 6.15: WM/non-WM segmentation of FA feature, axial layer #85, 
(a) Original FA feature, (b) Ground truth, (c) Segmented feature, 

(d) Detailed segmentation: WM/cyan; non-WM/Yellow; Misclassification/red. 
 
The corresponding confusion matrix for the WM/non-WM segmentation is: 
 
 
 
 
CSF/non-CSF Segmented. The CSF/non-CSF segmentation results of third eigenvalue 
(λ3) of axial layer 85 are presented below.  
 
Figure 6.16 shows the segmentation results using the third eigenvalue (λ3) (left to right): 
the original image, ground truth, CSF/non-CSF segmentation, and detailed 
segmentation. In the detailed segmentation each region is identified by especial color, 
CSF is cyan, non-CSF is yellow, and misclassification is red. 
 
 

 
 
 
 
 

 
  (a)         (b)      (c)         (d) 
 

Figure 6.16: CSF/non-CSF segmentation of λ3 feature, axial layer #85, 
(a) Original λ3 feature, (b) Ground truth, (c) Segmented feature, 

(d) Detailed segmentation: CSF/blue; non-CSF/Yellow; Misclassification/red. 
 
The CM of the CSF/non-CSF segmentation is: 
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6.8   Detecting the Stopping criterion for Modified k-means 
 
Figures 6.17 to 6.19 show the experiment for the detection of the suitable stopping value 
for the modified k-means clustering. In this case the segmentation was done on one 
axial layer (layer #80) and FA feature. 
 

 
Figure 6.17: Stopping criterion values, 14 steps in (0,1) interval.  

 

 
Figure 6.18: Execution times corresponding to the stopping criterion values in Figure 6.17. 

 

 
Figure 6.19: The corresponding DSI values. 

 
It can be observed that the segmentation performance (DSI value in Figure 6.19) is high 
for the first four stopping values and then it drops down to a lower value. It means that 
the segmentation can be done with a higher stopping value and reach the same 
segmentation accuracy. At the same time the total execution time will be reduced from 
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ca 120 seconds to ca 45 seconds. In this way, we may reduce the total time which is 
needed for the segmentation. 
 

6.9   Experimental Environment 
 
In this project the segmentation experiments have been performed using the following 
hardware and software: 
 

Hardware:  
CPU: P4-2.80 GHz 
RAM: 256 MB 
Operating system: Windows Vista 

 
Software:  

MATLAB 2008  
FSL 4.1.4 
PRTools 4.1 
 

6.10 Results comparison 
 
The comparative study result shows common features. Based on different dataset which 
results slightly bias. Current project results are compared with articles [29] and [30]. 
 
Results of D. Han paper [29]:  
In this paper discriminating the WM and CSF were performed by graph-cuts, FSL-
FAST tool, and thresholding method. The results are depicted in comparison with 
standard and modified k-means in Figure 6.20. It is seen that the WM tissue has been 
discriminated better than CSF tissue. In addition the best WM discrimination, was 
obtained by graph-cuts and thresholding method; and for CSF discrimination the best 
result was obtained by the graph-cuts method. 

 

 
Figure 6.20: WM and CSF discrimination by five segmentation methods: 1- Graph-cuts, 

2- FSL-FAST tool, 3- Thresholding, 4- Modified k-means, 
5- Standard k-means; the univariate features are FA and λ3. 
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Results of T. Liu paper [30]: 
In this paper the CSF tissue was discriminated by the three eigenvalues (λ1,λ2,λ3). Also 
the WM tissue was discriminated by FA, RA, and VR. The segmentation was performed 
by combination of the Hidden Markov Random Field (HMRF) and Expectation-
Maximization (EM). The results are depicted in comparison with standard and modified 
k-mans in Figures 6.21 and 6.22.  
 
Figure 6.21 shows, in CSF discrimination, DSI value of HMRE-EM is lower than that 
of modified and standard k-means. However, for WM discrimination (see Figure 6.22), 
DSI value of HMRE-EM is higher than that of modified and standard k-means. 

 

  
Figure 6.21: CSF discrimination with three segmentation methods, 

                (features: three eigenvalues λ1, λ2, λ3). 
 
 

 
Figure 6.22: WM discrimination with three segmentation methods, 

(features: FA, RA, VR). 
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7  DISCUSSION 

 
 
 
The main purpose of this thesis was to develop and investigate methods for brain tissue 
segmentation using DTI data. Two methods were implemented: standard k-means and 
modified k-means clustering algorithms. The segmentation was tested using different 
univariate and multivariate DTI measures.  
 
The analysis of estimated univariate probability density functions showed that the 
distributions differed from Gaussian shapes and they were not well separated. Also the 
visual inspection of 2-D feature scatterplots showed that the features overlapped each 
other and it was difficult to select a good pair of features. This turned out to be 
inconsistent with the segmentation results’ accuracy. The best class separation for the 
univariate features seemed to be using RA, and for 2-D case using feature pair (I3, RA).  
 
The feature selection led to the enhancement of the total AUC values, for both modified 
and standard k-means clustering algorithms (see Figure 6.7). The best AUC value (0.73) 
was obtained for the feature set 6: FS6= {FA, RA, λ3}.   
 
The segmentation results for both standard and modified k-means were almost the same, 
in most of the experiments. Nevertheless, the modified k-means showed higher 
discrimination on some of the features. However, it cannot be claimed that the modified 
k-means consistently excels standard k-means on the brain tissue segmentation 
problems (e.g. see Figures 6.4, 6.5). 
 
Figure 6.9 and Figure 6.10 show that the mean DSI values using hierarchical classifier 
were higher than those using one-step classifier, for all the features. Therefore, the 
hierarchical classifier had better discrimination than one-step classifier. 
 
Comparison between the results of DTI-based segmentation and conventional MR-
based segmentation showed that the MR data had higher AUC value than DTI data, for 
both segmentation methods (see Figure 6.12 and Table 6.2).  
 
In case of simulated T1, T2, and PD data, the results indicated that each modality acted 
differently for different tissues (see Figure 6.13). T1 and T2 modalities gave the best 
results for CSF discrimination and PD gave the best results for WM discrimination. 
 
The outcome comparison with other articles indicated, the DSI value of WM 
discrimination in the current project had lower value than that in articles [29] and [30] 
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(see Figures 6.20 and 6.22). However, DSI value of CSF discrimination in the studied 
articles had lower value than that in the current project (see Figure 6.21). 
 
In this project many (twenty four) DTI-based features were extracted and investigated. 
Whereas in the reviewed articles only few features had been considered. This gave a 
possibility for improvement of the segmentation results. However, this put also a higher 
demand on a successful feature selection.  
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8  CONCLUSIONS AND FUTURE WORK 

 
 
 

8.1  Conclusions 
 
In this project DTI data was utilized to discriminate the CSF, GM, and WM tissues in a 
human brain. For this purpose segmentation has been performed by the standard and 
modified k-means clustering algorithm. In addition to DTI data, MRI data in three 
modalities T1, T2, and PD were investigated. The main results are summarized as 
follows:  
 
 The best segmentation result was obtained using dataset consisting of FA, VR, 

λ1, λ3, RA and I3 features. 

 The best segmentation results using univariate feature was obtained for feature 
VR. 

 The hierarchical classifier led to higher segmentation accuracy compared to the 
one-step classifier. 

 The WM can be best discriminated using anisotropy features, the GM and 
CSF tissues can be best discriminated using the largest eigenvalue of the 
diffusion tensor matrix. 

 The feature selection improved the segmentation results, especially for the GM. 

 The AUC value for the k-means method and MRI data was larger than using 
DTI data, which may suggest that DTI does not necessarily leads to improved 
segmentation accuracy for this segmentation method.  

 The modified k-means algorithm led to lower execution time. This was the result 
of the observation that the k-means iterations can be interrupted after a number 
of iterations without sacrificing the segmentation accuracy.  
 

In conclusion, the developed algorithm can be used for unsupervised brain tissue 
segmentation. However, to obtain higher segmentation accuracy a more advanced 
algorithm that takes into account spatial dependencies might be employed. In addition, a 
fusion with conventional MR data may be required. 
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8.2  Future Work 
 
The current study has some limitations; in particular only one real subject data and 
tissue delineation from only one medical expert were accessed. Therefore, the 
experiments should be repeated on a larger dataset to obtain statistical significance.  
 
Also the segmentation method itself has some shortcomings. For example, the k-means 
cannot cluster properly non-convex distributions. Other unsupervised clustering 
methods that can cope with non-convex data and spatial dependencies, e.g. the mean-
shift algorithm, could be investigated on this segmentation problem. 
 
In addition, the DTI and MR data have been utilized separately because of the 
differences in resolution and accuracy. Therefore, investigation on the manner of 
generating a feature set with combination of DTI and MR data is suggested.  
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Appendix I 
 
The DSI mean values of seven axial layers: (70, 75, 80, 85, 90, 95, 100) by one-step 
classifier for both modified and standard k-means clustering algorithms. 
 

No. Feature 
Modified k-means Standard k-means 

CSF GM WM CSF GM WM 

1 FA 14.21 56.87 44.04 15.82 52.49 42.45 

2 RA 4.6 57.88 48.64 6.97 54.49 48.98 

3 Aratio 6.62 68.26 49.21 6.3 68.54 49.53 

4 Skew 9.57 61.53 32.1 9.35 61.24 32 

5 VR 4.58 61.24 45.45 4.54 60.28 44.97 

6 VF 4.73 60.72 45.8 4.56 60.32 44.96 

7 λ1 43.59 53.03 41.61 42.35 52.28 40.74 

8 λ2 45.21 40.12 66.12 44.03 37.47 65.69 

9 λ3 47.93 51.4 68.68 47.09 49.52 68.36 

10 I1 44.61 35.5 65.18 43.53 33.7 64.84 

11 I2 37.92 43.89 39.3 37.68 43.43 39.16 

12 I3 35.16 40.37 37.56 34.78 39.59 37.39 

13 FS1 45.58 42.13 62.08 45.91 44.17 54.64 

14 FS2 46.23 47.01 50.3 42.8 36.13 57.1 

15 FS3 42.45 62.05 37.12 41.6 57.1 37.25 

16 FS4 47.06 56.15 58.16 46.24 49.11 56.45 

17 FS5 48.93 53.66 56.74 48.28 54.57 51.48 

18 FS6 50.21 60.93 42.88 49.89 58.87 61.16 

19 FS7 45.52 41.9 66.72 46.2 44.2 59.71 

20 FS8 39.47 37.35 56.28 41.51 37.23 59.41 

21 FS9 38.88 39.58 47.87 39.26 40.02 48.03 

22 FS10 46.72 58.53 58.39 44.65 54.87 62.07 

23 FS11 45.81 42.41 43.53 39 40.14 48.02 

24 FS12 38.39 62.2 31.38 44.41 61.77 47.36 
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Appendix II 
 
The mean AUC values of seven axial layers: (70, 75, 80, 85, 90, 95, 100) by modified 
and standard k-means clustering algorithms using one-step method classifier. 
 

No. Feature 
Modified  
k-means 

Standard 
k-means 

Mean AUC Mean AUC 

1 FA 0.57 0.56 

2 RA 0.58 0.57 

3 Aratio 0.64 0.64 

4 Skew 0.62 0.62 

5 VR 0.63 0.64 

6 VF 0.63 0.64 

7 λ1 0.58 0.58 

8 λ2 0.68 0.68 

9 λ3 0.69 0.69 

10 I1 0.68 0.68 

11 I2 0.63 0.63 

12 I3 0.65 0.65 

13 FS1 0.68 0.67 

14 FS2 0.67 0.66 

15 FS3 0.62 0.63 

16 FS4 0.67 0.67 

17 FS5 0.67 0.66 

18 FS6 0.66 0.68 

19 FS7 0.69 0.67 

20 FS8 0.67 0.68 

21 FS9 0.65 0.64 

22 FS10 0.69 0.69 

23 FS11 0.68 0.64 

24 FS12 0.60 0.66 
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Appendix III 
 
The DSI mean values of seven axial layers: (70, 75, 80, 85, 90, 95, 100) by hierarchical 
classifier for both modified and standard k-means clustering algorithms. 
 
 

No. Feature 
Modified k-means Standard k-means 

CSF GM WM CSF GM WM 

1 FA 58.21 63 64.19 58.93 63.89 63.97 

2 RA 57.34 53.64 73.01 79.51 46.11 72.82 

3 Aratio 50.49 40.53 71.36 49.23 40.65 70.93 

4 Skew 85.31 63.93 80.94 82.76 64.99 81.49 

5 VR 88.57 44.21 71.89 71.87 60.25 71.96 

6 VF 68.92 58.83 71.96 71.87 60.25 71.96 

7 λ1 60.1 64.87 62.58 59.26 65.56 62.45 

8 λ2 64.54 56.59 71.07 63.26 56.21 70.18 

9 λ3 66.49 55.36 77.85 67.18 56.24 76.25 

10 I1 63.26 54.33 69.87 62.56 54.51 69.17 

11 I2 59.16 59.92 65.86 59.29 60.6 65.36 

12 I3 60.86 65.2 63.1 60.94 65.74 62.78 

13 FS1 66.42 72.47 71.49 67.11 72.84 70.56 

14 FS2 59.34 72.9 68.12 59.25 72.84 67.86 

15 FS3 73.15 66.92 63.95 73.35 67.19 63.77 

16 FS4 60.05 63.27 66.22 60.55 63.59 66.91 

17 FS5 51.17 52.72 69.18 50.75 52.43 68.22 

18 FS6 61.61 63.46 74.64 61.5 57.23 76.12 

19 FS7 70.68 72.13 71.39 71.07 62.48 72.33 

20 FS8 55.52 55.01 68.56 55.49 54.99 67.73 

21 FS9 58.21 59.12 67.16 58.44 59.73 66.45 

22 FS10 70.22 73.15 67.45 70.36 67.68 66.48 

23 FS11 66.97 78.58 65.35 72.39 78.64 66.29 

24 FS12 71.6 61.33 58.89 74.16 36.35 59.17 

 


