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Abstract

Microwave tomography is a promising method for the breast cancer imaging. Dielectric
properties of the healthy tissue and the tumor have a high contrast under microwave
investigation. To determine the dielectric properties from antenna measurements it is
necessary to solve the inverse electromagnetic problem. This inverse problem is ill-posed,
its solution is not stable. Regularization is used to achieve stability. Ordinary Tikhonov
regularization usually makes the solution too smooth. Edge-preserving regularization is
investigated to obtain a stable solution without oversmoothing the solution. Tikhonov
and Edge-preserving regularizations are compared. It is found that edge-preserving reg-
ularization decreases the smoothness of the reconstruction but has the same robustness
against the noise compared to Tikhonov regularization.
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1 Introduction

Breast cancer is a serious problem in the modern world today. As reported by World
Health Organization [1], it is the most common form of cancer in females. As much as
one third of the women will get breast cancer during their lifetime. Early diagnostic is
a key for a successful treatment. It is found by Michaelson et al [2], that survival rate
is directly dependent on the size of the tumor when it was diagnosed. In diagnosing
tumors imaging plays an important role. The most widespread imaging method today is
x-ray imaging. Unfortunately this method has several disadvantages, such as that it uses
ionizing radiation, that could potentially induce cancer in the patient. Another problem
that the tumor has a relatively low contrast in the x-ray images in comparison to a
normal tissue. The reason is that both normal and malignant tissues are soft tissues with
similar attenuation of x-rays. Another disadvantage is uncomfortable breast compression
during imaging. There are also other methods in use, for example ultrasound imaging
and contrast-enhanced magnetic resonance imaging. They have their own advantages
and disadvantages, e.g. price for MRI is very high. Microwave tomography has been
suggested as an alternative due to its relatively low cost and high contrast in the dielectric
properties between the healthy tissue and the tumor.

Dielectric properties of biological tissues has been studied for more than fifty years. A
recent extensive survey was published by Gabriel et. al. [3, 4, 5]. Over the years it has
been found in several studies ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) that the dielectric prop-
erties of normal breast tissue differs greatly from the dielectric properties of cancerous
tissue. Properties of the healthy tissue are close the properties of fat, while the tumor
properties are closer to the properties of blood. Conductivity and relative permittivity
for normal and malignant tissues over the interesting frequency band are presented in
Figure 1.1 ([16][3, 4, 5][11, 15, 17, 14, 18, 13, 19]).

If it will be possible to determine the properties of a tissue from the microwave tomo-
graphic measurements, then it is also possible to predict if there is a tumor or not.

In tomographic measurements emitted wave propagates through the breast and the
scattered field is measured by receivers. These measurements allow us to determine
the dielectric properties of the breast. Algorithms for such inverse scattering generally
fall into two broad categories: fast, approximate linear algorithms or slow, accurate
non-linear algorithms. The linear algorithms usually based on inversion of the Fourier
transform (e.g. Bertero et.al. [20]) or Born approximations (Bulyshev et.al. [21]). In
contrast, nonlinear algorithms usually require some sort of computationally expensive
Newton-like search (Gustafsson and He [22]). There are few options available in between,
e.g. “linear sampling” method developed by Colton and Kirsch [23]. Comparison of linear
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1 Introduction

and non-linear algorithm has been done for breast cancer imaging by Fhager et. al. [24]
and it was found that the linear algorithms are incapable to perform sufficiently good
reconstruction due to high contrast between the healthy tissue and the tumor under
microwave investigations. That is why a non-linear approach is used in this work.

The particular reconstruction algorithm used in this work can be outlined as follows.
At first, the tissue properties are “guessed” and a simulation of the wave propagation is
performed by solving the direct electromagnetic problem described in Section 2.1. Sim-
ulated data is compared to the measurements and the residual between them is taken
as a measure of the misfit. Based on the residual a functional is defined which is min-
imized. Search methods for the minimization are described in Section 2.4. To update
the reconstructed dielectric properties of the breast in each iteration of the minimiza-
tion, gradients of the minimization functional are used. Derivation of the gradients has
been described by, for example, Gustafsson [22]. The reconstruction problem is an in-
verse problems which is ill-posed. To solve ill-posed problems numerically, one must
introduce some additional information about the solution, such as an assumption on
the smoothness or a bound on the norm. A simple form of regularization, generally
denoted Tikhonov regularization, is essentially a trade-off between fitting the data and
reducing a norm of the solution. More recently, non-linear regularization methods have
become popular. The purpose of this work is to investigate regularization methods and
make comparison with Tikhonov regularization. Brief overview of several regularization
methods in given in Section 2.5. Edge-preserving regularization is chosen for detailed
investigation, and its derivation for microwave tomography is given in Section 2.5.6.
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1 Introduction

Figure 1.1: Literature values (Fhager, Gabriel et al, and others) of the conductivity and
relative permittivity for normal (blue) and malignant (red) breast tissue
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2 Model

2.1 Direct problem

To simulate wave propagation in media, well-known FDTD (Finite Difference in Time
Domain) method is used (Taflove [25], Sadiku [26], Kunz and Luebbers [27]). It is based
on a finite difference approximation of Maxwell equations.

2.1.1 Maxwell equations

Maxwell equations is a set of equations that describe the interrelationship between elec-
tric fields, magnetic fields, electric charge, and electric current. It consists of four Laws.

Faraday’s Law of Induction:
∇×E = −∂B

∂t

Ampere’s Circuital Law:
∇×H = J +

∂D
∂t

Gauss Law:
∇ ·D = ρ

Gauss Law for Magnetism (absence of magnetic monopoles):

∇ ·B = 0

Where:

E - electric field vector, [V/m];

D - electric flux density vector, [C/m2];

H - magnetic field vector, [A/m];

B - magnetic flux density vector, [Wb/m2];

J - electric conduction current density, [A/m2].
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2 Model

The following relation holds for linear, isotropic, non-dispersive material:

D = εE

B = µH

J = σE

Where:

µ - magnetic permeability, [H/m];

ε - electric permittivity, [F/m];

σ - electric conductivity, [S/m].

With these assumptions about the material the following representation of the Ampere’s
and Faraday’s laws can be derived:

∂E
∂t

=
1
ε
∇×H− σ

ε
E (2.1)

∂H
∂t

= − 1
µ
∇×E (2.2)

For each coordinate the Equation (2.1) can be written in terms of the x, y and z com-
ponents: 

∂Ex
∂t = 1

ε

(
∂Hz
∂y − ∂Hy

∂z − σEx

)
∂Ey

∂t = 1
ε

(
∂Hx
∂z − ∂Hz

∂x − σEy

)
∂Ez
∂t = 1

ε

(
∂Hy

∂x − ∂Hx
∂y − σEz

) (2.3)

Equation (2.2) can be written in the similar way.

This is a continuous differential equation. To solve them on a computer it is necessary
to rewrite them in discrete form.
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2.1.2 Discrete form of equations

The computing scheme for Maxwell’s equations was introduced by Yee in 1966 [28].
In this scheme the electric and the magnetic vectors are both placed on the edges of
a separate cubic lattice and interleaved with each other. This is illustrated on Figure
2.1 (a). The time stepping is implemented as a leapfrog scheme. In each time step one
variable is calculated from its value in the previous time step and the value of the second
variable in the current time step. This is illustrated on the figure 2.1 (b).

(a) Yee Cell (b) Leapfrog Scheme

Figure 2.1: Discrete Space and Time

Taking all this into consideration we can derive expression for the discrete equations. If
i, j, k and n are integers, the field in a particular space-time point can be written as

u(i∆x, j∆y, k∆z, n∆t) = u|ni,j,k.

Here ∆x,∆y, ∆z are spatial grid step sizes and ∆t is a time step. As example, it is
possible to write the first equation of 2.3 as

Ex|n+1
i,j,k − Ex|ni,j,k

∆t
=

1
εi,j,k

Hz|n+1/2
i,j+1/2,k −Hz|n+1/2

i,j−1/2,k

∆y
−

Hy|n+1/2
i,j,k+1/2 −Hy|n+1/2

i,j,k−1/2

∆z
− σi,j,kEx|n+1/2

i,j,k


In FDTD a stability condition have to be used to ensure that the wave will not propagate
through a cell with a speed higher than the speed of light. Taflove and Brodwin [29],
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showed that to guarantee numerical stability the time step ∆t should fulfill the condition

c∆t ≤
(

1
(∆x)2

+
1

(∆y)2
+

1
(∆z)2

)−1/2

(2.4)

In case of a cubic lattice where ∆x = ∆y = ∆z = ∆ the condition reduces to

∆t =
∆

c
√

3
(2.5)

where c is the speed of light.

2.1.3 Complex permittivity

The relative permittivity of a medium can be represented by a complex quantity ε′r, that
has a real εr part describing energy storage and imaginary part ε′′r describing energy
losses. The value of the permittivity varies as a function of the frequency of the applied
electromagnetic field:

ε′r(ω) = εr(ω)− jε′′r (ω)

Here j2 = −1 and ω is the angular frequency (ω = 2πF , where F is frequency expressed
in Hertz). The imaginary part is the sum of a conductivity term and a relaxation term
([30]):

ε′′r (ω) =
σ

ωε0
+ ε′′r,relaxation(ω)

where σ is ionic conductivity in Siemens per meter, ε0 = 8.8542× 10−12F/m is permit-
tivity in vacuum and ε′′r,relaxation is the loss due to dielectric relaxation.

In our model relaxation is not implemented, thus the complex permittivity is

ε′r(ω) = εr − j
σ

ωε0
(2.6)

Using this model either real (relative permittivity) or imaginary (conductivity) part of
the complex permittivity could be better reconstructed depending on the frequency.

Model for complex permittivity was derived by Debye [31]:

ε(ω) = ε∞ +
∆ε

1 + iωτ

where ε∞ is the permittivity at the high frequency limit, ∆ε = εs − ε∞ where εs is
the static, low frequency permittivity and τ is the characteristic relaxation time of the
medium.
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More accurate empirical function was suggested by Cole and Cole [32, 33]:

ε(ω) = ε∞ +
∑

n

∆εn

1 + (iωτn)(1−αn)
+

σs

iωε0

where σs is static conductivity.

2.2 Inverse problem

The inverse problem is about finding the properties of the media based on some measure-
ments. The inverse problem is the opposite of the direct problem, where the propagation
through the media is computed based on the knowledge of the material properties. From
a cause-effect point of view the direct problem can be seen as finding the effect from
given cause. The inverse problem is instead to determine the cause from an observed
effect (Tarantola [34], Bertero and Boccacci [35]).

2.2.1 Stability of inverse problems

In 1902 Hadamard formulated the conditions of a well-posed problem:

1. A Solution should exist for any data

2. The Solution should be unique

3. The Solution should be stable, or continuously depend on input data, i.e. small
variations in the input data should correspond to the small variations in the output
data (not large errors)

If any of these criteria are not fulfilled, the problem is referred to as an ill-posed problem.

The inverse electromagnetic problem is ill-posed due to the third criteria (Colton and
Kress [36]; Isakov [37], Colton and Paivarinta [38]).

Whether a problem is ill-posed or well-posed is determined by the differential operator,
data and solution space and their norms. To cure an ill-posed problem one could change
the operator or the problem solution spaces. Usually this is not possible due to the
physical nature of the problem, since the data space should, for example, be able to
contain all the measurements. Another approach is to use regularization (Tikhonov
[39]) which is based on the idea that approximate solution can be found with some
additional a priori data is incorporated. It is also possible to use a Bayesian approach to
solve inverse problems of tomography ([40, 41, 42]). In this work regularization approach
is taken.
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2.3 Minimization Functional

The imaging problem is formulated as a minimization of the functional

F (ε, σ) =
M∑

m=1

∫ T

0

N∑
n=1

|Esim
m (ε, σ,Rn, t)−Emeas

m (Rn, t)|2dt, (2.7)

where Esim
m (ε, σ,Rn, t) is the calculated field from the computational model of the setup,

and Emeas
m (Rn, t) is the measured data. M is the number of transmitters and N is the

number of receivers. Rn is the position of the n-th receiver, T is the time of one the
simulation.

The solution is obtained by minimization of this non-linear functional using optimiza-
tion methods. The minimum will correspond to the best fit of the conductivity and
permittivity to the measured data.

2.4 Nonlinear optimization methods

2.4.1 Steepest Descent

Steepest descent is a method for local minimum search [43]. It starts from point x0 and,
as many times as needed, moves from point x(i) to x(i+1) by minimizing in the direction
of −∇f(x(i)), the local downhill gradient. The new iteration is determined by

x(i+1) = x(i) − δ(i)∇f(x(i)), (2.8)

where the step size δ is determined from a linear search in the negative direction of the
gradient.

2.4.2 Conjugate Gradient

If the target function is shaped as a long narrow valley with the miminum at the ottom
of the valley, the steepest descent method will be very inefficient in stepping toward
the minimum. Conjugate gradient method uses conjugate directions instead of the local
gradient for going downhill ([44]). If the vicinity of the minimum has the shape of a
long, narrow valley, the minimum is reached in far fewer steps than would be the case
using the method of steepest descent. The update rule for the conjugate gradient is as
follows:

x(i+1) = x(i) + αid
(i) (2.9)

where d(i) is conjugate direction and αi is the step length that is determined from a linear
minimum search in direction d(i). The direction could, for example, be determined by
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using the Flethcer-Reeves equation:

d(i+1) = r(i+1) + β(i+1)d(i) (2.10)

where
r(i) = −∇f(x(i)) (2.11)

and

β(i+1) =
rT
(i+1)r(i+1)

rT
(i)r(i)

(2.12)

Equation (2.10) means that new conjugate direction is the sum of antigradient at the
current point and the previous direction multiplied by the coefficient (2.12). Fletcher
and Reeves suggests to restart algorithmic procedure every n + 1 steps, where n is the
search space dimension. Another method of computing β(i+1) was suggested by Polak
and Ribbiere:

β(i+1) =
rT
(i+1)(r(i+1) − r(i))

rT
(i)r(i)

(2.13)

The Fletcher-Reeves method converges if starting point is close enough to the minimum,
while the Polak-Ribiere method sometime can cycle forever. However the latter often
converges faster then the first. Convergence of Polak-Ribiere method can be guaranteed
by choosing β = max{β, 0}. This is equivalent to the restart of algorithm if β ≤ 0.
Restart of the algorithmic procedure is necessary to “forget” the last direction and start
algorithm again in the direction opposite to the gradient.

2.4.3 Newtons method

In contrast to the steepest descent and the conjugate gradient methods, which are first-
order methods, Newtons method is a second-order minimization method. If a real num-
ber x∗ is a stationary point (minima or maxima) of the function f(x), then x∗ is a root
of the derivative f ′(x). Consider Taylor’s expansion:

f(x + δx) = f(x) + f ′(x)δx +
1
2
f ′′(x)δx2 + ... (2.14)

Function f(x) is minimized when δx solves the equation

f ′(x) + f ′′(x)δx = 0 (2.15)

and f ′′(x) is positive. Thus provided that f(x) is twice-differentiable function and the
initial guess x0 is chosen close enough to the x∗, the sequence (xn) defined by

xn+1 = xn −
f ′(xn)
f ′′(xn)

, n > 0 (2.16)
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will converge toward x∗.

This iterative scheme can be generalized to several dimensions by replacing the derivative
with the gradient ∇f(x), and the reciprocal of the second derivative with the inverse of
the Hessian matrix Hf (x):

Hf (x) =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
... . . . ...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n


(2.17)

Then the update rule is

x(i+1) = x(i) − 1
Hf (x(i))

∇f(x(i)). (2.18)

This method requires second derivatives of the target function, which is expensive to
compute in this application, since requires 2n2 evaluations of target function to compute
Hessian numerically. Analytical expression for Hessian could resolve this complexity.

2.4.4 Gauss-Newton method

This method is used to solve the nonlinear least squares problems. It is a modification
of Newton’s method that does not use second derivatives. This method works when the
target function f(x) is sum of squares of functions gi(x).

f(x) = ||g(x)||2 (2.19)

In this case of sum of squares the Hessian is replaced by multiplication of two Jacobians:

x(i+1) = x(i) − 1
Jg(x(i))T Jg(x(i))

Jg(x(i))T g(x(i)) (2.20)

or
(Jg(x(i))T Jg(x(i)))(∆x)(i) = −Jg(x(i))T g(x(i)) (2.21)

In our application it is not possible to analytically find an expression for the Jacobian
Jg(x) of the single component of the sum in Equation (2.7), which is necessary to find
Hessian. Analitical gradients we use are based on the sum in Equation (2.7), not on
a single component of the sum. That is why it is only possible to find expression for
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Jacobian of the sum J||g||2(x), which is not enough to represent Hessian Hf (x). This is
the reason why this method is not applicable for our reconstructions.

2.4.5 Levenberg-Marquardt

This method is a combination of Steepest Descent and Gauss-Newton method. The
algorithm was first published by Kenneth Levenberg [45], while working at the Frank-
ford Army Arsenal. It was rediscovered by Donald Marquardt [46] who worked as a
statistician at DuPont.

The update rule in this case is:

(Jg(x(i))T Jg(x(i)) + λI)(∆x)(i) = −Jg(x(i))T g(x(i)) (2.22)

Since we can not use Gauss-Newton method for our reconstruction for the reason ex-
plained in the previous section, Levenberg-Marquardt method also can not be used.

2.4.6 Quasi-Newton Methods

Quasi-Newton methods are based on Newton’s method, but they approximate the Hes-
sian matrix, or its inverse, in order to reduce the amount of computation per iteration.

The most widespread is BFGS method that was suggested independently by Broyden,
Fletcher, Goldfarb, and Shanno, in 1970.

The principal idea of the method is to construct an approximate Hessian matrix of the
second derivatives of the function to be minimized, by analyzing successive gradient
vectors. The Hessian matrix does not need to be computed at any stage. However, the
method assumes that the function can be locally approximated as a quadratic function
in the region around the optimum.

The update formula for the approximate Hessian is

Hk+1 = Hk +
qkq

T
k

qT
k sk

−
HT

k sT
k skHk

sT
k Hksk

(2.23)

where
sk = xk+1 − xk

qk = ∇f(xk+1)−∇f(xk)

As a starting point, H0 can be set to any symmetric positive definite matrix, for example,
the identity matrix I. To avoid the inversion of the Hessian H, it is possible to derive an
updating method that avoids the direct inversion of H by using a formula that makes
an approximation of the inverse Hessian at each update.
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At each major iteration, k, a line search is performed in the direction similar to the
(2.18)

d = −H−1
k · ∇f(xk)

L-BFGS is a limited-memory quasi-Newton method (Nocedal [47]). L-BFGS stands for
"Limited memory BFGS method"; instead of storing a full approximation to the Hessian,
a low rank approximation is updated.

2.5 Regularization

In order to make the ill-posed reconstruction problem well-posed regularization is used.

2.5.1 Tikhonov regularization

Tikhonov regularization [39] is the most commonly used method for regularization of
ill-posed problems. In some fields, it is also known as ridge regression.
In its simplest form, an ill-conditioned system of linear equations

Ax = b, (2.24)

where A is an m×n matrix above, x is a column vector with n entries and b is a column
vector with m entries, is replaced by the problem of seeking an x to minimize

‖Ax− b‖2 + α2‖x‖2 (2.25)

for some suitably chosen Tikhonov factor α > 0. Here ‖·‖ is the Euclidean norm. This
improves the conditioning of the problem, thus enabling a numerical solution. An explicit
solution, denoted by x̂, is given by:

x̂ = (AT A + α2I)−1ATb (2.26)

where I is the n×n identity matrix. For α = 0 this reduces to the least squares solution
provided that (AT A)−1 exists.
The following analogy can be made: for tomography problem x is the conductivity and
the permittivity distribution that we are reconstructing, A is linear approximation of
the FDTD method, b is the measurements vector.

2.5.2 Generalized Tikhonov regularization

For x and the data error, one can apply a transformation of the variables to reduce to
the case above. Equivalently, one can seek an x to minimize

‖Ax− b‖2
P + α2‖x− x0‖2

Q (2.27)
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where we have used ‖x‖P to represent for the weighted norm xT Px.

This can be solved explicitly using the formula

x0 + (AT PA + α2Q)−1AT P (b−Ax0).

See Ulbrich [48] for more details.

2.5.3 Total Variation regularization

Edge-preserving properties of a total variation regularization described by Strong and
Chan [49]. The regularization term added to the original functional in this case is

RTV [f ] =
∫
|∇f(x)|dx. (2.28)

This approach serves quite well for noise removal problems and restoring images with
larger-scaled features.

2.5.4 Variance uniformization

Cohen-Bacrie et. al. [50] suggests that the amount of regularization should vary spa-
tially. It was found that the information is richer in peripheral region than in central
region, since transmitters and receivers are not in the center. Since the Tikhonov ap-
proach applies a constant amount of regularization over the domain, they proposed a
modification such that the regularization level varied spatially. Instead of the Tikhonov
regularization term λxT x they derived a new regularization matrix R for the term xT Rx,
where R is a positive semidefinite matrix. R was derived to fulfill variance uniformiza-
tion constraint: more regularization applied to the central regions then to the peripheral
regions. Two regularization parameters were introduced to determine R. One was the
truncation degree of singular value decomposition and another was the level of variance.
Both of these parameters were determined automatically by ordinary and generalized
cross-validations from measured data only.

Presented results shows that the method performs better than Tikhonov regularization
for Electrical Impedance Tomography.

2.5.5 Nonlinear regularization

This type of regularization is described by Roths et. al. [51]. Tikhonov regularization
can be represented as

RTIK [f ] =
∫

IS

(Lf(s))2ds, (2.29)
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where L is linear operator. L is usually chosen as identity (f limited) or second derivative
(f smooth), i.e. L = 1 or L = ∂2

s . They propose to replace this regularization term with
the less restrictive

R[f ] =
∫

IS

ds(O[f ](s))2, (2.30)

with O now being more general, in particular nonlinear operator whose variational
derivative δO/δf with respect to f exists.

As example they propose edge-preserving (EPR) regularization represented as the term

REPR
α [f ] =

∫
IS

ds
(f ′′(s))2√

1 + (αf ′′(s))2
. (2.31)

A self consistent method is used to determine the regularization parameter. This type
of regularization is implemented as publicly available library [51].

2.5.6 Edge-Preserving regularization

Edge-Preserving regularization has been used in many papers (Casanova et. al. [52],
Yoshida et. al. [53], Lobel et. al.[54, 55, 56], Charbonnier et. al. [57, 58, 59]). This type
of regularization has been chosen for more detailed study since it has a strong theoretical
foundation with more flexibility than other methods, and numerous applications tested
that it works [52, 53], as well as some algorithms (e.g. half-quadratic regularization) for
efficient solving of minimization problem. Regularization is added by replacement of the
original functional with a new one:

F1(ε, σ) = F (ε, σ) + FR(ε, σ). (2.32)

The regularization term is defined as

FR(ε, σ) = FRε(ε) + FRσ(σ), (2.33)

FRε(ε) = λε

∫
Ω

ϕ(∇ε)dS,

FRσ(σ) = λσ

∫
Ω

ϕ(∇σ)dS.

Here ϕ(t) is regularizing function with the following requirements [56]: the homogeneous
areas with the same permittivity are isotropically smoothed, while edges are preserved
(i.e. smoothing of an edge is performed only in its tangential direction). Standard
Tikhonov regularization (ϕ(t) = t2) and total variations regularization (ϕ(t) = t) do not
satisfy this condition. We can also see this regularization as a kind of generalization of
other regularization methods with the possibility to imitate them.
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To be able to find the minimum of the modified functional in equation (2.32) with
gradient-based methods (e.g. steepest descent or conjugate gradient method) we would
like to have an analytical expression of its gradient. We already have analytical solution
for the original problem (Gustafsson [60]), so we have to derive only expression for the
regularization term. Following Yoshida et. al. [53], we can find the new gradients by
means of a Fréchet differentiation. Let us consider an infinitesimal variation δε of the
permittivity. Then we obtain

FRε(ε + δε)− FRε(ε) = δFRε, (2.34)

FRε(ε + δε)− FRε(ε) = λε

∫
Ω

ϕ(∇ε +∇δε)− ϕ(∇ε)dS. (2.35)

From
ϕ(∇(ε + δε))− ϕ(∇ε) = ϕ′(∇ε)∇(δε) + o(δε)

it is found that
δFRεδε = λε

∫
Ω

ϕ′(∇ε)∇(δε)dS. (2.36)

The right-hand side of equation (2.36) is integrated by parts∫
Ω

ϕ′(∇ε)∇(δε)dS =
∫

Γ
ϕ′(∇ε)δεdl −

∫
Ω
∇ϕ′(∇ε)δεdS. (2.37)

Considering δε = 0 on the boundary Γ of area Ω, variation δFRε will be

δFRε = −λε

∫
Ω
∇ϕ′(∇ε)δεdS =< gRε, δε >, (2.38)

where the inner product <,> is defined as

< a(x), b(x) >=
∫ ∫

S
a(x)b(x)dS (2.39)

Then after an analog calculation for the conductivity variable

δFR(ε, σ) =< gRε, δε > + < gRσ, δσ >, (2.40)

gRε = −λε∇ϕ′(∇ε),

gRσ = −λσ∇ϕ′(∇σ).

This is the only change that should be introduced to original algorithm to replace
Tikhonov regularization with edge-preserving regularization. To get back original Tikhonov
regularization term we can take ϕ(t) = t2 with ϕ′(t) = 2t to get

gRε = −λε∇(2∇ε) = −2λε∇2ε, (2.41)
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which is exactly the term presented in [16].

The next important step is to chose a function ϕ. By Charbonnier et. al. [59] properties
of such a function were presented. Table 2.1 contains examples of such functions, which
are also shown in the Figure 2.2.

Ref. ϕ(t) ϕ′(t)
ϕGM [61] t2

1+t2
2t

(1+t2)2

ϕHL [62] log(1 + t2) 2t
1+t2

ϕHS [58] 2
√

1 + t2 − 2 2t√
1+t2

Tikhonov Reg. t2 2t

Table 2.1: Edge-preserving potential functions
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Figure 2.2: Potential functions

For this report ϕGM was chosen for comparison to Tikhonov regularization. It is possible
to pick other functions, or the modified for better fine-tuning (Yoshida et. al. [53])
function like:

ϕ(t) = ϕ(t, ξ) =
(t/ξ)2

1 + (t/ξ)2
,

with scaling parameter ξ and derivative

ϕ′(t, ξ) =
2t/ξ2

(1 + (t/ξ)2)2
.

22



2 Model

However this brings one extra parameter ξ to determine, thus it is not a good solution
from computational point of view since without automated procedure for the parameter
determination it is done by time consuming test reconstructions for each parameter
value.

2.5.7 New specialized regularization

The type of regularization described in the following can be seen as one possible spe-
cialization of a generalized regularization specifically for reconstruction of the tumor in
the healthy tissue. But as a start let’s look at the edge-preserving regularization again.
During the studies in this work the potential function ϕGM (t) = t2

1+t2
was used. But

what is dimension of this function? And how much penalization should be applied to the
original function? This questions should be answered in order to use the regularization.
Looking for regularization parameter in range from minus infinity to plus infinity is not
a good choice. Let us recall our new regularized minimization functional:

F (ε, σ) =
∫ T

0

M∑
m=

N∑
n=1

(|Em(ε, σ,Rn, t)−Emeas
m (Rn, t)|2)dt+

+ λε

∫
Ω

ϕ(∇ε)dS + λσ

∫
Ω

ϕ(∇σ)dS

In this functional electric field vector E is measured in volts per meter, and it should be
related by the coefficients λ and the potential function ϕ(t) to the spatial derivatives ∇ε
of the permittivity and ∇σ of the conductivity: permittivity ε measured in Farads per
meter, and electric conductivity σ measured in Siemens per meter. With the different
dimensions of the different terms we should find how much regularization should be
applied for the optimal performance. If we apply too much, then the minimization
will work only to minimize the regularization term, but will not ensure that simulated
solution is in accordance with the measurements. On the other hand, if the regularization
terms are too small, then noise will affect the solution too much, since some values that
are not a correct solution will give a field pattern after simulation with a good agreement
with the measurements. To prevent it we should penalize high “jumps” in the solution.

Another consideration is that we want to recognize objects that are very different from
the background properties. We want to preserve this transition from the background to
the object in one or two grid cell steps, but we want to penalize small noise variations
inside the object and in the background area. Furthermore, we also want to penalize
very big peaks that appear due to the fact that the problem is ill-posed. This could,
for example, be done by introduction of a cubically shaped function (see Figure 2.3).
There should be no penalization for non-existing gradients (ϕ(0) = 0). Then penalization
function should increase with first peak corresponding to small noise we want to suppress.
Then penalization function should decrease with a minimum that corresponds to the
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Figure 2.3: Symmetrical Potential function with a minimum

expected transition from the background to the object. Gradients that are bigger than
the expected contrast should be penalized. Here arises another parameter to determine:
how much should we penalize the small noise?

If we will take our potential function as polynomial, then we can summarize conditions
as following:


ϕ(0) = 0

ϕ′(texpected contrast) = 0 (min)
ϕ′(tsmall noise) = 0 (max)

Potential function should be symmetric, so we should use polynomial function of higher
order to achieve that, or just take absolute value of t before applying function to it. This
type of potential function was not investigated in this thesis, but only the suggestion is
that it could work. It can be investigated later, especially having some procedure for
automated determination of multiple regularization parameters.

2.5.8 Regularization parameter

Let us say we want 50% of minimization functional to be determined by original misfit
functional and other 50% by regularization terms. The misfit functional consists of
N ∗M ∗ T residuals between simulated and measured electric field in V/m, where M is
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number of transmitters, N is number of receivers and T is number of discrete time steps
of one simulation were taken. We should relate it to the potential function of spatial
derivative values under investigation. The derivatives are measured in F/m per grid step
and S/m per grid step. Determination of this regularization parameter is a fairly difficult
problem and the usual solution is to try several different parameters to see which works
better. The considerations above gives only rough ideas of what to expect to work well.

There are automated methods to determine regularization parameter, e.g. the cross-
validation technique (Wahba et. al. [63], [64], Hansen [65]). Generalized Cross-Validation
is based on the philosophy that if an arbitrary measurement on the receiver is left out,
then the corresponding regularized solution should predict this observation well. De-
tailed study of this technique is outside of the scope of this work.
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3 Simulations

During the simulations the main point was to investigate how Tikhonov and Edge-
Preserving regularizations help to reconstruct the object in the presence of noise in
the measurements. For the simulations a simple object that is located in the center of
the reconstruction domain was chosen (Figure 3.1). Then a frequency content of the
illumination pulse was found to resolve the object well. This frequency depends on the
size of the object and on the permittivity of the background where the wave propagates.
Different amounts of noise were added to the signal to investigate how algorithm will
reconstruct the noisy data for different values of the regularization parameters λε and
λσ.

3.1 Simulation setup

For the simulation special parameters have to be carefully chosen. Most of them are
related and dependent on each other. For example the time step for the FDTD simulation
is dependent on the spatial grid size. The duration of the simulation is dependent on
the physical size of the simulation area and on the frequency width of the emitted pulse.
The pulse width depends on the central frequency, which in turn should be chosen in
relation to the object size and permittivity of the background material.

The physical size of the simulation domain is determined by the experimental setup.
The setup used is a uniform background with a small object in the middle. Transmitter-
receiver antennas are evenly distributed around the object on a circle. Simulation area
should be bigger than the antennas. The simulations are conducted in an open space,
corresponding to an infinite simulation domain. To model this infinity, absorbing bound-
ary conditions (Mur [66]) are used.

The domain is covered by a finite grid. The number of points on the grid is determined
by the required accuracy and computational time: the finer the grid (smaller cells) the
more accurate the simulation and the more time the simulation will require. More cells
for the inverse problem will give extra variables to reconstruct and will make the inverse
problem more unstable. Regularization will make solution stable and will give possibility
to use a finer grid, but still will cause extra computational efforts.

Knowing the grid step, we can determine the time step using equation (2.5).

To determine the simulation time it is necessary to consider the time required for the
wave to be emitted, then travel to the most distant edge and then reach the most distant
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(a) Relative permittivity (b) Conductiity

(c) Relative permittivity (d) Conductivity

Figure 3.1: Object for simulations

receiver. The duration of the pulse emission depends on the frequency width of the pulse,
see Figure 3.2.

Fhager et. al. [67] showed that the wider frequency width benefits reconstruction. The
frequency width is limited by the central frequency: the width can not be more than
central frequency, otherwise the width of the pulse will spread to negative frequency,
which is not possible (see Figure 3.2). Based on the experience, the central frequency
and corresponding wavelength should be in accordance with the size of the object we
want to image:

λ =
c

√
εrf

.

where λ is the wavelength in the media, c = 299792458 m/s is the speed of light and f
is the frequency in Hz. For the frequency 3 GHz and background relative permittivity
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Figure 3.2: Gauss pulse in the frequency domain

5 that was used during the simulations, we will get wavelength λ ∼ 44 mm, and this
is roughly the size of the object that can be imaged. If the frequency is too high, the
reconstruction will be too noisy and unstable, and if the frequency is too low, the recon-
struction will be oversmoothed. The best approach for imaging objects with different
sizes would be to use different frequencies, lower frequency components to reconstruct
general features, and then higher to reconstruct finer features.

Another frequency issue is connected with the complex permittivity, equation (2.6).
When the frequency is increasing, the imaginary part of the complex permittivity will
be very small compared to the real part. In this case it will not be possible to reconstruct
the conductivity. On the other hand, if frequency is too low, then we will be able to
reconstruct only conductivity but not permittivity. Since we are using pulse with a range
of frequencies, central frequency should be related to conductivity and permittivity of
the media under investigation. Depending on media properties booth real and imaginary
part of (2.6) should be of the same order.

As already mentioned, central frequency should be chosen in relation to the size of
the object, its conductivity and its permittivity. In practice it could be impossible to
implement, for example when the size of the object requires higher frequency and its
permittivity and conductivity requires lower frequency to reconstruct conductivity.

Taking all this into consideration, values used in the simulation in this work are sum-
marized in the Table 3.1.

3.1.1 Regularization parameter

It is possible to make an attempt for an estimation of the regularization parameters. In
this work background values εbg = 5 for the relative permittivity and σbg = 0.06 S/m
for the conductivity were used. Object had εobj = 20 and σobj = 0.24 S/m. Then spatial
derivative on the edge of the object will be ∇ε = 20−5

∆ , where ∆ is spatial space of
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Variable Value
Domain size ~20 cm

Grid size 2 mm
Number of grid cells in the

computational domain 128 x 128 cells

Simulation time 12 ns
Central Frequency 3 GHz
Frequency width 3 GHz

Object shape f(x, y) = cos2( (xc−x)2+(yc−y)2

r2 ) (the
first peak)

Object position (xc, yc) cell (64,64)
Object size (radius) r 4 grid cells = 8 mm
Absorbing layer width 8 grid cells = 16 mm

Table 3.1: Values for simulations

transition (if there is a smooth transition between the background and the object). Let
us take that edge of object is smoothed and occupies ∆ = 4mm, then keeping in mind
our grid cell size ∆x = 2mm (see Table 3.1) we will expect our gradient to be ∇ε = 7
per one grid step. Similar for conductivity we can expect for object ∇σ = 0.09 S/m per
grid step. All gradients smaller and greater than that we should suppress and penalize.

3.2 Error measures

To compare the results from the different simulations with the original object different
approaches can be taken. It is possible to use the relative error for the permittivity as

ζε =

√√√√∑K
i,j=1(ε

reconstructed
i,j − εoriginal

i,j )2∑K
i,j=1(ε

original
i,j − εbackground

i,j )2
(3.1)

The similar measures can be written for the conductivity.

It is possible to specialize this error measure and look preciesly if the values in this error
measure are due to the errors in the object or due to the artifacts.

Relative error for the object can be defined as

ζobject
ε =

√√√√∑
i,j∈Sobj

(εreconstructed
i,j − εoriginal

i,j )2∑
i,j∈Sobj

(εoriginal
i,j − εbackground)2

, (3.2)

where Sobj is area containing the object. For the artifacts estimation ζartifacts
ε the

artifacts area Sartifacts = S\Sobj is used, where S is the total area for the error estimation
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and Kartifacts is a total number of grid cells in the Sartifacts:

ζartifacts
ε =

√√√√∑
i,j∈Snoise

(εreconstructed
i,j − εoriginal

i,j )2

Kartifacts
. (3.3)

The third estimation (the contrast) can be defined as

ζcontrast
ε =

maxi,j∈Sobj
(εreconstructed

i,j )−maxi,j∈Snoise(ε
reconstructed
i,j )

maxi,j∈Sobj
(εoriginal

i,j )−maxi,j∈Snoise(ε
original
i,j )

. (3.4)

The contrast shows any value of the object that is bigger than any artifact around the
object. In such case the contrast is positive. If there is an artifact with value bigger,
than all reconstructed values of the object, then contrast is negative. Negative contast
will indicate if reconstruction gives object in the area, which originally does not contain
the object.

Relative maximal error can be used to indicate how bad is the worst point of the recon-
structed image and is defined as

ζmaxerr
ε =

maxi,j∈S(εreconstr
i,j − εoriginal

i,j )

maxi,j∈Sεoriginal
i,j −mini,j∈Sεoriginal

i,j

(3.5)

Another error measure can be defined through finding the original object for the recon-
structed data. Original object is represented by the function

g[xc, yc, r, h](x, y) = h · cos2(
(x− xc)2 + (y − yc)2

r2
) (3.6)

where xc and yc are the coordinates of the center of the object, r is the radius of the
object, h is the maximum value of the object (maximum conductivity or maximum
relative permittivity), see Table 3.1. The values of xc, yc, r, h for the conductivity and
permittivity are obtained from a minimization of the following functions:

Fσfit(xc, yc, r, h) =
∑
x,y

(σx,y − g[xc, yc, r, h](x, y))2 (3.7)

Fεfit(xc, yc, r, h) =
∑
x,y

(εx,y − g[xc, yc, r, h](x, y))2 (3.8)

For both permittivity and conductivity, the values of the object parameters can be found
as arguments that deliver minimum to the functions (3.7) and (3.8):

{xfit
x , yfit

c , rfit, hfit} = arg min
xc,yc,r,h

Ffit(xc, yc, r, h) (3.9)
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Original object, reconstructed values and fitted object are shown on Figure 3.3.
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Figure 3.3: Original object, reconstructed values and fitted object

The “Radius” error measure can be defined as

ζrad = rfit (3.10)

Maxima value of fitted object forms another error measure:

ζforeground = hfit (3.11)

In this case we can determine where the object is located. A relative displacement error
measure can be defined as

ζdisplacement =

√
(xfitted

c − xorig
c )2 + (yfitted

c − yorig
c )2

rorig
. (3.12)

The radius of the fitted object is a good estimation of how much the solution has been
smoothed. Edge-preserving regularization should keep the radius as close as possible to
the original, while Tikhonov regularization will introduce smoothness which will result
in a bigger radius.

3.3 Simulation results

Simulations were conducted to check if the reconstructions are robust against the noise,
and how the regularization can help archiving stability of the solution in the presence of
noise. Tikhonov and Edge-preserving regularizations are compared.

As shown in the results, for chosen frequencies, object and background values, recon-
struction of the permittivity is better then the reconstruction of the conductivity due to
relation between the frequency and the complex permittivity described in Section 2.1.3.
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3.3.1 Iterative reconstruction

To illustrate how reconstruction is improved from one iteration to another here is a
plot of a typical example. The minimization functional decreases fast in the beginning,
reaching some stable state after sufficient amount of iterations, and then only small
refinements of the solution occurs. This is illustrated in the Figure 3.4. To make the
visualization easier, crossections are given.

Figure 3.4: Example reconstruction
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3.3.2 Sample reconstructions with and without noise

Since measured data always contain more or less noise, it is necessary to be able to work
with noise also in the simulations. For the simulated data noise was added with Signal
to Noise Ration (SNR) defined as

SNR =

∫ T
0 E2dt∫ T
0 N2dt

Here N is the noise signal and E is the field sampled at the receiver points, T is the
total simulation time.

A few results are presented to illustrate how the reconstruction works with and without
the noise in the measurement data. Figure 3.5 shows a reconstruction without noise.
The permittivity reconstruction is almost perfect and conductivity reconstruction is also
very good with only some small artifacts. In the presence of noise the reconstruction
does not succeed as good. The reconstruction result with SNR=5 is presented in Figure
3.6. It is possible to recognize the object, however it’s values are too low, and several
artifacts can be seen, especially for the conductivity. A reconstruction from very noisy
data (SNR=0.1) presented in Figure 3.7. No object is reconstructed, only artifacts are
seen in the reconstruction.

(a) Relative permittivity (b) Conductivity

Figure 3.5: Reconstruction without noise
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(a) Relative permittivity (b) Conductivity

Figure 3.6: Reconstruction from data with moderate amount of noise

(a) Relative permittivity (b) Conductivity

Figure 3.7: Reconstruction from data with big amount of noise
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3.3.3 Noise level and regularization

This group of experiments was made to determine how robust the reconstruction is
to noise and how regularization can help to achieve stability of the solution and to
improve the reconstruction. In this investigation only one reconstruction was done for
each signal-to-noise ratio and regularization parameter. Since we add random noise,
one reconstruction can’t give us confident result, but can give some estimation for later
investigations (see next section). Tikhonov and Edge preserving regularization with
potential function ϕGM from Table 2.1 were used.
The results are plotted in three dimensions, that is the error measure is plotted as
a function of the SNR and the regularization parameter. To plot 3D points in two
dimensions it was chosen to linearly interpolate surface between points and draw surface
colored according to the z-coordinate (error measure). Color bars are shown next to the
plot itself. Actual points are marked with black. The color between these points is simply
a result of an interpolation, no reconstructions were conducted there. Interpretation
should be done carefully since one point can add a lot of “color” to the area around,
and since there was only one reconstruction for every point, random values can heavily
affect the final result.
The left column shows results for the relative permittivity reconstruction, and the right
column for the conductivity reconstruction. The first line corresponds to reconstructions
with Tikhonov regularization, and the second line to reconstruction with Edge-preserving
regularization. On each plot the x-axis correspond to values of regularization parameter
that is specific for the regularization scheme. This axis has a logarithmic scale. To
the left the regularization parameter is smaller, that is it is closer to zero, and zero
corresponds to no regularization. To the right regularization parameter is bigger, which
refers to bigger amount of regularization applied during the reconstruction. Usually there
exist optimal regularization parameter that gives the best reconstruction. With too big
amount of regularization reconstruction is oversmoothed and it can lead to simply “flat”
reconstruction since the object will be smoothed almost to the background level.
The Y-axis correspond to the noise level, SNR. Reconstructions are better for bigger
SNR. For low SNR reconstruction usually fails, which will be shown in the error measures.
Top corresponds to SNR = 100 and bottom corresponds to SNR = 0.01.
Figure 3.8 shows “Contrast” error measure defined in equation (3.4). A positive contrast
says that at least one object value are bigger than the highest artifacts value, which
means that reconstruction succeed. Negative contrast says that the level of artifacts are
bigger than that of reconstructed object. Yellow and red color correspond to positive
contrast, blue correspond to negative contrast. The general pattern is that for a low
SNR the contrast is negative and for high SNR the contrast is positive. the borderline
is around SNR = 1. We can see that with the Tikhonov regularization we can get a
positive contrast for the conductivity for SNR = 0.5 with proper regularization while
without regularization (or too small regularization) contrast is negative.
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Figure 3.8: Contrast
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Figure 3.9 shows the relative error, equation (3.1). The blue color corresponds to a
good reconstruction with small relative error. Big relative error is marked with yellow
and red and indicates a bad reconstruction. It is not a precise measure since it gives
us good value even if reconstruction failed due to too big regularization (nothing is
reconstructed except almost perfectly flat background). It can be clearly seen in the
conductivity reconstruction. For a high SNR the relative error is usually small (blue)
and for low SNR the reconstruction is bad (red).

Figure 3.9: Relative error
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To find out if the relative error is caused by a poorly reconstructed object or by high pres-
ence of the artifacts two measures Equations (3.2) and (3.3) are plotted on Figures 3.10
and 3.11. The relative error for the object shows that for a big regularization parameter
(∼ 10−11) the reconstruction is bad (red color) and the object is not reconstructed. The
relative error for the artifacts with big regularization parameters in contrast are very
small, that means no artifacts present in the reconstruction for the big regularization
parameters.

Figure 3.10: Relative error for object
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Figure 3.11: Relative error for artifacts
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The relative maximal error for the whole reconstruction, as defined in equation (3.5), is
shown in the Figure 3.12. Maximal error is smaller for permittivity reconstruction than
for conductivity reconstruction. For big SNR the relative maximal error is small (blue).
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Figure 3.12: Maximal error
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Only for those reconstructions where we got positive contrast and satisfactory all other
error measures it is sensible to see what we have reconstructed. To see that, we try
to fit object of known shape given in equation (3.6) (exactly the same as the original
object, Table (3.1)) varying object’s radius, height (foreground values), and position of
it’s center. This is done by least-squares minimization of the functions in equations
(3.7) and (3.8). Sometime fitting fails due to the local minimas in the least-squares
function or due to the big amount of artifacts in the reconstruction or due to the failed
reconstruction (no object, only perfect background). In such cases fitted radius is very
big or very small. Graphs should be treated carefully since one failed curve-fitting affects
(colors) quite big area on the interpolated graph.

Figure 3.13 shows position where curve-fitting algorithm determines the object as defined
in equation (3.12). When it is zero (blue color), position determined perfectly. As we
can see, for high SNR the position is determined correctly all the time.
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Figure 3.13: Displacement of the fitted object relative to the radius

Figure 3.14 shows foreground error measure value, the “height” of the fitted object,
defined in the Equation (3.11). Green color corresponds to the good reconstruction.
Blue indicates that reconstructed value is lower than the original and red indicates that
the reconstructed value is bigger than the original. As we can see, for conductivity
reconstructed values are sometimes bigger than original on good SNR. For relative per-
mittivity values always smaller than original. For big regularization parameters for both
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Tikhonov and Edge-preserving regularization “height” of fitted object is very small, it
is very close to the background. The object is oversmoothed and is not reconstructed in
such cases. This one more time shows the limit for the maximal regularization parameter
value.
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Figure 3.14: Fitted height value relative to original

Very important error measure for the regularizations comparison is the radius of fitted
object. All other error measures are supplementary to ensure that the reconstruction
succeeded. This measure shows if Edge-preserving regularization scheme performs better
than previous Tikhonov regularization. Tikhonov regularization smoothes the object too
much, that is why the radius is increased. The aim of the edge-preserving regularization
is to achieve stability of the solution (we ensure that stability is achieved by previous error
measures), but introduce less smoothness, thus keeping radius as close to the original as
possible.

In the Figure 3.15 error measure for the fitted radius defined in the equation (3.10) is
presented. The original radius rorig = 4 cells, and for permittivity reconstruction in
most cases it reconstructed correctly, which is shown with cyan color (see colormap).
Red color says that reconstructed radius is bigger than original, dark blue - that fitted
is smaller than original. For conductivity reconstruction fitted radius is almost always
bigger than the original.
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Figure 3.15: Fitted radius (original radius is 4)

Figure 3.15 shows that the radius of fitted object is in general smaller for edge-preserving
regularization except for the one unusual point (relative permittivity reconstruction for
the edge-preserving regularization with SNR 1 and regularization parameter 10−16). All
other error measures gives normal values for that point, that is why it is suspected that
curve-fitting simply failed at this point due to the local minimum during the least squares
minimization. To illustrate this particular case Figure 3.16 shows reconstructed relative
permittivity and its central crossection. It is clearly seen that there is an object in the
center and it is recognizable.

(a) Relative permittivity reconstruc-
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(b) Central cross-section

Figure 3.16: Relative permittivity reconstruction where curve-fitting failed
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3.3.4 Statistics

We clearly can see that for SNR values higher than 10 the reconstruction always succeeds
and there is no need for regularization. For SNR < 1 the reconstruction usually fails,
it is not possible to reconstruct anything no matter if there is regularization or not.
But for moderate SNR values we can benefit from regularization. With properly chosen
regularization parameter we can get satisfactory reconstructions with regularization for
cases where reconstructions without regularization fails or perform badly. Therefore a
more detailed investigations with a smaller range of parameters has been done. Several
SNR (10, 5, 2, 1, 0.5) and regularization parameters (1e-11, 1e-12, 1e-13, 1e-14, 1e-15,
1e-17) was used in a parameter studies. To enable a statistical analysis 4 simulations for
each pair of parameters was made. For every pair the error measures defined in Section
3.2 was obtained. Then the mean value and standard deviation for each error measure
was calculated.

Mean value is defined as

< x >=
1
N

N∑
i=1

xi

Standard deviation is defined as

σ2 ∼ 1
N − 1

N∑
i=1

(xi− < x >)2

From this statistical analysis we can make conclusions about the reconstruction quality
and can estimate on average how good reconstruction we can expect for a particular
SNR and regularization parameter.

In the following figures error measures are shown and their standard deviations. Each
plot is made for a particular SNR that is written on the graph. The X-axis correspond
to log10 of the regularization parameter. The values on the left are closer to zero and
indicate a lower amount of regularization. Each graph contains values for the Tikhonov
and for the Edge-preserving regularization. For higher SNR values the error measures
indicate a better reconstructions.

Figure 3.17 shows the average contrast deduced from the 4 reconstructions for each set
of parameters and it’s standard deviation. Ideally contrast should be ζcontrast = 1, see
definition in Equation (3.4). For high SNR values the contrast is positive, whereas for
small SNR values it is negative. Figure 3.17 shows that there are satisfactory recon-
structions where booth conductivity and relative permittivity are reconstructed with a
positive contrast for SNR ≥ 2.

As a result, for SNR = 2 a positive contrast is obtained in the reconstruction with
proper amount of regularization, while reconstructions without regularization or too
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Figure 3.17: Contrast

weak regularization produce result with a negative contrast, that is artifacts are bigger
than the object. For a low SNR regularization do not help since there is not enough
data for a reconstruction. Tikhonov and Edge-Preserving regularizations achieve positive
contrast on the same SNR range, when SNR ≥ 2.
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Figure 3.18 shows the relative error of the reconstructed image defined in Equation (3.1).
For perfect reconstructions the relative error is 0. Figure shows that measure follows
general pattern: error is smaller for bigger SNR.
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Figure 3.18: Relative error

Figure 3.19 shows the relative error for the object alone, without artifacts, defined in
Equation (3.2). With a high regularization parameter this error measure clearly shows
that the error in the object reconstruction is close to 1. This is due to an oversmoothed
reconstruction where the object is not reconstructed at all.

Figure 3.20 shows the relative error for the artifacts defined in Equation (3.3). This mea-
sure shows that error due to artifacts is very small when reconstruction is oversmoothed.
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Figure 3.19: Relative error for object
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Figure 3.20: Relative error for artifacts
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Figure 3.21 shows the relative misplacement of the reconstructed object defined in Equa-
tion (3.12). Ideally there should be no displacement. The line indicating displacement
by the value of one original radius is shown to help visualize the displacement. For
high SNR values the misplacement is small, less than one original radius. Starting from
SNR = 1 misplacement become more, especially for permittivity reconstruction. Object
displacement is smaller for the conductivity reconstruction due to chosen frequency.

Figure 3.22 shows “height” of the fitted object (maximum permittivity and conductivity
value of the object as opposite to the background) as defined in Equation (3.11). For
perfect reconstruction this value should be the same as original, 20 for relative permittiv-
ity and 0.24 Sm for conductivity (see Table (3.1)). For high regularization parameters it
is close to the background value (5 for permittivity and 0.06 Sm for conductivity), which
indicates that there was no object reconstructed. For smaller regularization parameters
we can see bigger deviations in values due to the solution becoming unstable.

Figure 3.23 shows the radius of the object that could be best-fitted into reconstructed
values as defined in Equation (3.10). Original radius for simulations is 4 grid cells,
that should be for the perfect reconstruction. For Edge-preserving regularization, as
expected, the radius is smaller. However, Tikhonov regularization gives satisfactory
radius with small regularization parameters. We could use that, but with such small
regularization parameters the relative error of the reconstruction increases. We should
increase the regularization parameter to archive stability, and with increased parameters
edge-preserving regularization gives a better result, that is radius is still small as for low
regularization, but the stability is better as for a higher regularization.

With big regularization parameter (close to 10−11) reconstructions are oversmoothed,
and it it the reason why curve-fitting fails in that case. When curve-fitting failed radius
and position of fitted object usually are too big, 5 times bigger than original.
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Figure 3.21: Relative misplacement of fitted object
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Figure 3.22: Height (foreground value) of fitted object
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Figure 3.23: Fitted Radius (original 4)
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4 Conclusions

Microwave tomography has a good potential to be used for the breast cancer imag-
ing. There is a well-established FDTD method for simulation of the wave propagation,
mature optimization methods. However, microwave tomography is an ill-posed inverse
problem. This work provided more details about the regularization in order to cure
the ill-posed inverse problem of tomography. Two regularization methods have been
compared: Tikhonov regularization and Edge-preserving regularization.

It was found that the edge-preserving regularization does not perform very different from
the Tikhonov regularization in conjunction with our particular reconstruction algorithm.
It helps in cases with moderate amount of noise and gives wider range of regularization
parameters without oversmoothing the solution compared to the Tikhonov regulariza-
tion, but to get better results it might be necessary to use some other, more complex,
potential functions. Such a function was described as a specialization of the generalized
regularization. Important feature of edge-preserving regularization is that it gives edges
of reconstructed object sharper comparing to Tikhonov regularization without introduc-
ing extra computational efforts. Edge-preserving regularization can not extend the SNR
range where we can get satisfactory reconstructions. If SNR is an issue, improvement
can be achieved by averaging among several measurements.

The more apriori information about the object we put into the regularization, the better
the result. A new regularization will require more variables to determine. Now we
search almost randomly for a good regularization parameter in a very wide range of
values. If there will be more variables, it will take much more time to get a final
reconstruction. Using automated methods for determination of regularization parameter,
e.g. Generalized Cross-Validation, we can improve situation. With the edge-preserving
regularization we get almost the same results.

From the algorithmic point of view future work is to use 3D FDTD method, Debye
model of permittivity, implement Quasi-Newton optimization and automated procedure
for determination of regularization parameter. In general, microwave tomography for
breast cancer imaging is very promising method, but requires more investigations.
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