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Abstract
Web content optimization involves deciding what content to put on a web page, its
layout and design. All of which involve selecting few options among many. With
the advent of personalization, many companies seek to make this decision even on a
per-user basis in order to improve customer experience and satisfaction. Contextual
multi-armed bandit provides several strategies to address this online decision-making
problem at a lower experimental cost than traditional A/B testing.

In this study, we compare three common Contextual Bandit strategies that exist
in literature namely E-greedy, LinUCB and Thompson Sampling, and apply two of
them, E-greedy and LinUCB, to three datasets. In doing so we offer further empiri-
cal evidence on the performance of these strategies and insights for practitioners on
what strategy might work for them.

Our results suggest that both approaches, E-Greedy and LinUCB are effective in
improving click-through rate compared to the random approach. The more so-
phisticated approach has better results with large datasets, and a quite unstable
performance when the number of datapoints is small. On the other hand, we find
that the more sophisticated approach is more sensitive to parameter tuning and can
have significantly worse outcome when parameters are incorrect. Our study also
finds that LinUCB can have higher data requirements when performing evaluation
offline. Collectively the varying performance of these approaches across dataset sig-
nal the need for better tools and procedures to help practitioners decide on the
appropriate approach.

Keywords: machine learning, multi-armed bandit, offline evaluation, contextual ban-
dit.
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1
Introduction

This chapter introduces a common online content optimization problem and shows
how the multi-armed bandit problem can be used to model it. The chapter first
presents some motivating background knowledge along with a few real world exam-
ples. It continues by discussing the critical challenges in Section 1.2, followed by
the goal of the thesis in Section 1.3. The goal is presented from the practitioners’
perspective using concrete examples and finally the chapter outlines the scope of
the project in Section 1.4.

1.1 Background
Deciding on an optimal selection of content to show is a common optimization
problem faced by companies that serve online content. An online news company, for
example, may have forty news articles they could show at any given time but only
a handful of slots available. Deciding which articles to show, as different users visit
their site, is an important decision because it not only affects the user’s experience
but it also affects how quickly the company receives feedback on the articles. The
crucial piece of the problem is that even after carefully screening and analysing new
articles, the only way to know which articles are preferred is to try them on users.
But since the number of available slots is limited, it is desirable to be very strategic
about which articles to try and how often to try them.
This content optimization problem is applicable to many areas including advertising,
recommender systems, e-commerce systems and others. The optimization parame-
ters can also extend to how the content is ordered because different layout options
may affect a user’s experience on a site. The key unifying feature is having par-
tial information because feedback is only received for what is shown. Consequently,
this online content optimization problem belongs to a known set of problems called
online partial information decision-making problems. Problems in this set require
balancing exploitation to show the best content and exploration to gain insights into
content performance. The multi-armed bandit (MAB) problem offers a good way
to model and reason about this tradeoff.
Formally when modelling this problem a desirable user’s response to what is being
shown is called a reward. Rewards can be used as a performance measure when
trying to gauge how well an optimization technique is doing. For example, we can
compare technique A and B by looking at their total rewards after a certain time
frame. In this case, the problem is set up to maximize reward. Similarly, if an opti-
mal solution is known, the performance can be measured by comparing the difference
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1. Introduction

in rewards between solution A and a known optimal solution B. The difference here
is called regret and the problem is set up to minimize regret. Another way to think
of regret is that it measures the costs associated with either exploring content that
turns out to be low performing, or not exploring enough and consequently missing
out on content that would have been high performing.
In the multi-armed bandit problem [23] there is one player. The player is faced
with many ‘bandit’ arms and has to decide which arm to pull in order to receive a
reward.The goal of the player is to maximize reward. In the beginning, the player
has no knowledge of what reward to expect from the arms. They can only observe
rewards once they select an arm to pull. In the online content case, the arms
represent the views. Selecting an arm represents selecting which content(s) to show
to a user. A user’s response to the content can be used to model the reward. The
problem can also model incorporation of contextual data about the contents, users
or the environment. This flavour of the problem is called contextual multi-armed
bandit.
Since this problem is interactive in nature, evaluating solutions has its own chal-
lenges. Companies that wish to use multi-armed bandit algorithms need a way to
evaluate and test their solutions before they can be exposed to real users. This
evaluation is often performed on logged data, and when done as such it is called
off-policy evaluation. Algorithms used to decide what the user sees are called poli-
cies. Unfortunately, logged data is often based on a different policy from that under
evaluation resulting in a difference between content recommendation from new pol-
icy versus logged policy. These differences increase as the number of possible arms
increase. In such cases, companies need to employ techniques in inferential statistics
to make a correct estimate of the effect of a new policy.
Off-policy evaluation has several uses including, fine-tuning of algorithm parame-
ters, estimation of algorithm effectiveness and best arm selection policy identifica-
tion. Even though the contextual multi-armed bandit problem is well studied, its
implementation still has several challenges. One of the most recent studies focusing
on these challenges outlines three main areas that need to be addressed namely:
how to best encode feedback, how to best infer knowledge in an off-policy setting,
and what is the best policy for exploration [4]. In addition to utilizing some of the
recommendations suggested in this study, our study provides a tool to help practi-
tioners answer these questions for their own data sets. It also focuses specifically on
the last question (What is the best policy for exploration) to offer further empirical
insight into the trade-offs between different policies.

1.2 Problem
The general problem is finding an optimal selection and layout of content on a
website.The assumption is that the website has K number of top slots to place the
content and M number of options to choose from. The study is conducted at a
digital rights management company A which serves online content. The company
A has multiple product areas where online content needs to be served to multiple
users. The study intends to provide a way to evaluate different policies in order to
inform how to get optimal content and layout for those users. Since the content
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1. Introduction

being served is large and can change frequently, the contextual MAB arms used
can be very large. The intention is to devise a solution that can work well under
these assumptions. The study also aims to find a solution that can generalize well
to different products.
To evaluate the performance of a solution, one anonymized logged data set from the
company A was used and an off-policy evaluation was performed. An artificially
constructed data set and a publicly available referenced dataset were investigated
to further supplement the analysis. The logged data set in question was from a
webpage. The page had positions that could be filled with content a user might be
interested in. The logged data consisted of user interaction events with the page, the
options the user was presented with when the events occurred and their response
to the recommended options. There was a fixed number of slots for the options
and a large choice of values that these slots could occupy. These positions could be
treated as an ordered list with the first position being a higher priority than others.
Optimization implies selecting options that the user visiting the page would want to
use. The data set had a fixed number of contextual information pertaining to the
user and the page they were interacting with.
Available options of content were modelled as the arms. A users response to what is
being shown was used to model reward. Given a new observation of context and user,
each policy produced a ranking of the arms. Depending on the observed response
from the user, each policy updated model parameters used in its ranking. Each
example had its own set of top K rankings it was interested in. Offline evaluation
was used to provide an estimate of expected reward from each policy and therefore
a way to decide which policy would result in a higher expected reward.

1.3 Goal
The primary goal of the thesis is to investigate an optimal way of applying contextual
multi-armed bandit algorithms to optimize some targeted content on a web page. It
seeks to make it easy for practitioners to evaluate existing policy options and choose
a strategy that best fits their need. For someone who wants to apply a bandit
algorithm, the study aims to provide them with a list of the main factors they need
to evaluate/consider and a library that they can use to make these evaluations. The
study seeks to help practitioners answer questions like:

1. How much logged-data do they need to make useful estimates of effectiveness
2. What should the logged data comprise of
3. What policy is the most promising for a specific application
4. How confident can they be with their estimate

Since the list of possible algorithms/policies is large, only three common variations
are compared. The study produces a python library which consists of three policy
implementations for contextual multi-armed bandit and an offline evaluation script.
These policies are then used to produce input for the evaluation script. The evalua-
tion script and policies are separated to allow the possibility of using custom policies
in the future. The evaluation script is used to compute an estimate of algorithm
performance on logged data. The performance of these three algorithms is compared
on a selection of datasets. Each dataset is divided into a training set and validation
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set. The training set is used to finetune parameters and the validation set is used
to assess algorithm performance. Finally, the study compares results for each of the
three datasets, evaluates the tool and suggests parameters that should be explored
when performing an analysis.

1.4 Limitations
The thesis evaluates two different arm selection policies whose efficiencies have been
demonstrated in various fields. These are E-Greedy and contextual UCB. Kuleshov
has shown that e-greedy in practice outperforms other algorithms in most settings
[12]. Contextual UCB [13] has been applied to web page optimization problems and
showed uplifts in conversion rate/click-through rate. The intention of the thesis is to
analyse efficiencies of these arm selection policies on selected datasets and compare
their pros and cons.
In order to compare the performances of the policies, the thesis also aims to provide
a way of evaluating policies offline. Since the focus of the thesis is on different
arm selection policies, only two policy evaluation methods are implemented. The
direct method (DM) is implemented for evaluating the performance of the models
on condition the logged data is uniformly distributed. The inverse propensity score
(IPS) is used when the logged data is selected with another policy. The other offline
evaluation methods such as doubly robust (DR) are left out for future studies.
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2
Theory

The online content optimization problem has been researched extensively in both
industry and education. Those studies have proposed several approaches to match
different problem settings. In this chapter, these approaches are summarized to-
gether with the multi-armed bandit problem. The chapter first motivates where the
bandit approach fits in the context of solutions to online content optimization. It
then provides a detailed description of the multi-armed bandit problem, followed by
three common solutions from literature. To provide further insights on the practical
techniques used when implementing solutions, relevant evaluation techniques and
evaluation metrics are described in Section 2.3 and 2.4.

2.1 Online content optimization

[13] describes personalization as a process of gathering and storing user attributes,
managing and evaluating content based on past and present user behaviour, and,
delivering the best content to the current user being served. The process of per-
sonalization is sought after as a method of improving user satisfaction. The goal
is to tailor content to suit individual user needs [5]. To do so, users and content
are modelled into features and various algorithms are used to match the users with
their desired content. Since the number of users and content can be very large, the
challenge is finding manageable commonalities for transferring knowledge, either
between user features or content features.
Some of the approaches used in personalization include collaborative filtering, content-
based filtering and hybrid approaches. Collaborative filtering [9] works by finding
similarities in user’s past behaviour. A common descriptive example is the phrase
users who bought X also bought Y. [13] argue that this method works well when the
content doesn’t change often and when there is a lot of similarities in user behaviour.
Content-based filtering, on the other hand, focuses on learning content similarities
[16]. In doing so, it helps users find new content that is similar to the content they
were interested in previously. Hybrid approaches combine these two approaches in
some way, for example, offsetting collaborative filtering with content based for the
recommendation of new content that other similar users haven’t tried yet [13].
Unfortunately, these traditional content optimization techniques don’t address two
common scenarios namely, having a significant number of new users and having
content that changes frequently. When a user is new to a system, their preferences
are not known. This situation is called ‘cold start’ [18]. Being able to match
preferences to appropriate content efficiently is crucial when the number of new users
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2. Theory

is high. Similarly, if the content changes frequently over time or if its popularity
changes frequently over time it becomes critical to have a way to efficiently model
its performance before the contents value becomes obsolete. Finding the best way
to match users and content requires some exploration phase. Exploration is not only
expensive but it also comes at the risk of reducing user satisfaction. Multi-armed
bandit algorithms are specifically designed to balance exploration and exploitation
and systematically learn from the exploration in an online fashion.

2.2 Multi-armed bandit problem
The concept of multi-armed bandit problem was first introduced in early 1930s [23]
and 1950s [20]. The problem describes the decision making challenge in choosing
among a set of possible choices with unknown rewards for the purpose of achieving
maximum profit in multiple tries. One classic example of a one-armed bandit prob-
lem that is similar to the multi-armed bandit problem is when a gambler stands in
front of several slot machines and needs to make decisions of which machine to play,
how many times each machine should be played, whether to try a new machine or
choose the machine which has the most reward so far, etc. In this example, the
gambler explores during the time when new machines have been tried and exploits
by choosing the best performed machine. The problem of balancing the exploration
of new knowledge and the exploitation of existing knowledge is also known as the
exploration-exploitation tradeoff in reinforcement learning.
In a multi-armed bandit problem, several arm selection policies have been established
to solve the exploration-exploitation tradeoff. Three of these are presented in the
following sections, namely E-Greedy (2.2.1), UCB (2.2.2) and Thompson sampling
(2.2.3).
There are several variants of the multi-armed bandit problem which are proposed
from empirical studies with the aim of modeling different problem settings in real-
world situations. Contextual bandit describes the multi-armed bandit problem as
its expected payoff of a chosen action is dependent on both the chosen action (arm)
and a context vector. The context vector is represented by an n-dimensional feature
vector which contains additional information of either the chosen action or the user.
The section 2.2.4 presents some contextual bandit studies which have conducted in
the recent years.

2.2.1 E-Greedy
Epsilon-Greedy algorithms are the most common approach for the multi-armed ban-
dit problem. Perhaps this is explained by their simplicity and generalizability to
different scenarios. The key features of an E-Greedy are outlined below:

1. ε percent of the time, select an arm randomly.
2. The rest of the time select the best arm, for example, the arm with the highest

mean reward.
Epsilon can be configured to remain constant or decay over time. It can also be
configured to work in phases, for example, exploration first followed by pure ex-
ploitation phase. If the value of epsilon is configured to remain constant throughout
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the algorithm then only a linear bound on regret can be achieved [12]. An empir-
ical evaluation, however, by [25], found no significant advantage of configuring a
decaying epsilon over having a constant one.
The biggest criticism of E-Greedy algorithms is the wastage of resources. In most
variations exploration is performed at the same rate across all arms. Algorithms
that are designed to improve on E-Greedy seek to be smarter about when to explore
and when to stop. Despite their clear shortcomings, E-Greedy algorithms have
shown surprising success rates in empirical studies when compared to other advanced
strategies [25] and [12].

2.2.2 UCB
UCB stands for upper confidence bound. Different versions of the algorithm exist
and they are considered to be a more advanced exploration technique than e-greedy.
The common strategy for UCB algorithms is selecting an arm with the highest
‘confidence bound’. Different versions differ in how they define this confidence bound.
A common factor is having a bound that increases over time and whose size fluctuates
depending on the performance of the arm. UCB’s popularity can be attributed
to having a provable logarithmic bound on regret [2]. Consequently, it has many
applications including independent arms [6] and continuous arms [22].
Empirical studies, however, report different performance when compared to e-Greedy.
[2] for example, perform synthetic experiments which suggest that while e-Greedy
policies outperform UCB policies in most experimental cases, UCB’S performance
is more consistent across different experimentation parameters. Their experiment
suggests that UCB is more stable to high variance in rewards across different arms.
Its performance does not change when the number of arms increases. On the other
hand, [13] shows higher uplift in click-through rate for news recommendation when
using a tweaked version of UCB as compared to Greedy approaches suggesting that
UCB is better than greedy.
In most flavours of UCB, the level of exploration also takes into account the con-
fidence in the performance of each arm. The simplest variant is called UCB1 [2].
Here the algorithm ensures all the arms are tried at least once. Afterwards, the
algorithm keeps track of the number of times each arm is chosen and it sequentially
selects the arm that maximizes the following formula:

µa,t +
√

2 ln t
na

µa,t is the mean reward of the arm at time t, and na is the number of times that arm
was chosen. Therefore if na is small, the algorithm would favour higher exploration
of this arm, unless the mean reward from this arm relatively low.

2.2.3 Thompson sampling
Thompson sampling is another common arm selection policy. It was first intro-
duced in 1933 on a two-armed bandit problem analysing treatment efforts in clinical
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trials [23]. It has recently become more popular in problems such as advertising
agarwal2014laser, recommender systems [11] and search [10]. This increase in the
algorithm popularity has been attributed to empirical success over UCB demon-
strated in studies such as [6] who have shown lower regret on advertising and news
recommendation data.
The algorithm itself is best described in contrast to the e-greedy algorithm. Initially,
we assume that every arm produces a reward according to some likelihood function
P conditioned on an initially unknown parameter θ, context x, and rewards r. While
e-greedy selects an arm with the maximum expected reward, Thompson sampling
policy randomly samples θ from the posterior distribution and selects the arm with
the highest reward given the sampled θ. General steps for this algorithm from [21]
are outlined below.

For illustration, consider an example from [21]. Figure 1 represents the proba-
bility density functions of 3 actions 1, 2 and 3. Assume that Action 1 and 2 have
been tried 1000 times each, while action 3 is new and has only been tried 10 times
with their success and failure rates as outlined below. If a greedy approach has
a fixed exploration rate, it will explore each arm at the same rate. If the explo-
ration rate is small, it will favour action 1 because the average success rate of arm
2 and 3 are lower. On the other hand, with a beta distribution as the posterior,
Thompson sampling policy will sample from action 1, 2 and 3 with a probability
of 0.82, 0 and 0.18 respectively. These are probabilities that a random estimate
from each action is greater than a random estimate from other actions. In this case,
the rate of exploration not only proportional to expected performance but it is also
targeted toward arms with higher uncertainty and potential to have a higher reward.

Action 1 (succes, failure) = (600, 400)
Action 2 (succes, failure) = (400, 600)
Action 3 (succes, failure) = (4, 6)
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Despite its popularity,[21] outline several criteria to be considered when applying this
algorithm. Firstly, careful consideration of a prior distribution for the arms as it can
negatively affect overall performance. Secondly, some systems have non-stationary
and therefore exploration needs to account for the fact that the target is changing
over time unlike in the standard Thompson sampling approach. And finally, [21]
argue that Thompson sampling algorithms are not good for time-sensitive prob-
lems requiring little active exploration or sparse-linear reward models that require
complex assessment of rewards with interaction effects between different arms.

2.2.4 Contextual bandit
The contextual bandit setting has been studied extensively in recent years. It is
mainly used in the situation where additional information is provided in a multi-
armed bandit problem and thus influence which arm to pull. Such situation is very
common in online content recommendation problems.
An example can be seen in the paper “Contextual Multi-Armed Bandits” [14], the
contextual bandit setting is used to model an ad recommendation problem on a
search engine taking user’s search query as the context. The solution which is
proposed from the paper describes a simple algorithm known as query-ad-clustering.
The solution steps can be briefly explained by first clustering the contexts (search
query) based on their similarities, and then run a multi-armed bandit algorithm
separately on each cluster. However, this solution may not work if the contexts
consist of numerical data, which is the case for the public dataset (3.1.2. Public
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dataset).
Another example that is similar to the approach taken in this thesis is described
in the paper “A Contextual-Bandit Approach to Personalized News Article Rec-
ommendation” [13]. Here the contextual bandit setting is addressed as a news
recommendation problem where each unique news id represents one arm. Two dif-
ferent types of contexts (user contexts and news contexts) are used and together
they compose a context vector x. The paper introduces a new algorithm LinUCB
which its expected payoff of each arm is calculated by a linear function of the con-
text vector x and an unknown coefficient vector gamma. LinUCB has proved to be
computationally efficient when it applies to sparse data as well as when the number
of available arms is large.
Despite the similarities in implementations, the contextual bandit approach in this
thesis differs from Li’s study [13] in two ways. First, three datasets are tested to
validate the usefulness of bandit algorithms, where each of these simulates a different
bandit problem setting. Second, an online evaluation is applied to the generated
dataset to confirm results from the offline evaluation. The difference between online
evaluation and offline evaluation is further discussed in section 2.3.

2.3 Evaluation

In real-world applications, it is often very costly to put online algorithms into de-
ployment. Any “bad” choice which accidentally occurs in an online experiment can
possibly lower user satisfaction and therefore leads to decreased profit. Online ex-
periments also require a long time before actual user feedback can be received. In
theory, these constraints can be eliminated by taking an alternative approach, i.e.
offline evaluation.
In the setup of offline evaluation, only historical datasets are provided. The algo-
rithm iterates through all logged data points in the historical dataset and predicts
an arm at each iteration based on the information provided. In many cases, the
predicted arm doesn’t necessarily match the logged arm, i.e. the reward of the pre-
dicted arm is not revealed due to the mismatch. This addresses the main challenge
of the offline evaluation of the situation where only a partial truth is revealed in the
reality. On the contrary, an online evaluation can overcome the challenge easily by
simply showing users the predicted content.
Some discussions around the differences between the online experiment and the
offline experiment can be found in the studies such as [3] and [8]. Beel [3] argued in
the context of recommendation system studied that results from offline evaluations
often contradicted to what was shown in online evaluations. The reason cited being
human factors, which had major impact on the results, were usually not considered in
offline evaluations. In spite of criticism in empirical studies, offline evaluation is still
the most common evaluation method in recommender systems. It has demonstrated
accuracy in various fields, [13] and [19].
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2.4 Loss Encoding and Evaluation Metrics
For the purpose of measuring whether the user is satisfied with a predicted content
(reward), there are several evaluation metrics that can be used. An immediate
indicator is CTR, click through rate. It is a binary variable determining whether
the user has clicked on a predicted content (1) or not clicked (0). This variable can
be encoded with 0/1 or it can be encoded as -1/1. In this setup, each user visit is
treated independently, meaning that every user visit is treated as it comes from a
new user. Hence the user satisfaction is only measured greedily for each user visit.
CTR is very efficient when encoding the loss in a short term, but it does not show
effects on users in the long term.
Another evaluation metric that is used in this master thesis is conversion rate. It
is calculated by dividing the number of conversions over the number of user visits.
The conversion rate shows the potential financial impact on the predicted content.
However, it does not indicate the performance of the predicted content because other
factors may have strong effects when the conversion rate increases, i.e., weekday and
people who visit sites. Also, all user visits are not intended to convert. For instance,
the user can open the site accidentally without knowing its content.
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3
Methods

This chapter describes three datasets that are used in the thesis and explains how the
multi-armed bandit solutions are implemented on each of those datasets. A detailed
explanation of the evaluation setup can be found in section 3.4 of this chapter.

3.1 Data

3.1.1 Generated dataset
A generated dataset using the procedure described by [15] was used to simulate a
news recommendation problem. This dataset simulates choosing one out of three
articles to show to users as they visit a site. The data also simulates having some
contextual information about the users. The dataset contains three different arms.
Each arm represents showing one article to a user. The distribution of the logged
arms was uniform, i.e. in each line of logged data the arm shown was selected with
an equal probability of 1/3. The reward for the arms was modeled by a variable
called click. The value for click was 1 if a user clicked or 0 if they did not click.
A context vector was used for identifying whether a user had clicked sports articles
or political articles in the past. The vector consisted of two binary variables, i.e.
clicked_sports, and clicked_politics.
In the generated dataset, the clicks where determined by a variable called click_factor
which was calculated from the following formula:

click_factor = arm_baseline+ sports_coef × clicked_sports
+politics_coef × clicked_politics

(3.1)

The variable click_factor is fraction determining whether a user clicked on a certain
article given a certain context vector. Whenever this fraction was greater than a
random variable called rand_draw, click value was set to 1 and it was set to zero
otherwise. Table 3.1 shows the values used as coefficients in the formula for each
arm. When these coefficients are substituted in Equation 3.1 we can predetermine
that arm 1 is best when the user has only clicked on sports articles or articles in both
categories. Arm 2 is best if the user hasn’t clicked on anything in the past. Arm 3
is best when the user has clicked on political articles. The hope is that the chosen
algorithms will eventually learn and converge to these arms. These predefined values
are summarized according to context group and are presented in Table 3.2.
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Table 3.1: Coefficients used to generate clicks

Arm arm_baseline sports_coef politics_coef
1 0.1 0.5 0.1
2 0.2 0.1 0.1
3 0.1 0.1 0.4

Table 3.2: Pre-defined best arm

BestArm clicked_sports clicked_politics
1 1 1
1 1 0
3 0 1
2 0 0

3.1.2 Public dataset
The public dataset that was used was produced by the Today module on Yahoo
front page [26]. The dataset recorded 45,811,883 user visits to the Today module in
May 2009 and was stored in 10 separate files. Each file contains user visits in one
weekday. The amount of user clicks varies slightly between different weekdays, for
example there are more user visits on a Friday than a Sunday.
The public dataset has the same structure as the generated dataset. Each line of the
file represents a recorded user visit which consists of the timestamp at the moment,
the article id being presented, the recorded user click and lists of relevant user/article
features (see an example line in Table 3.3). The lists of article features at the end
of the line represents available articles for the recommendation and their associated
contextual features. The presented article was chosen uniformly at random from
the list of available articles. The number of available articles is 48 in maximum,
meaning that the probability for each arm being chosen was 1/48 in the minimum.
Each user and article are associated with six anonymous contextual features. Unlike
the generated dataset, the values of contextual features in the public dataset are
float numbers. Feature 1 was constantly equal to 1. Features 2-6 represent the 5
membership features which were constructed via conjoint analysis with a bilinear
model [26].

Table 3.3: An example of one line of data from Yahoo front page

Field Values
TimeStamp 1241160900
Displayedarticleid 109513
Userclick 0
Userfeatures |user 2:0.000012 3:0.000000 4:0.000006 5:0.000023 ...
Articlefeatures |109498 2:0.306008 3:0.000450 4:0.077048 5:0.230439 ...
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3.1.3 Company dataset
The company dataset came from interaction logs of user visits to one of the company
A’s website. It contains 10,641 data points, two categorical feature variables with
five main categories each. The website had two slots to optimize and each log
data shows what the user saw on those two slots together with the probability of
them seeing the content in those slots. The data also shows users final feedback,
represented by one reward variable together with which option user preferred when
the reward was positive. The variables for this dataset are summarized below:
Number of content to choose from: 3
Number of the combination of slot positions: 6
Number of content features: 2
Number of reward features: 1
Number of data points: 10,641

3.2 Model
The general contextual bandit setting can be described as consisting of t = 1,2,3 . . .
discrete trials. At each trial t, these three basic steps are followed:

1. The world presents a context as a feature vector xt.
2. The learning algorithm chooses an arm at from a set of m possible arms.
3. The world presents a reward rt,a for the action chosen at step 2.

We chose to model the reward and contextual information using ridge - regression
[24]. This is a linear model that we use to fit feature information in order to predict
average reward for each action. We use the same contextual bandit formulation
as that described in [13]. In this formulation, the ridge regression model stores
information about a set of arms A together with their observed context and re-
wards thus far. The ridge regression model uses the context to make predictions
for the expected payoff from each arm. Given this prediction, different arm selec-
tion policies/algorithms decide on an arm to present to a user. Afterwards, the
ridge regression model observes a reward rt,a, based on how the user responded to
the displayed arm. We model the average/expected reward per arm as a function
of context and some unknown coefficient vector θ∗

a as summarized by the formula
below:

E[rt|xt,a] = xTt,aθ
∗
a (3.2)

With this formulation, our model stores different coefficients θ for each arm and
learns about the arms in a disjoint manner. We can think of θ as initially unknown
weights that determine the importance of a feature in predicting the reward. These
weights are updated every time a model receives feedback about a prediction. Addi-
tionally, since the model is updated from logged data, the arm picked by our model
is not always the same as the one that a user at time t observed. When this is the
case, we ignore this logged observation. Hence our model only learns from the cases
where the arm picked by the model match with what the user saw. This means that
if data from logging policy has a high bias towards one arm, this bias will also affect
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our model. To offset the potential impact of this bias, we use Inverse Propensity
Scoring in our evaluation especially when the logging policy was not displaying arms
uniformly at random. The details of this method are described in Section 3.4.
As described on [13], the coefficient vector θa for each arm is derived from ridge-
regression model where θa is estimated using the formula below:

θa = (Dᵀ
aDa + Id)−1Dᵀ

aca (3.3)

In the above equation Da is an m×d dimensional matrix with d number of features
for m observations. The symbol ca represents a response vector with m responses
to being shown arm a.
In our setup, every arm stores a covariate matrix A and a weight vector b. These
are the two components needed to compute the coefficient vector θa. A is initially
set to identity matrix of size d, the number of features used, and b is a zero vector
of size d. If a reward is observed for that arm then A and b are updated as shown
below:

Aa,t = Aa,t + xt,a × xTt,a (3.4)

ba,t = ba,t + rt × xt,a (3.5)

Using matrix A from equation 3.4 and vector b from Equation 3.5, θa is computed
from the following formula:

θa = A−1
a,t × ba,t (3.6)

Different arm selection policies use the same model to calculate an expected payoff
for each arm. They differ slightly in how they handle prediction and arm suggestion.
We outline the differences on Section 3.3.
The chosen model makes several assumptions about the problem to simplify the
analysis. Although some of these assumptions could be avoided with more existing
approaches, we decided that a more general solution across several datasets would
be better. These are outlined below:

1. There are no interaction effects between different arms
2. The sequence of events (user visits) are independent and uniformly distributed
3. There is a linear relationship between context features and observed reward

3.3 Policies

3.3.1 E-Greedy
With an Epsilon-Greedy arm selection policy, the algorithm follows the steps out-
lined below at each trial t:

1. The world presents a context xt
2. The algorithm uses a ridge regression model to predict reward ra for each arm
3. Epsilon percentage of time the algorithm presents a random arm otherwise it

presents the best arm
4. The algorithm observes a reward ra and learns from it.
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Epsilon in our implementation is a configurable parameter describing the percentage
of time the policy should make a random choice. Hence it is the exploration rate.
In our setup, the ‘best arm’ is the arm that has the highest expected reward at time
t according to the formula:

E[rt|xt,a] = xTt,aθ
∗
a (3.7)

If there is more than one arm that has the highest expected reward, the policy
breaks the tie randomly. Our implementation keeps track of when the choice was
random and when the choice was based on the highest expected reward. We feed
these choices into the evaluator as probabilities of the algorithm to suggest this arm.
Our IPS estimated evaluator uses these probabilities to estimate the impact of the
policy.

3.3.2 LinUCB
We are using the LinUCB algorithm from [13]. This version of UCB selects the arm
that has the highest ’confidence bound’. The creators of the algorithm motivate their
confidence estimate as a sum of the expected reward and the standard deviation of
the reward for each arm from the ridge-regression model. They argue that a ridge-
regression model can have a Bayesian interpretation where, the posterior distribution
of the coefficient vector p( θa ) is Gaussian with mean θa and covariance A−1

a,t . Hence
when applied to the context, the predictive mean becomes xᵀt,aθa and predictive
variance becomes xᵀt,aθaxt,a. This algorithm chooses an arm that maximizes the
tradeoff between increasing payoff from a higher performing arm(from the mean)
and reducing the uncertainty of different arms’ performance (from the standard
deviation) with the formula shown below:

xᵀt,aθa + α
√
xᵀt,aA−1xt,a (3.8)

where α is an input parameter that needs to be optimized . Hence the general
outline of steps for the LinUCB policy becomes:

1. The world presents a context xt
2. The algorithm uses a ridge regression model to predict reward r for each arm
3. The algorithm chooses the arm with the highest, predicted average reward+
α(variance)

4. The algorithm observes a reward ra and learns from it

3.4 Evaluation Setup
In order to judge the performance of our model and arm selection policies (e-greedy
and LinUCB), we use logged data to estimate an expected average reward for each
policy. For each logged dataset, we know what the user saw and how they responded.
As each policy suggests a new arm, our model only learns from this logged data if
the suggested arm is the same as what the user saw. In essence, our model is only
sampling from a subset of logs where policy arm suggestions are the same as logged
observations. This offline setting creates two potential challenges namely, model
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bias stemming from bias from the logging policy and large data requirements since
most of the logged lines will be ignored.
The size of data challenge is especially critical when evaluating combinatorial ban-
dits. These are a class of problems where evaluations are performed according to
slates, where a slate is a combination of arms. If the size of a slate is large, the
probability of a full slate match between a new and logging policy is reduced. In
such cases, [1] argues that more advanced techniques for estimating the impact of
a policy become necessary. For this study we explore high number of arm choices
but the number of selected arms at each round is still small. Hence we only use
two techniques to estimate reward differences between policies. The first estimation
technique is called Direct Method (DM) or naive. The second method is called In-
verse Propensity Scoring(IPS). The proceeding subsections, 3.4.1 and 3.4.2, explain
how the evaluation is carried out and how the estimators work. The value of a new
policy will be noted by Vπ and the value of a logging policy will be denoted by Vµ.

3.4.1 Direct Estimator
This estimator uses a model to estimate the expected reward conditioned upon the
context x and arm a. Using the formulation described in [7], we treat the model as a
function g(x) that is learning to predict reward ra when given a dataset S consisting
of tuples {(x, h, a, ra)}, where:

x is the context,
h is the history of previous observations,
a is the arm chosen by the policy,
ra is the reward for the chosen arm.

Since the policy is choosing an arm according to the probability p(a | x, h) then the
direct estimator is summarized by the formula below:

VDM = 1
|S|

∑
x∈S

g(x) (3.9)

This estimator is only as good as the model. If g(x) is a good estimator of the
expected reward then VDM is also good. Its drawback is that it does not take into
account the biases that may exist in the logging policy. Therefore it should only be
used when the logging policy was selecting arms uniformly at random.

3.4.2 Inverse propensity score
This estimation method re-weights observed reward according to a probability dis-
tribution of the arms from logging policy µ and the new target policy π. We are
using a formula from [7]. This method reduces variance and biases from logging
policy. The requirement is that every arm considered in the logging policy should
have a probability greater than zero for every context group considered.

VIPS = 1
t

t∑
i=1

rt ×
π(ai|xi)
µ(ai|xi)

(3.10)
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3.4.3 Evaluation of Generated dataset

The unique feature of this dataset is that we know the true optimal arm for each
context. These are summarised on Table 3.2. It also has a low number of arms and
the context features are categorical hence we can easily drill down the performance
at a context level and see if each algorithm converges at the true best arm. Con-
sequently, in addition to looking at the total expected reward per policy, we asses
if the algorithm converges to the true best arm for each context. We also analyze
how this convergence relates to the overall performance of the policy and asses the
stability of convergence across multiple runs. Since the simulated arm shown is ran-
domly distributed we only use direct estimator on this dataset during the validation
phase.
To assess the validity of our estimators we perform a small online simulation. Here
we use coefficients from generated dataset (see Table 3.1) together with some degree
of noise to simulate online interaction with our policies. The simulation follows the
following steps:

1. The simulator pre generates T tuples of context according to the following
steps:

clicked_sports = sample_no_replace(choice = [0, 1], probability = (0.6, 0.4))
clicked_politics = sample_no_replace(choice = [0, 1], probability = (0.7, 0.3))
X = concat(clicked_sports, clicked_politics)

2. The simulator feeds tuples from X one at a time to a policy π as xt
3. The policy decides on an arm at to send to the simulator according to a

probability π(at|xt)
4. The simulator sends a click response rt equal to clicked whenever the click_factor

is greater than a random variable and not clicked otherwize. The variable
click_factor and rt are calculated as shown below:

rand_draw = sample_normal_distibution()
click_factor = arm_baseline(at) + sports_coef(at)× clicked_sports(xt)
+ politics_coef(at)× clicked_politics(xt)
rt = (rand_drawt < click_factor?1 : 0)

5. The policy π observes rt and updates its ridge-regression model according to
formula Equations 3.4 and 3.5.

Above steps ensure that the probability of having a click is conditioned on arm
shown at and context xt, i.e probability (rt = 1|at, xt) . We run the simulation
for T rounds on e-greedy and LinUCb policy and compare the results from our
offline estimators. Since the same linear model that was used to generate the data is
used for the online simulation, the difference between online estimation and offline
estimation should tell us the impact of using offline evaluation.
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3.4.4 Evaluation of Public dataset
For this dataset, the unique feature is the number of arms. In our setup this data
contains a large number of arms and non categorical features. In effect we needed
more data for learning and evaluation. To facilitate this, we use batch processing
and use the performance per batch as the step size in our performance graph. The
data has 10 days worth of data but due to time constraint we could only use two
days worth of data. We selected one day for algorithm tuning and the other day for
validation. Since the logging policy showed all the arms uniformly at random, we
only use the direct estimator for the validation as it is still statistically valid.

3.4.5 Evaluation of Company dataset
The company dataset had few option of content to choose from. In this case however,
we were interested in the effect of having different combination of layout. Therefore
each the bandit arm is the layout of those three content. Hence we have a total
of 6 arms. The logging policy from which the data came from did not show the
arms uniformly at random, therefore we employ IPS in our evaluation. We make
a comparison of the total average reward under each arm selection policy to assess
performance.
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In this section we describe the outcome of our study. The section is divided into
three parts that correspond to the datasets that were examined. A comparison of
the results across the datasets will be done in Chapter 5.

4.1 Generated dataset results
The overall performance of the generated dataset for two arm selection policies, E-
greedy and LinUCB, indicate that both policies improved click-through rate when
compared to a random policy. The mean regret over time during training are shown
on Figure 4.1 and during validation are shown on Figure 4.2. The regret for both
policies is lower than the regret when using a random policy. Drilling down to the
contextual groups, Figure 4.3, Figure 4.4 and Figure 4.4 show how often each policy
recommended a certain arm to a particular context group. When the most chosen
arm per context is compared to the predefined best arm from Table 3.2, the graphs
indicate that both policies converge to the correct arm in most runs. E-greedy policy
sometimes converged to the wrong arm when the context was a user who clicked
both sports and politics, see Figure 4.4.
The main differences observed between the policies after tuning the algorithm pa-
rameters is a slightly more efficient learning rate by LinUCB policy as seen in Figure
4.1 and a more consistent convergence to the correct arm cross multiple runs. The
experiments revealed that when the true average rewards are close, E-Greedy some-
times converges to the wrong arm, see Figure 4.3 where E-Greedy converged to Arm
3 which has a true average reward 0.6 instead of Arm 1 which has a true average
reward of 0.7 when the context is clicked both sport and politics.

This data also showed consistent result between online and offline evaluation which
suggests that when the assumed conditions in the offline evaluation are similar to
conditions in the online setting, the result of the offline evaluation are valid. The
conditions are similar because the linear model used to generate the offline data was
also used to simulate the online interaction. Figure 4.5 and Figure 4.6 summarize
the result from this online interaction where the arm each context group converged
to is the same as the offline arm Figure 4.2 and Figure 4.4. The average reward for
converged arm per context is also similar.
In more detail, from Figure 4.1 we observe that both E-greedy and LinUCB policies
obtain an average reward around 0.18 when they have converged. In the first 4500
attempts, the mean regret of both policies are fairly unstable. It can be seen as the
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learning phase of our model where the model learns continuously from the logged
data by updating the weight of the respective arm. After the learning phase, the
average rewards become comparatively stable and therefore we can declare that our
models have converged. The time it takes for the greedy model to converge depended
on the exploration rate (epsilon) which we specifies in the setting. In this specific
example which we have shown in Figure 4.1, the exploration rate is 10 for the greedy
policy.

Figure 4.1: Learning of the generated dataset using naive estimator (average over
10 experiments)

Figure 4.2: Validation of the generated dataset using naive estimator (average over
10 experiments)

Usually, a high exploration rate can shorten the total convergence time while it also
worsens the average click through rate. For the LinUCB policy, we use a control
variable alpha to control the standard deviation interval of the predicted average
reward. We notice that the average reward for LinUCB is optimal only when alpha
is between 0 and 1. A high control variable results in high standard deviation which
can make the impact of the predicted payoff diminishes. In Figure 4.1, we are using
1 as alpha for the LinUCB policy.
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We use direct estimator to estimate user feedback when the model is updated. In
this setting, the script iterates through all data points and only updates for those
logs with the same arms as the predicted arms. Therefore a big part of the dataset
is ignored. In Figure 4.1, we use 47000 data points in total. Although the actual
attempts for updating the model are around 15000.

Figure 4.3: Offline evaluation generated dataset E-Greedy with 7% exploration

Figure 4.4: Offline evaluation generated dataset E-Greedy with 7% exploration -
bad converge on sports:1 and politics:1
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Figure 4.5: Offline evaluation generated dataset LinUCB with alpha = 7

Figure 4.6: Online validation generated dataset E-Greedy with 7% exploration

Figure 4.7: Online validation generated dataset LinUCB with alpha = 5
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4.2 Public dataset results
The overall performance of policies on public dataset suggests that LinUCB is better
than E-Greedy policy both on the training dataset Figure 4.8 and on the validation
dataset on Figure 4.9. This suggests that LinUCB is a better policy for this dataset.
Unlike the generated dataset, here we observed a significant difference in expected
reward from different policies and not just a difference in the learning rate. The
experiment also revealed that the expected reward changes over time since even a
random policy appears to have an increasing average reward over time on both the
training and validation dataset. Both policies under investigation, E-Greedy and
LinUCB, appear to adapt to this changing average well and there was no need to
supplement the context with time-related features.
From a practical standpoint, however, the LinUCB model was much harder to fine-
tune. Changing alpha parameter significantly affected the performance of the al-
gorithm and incorrect values resulted in lower performance compared to E-Greedy.
We suspect this is a result of having a very large number of arms, (on average 20
possible articles at every time point) accompanied with high variance in performance
of each arm. We also observed that the static nature of LinUCB resulted in higher
number of ignored log values when the predicted arm was different from observed.
This implies that offline evaluation of LinUCB policy requires a higher number of
logged data points than the E-Greedy policy.

Figure 4.8: Learning of public dataset using naive estimator

Figure 4.9: Validation of public dataset using naive estimator
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4.3 Company dataset results
The company dataset results in Figure 4.11 confirm that both greedy policy and
ucb policy perform better than random policy. However, the performance of the
ucb policy seems quite unstable compared to the greedy policy. The results vary
significantly in different executions with different alpha parameters (see Figure 4.11,
Figure 4.13 and Figure 4.15). We observed from our offline experiments that the
ucb policy mostly chooses the first best arm and ignores other arms if the alpha
parameter is low. With a high alpha parameter instead, the ucb policy always tries
different arms and rarely picks a same arm twice, which leads to the LinUCB policy
skipping most of logged data points due to this randomness. We also realize that it
is essential to fit the ucb policy with enough data points in order to build a good
model. From our observations with company datasets, we can conclude that the
greedy policy is often performed better, thereby providing more stable predictions
than the ucb policy for small datasets.

Figure 4.10:
Learning of company dataset using naive estimator
Run 1, alpha=0.01, epsilon=5

Figure 4.11:
Validation of company dataset using naive estimator
Run 1, alpha=0.01, epsilon=5
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Figure 4.12:
Learning of company dataset using naive estimator
Run 2, alpha=0.01, epsilon=5

Figure 4.13:
Validation of company dataset using naive estimator
Run 2, alpha=0.01, epsilon=5

Figure 4.14:
Learning of company dataset using naive estimator
Run 3, alpha=0.5, epsilon=5
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Figure 4.15:
Validation of company dataset using IPS estimator
Run 3, alpha=0.5, epsilon=5
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Conclusion

This thesis aims to provide a comparison of two arm selection policies in the multi-
armed bandit problem by applying the policies to three different datasets, where
each dataset simulates a common web content optimization problem in real world.
The policies are first tested on a generated dataset, which simulates a news rec-
ommendation problem with limited arms and categorical features. Then the same
policies are applied on a larger public dataset with similar news recommendation
setting as well as an increased number of arms and data points. Finally, the policies
are tested on a dataset from company A which records the user visits of a website,
again with a small number of arms.
In all experiments, both policies have shown improved results compared to the
random policy. The results from the company datasets suggest that E-Greedy policy
is often more stable, with better performance than LinUCB policy for small datasets
with a limited number of data points. For large datasets, LinUCB policy learns
quicker at beginning and obtains overall higher performance than E-Greedy policy in
multiple tries. The LinUCB model is however difficult to fine-tune. The experiments
indicate that the performance of LinUCB policy depends heavily on the choice of
the alpha parameter. A high alpha parameter allows LinUCB policy to try new
arms more frequently, meaning that a lot data points are required in order to make
good predictions.
The datasets consist of recorded user visits in the past and appropriate offline evalua-
tion techniques are implemented to build the models. To further validate the results
from offline experiments, an online experiment is conducted on a generated dataset.
The experiments on the generated dataset show consistent results between the on-
line experiments and the offline experiments, concluding that the offline evaluation
approach in this thesis models the online environment in a proper way.
These differences in algorithm performance across datasets further emphasises the
need for easy to use libraries, that can be used by practitioners to compare algorithms
performance before they choose a policy to employ. Our evaluation only worked
with one prediction model, namely ridge-regression and one type of reward encoding.
Future work can improve on this to include other prediction models such as soft-max
that can easily be applied in a multi-classification problem and explore the effect
of using different reward encodings. Additionally, implementation of Thompson
Sampling would be the logical next step in supplementing our analysis for further
studies.
Looking back at the motivating questions highlighted in the Introduction chapter,
we think practical solutions for the application of MAB algorithms is still an impor-
tant area of research that needs further efforts. Findings from our study highlight
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interesting areas that can benefit from further empirical evidence. Below we have
highlighted open questions that might be useful for practitioners.

1. How much logged-data do they need to make useful estimates of
effectiveness
The findings for this study suggest that LinUCB has a higher data require-
ment than E-Greedy when performing offline evaluation. But the results do
not generalize into exactly how much data is needed. The results from com-
panyA comparison suggest that around 10000 data points where not enough
to reach a stable result. However, we suspect the answer requires further dive
into the actual composition of data to determine distribution across different
context. We also suspect that other factors such as exploration rate can have
a significant effect on exactly how much data is needed. Further studies that
could explore the relationship between data requirements and policy option
could be very useful.

2. What policy is the most promising for a specific application
This study found that different algorithms worked best on different datasets
but the comparison can only be performed after the tuning process. The
study also found that algorithm tuning had significant performance impli-
cations especially for LinUCB algorithm. Some of the interesting areas for
further research could be done on the transferability of parameters from of-
fline evaluations to online experiments. This can further inform practitioners
on how to apply their chosen policies. It may also be useful to formalize the
process around which parameter choices should be tested to make sure that
critical options are tested.

3. How confident can they be with their estimate
This study found consistent results between offline and online and offline eval-
uation for the generated dataset. Such comparison can be further investigated
in future studies to give empirical evidence on how consistent such a result
can be. In order to be confident about our results on the other datasets, an
online experiment would have to be performed. This is of course costly. But
there is a need for future studies to explore the validity of offline experiments
with online experiments.

Finally, future studies could also focus on reducing problem setup assumptions to
make the model more realistic, for example removing the assumption that all user
visits are independent and accounting for possible interaction effect between different
arms. Future studies should also focus on solving critical issues surrounding privacy
concerns [17] for users personalization algorithms are applied.
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