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Abstract
Financial Modelling allows for prudent decision making for individual business own-
ers and other stakeholders. The Financial Health can be seen as an underlying
measure which governs the companies ability to meet its obligations and make prof-
its. Therefore Financial Health is linked to the company’s cash flow which can
readily be observed.
We consider the Financial Health as a dynamic latent state and infer it from the
cash flow. We are estimating this latent state under the Bayesian paradigm to take
stylized properties of the cash flow into account, using a Particle Filter as part of a
Monte Carlo method to sample the posterior distribution of latent state and model
parameters.
We investigate the performance of this approach on a real data set consisting of real
cash flow from small Swedish businesses.

Keywords: Bayesian Inference, Hidden Markov Models, Particle Filter, Financial Health
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1
Introduction

Financial modelling is an important topic for the planning of company activities
since this helps businesses with their financial planning and risk management. How-
ever, financial time series is hard to model since the data often show signs of
heteroscedasticity, i.e. non-constant volatility, there is often a significant partial
auto-correlation and the underlying model is often complicated. Financial data can
contain paradigm shifts which can be viewed as changes of the latent state. These
paradigm shift might be caused by several different real world events that might be
hard to identify. By considering the paradigm as a latent, or hidden, state one can
infer when there has been a structural change of the financial time series.
The aim of this thesis is to investigate the possibility to model the financial health
of a company through its cash flow. Cash flow and financial health should however
not be conflated since cash flow is not by itself a measure of a company’s well being.
The aim is to come up with a method which estimates the financial health as a
latent variable from the observed cash flow. The method will try to capture the
stylized properties of the cash flow.
The thesis will be using the Bayesian framework since this gives a natural way of
working with missing data and the latent nature of financial health. By adopting
a Bayesian perspective of the data modelling one can avoid many issues that is
connected to overfitting. In [2] Bishop writes that overfitting is largely connected
to Maximum Likelihood Estimation (MLE) and not present in the same way in the
Bayesian paradigm. This is because no MLE is needed in Bayesian statistics and
that the number of effective parameters adapts to the data set, which removes the
issue of overfitting to some degree, according to Bishop. The reason for this is that
in Bayesian statistics one does not optimize but instead marginalize over all possible
choices. Due to this reason the Bayesian Paradigm is a good choice for this kind of
data series.
The thesis will further use methods which can handle non-normal distributions and
nonlinear observations which is a result by the hidden state. This is different from
many models used today which assumes conditional Gaussanity and linearity that
limits the applicability and accuracy of the models. Some methods which will be
explored are Hamiltonian Monte Carlo, Variational Inference and Particle Filters,
these methods are described in both theory and practice.
The dataset which is being used is real cash flows of companies with similar com-
pany and tax structure with no accounts Payable or Accounts Receivables. The
anonymized data has been delivered by Company X and will not be disclosed due
to secrecy reasons.
The thesis begins with a discussion regarding related work and followed by data
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1. Introduction

exploration which seeks to find structural patterns in the data set. Then follows
an attempt to model the cash flow with a hierarchical Bayesian model. Lastly the
model is utilized in a Hidden Markov Model, where a Bootstrap Particle Filter, which
allows for non-linear and non-Gaussian emissions, is implemented. The output of
this model will yield a hidden state which can be interpreted as measure of financial
health and can be used to gauge the well-being of said company.
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2
Background

This chapter will introduce some of related work that currently exist that is related
to the topics that will covered in this thesis. The related work covers Bayesian
modelling, Compound Poisson Processes, Markov Chain Monte Carlo Methods and
Particle Filters. No individual article have the same aim as this thesis but all of
them cover some part which is important to the thesis.

2.1 Related Work
Bayesian Modelling allows for uncertainty estimation of model parameters which are
time dependent. Time dependency of variance in financial market have long been
a known issue and with Bayesian modelling one can construct Stochastic Volatility
Models that shows heteroscedasticity, i.e. non-constant volatility. This has been
done by Gugushvili et al in [3] where the authors modeled the volatility of the ex-
change rate EUR/USD under micro-structure noise. By the use of a Gibbs sampler
and the Forward Backward algorithm the authors were able to achieve good re-
sults. The authors built the model using Bayesian models which gives a natural
interpretation of latent and missing data which will be adopted in this thesis.
Compound Poisson processes have Poisson counts and gamma distributed intensity
where the two processes are independent from each other. This kind of process
have been used to model the daily stochastic rain fall by Dzupire et al in [4]. The
results showed that rainfall could be modeled with a relative simple model with only
these two features. The implications from this is that the model could be used to
estimate future rainfall which leads to easier risk assessment and pricing of weather
related financial derivatives according to the authors. The authors used Maximum
Likelihood Estimation which is a method often used in frequentist paradigm but
that was not the scope of the thesis. However, the result shows that the model type,
Gamma Poisson Process, is a very viable model to use and can be applied to real
world problems.
The case of Non-Homogenuous Poisson Processes have been covered extensively by
Gugushvili et al in [5] where the authors estimated the time dependent parameter for
a Non-Homogeneous Poisson Process in a non-parametric way. A Non-Homogeneous
Poisson Process is a stochastic process with a time dependent parameter, more
details regarding the method can be found in the paper. The authors displayed
the usability of the method on various data sets and the results showed that a
time dependent parameters can often describe the data in a better way since many
systems are dynamic and not static.
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2. Background

Particle filter have long been used in signal processing where the driving noise is
non-gaussian. There have however been a large amounts of issues reported with
these methods by Kantas et al in [6]. The paper showed how many Particle Filters
have a degeneracy problem which means that few particles can have an excessive
weight in the filter. This leads to high variance estimates that makes the model
unreliable. It is also reported the the methods are very computationally expensive
which might limit their application in the real world.

2.2 Final Remarks
The articles presented above shows that the methods which are intended to be used
in this thesis have been used with success before. Many time series have the time
dependent parameters which can be modeled with compound processes and non-
homogeneous stochastic processes. There has been reported issues with the particle
filter giving high variance estimates. This is an important aspect to keep in mind
while working on the model and when evaluating it.

4



3
Data Analysis

The scope of this data analysis is to identify if there is any temporal structure to
the data, such as seasonality, and with this information find a way to model the
data in a Markovian way. From here on will π() denote the density of a stochastic
variable, capitalized variables are random variables and small letters are realizations
of said variables, all random variables are real numbers. A stochastic process Xt,
t ∈ 0, 1, . . . is Markovian if the condition in eq. (3.1) is fulfilled, where n is index of
time above t .

π(xt+n | x1, ..., xt) = π(xt+n | xt) (3.1)

The meaning of this is that the probability of the next or an later state is only
dependent on the current one. It is important that the data can be modeled with
this expression since the intended model for this thesis, the Hidden Markov Model,
requires the hidden state to be Markovian.
Certain aspects such as stochastic seasonality makes it hard to model the data in a
Markovian way. To avoid this issue one can assume that there is only deterministic,
i.e. fixed, seasonality.

3.1 Data Description
The data contains anonymized information regarding the main activities of the com-
pany, its initial liquidity, tax period and corporate structure. All the companies have
have the same start and end of the fiscal year but the length of data series differs sig-
nificantly from company to company. For the sake of simplicity, the main companies
of consideration will be companies with the same tax period, corporate structure
and main business activities. There are a lot of companies in the data set so there
will only be a few on displayed in the paper. The results does however not differ
much between companies.

3.2 Initial Data Exploration
Since one part of the project is centered around modelling cash flow, only the sums
per day and amount of transactions per day will be analyzed in this chapter. The
histogram of the sums of the transactions are shown in fig. 3.1 and the histogram of
the transactions per day are shown in fig. 3.2, these plots are only for an individual
company.
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3. Data Analysis

Figure 3.1: Histogram of positive and negative cash flow in SEK from individual
transactions.

In fig. 3.1 one can see that the positive sums, which is defined as positive cash flow,
and the negative sums, which is defined as negative cash flow, per day does not seem
to come from the same distribution, instead the negative sums seems to have many
small payments and few large ones. In contrast to this the positive sums seems to
be bi-modal, i.e. that the sums comes from a mixture distribution.
What can be seen in fig. 3.2 is that the amount of daily transactions seems to decrease
rapidly. Zero transactions per day is the most common amount of transactions and
there are very few days with two or more transactions. With this information one
can argue that the transactions per day is Poisson distributed.
What should be noted is that histograms does not capture the temporal structure,
if there is one, but they do however show the empirical distribution. The histogram
of the sums shows that the negative sums are power law distributed, there are many
small amounts and few large amounts. The positive sums seems to be bimodal,
there are many small amounts but also quite a few large ones with few in between.

3.3 Data Diagnostics
One of the main things of interest will be the auto correlation (ACF) and partial
auto correlation (PACF). These are the most important temporal structures since
they will dictate the model building.
The intuition of the ACF is that it measures the correlations of the different lags of
the data. The PACF on the other hand measures the correlation of the lagged data
and controls for intervening lags.The ACF is defined as

φX(k) = Cor(Xt+h, Xt) (3.2)

6



3. Data Analysis

Figure 3.2: Histogram of transactions per day.

where h is the amount of lags and the PACF is defined as

α(h) = φhh (3.3)
where φhh is the last component of

φh = ((γ(i− j))hi,j=1)−1(γ(1), ..., γ(h)))′.

A more thorough explanation of these concepts can be found in [7]. The ACF and
PACF only work for stationary time series which means that the mean and variance
is constant over time, a more thorough definition is found in [7]. However, the ACF
and PACF is still interesting in practice even if the process is not stationary.
In fig. 3.3 and fig. 3.4 shows the ACF and PACF of the transaction for the company
is shown. A point can be seen as significant if it is above the 95% confidence interval.
It looks like that there is a significant auto-correlation from month to month and
there is also a strong PACF between several time instances. This is reasonable since
companies have a monthly payroll and also pay taxes on a fixed time basis, yearly
for example. These temporal structures will be important to incorporate into the
model since there is a very robust structure.
In fig. 3.5 we see that the ACF for the cash flow does not seem to have any significant
auto correlation and the PACF in fig. 3.6 seems to be significant for a lag of 30 days,
75 days and 160 days for the cash flow. This translates to that there seams to be an
occurring transactions on a monthly basis. But one should be wary of using visual
diagnostics in this way since it is vulnerable to the multiple comparison problem
since during the project many companies were inspected. So a robust conclusion of
the data diagnostics is that the transactions seems to have a temporal structure but
that the sums does not seem to have any significant ACF or PACF.
In fig. 3.7 the average transactions per day if one partitions that data. For example,
the average amount of transaction per day the first five days for the positive counts is
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3. Data Analysis

Figure 3.3: ACF of transactions with 95% confidence interval.

Figure 3.4: PACF of transactions per day with 95% confidence interval.
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3. Data Analysis

Figure 3.5: ACF of cash flow in SEK with 95% confidence interval.

Figure 3.6: PACF of cash flow in SEK with 95% confidence interval
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3. Data Analysis

Figure 3.7: The average amount of transaction per day for the partitioned data.

0.6 while it is 0.2 for the first 30 days(i.e. the full month). What this tells us is that
there is an heterogeneous distribution of transactions throughout the month, if it was
homogeneous distributed the lines in the plot would be flat. Instead the parameter
that governs this stochastic process seems to be time dependent. This encourages
the use to describe the transactions as a Non-Homogeneous Poisson Process, which
will be introduced later. The pattern is reoccurring and should therefore be used
for the cash flow modelling since this is a stylized property of the cash flow.

3.4 Data Quality
There are some reasons to suspect that the data does not fully reflect the true nature
of companies. The data indicates that the transactions spike in the beginning of the
month and then decay over time. This is contrary to the more intuitive description
that more transactions should be in the last days of the month as payroll and bills
are due, one explanation for this is that companies delay their accounting entries in
the system. This has an impact on the accuracy of the model since if the data does
not fully reflect the reality of the behaviour of the cash flow the model will suffer.
Another aspect of the data which needs to be considered is the potential survivor-
ship bias of the data. Only companies with ongoing businesses have been included
in the data set which means that according to the data there is no possibility that
a company can ever go bankrupt. This is of course a troublesome property since
the results will be skewed. The result from this bias is that the model will show
that companies with a poor Financial Health will eventually rebound, but this is
obviously far from an true in reality.

10



4
Mathematical Background

This chapter introduces the mathematical theory which the model stands on. The
first part covers stochastic processes that is important for the intended statistical
model. Various Markov Chain Monte Carlo methods are introduced and then there
is a brief introduction to Hidden Markov Models. Both traditional algorithms such
as Viterbi and Baum-Welch but also a non-linear method, the Particle Filter, are
introduced.
The model in this thesis will be done in a hierarchical fashion, what that means
is that there is a hierarchy of different distributions which will be used to capture
the structure in the data. This structure makes it possible to capture some stylized
properties of the data which simpler models cannot do.
The model in this thesis will utilize Bayesian Hierarchical Modelling which is a model
type that works in several levels where each parameter has its own prior distribution
itself. This makes it possible to build models which can adapt itself efficiently to
the data. This specific type of model is introduced briefly in [2].
In this model the number of transactions is at the top level and the transaction
amounts is at the lower level of the model. The modelling is done within the Bayesian
paradigm which means that the observed data is seen as fixed and that the param-
eters are stochastic, this is orthogonal to the frequentist framework where the data
is random and the parameters are fixed, but unknown.

4.1 Poisson Processes
The amount of transactions per day can be seen as a Poisson Process with an
unknown parameter λ. A Poisson Process is a distribution of times of random
events, where the number of events in different time intervals are independent from
each other. N(t) denotes the number of events up to time t, and N(t1) − N(t2) is
Poisson(λ(t2 − t1)) distributed. The density of the Poisson distribution is given in
eq. (4.1) where λ is the hyper parameter for the distribution

π(n) = λn

n! e
−λ, n = 0, 1, 2, ... (4.1)

where n is the number of events up to time t. The process is used in many disciplines
since many phenomenon in nature, social sciences and economics follow this kind
of distribution. This is because an event which is strictly positive and discrete, the
number of rainfalls during a week for example, is well suited to be modeled as a
Poisson Process. More can be found in [8] and [9].
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4. Mathematical Background

4.1.1 Non-homogeneous Poisson Process
There is an extension to the Poisson process, namely the Non-homogeneous Poisson
Process (NHPP). A NHPP is a Poisson process with a non-constant and time depen-
dent, rate parameter. The process is defined ineq. (4.2) where λ(x) is the parameter
for a specific time. The process is very similar to the one described in eq. (4.1).

π(N(t) = n) = (Λ(t)t)n
n! e−Λ(t) (4.2)

Λ(t) =
∫ t

0
λ(x)dx <∞

The process is described in detail in [9]. The Non-Homogeneous Poisson process
makes it possible to model data which have time dependent parameters, which
dynamic (changing) systems most often have. An example of this could be any
seasonal pattern, such as how the revenue changes for a company depending on
the season. As discussed in the data analysis financial data often exhibit time
dependent behaviour, so by utilizing a NHPP the model will be able to catch this
time dependent behaviour.

4.1.2 Compound Poisson Process
The model aims to capture the behaviour of cash flow of individual companies by
modelling it as a compound Poisson process, which is defined in eq. (4.3). This will
be done by the two features, sums per day and transactions per day. In this specific
case the amount of transactions per day will be modeled as a Non-Homogeneous
Poisson Process and the amount will be modeled as a Gamma distribution. One as-
sumption that is usually made is that the Poisson Process and Gamma Distribution
are independent, which can be seen in the defined Compound Process.

Yt =
N(t)∑
i=0

Di (4.3)

N(t) ∼ Poisson(Λ(t)), D(t) ∼ Gamma(α, β)

The interpretation here is that the jump, measured in days, between transactions are
Poisson distributed while the intensity is Gamma distributed. The rate parameter
may change which could enable the process to capture some stylized behaviour of
the data series. The the intensity of the cash flow is Gamma distributed.
There are many different ways to estimate the parameters for the Non-Homogeneous
Poisson Process. One way would be to partition the data series by a fixed seasonal
pattern, or in a non-parametric way which is discussed in [5].

4.2 Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo (MCMC) methods is a collection of algorithms which
allows sampling from a wide array of distributions which cannot be directly sampled
from.

12



4. Mathematical Background

One general Markov Chain Monte Carlo method which is often used is the Metropolis-
Hastings algorithm. A more detailed description can be found in [2].

4.2.1 Metropolis-Hastings
Metropolis-Hastings is a Markov Chain Monte Carlo Methods to sample (dependent
samples) from a density p, while one only has an unnormalized version p̃(z) = cp(x)
of the density available. To do so one samples from a proposal distribution which
can depend on the current state z(t) to propose a new state z∗. Whether z∗ become
the new state z(t+1), or the chain remains in the old state z(t+1) = z(t) is decided by
the flip of a biased coin, thus obtaining samples z1, z2....
The proposal distribution depends only on the current state so that the proposal
density becomes q(z | z(t)), in order for the samples z1, z2... to create a Markov
Chain.
The probability for the proposal to be accepted is

A(z∗, z(t)) = min
(

1, p̃(z
∗)q(z(t) | z∗)

π̃(z(t))q(z∗ | z(t))

)
. (4.4)

One does not need the normalized distribution since the normalizing constant cancels
out.
In eq. (4.4) qk(· | z(t)) is the proposal density and z∗ is the proposal, and t de-
notes what step the algorithm is in. By following this procedure one can sample
from a distribution without knowing the normalizing constant of the distribution.
The Metropolis-Hastings, as all other Markov Chain Monte Carlo Methods utilizes
random number generators to produce their output.
Important observation: If one has a symmetric proposal, that is q(z∗ | z) = q(z | z∗)
(4.4), simplifies to

A(z∗, z(t)) = min
(

1, π̃(z∗)
π̃(z(t))

)
. (4.5)

Thus for a symmetric proposal, one does not need to know the density of the pro-
posed value. It should also be noted that

z∗ = z +N (0, σ2) (4.6)

where σ2 is some variance, also creates symmetric proposals. Also different kernels
qk can be combined to create a sampler to sample from π̃. See [2], page 541.

4.2.2 Gibbs Sampling Algorithm
Gibbs sampling is an iterative algorithm which utilizes the Hamiltonian Monte Carlo,
which was introduced earlier, in each step. The algorithm works by sampling from
conditional marginal distributions for each parameters, by then using Bayes theo-
rem one is able to approximate the true distribution. The algorithm is formally
presented in [2] and is displayed in algorithm 1 where π(zi | zτall|−i) is the density of
zi conditioned on all remaining variables.
Then (4.4) equals 1 and one can take the proposed value z∗ as new state.

13



4. Mathematical Background

Algorithm 1 Gibbs Sampling
1: Initialize zi : 1, ..,M
2: for τ = 1, .., T do
3: for i=1,...,M do
4: Sample zτ+1

i ∼ π(zi | zτall|−i)

One of the many things one needs to be cautious of while using the Gibbs sampler
is that the first part of the sampling chain does often not represent the distribution
very well, since it is far from convergence. There are two strategies one can employ
here, either one removes the first iterations, also called the burn in, or one samples so
many points that the initial part of the chain cannot skew the results in a meaningful
way.

4.2.3 Hamiltonian Monte Carlo
An issue with many MCMC methods is that they can have a random walk behaviour
and that they are sensitive to correlated parameters. A method which avoids these
characteristics is the Hamiltonian Monte Carlo [10] which takes steps with informa-
tion from the first order gradient.
The state z is augmented by a “momentum” variable r.
We give the momentum variable the density

p(r) := (2π)−N
2 exp

(
−1

2r
T r
)

(4.7)

of a standard multivariate Normal distribution.
The state space of z and r is defined to be the product

π(z, r) = π(z)p(r). (4.8)

Then samples from π(z, r) can be used as samples of π(z) discarding r.
Now we define the Hamiltonian H which can be understood the total energy system,

H(r, z) := E(z) +K(r) (4.9)

where
K(r) := 1

2r
′r.

We also define E(z),which is the potential energy of the variable z, as

π(z) =: 1
Zp

exp(−E(z)). (4.10)

Then we can rewrite

π(z, r) = (2π)−N
2

Zp
exp(H(z, r)). (4.11)

This can be seen by
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π(z, r) = (2π)−N
2 exp

(
−1

2r
T r
) 1
Zp

exp(−E(z)) (4.12)

= (2π)−N
2

Zp
exp

(
−1

2r
T r − E(z)

)
.

Then we get from eq. (4.9) that

π(z, r) = (2π)−N
2

Zp
exp(−H(z, r)).

Our goal is now to sample from the joint distribution π.
The algorithm creates a Markov Chain of stochastic updates of the momentum
variable r and Hamiltonian dynamical updates from the leapfrog algorithm. The
momentum variable r is defined in eq. (4.13) and should be interpreted as the rate
of change of the state variable z with respect to the time τ .

ri = dzi
dτ

(4.13)

The momentum variable r can be deduced from E(z) as in eq. (4.14) and r can then
be given by integration.

∂ri
∂τ

= −∂E(z)
∂zi

(4.14)

The Leapfrog Discretization method is used to integrate differential equations nu-
merically which is needed in the Hamiltonian Monte Carlo algorithm. This is done
by discrete time approximations of the time variable τ and the positional variable
z. The steps in the algorithm is described in eq. (4.15) where ε is the step length.

r̂i(τ + ε/2) = r̂i(τ)− ε

2
∂E

∂zi
(ẑ(τ)) (4.15)

ẑi(τ + ε) = ẑi(τ) + εr̂i(τ + ε/2)

r̂i(τ + ε) = r̂i(τ + ε/2)− ε

2
∂E

∂zi
(ẑ(r + ε))

What the leapfrog algorithm does explicitly is that it works in two steps, first in
half step updates of the momentum variables and then a full length step update of
the position variable. Note that the Leapfrog Integration is time-reversible, which
means that the starting point z(τ) will be reached using n negative time steps −ε
starting from z(τ + nε).
The leapfrog integration then produces a deterministic candidate (z∗, r∗). For z∗, r∗
to have a density also pertubes r∗ randomly.
The Hamiltonian algorithm then takes z∗,−r∗ as Metropolis-Hastings proposal for
the new state. This makes the proposal density q(· | ·) symmetric. Then the
acceptance probability becomes

A((z, r), (z∗,−r∗)) = min
(

1, p̃(z, r)q((z∗,−r∗) | (z, r))
π̃((z∗,−r∗))q((z, r) | (z∗,−r∗))

)
(4.16)
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= min
(

1, π̃(z, r)
π̃((z∗,−r∗)

)

= min

1,
(2π)−

N
2

Zp
exp(H(z, r))

(2π)−
N
2

Zp
exp(H(z∗,−r∗))


= min(1, exp{H(z, r)−H(z∗,−r∗)}).

But since K(r) = K(−r) by definition, we get that

= min(1, exp{H(z, r)−H(z∗, r∗)}).

This is similar to what was shown in eq. (4.5). The acceptance probability is then
the difference between the Hamiltonian before and after the leapfrog integration.
The Hamiltonian Algorithm is a form of Metropolis-Hastings, the main difference
to random walk Metropolis-Hastings is that the Metropolis Hastings Algorithm in-
troduced earlier in eq. (4.4) is that the Hamiltonian takes the gradient of the log
probability into account and not only the distribution as Metropolis Hastings does,
and nowadays the gradient is almost always available through automatic differentia-
tion. Hamiltonian Monte Carlo is preferred over other MCMC methods such as the
Metropolis Hastings Algorithm and the Gibbs Sampler since it is much more effec-
tive in higher dimensions and for complicated distributions, as discussed by Gelman
et al in [10], since the Hamiltonian converges a lot quicker and more accurate.

4.2.4 No-U-Turn Sampler (NUTS)
There are two parameters which needs to be set by the user of the Hamiltonian
Monte Carlo, step length and the amount of steps. These two quantities usually
needs to be set on a case by case basis and creates the need for hand tuning the
method. This however is not trivial and it often a bespoke solution is needed and
this limits the generality of the method. But one instead can use the No-U-Turn
Sampler which was introduced by Hoffman and Gelman in [10] which resolves these
issues for the user.
The number of steps, L, in the leapfrog part of the NUTS algorithm corresponds to
the amount of steps it takes for the distance between the proposal ẑ and the initial
values z to no longer increase. This leads to that one should run leapfrog steps until
the expression in eq. (4.17) becomes smaller than 0.

d

dt

(ẑ − z)2

2 (4.17)

This method does not always show time-reversibility which is necessary in the pro-
cess. This is however dealt with by running the Hamiltonian simulation forward and
backward in time which creates the time reversibility. The other question which the
NUTS algorithm resolves is the question of the step length. A too small step size
wastes computation time since is takes more steps to reach convergence and too
large steps leads to high rejection rates, this is what NUTS aims to solve.
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The step size ε is set in the tuning phase of the algorithm by dual averaging. The
specific algorithm used to determine the step size is found in [10]. The algorithm
is implemented with the package PYMC3, which is a library for Probabilistic Pro-
gramming. PYMC3 is available for in the Python programming language, a more
detailed description of the implementation can be found in [11].

4.2.5 Automatic Differentiation Variational Inference (ADVI)

An aspect of MCMC methods which cannot be overlooked is the importance of the
selection of starting point for the procedure. In [12] Kucukelbir et al. developed a
method to choose an optimal starting point through Variational Inference, which is
a methods to approximate intractable integrals.
The model finds automatically a variational family and optimizes this variational
objective. The first step in the ADVI algorithm starts with a differential probability
model p(x, θ) and by introducing latent variables which relates to the observations in
θ. These latent variables are then transformed to the real space variables ζ. The next
step is to use variational inference to transform the approximate posterior inference
into a optimization problem, the objective one want to optimize is the evidence lower
bound (ELBO), which is what is being optimized in Variational Inference.
This objective is optimized with stochastic optimization which is done by stochastic
gradient ascent, this guarantees reaching a local optimum under certain assumptions
on the step size sequence, or learning rate as it is also called. The specific algorithm
for this is outlined in [12] and is also implemented in PYMC3.

4.3 Hidden Markov Model (HMM)

Hidden Markov Models are a class of models which are used to estimate hidden, or
latent, states in dynamical systems. HMMs are suitable for sequential data where
there is some auto-correlation between the data points. These structures in the data
is easily modeled and captured by the use of this kind of model.
In hidden Markov models the latent state at time t is defined by Xt and the observed
state at time t is defined by Yt, both X and Y are real numbers. The definition is
that a stochastic process (Xn, Yn) is a Hidden Markov Model if Yn is an observation,
Xn is not observable (hidden) and that the process is Markovian i.e. π(Xn | X1 =
x1, ..., Xn−1 = xn−1) = π(Xn | Xn−1 = xn−1), it is also required that the observations
are conditionally independent of each other.
A discrete HMM consists of a transition matrix, which determines the probability
of different transitions between states, an emission matrix which determines the
probability observations given the hidden state and finally initial matrix which sets
the initial state of the model. The main idea behind the Hidden Markov Model is
shown in fig. 4.1 for a model in discrete time and discrete states.
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Figure 4.1: Illustration of how a HMM is built from [1]

There is however a wide array of different types of Hidden Markov Models since
the definition allows for many different types of models. The most usual case is
that the number of states is discrete and the amount is determined beforehand but
there are other methods which do not rely on these assumptions. By having a fixed
amount of states the transition and emission matrices are easily calculated with
some algorithms which will be presented later on, however, the assumption of a
fixed number of states is not always suitable.
What kind of Hidden Markov Model model one should choose depends on the data.
If the data follows a Gaussian distribution one can choose a simpler model, which
can easily be implemented via packages such as hmmlearn, which originally was a
Scipy package in Python and more information can be found in [13]. But if the data
follows a more complicated distribution, such as a multi modal distribution, one
needs to implement a more complicated model to catch the structure of the data. If
one chooses a model like this one cannot reside to already built models, instead one
need to build a bespoke model.

4.3.1 Sequential Monte Carlo (SMC)
Sequential Monte Carlo methods are used for filtering, these methods are used in
statistics to remove features from an observed signal which are unwanted. Examples
of this could be observation noise in a data set or in this case extract the latent state
from observations. So a SMC is a class of algorithms for statistical estimation of
internal states of a process which have some noise.
SMC is preferred over Gaussian filtering methods when the distributions are multi-
modal or discrete, in these cases the Gaussian methods are poor approximations
according to Särkää in [14].
The general idea behind Monte Carlo methods is that one sample independent sam-
ples Xt from π(X|Y ), i.e. the posterior density. Then one can estimate the expected
value of E(f(x)|y) where f() is an arbitrary function and N is the amount of samples
such as

E(f(X)|Y ) ≈ 1
N

N∑
i=1

f(X(i)) (4.18)

But often one cannot sample N independent samples from a distribution. Instead
one can use Importance Sampling which utilizes an approximate distribution called
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Importance Distribution which is denoted p(x|y). Then it can be shown that the
expected value of the posterior density is

E(f(X)|Y ) ≈
N∑
i=1

w(i)f(X(i)) (4.19)

where

w(i) = 1
N

π(X(i)|Y )
p(X(i)|Y ) . (4.20)

But this method does not work for sequential data which is the main scope of the
thesis. Instead one uses Sequential Importance Sampling to evaluate the expected
value of the posterior density. This method is used to for models which can be
expressed such as

Xi ∼ π(Xi|Xi−1) (4.21)

Yi ∼ π(Yi|Xi).

The expected value of the posterior density, where k is the time step, becomes

E(f(Xk)|Y1:k) =
N∑
i=1

w
(i)
k f(X(i)

k ) (4.22)

where

w
(i)
k ∝

π(Yk|X(i)
k )π(X(i)

k |X
(i)
k−1)

p(X(i)
k |X

(i)
0:k−1, Y1:k)

w
(i)
k−1. (4.23)

The weights in eq. (4.23) do not sum to one but one can normalize the weights to
get this property.
This method often have a degeneracy problem, this means that many particles have
near a zero weight. To avoid this in SMC methods one uses Sequential Importance
Re-Sampling where one replaces the old N samples for each time step with N new
samples.
It is in this fashion SMC methods work, by utilizing Monte Carlo methods for
sequential data where one av avoids the issue of not being able to sample independent
samples from the distribution.

4.3.2 Bootstrap Filter
One of the simpler Sequential Monte Carlo methods is the Bootstrap Particle Filter
which will be used in this thesis. This is a good choice since if a system is not
Gaussian or have linear emission many filtering methods fail to work as described
by Särkkä in [14]. Since the thesis aims to not introduce restrictive assumptions
on the system, such as linearity or Gaussianity, the usage of the Bootstrap Filter
becomes natural. By using the Bootstrap filter one can avoid making any of these
assumptions.
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Figure 4.2: Illustration of how a bootstrap filter works from [1]

The main family of Sequential Monte Carlo methods is the Sequential Importance
Sampling and this method is introduced in [15]. But this method fails to handle
the degeneracy problem which can occur if some or all of the particles in the filter
have close to zero weight. This can be handled by another method called Sequential
Importance Re-sampling (SIR). There is a wide array of flavours of SIR methods
but in this instance we will only consider the Bootstrap Particle Filter.
The result from a Particle Filter an estimation of a sequence of hidden states given
a sequence of observations and a predefined model. The important thing to notice
here is that it estimates a sequence of states, this is vital since time series can often
be path dependent, i.e. the path of which states occur matter.
The outline of the algorithm can be seen in algorithm 2. An illustration of the
bootstrap filter and how it works can be found in fig. 4.2. The illustration shows how
one samples particles and then calculate the importance weight after each instance.
The algorithm which governs the bootstrap filter is specified in [16]. One should note
that one issue with bootstrap filters, and all other particle filters, is that a bespoke
solution is almost always required by the user. So there is no quick and easy way to
important it but on has to hard code a new filter for each process. In algorithm 2 the
Bootstrap Particle Filter is outlined and the Categorical Distribution is a generalized
Bernoulli distribution where the variable can take any of k categories with a certain
probability.
There are some quantities which needs to be known beforehand and these are π(X0)
and π(Yt | Xt). The idea is to view the observed data Y as a function such as
Yt = Xt + N (0, σ2) where the parameters are set from the data. The stochastic
process Xt is most easily seen as a model for the process, which should be built
separately. Then one can model the process such as π(Yt | Xt) = N (Xt, σ

2) which
means that one just needs to calculate the probability density function.
To estimate π(Xt|Xt−1) one can assume that Xt = aXt−1 +N (0, σ2), or just forward
sample the model we have built. The vital part of the Bootstrap Filter is the weight
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Algorithm 2 Bootstrap Filter
1: At t = 0 initialize:
xi0 ∼ π(x0) for each i = 1, ..., N . Assign wi0 = 1/N

2: for t=1 to T do
3: Resampling Step: ait ∼ Categorical((W j

t−1)Nj=1)
4: Propagate Forward: xit ∼ π(xt|xa1

t−1)
5: Compute Average of Hidden State: π(xt−1|yt−1) ≈ 1

N

∑
iWt−1(xt−1)

6: Evaluate W̃ i
t = π(Yt|X i

t) and normalize W i
t = W̃ i

t∑N

j=1 W̃
j
t

return π(x|y)

that is assigned to each particle since this determines that hidden state, the drawback
of the method is that this part can often be close to zero. This is the case since yt+1
in eq. (4.24) can be far from the estimated latent state for that time partition.

xit+1 ∼ π(xt+1 | x̃it)

wit+1 = π(yt+1 | xit+1) (4.24)

The higher the assigned variance of the emission density in eq. (4.24) the lower the
probability of close to zero weight for the particles. But if one assigns a very high
variance for the distribution, almost all particles will have the same weight. This
would then render the bootstrap filter worthless, so the choice of the variance for
the emission density will be an important aspect of the model fit.
The Bootstrap Filter is a very simple particle filter and can be implemented with-
out much effort. With this simplicity comes some drawback such as its inefficient
importance distribution π(Xt | Xt−1). The consequence of this inefficiency is that
one may require a large amount of Monte Carlo samples for good estimation results.
These aspects are discussed in depth in [14]. One thing that needs to be monitored
with a particle filter is the concentration of weights among the particles. There
is a possibility of clustering of weights such that only a few particles carry all the
weights. This is not wanted since this means that there will be a more random error
in the filter and this will yield inconsistent results.
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5
Methods

In this part of the thesis the methods and algorithms which were introduced in
Mathematical Background will be implemented and fitted to the observed data.The
data is used to fit the Hierarchical Bayesian Model which will be done with some
Markov Chain Monte Carlo Methods and some analysis of the convergence of the
chains.
The Particle filter will then be used with the fitted cash flow model to estimate
the latent process. All of the methods are implemented in Python but will only
be shown in pseudo-code. The data in this part comes from a single company for
illustration purposes, the methods have however been implemented on the full data
set. Not all methods introduced in the section above will be implemented, only the
ones that were found useful for this specific data set and aim.

5.1 Model Building
The model building was done in a Bayesian hierarchical manner. Transactions and
sums are being viewed as separate processes and comes from different distributions
and will be the main features of the model. The transactions will be viewed as
discrete observations while the sums will be seen as a continuous process.
The two processes, transaction counts and transaction sums are assumed to be
independent, this assumption has also been used in [4] with success.
All of the Markov Chain Monte Carlo algorithms were implemented with the python
package PYMC3 which allows the user to build a wide array of algorithms in a
modular way with different underlying distributions that can be hierarchical, as
described in [11]. The package is open source and give an opportunity to use powerful
algorithms without having to build new samplers for each new model. The current
drawback of PYMC3 is that it does not use the GPU of the computer which makes
the methods take quite some time to run.

5.1.1 Model Architecture
In section we will specify the model in detail. We first describe a model for the
cash-flow without observation error. We model the cash-flow as follows.
We model the times of positive and negative transactions as independent Non-
homogeneous Poisson processes, where we denote by N+(t) and N−(t) to be the
number of events up to time t (respective), see eq. (4.2), where time is measure in
days, so t ∈ [i− 1, i) are times during the i’s day, i ∈ N.
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Si = N+(i)−N+(i−1), is the number of random time points of the non-homogeneous
Poisson process during day i with a positive transaction. Therefore

Si ∼ Poisson(λp(i)) (5.1)

where λp(i) = Λ(i)− Λ(i− 1).
Qi = N−(i)−N−(i−1) is the number of random time points of the non-homogeneous
Poisson process with a negative transaction which is defined as

Qi ∼ Poisson(λn(i)) (5.2)

where λn(i) = Λ(i)− Λ(i− 1).
The size of the positive and negative transactions are assumed to be independent.
The positive transaction size are modeled to come from a mixture of two Gamma
distributions, which is a bimodal distribution, this is in line with our empirical
findings. The distribution of the positive transaction size Kk

i , the kth transaction
of day i, has distribution given by

p ∼ Dirichlet(α) (5.3)

κ|p ∼ Binomial(N, p)

α1 ∼ Gamma(α, β)

α2 ∼ Gamma(α, β)

β1 ∼ Gamma(α, β)

β2 ∼ Gamma(α, β)

Kk
i |α1, β1, α2, β2, κ ∼ Gamma(ακ, βκ)

where α is the amount of mixture distributions, which in is this case is 2.
The negative transactions are modeled to come from a Gamma distribution. The
negative transaction size Lki is defined as

βn ∼ Gamma(α, β) (5.4)

αn ∼ Gamma(α, β)

Lki |α, β ∼ Gamma(αn, βn).

The cash flow on day i is the sum of all transactions done on day i and denoted
as Ci. Kk is the kth positive transaction on day i and Lk denotes he kth negative
transaction on day i. Therefore

Ci =
Si∑
k=1

Kk
i +

Qi∑
k=1

Lki . (5.5)

The total accumulated cash flow at time i is said to be Xi and is defined as

Xi =
i∑

k=1
Ck (5.6)
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Note that we can sample Xi conditional on Xi−1, that is we can sample from

Xi ∼ π(Xi | Xi−1). (5.7)

We consider the daily data (after pre-processing) to be accumulated the sum of
positive and negative transactions each day, observed with error. Hence

Yi = Xi + εi. (5.8)

where εi is normal distributed with mean 0 and variance σ2 and Xi is the latent
state at time i.
This has the effect of smoothing the (now latent) process Xt conditional on the
observations: the samples of the posterior distribution of X tend to be smoother, as
part of the daily variation is absorbed by the noise quantities then they would be if
fitting the process X directly to the observed data.
The non-normalized weight of the particles in the Particle Filter is calculated, where
i is the index of particles such as j = {1, ..., N} and N is the number of particles, as

W̃i ∼ π(Yi | Xj
i ). (5.9)

This leads to

π(W̃i) = N (Yt;Xt, σi) (5.10)

The normalized weights Wj are the evaluated to be

Wj = W̃j∑N
j=1 W̃j

. (5.11)

5.2 Inference Procedure
This section introduces how the inference of the model will be conducted for the
transactions and the transaction intensity.

5.2.1 Modelling of Transactions
It was further shown in the data analysis that the amount of transactions seem to be
time dependent. The majority of the transactions are being made at the beginning of
the month, this characteristic is something that ought to be captured in the model.
For the intensities λp and λn of the NHPP we partition the month into two parts,
and set λ constant on each part. The partition was chosen such that 50% of the
transaction are being made on average in each part.
We estimate λp and λn separately by the following procedure. It is enough to
describe it for λ corresponding to the first partition of the positive transactions.
The other intensities are estimated similar.
We denote the days belonging partition 1 by P1.
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The denote positive transactions Si for days i ∈ P1 by assumption

Si ∼ Poisson(λ). (5.12)

This can generalized for any partition. The prior used is a gamma prior such as
λ ∼ Gamma(1, 1) for all the partitions. Then the likelihood becomes

π

∑
i∈Pi

Oi|λ

 = e−|P1|λλ
∑

i∈P1
Oi∏

j∈P1(Oj!)
(5.13)

It can then be shown that the posterior distribution π (λ | O) is distributed such as

Gamma
 ∑
i∈|P1|

Oj + α, |P1|+ β

 (5.14)

This closed form expression is possible due to the Poisson-Gamma conjugacy.
This conjugacy can be use to estimate the intensities assuming no observation noise,
but also as step in a Gibbs sampler in the full model assuming observations of Yi.

5.2.2 Modelling of Sums
Is was assumed that the positive sums are bimodal distributed with two different
gamma distributions. These hyper parameters are being estimated the NUTS algo-
rithm and the hierarchical structure of the bimodal gamma distribution are given
in eq. (5.3). In this setting αp and βp are priors for the distributions, p is Dirichlet
distributed where α = 2 which means that it is a Binomial distribution and N is
the amount of days in the data set.
The negative sums were shown in the data analysis not be governed by a mixture
distribution but generally something that looks like an exponential or Pareto dis-
tribution. The estimation of this distribution is done in the same way as for the
mixture distribution but with a more simplistic architecture.
There is no nice conjugacy for for an unknown α and β,such as it is for the Poisson-
Gamma conjugacy above, instead on can run the NUTS algorithm for many iter-
ations. The proposal in the NUTS algorithm can also be used as a proposal in a
Gibbs Sampler, sampling the joint posterior of parameters and latent path X from
observations Y .

5.3 Estimation Results
The results of the estimation of the distribution are shown below with a discussion
regarding the settings of the code and the choice of priors. All of the computations
were run one a Dell with an Intel Core i7-870H CPU with 16 GB RAM.

5.3.0.1 Toy Example: Gamma Mixture

To illustrate the method 500 data points are generated from a mixture of two gamma
distributions. 70% of the data comes from the Gamma(1, 1) and the remaining data
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Figure 5.1: Histogram and density plot of real and estimated data.

Variabel Mean SD HPD 3% HPD 97%
q 0.290 0.024 0.244 0.335
p 0.710 0.024 0.665 0.756
α1 0.907 0.103 0.722 1.105
α2 26.492 2.231 22.602 30.838
β1 1.004 0.215 0.627 1.413
β2 6.650 0.553 5.594 7.653

Table 5.1: Statistics for the NUTS algorithm

points comes from Gamma(30, 7.5). The priors are set to be p ∼ Dirichlet(2),
α1 ∼ Gamma(1, 1), α2 ∼ Gamma(20, 1), β1, β2 ∼ Gamma(1, 1). 4000 samples
are drawn with the NUTS algorithm, 4000 tuning samples are being used as well,
this makes it easier to get convergence of the chains. The results can be seen in
table 5.1, HPD means Higher Posterior Density and is an interval for the value of
an unobserved parameter. As one can see the estimated distribution is very close to
the true underlying distribution. In fig. 5.1 it is obvious that the estimated density
corresponds very well to the actual data.
An important part in MCMC methods is that the chain converges, this can be
checked by visual inspection of the trace plots of the chains. In fig. 5.2 one can see
the two of each variable which were estimated with the NUTS algorithm. It is clear
that the chains converge quickly and there seems to be a good mixture of the chains.
One should note however that there might be divergences, i.e. that the chain fails
to converge, in the chains on occasions so therefore should one always evaluate the
chain performance.
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Figure 5.2: Chains for NUTS algorithm

5.3.1 Settings
There are some aspects of every MCMC sampler that needs to be evaluated. These
are Burn-in, acceptance rate and tuning and as with any Byesian Model one needs
to set priors. The general idea of this thesis is to sample enough to make sure the
burn in does not have an impact on the sampler. The acceptance rate is directly
proportionate to the step length of the sampler and since the step size is determined
automatically by the NUTS sampler give an acceptance rate one can modify the step
length by modifying the acceptance rate. If one increases the acceptance rate the
step length will decrease. The default acceptance rate for the NUTS sampler is 80%,
which is used for the non-mixture models. For the mixture model, which is more
problematic, an acceptance rate of 95% is used since this decreases the step length.
However, this does not have to be the actual acceptance probability. For problematic
distributions is might be considerable less, but anything between 20% and the target
acceptance is to be considered acceptable. If the acceptance probability is low one
just have to increase the sampling so that one get large enough set of points.
When one is working with a complex and problematic distribution having a non
informative prior might lead to the divergence of the chains in the sampler. When
this occurs it might be helpful to give a somewhat informative prior to the sampler.
Since a weakly informative prior is needed for the model one might need to set a
unique prior for each company in the dataset.

5.3.2 Gamma Distribution - Negative Sums
The negative sums of the data set are being modeled as a gamma distribution, the
estimation is being done with the NUTS method with a uninformative prior for both
α and β. The prior is set to be Gamma(1, 1) for both. The model is similar to 5.3
but the model is not bimodal, the full model for the negative sums is outlined in
eq. (5.4).
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Figure 5.3: Chains for NUTS algorithm for the gamma

Variabel Mean SD HPD 3% HPD 97%
α 0.701 0.038 0.629 0.772
β 2.95 ∗ 10−5 0.00 0.00 0.00

Table 5.2: Statistics for the NUTS algorithm for gamma

The method does not seem to need any weakly informative prior in practice since the
data is well behaved. The estimation of the parameters for the gamma distribution
takes about 1 minute to estimate with the NUTS sampler. The result for one of
the companies can be seen below in table 5.2. The chain convergence can be seen
in fig. 5.3. The convergence indicates that we have found a good estimate of the
underlying distribution.

5.3.3 Gamma Mixture - Positive Sums
During the data analysis it was shown that the positive sums had clear signs of a
mixture distribution. To be able to estimate the true underlying distribution one
has to make a series of assumptions. The assumptions for the positive sums are
derived from the data analysis where it was deduced that the distributions seems to
be bimodal and seems to follow something similar to a gamma distribution.
The first assumption that the distribution is a bimodal one can easily be changed
and the gamma distributions is a very versatile one which can take many different
shapes, so the assumptions are not limiting for the model. The chains for one
company from the model simulation can be seen in fig. 5.4, as one can see the chains
are well mixed, the numerical results are shown in table 5.3.

5.4 Non-Homogeneous Poisson Process - Trans-
actions

The estimation of the NHPP was done using the NUTS method. This method
is overly powerful for this simple problem where a simple Maximum A Posteriori
(MAP) method would work just fine. The method was however already implemented
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Figure 5.4: Chains for NUTS algorithm for the mixture of gammas

Variable Mean SD HPD 3% HPD 97%
q 0.94 0.02 0.91 0.07
p 0.06 0.02 0.03 0.09
α1 38.53 0.38 37.81 39.25
α2 2496.97 7.84 2482.09 2511.39
β1 0.000745 0.00 0.00 0.00
β2 0.78 0.00 0.77 0.79

Table 5.3: Statistics for the NUTS algorithm for gamma mixture
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Figure 5.5: Chains for one of the rate parameter using the NUTS algorithm

Variable Estimate
λPos1 0.712
λPos2 0.139
λNeg1 0.851
λNeg2 0.410

Table 5.4: Statistics for the NHPP parameters

for the other methods and was therefore reused. The NHPP was defined as two
different homogeneous Poisson processes which is shifting depending on which part
of the month the current day is. This partition is unique for each company and is
decided by calculating the partition where 50% of the transaction are being made
in each partition historically.
So the transactions of each company will be modeled as a mixture model of four
different homogeneous Poisson processes, two for the positive transactions and two
for the negative transactions. So these four homogeneous Poisson process make up
a two non-homogeneous Poisson process. The result of the sampler for one of the
processes are displayed in fig. 5.5 and the rate parameter for each of the four Poisson
processes can be seen in table 5.4.
As can be seen there is a good mixture of the chains and there is significant dif-
ference between the rate parameters of both the negative and positive sums. This
strengthens the view that there is a inter monthly seasonality of the transactions.

5.5 Bootstrap Particle Filter
The hidden state which will be interpreted as the financial health of the given
company is estimated through a Bootstrap Particle Filter and this method allows
for non-linear and non-Gaussian emissions. The particle filter is set up by using the
cash flow as an observed state which is denoted as Yt for time t. The cash flow is
then assumed to follow the the model Yt = Xt + N (0, σ2

ε ) where Xt is the latent
state.
The initial state X0 is assumed to be identical as the first cash flow data point. The
transition density is π(Xt|Xt−1) and a random sample from Xt is given from forward
sampling from the model of the cash flow which were introduced above.
One assumption that is made with this model architecture is that the model is more
reliable than the observations which means that it assumes that there are some
significant observations errors. These observation errors can have many sources but
does not need to be identified, but some potential errors is misreported numbers.
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The assumptions for the bootstrap filter is very simplistic and might miss some
important features. But in lack of better modelling these assumptions were made
to make the model transparent.
In the bootstrap filter only the variance of the emission needs to be set. These
properties can be estimated with a sample of X and a sample of Y as described in
eq. (5.15).

Yt −Xt ∼ N(0, σ2
ε ) (5.15)

The obvious issue with this method is that one needs the latent state to estimate
the variance , but at the same time one needs the variance to estimate the latent
state. This creates a circular argument which leads to a Münchhausen trilemma.
One solution to this problem is to assume a variance which has been done in this
case. Another way to do this is a more robust way is to use a Gibbs sampler in the
bootstrap filter to estimate the variance, this method will be discussed later on.
Since the variance cannot be estimated from the latent state it has to be assumed. As
an initial choice the standard deviation of the observed data was chosen. This choice
is based on the assumption that the distribution of the hidden state reassembles
the distribution of the observed state. A good guess is that the observed state
reassembles the hidden state and therefore one can make an argument that a good
guess of the hidden states variance is the same as the observed state.
The amount of particles was set to 4000 since this creates a good trade of between
robustness and run time. A general heuristic is that one should use at-least 1000
particles in a bootstrap filter. The only trade-off with choosing a larger amount of
particles is that the time of computation of the particle filter increases. So if one
chooses an unnecessary large amount of particles the computation will take a longer
time. The needed amount of particles can however differ between different data sets,
so one should monitor the variance of different estimations of the latent state. If
the simulation differ from each other in a meaningful way it is an indication of high
variance estimates which are discussed in [6]. If this is the case one needs to either
increase the amount of particles or choose a different model.
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Results

The results of the methods which were implemented in the previous chapter are
presented in this chapter. The results consists of a cash flow simulation model and
the state estimation of the financial health where the Cash Flow model is used. It
should be noted that this estimation is not a prediction of any sort but is only an
estimation of a latent state of an already observed time series. The results shown
below is of a single company but the results are very similar throughout the data
set.

6.1 Cash Flow Model

The cash flow is modeled with the methods which as introduced in Methods. First
is the transactions per day modeled as a Non-Homogeneous Poisson Process, the
transactions per day are being split by the sign of the cash flow (positive or negative)
and the temporal structure is being taken into account by a partition of the month.
Then is the transaction intensity modeled by two different processes.
The positive transactions are being modeled as a hierarchical Gamma mixture dis-
tribution while the negative sums are being modeled as a hierarchical gamma dis-
tribution. The cash flow model can be used as a prediction tool since the forward
sampling of the model creates an array of potential outcomes, an example of this
can be seen in fig. 6.1.
It should be noted that there are some problematic properties of the cash flow model,
one of those things is that the model can simulate the transactions in a way that it
becomes very unbalanced. An example of this is that the model does not exclude
the possibility that one have three times the income but no expenses during some
period of time.
Another aspect of the model which needs to be discussed is that if one would run a
t-test of the final cash flow amount one would not be able to say that the final result
is not significantly different from 0, this however does not mean that the model is
insufficient. It can be the case that since most of the companies in the data set
mostly break even and the best naive prediction of the cash flow is unchanged over
the time period. The explanation for this phenomenon is that there is an incentive
for the individual business owner not to make to much of a profit, or any profit at
all, due to tax reasons.
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Figure 6.1: Forward sample of the Cash Flow Model in SEK

6.2 Particle Filter Implementation
In fig. 6.2 on can see the comparison of the observed cash flow and the estimates
latent state estimation. As one can see the observed cash flow is much almost
unchanged during the cycle while the hidden state seems to indicate a deteriorating
financial health.

Figure 6.2: Hidden State compared to observed cash flow for an individual
company

The hidden state is calculated using the Maximum A Posteriori (MAP) estimate of
each parameter in the cash flow model. Then each particle in the filter is weighted
by importance for each time step, where the importance is evaluated by π(Yt|Xt).
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The result of the particle filter with a discrete state is shown in fig. 6.3. The states
has been normalized and smoothed so that one can get a better interpretation of
what the states are. This is done since a meaningful interpretation of the hidden
state in this setting could be its derivative, i.e. is the financial health improving
or deteriorating. Further, there is an indicator function showing -1 if the state is
outside 1.5 standard deviation from the mean, 0 if it is within 1.5 standard deviation
and +1 if it is outside 1.5 standard deviation on the positive side.
The interpretation of the particle filter could that when the hidden states are trend-
ing upwards, or are in state 1, the company is doing better give all other observations
for that specific company. This is might be meaningful since the cash-flow is a very
noisy process and a small different in the hidden state might only be confusing for
the user.

Figure 6.3: Particle Filter for an individual company

The Bootstrap Particle Filter was built using the method presented earlier in the
thesis. There are a few parameters which needs to be tuned in the model and that is
the starting value, the driving noise and the amount of particles. The initial hidden
state is set to be equal to the first observed state and the driving noise is set to
be normal with the same variance as the observed data. The variance of the latent
state was estimated to be equal to the variance of the observed state. The number
of particles should be set such that not just a few particles carries all weight.
The filter is unstable with a low amount of particles since this lead to high variance
between the estimates, after calibrating the number of particles to 4000 the results
became more stable. Each run will differ slightly from the previous one since this
is a stochastic process. This simulation takes about 2 minutes to run for the whole
sequence of observations.
Usually one validates a statistical model with some sort of train test split but since
Hidden Markov Models is an unsupervised method, there is no "target", one cannot
evaluate the model in the usual way. In this case one have to rely on the theory
behind the method as use common sense to determine if the model is accurate or
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not. In more detail, the Hidden Markov Model aims to estimate a hidden state, i.e.
a state which is never observed , so there is no way to measure the accuracy of the
hidden states. This is one of the obstacles in using this kind of model.

6.3 Comparison of Markov Model and Hidden Markov
Model

Since the Hidden Markov Model is a more complex version of the already familiar
Markov Model it might be the case that the Hidden Markov Model just adds un-
needed complexity to the model. To investigate this one can compare the Hidden
Markov Model to a Markov Model and see if there is a difference.
As one can see by allowing for a dynamic latent state one capture some dynamic
of the time series which the fixed state model does not. This can be seen by the
significant difference between the two models in fig. 6.4.

Figure 6.4: Illustration of a Fixed State Hidden Markov Model

From this comparison one can conclude that a Hidden Markov Model adds informa-
tion and is able to explain more of the observed data. So therefore it can be said
that there is some latent nature in the time series. One should however recall that
the latent nature might not have a clear causal explanation, but rather one can just
say that there is one.
One aspect of the latent structure is that it seems to be mean reverting throughout
the data set. What this means is that the latent structure seems to drift towards
the mean when it is either above or below the mean. If one keeps the intended
interpretation that the latent state can be interpreted as some measure of financial
health, then one can say that a company that is doing very well will soon be doing
less well and a company that is doing poorly will soon be doing better.
There is however one flaw of the interpretation above and this is because the data
has a survivor-ship bias, which was discussed as a potential flaw in the data analysis.
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Since each company in that data set have not ceased their operations there is no
data on any potential bankruptcies. So the mean reverting property of the financial
health might only be a product of the survivor-ship bias in the data.

6.4 Potential Model Extension
It has been mentioned that this model can be seen as one iteration of a Gibbs
sampler with the prior that the latent state is equal to the hidden state. Another
simplification was discussed in the Methods chapter of the thesis, the assumptions
of the model are very naive and is based on the idea that the hidden state is very
similar to the observed state and that we are more confident regarding the model
compared to the observed data. These simplification will limit the accuracy of the
model.
These simplifications were made since one cannot estimate the hidden state transi-
tion state since it is hidden and since it is hidden the best guess one can make is that
it is similar to the observed state. These assumptions would have less of a influence
on the model if one would build a Gibbs Sampler which would iterate between the
parameter estimation for the cash flow model and the hidden state estimation.
One could say that the current version of the model is one iteration of a Gibbs
Sampler, which was introduced in Mathematical Background, but as with any other
Gibbs sampler one needs several iterations to reach convergence. This model could
be built with PYMC3 which the current model uses.
The Gibbs Sampler could be built by first fitting the data onto the Bayesian Hi-
erarchical Model and then use the model to estimate the hidden State through a
particle filter. Then one adjusts the model by the new estimated hidden state and
then run the particle filter again. By doing this procedure many times one will get
a more accurate estimation.
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7
Conclusion

The main goal of the thesis is to investigate if there is a way to estimate the latent
state of cash flow data while taking some stylized properties of the cash flow into
account. These properties were specified to be the seasonality and latent state was
considered as a continues process while observing discrete cash flow transactions.
The thesis started with a data analysis that showed that there is a strong seasonality
in the number of transactions while the size of the aggregated daily transactions
showed no signs of any robust temporal structure. It was also assumed that the
amounts of transactions and transaction amounts are independent, this is also in
line with [4] where the authors built a similar model but for rain fall data. The
positive sums and the negative sums have very different distributions which was
taken into account.
The model was built by first modelling the cash flow with a Compound Poisson
Process where Non-homogeneous Poisson Processes, Hierarchical Bayesian Mod-
elling and Markov Chain Monte Carlo Methods were used. This model was then
used as a forward sampler in a Bootstrap Particle Filter which then estimated the
latent state.

7.1 Discussion
The cash flow model was built as a Poisson Compound Process where positive and
negative sums were split due to the difference between the distributions. This way
of building the model is similar to the model in [4] but built using the Bayesian
paradigm. The cash flow model showed signs of high variance which might indicate
of a poorly fitted model but could also reflect the fundamental uncertainty that small
businesses face in the economy. However, there are properties of the data which the
model does not take into account, such as it is not in the business operators interest
to make excessive profit, due to tax reasons, but this feature could be added in a
future model.
The Particle Filter implementation shows signs of giving high variance estimates
which means that the Particle Filter might suffer from degeneracy. This was dis-
cussed in [6] and is a well known phenomenon with particle filters. This degeneracy
problem needs to be supervised in future versions of the model.
The results shows that using a Hidden Markov Model makes it possible to find the
signal in the noise for financial data which is discrete and have some deterministic
seasonality. This method might be useful since financial data is notoriously noisy
and many other statistical methods are not fit for this.
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Another result was that there is a latent state which dictates the observations. This
should not come as a surprise since the economy is a complex adaptive system and
have a clear causal effect on a company’s performance. However, the causal effects
can be intricate and hard to define. What the proposed model makes possible is
to define the magnitude of this latent state and how it changes over time, without
needing an explicit understanding of the latent state.
There are currently two drawbacks in the implementation of the methods proposed
in the model. The first drawback is the assumption of the magnitude of noise in the
hidden state, to make it more accurate one would have to come up with a solution
to this problem. The other drawback is that the model’s run time which from data
processing to particle filter takes about 7 minutes. This is done on CPU on a regular
laptop so the run time will decrease if one runs it on a Virtual Machine with a large
GPU.
One could mend the first issue with alternative implementations. An example could
be to implement a Gibbs Sampler which could estimate the the hidden state and its
properties in a better way, this was discussed breifly in Results.
For the results to be more conclusive one would also need an unbiased data set that
includes companies that have gone bankrupt. Without this information one will
always have a biased model which would present the possibility for the company
to go out of business. One would also need longer time frames for the company
data to catch monthly seasonality and yearly seasonality. These seasonal patterns
cannot be estimated with a low amount of data but these patterns surely exists and
knowing them would improve the model.

7.2 Applications
The application for the model could be to estimate how well a company is doing and
use the method as an indicator if any action should be taken by the company itself
or from a third party such as a lending institute. The model could also be used by
the company itself which would makes it possible to take more intelligent business
decisions since it provides insights of the well-being of the company.
The results of this thesis could be used for any kind of hidden state estimation for
noisy time series. Another application could be to see if a financial market have
changed latent state. Both these applications could improve risk management for
the fields.
It could also be used in Bioinformatics to estimate latent states of highly dynamic
systems, such as the human body. Combined with the suggested improvements the
model could be proven to be powerful and solve issues with time series without any
strict assumptions of linearity or Gaussianity which often haunt time series models.

7.3 Future Studies
Some further studies which might be interesting to conduct is if there is a way to
implement Markov Chain Monte Carlo Methods such that the programs could be
run faster. Ideas such as Parallel Programming, Threading and optimizing code
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could be investigated. This would be within the field High Performance Computing
and would make the MCMC methods more available for the industry. This would be
beneficial since MCMC methods offers some unique features which should be useful
for field such as quantitative finance and bioinformatics.
Some other studies which would be useful for the field of Bayesian Statistics is
the development of methods to set vaguely informative priors systematically for
complicated distributions. A systematic way to set priors would make Markov Chain
Monte Carlo Methods more approachable by practitioners.
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