
Development of a web-based card game engine 

Master of Science Thesis in the Programme Software Engineering and 
Technology

ANDREAS THURESSON
LINUS HANSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden,  September 2010



The Author grants to Chalmers University of Technology and University of Gothenburg  the 
non-exclusive right to publish the Work electronically and in a non-commercial purpose make 
it accessible on the Internet. 
The Author warrants that he/she is the author to the Work, and warrants that the Work does 
not contain text, pictures or other material that violates copyright law. 

The Author shall, when transferring the rights of the Work to a third party (for example a 
publisher or a company), acknowledge the third party about this agreement. If the Author has 
signed a copyright agreement with a third party regarding the Work, the Author warrants 
hereby that he/she has obtained any necessary permission from this third party to let Chalmers 
University of Technology and University of Gothenburg  store the Work electronically and 
make it accessible on the Internet.

Development of a web-based card game engine

ANDREAS H.J. THURESSON, 
LINUS K. HANSSON,

© ANDREAS H.J. THURESSON, September 2010.
© LINUS K. HANSSON , September 2010.

Examiner: SVEN-ARNE ANDREASSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden September 2010



Abstract

This report covers the development of a web based card game and is an attempt to 
construct a game that is general enough so that it will be able to encompass all possible 
card games. The report covers the development process, how it was designed and the 
final system produced as well as an analysis regarding mistakes, problems encountered 
and what could be improved. The system was developed using a client server 
architecture and JavaScript together with the library jQuery, which is meant to help 
speed up the development, were used to develop the client. The server part of the 
system was also developed using JavaScript, this was done with the help of Node.js 
which is a system that allows executing JavaScript without a web browser to run in a 
similar way to regular computer programs. The communication between the client and 
the server is done using reverse Ajax with JSON formatted commands through a custom 
protocol. The project was done in part as an attempt to see what is possible in regards to 
developing highly interactive web applications. The project was also a learning 
experience as the previous knowledge of JavaScript was very limited.

Keywords: JavaScript, web, development, game, card, software, ajax, node.js, jQuery

1



Table of Contents
List of abbreviations..........................................................................................................3
1. Introduction...................................................................................................................4

1.1. Background............................................................................................................4
1.2. Purpose...................................................................................................................5

2. Requirements.................................................................................................................6
2.1. Functional Requirements.......................................................................................6
2.2. Non-functional requirements.................................................................................6

2.2.1. Usability.........................................................................................................6
2.2.2. Availability.....................................................................................................6
2.2.3. Reliability.......................................................................................................7
2.2.4. Security..........................................................................................................7
2.2.5. Performance...................................................................................................7

3. Analysis.........................................................................................................................8
3.1. Development Process.............................................................................................8
3.2. Domain Model.......................................................................................................9
3.3. Theory ...................................................................................................................9

3.3.1. JavaScript.......................................................................................................9
3.3.2. jQuery...........................................................................................................10
3.3.3. Ajax..............................................................................................................11
3.3.4. Node.js.........................................................................................................13
3.3.5 APE...............................................................................................................13
3.3.6 Raphaël..........................................................................................................14
3.3.7 Processing.js..................................................................................................14

4. Design..........................................................................................................................16
4.1. Architecture..........................................................................................................16
4.2. Procedure.............................................................................................................17

4.2.1. Tools.............................................................................................................17
4.2.2. Methods........................................................................................................20

4.3. Detailed design.....................................................................................................21
4.3.1. Interaction....................................................................................................23
4.3.2. Communication............................................................................................24
4.3.3. Security........................................................................................................25

5. Results.........................................................................................................................28
5.1. System description...............................................................................................28
5.2. Project evaluation.................................................................................................30
5.3. Future work..........................................................................................................31

2



List of abbreviations

DOM: Document Object Model.
JSONP: JSON with Padding, used by web pages to request JSON data from other 

servers than the primary one.
W3C: World Wide Web Consortium.
DOS: Denial of Service.
Mutex: Mutual exclusion, used to make sure two or more entities are not able to 

use a specific resource at the same time. 
Spoof: To conceal your identity and/or take someone else's.
HTML5: New version of HTML.
XML: Extensible Markup Language is a protocol for storing and transporting 

data.
Bitmap: Bitmap is a way of representing images.
HTTPS: HTTPS is like HTTP but with encryption.
Acid2/3: Is a test for web browsers to determine if they are following the 

standards.
CSS: Cascading Style Sheets is a language used to describe the graphical 

presentation and formatting in a document.

3



1. Introduction

This is a report covering the topic of developing a highly interactive web application. 
More specifically this report will attempt to convey why the project was started, how 
the work was done and finally what results were achieved.

This report will detail the development of a card game system meant to, with as high of 
a degree as possible, encompass all existing card games. In short this will be achieved 
by attempting to mimic the possibilities of having a real table and a deck of cards in 
front of you. The resulting system will then be one in which the user dictates the rules as 
well as enforcing them while the system only attempts to provide an environment for 
the games. The system will at the same time facilitate an easy way for the user to, 
through the game, interact with one or several opponents when appropriate for the game 
style chosen. All in all this will be the main goal of the system developed namely a GUI 
that is generalized enough to be able to accommodate many games. When switching 
between different types of games, there will only be minor changes to the GUI for 
example the number of possible players or the option of having a hand of cards.

1.1. Background
In recent years Internet usage has increased greatly and it continues to do so. To 
illustrate this fact one can look at the increase during the period of 2000/12/31 - 
2009/09/30 during which we can see a 380% increase [1] for the number of Internet 
users. From looking at this data the conclusion that can be drawn is that the Internet will 
only keep growing and that at this rate everyone will eventually be using the Internet. 
Already we have seen Internet access getting declared as a legal right [2], which clearly 
show how important the Internet is in today's society.

Following close behind in the wake of this is all new emerging web standards and 
techniques for web development because of the immense popularity of the Internet. 
HTML5 is one example of a new web standard currently being developed, at the time of 
writing it is in a so called "Last call" state [3] meaning its nearing completion. In fact 
some parts of the standard are considered stable enough for implementation in major 
web browsers. With the release of web standards like HTML5 and techniques for use 
during web development a lot of new possibilities opens up for developers.

In the very beginning of the Internet webpages were limited to displaying text, as has 
already been implied web design has progressed at a very quick pace since then. Today 
webpages are much more graphically appealing and the content is much more dynamic. 
Dynamic in this instance refers to, amongst other things, that webpages accept user 
input and has content that automatically gets updated without any user interaction. This 
type of dynamic content opens up all of these new possibilities for developers. This can 
for example be something seemingly simple as a rolling piece of text displaying the 
latest stock price updates for your company. It could also be something a lot more 
advanced with interaction not only with just you and the server but also any other users, 

4



which can lead to web applications like a chat or a multi user whiteboard. This brings us 
to the subject at hand and more specifically the purpose of this project.

1.2. Purpose
The main purpose of this project is to develop a highly interactive web application with 
support for multiple users and the possibility of interaction amongst all the users. 
Furthermore the project will be an attempt to create an application that behaves 
similarly to the regular programs used on a computer e.g. your web browser, image 
editor or instant messaging client. The reasoning behind this is that it would provide you 
with benefits from both types of applications. For example if you could turn an 
application into a web application there would no longer be any need for users to install, 
update or otherwise manage the application since the same application could be 
accessed anywhere and by everyone. While the company providing the application need 
only update the application on their own servers. This of course at the same time opens 
up possibilities for new business models where the users pay for access to the service 
instead of paying for the programs themselves. However, web applications come with 
restrictions, namely that it requires Internet access and a compatible web browser but 
these restrictions can to some degree be limited by for example the use of a new 
technique called web storage [4]. Web storage allows web applications to more easily 
store data on the clientside which in some cases can remove the need for a server, thus 
reducing the need for internet access. One thing that is worth mentioning is that you can 
skip the use of any restricted plug-ins such as Microsoft's Silverlight or other similar 
closed source technologies. This means you will get the advantage of having more 
control during the development and possibly an easier time deploying your system 
when you do not need to install additional software.

One of the larger influences for this work has been the collection of web applications 
developed by Google e.g. Google Docs and Calendar. Because of Google's popularity 
their products are likely to reach a lot of the Internet users. This means that for many 
people Google's web applications might be the first encounter with web applications 
exhibiting the same kind of interaction possibilities as regular computer programs. In 
particular one can look at one of their latest projects Google Chromium OS [5] which in 
short is an operating system built entirely around web applications.

Lastly it should also be noted that this project held interest for us on a personal level in 
part because of the reasons already stated. Since web applications are likely to continue 
to increase in popularity, spending time on a project developing a web application was 
an appealing option. Our education thus far has focused on making us able to adapt and 
solve problems in different situations and programming languages. The creation of a 
web application is new to us and gives us the possibility to do just that, namely learn to 
adapt to a new type of application development. 

5



2. Requirements

Research on existing systems, similar to this project's, laid a foundation for the 
functional requirements. This foundation mostly consists of different types of 
interaction with cards and decks, in order to support a wide array of games. During 
research inspiration was taken from Magic Workstation [6] and Generic Collectible 
Card Game [7], both of which are regular software systems that requires installation. If 
a system contains the functionality of the previously mentioned systems it was 
considered to be able to support plenty of card games.

2.1. Functional Requirements
The website should provide the users with the possibility of creating a user account, 
connected to the account will be game-configurations, e-mail address and other similar 
user specific data. Once signed in on an account, users should be able to create game-
configurations as well as create and import cards. Players should also be able to chat 
with other players in a lobby, when not in a game session. In addition, users should also 
be able to start a new or join an existing game session.

Once a player has joined a game session a number of things to do will be available to 
him. The user should be shown a player area on which he is able to move, select, flip, 
create, remove, rotate and see the contents of both cards and decks. In addition to this 
also be able to change the data of given cards, add, remove and manipulate counters for 
players (counters can for example be used to keep score). A console should also be 
visible at all times when playing, in which messages for actions taken by the players in 
a game should be shown as well as show chat messages from players.

Some of these requirements have lower priority because development efforts should be 
put on creating the functionality needed to be able to play the game. For example, a 
lobby is a nice feature but is not considered to be required. In addition to this, there 
should be focus on making sure the non-functional requirements are met, because the 
result could be a greatly diminished user experience if they are not. More detailed 
requirements that were used during the development can be found in Appendix II.

2.2. Non-functional requirements

2.2.1. Usability

The user should not have to spend more than five minutes to be able to start a game and 
also understand how to invite other players as well as how interaction with the system 
works.

2.2.2. Availability

The system should under normal conditions posses a high availability. Meaning it 
should be accessible to users and not prone to crashing or becoming unaccessible for 

6



other reasons.

2.2.3. Reliability

The system should under normal conditions most of the time perform required functions 
successfully.

2.2.4. Security

User passwords should be stored safely, such that retrieving them is infeasible, even if 
the server is compromised.

2.2.5. Performance

Updating the game-state should not take longer than five seconds. Meaning, five 
seconds from an action is taken the changes should have propagated to all players.

There are more possible requirements that could be added, these were however not 
considered to be as important. Mostly because of the given time frame the project has 
but also the fact that some of the considered requirements would put restrictions on the 
development. These restrictions could result in increased development time and 
possibly divert attention from the critical requirements. 

7



3. Analysis

3.1. Development Process
Previous experience in this area directed the initial investigations regarding what 
development process to use for the project to the various agile processes. The reasoning 
here being that Agile processes are designed with a small group in mind and driven by 
close cooperation within that group. Since this project will consist of only two 
developers being able to utilize the process in a very small group was a very important 
factor. During this selection process many processes were investigated but as already 
mentioned the focus was on agile processes. So following that line of thought the 
processes we investigated more closely were Scrum, feature driven development, lean 
software development, test driven development and agile unified process. Some time 
was also spent investigating individual agile methodologies like the practices of extreme 
programming.

However having looked at the available alternatives the conclusion was that they are not 
optimal in this case with such a small team. When choosing a process you are supposed 
to customize the process to suit your needs but after having looked at the different 
alternatives, there was not one single process that fully match the needs for this project. 
The solution to get around this was to attempt to pick out the parts of one process that 
would suit the needs of the project well and then to do the same for the others, in 
essence combining several of the processes. This meant that the end result was a 
collection of practices which were found to be the most helpful for the development in a 
two man team.

Being a collection of practices it can not be stated precisely what process that was 
followed during the development but the core of the process was meant to be kept agile 
and in line with the agile manifesto [8]. Following are a few examples, to better 
illustrate the actual process, of practices that were deemed especially well suited for the 
project.

First, the practice that is possibly the most well known of all agile practices, pair 
programming. This choice was made mainly for the reasons of better produced code, 
less time spent working on more difficult parts of the code and also to facilitate a shared 
understanding of the code and the entire system. However it was also decided that this 
should not be used at all times, if it was shown to hamper productivity, this can for 
example be the case when implementing trivial parts of the system. In those cases 
working in parallel have the possibility of increasing productivity more than the benefits 
of pair programming would do.

Second, both a class diagram and a domain model was created and although these are 
not strictly agile practices a domain model could in this case work as a so called system 
metaphor. This is something that can be very useful when discussing further 

8



development of the system. The class diagram on the other hand was more of a way to 
construct the initial design of the system and to make sure that the design did not miss 
any important parts. The reasoning was then that since the human brain is much better 
suited for analyzing something if you have a graphical representation to look at. If you 
instead were to attempt to keep track of all the information concerning the system 
design you would likely have a much harder time. This would be even further 
complicated by having to try to explain this mental model to a partner while avoiding 
misunderstandings.

3.2. Domain Model
Figure 3.1 shows the domain model of the 
systems which shows the entities in the system. 
Users of the system should be able to play the 
game through a client, which a user interface is 
considered to be a part of. The table and hand 
are entities where the user places their cards 
and decks. The server should be able to handle 
multiple clients and multiple games at the same 
time, as well as being able to import decks and 
cards into a game from the database. Cardgame 
will identify a group of players, each in the 
same game, and in combination with cards and 
decks this will represent the state of a game. 

3.3. Theory 
The following section contains information connected to this project, this includes 
programming languages, techniques and tools.

3.3.1. JavaScript

JavaScript is an object oriented scripting language primarily used as part of web pages 
and the scripts are either included or embedded inside an HTML document. JavaScript 
supports the same structured programming syntax as C, for example if,while and for 
statements. JavaScript employs dynamic typing, this means that types are associated 
with values rather than variables. JavaScript uses prototype based programming, which 
basically means that inheritance is done through prototypes instead of classes. With 
prototypes you can add a property or method to all instances of an object, as well as 
create subclasses. This could be used on the JavaScript prebuild object String, you could 
for example add a function for printing the string in a special way e.g. upside down, 
backwards or randomly ordered. Objects are associative arrays where values can be 
either added, changed or removed, at runtime. Creating an object is simply done by 
prepending "new" before a function call. With JavaScript one can create mouse events, 
such as mouse over or click, quite easily. It also has functionality for accessing html 
elements such as pictures or frames, which can be used by developers to create highly 
interactive web pages.

JavaScript is normally executed on the client side, and there are many positive things 

9

Figure 3.1. Domain Model



with this. For one, there is a lot of work that can be computed by each client instead of 
forcing the server do the computations. This increases the amount of users a server can 
handle at a time. It also increases how interactive a web page is, when for example 
hovering over drop down menus the server does not need to be involved. The client can 
simply handle it locally and whatever action is to be taken will take place instantly.

Client side JavaScripts does however not only provide advantages but also has some 
downsides. One downside is that it can be used for malicious purposes. JavaScript could 
be used to exploit vulnerabilities in a browser, one example of this is a buffer overflow 
attack. Other possible vulnerabilities can lie in browser plugins, for example video 
players. In other words clients should be conservative with what sites they trust, but the 
problem of security goes both ways. The JavaScript code is sent to the client, and 
because the client controls the execution of the code, the server can not trust that the 
data computed by the client was correctly computed. This limitation forces the server to 
in some cases inspect data supplied by a client if correctness is to be ensured. Another 
thing that should be mentioned is that JavaScripts are run in a sandbox by the web 
browser. The sandbox is there to limit for example file manipulation since most of the 
time this is not something you want a website to have access to. A sandbox is a 
technique that works by encapsulating a program, restricting it to a controlled 
environment.

JavaScript is normally not compiled but simply interpreted in the runtime environment 
supplied by the browser. Google has created a JavaScript engine known as V8 [9], 
which comes bundled with the Google Chrome Browser. V8 compiles JavaScript's to 
machine code, along with other optimizations this increases the speed at which 
JavaScripts run. V8 might not be suitable for all applications as it was specifically 
designed for high performance on large JavaScript applications.

JavaScript is widely supported by the major web browsers, however it is not strictly 
limited to being executed on web browsers where it's restricted by the JavaScript 
sandbox. JavaScript can also be used for other purposes, like for instance as a part of 
Firefox add-ons or as one of the supported scripting languages in OpenOffice. With help 
of the Windows Script Host one can also run scripts outside of the safe sandbox, able to 
run them as any application with similar functionality as a .bat or .vbs file. It is possible 
run JavaScript on a server as well, one can for example create JavaScripts and let them 
run as a server by using a system called node.js. This means that you can have 
JavaScripts running on both the client side and the server side which can simplify 
communication. Node.js will be explained in more detail later in section 3.3.4.

Because of the popularity of JavaScript a lot of frameworks and libraries have been 
developed over the years. The following sections will cover some of the more relevant 
ones, most of which were considered as a possible resource for this project. 

3.3.2. jQuery

jQuery is one of the many JavaScript libraries and it focuses on handling events, 
animation and user interaction [10]. Developers use it because it quite significantly 

10



simplifies the coding process, many things can be done with just a few jQuery calls. As 
an example of how jQuery can simplify development there is something called a 
selector with which you can easily select an object of an HTML document, after 
selection it is just as easy to bind events or animations to it, modify its attributes or 
change the contents of it. An example of an event could be when you click on a given 
object.
Figure 3.2 shows an example of how to hide all the div tags in a document. The 
JavaScript code starts of by searching through the document for div's and stores the list 
in the variable 'divs'. By looping through all the elements and changing the css display 

style to "none" the elements are hidden. With jQuery one can do the same thing with a 
much smaller amount of code. This illustrates the power of jQuery, animations for how 
the elements disappear is just as easy to add. The jQuery code also shows how to use the 
powerful selector, although this is a quite simple example selectors gives you a lot of 
ways to select precisely the elements you want to access.

3.3.3. Ajax

To be able to construct a more dynamic website you will need a technique for 
communicating with the server through JavaScript, otherwise you would be limited to 
only receiving new data when the page is reloaded. This is where the Ajax technique 
comes in, Ajax is short for asynchronous JavaScript and XML and by using Ajax your 
JavaScripts can request data from the server without the need to reload the page. This is 
done by creating something called a XMLHttpRequest which in turn lets you send a 
request to the server.

It is possible to take one more step to make the website even more dynamic and this can 
be done by reversing the Ajax technique. This means that when something happens on 
the server the client will know right away and update the web page accordingly. 
Something in this case could for example be when the price changes on your favorite 
stock exchange website or another client signs on to the community website you are 
currently using.

11

JavaScript
 var divs = document.getElementsByTagName("div");
 for(var i = 0; i < divs.length; i++) {
     divs[i].style.display = "none";
 }

jQuery
 $("div").hide();

Figure 3.2. JavaScript and jQuery example.



There exists several different 
methods for utilizing Ajax like 
this, one way of summarizing 
them is to arrange them under 
three different categories polling, 
long polling and streaming. The 
first one, polling simply works 
as follows, the client sends a 
request to the server, when it 
receives the reply the client 
process the reply and 
immediately sends another 
request. This way it constantly 
asks for new data it wants or 
checks if the data has been 
changed, understandably the 
result will be many requests 
being sent to the server. 
Sometimes this can mean there 
will be a delay of up to the same 
amount of time, that there is in 
between two requests, before the 
client recieves data that has been 
updated by the server. This can 
be seen in the polling example in 
figure 3.3 the first time new data 
is received by the server. 

The second one, long polling 
uses a different approach, instead 
of the client continuously 
checking for updates by sending 
a lot of requests to the server 
only a single request is sent. For 
this to work the server keeps this single request open and does not respond to it 
immediately instead it waits until it has some data to send back to the client. This means 
the server will be able to push data to the clients and there will be a lot less traffic 
needed as illustrated by the long polling example in figure 3.3. It could even mean that 
you get a faster response from the server partly because the workload in terms of 
requests needing to be sent out is reduced. Another reason is that because the server will 
know precisely when new data arrives it can send the data to the client right away. 
When the client finally receives the response from the server it will again send a new 
request but in contrast to the first polling example this will only happen once for each 
piece of data sent.

Then finally there's streaming, to illustrate streaming one example of how it can be 

12

Figure 3.3. Illustration of AJAX techniques.



implemented is very similar to long polling. The only major difference between the two 
implementations is that in the case of streaming the connection is kept open. Each time 
new data is received by the client it is processed but since the connection is not closed it 
is possible to receive more data from the server. Figure 3.3 has an example that shows 
how this works. In contrast to long polling this technique saves bandwidth by having to 
send less requests and time by not having to re establish the connection each time data 
should be sent. There is however some problems that can arise with this technique 
because of its implementation. Originally this was not how ajax requests were intended 
to be utilized so you will need to somehow handle cases where the connection is lost. 
This can happen for example if the user clicks the stop button on his web browser. This 
way of pushing data to clients might work better in the future with the implementation 
of web sockets [11] which will work in a similar fashion as streaming. Web sockets is a 
new standard being implemented for creating efficient bi-directional channels for 
communication between a server and a web browser.

3.3.4. Node.js
Node.js [12] is a system that lets you create network programs using JavaScript without 
the need for a web browser. This is done with the help of google's V8 , this as well as 
the use of JavaScript without a web browser was also mentioned in section 3.3.1, to 
provide performance comparable to regular computer programs. Node lets you write 
your program in JavaScript with the help of an API, you can then run the program with 
the help of Node which compiles the program before running it. Node was designed 
with a lot of focus being placed on scalability and to utilize non-blocking calls, for 
example if the Node program was going to preform file operations this will be a non-
blocking operation for Node. Node also has the benefit of only using a very small 
footprint in memory for each new connection. This coupled with the non-blocking 
nature of the design provides a possibility to create programs that are very will suited 
for acting as a backend server for web applications. Because it is also using JavaScript 
as the programing language the communication between the web application and the 
server can become very easy to implement. Node is also well prepaired to handle the 
HTTP protocol which most web applications also use. Node is however still under 
development but it is far enough along so that it would be possible to use it in the 
project. Another thing worth mentioning is that Node gives you full control of the server 
implementation. This is not the case if you were to choose for example APE, that is 
covered in the next section, which provides a full implementation of the communication 
protocoll between the server and the client.

3.3.5 APE
APE is short for Ajax Push Engine and consists of a so called APE server and 
framework [13]. The framework will facilitate communications between client and 
server, in APE's own protocol. This framework however is optional and not needed to 
use the APE server, it is only a tool and can be reimplemented to better suit your needs 
or to better fit together with other JavaScript frameworks. The communication is done 
by a reverse Ajax technique which APE supports, for example long polling, streaming 
and JSONP. APE does not require any installation on the client side since it only uses 
JavaScript and thus supports most, if not all, web browsers.

13



In order to simplify sending data to multiple users you can create so called channels, 
any client who has joined it will be able to send and receive data. Both the commands 
sent to the server and data received are in the JSON(JavaScript Object Notation) format 
where JSON is a an open standard for human readable data. JSON is language 
independent but it is most often used in conjunction with JavaScript. The APE server 
comes with built in commands but it is possible to add your own through server side 
JavaScripts. In addition to this APE also supports MySQL out of the box.

3.3.6 Raphaël
Raphaël [14] is a JavaScript library for drawing SVG (Scalable Vector Graphics) vector 
graphics on web pages. Raphaël also supports VML (Vector Markup Language). 
Internet Explorer alone implements VML and other browsers support SVG. SVG is a 
platform for two dimensional vector graphics and consists of two parts, the open XML 
file format and the programming API. With SVG you can create three different types of 
objects, these are normal bitmap graphics, text and of course vector graphics. In 
addition to this the SVG language also contains basic syntax of PDL (Page Description 
Language) like for example PDF's. In order to better support hard copy printouts a 
specification known as SVG Print is in development [15]. Animations are possible 
through either scripting, css styles through the DOM or by using SMIL (Synchronized 
Multimedia Integration Language). SMIL is an XML markup language for timing 
events, animations and media embedding such as video and audio. ECMAScript is used 
as the default scripting language and is close to the same as JavaScript. The 
performance of SVG is quickly covered in the next section with a comparison to the 
similar technique called canvas of the HTML5 standard.

3.3.7 Processing.js
Processing.js [16] is a ported version of the programing language Processing, which in 
short is an open source programming language with focus on graphics. Processing.js is a 
port taking advantage of the new canvas element [17] that is being introduced with 
HTML5. The canvas element gives you the possibility to render 2D shapes in a defined 
area of your web page. As with HTML5 canvas is a new type of element but it is 
already supported by many of the major web browsers. In contrast to the similar 
technique SVG mentioned above which is based on vector graphics canvas is instead 
using a bitmap. Utilizing a bitmap can mean that you will gain performance in some 
areas but you might also loose some in others. As an example of this one can look at 
rendering times for for objects, a quite large difference can be seen when looking at the 
performance when rendering many objects versus using a larger area for rendering [18]. 
In the case when the number of objects rendered increases the performance of SVG 
starts to degrade however in the second case of increasing the drawing area the same 
can be said about canvas.

Processing.js provides a lot of methods that can be useful when you want to do 
graphical rendering. This can be for example methods for rendering 2D shapes such as a 
line, a rectangle or a triangle it also gives you the ability to render some 3D objects like 
a cube or a sphere. Processing.js provides methods for interaction as well like pressing a 

14



key or clicking the mouse furthermore it also provides many more additional methods 
that can be useful, for example math functions. Processing.js is as its parent Processing 
an open language and it gives you a simple syntax to use for the development of 
anything from a diagram for visualising data to a web based computer game.

15



4. Design

4.1. Architecture
The system's architecture follows the client-server model which is commonly used 
when it comes to network applications. Another possible architecture that was 
considered is the peer-to-peer architecture, which brings benefits such as better use of 
available bandwidth and distribution of computing power. Implementing a peer-to-peer 
architecture could greatly increase the complexity of the system, firewalls might for 
example block traffic and this would need to be worked around. IP addresses for all 
players would have to be known by all clients, thus sending commands to another 
player would be very simple. In comparison to the client-server model quite a bit of 
security is lost as the data sent from a client cannot be trusted, simply because the client 
can be modified. In addition to this Ajax does not support communication outside of the 
website's domain, a solution for this could be a proxy server but the most of the 
advantages would then be lost. Another problem with peer-to-peer solutions is that they 
might require user involvement such as configuring routers or firewalls which is not 
considered a viable solution. With one server there is only a single point of failure, at 
the same time the clients are protected from each other and the possibility for cheating 
can be reduced. Centralization of data ensures that all clients will have easy access to 
the complete set of state data at any point in time, as well as knowing that the state is the 
correct one.

A multitier architecture of the system 
is shown in figure 4.1, in addition to 
the four tiers the figure is also split in 
half with the client to the left and the 
server to the right. A common 
architecture used within web 
application development is the so 
called three tier architecture which is 
the same type we use except for the 
addition of the communication tier. 
This type of architecture produces 
reusable modules and is perfect for 
when there a better library for 
creation and manipulation of the GUI 
has been released. All of the tiers are 
designed so that they can be changed 
or upgraded without affecting the rest 
of the system.

All of the computing and change of 
state will stem from some type of 

16

Figure 4.1. Illustration of the multitier 
architecture.



action coming either from the server or, more likely, the client. Hence the systems 
follows an event driven architecture pattern where the client generates the event in the 
GUI. It is then up to the Controller to decide if the event needs to be forwarded to the 
server, through the communicator, or handled locally. Events generated by other clients 
will be received by the communicator and be processed by the controller. The GUI will 
continuously be updated as events are processed.

The system will be developed as a plugin, such that it is easy to embed it into another 
web page. An example of such is any game site with users and chats that can provide 
matchmaking opportunities for players wanting to use our system. The reasoning behind 
this decision was quite simple. Because we follow a multitier architecture the tiers 
should be quite independent, developing the system as an independent plugin originated 
from this.

4.2. Procedure
During the process of analyzing the available frameworks, tools and techniques in 
preparation for the development possible solutions was discovered. Each choice would 
be a weighing of the strengths of every technique against the potential weaknesses 
found. Following will be a text meant to go into detail about the decisions concerned 
with the design of the software system as well as the motivation and reasoning behind 
the decisions.

4.2.1. Tools
The first decision that had to be made and at the same time possibly the most important 
one was the programming language to be used for the development of the software 
system. This is a very important decision because of the limitations it can place on the 
development but also the benefits it can provide. One benefit can be for example be how 
widespread it is since in the case of it being widely spread it would mean you will have 
access to a lot of work that has already been done e.g. libraries. This in turn might 
provide large benefits since you will have an easier time finding solutions to common 
problems. On the other hand if you run into a problem when using a language that is not 
as widely used you might be forced to solve the problem without any assistance.

For this project the choices were somewhat limited because of the need for the language 
to be able to be integrated into a web page. This means that there were three major 
candidates to choose from, namely JavaScript, Flash and Java applet. All of the three 
candidates are widely supported today, however out of the three JavaScript is the most 
supported since most web browsers support it without the need to install additional 
plug-ins. Flash and Java does require additional software to work which could cause 
some limits for the clients that are able to use the system. Flash is also a proprietary 
technology which could cause additional limits for both users and developers alike. 
From all of this information it was not possible to completely eliminate some 
alternatives. Therefore what likely had the largest effect on the outcome of the decision 
were an interest in developing using JavaScript in conjugation with some of the newer 
techniques made possible through for example HTML5.

17



The next decision in line was if any libraries were to be used. One of the most popular 
libraries for JavaScript is called jQuery, in fact when looking at the 10 000 most popular 
sites on the web as much as 30% are currently using jQuery [19]. Because of a lack of 
experience working with any JavaScript libraries previously this seemed like a very 
good argument for picking jQuery to help simplify development. The reasoning behind 
this is much the same as for why it can be a good idea to choose a popular language for 
development. Since jQuery is so widely used it also has a large community and many 
resources that will be very helpful when learning to work with a new library. 
Furthermore jQuery also has an impressive feature set which serves to convince on it's 
own as can be seen in section 3.3.2 jQuery is not the only option just to mention a few 
there is also Dojo, MooTools and Prototype. These libraries were also investigated but 
ultimately jQuery was chosen because of the reasons covered here and the benefits 
described in the jQuery section.

A great deal of time was also spent researching various libraries meant to help with the 
development of graphical web applications using JavaScript. The majority of the time 
was spent looking at the two competing techniques the first one was SVG, the second 
was the newer canvas element from the HTML5 standard. For both techniques libraries 
were found that provided similar functionality for making the development with the 
specific technique as simple as possible. The first library was called Raphaël which was 
a library for the former technique while the second library called Processing.js was 
implemented using the latter. Both of these libraries are discussed in greater detail in 
section 3.3.6-7 By looking closely at both of the techniques and examples of each the 
conclusion was drawn that SVG with the library Raphaël was the choice that 
performance wise seemed be the best fit for the card game scenario. However further 
investigation was done into the subject and studying of what would be required 
graphically by the card game. This finally resulted in the realization that both of these 
techniques provided much more in terms of graphical rendering than would be needed. 
Because of the relatively simple look of cards and decks of cards it was decided that 
standard HTML combined with CSS and JavaScript would suffice for this project. It is 
very likely that both SVG and canvas also would have worked very well but it would 
have meant a lot of extra work. Extra work in this case would be both learning to work 
with another library but it would also have meant spending a lot more time designing 
each graphical component. With the choice of using HTML with CSS it is possible to 
use the standard components that are provided and to with ease use jQuery to help with 
programming the user interaction.

The use of Ajax also required a decision to be made regarding which of the different 
variations to utilize for allowing the server to be able to push data to a client when new 
data is received e.g. when the server receives a command for moving one of the cards 
from a different client. To be more precise the decision is of which of the so called 
reverse ajax techniques to use of the ones explained in section 3.3.3 Since the system 
potentially will be serving a lot of simultaneous users polling might not be a good 
choice because of the bandwidth requirements. Also because we want to keep the delays 
very low since we are developing a game it would likely be better if the server could 

18



have the possibility of sending out new data as soon as it becomes available. With 
polling this is not the case as the delay will be dependent on a combination of timing 
and the interval for each polling of new data. Timing in this case refers to the points in 
time when new data is obtained by the server. If the server were to get the new data 
right before it receives a new poll request it will be able to send out the new data right 
away. However if it happens right after a request it will be forced to wait for the next 
one.

This leaves the two similar techniques long polling and streaming both of which have 
the benefit of being able to send data as soon as it is received and the mentioned 
bandwidth disadvantages for polling. The reasons behind the final decision to choose 
long polling was firstly that it seemed like that solution would be a bit more robust. This 
is because it would not be as dependent on maintaining an open connection since if one 
connection is lost the server could just respond to the next one instead. Secondly long 
polling follows the standard more closely, keeping an ajax connection open for extended 
periods of time could potentially cause problems with firewalls.

Following from the use of Ajax there was also a need for setting up a server to handle 
the client requests. Either this had to be done by building a server from the ground up or 
finding a finished implementation for a server that will suit all or most of your needs. 
From the start the latter was considered to be the preferable choice of the two 
alternatives. The reason for this was that a server implementation was found that 
seemed to meet all our needs, this server was called APE and is covered in more detail 
in section 3.3.5. However upon further consideration it was decided that Node.js was 
likely a better solution. The reasons for this change was mainly that a quick test of APE 
itself revealed that the usability was not quite as good as was hoped which was needed 
because of how APE deals with session management. From investigating this more 
closely it was then discovered that if multiple clients were launched and then closed 
again, after a while this would prevent further clients from establishing a connection to 
the server before the first ones had timed out.

All of these small problems with APE led to the change of server implementation to 
Node.js. Switching to Node.js also means full control over how the server is going to 
work. This means that the implementation will not have additional features that are not 
needed which could serve to increase performance. It will also lead to a better 
understanding of all parts of the project and Node.js will also provide better possibilities 
to decide precisely how all functions are implemented. This can help to make the server 
and the client work even better together than would have been possible with APE.

Finally a decision had to be made regarding how the system was going to handle data 
storage. The main thing that needs to be stored are decks of cards since it would quickly 
become quite tedious to be forced to manually recreate the deck each time you want to 
play. The different options considered were to use a full fledged SQL database, a more 
simple key-value store or to use our own system and write the data directly to a file. 
Key-value store is simply a system for storing data that that is indexed with a key like 
an associative array. For the purpose of only storing data for decks of cards a very 

19



simple solution would likely suffice although performance of the solution should also be 
considered. The system is meant to be integrated into a larger system which will need to 
keep track of for example user details. This means a more sophisticated solution will be 
a good idea to maintain a more structured data set. For this reason the solution that was 
finnaly decided upon was a MySQL database which will be able to support all the needs 
and enable storing of data in a uniform way. A MySQL database was also chosen 
because of how popular it is and because the development teams familiarity with it from 
before the start of the project.

4.2.2. Methods
This section documents a few additional design decisions that were taken in regard to 
development methods. The first one out of these decisions is concerning standards, and 
browser compliance or compatibility. Ideally compatibility between web browsers 
should not be an issue and this would be the case if all of them followed the same web 
standards, this is however not always the case. For example Internet Explorer which is 
the most widely used web browser has traditionally been considered bad at following 
web standards. This can easily be seen when looking at acid2 or acid3 tests which are 
meant for testing compliance to standards. Firefox on the other hand preforms better in 
these tests and is today the second most popular browser at 25% market share against 
Internet Explorer's 60% [20]. Firefox also allows for using an extension called Firebug 
which can simplify development and debugging. This is achieved by for example 
allowing on the fly editing and making more information easily available when you are 
debugging your code. It was decided that Firefox would be the primary environment 
used for testing the project. This decision was done since it would require a lot of extra 
time to construct work around to patch for example if Internet Explorer is show not to 
follow the standard correctly in some cases.

Since the system is meant to have a lot of user interaction a good user interface had to 
be designed. This was done with the help of simple sketches which helped to give 
insights in both how it could look when it is done and made it easier to spot parts of the 
design that might be missing. The sketch was used to iterate over the design many times 
by making several subsequent sketches until it covered all features in an aesthetically 
pleasing way. The design was also an attempt at making an as simple interface as 
possible as well as trying to make the interaction as intuitive as possible. These sketches 
served as simple prototypes of the system and was used as a basis for discussion about 
what features and functionality that needed be included. Also they were used to weigh 
the different alternatives against each other which is easier to do with a visual 
representation. It was also done to be able to convey the ideas of the different parties of 
the development team in a way that would reduce the risks of misunderstandings. As an 
example the most recent of these sketches can bee seen in figure 4.4, found in section 
4.3.1. 

Because of the agile style of the development process, the small size of the development 
team and how closely the team will work there will be a reduced need for 
documentation. A lot of the documentation that will be done will be in the form of code 
documentation to help with for example code re-factoring. However the same is true for 

20



code documentation as with all other documentation and it will be attempted to in some 
cases forgo code documentation for self documenting code. This can be for example 
that instead of naming a method something short like "set" to save time. You could 
instead call it something along the lines of setCardName which in many cases can be 
enough to make you understand what the function does. In the latter case longer 
variable names can however cause an additional strain because the code will not be 
complied and it will be sent to the users while taking up bandwidth. This problem can 
be solved by manually changing all the names of variables or functions as a last step in 
the development. It is also possible to take it even further and remove all indentation 
new lines and spaces to save even more bandwidth. It is also possible to compress the 
code before sending it to clients either by the web server or the client itself can include a 
decompression algorithm for executing compressed code. There are also many tools 
available to do this kinds of compression automatically on the code which makes it very 
easy to utilize.

4.3. Detailed design
Figure 4.2 shows the class diagram of the server system and figure 4.3 shows the class 
diagram of the client side. Though both class diagrams show card and deck classes, the 
server will be keeping track of the full game state. The classes on the client side will be 
used to create representations of the real objects. For example, a card in another players 
hand will contain no values other than an Id for identifying it when actions are taken or 
made and decks on the client side will never contain its' cards, the important data will be 
the number of cards and possibly the topmost card if the deck is flipped. Put simply, the 
state of a game will be saved on the server side.

In order to successfully support reading and writing data, referring to cards inside a 
deck, some type of lock is needed. This is somewhat counter intuitive as the server does 
not have any concurrent threads. The base of the problem lies in that the contents of a 
deck is not a part of the client state e.g. if a 
client looks at the cards in a deck and 
another player draws any card from that 
deck, the first players knowledge of the 
deck will not be updated, hence they could 
try to draw the same card. The solution for 
this is to implement a lock in the deck 
which should follow a variation of the 
read-write lock pattern. This pattern is 
normally used within concurrent 
programming but in this case the 
behaviour consists of two parts. The first 
one is that a client should only be able to 
change the deck contents if it was the most 
recent client to conduct a read operation 
on that deck. Put simply, the last player to 
conduct a read operation will be in 
possession of the mutex, though any other 

21

Figure 4.2. Class Diagram of the 
server.



client can get it by doing a read operation themselves. The second part is that the lock 
should only restrict actions that require the client to know the deck state e.g. changing 
the order of the cards or drawing a specific card. Actions outside of this restriction but 
that still change the deck state, for example drawing the topmost card, should make the 
lock owner less. To sum up, players will always be able to draw the topmost card from a 
deck, move the deck or flip it over. Players looking at the contents of a deck will only 
be able to do the restricted actions if the deck state hasn't been changed since he asked 
for its contents. The drawbacks of this lock pattern is possible starvation of a client 
wanting to do any of the restricted actions, as most card games are turn based this 
should not be a problem. A very important advantage however is that this type of lock 
will never end up in a deadlock state, because it can be unlocked by anyone at any time.

The read-write problem could be solved by keeping all clients that have asked for the 
deck state up to date, editing a deck can then be done concurrently by multiple clients. 
This solution was not chosen for a couple of reasons. The server would in this case need 
to save a state for every deck in order to keep track of what clients are currently looking 

22

Figure 4.3. Class Diagram for the client.



at the deck's contents. Each time a card is drawn this state would need to be checked for 
who to update the deck state for, doing this and sending updates would increase 
bandwidth, memory and processing power. There would also be issues with how to 
identify for example a specific card a player wants to draw. If clients were to only 
specify an index of a card in a deck, that index could be different if another client 
removes a card before the first one. The state could change before the command is 
received by the server. Using unique card Id's would solve this though. This solution 
might create vulnerabilities where data on which card was removed from a deck is sent 
to a client that should not receive it, hence locks would still be needed.

4.3.1. Interaction
Figure 4.4 shows a sketch 
of the user interface that 
was aimed for. The two 
biggest rectangles 
represent a players area, 
consisting of a table and a 
hand. The topmost one 
should show the cards of 
the currently selected 
opponent, while the 
bottom one will show the 
player's cards. These two 
areas form the playing 
field, and this needs to be 
configurable to suit the 
players needs. Examples 
of configurations  are 
when players should share 
one common table or 
when players don't need 
"hands". Above this area 
is the player selector 
where players can select a player, the point of this is to be able to look at a specific 
opponents table. At the very top there should be a menu system for doing various things, 
such as leaving the game, creating a new one or inviting a friend to join the game 
session. The two rectangles on the right represent a chat window and and an area for 
showing all relevant data when hovering over objects like cards, decks and players. The 
chat area will also be used by the system to report things such as errors or actions taken 
by players.

This design was influenced by the interfaces for regular card game programs like Magic 
Workstation [6] and Magic the Gathering Online [21], this made it possible to establish 
a base that could be moulded to fit the requirements. Looking at other card games one 
can find functionality that this interface needs to support. Additions to the interface was 
needed, for example being able to play with multiple players, meaning more than two 

23

Figure 4.4. Early sketch of the interface.



players at a time. In addition to this, the GUI would also need to be quite general in 
order to allow for any type of card game to be played.

In order for players to be able to play with many cards at once the cards should be quite 
small, if the player hovers over a card with the mouse the card data needs to be shown. 
Moving cards around the player areas is done with the mouse, interactions with the card 
itself is done by right clicking on the card to bring forth a menu with options to for 
example remove, edit or rotate it. Adding cards to a table and similar actions can be 
done by right clicking directly on a player area. This implementation is meant to be as 
intuitive as possible. Adding a card for example, will place the card at the location of the 
right click. This would not have been possible if a menu at the top of the client had been 
used since it would not be possible to find a good location to place the card.

When an action has been taken by another player, for example when a card is drawn 
from a deck, players should be notified by a message in the chat window. The messages 
should be quite specific so that there is little or no room for misinterpretation. This is 
needed because some actions will be very hard for the players to spot by looking at the 
interface. A good example of this is if an opponent draws a card from a deck to his 
hand, and the player is not currently looking at this specific opponent, the action will go 
by unnoticed. Adding animations for this type of action would not solve this problem 
either, an action message solution was considered to solve all of these problems.

4.3.2. Communication
The client and server communication will be http based, with the use of Ajax long poll 
technique. The data sent will be in the JSON format, because it's quite easy to create and 
use, but it will also simplify debugging. Creating an object in JavaScript can look like 
this:

In this example the JSON has an object within itself, types like lists, boolean amongst 
others are also supported. When sending a command the object will be converted to a 
string, this can be done by simply using a JavaScripts built in function. This string will 
have the syntax used in the above example. When the receiver receives a command he 
will create an object from this string. JavaScript has a built in function that does this for 
us, in addition there are libraries that offer similar functionality as well.

The data sent will be interpreted as a command, where a string in the data uniquely 
identified the command given. The commands sent from and to the server may look 
quite similar, but the information required is quite different from each other. For 
example, the server will always require the command to contain a session-id and a 
personal id of the player in order to validate and verify the command. The personal id is 
something shared only between the server and one specific player, so unless it is shared 
no one should be able to spoof commands.

The http overhead on every command sent is something that can be reduced by sending 
multiple commands at once. This method is only applicable in certain situations. One 

24

var json = {"command": "addCard", "card":{"ID":14, "value":"King", "type":"spades"}};



good example is when a client wishes to join an existing existing game, the server 
should then send a collection of commands in a single http response that represents the 
game's state. A collection of commands should also be sent when the client is not ready 
to receive data, meaning the time in between long polls e.g. when there is no http 
request for the server to respond to. This can happen when commands are being sent 
very frequently, in addition it will be more likely to occur if a client has a slow 
connection or host computer and when the server is occupied with many game sessions 
and players.

Figure 4.5 depicts the communication flow between clients and server, though this is 
only an illustration hence a lot of the actual data sent in a command is missing. In this 
instance the server has two different game states, the communication is represented by 
green and blue arrows respectively. The game states are separate from each other, so no 
communication will ever be sent in between different games. The figure illustrates two 
types of commands being sent from clients and how the server then sends similar 
commands to all clients that are a part of the concerned game state.

4.3.3. Security
Vulnerabilities and security issues is nothing new when it comes to web applications, so 
steps were taken in order to reduce risks concerning this. Although not entirely related 
to security, by reducing the amount of vulnerabilities of the system the possibility of 
cheating is expected to be reduced. One prominent vulnerability of the system are the 
different types of DOS attacks, a quite common vulnerability with web services which 
can be hard to protect against. Because of a vulnerability with JSON in combination 
with JavaScript, when the server creates objects from the JSON data produced by the 
clients, it could be possible to inject foreign code to be executed by the server. This very 
issue will be mirrored in the clients, because data in the commands sent from the server 
might have been produced by other clients. In addition to this there are other types of 
possible code injection vulnerabilities such as SQL injection, html injection and the 
special case of cross-site scripting. 

In a way the client is inherently insecure, this is because the client code is sent to a host 
and the user can then modify the client in any way he likes, this is particularly easy 

25

Figure 4.5. Illustration of the data flow within the system.



since JavaScript code is not compiled before it is sent. Because of this the data sent to 
the server can never be trusted, so this is where the system is the most vulnerable to 
code injection. The SQL database would be vulnerable to SQL injection but through the 
use of filtering methods, before the query is sent to the DBMS from the server, this can 
be prevented. There are other solutions as well but this one is quite suitable for this 
system as this can be done on the server with which there should not be any possibility 
to tamper with. 

When a command is received by either client or server, an object will be created from 
the JSON data. In order to create this object JavaScript executes the JSON data, this 
makes for a vulnerability at both the server and client if the data is not validated as 
being in the JSON format. This is a problem with the built in JavaScript function "eval" 
and because this is a known vulnerability there are ways to avoid it. Measures can be 
taken in the form of for example using a library. In addition there is a newly 
implemented function that is a part of the ECMAScript language which JavScript is a 
dialect of, this function is designed to be a more secure version of "eval" when it comes 
to the JSON format.

Regarding DOS attacks, the server's location determines the degree of protection versus 
flooding attacks. These types of attacks should be detected and handled by the 
surrounding environment, by for example firewalls and routers. These types of DOS 
attacks can focus on exhausting the bandwidth of the victim, or by using up all available 
connections, the latter is known as a SYN flood. Possible DOS attacks that are more 
aimed against our system concerns exhaustion of the servers resources such as the 
memory or processing power. Preventing these types of attacks is possible by keeping a 
record over the users of the system, only allowing a player to join and create a certain 
amount of games and blocking otherwise. Players creating to many games could be 
temporarily banned. The automatic creation of a user account, and possibly a new game, 
likely used in a DOS attack could be limited by using a challenge-response test as proof 
that a user is human. The server will also need to be robust, it needs to be able to handle 
receiving invalid data and malformed commands without crashing. Concerning the 
commands that result in forwarding of data the server might need to verify the 
forwarded data, even though it is not intended to be used by the server in any way. As 
mentioned, code injection is possible on the server but the clients needs to be protected 
as well. The server is not vulnerable to html injection, hence it needs no protection 
against it. The client however does, and since processing power on the server is more 
valuable, protection can be delegated to the client.

In order to protect the client one can filter data, such as the text being printed in the 
chat, on the client side. This text can for example include html, ActiveX objects or 
scripts, all of which needs to be protected against. The filtering needs to be done as it 
originates not from the server but from other clients. This type of attack is known as 
cross-site scripting (XSS). The filtering mechanic can be removed by modifying the 
client, though modifying other clients through XSS should not be possible. In 
conclusion, the clients should filter incoming data not filtered by the server, and the 
server should only filter against vulnerabilities in the server.

26



Cheating in this system wont be prevented per se. However, no sensitive action should 
go by unnoticed by the other players, such as looking at the cards in a Deck. This means 
that all sensitive actions will need to involve the server, and the detection of an actual 
cheater will fall upon the participants of the game. Keeping track of the Id's of cards 
should be made impossible by giving generating a new Id when drawing a card from a 
deck. This way, no one but the player who takes the card to his hand will know which 
card it is.

The system will still suffer the vulnerabilities that comes with network applications, like 
for example man in the middle attacks. Guaranteeing data confidentiality and integrity 
could be provided with the use of https. Adding this would require a reasonable amount 
of work, this high level of security however was deemed unnecessary for this system.

27



5. Results

5.1. System description
Looking back at what has been achieved during the project we feel that the main goals 
have mostly been met. In it's current state the system have the most important features 
and can be used to play any card game. The system supports all major interaction such 
as moving cards around the virtual game table, from one table to another or to and from 
the players hands. The same is true for decks which also have the possibility of having 
cards placed inside them or taken out. Both cards and decks can also be created, 
removed or edited dynamically while playing, for cards editing entails changing the 
card data. For decks edit refers to viewing the content of a deck and either rearranging 
the card order or picking out specific cards from the deck. Decks also have the 
possibility of being used in a flipped state which means the top card will be visible, the 
opposite is possible for cards meaning it is possible to place them on the table facing 
down. There is also the player selector which can be used to switch which of the 

28

Figure 5.1. Screenshot of the client interface.



opponents tables are visible when there are more than one. The player selector can also 
be used to keep score, it can be seen at the top of the picture in figure 5.1 the screenshot 
also illustrates several of the previously mentioned features. It also shows the graphical 
design of the client which could use some improvements as it has not been one of the 
highest priorities during this project. 

Many of these features are accessed with the right click menu which lets you apply an 
action on the selected object. For cards this action can also be done with multiple cards 
at once if more than one card has been selected either by area select or individually 
selecting each card with the help of a modifier key. Through the right click menu it is 
also possible to shuffle a deck or to rotate a card which can be useful in some games to 
indicate that the card has been used. It is also possible to load a complete preconstructed 
deck of cards and using a modifier key it is possible to move all cards in one deck into 
another by dragging on to the other. The panel on the lower right hand side, previously 
refereed to as a console, is able to present information to the user and report all actions 
taken by others players. The console is also used to communicate with the other players 
though text messages. Finally the system also have the ability to be launched with 
different configurations which can change the interface or some minor functions such as 
what should happen when a card is clicked twice. The game configuration can change 
the table setup to for example a single shared table and remove the hand areas. The 
game configuration also contains the layout for how a card should look so that it can be 
changed when the user wants to play a card game that does not use a standard deck of 
cards.

There are also a few features we would have liked to have implemented for which the 
time constraints were the largest reason that they are not currently in the system. First 
there is verification of the data received by the server inside a command this is not an 
issue during normal usage of the system. It can however become a problem if the user 
does something unsuspected including malicious activities such as modifying the client. 
There is currently some verification being done on the data received by the server but to 
be certain that no problems will occur there should be some rigorous testing done to 
find this type of problems. During the development the plan was to construct a separate 
component on the server that checked all the incoming commands before passing them 
along to be processed. Another feature missing on the server is a function for garbage 
collection. More specifically this would be a function that is supposed to make sure that 
no old game state objects gets left behind after a game session has ended. Without a 
function to handle this the system might eventually end up using all available memory 
and this will then cause a crash.

As it stands now the system is prepared for loading decks of cards from a database but it 
was discovered that the implementations existing for connecting a node.js program to a 
MySQL database have become outdated. This is likely because as has already been 
mentioned Node.js is still under development and since we are using the latest version 
some syntax has changed and some methods has been removed. So for now loading 
decks is instead handled in a much simpler way, decks of cards are stored in a separate 
JavaScript file as strings containing JSON formatted objects. This solution works well 

29



for now but when adding a large amount of decks there might be some problems with 
performance and this solution means it will not be as easy to add new decks. Therefor 
this should be changed to MySQL when the libraries for it gets updated. There is also a 
few minor convenience features missing such as the ability to rename decks or to be 
able to draw several cards from a deck at once. Furthermore Several tests have been 
done on the system in it's current state to find bugs and several were fixed during this 
process. Testing has also been done continuously while developing the system to make 
sure added functionality works as it should and that it does not interfere with other parts 
of the system which could lead to new bugs being introduced. However some more 
testing should be done to try to further limit the number of bugs in the system. A few 
tests were also done to see if the system would work in another browser than Firefox 
which was used during development. From these test we saw that Internet Explorer 8 
did not handle the client very well, it was possible to get some parts of the GUI working 
but there were a lot of problems. Google's Chrome on the other hand seemed to almost 
work completely and it might be enough with only a few changes to make the client 
work on both browsers.

5.2. Project evaluation
The project ended up being a great learning experience for us, as we got to design the 
system our selves and learn a new programming language. Even though the project was 
successful, looking back there were a couple of things that could have been done 
differently based on the new knowledge we now have. One such thing was in the design 
phase of the system, the decision to keep the game state on the server was taken later 
than we liked. The decision to use node.js over APE as well as using an SQL server 
together with node.js could have been tested more thoroughly as the sql library for node 
was outdated. These things increased the development time quite a bit and this could 
most likely have been avoided with a better and more thorough design as well as more 
research.

Some of the more successful choices we made was the use of programming language 
and libraries. Adapting to and learning JavaScript was to some extent quite painless 
though there was still a learning curve, our programming skills in JavaScript increased 
until the very end. Though no stress test of the server has been conducted we are quite 
pleased with the performance of node.js so far. We believe that JQuery helped quite a bit 
with reducing the development time of the GUI, more specifically with events and 
animations.

The development process suited the project well and we managed to closely follow the 
time plan. The three main iterations we had set out were kept to. However, smaller 
iterations in conjunction to what we had planned became a part of of the development. 
These smaller iterations could be as short as a day and as long as a week. These 
iterations consisted of first deciding on what should be implemented, then developing 
the set requirements and the last phase of testing and debugging. This made sense as it 
made the development process very agile. We were not however able to implement 
everything we wished, but that was expected and the requirements were prioritized 
accordingly so that the most important ones were done first. Conducting the 

30



documentation of code that was a part of the development process was at some points 
lacking, it is however quite hard to determine what the consequences of this was. The 
lack of documentation was most prominent in the later stages of the development phase 
but made it possible to spend more time on implementing functionality. The trade-off is 
that some code could be slightly harder to understand, though in the end we think that 
we reached a good balance.

5.3. Future work
If one would want to continue the work of this project there are several areas where we 
think this effort could be directed. These mainly cover the areas of performance, 
usability and maintainability and the consists of ideas which were only to be considered 
if there were enough time or new ideas discovered during development. Firstly there is 
the additional systems that you want to have supporting the game system. Most 
importantly this it a system to manage users this entails tasks such as handling user 
accounts and connecting users with each other so that they can start a game session. 
This could for example be done with a system for listing all available game sessions 
which would require adding some support for this in our system or it could be done by 
allowing users to invite others to join their session. Something that is not as important 
but would improve usability is an additional web application for constructing and 
maybe editing decks or cards. A web application like that would only need to have 
access to the database and our system is already prepared for loading multiple decks. 
Similarly another web application could be developed for graphically designing cards 
our system currently have support for switching the layout but not for users to add their 
own. To save some resources the possibility of eliminating the standard web server 
should be investigated since the Node.js server could itself serve this purpose, this 
would also make server configuration simpler. This is because of the restrictions in Ajax 
that prevents requests being sent to a different domain or port which means the web 
server is forced to serve as a proxy.

Before publicly using the system it should be more rigorously tested for security e.g. it 
should be tested for injection attacks and it's ability to handle malformed data. This is 
something that would be very important if you were to expose it to the Internet since 
that could bring a large user base which might contain hackers. A feature that is not as 
important but was considered was to use sound as an indication for when actions are 
taken, like for example moving a card. This was however not given a lot of priority but 
we did look at it to determine the difficulty of such an implementation. From this we 
gathered that it is currently cumbersome to implement using only JavaScript. Problems 
can arise such as support for formats across different web browsers or you might need 
to install additional software. In the future this might become easier if more browsers 
start supporting the same audio formats for HTML5's audio tag. Another feature that 
was considered to complement the use of sound was to use animations of visual cues to 
also indicate what actions are taken. This could for example be animation of card 
movements initiated by other players or adding a border around the last few objects that 
there was some interaction with. 

The code itself has some room for improvement since this project was developed as a 

31



learning experience and a lot of knowledge was acquired during the work, some parts of 
the code could benefit from some refactoring. For a large scale deployment of the 
system this might be needed to improve performance. How much of an issue this is 
would have to be determined trough stress testing the system to see where the 
performance should be improved. At the same time one could look into web browser 
compability to see if some smaller issues could be fixed. In regards to optimization 
there is also work that can be done to reduce the bandwidth usage. As it stands now the 
commands that are being sent to the server are in a format that is easy to read for 
humans but they could be shortened a lot to be only one of two characters long. This 
could grant a rather large performance boost when the system starts being used by a lot 
of users at the same time. To reduce overhead further it could in the future be a good 
idea to switch the communication technique to web sockets which is part of the new 
HTML5 standard. Reverse Ajax which is currently being used is not used exactly as it 
was intended from the start web sockets on the other hand is created with this purpose 
in mind. It is also possible to add compression to the HTTP traffic which the web 
browser will then decompress before it is received by the client. However with 
compression there might be an increased delay because of the time it takes to both 
compress and decompress the data. It will have to be investigated if the bandwidth 
saved is worth the extra delay and extra computing power needed. It would also be 
possible to scale the system to multiple servers using a system for load balancing which 
would split up the different game sessions so. This would be quite easy to implement 
since all commands carries a game session id number and the different sessions do not 
need to communicate. There are other parts of our system that can be improved as well 
but these were the areas we felt would be best suited to focus on next.

References

[1] Miniwatts Marketing Group, "World Internet Usage And Population Statistics," Feb.  
12, 2010. [Online]. Available: http://www.internetworldstats.com/stats.htm. [Accessed: 
Mar. 23, 2010].
[2] Cable News Network, "Fast Internet access becomes a legal right in Finland," Oct.  
15, 2009. [Online]. Available: 
http://edition.cnn.com/2009/TECH/10/15/finland.internet.rights/index.html. [Accessed: 
Mar. 23, 2010].
[3] I. Hickson, " HTML5 at Last Call (at the WHATWG)," Oct. 27, 2009. [Online]. 
Available: http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2009-
October/023849.html. [Accessed: Mar. 23, 2010].
[4] W3C, "Web Storage," May. 12 2010. [Online]. Available: 
http://dev.w3.org/html5/webstorage/ [Accessed: May. 12, 2010].
[5] Google, "Chromium OS". [Online]. Available: http://www.chromium.org/. 
[Accessed: May 12, 2010].
[6] Magi-Soft Development, "Magic Workstation™," [Online]. Available: 
http://www.magicworkstation.com/ [Accessed: May. 21, 2010].
[7] T. Ronkainen, "Generic Collectible Card Game," [Online]. Available: 
http://gccg.sourceforge.net/ [Accessed: May. 21, 2010].
[8] K. Beck et al., "Manifesto for Agile Software Development", 2001 [Online]. 

32



Available: http://agilemanifesto.org/ [Accessed: Jun. 3, 2010].
[9] Google, "V8 JavaScript Engine," [Online]. Available: 
http://code.google.com/apis/v8/ [Accessed: Jun. 3, 2010].
[10] The jQuery Project, "JQuery," [Online]. Available: http://www.jquery.com 
[Accessed: Jun. 3, 2010].
[11] W3C, "The WebSocket API," May. 12 2010. [Online]. Available: 
http://dev.w3.org/html5/websockets/ [Accessed: May. 21, 2010].
[12] R. Dahl, "Node.js," [Online]. Available: http://nodejs.org [Accessed: May. 21, 
2010].
[13] APE Enterprise Solutions, "APE Ajax Push Engine," [Online]. Available: 
http://nodejs.org [Accessed: May. 21, 2010].
[14] D. Baranovskiy, "RaphaëlJavaScript Library" [Online]. Available: 
http://raphaeljs.com/ [Accessed: May. 21, 2010].
[15] W3C, "SVG Print," Dec. 21 2007. [Online]. Available: 
http://www.w3.org/TR/SVGPrint/ [Accessed: May. 21, 2010].
[16] J. Resig, "Processing.js," [Online]. Available: http://processingjs.org/ [Accessed: 
May. 21, 2010].
[17] WHATWG, "The canvas element — HTML5," May. 12 2010. [Online]. Available: 
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-
element.html [Accessed: May. 21, 2010].
[18] B. Smus, "Performance of Canvas versus SVG," Jan. 19 2009. [Online]. Available: 
http://www.borismus.com/canvas-vs-svg-performance/ [Accessed: May. 21, 2010].
[19] BuiltWith, "JQuery Usage Statistics," May. 18 2010. [Online]. Available: 
http://trends.builtwith.com/javascript/JQuery [Accessed: May. 21, 2010].
[20] Net Applications, "Browser Market Share," Apr. 2010. [Online]. Available: 
http://marketshare.hitslink.com/report.aspx?qprid=0 [Accessed: May. 24, 2010].
[21] Wizards of the Coast, "Magic Online," [Online]. Available: 
http://www.wizards.com/magiconline [Accessed: May. 21, 2010].

33



APPENDIX I - User Manual   –   Quick start guide

Detailed descriptions

1. The menu is used to access general actions such as “Quit game”.
2. The player selector is used to switch which opponent's hand and table you are 

currently viewing or to modify the players counters through the right click 
menu.

3. The viewer is used to display a larger view of cards, display information about a 
deck or a player.

4. This is the opponent's hand cards placed here will only be visible to the currently 
selected (see 3) player.

5. This is the opponent's table area cards placed here will not be visible if you 
select another opponent (see 3).

6. This is your table area cards placed here will always be visible to you at all 
times.

7. This is a card which can be moved around.
8. This is a deck which can be moved around and can contain cards.
9. The console is used to display chat messages, actions taken by players and 

system messages.
10. This is your hand area cards placed here will only be visible to you.
11. This is the input area which is used to send chat messages.

34

1. Menu
2. Player Selector
3. Viewer
4. Opponent's Hand
5. Opponent's Table
6. Your Table
7. A Card
8. A Deck
9. Console
10. Your Hand
11. Input Area



Moving a card
Cards are moved by dragging them using your mouse while holding down your left 
mouse button.
If multiple cards are selected all of them will be moved at once.
A card can be dropped on a deck to place it inside a deck and dragging a deck will let 
you draw the top card from the deck. If this is done while holding down Shift the card 
will be facing down after you have dropped it on a table or a hand. If this is done while 
holding down CTRL+Shift all cards can be moved from one deck to another.

Selecting cards
Cards can be selected one by one by holding down CTRL while using your left mouse 
button to click each card.
You can select many cards at once by left clicking anywhere on the hands or tables 
areas and dragging to form a square which will select everything within it.

Moving a deck
A deck can be moved it you hold down CTRL while dragging it using your mouse and 
left mouse button.

Performing an action on an object
Specific actions can be performed on decks and cards by right clicking them to bring up 
a menu where the action can be selected. For example shuffle a deck, rotate/flip/edit a 
card or view a decks content.

Deck Viewer
The content of a deck can be viewed by right clicking the deck and choosing how many 
cards you want to look at. Providing a negative number will allow you to look at cards 
starting from the bottom of the deck instead of the top. Not providing a number of cards 
that you whant to view will cause the system to display all cards in the deck.
Double clicking a card in the deck viewer will place it next to the deck on the table or 
hand area. Holding down Shift while doing this means it will be facing down.
Before pressing done you can choose weather you want the deck to be shuffled after 
you have viewed it with a check box.

Edit card
To edit a card right click the card and choose edit from the menu.
Each of the cards values will have a text field where you can input the new value. 
The color for the card can be given using common names such as red, green, lightgrey. 
For a more specific color an rgb value can also be provided on the form “rgb(0,0,0)”, 
rgb stands for red green blue and must be withing the interval 0-255.

Send a chat message
To send a chat message simple write the message in the input area and push the Enter 
key.

35



Switch currently viewed opponent 
The opponent you are currently viewing can be switched with the player selector where 
players will be automatically added when they join your game session. This is done 
with a left click using your mouse.

Add/modify/remove a player counter
A counter can be used to keep score or for something else you which to store for a 
specific player (all players have access to the same counters). This can be done by right 
clicking a player on the player selector and then choosing the option on the right click 
menu.

36



APPENDIX II – System requirements
Following is a list of reqirements that were formulated at the start of the project, the 
ones colored green are implemented and the ones in red were not implemented.

Gameplay
    Select card/cards
        Shift select
        Ctrl select
        Area select
    Move card from any possible card location  to another
        Put card into playarea from hand
        Put card into playarea from deck
        Draw card into hand from target deck
        Draw x cards into hand from target deck
        Discard card into discard pile
        Discard random card into discard pile
        Drag and drop selected card(s)
    Rotate or flip over a card in play
        Rotate card
        Flip card
    Pile  cards/create deck?
        Create new deck
    View content of a deck
        Open popup with list of cards
        Option to shuffle on closing window
        Drag card to table
    Always see card name
    Display detailed card  information
        Display bigger card with all information on mouse over
    Increase/decrease a  counter
        Modify counter with value X
        Add counter?
        Remove counter?
        Name the counter
    See all actions taken in a  console
        Print action function
    Change indicator for game  phase
    Save current game session
    Add an indicator arrow
        ctrl+alt + click+click = add arrow between clicks?
    Generate a random number  in a specefied intervall
        Flip coin
        Roll dice
    Sort cards
        Cascade

37



        Tile
    Add note to a card
        Add token to card
        Add note to a card
    Shuffle deck/hand
        Shuffle target deck
        Shuffle target hand
    Add token-card dynamically
        Token creator popup
        Temporary save last created token
    Group cards
        (Interaction between cards)
        Attach a card to another
    Modify card values
    Copy card
Player interaction
    Chat
        Chat  with his players in a game
        Lobby chatroom (Chat with  free players  when not in an active game)
        Send private message to  another user
        Join  different channel  for  chatting than the default lobby channel
    Invite others to a game you created
    Join an active game  session
    View list  of active games
    Friendslist
        Add  player to list of  friends
        Remove player from list
    Filter active game  sessions
Manage
    Game configuration
        Create config
        Save config
        Load config
    Start a new game session
        popup with option to choose game configuration and password
    Password protect a game session

38


	List of abbreviations
	1. Introduction
	1.1. Background
	1.2. Purpose

	2. Requirements
	2.1. Functional Requirements
	2.2. Non-functional requirements
	2.2.1. Usability
	2.2.2. Availability
	2.2.3. Reliability
	2.2.4. Security
	2.2.5. Performance


	3. Analysis
	3.1. Development Process
	3.2. Domain Model
	3.3. Theory 
	3.3.1. JavaScript
	3.3.2. jQuery
	3.3.3. Ajax
	3.3.4. Node.js
	3.3.5 APE
	3.3.6 Raphaël
	3.3.7 Processing.js


	4. Design
	4.1. Architecture
	4.2. Procedure
	4.2.1. Tools
	4.2.2. Methods

	4.3. Detailed design
	4.3.1. Interaction
	4.3.2. Communication
	4.3.3. Security


	5. Results
	5.1. System description
	5.2. Project evaluation
	5.3. Future work


