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Machine Intelligence in Automated Performance Test Analysis
ELONA WALLENGREN AND ROBIN S. SIGURDSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Software testing is a large part of development and especially important for projects
that practice Continuous Integration. In order to reduce the burden of testing and
make the process more efficient, as much as possible is automated. In this thesis, a
design science approach is used to investigate how machine intelligence can be used
to improve the automation of the analysis of non-functional testing. A prototype
is created in order to demonstrate the ability of machine intelligence methods to
provide useful information about the relationships between different test cases and
their histories. This prototype was found to be fairly accurate in its predictions
of test results, could identify most related degradations across test cases, and was
positively received by the testers. Based on the results of this thesis, machine
intelligence was found to have great potential in dealing with the large amount of
data created during testing.

Keywords: machine intelligence, software testing, root cause analysis, test oracles

iv





Contents

1 Introduction 2

2 Background 4
2.1 Important Concepts and Related Work . . . . . . . . . . . . . . . . . 4

2.1.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Machine Intelligence . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Case Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 10
3.1 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results 13
4.1 RQ1: Critical problems that can be solved with machine intelligence . 13

4.1.1 First Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Second Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 RQ2: Potential promising solutions . . . . . . . . . . . . . . . . . . . 15
4.2.1 First Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Second Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 RQ3: The extent the implemented solutions solve the problems . . . 22
4.3.1 First Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Second Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussion 31
5.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Contribution to Academic Research . . . . . . . . . . . . . . . . . . . 33
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 35

Bibliography 36

1



1
Introduction

Software testing is a necessary step in software development. It is also a large part of
the labor, usually requiring at least 40% of the development effort and taking up even
more work when reliability is paramount [21]. In addition to functional regression
testing that checks the functionality of the software, non-functional regression testing
also has to be completed to ensure that the system overall performs correctly [10].
Although research into testing has been done since there was software to test, the
application of the research to industry remains a problem [7], and testing is often
still a cumbersome and costly task [21].

Testing has a central role for software companies that follow Continuous Integra-
tion, which is a practice where the software being developed is continually updated
as developers constantly work to improve the system [11]. As integrations are made
multiple times per day [11], it is important to also test the software continuously in
order to discover any problems as quickly as possible. Otherwise, testers may find
it difficult to identify which integration caused the issue, and if too much time has
passed, there may even have been further integrations that built on this faulty code,
compounding the issues.

To limit the cost of testing, software companies are increasingly trying to au-
tomate as much of the process as possible. While test execution is often already
automated [11], the analysis of the test results is still a time and labor intensive ef-
fort. With automated test executions, large amounts of data about the system can
be generated, but analyzing this continually and finding the sources behind prob-
lems requires a large amount of manual labor. One way to automate some of this
analysis is through an automated test oracle, which given a test execution, decides
if the system performed correctly or not [3]. Although regression testing has been
studied extensively, the automation of test oracles and verdicts remains a relatively
unexplored area [3].

In this study, machine intelligence is used to automate and aid in non-functional
performance regression test analysis. These techniques have previously been identi-
fied as a useful aid in software testing [5], but the combination of machine learning
in regression testing still lacks research [25].

The proposed solutions were discussed and tested with a case company. The
case company currently utilizes a test oracle but finds that their test analysis is
still resource intensive and could be made more efficient. Previously, investigations
at this case company have been made into these limitations and the challenges
surrounding the automation of test analysis [8] [9]. The study’s goal is to address
some of these limitations using machine intelligence.

The thesis is organized in the following way: Chapter 2 explores the background
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1. Introduction

and previous work related to this research, as well as the case company. In Chapter
3, the methods are explained, and Chapter 4 shows the results. Chapter 5 contains
the discussion of the results, and the thesis ends with the conclusion in Chapter 6.
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2
Background

This chapter provides the background information to the study and discusses the
area’s related work. The central concepts are software testing and its automation.
The case company and department are also introduced.

2.1 Important Concepts and Related Work
In order to understand the context of this thesis, some important concepts need to be
defined, and relevant research related to these concepts needs to be discussed. The
thesis studies test analysis at a department that conducts performance regression
testing on a system that follows Continuous Integration, so these terms are all
defined. When improving the test analysis process, the focus is on automation.
Previous automation work has resulted in the creation of a test oracle, but root
cause analysis still requires much manual effort. The machine intelligence methods
used in this thesis to expand test automation are presented as well.

2.1.1 Software Testing
Software testing is commonly thought of as "bug fixing", but this definition is in-
complete. According to Whittaker [26], testing also has to determine whether the
System Under Test (SUT) fulfills its specifications in its environment. An important
aspect of testing that separates it from other forms of code verification is that a test
involves executing the code and examining the results instead of reviewing the code
itself. Because of this feature, software testing is vital to finding unexpected errors
and ensuring that the system functions correctly.

The two main categories within software testing are functional and non-functional,
or structural, testing. Functional testing checks that the specifications for the pro-
gram are fulfilled without considering the code directly and is therefore also referred
to as black-box testing [26]. On the other hand, structural testing is considered
white-box testing and instead verifies the system’s structure and implementation
[23]. This thesis will only consider non-functional testing.

2.1.1.1 Continuous Integration

Continuous Integration is an industry practice which, according to Fowler and Foem-
mel [11], emphasizes frequent integration of each developer’s work into the main
software. Often, multiple updates are made every day to the system, ensuring that
the software is always a current reflection of everyone’s work. Fowler and Foemmel
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2. Background

[11] state that this practice is enacted in order to enable faster development and
reduce the separation between the developers and the users. If testing is conducted
between each integration, identifying where faults in the system originated is simpler
than with a slower update model.

2.1.1.2 Regression Testing

Regression testing is the testing and retesting of software after it has been modified
[12]. As regression testing needs to be conducted whenever a change is made, con-
tinually updated software also needs continual testing to verify that its performance
continues to meet the requirements [12]. In practice, complete regression testing can
become infeasible for companies with large and complicated systems that practice
Continuous Integration. Unless the thoroughness of the testing process is sacrificed,
it can become the bottleneck in development [7].

The problem of rigorous testing can be handled both by limiting the number
of tests that need to be executed [12] or by reducing the amount of work required
to complete and analyze each test. When deciding what tests to run and how
often to run them, there are four main types of approaches: minimization, selection,
prioritization and optimization [25]. However, this study focuses on the second part
of the solution, considering improvements to test analysis automation.

2.1.1.3 Performance Testing

Performance testing is defined by Foo et al. [10] as a type of non-functional testing
conducted in order to identify degradations in the operation of a system. When
this type of testing is done between each update of the software, it is referred to
as performance regression testing. Performance regression tests can take anywhere
from hours to days to complete, and usually generate a large collection of perfor-
mance metrics and logs from the execution. These results are then compared to the
requirements or previous test runs to determine if there has been a degradation of
the performance, usually referred to as a regression.

2.1.1.4 Test Automation

When utilizing test automation, the goal is to have software handle parts or all of test
execution, test analysis, and other control and reporting functionality [18]. Using
automation, the amount of human involvement in the testing process is reduced,
and some of the large costs of testing lessened. Although automated test scripts
are often used in practice [18], a significant amount of labor is still required in the
testing process [23]. In particular, industry adoption of automated test analysis is
limited [10].

A 2012 case study by Engström, Feldt, and Torkar [7] explored the adoption of
regression test automation and identified challenges faced in industry when applying
the techniques. Their automation prototype was found to increase efficiency and
transparency, but even though their tool was only used to give suggestions to human
testers, risks still arose with its utilization. Some of these indirect effects were that
the users may rely on the tool too much and the mental exertion required of the
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2. Background

testers may increase. These results show the importance of considering what effects
a new tool will have on its users.

A study of industrial applications of automated regression analysis was done in
2015 [10]. The authors dealt with the problem of testing heterogeneous environ-
ments, which are situations where the system has to work on different hardware and
software set-ups. The authors created a system for detecting regressions, which was
then successfully used in industry to aid analysts in finding anomalies in test runs.
The system used previous test results to create rules about what performance values
a test run should have, and reported violations of these rules.

2.1.1.5 Test Oracles

The test oracle problem is defined by Barr et al. [3] as the issue of identifying
whether the system completed a test execution correctly or not. A test oracle can
be a human tester, who looks through logs from the test execution to determine
the results, but automated oracles are becoming an increasingly popular area of
research. Regardless of whether the oracle is human or machine, their role is to
deliver a verdict of pass or fail for the test execution.

According to Barr et al. [3], there are three types of test oracles: specified,
where explicit requirements are given; derived, where the oracle uses documentation
or system properties to evaluate the test results; and implicit, which are general and
use simple facts such as that crashes indicate a failure in the test. They also note
that, when improving automated test oracles, there are two aspects where human
input can be reduced: the writing of the oracles and the analysis of the tests.

Hierons [16] examined the inadequacies with current test verdicts. Hierons identi-
fies the key features of a verdict machine; it needs to be consequential in its decisions,
and each verdict should tell something about the system under test’s properties. One
conclusion made was that there is a need for verdicts that consider more than a sin-
gle test run. This thesis seeks to address this issue of considering both multiple test
cases and the history of each test case.

2.1.1.6 Root Cause Analysis

According to Rooney and Heuvel [24], root cause analysis (RCA) is a process or tool
used to find out what, how, and why an event occurred. The goal is to find a specific
underlying reason that can then be solved. The four main steps in the analysis is
gathering the data, finding causal factors between events, deciding the specific root
cause for the event being investigated, and creating recommendations.

In the context of software testing, root cause analysis is the investigation into
the reasons behind a test failure. When a degradation is detected during testing,
the cause must naturally be identified in order to restore the performance to its
previous values, which is what root cause analysis entails. Finding the root cause
can be difficult, especially when multiple updates to the system are made between
each set of testing [14]. This problem is further exacerbated if the system continues
to be modified while the analysis is conducted, as changes may be made that build on
the faulty functionality or that cause further degradations [19]. As a result, reducing
the time between integrations and conclusion of analysis is of high importance.
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2. Background

Automating root cause analysis is one approach to improving its efficiency. Lee,
Cha, and Lee [19] found that their automated framework for analysis in database
management systems was able to reduce the time required to find root causes by
about 90%. Heger, Happe, and Farahbod [14] created a more general method that
identifies root causes for any software with thorough unit tests. However, they note
that there are overall few studies that consider root cause analysis in the context of
performance regression testing [14].

One case that was examined in 2014 [22] is the identification of regression-causes
in performance testing. In the study, a regression-causes repository was created and
used to identify the reason behind regressions. This approach was found to be able
to accurately identify causes specified in the repository.

2.1.2 Machine Intelligence
Machine intelligence is a term used to describe both artificial intelligence and ma-
chine learning. Machine learning is the main tool used in this thesis and is the
process of software discovering properties about a system through data [5]. The
field builds on the concept that there are patterns in the data that may be difficult
for a human to see but that can be found through machine learning algorithms.

Two of the most common types of machine learning algorithms are classification
and regression [13], which are the approaches that are used in this study. Classifi-
cation is a task where the goal is to assign a category to each data point given a set
of input values. In regression, the machine has to predict a numerical value for the
data point based on a set of input values.

An important concept when conducting machine learning in particular, but also
in general when creating statistical models, is overfitting. A model that is overfitted
shows relationships in the data that exist in the sample used to create the model but
are not true for the whole population [2]. Instead of showing the true connections
between the independent and dependent variables, the specifics of the sample are
given. This becomes a problem when, for example, the model is used to predict the
result of a data point that was not included in the sample. The accuracy of this
prediction will then be lower than the accuracy calculated by looking at the model’s
ability to predict the sample data. In order to create a model that has applicability
beyond the given data set, some accuracy needs to be sacrificed in order to find
relationships that are more universally true.

Briand [5] identified the usefulness and issues with applying machine learning to
software testing. Briand states that test oracles are difficult to automate but that
machine learning can be a helpful part of the process, especially in systems that are
constantly changing. Image processing is given as an example, but this is also the
case for the system studied in this thesis, where even the requirements on the system
change over time. Briand also notes that the accuracy of the predictions made by
the algorithm is not the only important metric when choosing a machine learning
method but that the simplicity of the model can also be relevant. If understanding
why a prediction has been made is of interest in addition to the prediction, a model
with easy interpretability is preferable.

Few papers were found about machine intelligence in regression testing, which
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2. Background

Rosero, Gómez, and Rodriguez [25] note may be due to the fact that much of
regression testing is done as part of the maintenance of a system, making industry
unlikely to explore new methods in this field.

The two machine learning algorithms used in this thesis are neural networks and
random forests, which are further discussed in the following two sections.

2.1.2.1 Neural Networks

Neural networks are machine learning models loosely based on the discoveries about
neurons in neuroscience [13]. The unit in a neural network is referred to as a neuron,
and receives a number of inputs. The neuron then has a set of functions for each
neuron it is supposed to output to, and calculates this output based on the function
for that output and the inputs it receives. The network is essentially a composition
of functions, which are not directly given in the data but instead created through
training using a learning algorithm [13]. In this study, we utilize feedforward neural
networks, which are networks where information only goes one way, from the input
to the output.

2.1.2.2 Random Forests

Another popular machine learning method is the random forest. The random forest
is an ensemble method, which means that many simpler models’ outputs are used
to make one overall prediction [20]. The random forest consists of a set of regression
or classification trees, which given an input, moves through a set of binary branches
to a leaf. Each split in the tree partitions the input in some way, based on one or
more of the input values, and the leaf at the end of all of the splits is the prediction
from that tree. The whole forest’s result is then the average of the results from each
of the trees [20].

2.2 Case Company
Ericsson was the case company used in this study. The company offers Information
and Communication Technology to mobile service providers, and their networks
carry approximately 40% of all mobile traffic [1]. Over 100,000 employees work
at Ericsson, and they hold 45,000 patents [1], further demonstrating their leading
position in the industry.

The case department at Ericsson is responsible for performance testing of a
system in the mobile network. The goal of the testing is to ensure that the system
meets performance requirements, and if it does not, to identify the degradation
as fast as possible, along with deciding what update caused the change as well as
figuring out why the problem occurred. However, the department’s testing ability
is limited both by the computing power needed to run tests as well as their ability
to analyze the tests they have executed. There are many testers working on the
system spread across several locations at the case company. As a result, face to
face meetings between all of the testers are not feasible, and communication can be
difficult despite being important.
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2. Background

To aid in analysis, the department has a tool called Automatic Verdict, which
functions as a test oracle and provides a standardized analysis of a specific test in
a matter of minutes. Automatic Verdict currently checks a number of checkpoints
defined for each test case and records their results as pass or fail. The checkpoints are
created by the testers and can be requirements on values known as key performance
indicators. A key performance indicator (KPI) is a numerical value describing a
part of the test, such as the CPU or memory usage. The acceptable ranges for each
checkpoint is either manually set based on expectations and previous experience or
given by a sample run of the test. The testers use the oracle as a summary of the
test run, and when there are regressions, are also given information about what part
of the test is problematic.

However, there are a number of limitations on Automatic Verdict. Previously,
investigations have been made into the shortcomings and the challenges surrounding
the automation of test analysis at the case company [8] [9]. Some of the problems
identified were unstable test data, unclear expectations and interpretations, usabil-
ity, and difficulty of root cause analysis [8]. Some of these problems have been
addressed since these studies, but Automatic Verdict still has a limited scope. The
current test oracle also does not provide a reason why the test failed, and each result
is given only for a specific execution of a specific test case with no context to other
executions and other tests. The thesis aims to address some of these limitations
using machine learning.
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3
Methods

This chapter discusses the purpose, question, and methodology of the research. The
metrics used to evaluate the prototype’s predictions are also described.

3.1 Research Purpose

The purpose of this study was to apply machine intelligence to improve the case
company’s test oracle’s ability to analyze non-functional performance regression test
results. The goal was to provide more context to the test results, by considering the
circumstances of each test execution, and how it relates to previous runs of the same
test case, as well as other related test cases run on the same version of the system.
We aimed to create a prototype that used the specific test case’s history to show
when test results are out of the ordinary, helping to identify significant degradations
and limiting the need for re-runs. In addition, the prototype should also be able to
identify correlated degradations across tests, aiding root cause analysis. This could
reduce the amount of manual labor needed for analysis, leading to a shorter time
between test completion and test analysis.

One purpose of the prototype was that it would provide context that would allow
testers to more easily see when test cases that are not part of their daily work are
affected by the same issues that affect test cases that they are responsible for. The
goal here is to prevent having to conduct multiple instances of root cause analysis
into problems that share a common root cause. This would improve the efficiency
of test analysis by enabling better communication between testers.

3.2 Research Question

The following research questions were investigated:
• RQ1: What are critical problems faced by testers, when conducting non-

functional performance regression testing, that can be solved with machine
intelligence?

• RQ2: What potential promising solutions exist to the problems faced by
testers?

• RQ3: To what extent do the implemented solutions solve the problems faced
by testers?
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3. Methods

3.3 Research Methodology
We used a design science research method because our goal was to build and analyze
a new addition to automated test analysis [15]. Accordingly, the work was conducted
in cycles with five phases: investigating a problem or question, creating one or more
possible solutions to the problem, applying one of the solutions, analyzing how well
the solution solved the problem, and finally identifying a new problem or aspect
that was not solved in the previous cycle. The investigation phase seeks to answer
RQ1, the creation and application of a solution tackles RQ2, and the analysis phase
deals with RQ3.

The first cycle was started by investigating the problem by discussing it with
engineers and developers at the case company. Unstructured interviews were con-
ducted on a weekly basis with the industry supervisors as well as various other
testers in the case department. Approximately 20 interviews were conducted with
more than 10 testers from the case company. The chosen testers were the ones that
worked most closely with the test cases we utilized in our prototype. In order to cre-
ate and apply a solution, we created a prototype that utilized machine intelligence.
The analysis phase consisted of examining the results from the prototype with the
industry supervisors as well as determining its accuracy.

Once the prototype was created and analyzed, the problem identified for the next
phase was to implement and expand the prototype so that it provided applicable
information to the test analyzers at the case company. At the end of the first
cycle and start of the second, this problem was identified and investigated and
possible applications were brainstormed through further unstructured interviews and
demonstrations with testers at the case department. We applied the most promising
suggestions by building on the prototype created in the first cycle, focusing this
time on creating helpful outputs to the user. This cycle was analyzed through more
unstructured interviews with practitioners and through practitioners testing out the
prototype.

3.3.1 Metrics
The two types of machine learning utilized in this study were classification and
regression. For classification, the main measurements used were the Matthews cor-
relation coefficient and the confusion matrix. For regression, the root mean square
error was applied to evaluate the models.

For binary classification, the data is categorized into true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). True positives are
events that are predicted to occur that do occur, while false positives are events
that are predicted to occur but do not. True negatives are events that are not
predicted to occur that do not occur, while false negatives are predicted to not
occur but do. A confusion matrix is simply a display of these four values, dividing
the data up based on its predicted and actual categories.

The Matthews correlation coefficient (MCC) is a performance metric for clas-
sifiers, which is especially suited for data classification containing an imbalance of
data [4]. The MCC ranges between -1 and 1, where 1 signifies that the classifier fits
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the data perfectly [4]. Classifiers with an MCC value of -1 have complete disagree-
ment with the data, while 0 indicates a model that has a negligible relationship with
the data [4]. The closer the classifier’s MCC value is to 1, the more accurate it is.
The MCC is calculated using the following equation:

MCC = TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

. (3.1)

The root mean square error (RMSE) is used to evaluate regression models. The
RMSE provides an unambiguous and differentiating measure of a model’s perfor-
mance [6]. The RMSE is calculated using the following equation:

RMSE =
√√√√ 1

n

n∑
i=1

e2
i , (3.2)

where n is the total number of points and ei is the error, or the difference between
the predicted and actual value, of point i.

12



4
Results

This chapter discusses the results obtained during the study from following the
methodology outlined in the previous chapter. The data gathered from the prototype
is presented.

4.1 RQ1: Critical problems that can be solved
with machine intelligence

The first research question was answered in the investigation of the problem phase
of the design science cycles. An initial problem was identified in the first iteration,
and more specific problems were discovered during the second.

4.1.1 First Iteration
Overwhelming data. After being introduced to the case department by the indus-
try supervisors, the problem was not clearly described or specified. Despite having
an automated test oracle, there was still plenty of manual work required to ana-
lyze test execution data. Through unstructured interviews, it was evident that the
amount of data generated through test executions was large enough that testers
were unable to utilize it fully. The testers lacked knowledge about if and how differ-
ent test cases executions were related, although a connection seemed natural since
many of the test cases were similar. Since machine learning methods are designed
to identify patterns in large data sets, they were particularly suited to addressing
the testers’ situation.

4.1.2 Second Iteration
In the second iteration, we used the prototype and related knowledge from the first
iteration to further investigate the testers’ specific problems caused by having to
handle such a large amount of data. One result of the large amount of data generated
through test executions is that a large amount of testers are required to analyze the
results. There are several groups of testers, each with their own set of test results.
Because of the scale of the testing, sufficient and efficient communication is difficult;
an illustration of this is shown in Figure 4.1.

Error report communication. A specific scenario where communication prob-
lems lead to inefficiencies is fault reporting and root cause analysis. When a tester
finds a fault in the system, they create a report about it, identifying the test cases
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4. Results

Figure 4.1: An illustration of the difficulties in communication. There are several
groups of testers, and they all have their own test results to analyze. If there is a
fault that affects test results across multiple groups, there is no automatic or simple
way for the testers to know that this is the case or to inform the other groups about
it.

and builds affected and providing a description of the problem. This is based on the
tester’s own awareness of the issue, but the fault may also affect test cases that the
tester does not work closely with. Because there are so many different people each
independently working on their own test cases, the tester who first finds the fault
may not be aware of all cases that should be listed in the report. The tester working
on those cases would then have to run a search through all active reports for de-
scriptions matching their error. If the second tester does not find the report created
by the first, they will most likely create a new report, complete their own root cause
analysis, and create another solution to the problem. Solving the problem twice is
obviously quite inefficient, and something we seek to prevent from happening again
in the future.

Verdict requirements over degradations. Another issue is that testers are
mainly focused on changes in KPI values that cause checkpoints in the test oracle
to fail. Changes in KPI values that do not cause the value to go outside of the range
defined for the checkpoint are often assumed to be random fluctuations, since the
system is not completely deterministic. Consider, for example, a KPI value has an
acceptable range of 80 to 120 and is usually around 100. This can cause problems
if, between two builds of the system, the value decreases from 100 to 82, and in
the next build, the value further decreases to 78. The third build would be the one
that the test oracle marks as a failure, and the tester would start looking for issues
with the KPI based on that. However, the major performance degradation occurred
between the first two builds, and the updates made between these two are the ones
that need to be examined to find the root cause.
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4. Results

Re-runs. Another problem faced by the department is the issue of testers having
to re-run test cases to figure out if the results in a given execution are caused by a
temporary fluctuation in the system or an actual change in the performance caused
by an update. Often, if a tester notices that an execution has failed the requirements
set in the test oracle by a small amount, the tester will re-run the test case to see
if the failure can be replicated. This becomes problematic for the case company
because a significant amount of computing power is dedicated to running the same
test scenario multiple times.

Because of the problems outlined above, test analysis is very time intensive, and
not all test executions are manually analyzed. This means that there can be a few
new executions of a test case when a tester analyzes it. If a degradation has occurred
since the last analysis of the test case, root cause analysis begins with identifying in
which execution the problem started and can be cumbersome. With the importance
of quick root cause analysis to Continuous Integration, making test analysis more
efficient would provide large benefits.

4.1.3 Summary
The main problem testers faced that could be solved with machine intelligence was
the overwhelming amount of data generated during test executions. The specific
problems that resulted from this issue with the data were communication issues
and knowledge gaps surrounding fault reporting, the focus on requirements in
the test oracle instead of degradations, and the issue of testers re-running
test cases due to the non-deterministic nature of the system.

4.2 RQ2: Potential promising solutions
The second research question was answered during the creation and application
of solutions phases in the design science cycles. In the first iteration, an initial
prototype that predicts test results was created. Applications of the prototype that
directly aid testers in analysis were created in the second iteration.

4.2.1 First Iteration
In order to address the problem of extracting information from the large data set
and to determine if connections exist between test cases, we created a prototype.
The focus was to make accurate predictions of test execution data using other test
cases’ executions. If the prototype was able to obtain accurate predictions of the
data, it would demonstrate that there are connections between the test cases.

The implementation phase of the first iteration was started by creating classifiers
to predict the pass or fail verdicts made by the test oracle. Then, we trained regres-
sors using numerical data used by the test oracle to give a pass or fail verdict. The
two methods used for the prototype were the same throughout; the only difference
was that regressors were used in the second part instead of classifiers. However,
before we could use the test execution data for an implementation of machine in-
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telligence algorithms, we first had to pre-process the data, transforming it into an
easily readable format.

4.2.1.1 Data Handling

The data consisted of logs from system test executions. The log used to represent
each execution was either the log from the case company’s test oracle containing a
set of checkpoint results or the log containing the test case’s numerical key perfor-
mance indicators. A checkpoint is a requirement on a specific value or set of values
describing a part of the test and can be either pass or fail. Most requirements are
on the values known as key performance indicators. A key performance indicator
(KPI) is a numerical value describing a part of the test, such as the CPU or memory
usage. Both types of logs were text files and needed significant pre-processing to be
usable when conducting machine learning.

First, the logs that are needed to train the machine learning model are identified.
To do this, the type of test, the type of hardware, and the specific test name need to
be given in order for the script to be able to find the log. Then, each line containing
data from each log is saved in one of two text files, one for the input and one for
the output of the model.

After the two text files are created, each distinct build and checkpoint or KPI
was identified. These were used to create two NumPy arrays, where in each the first
dimension corresponds to the build and the second to the checkpoint or KPI. The
data was then read from the two text files and inserted into the correct position in
the corresponding array. Rows or columns in the arrays containing very little data
were removed, and any remaining missing data was replaced with the median value
for that checkpoint or KPI. The data was rescaled to have a range of [0, 1] in order
to normalize the size of each KPI.

4.2.1.2 Classifier and regressor implementation

Based on input received from the problem phase, we built a prototype system that
expands the functionality of the test oracle at the case company using machine
learning. The goal was to create a system that was able to identify patterns in test
results and checkpoint failures, aiding system testers in finding the problems that
cause the tests to fail. We thought that the best approach was to create a neural
network, but other options were also considered and tested. The system was trained
using historical data with known results. The case company had already collected a
large amount of data from their continuous testing, and more data was continually
generated, so the model needed to be able to adapt as new results became available.

The two machine learning methods tested in this study were neural networks
and random forests. The two machine learning methods were compared to logistic
regression for classification and linear regression for regression. The prototype was
implemented in the Python programming language. The libraries used were NumPy
for general math and array handling, Keras with TensorFlow as the backend for the
neural networks, and scikit-learn for the random forests and some data analysis.
MatPlotLib was the library utilized to make the plots in the thesis.
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For the neural networks, multiple feedforward networks were trialed. In the end,
a simple network without hidden layers was chosen in order to enable easy analysis.
The data was split into training and validation sets, where the network was given
the training data and evaluated its progress based on the validation set to avoid
over-fitting. K-fold cross validation was used to further improve the accuracy and
consistency of the model. The number of folds was set based on the number of data
points available for training.

Since our network does not have any hidden layers, each weight or bias in the
network created during training only affected one output node. The parameters’
independence allowed the training to be evaluated individually for each output di-
mension, minimizing the error in each output separately.

For the random forests, one random forest was created for each output dimension.
A grid search was used to determine the correct hyper-parameters for each output.

When utilizing relatively simple models such as these, using machine learning
at all may seem unnecessary, and a statistical linear regression approach may be
appealing. However, the machine learning methods are advantageous in that they
can ignore outliers that, for example, are errors in how the data is recorded and
do not reflect the system’s properties, and that they are able to handle incomplete
data. Unlike statistical models, these techniques iteratively improve their predic-
tions based on the data, and if some data points are misleading, their effect on the
result can be removed through this process. This means that the machine learning
methods create models that more accurately reflect the underlying system instead
of attempting to create a perfect representation of the given data.

The prototype was tested after training by giving it new data not used in the
training and then checking whether the predicted test results were consistent with
the actual result. For example, the prototype could be trained to predict the results
of a test based on other tests that are run more frequently. The neural network or
the random forest could then be examined to find what parts of the more frequently
run tests affected the predictions, thereby identifying correlations between tests.

4.2.2 Second Iteration
Based on our improved understanding of the specific problems faced by testers,
we focused on implementing a system to support root cause analysis. The main
problems addressed by this system were communication issues and knowledge
gaps surrounding fault reporting, the focus on requirements in the test oracle
instead of degradations, and the issue of testers re-running test cases due to
the non-deterministic nature of the system.

When developing applications based on the predictions from the first iteration,
the neural network was utilized instead of the random forest. Because both machine
learning methods had similar performance, we could choose the option that was
easier to work with, which in this case was the neural network. Since the neural
network was implemented without any hidden layers, this model had the advantage
of having a single number representing each input’s effect on the output, whereas the
analysis would be more complicated with an ensemble method such as the random
forest. In addition, the numerical KPI data was used for the applications instead of
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the binary checkpoint data in order to remove a layer of abstraction and obtain a
more accurate view of the actual system.

One expansion to the prototype was a script that takes a test case and a build
as input and checks if any KPIs have changed since the previous build. There is a
threshold that the change has to be greater than in order for that KPI to be listed.
The threshold can be adjusted based on expectations of stability in the value. A
text file is created where each changed KPI is listed with a list of input KPIs that
were important to the network in predicting this change. The input KPIs are listed
according to their relative effect on the prediction, with the KPI having the highest
effect given a score of 100. The effect is calculated by multiplying the change in that
input KPI between the two builds by the weight in the neural network between the
input KPI and the output KPI under consideration. In addition, if any of the test
cases the KPIs belong to have a current error report, the report will be listed in the
final column. An example of the output of this script is shown in Figure 4.2.

Figure 4.2: An example of the output of the script that finds connected degrada-
tions or changes in KPIs. In this example, only one output KPI is shown. This is
Kpi1 from TestCase1. The KPI has decreased 5.74% since the previous build. The
following rows list the input KPIs ranked according to their effect on the predic-
tion of the degradation in Kpi1. For example, the increase in value of Kpi2 from
TestCase2 has the biggest effect on the prediction of the decrease in Kpi1. The
second biggest effect came from kpi3 in TestCase3. TestCase3 also had an error
report created for a build between 495 to 500, so that is listed in the final column
as Report1.

This application for finding degradations was tested by simulating the scenario
where a tester is investigating a degradation in their test case caused by an issue that
has already been identified in a different test case. This scenario is reproduced by
going through all reports with multiple test cases on the same build. The application
was run once for each test case in each report with the output set as that test case.
Then, we checked whether the report was included in the list of related degradations.
This answers the question of whether, given a report with multiple test cases, if one
is removed, our application will tell the tester that degradations in that test case
are related to that report. The total percentage of reports identified as related was
calculated, and the reports that were not discovered were analyzed to determine if
they affected the KPIs in the test cases at all.
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To the problem of focusing on whether the checkpoint requirements are met
instead of looking for degradations in the system, we propose a few solutions. If
the script discussed above was run at the end of every test execution, then the tester
responsible for that test case could be automatically notified if any KPIs changed
significantly in value. From the script output, the tester would already have some
information about any similar KPIs that also were affected and if there are any
reports about the changes. As the complete script currently takes a few minutes to
run, with the exact time depending on the amount of data that has to be analyzed,
adding this script to the end of test executions is feasible if it would significantly
aid test analysis. In addition, the script’s time and resource requirements could be
further improved. As it would not be necessary to train a completely new neural
network whenever one new data point is added, if an update functionality was
implemented, the costs of running the script would significantly decrease.

Another way we approached this issue was to create a script that identifies if a
change in a KPI is larger than normal or not. This script does not utilize the neural
network but is instead a more statistical implementation of machine intelligence.
Given a specific test case and build, the script identifies how much the KPIs in this
test case have changed since the build before the given build. Then, it calculates the
nth percentile of change in that KPI, based on the historical data that we gathered
when training the machine learning algorithms. n can be specified by the user, and
the n% changes with the smallest absolute value are deemed "regular". Changes
bigger than this boundary are marked as "unusual" in the file. An example of the
output from this script is given in Figure 4.3.

Figure 4.3: An example of the output of the script that calculates whether KPIs’
changes are within the regular variations or not. The "regular change" column is
calculated as a percentile, in this case 70%, of the absolute value of historical changes
in that KPI. The current change is the amount that the KPI has changed, in this
case, between Build1 and Build2. If the current change’s absolute value is greater
than the regular change, the change is marked as unusual.

In addition to analyzing the changes, we also implemented an analysis of the
actual KPI values done in the same way. A visual example of the analysis of the
KPI values and their changes is shown in Figure 4.4.

Another issue this second script helps to alleviate is testers having to re-run
test cases to figure out if the results in a given execution are caused by a temporary
fluctuation in the system or an actual change in the performance caused by an
update. Our script would inform the testers if the given test execution’s KPI values
have changed more since the previous build than what is normal. For executions
with changes within the boundaries, a re-run would most likely not provide any new
information, as these types of variations are to be expected. If the change is marked
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Figure 4.4: An example of a KPI’s value over time and how the intervals for regular
change and value are calculated. The interval of regular change is centered around
the value of the KPI in the previous build and is here set to be size of the 70th
percentile of the history of changes. The interval of regular value is here created
between the 15th and 85th percentile of the KPI values. In this figure, the current
value is within the range of regular values but has had an unusually large change in
value compared to the previous value.
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as unusual, the tester would then know the change is the result of either an error in
the test case or a difference in the performance of the system.

The outputs of the prototype shown in Figures 4.2 and 4.3 were changed and
improved several times during the course of the second iteration. Since a single tester
often may not know much about other test cases, the numerical values from other
test cases may be confusing. Based on discussions with our industry supervisors,
we concluded that the amount of numerical information presented is overwhelming
and does not need to be shown to the end user. A new output file was then created
consisting of the most useful results from the two previous outputs. The file contains
the suggested error reports and the information about whether the test case analyzed
had any outliers in the data such as unusually large changes or unusually high or
low values. An example of this output is shown in Figure 4.5.

Figure 4.5: A figure showing the final output from the prototype. For each KPI in
the test case, the current value and the change in that value since the previous build
is shown. The median value of the KPI is shown in the column "Regular Value"
and the 70th percentile of all changes in the KPI is shown in the column "Regular
Change". These give the tester an idea of how the current results compare to his-
torical trends. Changes greater than the 70th percentile are marked "UNUSUAL
CHANGE!", values above the 85th percentile are marked "HIGH VALUE", and val-
ues below the 15th percentile are marked "LOW VALUE". Below the numerical
data, there is a link to the test case on a database where graphs of the KPIs can
be created and viewed. Below that is the list of related error reports identified by
the neural network for this test case execution along with a short description of the
report and a link to it.

4.2.2.1 Example scenario

The following is an example of how a tester could use the final prototype to aid in
test analysis. The tester has a specific execution of a test case that they need to
analyze. The tester looks at the results from the test oracle, and the execution may
be marked as a fail or it may have passed, but the tester decides that they want
to do a deeper analysis of this execution. The tester can then run our prototype,
which usually takes around a minute but can take more depending on how much
data there is for the input and output. The tester would specify their execution as
the output and choose a related category of test cases for their input data.
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Once the prototype is finished running, the tester would look at the final out-
put, which will look similar to Figure 4.5. The tester can see if there is anything
unusual about the KPIs in their execution, regardless of whether the value meets
the requirements and is therefore accepted by the test oracle. There is also a link
the tester can use to easily access graphing utilities of the KPI values’ histories. If
this data combined with the test oracle’s result indicates to the tester that there
was an error or degradation in the test case, the tester can then read through the
suggested error reports and their descriptions to see if similar problems have already
been noted. If they find one that matches their issue, they can use the link to read
the full report and add their test case to it. If none of the suggested error reports
match their problem, the tester can be more confident in the necessity of creating a
new error report.

The result of this process is that the tester more easily gets access to data about
their test case that helps them evaluate and analyze a test execution. This aids the
tester in deciding whether a degradation necessitates a root cause analysis or not.
The machine learning method helps to identify related error reports that may not
have discovered otherwise, which prevents the testers from conducting a root cause
analysis into a problem that has already been identified and possibly solved.

4.2.3 Summary
A prototype that predicts test execution data was created in order to demonstrate
machine intelligence’s ability to find relationships between test cases. In order to
address the more specific problems, the prototype was expanded to provide a user-
friendly output that, for each test execution, shows how the current execution relates
to historical results and lists the error reports that may be related to that execution.

4.3 RQ3: The extent the implemented solutions
solve the problems

The third research question was answered in the analysis of the solution phase of
the design science cycles. Three different types of evaluations were made. In the
first iteration, the accuracy of the prototype’s predictions was assessed. In the
second iteration, the two types of evaluations were the accuracy of the prototype in
identifying relevant error reports and the testers’ experiences using the prototype.

4.3.1 First Iteration
In this iteration, two data sets were analyzed, and both classifiers and regressors
were tested.

4.3.1.1 Data Sets

Both data sets presented here consisted of data from capacity test cases executed
on different hardware. One specific test case with a recent known regression was
chosen as the output test case, while the others served as input for the algorithm.
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Data Set 1 consisted of the checkpoint data from the test oracle and was used
for classification. It contained 25 points, each one representing the test executions
on a different build of the system. For each of the 25 points, there were 208 input
dimensions and 6 output dimensions, and in the output, 127 of the results were
pass, while 23 were fail. Since test failures are uncommon, looking at the models’
ability to predict the failures specifically was important, and the MCC was a suitable
performance metric.

Data Set 2 consisted of the KPI values from the same executions as Data Set 1
and was used for regression. There were 25 data points with 220 input dimensions
and 6 output dimensions.

During the data collection of Data Set 1, we noticed that there was a lot of
missing data. Missing data occurred because not every test case was executed for
every build. In addition, if a checkpoint was created or removed, the data for that
checkpoint would be missing before its creation or after its deletion. Even after
discarding data points, a significant portion of the input data was still missing. In
this case approximately 33% of the input data was missing, which can be seen in
Figure 4.6.

Figure 4.6: A figure showing to what extent checkpoint data is missing from Data
Set 1. Existing data is marked with a black box, while a missing data point is white.
All builds are shown for an arbitrary selection of 100 input dimensions.

When Data Set 2 was used, approximately 33% of the input data was missing,
which is very similar to Data Set 1. A visual of the missing KPI data is shown in
Figure 4.7.

In order to learn more about how the KPIs were related, the Pearson correla-
tion coefficient was calculated for the KPIs, 30 of which are shown in Figure 4.8.
Although there are some KPIs from different test cases that are highly correlated,
those pairs of KPIs may still have instances where one KPI increases in value be-
tween two builds while the other decreases, as shown in Figure 4.9. This means that
using a single KPI as a predictor for another will not provide accurate results.

4.3.1.2 Classification

Our first algorithms worked with the verdict data, Data Set 1, and could with very
high accuracy predict the results from a particular test using others tests as input.
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Figure 4.7: A figure showing to what extent KPI data is missing from Data Set 2.
Existing data is marked with a black box, while a missing data point is white. All
builds are shown for a random selection of 100 input dimensions.

Figure 4.8: A heatmap showing the Pearson correlation coefficient between dif-
ferent KPIs from Data Set 2. The six output KPIs are shown first, and 24 of the
input KPIs are displayed next. KPIs from the same test case are grouped together.
The graph shows that there are some KPIs from different test cases that are highly
correlated, but in general, the correlation varies widely between pairs of KPIs.
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Figure 4.9: A figure showing two KPIs from Data Set 2, one from the output test
case and one from one of the input test cases, with a Pearson correlation coefficient
of 0.943. The KPIs are shown with their rescaled values. Although the correlation
is high, there are cases where one KPI increases while the other decreases.

The logistic regression model was able to perfectly predict all of the outputs, as
shown in Table 4.1. This meant that the logistic regression model had an MCC of
1.

The result from the random forest had an MCC of 0.840 and was therefore worse
than the logistic regression model. The confusion matrix for the random forest is
shown in Table 4.2. The biggest obstacle to the random forest’s predictions was
most likely the small number of data points.

Predicted
Pass Fail

Actual Pass 127 0
Fail 0 23

Table 4.1: Confusion matrix for the logistic regression model for Data Set 1.

Predicted
Pass Fail

Actual Pass 127 0
Fail 6 17

Table 4.2: Confusion matrix for the random forest for Data Set 1.

Training a neural network using the same data set, the results were better than
the random forest’s. The resulting network had an MCC of 1, performing as well
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as the logistic regression. The confusion matrix for the neural network is shown in
Table 4.3.

Predicted
Pass Fail

Actual Pass 127 0
Fail 0 23

Table 4.3: Confusion matrix for the neural network for Data Set 1.

For predicting whether checkpoints from the test oracle pass or fail, advanced
machine learning methods were unnecessary, as the logistic regression model was
able to perfectly predict all of the results.

4.3.1.3 Assessment of classification and transition to regression

Although the classifiers were accurate, knowing whether and why a checkpoint is
pass or fail is not as meaningful as knowing this information about the underlying
KPI values that determine the test oracle’s classification. Based on input from our
industry supervisors, we therefore decided that classifier predictions had limited
usability for improving test analysis and therefore this project. We instead focused
on the regression algorithms and moved on to using Data Set 2. The KPI values used
in regression are the same values used by the test oracle to decide if a checkpoint
passes, so looking at this data removes a layer of abstraction from the model.

4.3.1.4 Regression

The linear regression model was able to make extremely accurate predictions of the
KPI data, having an average root mean square error of 5.77 · 10−17. However, this
model is very strongly overfitted, so its usability is limited (see Subsection 2.1.2 for
an explanation of overfitting).

The neural network performed reasonably well at predicting Data Set 2. The
root mean square error during one fold of the k-fold cross validation is displayed
in Figure 4.10. Both the training and validation error improve in about the first
70 iterations, but after that the validation error is stable while the training error
continues to approach 0. The period when the validation error no longer improves is
caused by the network overfitting the model to the training data. In order to avoid
using an overfitted model, the state of the network with the lowest validation error
is saved for every fold, and the average is calculated at the end.

The final network had an average root mean square error of 0.077. However,
the root mean square error for each output dimension varied, ranging from 0.058 to
0.108. This variation indicates that there are some KPIs that are easy to predict
and some that the model is not able to predict as accurately.

The random forest performed similarly, with an average root mean square error of
0.088. There was a large variation between the root mean square error for individual
outputs, with the errors ranging from 0.052 to 0.169. An example of one tree in the
random forest is shown in Figure 4.11.
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Figure 4.10: Root mean square error for the training of the neural network. In
approximately the first 70 iterations, both the training error and the validation error
decrease, but after that the validation error no longer improves.

Figure 4.11: An example of a tree in the random forest. The diagram shows
how the data is split up throughout the tree based on the value of certain input
dimensions.
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Analyzing the data sets and creating the regressors and classifiers demonstrated
that there was a strong connection between the results of the executions of different
test cases. The machine intelligence implementation therefore appeared better at
utilizing the large amount of data to find relationships between test cases than the
human testers. However, the goal was not to replace executions with the prototype’s
predictions, as this would require greater confidence in the completeness of the
model and therefore a more thorough data set. Since testers will continue to only
analyze completed test executions, these predictions were not immediately useful
in improving the effectiveness of test analysis, which then became the focus of the
second iteration.

4.3.2 Second Iteration
The expansions of the prototype created in the second iteration were evaluated based
on their ability to identify error reports and testers’ feedback.

4.3.2.1 Error Report Identification

The ability of the prototype to identify relevant error reports from the input test
cases was tested using both the neural network and the linear regression model. As
described in Section 4.2.2, the testing was conducted by looking at previous error
reports that contained multiple test cases and seeing if the report would be included
in the suggestions if the script was run for each of the test cases in the report. The
test included 29 runs of our script. Of those 29, 21 reports were correctly identified,
and 8 were missed. Upon examining the trouble reports for the 8 failed runs, only
one of those reports was related to a degradation in the KPIs. This means that only
one of the failures could be attributed to the network’s knowledge of the relationships
between KPIs.

If the linear regression model was used instead of the neural network, 17 of
the 29 reports were correctly identified. Although the linear regression model had
very accurate predictions of the KPI values, the relationships in that model did not
match reality when looking at what test cases appear in the same error reports. This
indicates that the linear regression model is overfitted, which explains how it was
able to obtain such a low RMSE in Section 4.3.1.4. The difference in error report
identification accuracy demonstrates the neural network’s superiority to the linear
regession model in learning general relationships instead of the specifics of the data.

The result from the error report testing also shows a flaw in this application,
since only reports that are concerned with the KPIs can be identified correctly.
From the 8 reports that the neural network was unable to identify, 7 were missed
because the reports were about something unrelated to the KPIs but connected to
the test cases. These reports were not about problems in the performance of the
system that could be numerically measured, but were instead about errors in the
testing itself or parts of the system that fail for some reason. Such errors will not
be reflected in the KPI values. Although the 21 correctly identified error reports
were not closely examined, it is clear that some of these also were about issues that
did not directly affect the KPI values. The network identified these based on the
fact that the test cases in the error report had related KPIs, even though the error
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was not in the KPI values. One conclusion that can be drawn from this analysis is
that finding related error reports based on relationships between KPIs will not be
sufficient in order to identify all errors that affect multiple test cases.

4.3.2.2 Feedback

The prototype appeared very promising to the testers who tried it. However, the
gathering of feedback from the testers was limited because a big update was made
to the system being tested (see Section 5.1), which prevented the testers from being
able to use the prototype when analyzing new issues. We were able to gather the
following observations before this change occurred.

When the prototype was first used by a tester to examine a current degradation,
an error report was identified, from an output similar to Figure 4.2, that the tester
had not found using the normal search tool. The tester was able to confirm that
the report was about the same problem that they had observed. The tester then
proceeded to add their test case to the report, saving them from having to create a
new report about their issue.

Another tester found a degradation of a KPI that historically had not seen
any change. The network could not predict this result, and the output from the
first application was not useful. From the output that corresponds to Figure 4.3,
one could clearly see that the degradation was an extreme outlier. From this, we
concluded that the two scripts work best together, with the first one providing good
results when the changes that occur are similar to previous ones, while the second
one points out the KPIs that are dissimilar to historical data.

4.3.3 Summary
For classification, perfectly accurate predictions could be made with both the logistic
regression model and the neural network, while the random forest was not quite as
accurate. Any of these methods is usable for predicting test results in performance
regression testing. For regression, both neural networks and random forests were
able to accurately predict KPI values, but their average root mean square error was
much higher when compared to the linear regression model’s error.

The design science method meant that our approach evolved during the course
of the thesis. In the first cycle, the focus was to make accurate predictions of test
execution data. However, these predictions were not inherently useful to the tester,
who already has the actual test execution logs to examine. Therefore, the ability
of the prototype to identify error reports and the testers’ opinions were measured
in the second iteration. When the neural network and linear regression were used
in the application that identifies related error reports, the neural network was able
to identify more of the error reports. When working with limited data, the error
of the machine learning methods may be relatively high, but their ability to avoid
overfitting when dealing with noise in the data increases their usability compared
to conventional statistical methods.

Although feedback was limited, the testers who did use the prototype responded
positively. The prototype was deemed to be very promising in dealing with the prob-
lems of communication issues and knowledge gaps surrounding fault reporting,
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while reducing the focus on requirements in the test oracle instead of degra-
dations. The issue of testers re-running test cases due to the non-deterministic
nature of the system was also alleviated.
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Discussion

System testing is a very time-consuming step of the development process that, at
its essence, consists of analyzing the huge data set of test results. There are many
possible ways to make this task easier and faster. Our prototype focused on finding
and presenting important information in the data, delivering this information faster
than current tools and manual analysis. Every aspect of the data can be of use
when doing the root cause analysis; the history, relationships, and outliers both in
value and in changes in the the value can all give indicators of when, how and why
something had changed.

Communication with testers ensured that the prototype matched what the testers
were currently missing. This meant both extracting useful information about a sin-
gle test case and aiding communication by sharing information across test cases.
Presenting as much information as possible in an understandable and informative
way while also not becoming overwhelming is at the core of improving system test
analysis. The current test oracle classifies an execution into meets requirements
or not, but a more detailed automated data handling and analysis would ease the
workload of the testers. We believe that with our tool, the testers will be able to get
a better overview of the task at hand and of the previous work done with similar
problems.

The results of this thesis was evaluated on three levels: the accuracy of the
prototype’s predictions, the accuracy of the prototype in identifying relevant error
reports, and the testers’ experiences using the prototype. All of these levels demon-
strate the reliability of the prototype, and the last two establish usability as well.
The numerical results were presented in the previous chapter and were very good.
Although the feedback gathered from testers was limited, the reactions from those
who used the prototype were positive.

In general, it is important to note that the correctness of the machine learning
models is highly dependent on the data provided. In order for the model to be
as accurate as possible, the data set should contain representatives of all possible
scenarios. If the data contains a very small amount of big outliers, those outliers
will be very difficult to predict accurately. On the other hand, for data sets with no
outliers, the predictions can be very precise. As long as the data is not outdated,
increasing the amount of data available for training the model will typically improve
its accuracy. The threshold for what data counts as outdated can be hard to de-
fine and arbitrary, and especially for projects that follow Continuous Integration,
obtaining enough data about the current state of the system can be difficult.
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5. Discussion

5.1 Challenges

When analyzing data, a large portion of time was spent on pre-processing. This is
something we were warned about at the start of the thesis and also something we
experienced firsthand. Our work in pre-processing data is something that the case
company can use for any data analysis of this system, and the recommendations
that follow about handling data are generally applicable and can save many hours
of work for anyone interested in analyzing data collected over time.

One of the biggest challenges in the study was the incomplete nature of the data.
Even after pre-processing the data, around 30% of the data was still missing. This
decreases the accuracy and reliability of the model created using machine learning.
An important lesson to practitioners that collect and store a large amount of data is
to have consistency and thoroughness in the data collection process. This includes
ensuring that the data collected is comparable to previously collected data and
maintaining a consistent schedule of storing the data. Improving data handling
increases the usability of the data and the potential for machine intelligence to be
used in automation.

Another challenge with the data was finding comparable logs to be used for
training. We decided that all logs used to create a single data point had to be from
tests executed on the same build, which is part of the reason for the missing data
discussed above. As new builds are constantly created at the case company, test
executions that are only a few hours apart could be considered separate data points.
This can be problematic if, for example, half of the test cases are run on one build,
while the other half is run on the next build, creating two different data points
that both have 50% of the data missing. However, the decision ensured that all
test logs used to create a data point were from executions run on the same system.
Even if builds are close in time, each build contains new updates that may affect
the performance tests, meaning that each build needs to be assigned a distinct data
point to ensure that the associations created during the machine learning reflect
reality.

Four months after the start of the thesis, there was a major update to the
the system tested by the case department. Although the test cases, KPIs, and
checkpoints used to test this new version of the system were essentially the same,
the relationships created from the data from the previous version of the system may
not hold for the new state of the system. The only change required to the prototype
is to change the path to the data to the new directories, but the prototype will not be
usable on the new system until several months of data has been gathered. The data
requirement is an inherent limitation of machine learning, and combined with the
relatively infrequent complete testing of the system, causes this major drawback to
this approach. On the other hand, the manual approach to system testing may either
err on the side of assuming too much is unchanged or simply require more effort, as
all performance changes are new types of changes, which may be unavoidable when
testing a new product.

32



5. Discussion

5.2 Threats to Validity

The thesis’s approach to improving test analysis evolved during the course of the
study because of the exploratory nature of the work. We started with the goal to
use the test execution data collected by the case department and were confident
that machine learning could provide benefits to the testers, but neither we nor our
supervisors were certain of how to utilize the data in the best way. This approach
allowed us to be more flexible in addressing the needs of the testers at the cost of
having a more systematic study.

The prototype created in this study was based on the needs of a case company,
and the accuracy of the prototype was then evaluated based on data provided by the
case company. Although the development of the prototype aimed to be as general
as possible, the results of the study may not be fully applicable to other use cases.
In particular, there is no guarantee that this implementation of machine learning
methods will be able to make accurate predictions for other data sets.

Ethically, there is a limit to the information we are able to provide about the
study. In order to respect the needs of the case company, we cannot share the data
we used or the source code of our prototype. We have also changed the outputs of our
prototype included in this report to be more vague, removing references to specific
test cases, KPIs, and builds. This is an obvious limitation on the reproducibility of
the study. However, we maintain that the general conclusions of this study remain
valid for other data sets, making the exact nature of our data less important.

Two master students worked together and validated the results of the study. A
literature review was conducted, but the focus of the study was on the design and
development of the prototype. The prototype was further evaluated by the industry
supervisors and presented to testers at the case department. Feedback from the
testers was continually collected as they worked with the prototype.

5.3 Contribution to Academic Research

This thesis adds to research into performance regression testing and specifically
contributes to knowledge within the automation and implementation of machine
intelligence in such testing, which is an area lacking research. Although the pro-
totype created does not itself deliver a verdict, it does take into account a set of
test runs to provide its analysis, as recommended by Hierons [16]. As Briand [5]
stated, machine learning in general and this prototype in particular are well suited
for systems that change over time. As seen when the major update was introduced
at the case department, the prototype could adapt to this change and did not need
to be reworked. An important limitation noted in this thesis is that if the change
is big enough so that previous data can no longer be considered applicable to de-
scribing the current system, then sufficient data must be gathered from the current
system before machine intelligence can be utilized. Another important aspect to
note is that if the system is constantly changing, then eventually old data needs to
be discarded, as these executions come from a system too dissimilar to the current
state.
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5. Discussion

The thesis is similar to the work done by Foo et al. [10], who created a system
to automatically detect performance degradations in heterogeneous environments.
Although the prototype was tested on a single system, its structure is independent
of the type and source of the data, so our work should be able to function in het-
erogenous environments as well. As long as a new training data set is given, it
should perform similarly.

5.4 Future Work
As the prototype is a complement to the current test oracle, it adds another place
that the testers have to check in order to gather information about their test case.
A major quality of life improvement would be to integrate this with the test oracle,
creating an oracle that not only considers the stated requirements but also warns
testers about anything that could be a sign of a change in the system’s performance.
In addition, an oracle like this would also incorporate the more holistic view of
testing, pointing out the test cases that have similar warnings or errors.

Although the classifiers were of limited use in our study, they could be useful to
other parts of the case company and software testing in general. Accurate classifiers
could, for example, be used in deciding what and in what order to execute tests. This
was outside the scope of the thesis, but automatic test prioritization has previously
been studied at the case company and could be applied to the case department as
well [17]. Since there are several different frequencies on which tests are run and
analyzed, optimizing which tests are placed into each frequency would lead to a
faster detection of degradations and reduce the amount of testing systems required.
In addition, it would also be possible to consider a fluid ranking of test execution,
where requirements on the frequency of execution are lessened or removed. Instead,
tests would be run according to their highest failure probability.
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6
Conclusion

The purpose of this study was to find ways to improve software test analysis using
machine learning. Software testing is a costly but necessary part of development,
so reducing the efforts required to conduct it would benefit industry greatly. Au-
tomation is one of the most promising ways to accomplish this and was therefore
the focus of this study. Although fully automated testing is still unfeasible, we be-
lieve that our work can ease the time and effort required of the testers conducting
performance regression testing at the case company.

The goals of the thesis were achieved by creating a prototype that shows testers
general information about the KPI values in their test case as well as the machine
learning model’s prediction of related error reports to the current test case. The
predictions about test cases’ KPIs used to create these recommendations was found
to be accurate, as long as the current execution did not deviate too far from the
historical results.
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