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Abstract

The SP3 theory is a better approximation than diffusion theory when modeling a nuclear
reactor, but the properties of homogenization and discontinuity factors are not known.

This master thesis, at Studsvik Scandpower, has been done to investigate the usage
of discontinuity factors in the SP3 theory and compare the results with the traditional
diffusion theory. The discontinuity factors should have the property to conserve the reaction
rates and interface currents.

Four different methods were tested to create discontinuity factors for SP3 theory, one
analytical and three numerical. Two methods (the analytical one and one of the numerical
methods) where able to conserve both the currents and reaction rates but at different
costs. The analytical method has the problem of possible numerical instabilities, and the
numerical method the problem of no unique solution. Good approximations are also found
with minimal errors in flux and the effective multiplication factor keff .

The thesis has shown that it is possible to use discontinuity factors in SP3 theory, either
by recreating the solution completely, or use good approximations. For more reliable results
and numerical stabilities some future improvements are needed.

As a good approximation found was to use the traditional discontinuity factors with
the change that the discontinuity factors for the second moment flux is set to unity.



Abstract

SP3 approximationen är ett bättre sätt att modelera en kärnreaktor än den nu använda
diffusions teorin, men när det gäller homogenisering och diskontinuitets faktorer är detta
ännu inte testat.

Detta examensarbete har gjorts p̊a Studsvik Scandpower för att undersöka diskontinu-
itetsfaktorer i SP3 teori och jämföra reslutaten med den traditionella diffusionsteorin. Det
som kommer att krävas av diskonituitetsfaktorerna är att de ska bevara antalet reaktioner
och läckage.

För att göra detta har fyra olika metoder testats för att beräkna diskontinuitetsfaktorer
för SP3 teori, en analytisk och tre numeriska metoder. Tv̊a metoder, den analytiska och
en av de numeriska, klarade av att skapa diskontinuitetsfaktorer som bevarade de önskade
storheterna, men inte utan problem. Problemet med den analytiska metoden är att det
kan uppst̊a numeriska instabiliteter och den numeriska metoden har problemet att det inte
finns en unik lösning. En appriximation har även hittats med sm̊a fel i s̊aväl flöde och keff .

Examensarbetet har visat att det är möjligt att använda diskontinuitetsfaktorer i SP3
teori, antingen genom att återskapa lösningen eller med approximationer. För att f̊a mer
p̊alitliga resultat och numerisk stabilitet behövs fler förbättringar.

Den bästa approximationen som hittats i detta arbete var att använda de traditionel-
la diskonituitetsfaktorer med ändringen att diskonituitetsfaktorerna för andra ordningens
flöde sätts till ett.
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III

Abbreviations and notations

In this report the conventional subscripts for the fast and thermal groups 1, 2 will not be
used, this is because of 1 and 2 will have other meanings with SP3 equations. Therefore
the subscripts for the fast group will be f and for thermal t, i.e. the fast and thermal fluxes
will be called φf φt.

Otherwise the following conventional physical quantities will be used:

φg - scalar flux of group g
J - neutron current
j - partial neutron current
Σα - cross-section
Dg - diffusion coefficient
νg - number of neutrons released in fission
Σa,g - absorption cross-section
Σf,g - fission cross-section
Σs,gg′ - scattering cross-section
keff - effective multiplication factor
¯ - average quantity
PWR - pressurized water reactor
BWR - boiling water reactor
MOX - Mixed oxide

And to clarify, in this report vectors will be written as bold φ and matrices as bold
with an underline Σ.

, 2011



Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Abbreviations and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Studsvik Scandpower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 3
2.1 Neutron transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Energy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Angular approximations . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3.1 Diffusion approximation . . . . . . . . . . . . . . . . . . . 5
2.1.3.2 Simplified P3 approximation, SP3 . . . . . . . . . . . . . . 5

2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 SP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Heterogeneous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Discontinuity factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical methods 11
3.1 Numerical calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Implementation of Discontinuity factors . . . . . . . . . . . . . . . 13

3.2 Discontinuity factors for SP3 theory . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Method 1 - Traditional definition . . . . . . . . . . . . . . . . . . . 14
3.2.2 Method 2 - Nodal optimization . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Method 3 - Interface optimization . . . . . . . . . . . . . . . . . . . 16
3.2.4 Method 4 -Core optimization . . . . . . . . . . . . . . . . . . . . . 17

3.3 The code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Materials and example systems . . . . . . . . . . . . . . . . . . . . . . . . 20

IV



CONTENTS V

3.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Example system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Albedo calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 24
4.1 Heterogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 SP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Homogeneous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Homogeneous solution from heterogeneous solution . . . . . . . . . 26

4.2.1.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1.2 SP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Homogeneous solution from discontinuity factors . . . . . . . . . . . 27
4.2.2.1 Error calculations . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2.2 Discontinuity factors . . . . . . . . . . . . . . . . . . . . . 29

4.3 Albedo calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Discussion 33
5.1 Result comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Method 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Albedo calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion and Future work 36

A Matrix form of transport equations 38
A.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 SP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Derivations 40
B.1 Nodal solution with known average flux and

currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 Nodal solution with known interface fluxes . . . . . . . . . . . . . . . . . . 43
B.3 Albedo tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

, 2011



Chapter 1

Introduction

1.1 Background

When modeling a nuclear reactor, the neutron flux is one of the most important parameters
to calculate. Today there are a number of codes available to do this, but since a nuclear
reactor is a very complex system it is impossible to solve the equations describing the
neutron flux exactly and approximations are necessary.

To be able to calculate the neutron flux, there are approximations made about energy-,
space-, and angular-dependence. To handle the angular dependence the so called diffusion
approximation is applied. In some cases the simplified P3 (SP3) theory is applied, since it
is known that the SP3 equations is a much better approximation than diffusion, especially
when come to mixed oxide fuel (MOX) [BL00].

The space dependence is taken care of by homogenization of the core in a couple of
steps, from pin cell, assembly and core level, in the final step the core is divided into
homogeneous “cubes”. One problem with the homogenization is that it will give rise to
discontinuities at the “cube” interfaces [Dem10].

With the diffusion approximation these discontinuities can be handled with so called
discontinuity factors and the parameters of interest can be recreated. The problem with
SP3 theory is that the properties of discontinuity factors have not been investigated for
SP3 theory yet.
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CHAPTER 1. INTRODUCTION 2

1.2 Purpose

The tasks defined for this thesis are

• to derive a method to compute discontinuity factors for the SP3 equations. These
discontinuity factors shall have the property of preserving the neutron balance, i.e.
reaction rates and node leakages, for each node and group.

• to perform numerical investigation in 1D for a number of typical PWR and BWR
configurations. Of special interest will be to compare traditional P1 discontinuity
factors with the new SP3 ones.

An additional task was to compare how the used boundary conditions changes when SP3
theory is used compared with diffusion theory.

1.3 Studsvik Scandpower

Studsvik Scandpower is the provider of a wide range of analysis tools for nuclear reactors
eg. Simulate 5 and Casmo 5 amongst others. Studsvik softwares are the most widely
used software for light water reactors. Studsvik Scandpower is situated in United States,
Sweden, Norway, Switzerland, Germany and Japan, and has almost 50 engineers employed
[Sca11].

1.4 Report outline

This report will start with a briefing of the most important theory, concepts and equations
needed for the thesis. The following chapter will present the theory for the SP3 equations
and the numerical tools used to solve the problem. The subsequent chapters will present
the results from the numerical investigations, and discussion around them.

, 2011



Chapter 2

Theory

2.1 Neutron transport

The neutron balance in a reactor can be represented by the neutron transport equation,
also called the linear Boltzmann equation. This is a very complicated equation and will
not be treated in this thesis, but equations derived from it will be used. To be able to see
why some of the approximations are needed it can be good to see it.

Since no time dependencies will be of interest in this thesis the time independent trans-
port equation is sufficient to study

Ω ·∇ψ(r,Ω, E) + ΣT (r,E)ψ(r,Ω, E)

=

∫
(4π)

∞∫
0

Σs(r,Ω
′ → Ω, E ′ → E)ψ(r,Ω′, E ′)dω′dE ′

+
χ(E)

4π

∞∫
0

ν(E ′)Σf (r, E
′)φ(r, E ′)dE ′

(2.1)

This equation is not possible to solve, exept in some simple cases, but by making some
approximations it becomes manageable. Some of these approximations are discussed briefly
below, more about these approximations can be seen in [Dem10]

2.1.1 Energy groups

Since the dependence of energy within all cross-sections (Σ) is very complicated, as can
be seen in Figure 2.1, the transport equation (2.1) is divided into energy groups. Then
the energy integrals in (2.1) will be calculated over these energy groups and new energy
averaged Σα will be created. The scattering cross-section Σs will be divided into new Σs,gg

(self-scattering cross-sections) and Σs,gg′ (down and up scattering cross-sections), which
will be used instead [Dem10]. In this thesis two energy groups will be used, “fast” and
“thermal”, and will be discussed more later on.

3



CHAPTER 2. THEORY 4

Figure 2.1 - Total cross-section of 238
92U, nuclear data collected from [Cha11].

2.1.2 Nodalization

To handle the space dependence of the cross-sections (and later on the diffusion coefficient),
the total volume V is divided into sub nodes Vi, which has constant cross-sections, in other
words Σ(r) = Σi.

This can be done in small geometries, but in a full size reactor this is impossible. To
handle this a couple of sub nodes are gathered into a node VI , this will be more discussed
in Section 2.4

For each and one of these nodes and energy groups the so called continuity equation
(2.2) needs to be satisfied [Dem10].

S∑
i=1

1
hi
Jg + (Σa,g + Σr,g) φ̄g − 1

keff

G∑
g′=1

νg′Σf,g′φ̄g′ −
G∑

g′=1
g′ 6=g

Σs,gg′φ̄g′ = 0 (2.2)

where hi is the node size, S is the number of surface interfaces to other nodes, in 1
dimension S = 2, and G is the number of energy groups. Equation (2.2) can be written in
matrix form as follows

S∑
i=1

1
hi
J −Σφ̄ = 0 (2.3)

, 2011



CHAPTER 2. THEORY 5

2.1.3 Angular approximations

The goal of this thesis is to compare two different approximations concerning the angular
dependence of the flux. An approximation of the angular dependence is needed because
of the angular dependent scattering integral in (2.1). This together with the energy group
approximation will lead to new cross-sections that handle scattering within and between
groups, called Σs,gg′ .

The angular approximation used in this thesis is the PN approximation also called
spherical harmonics, where N represents the order of spherical harmonics used. The two
used are the P1 and SP3, where S stands for simplified. Derivations of the multi group
P1 equations which leads to the diffusion equation and the SP3 equations can be seen in
[LMM96], [BL00] and [Dem10].

2.1.3.1 Diffusion approximation

With the approximations discussed earlier the one dimensional two group diffusion equa-
tions can be written as

Df
∂2

∂x2
φf − (Σa,f + Σs,tf )φf + 1

keff
(νtΣf,fφf + νtΣf,tφt) + Σs,ftφt = 0

Dt
∂2

∂x2
φt − (Σa,t + Σs,ft)φt + Σs,tfφf = 0

(2.4)

To make equation 2.4 more easily implemented in a computer code it can be written in
matrix form

D
∂2

∂x2
φ+ Σφ = 0 (2.5)

more about this in Section A.1

2.1.3.2 Simplified P3 approximation, SP3

The SP3 approximation will give rise to one additional flux φ
(2)
g called the second moment

flux. This is the second moment of the Legendre expansion and therefore one additional
equation for each group is needed. The one dimensional two group SP3 equations can be
written as

, 2011



CHAPTER 2. THEORY 6

D1,f
∂2

∂x2
Φf − Σr1,fφ

(0)
f +Qf = 0

D3,f
∂2

∂x2
φ

(2)
f − Σr3,fφ

(2)
f + 2

3
[Σr1,fφ

(0)
f −Qf ] = 0

D1,t
∂2

∂x2
Φt − Σr1,tφ

(0)
t +Qt = 0

D3,t
∂2

∂x2
φ

(2)
t − Σr3,tφ

(2)
t + 2

3
[Σr1,tφ

(0)
t −Qt] = 0

Qf = 1
keff

[νtΣf,fφ
(0)
f + νtΣf,tφ

(0)
t ] + Σs,ftφ

(0)
t

Qt = Σs,tfφ
(0)
f

(2.6)

where the scalar flux Φg is defined as

Φg = φ
(0)
f + 2φ

(2)
f (2.7)

and the new cross-sections is defined as

Σr1,g = Σa,g + Σs,g′g

Σr3,g = 5
3
(Σr1,g + Σs,gg)

D3,g = 3
7(Σr1,g+Σs,gg)

(2.8)

To make equation (2.6) more manageable they are rewritten with the relation in equation
(2.7) to

D1,f
∂2

∂x2
Φf − Σr1,fΦf +Qf + 2Σr1,fφ

(2)
f = 0

D3,f
∂2

∂x2
φ

(2)
f − Σr3,fφ

(2)
f + 2

3
[Σr1,f (Φf − 2φ

(2)
f )−Qf ] = 0

D1,t
∂2

∂x2
Φt − Σr1,tΦt +Qt + 2Σr1,tφ

(2)
t = 0

D3,t
∂2

∂x2
φ

(2)
t − Σr3,tφ

(2)
t + 2

3
[Σr1,t(Φt − 2φ

(2)
t )−Qt] = 0

Qf = 1
keff

[νtΣf,f (Φf − 2φ
(2)
f ) + νtΣf,t(Φt − 2φ

(2)
t )] + Σs,ft(Φt − 2φ

(2)
t )

Qt = Σs,tf (Φf − 2φ
(2)
f )

(2.9)

One needs to keep in mind that the integral flux is φ
(0)
g (the flux comparable with

φg in the diffusion theory), not Φg which only is a mathematical tool, which is the flux
of interest. Since the SP3 equations (2.9) can be seen as an expansion of the diffusion

, 2011
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equation (2.4), and by inserting φ
(2)
g = 0 in (2.9) the diffusion equation (2.4) is obtained.

As in the diffusion case equation (2.9) will be written on matrix form

D
∂2

∂x2
φ+ Σφ = 0 (2.10)

more about this in Section A.2

2.2 Boundary conditions

To be able to solve the differential equation (2.10) boundary conditions are needed. There
are some different boundary conditions that are applied in these kind of problems, in this
thesis the albedo boundary condition will be applied.

The albedo works with the partial currents j+ (out of the core) and j− (back to the
core) with the following relation

j− = aj+ (2.11)

where a is the albedo matrix.
To have a total reflective boundary i.e. all neutrons are reflected back to the core,

a = I where I is the identity matrix. To have a “black” boundary i.e. no neutrons are
reflected, the albedo matrix will be a zero matrix a = 0.

2.2.1 Diffusion

The partial currents in diffusion theory is defined as [Dem10]

j+ = 1
4
φs + 1

2
J

j− = 1
4
φs − 1

2
J

(2.12)

where φs is the interface flux.
By using the partial currents (for every group) in equation (2.12) and the albedo equa-

tion (2.11) a relation of the boundary current can be derived

J = 1
2
(I + a)−1(I − a)φs (2.13)

Equation (2.13) will be used as boundary condition.

, 2011
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2.2.2 SP3

In similar manner the partial currents for the SP3 equations is defined as [BL00]

j+
1 = 1

4
φ(0)
s + 1

2
J1 − 3

16
φ(2)
s

j−1 = 1
4
φ(0)
s − 1

2
J1 − 3

16
φ(2)
s

j+
3 = 5

16
φ(2)
s + 1

2
J3 − 1

16
φ(0)
s

j−3 = 5
16
φ(2)
s − 1

2
J3 − 1

16
φ(0)
s

(2.14)

To include Φ instead of φ(0) equation (2.7) is used in equation (2.14) and the partial currents
are written as

j+
1 = 1

4
Φs + 1

2
J1 − 11

16
φ(2)
s

j−1 = 1
4
Φs − 1

2
J1 − 11

16
φ(2)
s

j+
3 = 7

16
φ(2)
s + 1

2
J3 − 1

16
Φs

j−3 = 7
16
φ(2)
s − 1

2
J3 − 1

16
Φs

(2.15)

by using equation (2.15) and the albedo (2.11) the boundary current can be derived as

J = 1
2
(I + a)−1(I − a)Bφs (2.16)

where B for two groups is defined as

B =


1 −11

4
0 0

−1
4

7
4

0 0
0 0 1 −11

4

0 0 −1
4

7
4

 (2.17)

2.3 Heterogeneous system

When this approximations are made the system can more easily be solved. The SP3 or
diffusion equation will then be needed to be solved in each sub node, and with the boundary
condition that the flux φ and the neutron current J should be continuous in between nodes.
More about this in Section 3.1.1.

As an example core in 1-D, study Figure 2.2, where each node n is composed of different
sub nodes m which has a set of constant cross-sections.

2.4 Homogenization

When the heterogeneous system has been solved, a homogenization can be made for each
node, to gather the sub nodes (m) into nodes (n) see Figure 2.2. The new homogeneous

, 2011
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3

m

n

Figure 2.2 - An example of a core, n denotes the nodes and m the sub nodes. Blue fields
represents water and gray fields represents fuel or other materials.

cross-sections are calculated with the heterogeneous flux as a weight as [Dem10]

Σhom
α,g =

∫
VI

Σα,g(r)φg(r)dV∫
VI
φg(r)dV

(2.18)

In the SP3 case there are different fluxes to use but since φ(0) is the integral flux, this
is used for homogenization as shown in equation (2.19). Why the coefficients for φ(2) also
can be weighted with φ(0) is because they are defined from the same cross-sections as φ(0)

and there are no new cross-section specific for the equations concerning φ(2), as shown in
equation (2.8).

Σhom
α,g =

∫
VI

Σα,g(r)φ
(0)
g (r)dV∫

VI
φ

(0)
g (r)dV

(2.19)

Since the cross-sections now are changed, the homogeneous flux φhom will not be the
same as the heterogeneous flux. There will therefore be some constraints on the homoge-
neous flux φhom [Dem10] the first is conservation of reaction rates∫

VI

Σα,g(r)φg(r)dV =

∫
VI

Σhom
α,g φ

hom
g dV (2.20)

and the second is the interface currents at interface k∫
Sk
I

Jg · ndS =

∫
Sk
I

Jhomg · ndS (2.21)

2.5 Discontinuity factors

The constraints on the homogeneous flux are to keep the most important aspects of the
heterogeneous system, but one thing that will not be conserved with this homogenization is
the interface flux in between two nodes, one example can be seen in Figure 2.3. In diffusion
theory this problem is handled with discontinuity factors defined as [Dem10]

, 2011
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Figure 2.3 - An example of the homogeneous and heterogeneous solutions at a node interface.

f±n,g =
φhet±n,g

φhom±n,g

(2.22)

Since there are two different homogeneous fluxes at each interface it will create two different
discontinuity factors for each interface and node, see Figure 2.3. With these discontinuity
factors the conservation restraints set in equations (2.20) and (2.21) will be fulfilled.

, 2011



Chapter 3

Numerical methods

3.1 Numerical calculations

To solve the task given, computer codes were written in MatLab. In this thesis only a
one dimensional slab reactor was investigated. Since the thesis was to test the theory,
one dimension is sufficient and the results can easily be generalized into two or three
dimensions. In one dimension it is possible to solve the system exactly and therefore no
additional approximations will be needed. The limit of the solution will be how many
decimals required from the numerical solver.

3.1.1 Numerical method

For each homogeneous node in one dimension an exact solution can be given (see Appendix
B for derivations). It is only necessary to get the average flux φ̄ to get the reaction rates,
neutron currents at the interface J , interface fluxes φnm and the effective multiplication
factor keff . The interface current is given by

J+ = −d(φ+ − sφ̄) (3.1)

where the definitions of d and s can be found in equation (B.27) in Appendix B. However
the current J can be expressed with only average fluxes

Jn→m = Cnmφ̄n −Cmnφ̄m (3.2)

where

Cnm = (d−1
n + d−1

m )−1sn (3.3)

By using the requirement that the heterogeneous flux and the net current are continu-
ous, one may derive

−Cn−1,nφ̄n−1 + (Cn,n−1 +Cn,n+1 − hΣn)φ̄n −Cn+1,nφ̄n+1 = 0 (3.4)

11
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The boundary conditions in equation (2.16) and (2.13) gives a relation for the current J .
Then a new d matrix will be defined in the diffusion case as

dref = 1
2
(I + a)−1(I − a) (3.5)

and in the SP3 case

dref = 1
2
(I + a)−1(I − a)B (3.6)

By solving the system in equation (3.4) the average flux φ̄ can be found for every node
in the system. The side currents can be found by equation (3.2) and the side fluxes by

φnm = d−1
m Cnmφ̄n − d−1

n Cmnφ̄m (3.7)

derivations can be found in Section B.1.
Equation (3.4) can not be solved directly since it is an eigenvalue equation for keff ,

which can be seen in the definition of the cross-section matrix

Σn = Σan
+ Σsn

+
1

keff
Σf

n
(3.8)

To solve for both φ̄ and keff in (3.4) an iterative method is used. The parameter that
contains keff is set as a “source term” on the right hand side, add the superscript t (an
iteration parameter) and (3.4) can be rewritten as

−Ct−1
n−1,nφ̄

t
n−1 + (Ct−1

n,n−1 +Ct−1
n,n+1 − hΣ∗n)φ̄

t
n −Ct−1

n+1,nφ̄
t
n+1 =

1

kt−1
eff

Σf
n
φ̄
t−1
n (3.9)

where Σ∗n = Σan
+ Σsn

.

A start guess (t = 0) is then needed for the flux φ̄
0

and k0
eff , in this thesis the start

guess is set to 1 for all values. The C0 matrices is calculated with the start guess for k0
eff

and a new flux φ̄
1

can be calculated by solving the system in equation (3.9). The k1
eff is

updated with

kteff = kt−1
eff

(Σf
n
φ̄
t−1
n ) · (Σf

n
φ̄
t
n)

(Σf
n
φ̄
t−1
n ) · (Σf

n
φ̄
t−1
n )

(3.10)

With a new kteff new Ct can be calculated (see Section B.1). With new Ct equation
(3.9) is updated and the procedure repeats. These iterations called power iterations are
carried out until the change in keff is at a desired level, in this thesis 10−10. More about
this methodology and derivations in [Dem10].
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3.1.2 Implementation of Discontinuity factors

To implement the discontinuity factors one can study

Jhom+ = −d(φhom+ − sφ̄hom) (3.11)

Since both J+ and φ̄ is controlled by the constraints in equation (2.20) and (2.21), the only
parameter changing from the heterogeneous system to the homogeneous is d, s and the
interface flux φ+. With the definition of discontinuity factors in equation (2.22), containing
the homogeneous and heterogeneous interface flux, equation (3.11) can be rewritten to

Jhom+ = −d(f−1φhet+ − sφ̄hom) (3.12)

where f is a diagonal matrix with the discontinuity factors. To include f in the d and s
matrices equation (3.12) can be written as

Jhom+ = −df (φhet+ − sf φ̄
hom+

) (3.13)

where

df = df−1

sf = fs
(3.14)

The system can now be solved with the same principle as in Section 3.1.1, but with new
matrices df and sf , two different for each node [Lin11].

3.2 Discontinuity factors for SP3 theory

Since the task is to investigate the discontinuity factors for the SP3 equations different
definitions and methods are tested. The definitions are made for the system shown in
equation (2.9) ie. Φg and φ

(2)
g were used. The discontinuity factors for Φg is called f

(0)±
n,g

and φ
(2)
g is called f

(2)±
n,g .

In method 2, 3 and 4 the goal is to put f
(2)±
n,g = 1, so that no extra parameters needs to be

added, and still satisfy the conservation equation (2.3) for the integral flux, the properties
for the second moment flux (reaction rates and interface current will not be considered).
The numerical solver used is fsolve in MatLab which chooses the best algorithm for the
given problem.
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3.2.1 Method 1 - Traditional definition

The first method tested was to define the discontinuity factors as in equation (2.22) but

an additional one for φ
(2)
g as

f (0)±
n,g =

Φhet±
n,g

Φhom±
n,g

(3.15)

f (2)±
n,g =

φ
(2)het±
n,g

φ
(2)hom±
n,g

(3.16)

where the heterogeneous interface flux φhet±n is taken from the heterogeneous solution
calculated with equation (3.7) and the homogeneous interface flux φhom±n is calculated by
some manipulation of equation (3.1), the same equation holds for J− and φ−. By this the
homogeneous interface flux can be calculated by

φhom+ = −d−1J+ + sφ̄
hom

φhom− = −d−1J− + sφ̄
hom

(3.17)

the currents are taken from the heterogeneous solution since of the conservation equation
(2.21), and the homogeneous average flux is calculated with

φ̄
hom

=
1

h

m∑
i=1

φ̄
het
i dV (3.18)

the parameters that changes in equation (3.17) are the matrices d and s since these are
found from the cross-sections (see Section B.1). This method is expected to be functional
since it is an extension of the theory from diffusion theory.

Two different variations where tested for this method. The first was to use the same
discontinuity factors for the integral flux f

(0)±
n,g as in equation (3.17) and use f

(2)±
n,g = 1. The

second variation was to use the discontinuity factors calculated from the diffusion theory
as f

(0)±
n,g and use f

(2)±
n,g = 1. These are not expected to recreate the true solution but are

investigated how good approximations they are.
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3.2.2 Method 2 - Nodal optimization

This method is based on solving the diffusion or SP3 equations with known interface fluxes
for one node. For a more illustrative view of the system, see Figure 3.1 and for derivations
see Section B.2.

-J+
-J−

φ̄

Σ̄φ−

f−
φ+

f+

Figure 3.1 - The domain for solving with the nodal optimization.

This way of solving for each node will results in expressions for the current and the
average flux as

J± = 2
h
D∗CU ∗φs

φ̄ = UM ∗U ∗φs
(3.19)

where φs for the two group SP3 equation is defined as

φs =
[
Φ−f φ

(2)−
f Φ−t φ

(2)−
t Φ+

f φ
(2)+
f Φ+

t φ
(2)+
t

]T
(3.20)

the definitions of D∗, C, U ∗, U and M ∗ can be found in Appendix B.2 equation (B.46),
it should be noted that this method will have problems when the buckling bi → 0, but
since only the method is tested this is not handled.

Instead of defining φs as in equation (3.20) the discontinuity factors are included and
define

φs =

[
Φ−f

f
(0)−
f

φ
(2)−
f

f
(2)−
f

Φ−t
f
(0)−
t

φ
(2)−
t

f
(2)−
t

Φ+
f

f
(0)+
f

φ
(2)+
f

f
(2)+
f

Φ+
t

f
(0)+
t

φ
(2)+
t

f
(0)+
t

]T
(3.21)

By fix all f±2 = 1 equation (3.21) can be written as

φs =

[
Φ−f

f
(0)−
f

φ
(2)−
f

Φ−t
f
(0)−
t

φ
(2)−
t

Φ+
f

f
(0)+
f

φ
(2)+
f

Φ+
t

f
(0)+
t

φ
(2)+
t

]T
(3.22)

All interface fluxes Φ±g and φ
(2)±
g are known from the heterogeneous solution, calculated

with equation (3.7). Since the quantities needs to be conserved, the current J± and average
flux φ̄ (from reaction rates) is taken from the heterogeneous solution and the equations
that will be solved to get the new discontinuity factors are
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Jhom±(f)− Jhet± = 0

φ̄
hom

(f)− φ̄het = 0
(3.23)

In equation (3.23) the homogeneous current and average flux is calculated by equation

(3.19) and the discontinuity factors f
(0)−
f , f

(0)−
t , f

(0)+
f and f

(0)+
t are optimized to fulfill

equation (3.23).
It can be noted that for diffusion theory this method will not require a numerical

solution since it can be solved exact.

3.2.3 Method 3 - Interface optimization

The average flux φ̄g can be used as input in equation (3.2) and (3.7) to get the interface
current Jnm and interface flux φnm in between to neighbor nodes, see Figure 3.2.

-

Jnm

f−mf+
n

φ̄m

Σ̄m

φnm
φ̄n

Σ̄n

Figure 3.2 - The domain for solving with the interface optimization.

By applying discontinuity factors (as done in Section 3.1.2) to get the new relations

Jn→m = Cn
nmφ̄n −Cm

mnφ̄m
φnm = (dm(f−

m
)−1)−1Cn

nmφ̄n − (dn(f+

n
)−1)−1Cm

mnφ̄m
(3.24)

where

Cn
nm = [(dn(f+

n
)−1)−1 + (dm(f−

m
)−1)−1]−1f−

n
sn

Cn
nm = [(dn(f+

n
)−1)−1 + (dm(f−

m
)−1)−1]−1f+

m
sm

(3.25)

and for two group SP3 equation

f±
n

=


f

(0)±
n,f 0 0 0

0 f
(2)±
n,f 0 0

0 0 f
(0)±
n,t 0

0 0 0 f
(2)±
n,t

 (3.26)
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and by fixing f±g,2 = 1 leads to

f±
n

=


f

(0)±
n,f 0 0 0

0 1 0 0

0 0 f
(0)±
n,t 0

0 0 0 1

 (3.27)

Since the average flux φ̄ is known from the reaction rates for each node calculated
by equation (3.18), and the current and interface fluxes are taken from the heterogeneous
solution and the equations that will be solved to get the new discontinuity factors are

Jhom±nm (f)− Jhom±nm = 0

φhomnm (f)− φhetnm = 0
(3.28)

where the homogeneous current and interface flux are calculated by equation (3.24). The

discontinuity factors f
(0)+
n,f , f

(0)+
n,t , f

(0)−
m,f and f

(0)−
m,t are optimized to fulfill equation (3.28).

3.2.4 Method 4 -Core optimization

The core optimization solves the entire homogeneous system with discontinuity factors,
this means that the system of equations in equation (3.4) is solved with the C matrices
calculated with discontinuity factors as in equation (3.14), and the same iterative solver as
in Section 3.1.1. An overview can be seen in Figure 3.3. This is the same program that
tests the discontinuity factors in the end of the thesis, see Section 3.3.

Since the hole system is used this method will be tested with different sets of equations
to optimize, containing the heterogeneous average flux φ̄n, currents JN and interface flux
φN , see Table 3.1. As in method 2 and 3 the discontinuity factors in method 4 are used to
fulfill the equations given in Table 3.1.

Table 3.1 - The different tests in method 4, optimization variables refers to the unknowns in
the system and equations refers to the equations used in the optimization.

Test
optimization

Equations
variables

1 f
(0)±
n,g

JhomN − JhetN = 0

φ̄
hom
n − φ̄homn = 0

2 f
(0)±
n,g

Jhomn − JhetN = 0

φ̄
hom
n − φ̄homn = 0

φhomN − φhomN = 0

This method is likely to work since all conservations are taken under consideration when
solving the system. To ensure that the solver does not find a local minimum, different start
guesses will be tested.
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-JIII

f+
2f−2

φ̄2

Σ̄2

-JIV

f+
3f−3

φ̄3

Σ̄3

-- JII

φ̄1

f−1 f+
1

Σ̄1

φIIφI φIII φIV

JI

Figure 3.3 - The domain for solving with the core optimization.

3.3 The code

The main code developed was to solve the linear system in equation (3.9) for a given geom-
etry (n,m,comp), cross-section data (Σα) boundary conditions (a) and the error criterion
for keff called kerr, and return the average flux (φ̄), interface current (J) and interface
fluxes (φ±) for all nodes in the system and the effective multiplication factor (keff ) for the
whole system.

The heterogeneous average flux calculated was used to calculate the new homogeneous
cross-sections (Σhom

α ), and homogeneous average flux (φ̄hom). The discontinuity factors
(f±) was calculated using the different methods defined is Section 3.2. One last program

was used to calculated the homogeneous flux (φ̄
hom

),the interface currents (Jhom) and the
effective multiplication factor (khomeff ) using the homogeneous cross-sections (Σhom

α ), discon-
tinuity factors (f±) and the other same boundary conditions (a) as in the heterogeneous
system. The heterogeneous and the homogeneous results were compared to evaluate the
methods to calculate the discontinuity factors. An overview of the calculation scheme can
be seen in Figure 3.4.

Validations To have some validation of the results two test were implemented in the
solver. The first test was the continuity equation (2.3) and it was tested for each sub
node to ensure that the correct solution was given. The second test was to check that the
boundary condition was satisfied. This was done by calculating the partial currents as in
equation (2.13) and (2.16), and use the partial currents in the albedo relation (2.11) to
verify that it was fulfilled. At last the keff was compared with an existing code provided
by the supervisor.
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input: see methods

output: f±

DF, f±

Homogeneous PN solver

input: n,m,Σhom,a,kerr,N ,f±

output: φ̄hom,khomeff ,Jhom

Homogenization

input: φ̄,n,m,comp,Σ

output: Σhom, φ̄hom

PN solver

input: n,m,comp,Σ,a,kerr,N

output: φ̄,keff ,J ,φs

Figure 3.4 - Calculation scheme. Input data is defined as: n - number of nodes, m - number of
sub nodes, comp - composition of the core, Σ - cross-sections, a - albedo matrices
for both boundaries, kerr - maximum error in keff (end of iterations) and N - 1
for diffusion or 3 for SP3.
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3.4 Materials and example systems

There are a number of different materials in a nuclear reactor. The main materials in a
nuclear reactor are the fuel, coolant and moderator. But there are also building materials
and materials controlling the reactivity. The materials used in this thesis will be briefly
discussed below.

3.4.1 Materials

There are two main types of fuel used in commercial reactors today, uranium oxide (UOX)
and mixed oxide (MOX) [CLR02].

Uranium oxide The UOX is the most common fuel type in the world’s nuclear reactors
today. It consists of UO2 with an atomic fraction of 3-4 % 235U and 96-97 % 238U. The
fissile material in this kind of fuel is 235U and later on in the cycle even plutonium (both
239Pu and 241Pu) will be present due to transmutation of 238U [CLR02].

Mixed oxide MOX is a mixture of plutonium oxide and uranium oxide either natural
or depleted. Since plutonium is not a natural element this type of fuel can only be made
either by recycling of used nuclear fuel [CLR02] or decommissioning of nuclear weapons
[BRL95].

Differences There are some crucial difference between UOX and MOX fuels, both con-
cerning safety and neutronics. In the neutronics case, the MOX fuel has a higher absorp-
tion cross-section than UOX, see Figure 3.5, and this results in a much lower thermal flux
[BRL95]. The interface between UOX and MOX fuel will have big changes due to the
difference in thermal flux and the diffusion approximation may have problems with this
behavior [FCM95]. From the safety point of view MOX fuel will result in less delayed
neutrons and therefore increase the risk of prompt criticality and risk of hot spots [Tre06].

Moderator The moderator is a material that is good for slowing down neutrons to
thermal energies, since the neutrons is “born” fast but the highest cross-section for fission
is in the thermal region, see Figure 3.5. The most common moderator is light water and
it works as a coolant as well, these reactors are called light water reactors. Other used
moderators is heavy water1 (CANDU reactors) and graphite (RBMK) [CLR02].

Absorbers Different reactors have different methods to control the reactivity and to
shut down the reactor. In a BWR there can be two different types of reactivity control,
control rods (CR) and burnable absorbers, sometimes called burnable poison. The PWR
uses dissolved boron in the moderator as reactivity control.

1water containing 2H
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Total absorption Fission

Figure 3.5 - Different cross-sections for 235
92U and 239

94Pu, nuclear data collected from [Cha11].

The control rods consists of boron where 10B has a high cross-section for the (n,α)
reaction and thereby absorbs neutrons. As burnable absorbers gadolinium is used, and it
has a high cross-section for the (n,γ) reaction [Dem09] [Cha11].

3.4.2 Example system

Two different example systems were investigated, one with PWR pin cross-section data
and one with BWR pin cross-section data. The materials used can be seen in Table 3.2,
cross-sections for the different materials were calculated with CASMO 5 and was provided
by the supervisor, the cross-sections can be seen in Table 3.2.

The PWR system contains both UOX and MOX fuel, the boundary conditions was set
to reflective. The system was divided into three homogeneous parts of equal size, two for
the UOX fuel and one for the MOX fuel. The geometry of the PWR system can be seen
in Figure 3.6.

3 4 3 8 3 4 3 3 7 6 6 6 9 6 6 6 7 2 2 5 2 9 2 2reflective 3 1 reflective1

Figure 3.6 - The example PWR core, all nodes are 2 cm wide. The materials can be seen in
Table 3.2.

The BWR system is a UOX system, with different enrichment, the boundary conditions
was set to reflective at the left boundary and a moderator as the right boundary condition,
this means an “infinite amount of water” as boundary. The geometry of the BWR system
can be seen in Figure 3.7. As in the PWR example the BWR example was divided in to
three homogeneous parts.

Both systems have control rods and burnable absorbers in form of gadolinium present.

, 2011



CHAPTER 3. NUMERICAL METHODS 22

3 4 3 9 3 4 3 9 4 4 345439 9 9 3 4 3 3 1 1 1 9reflective moderator

***

8

*

Figure 3.7 - The example BWR core, all nodes are 2 cm wide except the ones with a * that
are 1 cm, the materials can be seen in Table 3.2.

Table 3.2 - Materials and cross-sections used in example cores, 6/3 % referes to 6 % Gd and
3% enriched UOX

No
Material Df Σa,f νΣf,f Σs,ff Σs,ft

(enrichment) Dt Σa,t νΣf,t Σs,tf Σs,tt

UOX (0.7%)
1.45216 0.008143 0.003426 0.480757 0.000873

1
0.43179 0.038111 0.038103 0.015590 1.093845

UOX (2%)
1.45758 0.009226 0.005513 0.478997 0.001450

2
0.43427 0.066008 0.098705 0.014744 1.075212

UOX (3%)
1.46111 0.009992 0.006997 0.477793 0.001821

3
0.43380 0.084777 0.139163 0.014160 1.065544

UOX (5%)
1.46768 0.011376 0.009702 0.475527 0.002435

4
0.42960 0.117665 0.209558 0.013126 1.053462

Gd/UOX (6/3%)
1.46456 0.013919 0.006141 0.476514 0.006886

5
0.38038 0.382798 0.038650 0.010971 1.076887

MOX (3%)
1.47720 0.011350 0.007733 0.475318 0.003903

6
0.38419 0.200539 0.338973 0.012764 1.074907

MOX (5%)
1.48474 0.012732 0.010343 0.473141 0.004990

7
0.36249 0.273780 0.474706 0.011718 1.078224

Control rod (CR)
1.43310 0.038283 0.000000 0.463088 0.003356

8
0.23607 0.720099 0.000000 0.006038 1.149276

Water
1.80019 0.000330 0.000000 0.572272 0.001245

9
0.33291 0.008137 0.000000 0.028793 1.639387

3.5 Albedo calculations

Since the moderator in the BWR example is in form of water, the albedo matrix for water
needs to be calculated. To calculate the albedo matrix the diffusion equation and the SP3
equations are solved for a reflector that is infinite thick (derivations and definitions can be
seen in Appendix B Section B.3), then a relation for the albedo matrix can be found as

a = −(GU bU−1D−1 + 1
2
I)−1(1

2
I −GU bU−1D−1) (3.29)

where G is a matrix that is different for diffusion and SP3 and U , b and D are material
(in this case water) matrices.

To test this a simple example was set, seen in Figure 3.8. One reference calculation
was carried out using a large number of water nodes, enough nodes so that the flux is ≈ 0,
and one calculation with the calculated albedo matrix. Another test that was made was
to set all albedo elements concerning the second moment flux φ(2) equal to zero (ie. rows
and columns number 2 and 4).
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4 4 4 4 4 4 4 4reflective water9

Figure 3.8 - The albedo example core, all nodes are 1 cm wide. The materials can be seen in
Table 3.2.

The exact albedo matrix calculated with equation (3.29) was used in the tests to reduce
errors due to approximations in the boundary condition.
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Results

In all graphs the dashed green lines are representing the node interfaces and all fluxes
are normalized to the highest value of the fast average flux. The material numbers in
the heterogeneous solution can be seen in Table 3.2 and in the homogeneous solution the
material number is the calculated homogeneous cross-sections for each node calculated with
equation (2.18) for the diffusion case and equation (2.19) for the SP3 case.

4.1 Heterogeneous solution

4.1.1 Diffusion

The heterogeneous solution and the keff to the two examples solved with the diffusion
equation can be seen in Figure 4.1.

BWR - k= 1.074208 PWR - k= 1.053133

Figure 4.1 - Heterogeneous solution to the diffusion equation.
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4.1.2 SP3

The heterogeneous solution to the two examples solved with the SP3 equations has two
fluxes for each group. The integral flux φ(0) can be seen in Figure 4.2 and the second
moment flux φ(2) can be seen in Figure 4.3.

BWR - k= 1.077122 PWR - k= 1.058283

Figure 4.2 - Heterogeneous φ(0) solution to the SP3 equations.

BWR PWR

Figure 4.3 - Heterogeneous φ(2) solution to the SP3 equations.

4.2 Homogeneous solution

There are two different ways to present the homogeneous solution, the calculated solution
from the heterogeneous solution (Section 4.2.1) and the calculated solution with disconti-
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nuity factors (Section 4.2.2).

4.2.1 Homogeneous solution from heterogeneous solution

The homogeneous flux calculated with equation (3.18) and the homogeneous interface flux
calculated with equation (3.17) were calculated from the heterogeneous solution in Section
4.1. The heterogeneous interface fluxes were calculated from the heterogeneous solution
with equation (3.7).

4.2.1.1 Diffusion

The average flux, heterogeneous and homogeneous interface fluxes calculated with the
diffusion equation for the two examples can be seen in Figure 4.4.

BWR PWR

Figure 4.4 - Homogeneous solution to the diffusion equation, with the heterogeneous and the
homogeneous interface fluxes.

4.2.1.2 SP3

The average flux, heterogeneous and homogeneous interface fluxes calculated with the SP3
equations the two examples can be seen in Figure 4.5 for the integral flux and in Figure
4.6 for the second moment flux.
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BWR PWR

Figure 4.5 - Homogeneous φ(0) solution to the SP3 equations, with the heterogeneous and the
homogeneous interface fluxes.

BWR PWR

Figure 4.6 - Homogeneous φ(2) solution to the SP3 equations, with the heterogeneous and the
homogeneous interface fluxes.

4.2.2 Homogeneous solution from discontinuity factors

In Table 4.1 the methods that recreates the reaction rates and currents are marked with
Xand methods not working are marked with an X. Convergence means that the method
converges to a set of unique discontinuity factors. System means that the discontinuity
factors from that method were able to recreate reaction rates and interface currents. With
recreate it means that the errors are in the same order of magnitude as the numerical
accuracy of the solver.
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Table 4.1 - Working methods
Convergence System

Method Diffusion SP3 Diffusion SP3

1 X X X X
2 X X X X
3 X X X X

4.1 X X X X
4.2 X X X X

4.2.2.1 Error calculations

The error calculations used the calculated homogeneous flux for different methods and the
heterogeneous solution as the reference flux. There were two types of error calculations
preformed, the absolute error εabs defined as

εabs =
φ̄hom − φ̄het

φ̄hetsystem

(4.1)

and the relative error εrel defined as

εrel =
φ̄hom − φ̄het

φ̄het
(4.2)

The difference in keff was calculated as

∆k = khom − khet (4.3)

The errors calculated can be seen in Table 4.2 for the BWR example and in Table 4.3 for
the PWR example. The“Diff - SP3” is the difference between the diffusion solution and the
SP3 solution. In the rest of the rows in Table 4.2 the homogeneous SP3 equations are solved
with different discontinuity factors. “f = 1”no discontinuity factors are used and all are set
to unity, “M 1” is the discontinuity factors from method 1, “M 2” is the discontinuity factors
calculated by method 2, “M 3” is the discontinuity factors calculated by method 3, “M 4.1”
is the discontinuity factors calculated by method 4 test 1, “M 4.2” is the discontinuity
factors calculated by method 4 test 2. The last two are tested approximations where “M 1
f (2) = 1” is the discontinuity factors from method 1 but with f (2) = 1 (not optimize as in
method 2) and “fdiff f

(2) = 1” uses the discontinuity factors calculated from the diffusion
solution.

Note that ∆k is in pcm = 10−5 and by “0” means that the error is in the same order of
magnitude as the accuracy required of the heterogeneous solver.
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Table 4.2 - Errors calculated with different discontinuity factors in BWR.
Method ∆k (pcm) εabs,f (%) εrel,f (%) εabs,t (%) εrel,t (%)

Diff - SP3 291.4 0.47 0.62 0.84 0.80
f = 1 529.8 11.25 10.46 5.33 5.42
M 1 0 0 0 0 0
M 2 -10.1 0.12 0.13 0.17 0.16
M 3 -990.1 4.6 4.55 3.97 3.92

M 4.1 0 0 0 0 0
M 4.2 19.1 0.004 0.004 0.03 0.03

M 1 f (2) = 1 -1 0.02 0.02 0.04 0.04
fdiff f

(2) = 1 -10.0 0.20 0.16 0.02 0.02

Table 4.3 - Errors calculated with different discontinuity factors in PWR.
Method ∆k (pcm) εabs,f (%) εrel,f (%) εabs,t (%) εrel,t (%)

Diff - SP3 515.0 -0.18 -0.16 -0.90 -0.84
f = 1 301.7 3.32 3.90 8.55 9.16
M 1 0 0 0 0 0
M 2 2.4 -0.006 -0.005 -0.005 -0.005
M 3 -1558.4 11.02 9.6 9.15 8.58

M 4.1 0 0 0 0 0
M 4.2 2.4 <10−3 <10−3 0.004 0.004

M 1 f (2) = 1 4.3 0.01 0.01 0.03 0.1
fdiff f

(2) = 1 -2.5 0.02 0.02 0.08 0.08

4.2.2.2 Discontinuity factors

The discontinuity factors from the working methods can be seen in Table 4.4 for the BWR
example and in Table 4.5 for the PWR case. There is only one column for the diffusion
equations since all used methods gave the same discontinuity factors. Since no unique set of
discontinuity factors were found by method 4.1 no discontinuity factors will be presented.
Where in the system the discontinuity are defined can be seen in Figure 3.3.

Table 4.4 - Discontinuity factors for the working methods in the BWR example
Diffusion Method 1

φf φt Φf φ
(2)
f Φt φ

(2)
t

f−1 0.7255 0.0426 0.7364 -162.9300 0.0500 -813.7518
f+1 1.1530 1.7178 1.1465 46.5164 1.7047 -5.2163
f−2 0.9513 3.0033 0.9500 -8.0166 2.9389 5.0917
f+2 0.9777 1.4939 0.9777 -7.0534 1.4741 -4.1254
f−3 1.0298 1.8961 1.0274 -13.3775 1.8819 4.2680
f+3 0.7004 1.3615 0.7064 -1.0458 1.3427 -0.8265
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Table 4.5 - Discontinuity factors for the working methods in the PWR example
Diffusion Method 1

φf φt Φf φ
(2)
f Φt φ

(2)
t

f−1 1.0442 1.3770 1.0425 -0.9368 1.3619 -12.7854
f+1 1.0515 1.6539 1.0490 4.5185 1.6201 0.5415
f−2 1.0096 0.6300 1.0097 1.9397 0.6342 -0.6210
f+2 1.0108 0.6336 1.0110 3.5927 0.6378 -0.1274
f−3 0.9729 0.5773 0.9762 1.3475 0.5799 0.0875
f+3 1.0488 1.5109 1.0437 1.5211 1.4877 -4.9781

Table 4.6 - Discontinuity factors for the non-working methods in the BWR example
Method 2 Method 3 Method 4.2

Φf Φt Φf Φt Φf Φt

f−1 0.7332 0.0500 0.7410 0.0492 0.6943 0.0441
f+1 1.1408 1.7227 1.1355 1.7548 1.1161 1.7492
f−2 0.9469 2.9871 0.9989 2.8952 0.9257 3.0133
f+2 0.9737 1.4902 0.9121 1.4760 0.9535 1.5229
f−3 1.0241 1.9027 1.2270 2.0935 0.9992 1.9362
f+3 0.7020 1.3497 0.5148 1.2377 0.7286 1.3653

Table 4.7 - Discontinuity factors for the non-working methods in the PWR example
Method 2 Method 3 Method 4.2

Φf Φt Φf Φt Φf Φt

f−1 1.0437 1.3612 0.9498 1.2779 1.0539 1.3736
f+1 1.0499 1.6169 1.1650 1.7964 1.0552 1.6178
f−2 1.0103 0.6323 1.0213 0.6454 1.0155 0.6292
f+2 1.0116 0.6359 0.9355 0.6137 1.0148 0.6308
f−3 0.9762 0.5804 1.1429 0.6701 0.9875 0.6256
f+3 1.0434 1.4900 0.8938 1.3315 1.0675 1.4514
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4.3 Albedo calculations

The calculated two group albedo matrix for diffusion theory can be seen in equation (4.4)
and the albedo matrix for the SP3 equations in equation (4.5).

The calculated average fluxes when using albedo and nodes of water can be seen in
the diffusion case in Figure 4.7. The SP3 calculations were calculated for two different
cases, one with the calculated albedo matrix in equation (4.5) and one where rows 2, 4 and
columns 2 and 4 in (4.5) is set to zero, these can be seen in Figure 4.8 and 4.9.

adiff =

[
0.3829 0.0107
0.2472 0.8031

]
(4.4)

aSP3 =


0.2863 −0.5334 0.0124 0.0093
−0.1808 −0.1397 −0.0027 −0.0019
0.2734 0.1817 0.7614 −0.1850
−0.0476 −0.0288 −0.2676 −0.1983

 (4.5)

Figure 4.7 - The solution to the diffusion equation in the albedo test.
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complete albedo matrix second moment elements zero

Figure 4.8 - φ(0) solution to the SP3 equations in the albedo test.

complete albedo matrix second moment elements zero

Figure 4.9 - φ(2) solution to the SP3 equations in the albedo test.
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Chapter 5

Discussion

5.1 Result comparisons

When comparing the calculated errors in average flux and keff shown in Tables 4.2 and
4.3, the difference between diffusion theory and SP3 can be seen. The difference in keff
is a couple of 100 pcm which is quite much. This difference can be expected since the
differences in the average flux in Figure 4.1 and 4.2, where the SP3 solutions have more
distinct changes with different materials than the diffusion solution as shown in [BL00].

The methods that recreated the solution (“M 1” and “M 4.1”) has “0” in all columns
as they should since they recreates the heterogeneous solution. The second row “f = 1”
shows the result when no discontinuity factors are used and that result is not good.

Methods that did not recreate the solution but gave reasonable results were “M 2”, “M
1 f (2) = 1”, “fdiff f

(2) = 1” and “M 4.2”, all with reasonable errors in average flux and keff .
Method 3 did not have any good result.

By comparing the discontinuity factors, Table 4.4 and 4.6 for the BWR system and
4.5 and 4.7 for the PWR system, one can see that all methods that gave similar results
have similar discontinuity factors, as they should. But with method 3, which did not have
any good results the discontinuity factors were quite different from the methods that gave
better results, and no good solution can be expected.

5.2 Methods

The different methods derived to calculate the discontinuity factors were first tested if they
were able to create discontinuity factors for the diffusion approximation. Since it is known
that this is possible to do and if the solutions are unique all methods should give the same
discontinuity factors, as all did except for method 4.1. With the SP3 approximation not all
methods where able to create discontinuity factors that would work for the entire system
as can be seen in Table 4.1.

Unfortunately the working methods have some drawbacks that will be discussed below.
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5.2.1 Method 1

Method 1 worked as expected since it takes care of both fluxes the same way as in the
diffusion case.

The problem with this method is that it works in theory but with implementation in
a numerical code there can be problems. This is because the discontinuity factors for the
second moment flux f (2) vary a lot. As seen in Table 4.4 where the largest discontinuity
factors have the value of

f
(2)
1,f = −162.9300

f
(2)
1,t = −813.7518

(5.1)

These are rather big numbers compared with the discontinuity factors for the integral flux
and it may not stop at a order of 102.

The second order flux is small compared with the integral flux and both take positive
and negative values as seen in Figure 4.3. This will make the average second order flux
very small and may result in very small interface fluxes. This makes it possible to divide
by very small numbers and even zero, which is not good from a numerical point of view.

To explain the large discontinuity factors for the second moment flux in equation (5.1)
equation (3.17) can be studied. Since the boundary condition is set to reflective, the current
will be zero. Then the only parameter determining the interface flux is the average flux,
and the second order average flux is very small in this case, see Figure 4.6. This will result
in a very small homogeneous interface flux.

Variations of Method 1 The methods called “M 1 f (2) = 1” and “fdiff f
(2) = 1” in

Table 4.3 and 4.2, did as expected not recreate the true solution, but had good results.
Method “M 1 f (2) = 1” can be used as a good approximation to discontinuity factors. By
looking at Table 4.3 and 4.2 the “M 1 f (2) = 1” gave very low errors in both examples.

5.2.2 Method 2

Method 2 was a method that did not recreate the solution. In the PWR example it had
very good results (see Table 4.3) but not as good in the BWR example (see Table 4.2)
which makes it a non-reliable method. The interesting thing is that the results without
the optimization “M 1 f (2) = 1” gave better results in both examples.

It was found out that the average flux was not needed for the optimization in method
2, this is because the material matrices and the currents will give the average flux.

5.2.3 Method 4

When looking at the entire system and just recreating the currents and average fluxes
(method 4.1), the method found one set of discontinuity factors that recreated the conser-
vation equations (2.20) and (2.21) for each start guess, this was the result for both diffusion
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theory and SP3 theory. This problem can be explained by calculating the number of pa-
rameters and unknown. There are 2n + 1 parameters and 2n unknowns (n is the number
of nodes). The problem is that the parameters (reaction rates and currents) are coupled,
and therefore it will be an underdetermined system with an infinite number of solutions.

The second test in method 4 was to include the interface fluxes as a parameter. Then
the solver found one unique set of discontinuity factors regardless of the start guess, this was
the result for both diffusion theory and SP3 theory. The difference was that in the diffusion
case, the solver converged to the same discontinuity factors as in the other methods and
recreated the system. This was not the case in the SP3 case, where the solution was not
recreated.

Both these problems rise because of the interface flux. The reason why the discontinuity
factors are introduced in the first place is to handle the discontinuities in the interface
flux, but in method 4 the discontinuity factors are redefined and therefore all parameters
(currents, reaction rates and interface fluxes) cannot be conserved when f (2) = 1 with the
definitions made in this thesis.

5.3 Albedo calculation

For the albedo calculation a explicit formula for the albedo was derived (equation (3.29))
and should thereby give the same result as if there were water nodes present in the calcu-
lation instead. This can be seen in Figures 4.7, 4.8 and 4.9.

By comparing the albedo matrix for diffusion theory (equation (4.4)) and SP3 theory
(equation (4.5)), the difference between the corresponding elements are quite similar.

If all elements concerning the second order flux are set to zero there will be a big change
in the second moment flux (see Figure 4.9) and it will affect the integral flux. One should
also keep in mind that the albedo matrix is constructed for Φ and not φ(0) which is the
corresponding flux to the flux calculated from the diffusion equation, and small differences
are expected.

, 2011



Chapter 6

Conclusion and Future work

This thesis has shown that it is possible to use discontinuity factors in SP3 theory in
a number of ways, either as an approximation or to recreate the heterogeneous solution
exact. To be able to recreate the solution there has to be a sacrifice either by numerical
instabilities or no unique solution, non-practical in any computer code. It was also shown
in method 4.2 that recreating the system, reaction rates, currents and interface fluxes, with
f (2) = 1 is not possible with only discontinuity factors.

The best approximation to use discontinuity factors in SP3 found in this thesis, was to
use f (0) defined with Φ and use f (2) = 1, which gave very small errors in both examined
examples.

To be able to recreate the reaction rates, currents and interface fluxes for the integral
flux, future improvements are needed. The next thing to look at and change is the definition
of the homogeneous cross-section. This may result in the recreation of the system and
numerical stabilities.
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Appendix A

Matrix form of transport equations

As mentioned in Section 2.1.3.2 and 2.1.3.1 the diffusion equation and SP3 equations can
be written in matrix form as

D
∂2

∂x2
φ+ Σφ = 0 (A.1)

The matrices for this equation will be written for two groups in the following sections

A.1 Diffusion

In the diffusion case the matrices will look as following

D =

[
Df 0
0 Dt

]
, φ =

[
φf
φt

]
, Σ = Σa + Σs +

1

keff
Σf (A.2)

Σa = −
[
Σa,f 0

0 Σa,t

]
, Σs =

[
−Σs,tf Σs,ft

Σs,tf −Σs,ft

]
, Σf =

[
Σf,f Σf,t

0 0

]
(A.3)

A.2 SP3

The four coupled SP3 equations will in matrix form look as

D =


D1,f 0 0 0

0 D3,t 0 0
0 0 D1,t 0
0 0 0 D3,t

 , φ =


Φf

φ
(2)
f

Φt

φ
(2)
t

 , Σ = Σs + Σr +
1

keff
Σf (A.4)

where
Φg = φ(0)

g + 2φ(2)
g (A.5)

and
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Σs =


0 0 Σs,ft −2Σs,ft

0 0 −2
3
Σs,ft

4
3
Σs,ft

Σs,tf −2Σs,tf 0 0
−2

3
Σs,tf

4
3
Σs,tf 0 0

 (A.6)

Σr = −


Σr1,f −2Σr1,f 0 0
−2

3
Σr1,f

4
3
Σr1,f + Σr3,f 0 0

0 0 Σr1,t −2Σr1,t

0 0 −2
3
Σr1,t

4
3
Σr1,t + Σr3,t

 (A.7)

Σf =


νfΣf,f −2νfΣf,f νtΣf,t −2νtΣf,t

−2
3
νfΣf,f

4
3
νfΣf,f −2

3
νtΣf,t

4
3
νtΣf,t

0 0 0 0
0 0 0 0

 (A.8)
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Appendix B

Derivations

This following appendix contains longer derivations for better understanding of the different
methods. The method used to solve the matrix equations was gotten from [Lin11].

B.1 Nodal solution with known average flux and

currents

Both the diffusion equation and the SP3 equations for a homogeneous, one dimensional
node with −h

2
< x < h

2
can be written in matrix form as

D ∂2

∂x2φ(x) + Σφ(x) = 0 (B.1)

and can be rewritten as
∂2

∂x2φ(x) +D−1Σφ(x) = 0 (B.2)

By calculating the eigenvalues and eigenvector of the buckling matrix B2 = D−1Σ as

B2
iU i = B2U i (B.3)

With all eigenvectors U i in a matrix U it can be used as a transformation matrix, and
multiply equation (B.1) with U−1 the new equation

∂2

∂ξ2
ψ(ξ) + b2ψ(ξ) = 0 (B.4)

can be obtained, where

ψ = U−1φ (B.5)

b2
i = 1

4
h2B2

i (B.6)

ξ = 2x
h

: − 1 < ξ < 1 (B.7)
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Equation (B.4) now contains i number of uncoupled equations. Each equation can be
written as

∂2

∂ξ2
ψi + b2

iψi = 0 (B.8)

The general solution to (B.8) can be written as

ψi(ξ) = Ai cos(biξ) +Bi sin(biξ) (B.9)

Assume known side gradients defined as

g−i = −∂ψi

∂ξ
(−1)

g+
i = ∂ψi

∂ξ
(1)

(B.10)

and the average flux is defined as

ψ̄i = 1
2

1∫
−1

ψi(ξ)dξ (B.11)

evaluating equations (B.10) gives

g−i = −Aibi sin(bi)−Bibi cos(bi)

g+
i = −Aibi sin(bi) +Bibi cos(bi)

(B.12)

By subtraction of equations (B.12) a new quantity can be defined

g̃i = g+
i − g−i

= 2Bibi cos(bi)
(B.13)

with the average flux (B.11) calculated

ψ̄i =
Ai
bi

sin(bi) (B.14)

From equations (B.14) and (B.13) constants Ai and Bi can be calculated to

Ai = ψ̄i
bi

sin(bi)
(B.15)

Bi =
g̃i

2bi cos(bi)
(B.16)

and ψi finally becomes
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ψi(ξ) = ψ̄
bi

sin(bi)
cos(biξ) +

g̃

2bi cos(bi)
sin(biξ) (B.17)

The interface fluxes can then be calculated according to

ψ−i = ψi(−1) =
ψ̄i
Λ
− g̃i

2
Λ (B.18)

ψ+
i = ψi(1) =

ψ̄i
Λ

+
g̃i
2

Λ (B.19)

with

Λ =
tan(bi)

bi
(B.20)

The modal gradient can be calculated to

g+
i =

g̃i
2
− ψ̄ib2

i (B.21)

Using the interface flux in equation (B.19), g̃i can be substituted from equation (B.21) and
the result will be

g+
i =

1

2

(
2

Λ
ψ+
i −

2

Λ2
ψ̄i

)
− ψ̄ib2

i (B.22)

After some trigonometric formulas the final relation for the side gradient becomes

g+
i = ti(ψ

+
i − siψ̄i) (B.23)

where

ti =
bi

tan(bi)
(B.24)

si =
2bi

sin(2bi)
(B.25)

To go back to ordinary neutron current J the solutions are multiplied by the transfor-
mation matrix U and by − 2

h
D

J+ = −d(φ+ − sφ̄) (B.26)

where

d = 2
h
DU

t1 0
. . .

0 tG

U−1

s = U

s1 0
. . .

0 sG

U−1

(B.27)
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By using the fact that the neutron current and the flux needs to be continuous at the
interfaces a relation regarding the current between two nodes and the interface flux can be
derived as

Jn→m = Cnmφ̄n −Cmnφ̄m (B.28)

φnm = d−1
m Cnmφ̄n − d−1

n Cmnφ̄m (B.29)

where

Cnm = (d−1
n + d−1

m )−1sn (B.30)

B.2 Nodal solution with known interface fluxes

When solving with known interface flux the same procedure will be used. Therefore the
general solution will be on the form as in equation (B.9). This time the assumed boundary
conditions are

ψi(−1) = ψ−i = Ai cos(bi)−Bi sin(bi)

ψi(1) = ψ+
i = Ai cos(bi) +Bi sin(bi)

(B.31)

Ai and Bi is now found from equation (B.31)

Ai =
ψ−i + ψ+

i

2 cos(bi)
(B.32)

Bi =
ψ+
i − ψ−i

2 sin(bi)
(B.33)

to get the modal gradient, equation (B.9) is differentiated

∂ψi
∂ξ

= g(ξ) = −Aibi sin(biξ) +Bibi cos(biξ) (B.34)

then the modal gradient at the boundaries can be calculated

g(−1)i = g−i = ψ−i

(
bi tan(bi)

2
− bi

2 tan(bi)

)
+ ψ+

i

(
bi tan(bi)

2
+

bi
2 tan(bi)

)
(B.35)

g(1i) = g+
i = ψ−i

(
−bi tan(bi)

2
− bi

2 tan(bi)

)
+ ψ+

i

(
−bi tan(bi)

2
+

bi
2 tan(bi)

)
(B.36)

and the average flux can be calculated
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ψ̄i = 1
2

1∫
−1

ψidξ =
ψ−i + ψ+

i

2bi
tan(bi) (B.37)

To make this manageable new quantities are introduced

c−I,i =
bi tan(bi)

2
− bi

2 tan(bi)
(B.38)

c+
I,i =

bi tan(bi)

2
+

bi
2 tan(bi)

(B.39)

c−II,i = −bi tan(bi)

2
− bi

2 tan(bi)
(B.40)

c+
II,i = −bi tan(bi)

2
+

bi
2 tan(bi)

(B.41)

Mi =
tan(bi)

2bi
(B.42)

Then equation (B.37) and (B.35) can be rewritten as

g−i = c−I,iψ
−
i + c+

I,iψ
+
i

g+
i = c−II,iψ

−
i + c+

II,iψ
+
i

ψ̄i = Mi(ψ
−
i + ψ+

i )

(B.43)

To transform back to the real flux and current equation (B.43) is multiplied with the
transformation matrix U and in the current case a factor − 2

h
D needs to be multiplied (as

in equation (B.26))
The expression for the current and the average flux will then become

J± = 2
h
D∗CU ∗φs (B.44)

φ̄ = UM ∗U ∗φs (B.45)

where
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J± =



J−1
...
J−G
J+

1
...
J+
G


, D∗ =

[
D 0
0 D

]
, C =



c−I,1 0 c+
I,1 0

. . . . . .

0 c−I,G c+
I,G

c−II,1 0 c+
II,1 0

. . . . . .

0 c−II,G c+
II,G



M ∗ =

M1 0 M1 0
. . . . . .

0 MG MG

 , U ∗ ==

[
U−1 0

0 U−1

]
, φs =



φ−1
...
φ−G
φ+

1
...
φ+
G



(B.46)

B.3 Albedo tests

To be able to calculate the albedo matrix for an infinite half slab made up of water, the
following system needs to be solved

D d2

dx2
φ(x)−Σφ(x) = 0

0 < x <∞
−D d

dx
φ(0) = J

(B.47)

To get the albedo into the problem the following relations are used

jin = ajout (B.48)

J = jout − jin (B.49)

(B.50)

By substituting jin we get

J = (I − a)jout (B.51)

To solve the system in (B.47) the same method as in Section B.1 and the eigenvalues
and eigenvectors are obtained as in equation (B.3) and (B.4). To transform the boundary
condition the current is multiplied by D−1 and the transformation matrix U−1 and the
new non-coupled system is found ass
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d2

dx2
ψi(x)−B2

iφ(x) = 0

0 < x <∞
d
dx
ψi = [U−1D−1J ]i

(B.52)

Equation (B.52) has the general solution

ψ = A1e
Bix + A2e

−Bix (B.53)

Since a limited solution is sought A1 = 0 and A2 is found from the boundary condition

A2 = 1
Bi

[U−1D−1J ]i (B.54)

with the boundary x = 0 the relation for the flux is given by multiplying ψi(0) with U and
get

φs = U bU−1D−1J (B.55)

where

b =


1
B1

0
. . .

0 1
BG

 (B.56)

With the interface flux it is possible use the definition of the partial currents for diffusion
[Dem10]

jout = 1
4
φ− + 1

2
J (B.57)

and for SP3 [BL00]

jout1 = 1
4
Φs + 1

2
J1 − 11

16
φ(2)
s

jout3 = 7
16
φ(2)
s + 1

2
J3 − 1

16
Φs

(B.58)

These can be rewritten to matrix form as

jout = Gφs − 1
2
IJ (B.59)

where

Gg =

[
1
4
−11

16

− 1
16

7
16

]
Gdiff = diag(1

4
)

GSP3 = diag(Gg)

(B.60)
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by combining equations (B.51), (B.55) and (B.59) the following relation is found

jout = GU bU−1D−1(I − a)jout − 1
2
I(I − a)jout (B.61)

and by some manipulations the final expression for the albedo matrix is given by

a = −(GU bU−1D−1 + 1
2
I)−1(1

2
I −GU bU−1D−1) (B.62)
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