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Abstract

This master thesis work deals with the task of finding a simple mathematical model
to describe the pressure dynamics of the intake manifold in diesel engines. The
model takes into account the intake throttles for air and exhaust gas recirculation
(EGR).

A good model is essential for the engine control, especially in transient conditions.
The control is performed in real-time, why the computational burden of the calcu-
lations must be low.

In this thesis work, a physical model of the dynamics is presented. Numerical
optimization methods are used to find a solution-set from the model. The solution-
set acts as a reference for grey-box modelling, with the aim of creating a closed
parameterized function describing the pressure of the intake manifold.

The proposed grey-box model suffers from a high maximum error of 43%.

Other models are presented with the aim of being used in collaboration with sim-
ulation of the system. Different models are chosen for working points selected to
cover the most difficult conditions to control. For those models, the accuracy is
acceptable.

Keywords: pressure estimation, diesel engine, intake manifold, EGR, optimiza-
tion, parameterization
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Sammanfattning

Detta examensarbete handlar om att hitta en enkel matematisk modell för att beskri-
va trycket i insugsröret p̊a en dieselmotor. Modellen tar hänsyn till spjällen för
ing̊angsluft och avgas̊aterföring (EGR).

En bra modell är viktig för motorns reglersystem, speciellt under transienta förlopp.
Regleringen sker i realtid, och därför f̊ar inte beräkningarna vara krävande i fr̊aga
om datorkraft.

I detta arbete presenteras en fysikalisk modell av flödesdynamiken. Numerisk opti-
mering används för att generera en lösningsmängd utifr̊an modellen. Lösningsmängden
fungerar som en referens för gr̊aboxmodellering, med syftet att skapa en sluten
parametriserad function som beskriver trycket i insugsröret.

Den föreslagna gr̊aboxmodellen har tyvärr ett alltför högt maximalt fel (43%).

Andra modeller presenteras för att användas tillsammans med simulering av sys-
temet. Olika modeller avpassass för olika arbetspunkter, valda för att täcka de mest
sv̊arstyrda intervallen. För dessa intervall är noggrannheten acceptabel.

Nyckelord: tryckestimering, dieselmotor, insugsrör, EGR, optimering, parametris-
ering
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1 INTRODUCTION

Electronic control units are an important part in the design and construction of a
modern car. The benefits of control are many, e.g. better performance, handling
and safety. Modern engine control in cars is very much focused on reducing toxic
emissions, but has other objectives as well. The output torque in a diesel-engine is
controlled by the air/fuel-ratio, for example. (Guzzella and Onder 2010)

Among the unwanted pollutants, there are nitrogen oxides (NOx). NOx is cre-
ated when the temperature in the combustion chamber rises too much. To reduce
the combustion temperature, Exhaust Gas Recirculation (EGR) is used. The idea
is simple; reduce the combustible components in the combustion by recirculating
exhaust gas.

Amstutz and Del Re (1995) proposes a linear sensor-based control for the EGR-flow,
and concludes that the transient operations are not well handled. The sensors are
not good enough to handle fast nonlinear dynamics. A better alternative is model-
based control, which means the controller is based on a model of the system that is
controlled. A good model is the basis for a good control design. A difficult problem
in diesel engines of today is to model the pressure in the intake manifold during
transient conditions. To model the air/fuel-ratio, the flows into the intake manifold
must be known. In the case when the pressure differences around the intake- and
EGR-throttles are small, a small change in pressure may lead to a significant change
in the EGR-flow.

The goal for this thesis is to create an algorithm that can be used to estimate the
pressure in the intake-manifold. The estimation is carried out in real-time, so the
computational burden must be small for the control unit.

This thesis is limited to a specific number of connections to the manifold, that is an
intake-throttle, an EGR-throttle and a flow from the manifold to the combustion
chambers. The pressures before the throttles are assumed to be known, as well as the
physical properties of the throttles and the gas-flow to the combusition chambers.
It is sometimes meaningful to let the flow go backwards through the EGR-throttle,
and this case is also covered by this work.

It is generally possible to simulate the system in real-time, by integrating flows
and pressure in discrete time. Problems occur, however, when the difference in
pressure directly before and after one throttle is small. The integration of the flow
is then unstable, because the integration function has an infinite derivative and is not
Lipschitz-continuous. Guzzella and Onder (2010) suggest some possible solutions to
this problem. All of them include changing the fundamental equation from the
pressure ratio α to the mass-flow ṁ by limiting the maximum derivative of the
function.

1



2 Chapter 1 Introduction

It is of interest to find a solution that includes all physical dynamics of the problem.
The methods examined are classified into

• Numerical solutions. Iterative methods to find the solution in real time. Those
solutions suffer from the problem of the infinite derivative, and they may be
unstable for some conditions. Descent optimization methods and iterative
fixpoint methods are used.

• Parameterized solutions. Given a large set of solution-points, find an analytical
function matching those points.

The result of this thesis work shows that numerical methods are possibly unstable,
or tend to have very slow convergence under some conditions. Among the proposed
parameterized solutions, none is sufficiently good for all possible combinations of
dependent variables. If limited to specific regions for which the differences in pressure
around the throttles are small, there is however a combination of methods that has
a maximum relative error of 2.5%, which is acceptable. The algorithm then has to
choose method depending on the operating point, which may be tricky.



2 NOTATION

Capital Letters

A area (m2)
C constant (dimensionless)
F Flow rate function (dimensionless)
J Jacobian
P pressure (Pa)
Q coefficients of 3rd grade polynomial equations
R gas constant (J kg−1 K−1)
S aggregated variable (dimensionless)
T temperature (K)
U cost-function for optimization (dimensionless)
V volume (m3)

Small Letters

a aggregated variable connected to the manifold pressure (dimensionless)
b aggregated variable connected to the intake throttle (dimensionless)
c aggregated variable connected to the EGR-throttle (dimensionless)
d pressure ratio (dimensionless)
e relative error (dimensionless)
cp specific heat at constant pressure (J kg−1 K−1)
cv specific heat at constant volume (J kg−1 K−1)
f mass flow rate function (dimensionless)
fmax maximum mass flow rate at a throttle (kg s−1)
g aggregated function (dimensionless)
k parameterization constant (dimensionless)
m mass (kg)
n iteration number
ṁ mass flow rate (kg s−1)
p descent direction
p parameterization constant (dimensionless)
r aggregated function (dimensionless)
t time (s)
x1 flow rate at intake throttle (dimensionless)
x2 flow rate at egr throttle (dimensionless)
x vector aggregation of x1 and x2

3



4 Chapter 2 Notation

Greek Letters

α pressure ratio
β step-length
γ ratio of specific heats, cp/cv
∆ slope in b-c plot
κ filter factor for fixed-point iteration
λ factor for Gauss-Newton modification
ξ temporary variable in calculation of limits

Subscripts

0 fixed
k iteration
T throttle
s sample (time)
S stagnation (applies to P , T )
c critical (applies to the pressure ratio limit for choked flows)
uc unchoked (flow)
in before or directly referring to intake throttle
egr before or directly referring to the throttle controlling egr
bound boundary of the bc-plane
level level-curves in the bc-plane
comb combined

Superscripts

(n) sample number (connected to time)

Diacritical marks

ˆ approximative



3 MODELING

3.1 Gas flow through a nozzle

P , AT T

ṁ

PS

Figure 3.1. Flow through a nozzle.

Consider a gas flow through a nozzle as in Figure 3.1. The gas is suppposed to be
ideal. PT and AT is the pressure and cross-section area, respectively, in the throat
of the nozzle, PS and TS are the stagnation pressure and temperature.

The flow velocity is maximized when the throttle flow equals the velocity of sound
(Heywood 1988). This is called choked flow, and occurs for a pressure ratio lower
than the critical pressure ratio αc, defined by

αc =

(
PT

PS

)
critical

=

(
2

γ + 1

)γ/(γ−1)

, (3.1)

where γ = cp/cv is the specific heat ratio. The critical pressure ratio corresponds to
the maximum flow rate

ṁ = fmax =
ATPS√
RTS

√
γ

(
2

γ + 1

)(γ+1)/2(γ−1)

.

For unchoked flows, the mass rate is described by

ṁ =
ATPS√
RTS

(
PT

PS

)1/γ
{

2γ

γ − 1

(
1−

(
PT

PS

)(γ−1)/γ
)}1/2

, (3.2)

where R is the gas constant. Equation (3.2) can be reformulated to include choked
flows by

ṁ = fmaxf

(
PT

PS

)
(3.3)

5



6 Chapter 3 Modeling

where f(α) takes different form depending on the value of the pressure ratio α. For
ratios of α less than the critical ratio αc, f is equal to 1. In the unchoked region
αc < α ≤ 1, f follows the analytical expression hidden in Equation (3.2):

fuc = C α1/γ
(
1− α(γ−1)/γ

)1/2
, (3.4)

where C is a constant, depending on γ alone:

C =

√
2γ

γ − 1

(
√
γ

(
2

γ + 1

) γ+1
2(γ−1)

)−1

=

√
2

γ − 1

(
2

γ + 1

)− γ+1
2(γ−1)

.

On the other hand, if α > 1, meaning that PT > PS, the problem is symmetric, and
the flow will behave the same but flow in the opposite direction. Collecting these
pieces of information gives us the following definition of f :

f(α) =


1 , 0 < α ≤ αc

fuc(α) , αc < α ≤ 1
−fuc(1/α) , 1 < α < 1/αc

−1 , α ≥ 1/αc

(3.5)

f is not defined on the negative real axis, since that reflects a negative pressure,
which is physically impossible. The derivative of f will be needed further on. Dif-
ferenting fuc results in

dfuc
dα

= C
2α− γ−1

γ − γ − 1

2γ

√
1− α

γ−1
γ

. (3.6)

When α → 1, dfuc
dα

→ −∞ independent of whether it is limit from left or right.
Including choked flows on the derivatives gives

df

dα
(α) =


0 , 0 < α ≤ αc
dfuc
dα

(α) , αc < α < 1
−∞ , α = 1
dfuc
dα

(1/α) , 1 < α < 1/αc

0 , α ≥ 1/αc

A plot of f together with its derivative is shown in Figure 3.2.

3.2 Model of the intake manifold

Figure 3.3 shows the variable definitions for the relevant quantities in the manifold
model. Assume that the manifold pressure P equals that in the throttle throats.
Assume also that the stagnation pressure is constant in the throttle.
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Figure 3.2. The function f(α) (describing the flow through a nozzle) and its
derivative.

P, V, T

Pegr

Pin ṁin

ṁegr

ṁe

Aegr

Ain

Figure 3.3. A simplified view of the intake manifold.

The resulting equations are then

ṁin = fmax,inf

(
P

Pin

)
ṁegr = fmax,egrf

(
P

Pegr

)
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Introducing x1 = f(P/Pin) and x2 = f(P/Pegr) gives

ṁin = fmax,inx1 (3.7)

ṁegr = fmax,egrx2 (3.8)

Applying the ideal gas law in the intake manifold gives

P =
RT

V
m .

Assume that we have adiabatic conditions and that the system is sampled with a
sample time ts. Integrating the pressure using backward Euler from time ts(n− 1)
to tsn gives

P (n) = P (n−1) + ts
RT

V
(ṁin + ṁegr − ṁe) , (3.9)

assuming that the mass flows and the temperature are constant on the sampling
interval.

Insert (3.7) and (3.8) into the equation above, and apply to x1 and x2 at time-step
n:

x1 = f

(
P

Pin

)
= f

(
P (n)

Pin

)
= f (a+ bx1 + cx2) (3.10)

x2 = f

(
P

Pegr

)
= f

(
P (n)

Pegr

)
= f (d(a+ bx1 + cx2)) , (3.11)

where

a =
P (n−1)

Pin

− tsRTṁe

V Pin

b =
tsRTfmax,in

V Pin

c =
tsRTfmax,egr

V Pegr

d =
Pin

Pegr

.

Equation (3.10) and (3.11) form a system of implicit equations, and the objective
of the remaining part of this report is to find a computationally cheap solution to
this specific problem. Introducing

x =

[
x1

x2

]
and

F (x) =

[
F1(x)
F2(x)

]
=

[
f(a+ bx1 + cx2)

f(d(a+ bx1 + cx2))

]
.

gives a shorter notation to the problem described by (3.10) and (3.11):

x = F (x) . (3.12)
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3.3 Boundaries of the dependent variables

a, b, c, and d all represent combinations of common physical properties. Thus, they
are all real-valued. Table 3.1 shows the possible limits in which the variables are
assumed to stay within.

Table 3.1. Possible intervals for the dependent variables

Variable Interval
a (0,2)
b (0,20)
c (0,20)
d (0.5,2)



4 NUMERICAL SOLUTIONS

Our task is to make the solutions to Equation (3.12) available in real-time. This
chapter describes how to solve the problem with numerical methods. The aim is
twofold. Firstly, the generated data will be used as reference for parameterized
solutions. Secondly, if a numerical solution is sufficiently fast, it may be possible to
use it in real-time as an alternative to a parameterized solution.

4.1 Optimization

Introduce the cost-function

U(x) =
1

2
(x− F (x))2 =

1

2

(
(x1 − F1(x))

2 + (x2 − F2(x))
2
)
. (4.1)

If a solution to (3.12) exists, it is equivalent to the solution to the following opti-
mization problem:

minimize
x∈R2

U(x) (4.2)

We also know when a solution is found, when U = 0.

4.1.1 Analysis of the optimization problem

Every parameter choice of a, b, c and d results in a unique cost-function U(x1, x2)
to minimize. Figure 4.1 shows a typical cost-function for a specific parameter set,
a = 0, b = 3, c = 8 and d = 0.5. The function is obviously not convex, but seems to
be quasiconvex. If a function is quasiconvex, it has a unique minimum value (Frenk
and Kassay 2001). U is not analytically proved to be quasiconvex for all choices of
parameters, but no exceptions have been found in this thesis work.

A few different optimization methods are presented. For this specific problem, the
Gauss-Newton method is the most successful one, but there are problems with con-
vergence for some choices of parameters. A variation of fix-point iteration was
implemented with slower but more consistent convergence to the solution.

The optimization terminates when

U ≤ 10−6 .

10



4.1 Optimization 11

Figure 4.1. The cost function U for the parameter set a = 0, b = 3, c = 8 and
d = 0.5. A numerical solution with the Gauss-Newton method is shown to the
right.

4.1.2 Descent algorithms

This is a large class of search algorithms consisting of a number of steps (Andreasson
et al. 2005).

1. Let k = 0. Choose a starting point x0.

2. Choose a descent direction pk.

3. Choose a step length βk, i.e. xk+1 = xk + βkpk, such that U(xk+1) < U(xk).

4. If a termination criterion is fulfilled, then stop. Otherwise, let k = k + 1 and
go to step 2.

For step 2, gradient descent, Newton’s method and the Gauss-Newton method was
implemented to find the descent direction pk. Among those, the Gauss-Newton
method performed the best.

Gradient descent

Gradient descent is probably the most intuitive of the descent methods. The search
direction is simply chosen to be the negative gradient of the cost objective function.

pk = −∇U(x1, x2)
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The gradient is known analytically, which is good, but the changing topology of U
makes gradient descent a bad choice with a very slow convergence.

Newton’s method

Newton’s method uses

pk = −(∇2U(x1, x2))
−1∇U(x1, x2)

The Hessian ∇2U(x1, x2) is known analytically just like the gradient. However, for
the specific problem defined in (4.2), the Gauss-Newton method is experimentally
proved to have faster convergence, so it is used instead.

Gauss-Newton method

The Gauss-Newton method uses an approximation of the Hessian on functions of
the quadratic form in (4.1). For reasons of simplicity, denote r1(x) = x1 − F1(x)
and r2(x) = x2 − F2(x). Let J be the Jacobian matrix defined by

J =

[ dr1
dx1

dr1
dx2

dr2
dx1

dr2
dx2

]
=

[
1− b df

dα
(a+ bx1 + cx2) −c df

dα
(a+ bx1 + cx2)

−bd df
dα
(d(a+ bx1 + cx2)) 1− cd df

dα
(d(a+ bx1 + cx2))

]
.

∇2U ≈ JTJ , giving
pk = −(JTJ)−1∇U(x1, x2) .

In practice, the descent direction pk is generated by solving the equation system

−JTJpk = ∇U . (4.3)

In the case when JTJ is not positive definite, steepest descent is used. If the solution
is not found after 120 iterations, a modification to the descent direction is used. If a
solution is not found after another 300 iterations, fixed-point iteration is performed
(section 4.2).

The initial point x0 = [0.1 , 0.1]T was used.

Modification by adding diagonal matrix

The objective function U has something similar to a canyon in the topology close
to the optimal point (Figure 4.1). For some parameter settings, the Gauss-Newton
method creates successive points that alternate between the sides, without finding
the low parts of the objective. If the termination criterion has not been fulfilled after
120 iterations, a factor λ is introduced and Equation (4.3) is modified according to

λk =


0.5λk−1 , U(xk−1) ≤ U(xk−2)
200λk−1 , U(xk−1) > U(xk−2)
10−3 , k = 300
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(JTJ + Iλk diag(J
TJ))pk = ∇U .

This means that the diagonal elements in the JTJ-matrix are enforced in each step
and λ decides the amount of enforcement. λ is increased if the objective function is
increased from one step to another and is decreased otherwise.

An intuitive explanation for the modification is to avoid steps in the direction where
the partial second derivative of the objective is large. The new iteration will tend
to follow the level curves.

Golden section search

The line search in step 3 is implemented with golden section search, a direct search
method that works for unimodal functions.(Andreasson et al. 2005) This holds if our
original multi-dimensional minimization problem is quasi-convex, which we assume
it is.

The method searches successively smaller intervals, where the remaining proportion
of the original interval for evaluation in each step is

√
5−1
2

≈ 0.618.

The termination is based on a criterion on the step-size, see Press et al. (2007).

Figure 4.1 shows an example of the minimization problem for a specific parameter
set using Gauss-Newton for the descent direction pk and Golden section search for
the step-size βk.

4.2 Fixed-point iteration

This method is experimentally proved to converge for all possible parameter sets,
even if it normally has a slow convergence. The idea is to simply iterate the implicit
equation by

xn+1 = (1− κn)xn + κnF (xn) , (4.4)

where κn is a filter parameter to prevent instability, F (x) is defined by (3.12). κn

is updated in each iteration by

κn =

(
1− 3n

2nmax

)
κ0 ,

where the parameters were chosen to be κ0 = 10−3, nmax = 105, x0 = [0.1, 0.1]T .
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4.3 Analysis of the algorithms

The twofold aim of the numerical algorithms was introduced in the beginning of
this chapter. The first aim was to generate the values of the solutions to Equation
(3.12), the second to find a computationally cheap numerical algorithm to run in
real-time. This section is about the algorithms in terms of accuracy and ability to
find the solution.

Gauss-Newton was run around 14 · 106 times for different parameter settings. It
succeeded to find the solution in maximum 300 iterations in 99.88 % of the cases.
The resulting number of iterations in the case when a solution was found is shown
in Figure 4.2, and has a mean of 11.5 iterations.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Number of iterations

C
ou

nt

Figure 4.2. Histogram of the number of iterations to run the Gauss-Newton
optimization algorithm. Mean is 11.5 iterations.

For the rouhgly 16 000 remaining parameter-settings, the fixed-point algorithm was
used. The mean is arond 33·103 iterations and maximum is around 67·103 iterations.
The result is shown as a histogram in Figure 4.3.

Now to the question; is any of these algorithms good enough to run in real-time?
With a mean of more than 30 000 iterations, it is obvious that fixed-point iteration is
not good enough. The Gauss-Newton algorithm is not so bad, though, with a mean
of 11.5 iterations. There is no sharp limit of how many iterations that can be carried
out in real-time, but since it usually takes more than 10 iterations, the solution is
considered not good enough. A faster and more accurate solution may be to use
off line generated solution values and find an analytical function that approximates
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Figure 4.3. Histogram of the number of iterations to run the fixed-point iteration
algorithm. Mean is 33 177 iterations. The reason for the low mean value is that
the spikes to the right are very narrow.

these solutions as accurately as possible.



5 PARAMETERIZED SOLUTIONS

To reduce the complexity of the parameterization, the function to parameterize is
defined as

g(a, b, c, d) = a+ bx1(a, b, c, d) + cx2(a, b, c, d) , (5.1)

where x1 and x2 are solutions to (3.12) for specific choices of a, b, c and d. This
is acceptable since x1 and x2 are easily calculated by using Equations (3.10) and
(3.11).

5.1 Properties of the solution

The result of the numerical calculations is a large number of data-points, specifying
the value of g in those points. One suitable way to present the data is to lock
the values of a and d and plot the surface defined by g as a function of b and c.
Figure 5.1 shows the surface plots for some combinations of a and d (see Figure 5.2
for the corresponding level-curves). Notice that the level curves are straight lines,
which is possible to verify analytically:

Choose a fix level g0, and use Equations (3.10) and (3.11):

g0 = a+ bx1 + cx2 = a+ bf(g0) + cf(dg0) .

Rearrange to get

c = − f(g0)

f(dg0)
b+

1

f(dg0)
(g0 − a) , f(dg0) ̸= 0 (5.2)

which shows the linear dependence between b and c for a fix level g0 and constant a
and d. f(dg0) = 0 =⇒ g0 = 1/d for which the level-curves are straight lines along
the c-axis.

5.2 Limits of g

It is suitable to lock a = a0 and d = d0 to watch the behaviour of g as a function of
b and c. By using the implicit equations (3.10) and (3.11) together with the shape
of f some conclusions are drawn.

b = 0, c = 0:

g(a0, 0, 0, d0) = a0 + 0 · x1 + 0 · x2 = a0

16
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Figure 5.1. The function g as a function of b and c, locked for some values of a
and d. Note that g = a in every origo.

b → ∞, c = 0:

g(a0, b, 0, d0) = a0 + bx1 = a0 + bf(a0 + bx1)

Let ξ = a0 + bx1, leading to

ξ = a0 + bf(ξ) .

Suppose there is a solution ξlim at the limit when b → ∞. So bf(ξ) → ξlim − a0,
b → ∞, implying that f(ξ) → 0 and thus ξ → 1.
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Figure 5.2. Level plots of g as a function of b and c, locked for some values
of a and d. The level curves are straight lines, which is analytically verified by
Equation (5.2).

b = 0, c → ∞:

g(a0, 0, c, d0) = a0 + cx2 = a0 + cf(d0(a0 + cx2))

Let ξ = a0 + cx2,

ξ = a0 + cf(d0ξ)

Using the same argument as above gives d0ξ → 1, c → ∞, concluding that ξ → 1/d0.
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b = c, b → ∞:

g(a0, b, b, d0) = a0 + bx1 + bx2 = a0 + bf(a0 + bx1 + bx1) + bf(d0(a0 + bx1 + cx2))

Let ξ = a0 + bx1 + bx2 to get

ξ = a0 + b(f(ξ) + f(d0ξ))

As b → ∞, f(ξ) + f(d0ξ) → 0. Using Equation (3.5), f(ξ) → −f(d0ξ) = f
(

1
d0ξ

)
.

For αc ≤ ξ ≤ 1/αc, f is monotonic, leading to the conclusion that the arguments
are identical: ξ → 1/(d0ξ), so ξ → ±1/

√
d0. Since ξ > 0, ξ → 1/

√
d0 as b → ∞.

Other solutions may exist in the region {ξ : ξ < αc or ξ > 1/αc}. Examine both
possibilities, first f(ξ) = f(1/(d0ξ)) = 1 =⇒ d0 < αc and 1/(d0ξ) < αc, so
d0 > 1/(ξαc) > 1/α2

c > 2, which is the largest value we allow for d0. In the same
way, examine the possibility for f(ξ) = f(1/(d0ξ)) = −1 =⇒ d0 < α2

c < 0.5, which
is the lowest possible value for d0.

The limits are concluded for the fixed values a0 and d0:

• g = a0, b = 0, c = 0

• g → 1, b → ∞, c = 0

• g → 1/d0, b = 0, c → ∞

• g → 1/
√
d0, b = c, b → ∞

Those limits are important help when the task is to find a parameterized solution.
Only solutions that behave correctly in the limits need to be taken into consideration.

5.3 Parameterization of the boundaries

Given a choice of a and d, the boundaries of g are the points on the b-axis and the
c-axis. For choked flows, the flow is known, and f is either -1 or plus 1. Let us now
examine each axis separately.

5.3.1 Parameterization of flow only through the intake-throttle

Since

c =
tsRTfmax,egr

V Pegr

there will be no flow through the EGR-throttle if c = 0. Given that c = 0, there is
a known parameterization. The suggested parameterization is consistent with the
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limits discussed in Section 5.2:

gin = g(a, b, c, d)|c=0 =

1− 1

1 + p1bp2
(1− a)2−e−p3b , a ≤ 1

1 +
1

1 + p1bp2
(a− 1)2−e−p3b , a > 1

A simple analysis for the choked flows gives the following conditions on g:

gin = g(a, b, c, d)|c=0 =

a+ b , a+ b ≤ αc

a− b , a− b ≥ 1
αc

The parameters p1, p2 and p3 are optimized based on minimizing the relative error
of the objective function, since it is very connected to the maximum error of the
pressure in the manifold. Using fminsearch in Matlab for optimizing the parameters
p1, p2 and p3 with respect to minimum of the relative error gives p1 = 3.755, p2 =
1.851 and p3 = 2.399. The resulting maximum relative error is 2.2 %. See Figure
5.3, where gin is plotted together with the reference points for some different values
of a.
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Figure 5.3. The optimized gin (solid line) for a = 0, 0.5, 1, 1.5, and 2 together
with corresponding reference points (dashed line).
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5.3.2 Parameterization of flow only through the EGR-throttle

Assume that g behaves similarily on the c-axis. Using the knowledge of the limits
for b = 0 a proposal for parameterization is

gegr = g(a, b, c, d)|b=0 =

1

d
− 1

1− p4cp5

(
1

d
− a

)2−e−p6c

, a ≤ 1
d

1

d
+

1

1 + p4cp5

(
a− 1

d

)2−e−p6c

, a > 1
d

and the conditions for choked flows are in a similar way

gegr = g(a, b, c, d)|b=0 =

a+ c , a+ c ≤ αc

d

a− c , a− c ≥ 1
αcd

As it turns out, it does not work very well (maximum error of 12%). That is because
the function does not fit well in connection with the choked flows. As an attempt
to adapt to the choked regions, the variables are biased according to the following
condition to make the function smooth with respect to the conditions for choked
flows:

c0 =

{
max(αc/d− a, 0) , a ≤ 1/d
max(a− 1/(αcd), 0) , a ≥ 1/d

and

g0 =

{
max(αc/d, a) , a ≤ 1/d
min( 1

αcd
, a) , a ≥ 1/d

c is then substituted by c − c0 and a is substituted by g0. An optimization results
in a maximum error of 7.2% with the parameter settings p4 = 2.546, p5 = 1.628 and
p6 = 3.918. Figure 5.4 shows the function for some different parameter values.

5.4 Parameterization of the flow through the intake-
and EGR-throttles

The idea is to connect the boundaries in a way that gives an approximation of g for
all possible parameter combinations, meaning that there is flow through both the
intake- and the EGR-throttle simultaneously. One idea is to do a weighted mean of
the function values on the boundaries.
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Figure 5.4. The optimized gegr (solid line) for d = 0.5 and 2 in two dif-
ferent plots together with corresponding reference points (dotted line). a =
0, 0.5, 1, 1.5, and 2 in each plot.

5.4.1 Weighted mean of the boundaries

Suppose that at least one of b and c are non-zero. Then the function g is

gbound(a, b, c, d) =
b gin(a, b, c, d) + c gegr(a, b, c, d)

b+ c
, (5.3)

where gin and gbound are defined in Section 5.3. Testing on all reference points results
in a maximal error of 43.5% and a mean error of 5.55%. The distribution of the
error is shown in Figure 5.5.
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Figure 5.5. The distribution of the relative error for gbound. Maximum error is
43.5% and mean error is 5.55%.



6 SIMULATION AND PARAMETERIZA-
TION

None of the proposed methods;

• Numerical algorithm running in real-time

• Parameterized function

works very well. Another alternative might be to simulate the pressure in real-time,
using the measured states of earlier time-samples. This method is used by some
already existing commercial softwares on the market. The problem is that current
solutions do not handle the situation around α = 1 well, where another strategy has
to be implemented.

Since methods based on simulation are already in use, a possible algorithm will be
discussed only briefly. Focus will be on the sensitive areas, more specifically when
at least one of the pressure ratios around the nozzles are between 0.95 and 1/0.95.
In those areas, a function approximation directly on f will be used. In the case
when both pressure coefficients are close to 1, the parameterization of f is difficult
to apply, and a parameterized solution based on the boundaries will be used.

We will also reduce the problem according to the fact that back-flow is never allowed
in the intake-throttle. That means that P/Pin is never larger than 1.

6.1 Pressure simulation

Assume that the pressure ratios P/Pin and P/Pegr are far from 1. The pressure in
the manifold is then simulated using Equation (3.9):

P (n) = P (n−1) + ts
RT

V
(ṁin + ṁegr − ṁe) .

The flows ṁin, ṁegr and ṁe must therefore be simulated as well. To do this correctly,
we need to model not only the parts described in this thesis, but parts in the cylinder
and exhaust system as well. Since this is outside the scope of this study, no details
will be presented. It is worth mentioning, though, that this is a known problem and
that there are solutions implemented in commercial software.

In each sample the pressure ratios are estimated to be able to detect if a pressure
ratio for one of the nozzles approaches 1. If so, the corresponding flow in (3.9) has
to be calculated more carefully. At first, we assume that only one of the ratios is
close to 1, say P/Pin, while P/Pegr is in a region where simulation is possible.

24
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6.2 Parameterization of f

Recall the definition of f(α), see Equation (3.5). Let γ = 1.4. Then, for 0.95 < α ≤ 1
the function behaves very much like the function k

√
1− α. Extending to negative

flow as well, gives

f(α) ≈ f̂(α) =

{
k
√
1− α , 0.95 < α ≤ 1

−k
√
1− 1

α
, 1 < α < 1/0.95

(6.1)

Optimizing according to mean-squared regression leads to k = 2.0278, with a max-
imum relative error of 1.8%. Figure 6.1 shows f and f̂ in the specific interval.
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Figure 6.1. The function f , see Equation (3.5), and f̂ , see (6.1), in the interval
0.95 < α < 1/0.95.

6.3 Simulation combined with parameterization of f

Let 0.95 < P/Pin ≤ 1 and P/Pegr be far from 1. x2 is then possible to simulate. The
parameterization of f from (6.1) is used to obtain the equation

x1 = f(a+ bx1 + cx2) = k
√
1− (a+ bx1 + cx2) .

Collect terms to get a second-order polynomial equation in x1:

x2
1 + bk2x1 + k2(cx2 + a− 1) = 0 .
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The solutions are then

x1 = −bk2

2
±
√

b2k4

4
− k2(cx2 + a− 1) .

The flow ṁin is assumed to be positive, and so must x1 be according to (3.7), so
the positive solution must be chosen. If, for simplicity, x2 is supposed to be correct
by simulation, the relative error in pressure is maximum 0.10% and has a mean of
0.020%.

Now, let P/Pin be far from 1, and thus x1 is simulated. Assume instead that
0.95 < P/Pegr ≤ 1. A similar analysis shows that

x2 = −cdk2

2
+

√
c2d2k4

4
− k2(bdx1 + ad− 1) .

A slightly more complicated case is when there is a flow backwards through the
EGR, meaning that 1 < P/Pegr < 1/0.95. Continue to assume that P/Pin < 0.95.
Our polynomial equation will then be one degree higher:

cdx3
2 + (ad+ bdx1)x

2
2 − cdk2x2 + k2(1− ad− bdx1) = 0 .

Polynomial identification gives

Q1 = cd , Q2 = ad+ bdx1 , Q3 = −cdk2 , Q4 = k2(1− ad− bdx1) .

The three solutions to the cubic equations are known (Weisstein 2011). Let Q1 =
cd ̸= 0 and

S1 = 2Q3
2 − 9Q1Q2Q3 + 27Q2

1Q4

S2 = S2
1 − 4(Q2

2 − 3Q1Q3)
3

The possible solutions are then

x
(1)
2 = − Q2

3Q1

− 1

3Q1

(
1

2

(
S1 +

√
S2

)) 1
3

− 1

3Q1

(
1

2

(
S1 −

√
S2

)) 1
3

(6.2)

x
(2)
2 = − Q2

3Q1

+
1 + i

√
3

6Q1

(
1

2

(
S1 +

√
S2

)) 1
3

− 1− i
√
3

6Q1

(
1

2

(
S1 −

√
S2

)) 1
3

(6.3)

x
(3)
2 = − Q2

3Q1

+
1− i

√
3

6Q1

(
1

2

(
S1 +

√
S2

)) 1
3

− 1 + i
√
3

6Q1

(
1

2

(
S1 −

√
S2

)) 1
3

(6.4)

To know which solution to choose, compare with the solutions calculated by the
numerical algorithms in Chapter 4. Figure 6.2 contains the error with respect to
the reference values. Evidently, (6.4) is the solution to our problem. The maximum
relative error is 0.67% and the mean error is very small, 0.016%.

Now examine the case when Q1 = cd = 0, meaning c = 0 or d = 0. c and d
represent physical properties that in practice never are zero. We may also note that
we consider the case where 1 < d < 1/0.95, so d is never close to zero.
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Figure 6.2. Errors for the three possible solutions of the cubic equation. x
(3)
2 is

obviously the solution.

6.4 Parameterization for small pressure differences

When both pressure ratios are close to 1, the simplification with f̂ is not enough to
solve the problem analytically. Then a parameterization is used, as was discussed
in chapter 5.

We are now limited to the region where

0.95 < P/Pin ≤ 1 and 0.95 < P/Pegr < 1/0.95 .

It turns out that only a small part of the generated reference points satisfy the
condition. Especially, the values of d only take values very close to 1, why the
stepsize between the reference points is decreased to 0.2 in d.

6.4.1 Parameterization outgoing from the boundaries

gbound defined by (5.3) is used in this region, optimized with the result of a new
parameter-setting: p1 = 2.949, p2 = 1.984, p3 = 1.190, p4 = 3.089, p5 = 1.806 and
p6 = 1.192. The maximum error in this region is 3.2%, and the mean error is 1.1%
(see Figure 6.3).
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Figure 6.3. The distribution of the error of gbound in the region where 0.95 <
P/Pin ≤ 1 and 0.95 < P/Peqr < 1/0.95.

6.4.2 Parameterization according to level-curves

Equation (5.2) describes the equation for the level-curves in the bc-plots:

c = − f(g0)

f(dg0)
b+

1

f(dg0)
(g0 − a) , f(dg0) ̸= 0

The idea behind this parameterization is to include the information about the level-
curves to get an alternative approximation of g. Given values of a, b, c, and d, the
idea is as follows:

• Calculate the slope ∆ in the b− c-plot (see Figure 5.2).

• Get the level g by

∆ = − f(g)

f(dg)
.

Getting the ∆-value out of a, b, c and d is the tricky part. Actually, making it
correct means that our problem is solved in general. The easiest approximation is
to assume that all level-curves go through a common point [b0, c0]

T . Then,

∆ =
c− c0
b− b0

.

One idea is to use the origin, but in order to avoid numerical problems arising when
dividing by zero our choice is b0 = c0 = −10−2. We have that

∆ = − f(g)

f(dg)
> 0 ,
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and together with the approximation of f defined by (6.1):

∆ =

√
1− g

1− 1
dg

.

Note that a result of the approximation above is that we have to assume back-flow
in the EGR, which is not always true. Solve for g and choose the positive solution,

glevel = −∆2 − 1

2
+

√
(∆2 − 1)2

4
+

∆2

d
. (6.5)

6.4.3 Combination of gbound and glevel

The solution glevel is in general bad, but used in combination with gbound, it turns
out to decrease the error a lot. On the boundaries, gbound is superior compared to
glevel, but in the interior, glevel does help. Let gcomb be a combined solution defined
by

gcomb = plevel glevel + (1− plevel) gbound , (6.6)

where plevel is a ratio determining how much we trust in glevel, defined by

plevel =
ln
(
1 +

√
b2 + c2

)
ln (p7)

.

Here, p7 is a trust radius, and should be adjusted to achieve the best fit.

Optimizing gcomb results in a new set of parameters p1 - p7: p1 = 3.450, p2 = 1.221,
p3 = 0.1639, p4 = 5.913, p5 = 1.446, p6 = 2.532 and p7 = 76.94. The maximum
relative error of gcomb is 2.51% and mean error is 0.69%, which is a noticeable
improvement. The distribution of the error is shown in Figure 6.4.

6.5 Real-time determination of region

In the proposed solution, the pressure is estimated differently depending on the value
of the ratios P/Pin and P/Pegr. It is crucial that the algorithm running in real-time
has the ability to detect when a region is changed.
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Figure 6.4. The distribution of the error of gcomb in the region where 0.95 <
P/Pin ≤ 1 and 0.95 < P/Peqr < 1/0.95.



7 DISCUSSION

The results in this thesis work are compared to an ideal reality, that is the result
given by the basic equations of flows and pressures. Even if the model and the
reference perfectly agree, a comparison to reality may display a difference.

In all proposed models, the integration method used is backward Euler, which is
known to cause stability issues in some conditions. Another integration method
will, if the methods of this work are used, probably result in algebraic equations
that are more difficult to solve than the equations resulting from Euler integration.

An interesting approach for a future work is to design a nonlinear observer.

In this work, no details about the simulations have been examined. Simulations
involve the cylinder parts, the exhaust system and possibly a turbocompressor or
heat-exchangers. These simulations may have other complications apart from the
manifold, affecting the flows and the pressures. This has not been taken into ac-
count, and in the error calculations the simulation parts are assumed to result in
theoretically correct values.

Concerning the control, is model-based control really necessary, or may other ap-
proaches be suitable as well? In Amstutz and Del Re (1995), a linear sensor-based
control method is implemented. One conclusion in the article is that for transient
operations, feedforward controllers tend to yield better results if the plant-model
mismatch is small. Sensors are not fast enough to catch the fast nonlinear dynamics
of the system. So a good model matters.
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8 CONCLUSION

The goal of this thesis work was to design a model or an algorithm for real-time
estimation of the pressure P in the intake manifold in diesel engines. The pressure
Pin just before the intake-throttle and the pressure Pegr just before the EGR-throttle
are assumed to be known.

Two approaches to fulfill that goal have been presented; numerical methods and
parameterization methods.

The numerical methods are designed using different techniques. The most successful
method implemented is the Gauss-Newton method for optimization (with a few
modifications), which succeeded in 99.9% of the cases tried with a mean of 11.5
iterations. In 88% of the cases, the algorithm used less than 15 iterations. Even
15 iterations are, however, probably too many to run in real-time. The real trouble
is that the nonlinear dynamics makes the solutions very sensitive to small changes
in pressure. The character of the problem is such that it is difficult to design a
numerical method that is guaranteed to converge to a solution in finite time. For
future work, other optimization methods may be tried, for example direct search
methods. The challenge with direct search methods is to try to limit the computation
time, which may be hard. It is also difficult to formally verify the behaviour of such
methods.

Among the parameterizations, none of the proposed solutions is good enough for all
possible conditions. Limited to different pressure regions, different methods succeed
relatively well, however. The problem is to determine in which region the engine
is operating. Table 8.1 shows the proposed solutions and in which regions they
work. The table also shows that the solution gbound based on parameterization of
the boundaries for the whole definition set does not succeed.

Table 8.1. Summary of the results for the proposed parameterized solutions.
erel,mean and erel,max refer to the absolute relative error in the resulting pressure P
of the intake manifold.

Function P/Pin P/Pegr erel,mean erel,max

gbound free free 5.55% 43.5%

f̂ (0.95,1] ≤ 0.95 and ≥ 1/0.95 0.020% 0.10%

f̂ ≤ 0.95 (0.95,1] 0.0074% 0.082%

f̂ ≤ 0.95 (1,1/0.95) 0.019% 0.10%
gcomb (0.95,1] (0.95,1/0.95) 0.69% 2.51%

The overall conclusion is that no general function or algorithm has been found that
satisfies the conditions on accuracy and complexity. If divided into sub-regions of the
pressure-ratios, the relative error is small. Further investigations have to be made
to find a solution that could be implemented in real-time with good performance.
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Hopefully, some of these conclusions may serve as inpiration and help for future
work, aiming to find a method that works in real-time.
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