
Patch-wise image similarity search

Searching for small regions in collections of large images

Master’s thesis in Complex Adaptive Systems

Christoffer Arvidsson
Ebba Davidsson

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2022

www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Patch-wise image similarity search

Searching for small regions in collections of large images

CHRISTOFFER ARVIDSSON
EBBA DAVIDSSON

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2022

Patch-wise image similarity search
Searching for small regions in collections of large images
Christoffer Arvidsson
Ebba Davidsson

© Christoffer Arvidsson, Ebba Davidsson, 2022.

Supervisors: Erik Werner & Niklas Gustafsson, Zenseact
Examiner: Bernhard Mehlig, Department of Physics, Gothenburg University

Master’s Thesis 2022
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Example of found patches when searching with a patch of an ambulance.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Patch-wise image similarity search
Searching for small regions in collections of large images
Christoffer Arvidsson
Ebba Davidsson
Department of Physics
Chalmers University of Technology

Abstract

In autonomous driving it is important that a neural network performs well even for
examples that do not occur often in the dataset. One method to improve performance
is to find and add examples similar to those the network struggles with, thereby
increasing the training data available. Similarity search is an automatic method for
searching large datasets for the most similar examples to some target. This thesis
describes a similarity search algorithm for locating different sized objects in a large
dataset of high-resolution images. The algorithms uses patches, which are small
regions in an image, in order to enable precise searches for small objects. Each patch
is embedded to 512 dimensional vectors with CLIP[1] that captures the semantic
meaning of the content in the patch. The main contribution of this thesis is a method
to reduce the potential number of patches resulting from each image, by selecting
the most visually interesting patches in each image. We evaluate the combined patch
selection and similarity search on three classes of objects relevant for autonomous
driving: ambulances, animals and a specific traffic sign marking an upcoming road
narrowing, to measure the fraction of relevant patches retrieved. Further, we show
that searching with the average vector representation of several images of the same
object improves the result, while searching with a text string gives varying results
depending on the object class.

Keywords: thesis, nearest-neighbor search, deep learning, image retrieval.

v

Acknowledgements

We would like to thank Zenseact for enabling us to write this thesis by both supporting
us during the project and supplying us with data and resources. Our industrial
supervisors Erik Werner and Niklas Gustafsson at Zenseact have been a great source
of ideas and feedback, along with the rest of Team Valdag. We would also like to
thank Bernhard Mehlig for his continuous support during the thesis project.

Christoffer Arvidsson, Ebba Davidsson, Gothenburg, June 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ANN Approximate Nearest-Neighbor
CNN Convolutional Neural Network
CLIP Contrastive Language-Image Pre-training
k-NN k-Nearest-Neighbor
PQ Product quantization
OPQ Optimized Product Quantization

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Background . 1
1.2 Problem statement . 2

1.2.1 Aim . 3
1.2.2 Scope and limitations . 3

2 Theory 5

2.1 Image retrieval systems . 5
2.1.1 Precision metric . 6

2.2 Saliency prediction . 6
2.2.1 SimpleNet . 6

2.3 Contrastive Language-Image Pretraining 7
2.3.1 Transformers and self-attention 8
2.3.2 CLIP encoders . 9

2.4 Approximate nearest-neighbor search 11
2.4.1 Nearest-neighbor graphs . 12
2.4.2 Graph-based nearest-neighbor search 12
2.4.3 Vector quantization . 15

3 Methods 17

3.1 Patch selection . 17
3.1.1 Saliency prediction and scoring 18
3.1.2 Selecting the k most interesting patches 18
3.1.3 Using hierarchy for different object scales 19

3.2 Creating semantic embeddings . 21
3.3 Nearest-neighbor search . 21

3.3.1 Search process . 21
3.3.2 Search index construction . 22

4 Experiments 25

4.1 Data . 25

xi

Contents

4.1.1 Evaluation dataset . 25
4.1.2 Queries . 26

4.2 Patch selection evaluation . 26
4.3 Image retrieval evaluation . 28
4.4 Quantization and approximate search 34

5 Discussion 37

5.1 Patch selection evaluation . 37
5.2 Similarity Search evaluation . 38
5.3 Time and memory optimizations . 39
5.4 Bias and searching for private information 39
5.5 Future work . 40

6 Conclusion 43

Bibliography 45

A Appendix 1 I

A.1 Patch selection settings . I
A.2 Patch selection algorithm . II

xii

List of Figures

2.1 Illustration of the SimpleNet architecture. 7
2.2 Illustration of the saliency prediction of an image. 7
2.3 Structure of a residual attention block. 10
2.4 Illustration of the encoder structures in CLIP. 11
2.5 Example of a K-nearest neighbor graph. 12
2.6 Path found by graph traversal in a k-NN graph. 13
2.7 Example of hierarchical small world graphs used by HNSW. 14

3.1 The effect of recreating the saliency map. 19
3.2 Illustration of the hierarchical patch selection. 20
3.3 Example of selected patches from hierarchical patch selection. 20
3.4 An overview of the inference process. 22
3.5 An overview of the index build process. 22

4.1 Query images used during evaluation. 26
4.2 An example of what qualifies as the patch capturing an object 28
4.3 Qualitative examples of patches retrieved for road ambulance queries. 29
4.4 Qualitative examples of patches retrieved for road animal queries. . . 29
4.5 Qualitative examples of patches retrieved for road narrowing sign

queries. 30
4.6 Qualitative results from searching with the average embedding 31
4.7 A few examples of different patch query searches. 32
4.8 A few examples of different text query searches. 33
4.9 Examples of patch searches in the quantized index. 35

xiii

List of Figures

xiv

List of Tables

4.1 Table of some text queries used in evaluation. 27
4.2 Proportion of objects captured for the different object classes in patches 28
4.3 Whole and patch-wise search metrics. 30
4.4 Search metrics for quantization indices. 34

A.1 Parameters for baseline-unfiltered patch selection. I
A.2 Parameters for baseline-filtered patch selection I
A.3 Parameters for multsize-filtered patch selection I
A.4 Parameters for hierarchical-filtered patch selection II

xv

List of Tables

xvi

1

Introduction

With the growth of large scale data collection, deep neural networks have become
popular in autonomous driving systems for their efficiency in perception tasks such
as object detection [2]. To train these networks one first collects a large amount
of data, then selects a subset of this large dataset as a training set. This training
set should be representative of the whole dataset, and usually requires additional
annotation and data processing before training the network.

It is important for the perception model to perform well on examples that rarely
occur, for example rare objects or objects in odd environments. To improve the
models performance, it is appropriate to extend the training set with examples similar
to these rare cases. However this introduces a problem, namely how to quickly find
similar examples. It is not feasible to manually search for these examples due to the
size of the large dataset and the scarcity of these examples. For these reasons, other
methods are required to perform these searches.

1.1 Background

Supervised learning can be used to learn the mapping between predictor-target pairs.
These pairs are called training examples and make up a training set that should be
large and representative enough to allow the model to generalize to unseen examples.

There can be multiple reasons for why a model does not generalize, for example
due to the complexity and architecture of the model [3], the method used to train
the model, or the training set used. If it is presumed that the training set is the
issue, then active learning can be used to detect and extend the training data with
examples the model is performing badly at [4].

In autonomous driving these examples include unexpected objects on the road,
animals that blend into the background, rare objects such as a highly specific traffic
sign, or very small objects that may be difficult to detect even for a human. To
improve performance in such scenarios a good starting point is to add more of them
to the training set, thereby increasing coverage of the model.

Given an that we have found an example the model is performing badly at, one
might be able to find additional cases by searching for similar cases in the collected
data. It is unfeasible to manually search a large dataset for many matching cases, so
a human may use metadata such as the time of day and location a photo was taken
to narrow down the search space [5]. However this metadata is often not descriptive

1

1. Introduction

enough to enable precise searches such as for specific objects in certain conditions.

For this reason, other methods exist that do not require any metadata. One such
method is similarity search which uses a similarity metric to compare pairs of images,
creating a score for how similar the two images are [6]. This is known as content-based
image retrieval, where the content of images are compared during the search rather
than metadata. Although it is possible to compare images in this way, it is more
efficient to compare feature vectors extracted from each image as the representation
is more compact [7, 8].

1.2 Problem statement

This thesis describes a method for performing content-based image retrieval on a
large dataset consisting of unlabeled high-resolution images. The system may be
used by humans to search this dataset for similar regions, either via text or region
targets. The images searched among are taken with a front-facing camera on a
vehicle in traffic and include a variety of environments, weather conditions and time
of day. The resolution of each image is 3848× 2168 pixels.

Because these are high-resolution images they contain a lot of information and would
therefore not be specific enough to search with. Instead it may be possible to search
with smaller regions, called patches. This should allow the search to find for example
a moose on the road, which occupies only a tiny fraction of the full image. We
distinguish between a query patch as the patch we would like to find similar patches
to, and patches that we search among.

Considering all the possible sizes and locations of a patch, there are an immense
number of possible patches in just a single image. Similarity search requires storing
a feature vector for every single patch, which will be prohibitively costly both in
terms of memory and time. To mitigate the number of patches, we wish to only
keep patches with interesting content. For autonomous driving we are for example
interested in regions with objects, pedestrians, traffic signs and rare vehicles. Less
useful regions are those with trees, clouds and parts of buildings. By finding these
interesting regions, it should be possible to reduce the total number of patches.

We foresee a few challenges in developing an image retrieval system that works on a
patch level

Patch selection Extracting interesting patches from an image while ignoring re-
gions with little information,

Semantic embedding creation Extracting features from patches that allow pair-
wise vector comparison for patch similarity,

Similarity search Searching for patches by vector similarity and returning the
images each found patch originally came from.

In addition to these challenges, memory usage is an issue due to the number of
images in the large dataset of collected images, and subsequently the number of
patches that will be selected. Part of the problem under consideration is to reduce
this memory usage so that the method can be applied to very large datasets.

2

1. Introduction

1.2.1 Aim

The aim of this thesis project is to develop an image retrieval system that achieves
high-quality searches on a large dataset of unlabelled images. A high-quality search
is defined as the system retrieving a large fraction of images relevant to the search
query. Additionally, the system should make use of patches in the images to further
increase precision for small object searches.

While the system will be used on large unlabelled data, it is convenient to evaluate
the system on images with corresponding object annotations, as this allows evaluating
whether a result actually included the object searched for. The system will not make
use of annotations unless it is for evaluation purposes.

With the addition of many patches per image, we also hope that the memory usage
remains feasibly low for large collections of images. We hypothesis that quantization
and filtering methods can be used to significantly reduce the memory footprint
without large loss of search accuracy.

1.2.2 Scope and limitations

We chose to focus on searches for objects that would be relevant for autonomous
driving, such as finding certain types of vehicles or certain types of traffic signs. The
system can certainly be used for other kinds of data, but this is not the focus of the
project.

We also limit the project to use existing similarity search libraries, since these have
shown high query performance and have more efficient implementations than what
could be produced in the time span of the project.

3

1. Introduction

4

2

Theory

This chapter provides a concise overview of the ideas and concepts necessary to
understand the methodology and results of this thesis. We begin by describing image
retrieval systems, followed saliency prediction and text-image feature extraction.
Finally we describe approximate nearest neighbor search.

2.1 Image retrieval systems

An image retrieval system is a type of information retrieval system that aims
to retrieve images given a search query [5]. The purpose of these systems is to
recommend a set of relevant images to a user, where relevancy depends on the query
used. The query could for example be a specific attribute value, a text string or
another image [9]. Depending on the complexity of the task, the retrieval system
could involve anything from a simple checkup among the attributes of each image,
or be based on features extracted from an image.

One method to find the most relevant images is to use a similarity score. This score
measures how similar two elements are and can then directly be used to find the
most similar elements. One measure for this is the L2-distance defined as

L2-distance(q, e) =

√

√

√

√

n
∑

i=1

(qi − ei)2, (2.1)

which is the length of the difference vector between the two vectors q and e. More
similar vectors have a smaller L2-distance.

Another alternative is the cosine similarity. It measures similarity between two
vectors as the cosine of the angle θ between the vectors. It is defined as

cosine-similarity(q, e) = cos θ =
q · e
‖q‖‖e‖ =

∑n
i=0 qiei

√

∑n
i=0 q2

i

√

∑n
i=0 e2

i

(2.2)

and takes on values in the interval [−1, 1], where −1 represents opposite vectors, 0
for two orthogonal vectors, and 1 for two aligned vectors. If q and e are normalized,
then the dot product is equal to the cosine similarity. For similarity search, a larger
cosine similarity is better.

5

2. Theory

2.1.1 Precision metric

Image retrieval systems can be evaluated using image metadata such as objects
contained inside the image or categories [5]. A query might regard a certain type of
object, and relevant images would then include that type of object.

An important metric is the percentage of retrieved images relevant to the query
(precision). Precision at k (precision@k) describes the fraction of relevant images
among the k retrieved. It is computed as

precision@k =
|relevant images ∩ retrieved images|

k
. (2.3)

2.2 Saliency prediction

To select only a few patches in an image while still covering the interesting objects,
one needs to select the patches strategically. This strategy refers to aligning the
patches with regions which are likely to include interesting objects. To do this,
one needs a metric for distinguishing the more interesting parts of the image from
uninteresting parts. One way of measuring this is by using saliency prediction.

Saliency prediction refers to predicting the areas of visual attention in a scene.
The prediction is usually in the form of a black and white saliency map, with a
greater pixel value in regions of greater visual interest. Estimating regions of visual
attention has long been an interesting area. The earliest models mostly consisted
of handcrafted feature models, where the estimations were made based on contrast,
color and texture [10]. While these implementations were useful in some cases, the
accuracy was limited. As more advanced techniques have emerged, the usage of deep
learning has proven especially applicable for this task.

The deep learning models are commonly supervised, meaning they depend on some
sort of ground truth data, where areas are labeled as more or less salient. For larger
datasets, this ground truth data is often object based and mark the placements of
prominent objects as salient. Another alternative is to record the mouse movements
over images as humans view them online. This has proven to be highly correlated to
visual attention and has thereby enabled the enlargement of relevant ground truth
datasets. Some other datasets are collected from recording the eye movements of
humans looking at the specific images [11]. This type of ground truth data is the
most accurate for saliency networks, though it is costly to collect and such datasets
therefore tend to be small.

2.2.1 SimpleNet

One recent implementation of a saliency prediction network is SimpleNet. It consists
of a fully convolutional encoder-decoder UNet architecture [12]. This network was
chosen for this study based on its high performance and accessibility.

It was implemented along with the pretrained weights from the original implemen-
tation. These weights were trained on the SALICON dataset, consisting of 10,000
training, 5000 validation and 5000 test pairs of images and ground truth saliency

6

2. Theory

predictions. The original images came from the MS COCO dataset [13] and the
ground truth saliency maps are based on the mouse movements of viewers. By
using this instead of human eye tracking data, the size of the dataset can grow from
hundreds to thousands [14]. This makes the SALICON dataset the largest saliency
dataset available.

An illustration of the network is shown in Figure 2.1.

Figure 2.1: Illustration of the SimpleNet architecture for saliency. Uses a UNet
architecture to encode and decode an image into a saliency map. Image source [15].

The model takes a 256x256 image as input and returns a saliency prediction of the
same size. Figure 2.2 shows the re-scaled saliency prediction of an image.

(a) original image (b) saliency prediction

Figure 2.2: Illustration of the saliency prediction of an image. The regions with
traffic lights and motorcycle have high predicted saliency, while sky and the road
have less predicted saliency.

2.3 Contrastive Language-Image Pretraining

Feature extraction is the process of transforming data into descriptive numerical
values. These numerical values form a feature vector that captures the information
in the data required to perform some predefined task [16]. In our case, the data are
pixel values of patches, and the vectors describe the contents of the patch. These
vectors will then be used for similarity comparisons during a search.

The feature vectors need to e locality sensitive such that similar vectors are closely
placed in the embedding space. Although there are classical methods for extracting

7

2. Theory

features from both text and images, they are often outperformed by newer deep
learning approaches[17].

Contrastive Language-Image Pretraining (CLIP) [1] is a recent architecture trained
to connect images and natural language. As an example, a picture of a dog could
be described by the text “dog” or a class label as is common in many classification
datasets. A better description might include what the dog is doing, such as “a photo
of a dog jumping in a field of grass”. If the model is capable of connecting the image
with this text, then it shows an understanding of how language relates to visual
concepts. What then exists inside the model is a good representation for describing
the image or text.

To create this representation, CLIP receives minibatches of N image-text pairs.
There are N2 possible pairings, N of which are true and N2 −N of which are false.
Each image and text is embedded to a vector in shared 512-dimensional space via an
image and text encoder respectively. The model is trained to minimize a contrastive
loss function called the InfoNCE loss [18, 19]. Contrastive means it simultaneously
pull together the true pairings while pushing apart the false pairings. The training
loss involves two loss functions

H
(I→T)
i = − log

exp
([

z
(I)
i · z(T)

i

]

/τ
)

∑N
j=1 exp

([

z
(I)
i · z(T)

j

]

/τ
) (2.4)

as an image-to-text contrastive loss function and

H
(T →I)
i = − log

exp
([

z
(T)
i · z(I)

i

]

/τ
)

∑N
j=1 exp

([

z
(T)
i · z(I)

j

]

/τ
) (2.5)

for text-to-image for pair i. In these equations zi is the normalized feature vector
extracted with the text/image encoder for pair i and τ is a temperature parameter
that controls the range of the logits and is learned during training. A superscript (I)
or (T) signifies image and text respectively.

The final training loss is computed as the mean of these two loss functions, averaged
across N pairs.

H =
1

2N

N
∑

i=1

(H
(I→T)
i + H

(T →I)
i). (2.6)

After minimizing Eq. 2.6 via stochastic gradient descent and backpropagation, the
image and text decoder can be used to create embeddings that are applicable to
many different tasks, including nearest-neighbor search[20].

2.3.1 Transformers and self-attention

Transformers [21] were developed as an alternative to the then dominant sequence
learning models that made use of recurrent neural networks (RNN), long short-term
memory [22], or gated recurrent neural networks [23]. They are encoder-decoder
architectures, i.e. the method involves first encoding the input into an efficient
representation, then decoding that representation into something else dependent on

8

2. Theory

the task. One such task might be machine translation, where the text is translated
to a different language. CLIP uses these as part of its text and vision encoders.

As an alternative to convolutional networks, transformers use attention weights to
“attend” to different parts of the input. This is called self-attention because an
attention weight is computed for every pair of positions in the sequence. Because the
transformer can attend to anywhere in the input sequence, it can use both local and
global information. The scaled dot-product attention [21] is computed according to

Attention(Q, K, V) = softmax

(

QKT

√
dk

)

V, (2.7)

where d is the dimension of the representation, Q is the query vector, K is the key
vector and V is the value vector.

The naming of these vectors come from retrieval systems; the user provides a query,
the system maps the query against many available keys in the database, then
presents the best matching value. These vectors are obtained by matrix product
of the embedding and a corresponding weight matrix for each vector. The weight
matrices are learnt during training.

The matrix multiplication QKT computes a score for how related each element in
the output is to every element in the sequence. Scaling by

√
dk is done to mitigate

potentially large dot product results that would destabilize the gradients during
backpropagation. Softmax turns the scores into fractions that sum to 1, and the
matrix product with V selects parts of the input sequence proportional to the scores,
creating a weighted average.

Instead of learning one generic attention weight matrix, it can be useful to learn
multiple weight matrices. There are called attention heads, and they focus on
different concepts by projecting the input vector into different subspaces. Multi-head
attention involves computing Eq. 2.7 for multiple attention heads, then concatenating
the resulting vectors. This larger vector is reduced in size by another learnt weight
matrix.

2.3.2 CLIP encoders

In the version of CLIP used in this thesis, both the image and text encoders use
the encoder part of the transformer architecture. Figure 2.4 show these encoders.
Both of these make use of residual blocks, referred to as ResBlocks. The structure of
these is shown in Figure 2.3. The residual connections help mitigate the vanishing
gradient problem, where the loss signal vanishes in deep networks.

9

2. Theory

x

Layer norm

Multi-head Attention

+

Layer norm

Linear

GELU

Linear

+

x′

Figure 2.3: Structure of a residual attention block used in both the transformer and
vision transformer in CLIP. Layer norm normalizes the input vector by subtracting
mean and dividing by standard deviation of the batch [24] and GELU is the Gaussian
Error Linear Unit [25].

Figure 2.4a shows the structure of the text encoder used in CLIP. An initial processing
step for text is to perform Byte-pair encoding (BPE), where the most common pairs
of consecutive bytes are replaced by a byte not found in the text. This compresses
the input into a sequence of discrete tokens that can be embedded using a token
embedding layer. The text embedding is extracted by gathering the end-of-sentence
tokens, which act as general representations for the input text.

Figure 2.4b is a vision-transformer encoder [26]. The difference to the transformer
used for text is that images are not typically treated as sequences of elements as
one could do for words in a text. To create this representation, the image is split
into a grid of 16× 16 sized patches, then convolved individually to form embeddings.
In the same way end-of-sentence tokens were used as the general representation of
the text, a class token is used in vision transformers. This token is appended to the
sequence of grid patch embeddings.

In contrast to RNNs or LSTMs where a sequence is processed in order, attention
processes sequences all at once. Positional embeddings are added to preserve the
sequence position of each token.

10

2. Theory

x

Token embedding

+pemb

ResBlock

Layer norm

Gather eot

Linear

z(T)

n(T) ×

(a) text encoder

x

grid

Conv2D

Flatten grid

:

+ pemb

cemb

Layer norm

ResBlockn(I) ×
Layer norm

z(I)

(b) vision encoder

Figure 2.4: Structure of the two encoders used in CLIP. x is the input (either
text tokens or an image) and z is the output embedding. The : symbol denotes
concatenation and + is the add operation. Gather eot gathers the end-of-text tokens
from each example in the minibatch. grid splits the image into a grid with 16× 16
sized patches. The Conv2D layer is a 2D convolution layer, see original paper for
parameter details. Layer norm normalizes the input vector by subtracting mean and
dividing by standard deviation of the batch. Finally ResBlock takes the structure
shown in Figure 2.3 and has n such blocks stacked.

2.4 Approximate nearest-neighbor search

Consider a dataset of images and a single text description of an image. The goal is
to find images that match that text description. These matches should specifically
be the best matching images or close to the best. Algorithms that solve this problem
are called nearest-neighbor search algorithms.

Nearest-neighbor search algorithms find the closest vectors to a query vector q among
a collection of vectors based on a similarity metric. The query vector is what was
earlier referred to as a a text description, but it can be any vector as long as it
describes the content we want to search for.

One naive method for finding the nearest-neighbors is to compute the pairwise
similarity between every vector and the query, then collect the most similar k vectors
as the result of the search. However this scales poorly for large datasets since q has
to be compared to every other vector. Optimizations of this involve clever use of
structuring data, avoiding many of these checks. We refer to the data structure as a

11

2. Theory

search index, which often stores more information than just the vectors in order to
speed up the search. One such optimization is to use graph-based nearest-neighbor
search algorithms [27, 28]. These algorithms utilize graphs to guide the search in the
direction towards the query.

2.4.1 Nearest-neighbor graphs

A common graph used in nearest-neighbor search is a k-nearest-neighbor graph
(k-NN graph). A k-NN graph is a directed graph connecting nodes with their k
nearest neighboring nodes [29]. Figure 2.5 shows an example of a k-NN graph in two
dimensions. In this graph an edge between nodes p and q exists if a given similarity
measure, for example Eq. 2.2, between p and q is greater than the maximum similarity
of the k closest neighbors to p.

A

B

C

D

E

F

Figure 2.5: Example of a k-nearest neighbor graph where n = 6, k = 2. Each node
has exactly k = 2 outgoing edges pointing to the nearest neighbors of the node.

Constructing an exact k-NN graph is computationally expensive and often not
required. Instead an approximate k-NN graph can be computed by iteratively
refining either a completely random graph, or a graph that is already close to a k-NN,
but faster to create [7]. Refinement of this initial graph makes use of the notion
that a node’s neighbors’ neighbor are often close to the original node. Returning to
Figure 2.5, node C has the neighbor D which has the neighbor B. Even though B is
not a neighbor of C, it would be a good candidate to consider as it is fairly close to
C.

2.4.2 Graph-based nearest-neighbor search

Consider a k-nearest-neighbor graph such as the one shown in Figure 2.6. Given
a query point q outside of the graph, and a random start node E∗ in the graph,
the approximate nearest-neighbors of q can be found by iteratively taking steps
towards the query from the start node. In each iteration, the decision of which edge
to traverse depends on what the distance to the query would be as a result from

12

2. Theory

traversing that edge. Effectively this means choosing the edge that minimizes the
distance to the query.

Figure 2.6 also shows the resulting path this algorithm would find if it started at
node E∗. For such a small graph, most nodes are visited to get to G. However for
larger graphs, this straight line to target approach ignores the majority of nodes and
is therefore very efficient.

A

B

C

D

E*

F

G

H

I

q

Figure 2.6: Path found by graph traversal in a k-NN graph where n = 9, k = 2.
The * signifies the random start point in the search, q is the query point outside of
the graph, and the red path (bold) is the path found where at each iteration, the
edge that minimizes the distance to the query point is selected.

One issue is that this kind of greedy algorithm can easily get stuck in local minima.
Consider the case where C had been slightly further to the left in Figure 2.6. Then
F would be a local minimum because the distance from C to q would be greater
than the distance from F to q. To alleviate such cases, one can run the algorithm
many times with different starting nodes.

The full algorithm is shown in Algorithm 1 [28]. The search is run R times with
different starting nodes sampled uniformly from nodes in G to help avoid local
minima. Each search iterates a fixed number of steps T to guarantee the search ends
even if trapped in a local minimum. N(Y, E, G) returns the first E neighbors of node
Y in graph G. Here E is an integer smaller than k and is used to further improve
performance by checking fewer edges than available. ρ(X, Y) is a distance function
that computes the distance from X to Y . If cosine similarity is used, the argmin
should be swapped to an argmax to maximize the similarity instead. Finally note
that here K is the number of sought after closest neighbors, while k is the parameter
used to construct the k-NN graph.

Various improvements exist to make this algorithm even faster, notably edge pruning
to mitigate nodes with a large amount of outgoing edges, which are slow to pro-
cess. Another improvement is the use of hierarchical navigable small world graphs

13

2. Theory

Algorithm 1 graph-nearest-neighbor-search(G, q, K, E, R, T) [28]

Require: graph k-nearest neighbor graph G, query point q, K number of neighbors
to find, E max edges per node, R number or restarts, T iterations per restart

Ensure: K nearest neighbors of q
S ← {}
U ← {}
for r=1 . . . R do

Y0 ← random node in G
for t=1 . . . T do

Yt ← argminY ∈N(Yt−1,E,G)ρ(Y, q)
S ← S ∪N(Yt−1, E, G)
U ← U ∪ {ρ(Y, q) : Y ∈ N(Yt−1, E, G)}

end for

end for

sort S based on U
return first K nodes in S

(HNSW) [30], which adds layers of simpler graphs, allowing the algorithms to take
larger leaps initially. Figure 2.7 shows an example of the search performed on a small
graph with the HNSW graphs. The time to execute a search is improved for very
large graphs at the cost of storing more edges from using multiple graphs.

q

A*

A

A

B

B

B

C

D

CE

D
G

CE

F

H1

H0

H2

q

q

Figure 2.7: Example of a hierarchical structure used by HNSW. Point q is the
query point and the start node is denoted A∗. Each level Hi contains significantly
fewer nodes thus allowing each step to traverse a larger distance.

14

2. Theory

2.4.3 Vector quantization

Nearest neighbor search is often performed on billions of vectors. On this scale
exhaustive search is not feasible, requiring other search indices that can take up a
considerable amount of memory along with the memory required to store each vector
for similarity comparisons. To get around this problem it is appropriate to compress
each vector to a smaller size. This compression is called quantization, and has to also
preserve the property that compressed vectors can still be compared for similarity.

Formally, quantization is the process of reducing the size of a set of continuous
values by mapping them to a smaller set of discrete values [31]. The end goal is to
preserve as much of the information as possible with this map. In this thesis we
use product-quantization, which is commonly used in conjunction with approximate
nearest-neighbor search to reduce memory usage [32].

Product quantization uses k-means clustering to find k optimal clusters and their
centroids. The idea is that for any vector, it is more memory efficient to store which
cluster that vector belongs, than to store the full vector. Given a set of vectors, first
split each vector into even sized chunks, called subvectors. This yields multiple sets
of subvectors, each subvector originating from a different vector. Next run k-means
clustering separately on each set of subvectors. The cluster centroids make up a
codebook that can be used to map any subvector to the closest centroid..

Quantization of a vector can now be done by splitting the vector into subvectors,
finding which centroid each subvector belongs to, and storing the unique ID of that
centroid as the compressed subvector. Further, the vector can be decompressed with
the use of the codebook by mapping the centroid IDs back to the subvectors of the
centroids, though with some error from the lossy compression.

An optimization introduced for product quantization (OPQ) is to include additional
free parameters that rotate the full vector space. This rotation makes the vectors more
amenable to PQ coding by relaxing the constraints of PQ, reducing the distortion
from compressing the vectors [33].

15

2. Theory

16

3

Methods

This chapter will describe the details of how the algorithm was constructed. The
main part consists of the patch selection method, where the saliency map of the
image is used to select relevant patches and a hierarchical approach is employed to
also capture smaller objects in the patches. The patch selection will then be followed
by a description of the embedding of the patches, as well as the search among those
embeddings.

3.1 Patch selection

The images used in this study are large and require large feature vectors to fully
describe the content. The goal of patch selection is to instead enable search on a
patch-level with a limited number of patches per image. A motivation for searching
with patches is that feature extraction models such as CLIP resizes the input image
to 224× 224 pixels respectively. Thus small details are immediately lost if the whole
image is used as a feature vector.

An alternative to using whole images is to select regions within the image. This
makes the eventual embeddings created more specific, allowing search for smaller
objects. Still, objects occur at different scales, so there may not exist a perfect patch
size to use for general object search. It would then be appropriate to use multiple
sizes to capture objects at different scales.

A naive approach to patch selection is to divide the image into a grid and use each
cell as a patch. There are numerous issues with this method, such as potentially
cutting an object in half if it falls on the boundary of a cell. Allowing grid cells
to overlap by employing a strided square method solves this issue. The greatest
problem with this solution is that the space required to store all selected patches
quickly grows beyond available memory. This approach is implemented as a baseline
and referred to as baseline-unfiltered.

We can handle these issues in two ways: by using larger patches with a larger
stride, or by reducing the number of patches. The first suggestion will reduce the
performance for small objects as discussed previously. Because of this, we opt for
the second suggestion. The approach used in this thesis is to filter out uninteresting
patches by scoring each patch based on saliency. The next few sections describe this
approach in detail, and the full algorithm of patch selection is given in Algorithm 2
in Section A.2.

17

3. Methods

3.1.1 Saliency prediction and scoring

We create an initial set of patches for each image via a strided square approach.
Here, stride refers to the distance between the center points of two adjacent squares.
This resembles dividing an image into a grid, but using a stride smaller than the
patch size allows overlapping patches. This is important to avoid the cases where an
object might be cut in half from just using a simple grid.

The saliency map of the complete image (see Figure 2.2) is predicted using SimpleNet.
We extract each candidate patch from this saliency map to get a set of candidate
saliency patches. These patches are scored with two different scoring functions. The
first method measures the average pixel value in the patch and is computed as

Sapv(p) =
1

255

1

A

∑

p∈P

p

 (3.1)

where 255 is the maximum pixel value, P is the set of pixels in the patch and A is
the patch area.

The second score is based on the difference between the average pixel value of the
inner and outer part of the patch. Since a perfect saliency map gives a light blob
where an object is, a perfectly selected patch should have a large light blob in the
center and darker corners. This score is called inner difference score and is computed
according to

Sid(p) =
1

255

1

Ain

∑

pin∈Pin

pin −
1

Aout

∑

pout∈Pout

pout

 (3.2)

where Pin and Pout are the sets of pixels in the inner and outer part of the patch
and Ain and Aout are the areas of the inner and outer parts. The inner part was
represented by a smaller centered rectangle in the patch with a margin space of 10%
of the patch side length in each direction. This score was then used to determine
which patches were likely capture interesting objects in a good way.

3.1.2 Selecting the k most interesting patches

As an initial and simple filtering, all patches with an average pixel score using Eq. 3.1
under a specified threshold are excluded. This is done to decrease the risk of selecting
completely empty patches which should have a low average pixel value score.

Next we compute the inner square difference score according to Eq. 3.2 and sort
patches from high to low score. Although we allow overlap in initial patches, there
is still a need for reducing the number of overlapping patches as these essentially
capture the same content. To filter overlapping patches, we first add the highest
scoring patch to the set of selected patches. Then the next best patch is added only
if the largest fraction of shared area to every other selected patches was below a
maximum overlap parameter. Since patches can have different sizes, the overlap
is calculated as the overlapping area relative to the area of the larger patch. The
patches were added consecutively in this manner until k patches were selected.

18

3. Methods

Adding this filtering step with saliency scoring to the baseline-unfiltered model
reduces the number of patches considerably. We refer to this models as baseline-
filtered. To capture objects of different sizes we can use multiple patch sizes, and
still select the top scoring patches. The model that uses different patch sizes with
saliency scoring is referred to as multsize-filtered.

3.1.3 Using hierarchy for different object scales

Since SimpleNet resizes the image to 256 × 256, smaller objects are likely to be
missed and excluded from the saliency map. An example is shown in Figure 3.1,
where the saliency map of the whole image and the saliency map of a cropped area
are compared. To capture these objects, the saliency map needs to be predicted on
zoomed in parts of the image which are likely to include objects. This can be done
through an initial step of selecting larger patches in the image. Smaller patches can
then be selected based on the saliency map of these initial patches. This gives rise
to a hierarchical patch selection structure which we refer to as hierarchical-filtered.
Although it requires many forward passes through SimpleNet, it does improve the
quality of patches for small objects.

(a) saliency precision on cropped area

(b) saliency prediction on full image

Figure 3.1: An example of the difference between (a) predicting the saliency map
on a cropped area and (b) predicting the saliency map on the full image.

The hierarchical structure could be represented by a tree. Each branch connects a
sub region with its parent region and the root of the tree is the original image. To
create the next level in the tree, patches are selected from each of the regions at
the current level. The patch selection process is done as described in the previous
sections. Figure 3.2 shows some patches selected with the hierarchical approach.

In each level of the hierarchy, we limit the total number of patches. By using several
different patch sizes in one level of the hierarchy and allowing competition against
each other in the patch selection process, the probability of selecting the best patch

19

3. Methods

Figure 3.2: Illustration of the hierarchical patch selection. ki describes the number
of top-k scoring to select in each level. Note the different sizes of patches in the last
layer of the tree.

size for a certain object increases and fewer objects are missed. This is because the
patch selection otherwise tend to focus on only a few very clear objects while other
less clear and perhaps smaller objects are missed.

Since the saliency map is trained on images which mostly include at least one clear
salient object, it tends to give false positive areas for images without any salient
objects like an image of only sky or road pavement. Considering this, as well as the
method being approximate and imperfect, a single zoom in step using a few larger
patches is sufficient. Especially considering that the saliency prediction is a costly
procedure. The selected patches for an image are shown in figure 3.3.

(a) original image (b) hierarchically selected patches

Figure 3.3: An example of the patches selected with hierarchical patch selection in
an image where k1 = 5 and k2 = 6.

20

3. Methods

3.2 Creating semantic embeddings

We now have a selection of patches from one or multiple different images. To enable
search with both text and images, a model that could handle extracting features to
a shared embedding space is required. CLIP suits this role and has been shown to
produce a detailed embedding space and was therefore used for the feature extraction
of both text and images.

We use the 16× 16 vision transformer version of CLIP, named ViT-B/16. We begin
by resizing every patch to 224× 224, the resolution required by CLIP, followed by
standardization of pixel values. Because of the use of square patches, this step does
not warp the content of the patch but instead allows batch processing many patches,
speeding up the embedding step. It should also be noted that the minimum patch
size returned by the patch selection is 224× 224 to avoid up-scaling a patch.

Since CLIP comes with a text encoder, it will be straight forward to also test the
search on text queries. These queries are first tokenized using CLIPs’ supplied
tokenizer, then embedded using the text encoding model.

3.3 Nearest-neighbor search

The process of finding similar images is now formulated as the problem of finding the
k nearest neighbor patch embeddings to a query patch embedding, then mapping
the resulting patches back to their source images. FAISS [8] is a similarity search
library developed by Facebook AI. It implements a variety of search algorithms and
quantization methods, such as those introduced in Section 2,and was designed with
GPU acceleration in mind.

3.3.1 Search process

Figure 3.4 shows the process of performing a patch-level search. We begin by
supplying either a text or patch query which is embedded with the image/text
encoder in CLIP to 512 dimensional feature vector that is then normalized using L2
normalization.

The algorithms used for finding the k nearest neighbors to the query depends on
what kind of a search index is used. The indices used in this thesis all maximize
the cosine similarity (Eq. 2.2) by maximizing the dot product between normalized
vectors. The search retrieves the “patch ids” of the k approximate nearest-neighbors.
The “patch ids” are used as keys in the patch database to retrieve the source “image
ids” the patches came from and the patch bounding boxes.

One problem is that a search can return multiple patches from the same image.
Because of the strided window patch selection method, these patches can even overlap
the same object. If such patches do not overlap, then these are valid results that
could describe the same type of traffic sign occurring multiple times in an image. If
they do overlap, then it is likely that they overlap the same object, meaning it is
unnecessary to return both patches. Thus we prioritize the highest cosine similarity

21

3. Methods

Figure 3.4: An overview of the search process. A query patch from an image is
embedded into a 512 dimensional space and quantized with the PQ codebooks. The
search then involves retrieving the top k patches from the ANN index based on the
cosine similarity. The source images of these patches are retrieved from the patch
database before presenting the results to the user.

patches found from the search, and filter away patches that overlap at all.

3.3.2 Search index construction

There are two parts to the search index: the actual index used for finding the
nearest neighbor patches of a query patch, and the patch database that hold the
mapping between patch and source image. Constructing these two parts was done in
a end-to-end system that accepts images and the “image ids” as inputs. The patch
database and search index is continuously added to as new images are processed. An
overview of the construction process is shown in Figure 3.5.

Figure 3.5: An overview of the process for building a search index and the patch
database. Patches are selected from each image, then embedded and potentially
quantized before being added to the search index. The source image id along with
patch id is stored in the patch database for later retrieving the correct image given a
patch.

To speed up this process, images were batched prior to patch selection to allow

22

3. Methods

processing more regions in parallel in the patch embedder. First patches are extracted
as described in Section 3.1. Then each patch is embedded according to Section 3.2.
Every embedding is normalized with by dividing by the L2 norm.

If quantization is used to further reduce the size of the index, the codebooks have to
be available prior to adding any embeddings to the search index. These codebooks
do not change during the course of the index, so the initial set of patches used for
product quantization has to be large and varied enough to produce representative
centroids. Given a dataset of 50 000 images we build the codebooks with 300 000
patches, which is a taken from roughly 8 200 images, or 35 patches per image.
This number is determined by 8 ·

√
N where N = 35 · 50 000 is the total number of

patches. Then every embedding added to the search index is first quantized using
these codebooks.

23

3. Methods

24

4

Experiments

This chapter describes the evaluation and results of both the patch selection and
image retriever components. To evaluate the image retrieval system, we make use
of existing object annotations in the form of bounding boxes as well as some text
queries. We differentiate between searching with one query, or the average embedding
across multiple queries.

4.1 Data

To test the model, annotated data was made available to us by Zenseact. The
annotations include the bounding box of the object, what class the object has, and
other factors such as the occlusion of the object, i.e. to what extent the object
is obscured by another object. The images come from a larger dataset of images
shot in ordinary driving situations such as urban or suburban environments, and in
different weather conditions. Each image has a resolution of 3848× 2168 pixels and
is at minimum separated by one second between different images shot with the same
camera.

4.1.1 Evaluation dataset

A random subset of 50,000 annotated images was chosen for evaluating the patch
selection and the image retrieval. After patch selection this dataset yields roughly
1.5M patches to search. It was important to test the system on rare annotated object
types of varying size and prominence. The target classes of objects are therefore
chosen to be ambulances, animals, and a certain type of traffic sign denoting a road
narrowing. The reason for this specific set of classes is that each is relatively rare and
important to detect for autonomous driving. Ambulances are large objects designed
to stand out in an environment. Contrast this with animals, which are often small
and easily blend into its surroundings. Simply searching for any traffic sign could
yield high results, so we chose a somewhat rare sign as an example of a highly specific
small object, designed to stand out.

The dataset consists of many objects, some of which are too small or occluded to
be identified without zooming in. Since these objects often lie very far away, they
are of less interest to the autonomous driving algorithms which focus on the direct
surrounding of the vehicle. It would also be difficult for the patch selection algorithm
to capture these objects in a good way, since they would appear small even in the

25

4. Experiments

smaller patch sizes. Also, occluded objects will be hard to identify by the saliency
prediction as well as the search algorithm. If only objects with an area of at least
3000 pixels and low occlusion are considered, the evaluation dataset includes a total
of 290 843 objects. Among these, there are 96 ambulances, 106 animals and 99 road
narrowing traffic signs where they have an average area of approximately 94 500
pixels, 23 300 pixels and 15 700 pixels respectively.

4.1.2 Queries

To test the image retrieval system, we construct two query datasets of image and
text queries respectively, each including the three targeted classes.

For each class, 20 query patches were chosen separate from the evaluation dataset.
The patch queries were hand picked to include a clear representation of the targeted
object. A random subset of these queries are shown in Figure 4.1.

A
m

b
u
la

n
c
e

A
n
im

a
l

Tr
a
ff

ic
 s

ig
n

Figure 4.1: A random subset of the set of 20 query images used during evaluation
for each class.

Since CLIP is trained to embed texts and images in the same semantic space, we
can also use text queries to search for image patches. One potential benefit of this is
that the text can focus on the object that we are interested in, whereas an image
query also includes surrounding context. Table 4.1 shows the text queries used for
each class.

4.2 Patch selection evaluation

We begin by evaluating the patch selection separately from the retrieval system. The
performance of the patch selection is critical, since regions not included in patch
selection are invisible to the retrieval system. We also note the compromise between
the memory required to store many patches, and the search precision.

To measure the performance of the patch selection algorithm, the number of objects
that are well represented in a least one patch is counted. This was done for each
of the targeted classes using the annotations. For an object to be considered well
represented in a patch, at least 50% of the object must be covered by the patch, and

26

4. Experiments

Table 4.1: Table of some text queries used in evaluation.

Type Text query

Ambulance "An ambulance"
"An emergency vehicle"
"A medical vehicle"
"A hospital wagon"

Animal "An animal"
"A dog"
"A horse"
"A cow"

Traffic sign "A warning road narrowing traffic sign"
"A road narrows sign"
"A triangle sign with two lines"
"Traffic sign lane narrows"

the object itself must occupy at least 5% of the patch. An example is illustrated in
Figure 4.2.

To compare the performance of different types of patch selection models, the models
described in Section 3.1 were all tested. These models can be sumarised as:

baseline-unfiltered Grid variant with no filtering done. This model simply selects
all possible patches with a fixed patch size and stride (Section 3.1),

baseline-filtered Grid variant with score filtered patches. Same as baseline-
unfiltered, but uses saliency to score every patch (Section 3.1.2),

multsize-filtered A variant where multiple patch sizes are used. All patches of all
sizes are scored and compared to each other (Section 3.1.2),

hierarchical-filtered Hierarchical variant with two levels, meaning the saliency
map is recreated (Section 3.1.3).

A full parameter list for these models can be found in Section A.1.

The performance of the different patch selection models on the target classes is
shows in Table 4.2. We note that baseline-unfiltered excludes many objects even
with the large number of patches. Intuitively, this means baseline-filtered performs
at best as well as baseline-unfiltered if no patches with target objects are filtered
out. By introducing different sized patches in multsize-filtered, both larger object
like ambulances and smaller objects like traffic signs are captured much more often.
Finally we see a clear improvement with recreating the saliency map in hierarchical-
filtered, notably for the animal object class. Interestingly, this is not true for the
road narrowing signs, which are also small objects. Here the difference between these
classes lies in how salient they are, and recreating the saliency map allows the model
to detect less salient objects. Thus hierarchical-filtered is the best performing model
while selecting few patches.

27

4. Experiments

(a) A larger patch. Only the car is
large enough to cover at least 5%

of the patch.

(b) A smaller patch. The patch
does not cover at least 50% of the

car.

Figure 4.2: An example of how the evaluation handles objects in patches. Each
full image is the patch, the green objects are considered to be captured by the patch,
while the red are not.

Table 4.2: Patch selection evaluation for the different object classes. The metric is
measured as the proportion of objects which are captured by a patch in a good way.

Model Ambulance Animal Traffic sign

baseline-unfiltered (128 patches/image) 0.684 0.333 0.474

baseline-filtered (35 patches/image) 0.615 0.274 0.303

multsize-filtered (35 patches/image) 0.854 0.264 0.657

hierarchical-filtered (35 patches/image) 0.895 0.611 0.747

4.3 Image retrieval evaluation

We now show qualitative examples of what kind of patches the nearest-neighbor
search returns. In these tests, we use the hierarchical-filtered patch selection since it
demonstrated good performance in the previous Section. Figures 4.3, 4.4 and 4.5
show qualitative examples of the patches retrieved for a few different queries for each
target class.

28

4. Experiments

(a) (b) (c)

Figure 4.3: Patches retrieved for some ambulance query images with k = 16. (a):
the search seems to focus on the text "ambulance" rather than the object it self in
the returned patches numbered 5 and 15. (b): the search returns ambulances of
different types and nationalities and has therefore generalised beyond matching text
in the query with text in the patches. (c): an example where the search fails. The
resolution of the query is low, which seems to affect the search result badly.

(a) (b) (c)

Figure 4.4: Patches retrieved for the animal query images with k = 16. (a): an
example of where the model performs well by returning a variety of dogs despite the
presence of many other objects in the patches. (b): despite there being no human
present in the query image, the search returns patches where a human is the main
object. (c): an example where the search fails by focusing on the fence rather than
the horse.

29

4. Experiments

(a) (b)

Figure 4.5: Patches retrieved for the road narrowing sign query images with k = 16.
(a): an example of where the search fails by focusing on the wall rather than the sign.
(b): an example of when the search correctly finds multiple signs of the correct type.

We now evaluate the image retrieval on two levels: a whole image level, and a patch
level. This is done to measure the impact on searching among an patch embeddings
instead of a image embeddings. When seaching among whole images, a square center
crop of the image is used to avoid distorting the content when later downscaling
for CLIP. The precision@16 is computed for the 20 different image queries and the
text queries in Table4.1. We average across queries within the same target class
and provide the mean and standard deviations in Table4.3. On a patch level we see
similar performance for both image and text queries when searching for ambulances.
For the other target classes, there is a significant difference in precision, notably for
the traffic signs. This is likely because of the difficulty in describing very specific
objects with text, especially those that would see many captions in the CLIP dataset.

Table 4.3: The mean and standard deviation (parenthesis) of precision@16 from
searching with 20 image or 4 text queries, evaluated for two exhaustive search indices.
Level “whole” uses a center crop of whole images to store a single embedding. Level
“patches” uses the described patch selection to store more patches per image.

Level Query type Ambulance Animal Traffic Sign

whole image 0.13(0.09) 0.04(0.06) 0.00(0.01)
text 0.23(0.09) 0.09(0.03) 0.00(0.00)

patches images 0.72(0.29) 0.56(0.39) 0.36(0.22)
text 0.70(0.19) 0.30(0.27) 0.00(0.00)

From Figure 4.5 (a) it is clear that it rather focuses on the background than the traffic
sign. In an attempt to remedy this, we can try using the average query embedding

30

4. Experiments

for a certain target class as query

q̄ =
1

n

n
∑

i=1

z
(I)
i (4.1)

where z(I) is the normalized query embedding resulting from the patch embedding
model, and n is the number of queries. The hypothesis is that the average will
preserve the part that describes the object class, while averaging out the differences
such as background.

Figure 4.6 shows the search results from searching with the average embedding for
each target class. It is clear that these averaged embeddings perform better than the
mean performance of the individual queries shown in Table 4.3.

(a) Ambulance (b) Animal (c) Traffic sign query

Figure 4.6: Results from searching with the average embedding for each target class.
(a): it performs well in returning different kinds of ambulances (precision: 0.875).
(b): many dogs in different conditions, even though queries include other animals as
well (precision: 0.875). (c): all signs have the same form, but the background and
conditions varies (precision: 0.5).

We now show some results for searches not necessarily part of the target classes.
Figure 4.7 shows a few different patch searches. Figure 4.7d demonstrates that
even some scenarios such as a truck on the side of the road can be searched for.
Figure 4.7b shows that matching precise text on traffic signs is difficult, and that
the cosine similarity is high even for patches with very different meaning, such as
the distance signs.

31

4. Experiments

0.868 0.850 0.848

0.848 0.846 0.844

0.843 0.841 0.841

(a) bus

0.911 0.906 0.904

0.898 0.893 0.890

0.890 0.890 0.887

(b) speed limit

0.904 0.901 0.901

0.900 0.896 0.895

0.894 0.893 0.892

(c) flowers

0.924 0.921 0.911

0.911 0.910 0.908

0.908 0.906 0.905

(d) side of road truck

Figure 4.7: A few examples of the k = 9 nearest neighbor results for a four different
patch queries. The top patch is in each figure is the query. The number below each
patch is the cosine similarity to the query patch embedding.

A selection of the top 9 patches for four different text queries is shown in Figure 4.8.
The cosine similarity for text queries is different to those from searching with patches,
likely because the cross-modality of the search. Figure 4.8b is an example of a specific
scenario query. Because of the inclusion of “red traffic light”, smaller patches focusing

32

4. Experiments

on this object dominate the search results. For this reason scenario search may be
difficult to search for because of the number of small patches compared to large ones.
Figure 4.8c is an example of the search returning a common street crossing sign.
While the results technically depict a person crossing the street, the query related
more to a photo of actual people crossing the street.

a truck carrying lumber

0.370 0.364 0.362

0.359 0.359 0.358

0.357 0.356 0.355

(a)

a busy street crossing with a red traffic light

0.358 0.358 0.357

0.356 0.355 0.354

0.353 0.353 0.353

(b)

a photo of a person crossing the street

0.349 0.346 0.346

0.345 0.345 0.343

0.343 0.343 0.343

(c)

a road narrows sign

0.344 0.338 0.337

0.337 0.337 0.336

0.336 0.335 0.335

(d)

Figure 4.8: A few examples of the k = 9 nearest neighbor results for a four different
text queries. The number below each patch is the cosine similarity to the query text
embedding.

33

4. Experiments

4.4 Quantization and approximate search

Next we measure the impact of approximate nearest-neighbor search and product
quantization compared to a flat index that uses pair-wise comparisons of the full
vectors to perform an exhaustive search. We are interested in measuring the effect
of precision, index size in memory and time to perform searches. The three indices
used are

exhaustive Exhaustive search index where pair-wise similarity is computed for
every pair of vectors,

HNSW32 Hierarchical navigable small-world graph index where each node (vector)
has 32 edges, and each vector is stored without any compression (Section 2.4.2),

PQ64 Exhaustive search index with product quantization. Vectors are first com-
pressed to 128 dimensions with a linear transformation to make them easier to
compress with PQ, then to 64 dimensions with product quantization. Each
component of the vector is stored using 8-bit values. The compression takes
512 32-bit floats to 64 8-bit values, i.e. a compression factor of 32, which is
close to the extra number of patches stored per image (Section 2.4.3).

Because building an index is time intensive, we only evaluate these three. Other
parameter values and types of indices are available that varies the trade-off in
accuracy, memory and time. Table 4.4 shows the difference in these metrics for each
query class. The HNSW32 index clearly fulfills it purpose of being faster to search in
than the exhaustive index, while remaining a similar performance. The PQ64 index
aggressively compresses vectors at the expense of performance for all object classes,
with small objects such as animals and traffic signs performing the worst.

Table 4.4: The mean and standard deviation (parenthesis) of the precision@16
metric across 20 image and 4 text queries, for different search indices. The flat
index works as a baseline index utilizing an exhaustive search and not quantization.
“HNSWXX” denotes an HNSW index with k = XX. “PQXX” indicates product
quantization from 512 to XX dimensions.
*Same as the evaluation for images in Table 4.3

Model Ambulance Animal Traffic Sign

exhaustive* (3.10GB, 0.75429 s/q) 0.72(0.29) 0.56(0.39) 0.36(0.22)

HNSW32 (3.78GB, 0.00036 s/q) 0.70(0.30) 0.50(0.43) 0.33(0.21)

PQ64 (0.11GB) 0.16(0.16) 0.00(0.00) 0.06(0.05)

To understand the poor performance observed for the PQ64 index, we show three
patch searches for the target classes in Figure 4.9. From these figures, it appears
that small details are lost in compressing the embeddings. For example some results
for ambulances instead include vans, and the embeddings for the traffic sign is
compressed into the general idea of a traffic sign, rather than describing the specific
sign searched for.

34

4. Experiments

0.707 0.703 0.697

0.695 0.694 0.693

0.693 0.691 0.690

(a) ambulance

0.627 0.622 0.620

0.620 0.620 0.619

0.618 0.617 0.617

(b) animal

0.684 0.683 0.683

0.682 0.680 0.680

0.679 0.679 0.679

(c) traffic sign

Figure 4.9: A few examples of the k = 9 nearest neighbor results for the target
class queries using the product quantized search index. The top patch in each figure
is the query used, and the number below each patch is the cosine similarity to the
query patch embedding.

35

4. Experiments

36

5

Discussion

This chapter discusses the results from the experiments detailed in Chapter 4. We
then discuss some of the advantages and disadvantages of the method used. Finally
we discuss some potential improvements and future work of the project.

5.1 Patch selection evaluation

The main goal of patch selection is to only select patches from areas which are
visually interesting. The method used to accomplish this is a saliency map. We found
that saliency detection is able to capture a majority of ground truth objects in the
patch selection stage, as was shown by the patch selection evaluation in Section 4.2.
The discussion in this section is based on Table 4.2.

There is a clear advantage to using a hierarchical method. The hierarchical-filtered
model performs the best for all classes used. Even with the same number of patches
with the same allowed patch sizes, hierarchical-filtered is strictly better than multsize-
filtered. The difference between these models is that saliency is recomputed, and
smaller patches are limited to already selected larger patches. Thus we attribute the
improved performance to recomputing the saliency map.

The reason for why recomputing the saliency map has a large effect is that small
details are lost in the initial image downscaling step of SimpleNet. This explains the
poor performance for small details and therefore small objects. Interestingly, this
is not a large issue for traffic signs compared to animals, as is clear by comparing
multsize-filtered with hierarchical-filtered.

Across all evaluated models, it is clear that the most difficult class to capture is
animals. Intuitively this is because animals are less salient than ambulances and
traffic signs, which are designed to be visible. Even though the criterion is based on
saliency, a majority of animals are found in selected patches. Because the number of
patches per image is limited, salient objects have a priority over non-salient ones.
This would explain the worse performance for the animal class.

The salient objects are ambulances and traffic signs. Traffic signs have a worse
performance compared to ambulances in all models. This can be explained by traffic
signs in general being smaller than ambulances and are thus more difficult to detect.
In the baseline-filtered and multsize-filtered results, we see a large difference for the
salient object classes. This difference is attributed to using many patch sizes, which
makes the model flexible enough to capture objects of different sizes.

37

5. Discussion

5.2 Similarity Search evaluation

From the search results in Table 4.3, it is clear that the model performs well for image
queries. Further, there is a large increase in precision from searching among patches
instead of whole images. This is because of the amount of information discarded by
CLIP when downscaling large images. However the standard deviation is quite high,
suggesting that the result largely depends on the quality of the query used.

One important aspect of this model is that CLIP is trained on matching images
with captions. Thus, the model is able to consider two images similar if they can
be described in a similar way, even though they might look visually different. This
is exemplified in Figure 4.3b, where different looking ambulances are returned. In
many ways this is a good thing, as it means objects can be embedded to the same
embedding regardless of visual details such as object orientation or details in color.
However, this is a problem if for example the goal is to search for a specific type of
ambulance rather than any type of ambulance. If this is desired, another type of
embedder trained on visual resemblance could be used.

For the object attributes to be represented in the embedding of the patch in the best
possible way, the object should occupy a large portion of the patch as well as be the
only object visible. For the classes including smaller objects, i.e. animals and traffic
signs, this is less likely to happen which might be the reason for why the search
performance is lower for these classes. As the object becomes smaller in a patch,
the embedding will describe the surroundings of the object rather than the object it
self. This problem was minimized through the usage of different sized patches in the
patch selection algorithm, though there are likely still many such occurrences.

Even if the image queries were cropped in a good way to only include the relevant
object, in some cases the search returns images without the query object, but which
are similar in some other sense, e.g. matching the background of the object. Such
examples are shown in Figure 4.4c and Figure 4.5a. This is a downside to searching
with images rather than text. An attempt to create image query embeddings with
minimal focus on context was done by searching once with the average of all query
embeddings of a class. The results shown in Figure 4.6 indicate that this could be a
possible solution to the problem.

The results of the searches in Table 4.3 show that there are benefits to searching
with an image of an object rather than trying to search with a text description. To
understand why, it is important to note the way in which CLIP is trained. Images
are matched with their corresponding captions on the web, and the performance of
the model therefore depend on how a human would describe an image containing the
object. A reason for why the performance is low for the road narrowing traffic sign,
while the corresponding performance in the patch selection is high, could be that a
human simply describes it as a “traffic sign” rather than the specific type. This is
exemplified in Figure 4.8d, where all signs have similar embeddings, but none depict
the searched for sign. This specific type could also be unique to certain countries.
Since CLIP is trained on English captions, traffic signs from non-English speaking
countries could be harder to identify.

38

5. Discussion

Because CLIP is trained with natural language, it gives large weight to text in images.
This means that the search often improves for ambulances which include the text
“Ambulance” in some form, as seen in Figure 4.3a. This is not necessarily bad, but
it does mean that finding objects without text is more challenging. However, in
Figure 4.7b it does not seem to matter what the text is, as long as the object has
somewhat similar text (numbers on a sign). There is also the argument that text
can be used trick CLIP into incorrectly embedding an image if it has a mismatched
text [34], however the only examples of this in our dataset are billboards and
logotypes.

5.3 Time and memory optimizations

In the results shown in Section 4.4, we found that it is possible to drastically speed
up the search without significant loss of precision by using HNSW graphs. Although
we expect the number of queries per second to be relatively small when using this
system, this shows that if the search time is a problem for large datasets, then HNSW
is a good alternative with a slight increase in memory usage.

For the quantized vector search indices we found a large reduction in performance
across all target classes. We believe this is due to the aggressive compression factor
of 32, which may not be the optimal choice. It is also possible that too few vectors
were used to train the quantizer (8 200 images, 287 000 vectors). From the qualitative
examples in Figure 4.9, it appears that the embeddings of specific objects such as
the ambulance and the road narrowing traffic sign become less specific, i.e. vans and
any traffic sign.

5.4 Bias and searching for private information

It is possible that the retrieval system described in this thesis could be used to find
private information, especially because of the focus on rare and small regions. The
kind of queries could involve searching for faces, people and text such as registration
signs.

The authors of CLIP discuss bias they observed, particularly for ethnicity and
gender [1]. Any such bias would also exist in the system described in this thesis.
There is an argument to be made that enabling search for certain groups could be
used to find training examples for other models, thereby improving performance for
those groups. For example, if a model is performing badly for one particular gender,
then searching for this gender will yield patches with the typical features associated
with that gender. However non-conforming people will be less represented in this
particular search, hence there is a bias in any such searches, introduced by CLIP.

Searching for specific registrations signs provides poor results similar to those from
searching for specific traffic signs. If the goal is to find any registration sign regardless
of text, then the search achieves a high precision. Also of note is that patches retrieved
are often perfectly centered, zoomed in images of the registration sign. This is a
side effect of using saliency which tends to focus on text, especially in small images.

39

5. Discussion

With a larger dataset there may be a possibility of finding the same registration sign
in different scenarios, thereby enabling tracking vehicles, but this is not something
we observed in our dataset.

5.5 Future work

For future work, we stress the importance of reducing the number of patches per image.
The patch selection algorithm described in this thesis evaluates many candidate
patches that will never be selected anyway due to low score. We expect there exist
more efficient methods than scoring every possible candidate patch, which would
likely reduce the number of patches and the time required to select patches from
images.

Another idea for reducing the number of patches involves filtering after creating
embeddings. We expect this can be done by embedding more patches, but only
adding those that are unique compared to the existing embeddings in the search
index. We hope this process would mitigate the large amount of uninteresting patches
such regions of sky or trees, since these are the types that are filtered out by patch
selection process.

It may also be beneficial to search for quantization parameters that reduce the
memory without significant precision loss. This was out of scope for this thesis as it
is quite dependent on what one wants to search for, but more experimentation in
this aspect would be a simple first thing to try. Product quantization may be more
complicated than required. A simpler method to compress vectors is to transform
the 32-bit floats to 8-bit integers with 8-bit integer quantization (compression factor
of 4), as is popular in deep learning [35]. This may be desirable as the method does
not require any training, in contrast to the 8, 200 images worth of patch embeddings
used to train product quantization.

In terms of patch sizes, this thesis did not study how different sized patches change
the result. For objects, our patch selection parameters work quite well as they match
typical sizes of objects found in our dataset. Instead of setting a predetermined size
of patches, an interesting idea is optimize this parameter based on objects that exist
in the dataset. Here it is also interesting to study how providing more context in the
form of a margin around the object, changes the search precision.

The results presented in Chapter 4 build on existing annotations for object bounding
boxes. While creating a system that can find objects is interesting, objects are not
the only thing one might want to search for. For example, it could be relevant to
search for more complex scenarios such as a person crossing the road during a red
light. However this would be more difficult to evaluate because it is not clear what
the threshold for a correct result is. Using object annotations does provide some
insight into how the model performs both for how many of the ground truth objects
are included by patch selection, and how many are found during search.

In terms of patch sizes, this thesis did not study how different sized patches change
the result. For objects, our patch selection parameters work quite well as they match
typical sizes of objects found in our dataset. Instead of setting a predetermined size

40

5. Discussion

of patches, an interesting idea is to optimize these parameters based on objects that
exist in the dataset. Here it is also interesting to study how providing more context
in the form of a margin around the object, changes the search precision.

Patch size and context also influences what is captured by a patch. This thesis
places a large focus on finding objects, but objects are not the only thing one might
want to search for. For example, it could be relevant to search for more complex
scenarios such as a person crossing the road during a red light. How the system
performs in this regard is difficult to evaluate because of the subjectivity of when
a scenarios matches another scenario. This problem is also present in our object
matching evaluation, since a patch of an object also includes some of the background
and is therefore more specific than just describing the object label. Other methods
to evaluate the search for this purpose could be interesting for future research.

41

5. Discussion

42

6

Conclusion

In this work we studied the problem of how to search for different sized objects
in high-resolution images in a large dataset. The method implemented uses three
components: a patch selection algorithm for patches with interesting content; An
embedding model that uses CLIP to extract feature vectors from patches and text
descriptions; and a retrieval system that uses approximate nearest-neighbor search to
find the vectors that are most similar to a query vector. Together, this system enables
searching for small objects on a patch-level by comparing the semantic meaning of
patches or text.

To evaluate this system, we use known object bounding boxes in the images. The
metric reported is the precision of a search, which counts the number of objects that
match the search query found in patches retrieved by the search. These metrics
along with qualitative examples show that this system is effective at finding objects
such as ambulances, small animals and certain traffic signs, even if these objects are
rare. By comparing to a search index that does not use patches, we find searching
among patches provides a large improvement in precision across all sizes of object.
Therefore we conclude that searching on a patch-level is an effective strategy for
finding rare objects in a large dataset of images.

The second problem under consideration concerned methods for scaling the system
for large datasets. This problem arises because the number of vectors per image
depends on how many is selected with the patch selection component. To study
this part, we evaluated three different methods for searching and compressing the
vectors. For time to execute searches, graph based searches were accurate although
requiring more memory to store. Quantization had a large negative impact on the
search result, likely due to the aggressive compression factor of 32. Because we only
evaluated one set of parameters for each search index type, we can not conclude that
any of these methods solve the second problem. Instead more parameter tuning is
required to be sure.

Future work involves finding methods for improving the quality of patches selected
and thereby reducing the number of patches required. It would also be interesting
to study the effect the width and height of patches have both for capturing as
much content as possible in patch selection, but also how different sizes affect search
precision. Finally, instead of filtering patches, one can attempt filtering the feature
vectors based on how many have already been added to the search index.

43

6. Conclusion

44

Bibliography

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sas-
try, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” 2021.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE access, vol. 8,
pp. 58443–58469, 2020.

[3] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: an empirical study,” arXiv
preprint arXiv:1802.08760, 2018.

[4] B. Settles, “Active learning literature survey,” 2009.

[5] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influences,
and trends of the new age,” ACM Computing Surveys (Csur), vol. 40, no. 2,
pp. 1–60, 2008.

[6] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity search: the metric
space approach, vol. 32. Springer Science & Business Media, 2006.

[7] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construc-
tion for generic similarity measures,” in Proceedings of the 20th international
conference on World wide web, pp. 577–586, 2011.

[8] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,”
IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[9] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based image
retrieval with high-level semantics,” Pattern recognition, vol. 40, no. 1, pp. 262–
282, 2007.

[10] F. Yan, C. Chen, P. Xiao, S. Qi, Z. Wang, and R. Xiao, “Review of visual
saliency prediction: Development process from neurobiological basis to deep
models,” Applied Sciences, vol. 12, no. 1, 2022.

[11] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency in context,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[12] N. Reddy, S. Jain, P. Yarlagadda, and V. Gandhi, “Tidying deep saliency
prediction architectures,” 2020.

45

Bibliography

[13] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in
context,” arXiv preprint arXiv: Arxiv-1405.0312, 2014.

[14] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency in context,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1072–1080, 2015.

[15] S. Jain, “Tidying deep saliency prediction architectures.” https://github.com/

samyak0210/saliency, 2020.

[16] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction: founda-
tions and applications, vol. 207. Springer, 2008.

[17] S. Ding, H. Zhu, W. Jia, and C. Su, “A survey on feature extraction for pattern
recognition,” Artificial Intelligence Review, vol. 37, no. 3, pp. 169–180, 2012.

[18] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[19] Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz, “Contrastive
learning of medical visual representations from paired images and text,” arXiv
preprint arXiv: Arxiv-2010.00747, 2020.

[20] N. Hezel, K. Schall, K. Jung, and K. U. Barthel, “Efficient search and browsing
of large-scale video collections with vibro,” in International Conference on
Multimedia Modeling, pp. 487–492, Springer, 2022.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[24] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.

[25] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[27] C. Fu, C. Wang, and D. Cai, “Fast approximate nearest neighbor search with
navigating spreading-out graphs,” CoRR, vol. abs/1707.00143, 2017.

[28] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approximate
nearest-neighbor search with k-nearest neighbor graph,” in Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

46

https://github.com/samyak0210/saliency
https://github.com/samyak0210/saliency

Bibliography

[29] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction.
Springer Science & Business Media, 2012.

[30] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs,” CoRR,
vol. abs/1603.09320, 2016.

[31] Y. Matsui, Y. Uchida, H. Jégou, and S. Satoh, “A survey of product quantization,”
ITE Transactions on Media Technology and Applications, vol. 6, no. 1, pp. 2–10,
2018.

[32] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor
search,” IEEE transactions on pattern analysis and machine intelligence, vol. 33,
no. 1, pp. 117–128, 2010.

[33] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for ap-
proximate nearest neighbor search,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2013.

[34] G. Goh, N. C. †, C. V. †, S. Carter, M. Petrov, L. Schubert, A. Radford,
and C. Olah, “Multimodal neurons in artificial neural networks,” Distill, 2021.
https://distill.pub/2021/multimodal-neurons.

[35] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

47

Bibliography

48

A

Appendix 1

A.1 Patch selection settings

Table A.1: Parameters for baseline-unfiltered patch selection.

Parameters Values

patch size 448px

stride 224px

Table A.2: Parameters for baseline-filtered patch selection

Parameters Values

patch size 448px

stride 224px

mean pixel value threshols 0.05

k 35

overlap threshold 25%

Table A.3: Parameters for multsize-filtered patch selection

Parameters Values

patch size 896px, 448px, 224px

stride 224px, 112px, 56px

mean pixel value threshold 0.05

k 35

overlap threshold 25%

I

A. Appendix 1

Table A.4: Parameters for hierarchical-filtered patch selection

Parameters Values

level 1 level 2

patch size 896px 448px, 224px

stride 224px 112px, 56px

mean pixel value threshold 0.05 0.3

k 5 6

overlap threshold 25% 25%

A.2 Patch selection algorithm

Algorithm 2 Selecting k unique patches(I, S(), PC(), lt, ot)

Require: graph I input image, S() saliency prediction method, PC() patch con-
struction method, lt average pixel value threshold, ot max allowed overlap threshold

Ensure: top k unique patches
top_k ← {}
SI ← S(I)
P ← PC(SI)
P ← {p : p ∈ P and Slight(p) > lt}
while len(top_k) < k do

pmax = p : p ∈ P and Sids(p) >= Sids(pother)∀pother ∈ P/top_k
if {overlap(pmax, pselected) < ot∀pselected ∈ top_k} then

top_k ← top_k ∪ pmax

end if

end while

II

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden

www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Problem statement
	Aim
	Scope and limitations

	Theory
	Image retrieval systems
	Precision metric

	Saliency prediction
	SimpleNet

	Contrastive Language-Image Pretraining
	Transformers and self-attention
	CLIP encoders

	Approximate nearest-neighbor search
	Nearest-neighbor graphs
	Graph-based nearest-neighbor search
	Vector quantization

	Methods
	Patch selection
	Saliency prediction and scoring
	Selecting the k most interesting patches
	Using hierarchy for different object scales

	Creating semantic embeddings
	Nearest-neighbor search
	Search process
	Search index construction

	Experiments
	Data
	Evaluation dataset
	Queries

	Patch selection evaluation
	Image retrieval evaluation
	Quantization and approximate search

	Discussion
	Patch selection evaluation
	Similarity Search evaluation
	Time and memory optimizations
	Bias and searching for private information
	Future work

	Conclusion
	Bibliography
	Appendix 1
	Patch selection settings
	Patch selection algorithm

