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AbstratThis master thesis evaluates di�erent approahes of keyword extration. Nat-ural language proessing methods suh as N-grams, Part-Of-Speeh and NounPhrase-Chunking are used to extrat keyword andidates. Mahine learningalgorithms are used to determine whether a andidate is a keyword or not.Unsupervised state-of-the-art algorithms are implemented and ompared to themahine learning lassi�ers. A number of keyword features, their representationand their impat on the results are investigated. The results show that ombin-ing natural language proessing and mahine learning algorithms an improvekeyword quality, ompared to other methods suh as TFIDF.
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TerminologyStopwords Frequently ourring words that do not add any ontext informa-tion.F-Measure Performane measure.Corpus A large set of douments.Token A single word from a phrase or sentene.Keyword A word or a phrase that represent the ontent of a doument.Classi�er A funtion that map sets of input attributes to tagged lasses.PoS Part-of-Speeh. The lexial lass of a word.Lemmatization The proess of bringing in�eted words to their morphologialroot.Stemming The proess of removing a�xes from a word.NP-Chunking Noun Phrase Chunking, the proess of extrating nouns andproper nouns with modi�ers from a sentene.PSO Partile Swarm Optimization, a stohasti optimization algorithm.KBANN Knowledge-Based Arti�ial Neural Network, a neural network im-plementation using domain knowledge to set initial weights.TFIDF Term Frequeny Inverse Doument Frequeny.NBC Naive Bayesian Classi�er, a mahine learning lassi�er.SVM Support Vetor Mahine, a mahine learning lassi�er.
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Chapter 1IntrodutionThis master thesis was arried out at Chalmers University of Tehnology andFindwise AB1 in Gothenburg, Sweden. The goal was to reate a module forautomatially extrating keywords from douments in English and Swedish.1.1 BakgroundKeyword extration is the task of extrating a small set of words and phrasesfrom a doument whih desribe its ontent. This is di�erent from keywordassignment, where a set of prede�ned keywords are used. Regardless of thedoument ontent, keywords an only be seleted from the prede�ned set.Manual keyword extration is performed by professional human annotatorsand is a very time-onsuming task. The purpose of using an automated proessis to inrease speed, without sari�ing too muh quality of the result.In semi-automati keyword extration an automated proess extrats a largenumber of keywords and a human has the �nal word. The quality might notbe as high as the manual proess, but is muh faster and the quality should besigni�antly higher than full automation.What onstitute a good keyword? Studies have shown the disagreement ratebetween two human indexers to be 20-80%[22℄. Using an automati or semi-automati proess for keyword extration will bring more onsisteny, whih anbe an advantage. The manual keywords are regarded as gold standard and themahine learning lassi�ers are trained to onform themselves to this standard.As a onsequene, a lassi�er an only be as good as the keywords it is trainedon.What the keywords of a doument should be is highly subjetive and dependon a number of fators, e.g. the purpose of the keywords, the information thatis sought after and who is looking for it.1http://www.�ndwise.se/ 6



1.2 MotivationKeywords serve several purposes to a reader, who an quikly determine if adoument is in their �eld of interest or not. When browsing a large indexof douments and their orresponding keywords, the reader an deide whihdouments are worth looking into further.When making a searh query using keywords, the searh engine will yieldfewer and more spei� results[17℄.Not all douments have attahed keywords when put into databases andthe proess of extrating (or assigning) keywords manually is time onsuming.When indexing large sets of douments for searh engines, a manual approahis unreasonably slow. The proess an be sped up using the automati keywordextration methods desribed in this thesis.1.3 Earlier workIn the 1950s sientists elaborated on the idea of searhing texts with omputersand a method was proposed that suggested to use words for indexing doumentsin information retrieval [15℄.Many di�erent approahes to keyword extration has been tested sine, someof the major landmarks are listed below:TFIDF 1972. An improvement over omputing word frequenies is introduedby Spärk[8℄. An inverse doument frequeny, omputed using a orpus,is weighed with the word frequeny to improve performane.GenEx 1999. A solution based on a geneti algorithm that tunes the parame-ters for a keyword extrator is developed by Turney[17℄.KEA 1999. Frank[12℄ introdued a keyword extration algorithm based onthe Naive Bayesian learning sheme. The performane was omparable toGenEx.HITS 1999. Kleinberg[9℄ introdues a graph-based ranking algorithm similar toPageRank. Can be onverted into a keyword extrator using the TextRankapproah.Hulth 2004. Using both Natural Language Proessing and Mahine Learning,Hulth[7℄ developed a keyword extrator that has been onsidered to bestate-of-the-art[16℄.TextRank 2004. Based on Google's PageRank algorithm[11℄, Mihalea andTarau[16℄ introdue an unsupervised keyword extrator that utilizes aword o-ourrene graph.
7



1.4 Projet goals and delimitationsThe goal of this projet is to implement a module written in Java for automat-ially extrating keywords from English and Swedish douments. The moduleis supposed to funtion as stand alone appliation or integrated into Open-Pipeline2, a framework for rawling, parsing, analyzing and routing douments.A small number of seleted mahine learning algorithms will be implementedand improved, rather than making �shallow� implementations of many. Variantsof existing algorithms will be used, instead of developing new ones.The algorithms themselves will be the fous of the projet. Doument pars-ing and input retrieval will be given little or no attention. Words are assumedto be spelled orretly.Code will be written for as muh of the ontent as possible, with the exep-tion of linguisti funtionality.Classi�ation and training speed is to be given a signi�ant amount of at-tention. This will enable more e�ient testing and faster extration of keywordsin live situations.The goal with regards to the quality of the result is an F-measure above40%, similar to what Hulth reported in [7℄.1.5 MethodThe task was �rst de�ned and split up into smaller segments for a literaturestudy, implementation, testing and veri�ation.In order to get aquainted with the �eld of keyword extration a literaturestudy was arried out. Large paper databases (e.g. IEEE and ACM) weresearhed and by reading frequently referened papers, the most ommon ande�etive algorithms were disovered.After the literature study, a number of algorithms were seleted to be imple-mented. The implementation proess was oupled with debugging and minoralgorithm parameter tweaking. Alongside the implementation of the lassi�a-tion algorithms, the supporting struture was built. This inluded doumentrepresentation, lemmatization and stemming, pre- and post proessing of dou-ments and a test suite for evaluation of results.2http://www.openpipeline.org/
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The following software and external tools were used:
• SPARK - Swedish NP-hunker.http://stp.lingfil.uu.se/~bea/resoures/spark/
• EngChunker - English NP-hunker.http://www.ds.shef.a.uk/~mark/phd/software/hunker.html
• Hunpos - Part-of-Speeh tagger for English and Swedish.http://ode.google.om/p/hunpos/
• Weka - Mahine learning pakage written in Java.http://www.s.waikato.a.nz/ml/weka/
• Findwise lemmatization and stemming.Proprietary software.The projet was wrapped up by generating result tables for the �nal version ofeah algorithm and omparing the results to those presented in other papers.1.6 Preision, Reall and F-MeasureF-measure is one of the standard methods in information retrieval for evaluatingresults. It is most ommonly used to evaluate searh engine results, but an alsobe used in keyword extration by replaing web sites for keywords.The F-measure is a funtion of preision and reall. To ompute these threevalues, two sets of words are needed for some doument: a set of manual key-words M and a set of automatially extrated keywords A.Preision, reall and the F-measure are omputed aording to formulae1.1-1.3. Preision =

|M ∩ A|

|A|
(1.1)Reall = |M ∩ A|

|M |
(1.2)F-measure = 2 ·

Preision ·ReallPreision+ Reall (1.3)The F-measure has the property that it leans toward the smallest parametervalue, whether it be preision or reall. If there is a big di�erene betweenpreision and reall, the F-measure will be approximately equal to double thesmallest of them. This behavior an observed in appendix B.
9



1.7 OutlineThe struture of this report follow the struture of implemented module, whihis shown in �gure 1.1.
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Figure 1.1: Program �ow.Chapter 2 desribes the orpora and preproessing methods used in thisprojet. The orpora are proessed to generate training- and validation data.Preproessing steps inlude parsing, lemmatization, stemming, andidate sele-tion and andidate abstration.Chapter 3 presents the keyword lassi�ation algorithms and post proessing.Extrated andidates are lassi�ed to be keyword or not keyword. The postproessing attempts to remove redundant keywords, those that are subsumedby others.Chapter 4 presents the brief version of the results from this projet andompare them to others. The extensive list of results an be found in appendixB. Chapter 5 ontains disussion of the results, evaluation methods and thingsthat ould have been done di�erently in order to ahieve better results.Chapter 6 onlude the report with �nal remarks and ideas for future work.
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Chapter 2Text ProessingThis hapter desribe the orpora used in this projet whih is used to generatetraining- and validation data sets. The preproessing stages that doumentsundergo before extrated andidates are lassi�ed are presented.2.1 CorporaThe orpora used in this report were all formatted before used. All doumentswere enhaned with meta information, in the form of a title, in order for theparser to reognize the title of eah doument. Any manually assigned keywordsthat did not expliitly appear in the assoiated doument were removed. As aresult, some douments laked keywords all together, these were removed.Information about the orpora used in this report is shown in table 2.1, allreported numbers are post formatting.Table 2.1: Corpora information. (*Automatially extrated from)Name Language Soure In papersInspe English Hulth[7℄ [7, 16℄NUS English National University of Singaporea [2℄Mediin Swedish * http://www.internetmediin.seSoialstyrelsen Swedish * http://www.soialstyrelsen.seNr of Nr of Avg. do. Nr of Avg. nr ofName dos. words size keywords keywordsInspe 1 988 264 541 133 14 555 7.3NUS 152 1 071 026 7 046 1 239 8.1Mediin 671 893 834 1 332 3 587 5.3Soialstyrelsen 1 473 746 704 507 3 550 2.4ahttp://wing.omp.nus.edu.sg/downloads/keyphraseCorpus/orpus.tgz11



Inspe is the main orpus in this report. It has been used in two of thereferened papers and is a olletion of abstrats from the Inspe database. Thetexts are short, lean1 and ontain a lot of information. The keywords are setby authors or professional annotators.NUS onsist of sienti� publiations from the National University of Singa-pore. The douments are long and ontain muh noise, in the form of remnanttokens from the pdf to text onversion.Internetmediin is a web site with the purpose of supplying dotors andnurses with information about treatments and other information useful in theirdaily work. The texts are reviewed and maintained by professionals, the key-words are assumed to be set by the same people.Soialstyrelsen is the Swedish National Board of Health and Welfare. Theboard establishes norms and general advies for muniipalities, ounty ounilsand loal authorities. The keywords are assumed to be set by the same peoplethat work for previously mentioned authorities.2.2 Lemmatization and stemmingLemmatization and stemming are used to redue an in�eted word to its baseform or stem. This serves two purposes by reduing the number of uniquekeyword andidates and also allows more aurate omputations of word fre-quenies. The words �pirate�, �pirates� and �pirate's� are di�erent but have thesame base form. It is redundant to lassify all three as keywords sine they allrefer to the same objet.Lemmatization �nds the base form, or lemma, of words. Stemming use analgorithm to iteratively remove word a�xes until some termination riteria ismet. This means that a stem is not neessarily equal to the morphologial rootof the word (table 2.2).Table 2.2: Stemming and lemmatization examples.Word Stem LemmaReharging Reharg RehargeReharged Reharg RehargeCats Cat CatPonies Poni PonyRan Ran RunThere are both advantages and disadvantages of stemming. Morphologiallysimilar words may be redued to the same stem, but if they have no semantirelation this is unwanted behavior. On the other hand, if two morphologiallysimilar words have a strong semanti relation are redued to the same stem, butdoes not share the same lemma, this is aeptable behavior.1Texts that ontain few tokens that are not onsidered to be proper words, e.g. formulas.12



This projet used lemmatization with Porter's stemmer[14℄ as a fallbak. Ifa word was not found in the lemmatization lexion it was stemmed instead. It isbelieved that this ombination has not been used before in the area of keywordextration.2.3 Candidate seletionThe andidate seletion step serve the purposes of limiting the number of po-tential keywords and guarantees a ertain quality of the seleted andidates.If few poor andidates are extrated, the lassi�ers are less likely to seletpoor keywords. A dereased number of andidates also mean less work for thelassi�ers, whih inrease speed.The text in the box below will be used throughout this setion to show howthe di�erent andidate seletion methods work.A new survey arried out by the �lm ompanies indiates that only seven of the109 torrent �les named in the ase had been taken o� The Pirate Bay, all ofwhih remained available via other sites.2.3.1 N-gramsThe simplest andidate seletion method used in this report is based on N-gramsand is also used in [12, 7, 17℄. It extrats sequenes of up to n tokens. In thisreport n = 3, sine investigations on the orpora show that keyword of four ormore tokens are rare (table 2.3). Also, the number of andidates extrated byN-grams inreases dramatially with large values of n.Table 2.3: The number of keywords onsisting of a ertain number of tokens(olumns) for eah orpus. 1 2 3 4 5 6 7 8Inspe 1 937 6 065 2 652 650 135 31 9 2NUS 379 623 168 50 17 3Mediin 3 072 381 102 22 2Soialstyrelsen 3 345 222 18 2 1The only andidates that get �ltered, are those that start or stop with astopword (inluding single token sequenes).An example of what the N-grams method extrats is shown in the box below:new survey arried �lm ompanies indiatesnew survey arried ompaniesnew survey arried �lm ompanies indiatessurvey �lm ompanies indiates13



2.3.2 Part-of-SpeehA PoS tag is a label assigned to a word that ontain information of whih lexiallass the word belong to and its in�etion, for example a singular or plural noun.The box below show a sentene tagged with PoS tags:aDT newJJ surveyNN arriedVBD outRP byIN theDT �lmNNompaniesNNS indiatesV BZ thatIN onlyRB sevenCD ofINtheDT 109CD torrentNN �lesV BZ namedV BN inIN theDTaseNN hadV BD beenV BN takenV BN ofIN TheDT PirateNNPbay,NNP allDT ofIN whihWDT remainedVBD availableJJviaIN otherJJ sites.NNSThe same word an have di�erent meanings depending on the ontext, there-fore the tagger take the surrounding words into aount when assigning the tag.An example is the word �play� that an be either a noun or verb depending onthe ontext. In the sentene �I want to play� it is a verb and in the sentene �Iwent to a play� it is a noun.The PoS tags are used in two aspets in this report: to extrat andidatesthat math ertain PoS patterns [7, 16, 21℄ and as keyword features [7℄ (seehapter 2.4).The patterns used to extrat andidates where found by examining the pat-terns of the keywords in the training data. If a pattern ourred ten times ormore in the training data, it was inluded in the andidate seletion.The most ommon patterns for English and Swedish and their explanationsare shown in table 2.4. A omplete list of the PoS tags used to extrat andidatesan be found in appendix A.Table 2.4: The English and Swedish PoS tags are shown in the left table. PoStag desriptions are shown in the right table.English Swedish Tag Desriptionjj nn nn nn Noun, Singularnn nn nnp nns Noun, Pluraljj nns jj nn jj Adjetivenn jj vb Verb, Base Formnn nns nn kn nn nnp Proper Noun, Singularjj nn vb kn Coordinating Conjuntionnnp p p Partilenns p nn pp Prepositionnnp nn nn kn jjjj nn nns nnp nnpnn nn nn nn pp nn
14



An example of what the PoS andidate seletion method extrat is shown inthe box below:new survey �lm torrent baysurvey �lm ompanies ase pirate bay�lm ompanies pirate other sites2.3.3 Noun Phrase-ChunkingNP-hunking is the proess of �nding phrases whose head is a noun or propernoun, optionally aompanied by a set of modi�ers. Similar to the PoS andidateseletion method, it searhes for patterns in the PoS tags of the words in asentene. The major di�erenes are that NP-hunking use a grammar insteadof prede�ned patterns and that the andidates are restrited to noun phrases.The grammar is used to redue a sentene into a minimum number ofphrases, the goal is to �nd nouns and proper nouns with all their respetivemodi�ers. Longer phrases are preferred whih is onsistent with a minimumnumber of phrases.In the implementation of NP-hunking in this projet, a post proessingstage is inluded that removes opening determinants[7℄, suh as �the�, �a� and�an�, and �lters andidates that are stopwords. The sentene �A new survey�will be redued to �new survey�. This is motivated by that the determinant doesnot ontain any relevant information.An example of what the NP-hunking andidate seletion method extrat isshown in the box below:new survey torrent other sites only seven�lm ompanies ase pirate bay2.4 Keyword features and andidate abstrationThe Naive Bayesian Classi�er, Arti�ial Neural Networks and Support VetorMahines are similar, they attempt to reate an optimal separation of data.In order to reate separable data from a set of andidate keywords, eahandidate keyword is abstrated into a numerial vetor where a dimensionrepresents a ertain feature. A feature is a property or attribute of a andidatethat is used as a keyword indiator (derived through empirial studies), e.g. ifthe andidate is in the title of a doument or if it has a high TFIDF sore. Usingthe vetor representation for andidates, the lassi�ers an reate a separationbetween those that are keywords and those that are not.This projet use boolean features, values of either 0 or 1. It is also possibleto use real values but this has both advantages and disadvantages. It an helpthe lassi�ers reate a more aurate separation of data, but at the same time15



they will be more prone to over�tting and training the lassi�ers take longertime.Certain numerial measures (e.g. TFIDF) are onverted into a set of binaryfeatures by applying a number of intervals. The feature �TFIDF High� is 1 ofthe normalized TFIDF value is in the interval: 0.9 ≤ TFIDF ≤ 1.0 and 0otherwise.The TFIDF sore and �rst- and last ourrene values are normalized,mainly due to the reason that douments an vary heavily in length.A list of the features used in this projet is presented in table 2.5.Table 2.5: Keyword features. All mentions of TFIDF sores are normalizedwithin every doument. Tags suh as (jj/nn) means that an adjetive or a nounis aeptable at the given position.Feature Additional info DesriptionTFIDF High 0.9 ≤ TFIDF ≤ 1.0TFIDF Mid/High 0.7 ≤ TFIDF < 0.9TFIDF Low/Mid 0.3 ≤ TFIDF < 0.7TFIDF Low 0.1 ≤ TFIDF < 0.3Relative First Ourrene 0 ≤ F.O ≤ 0.1

First ourrene of andidateis within �rst 10% of thedoumentRelative Last Ourrene 0.9 ≤ L.O ≤ 1.0

Last ourrene of andidateis within last 10% of thedoumentIn Title If the andidate an be foundin the titleStarts Sentene If the andidate at anyloation in the doumentstarts a senteneAronym If the andidate ontains anaronym or a sequene ofwords that is aronymized inthe textPoS: pm Swedish Tags are explained in table 2.4PoS: nn SwedishPoS: jj (jj/nn) (jj/nn) nn EnglishPoS: nn jj nn nn EnglishPoS: (jj/nn) vb nn EnglishPoS: (jj/nn) (jj/nn) nn EnglishPoS: (jj/nn) nn EnglishThe TFIDF measure is a good enough feature to be used on its own whenextrating keywords (see appendix B.3). It is used by Hulth[7℄ but as twoseparate features: TF and IDF. 16



The �rst- and last ourrene features are based on the layout of aademipapers, where the beginning and end are usually dense in information. Key-words are likely to appear in abstrats and introdution setions, as well asin summaries. These setions tend to summarize the ontent of a paper in aondensed manner.Titles of papers and setions give a short and information dense desriptionof what the upoming text will deal with. A good example is the title of thisMaster Thesis: �Keyword extration using Mahine Learning�. In this reportonly doument titles were taken into aount, the notation for hapter andsetion titles are too spei� for eah individual text to be onsidered.Tests showed that if a word starts a sentene it is likely to be a keyword.When starting a new setion or hapter, a keyword often starts the �rst sentene.An example from this report is: �Word frequeny is the baseline ...�.Experiments also indiated that abbreviated phrases were likely to be key-words.
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Chapter 3Keyword Classi�ationThis hapter desribes the keyword lassi�ers used in this projet. Their taskis to lassify a set of andidates, eah being either keyword or not keyword. Theexeptions are the TextRank and ExpandRank lassi�ers, that extrat their ownkeyword andidates.The lassi�ers an be divided into two groups depending on what type ofresult they produe. Binary lassi�ers divide the andidates into two groups:keywords and not keywords. Other lassi�ers ompute a sore for eah andidateand lassify the andidates with the highest sores to be keywords.The post proessing that is performed after lassi�ation on a set of extratedkeywords is also presented in this hapter. It an remove keywords if ertainonditions are met, suh as if one keyword subsumes another.3.1 Word FrequenyWord frequeny1 is the baseline algorithm in this report with regard to the F-measure performane. It ounts the number of ourrenes of eah andidateand lassi�es the most frequent to be keywords.Certain words in domain-spei� douments, that are not stopwords, mayappear more frequently than others. It is not likely that they add any infor-mation that is unique to their douments and are therefore not likely to bekeywords. This is a shortoming of the word frequeny approah, that willdisregard this fat.1Synonym to �term frequeny�
18



3.2 TFIDFThe measure was introdued Karen Spärk Jones[8℄ in 1972 and is very ommonin keyword extration and information retrieval in general.It weighs the term frequeny (TF) of a andidate keyword in a given do-ument with its inverse doument frequeny (IDF), that requires a refereneorpus to ompute.Formula 3.1 show how to ompute the TFIDF sore, where tf is the termfrequeny, D is the total number of referene douments and d is the number ofreferene douments that ontain the urrent andidate.TFIDF = tf · log

(

D + 1

d+ 1

) (3.1)Adding 1 in the denominator avoid division by zero and the logarithm of thequotient is motivated for two reasons. The �rst is that di�erenes in d beomesless signi�ant, espeially when d is small. The seond and most importantreason is that terms that exist in nearly all referene douments will be given alow sore or even a sore of zero if they exist in all of them.The TFIDF measure weigh andidates that are unique for the urrent dou-ment heavier than others and avoid the problem of word frequeny by using theIDF of a andidate. By using a domain-spei� referene orpus, the quality ofthe keywords an be improved even more due to domain-frequent words being�ltered.3.3 TextRankBased on Google's PageRank algorithm[11, 16℄, TextRank is a state-of-the-artunsupervised keyword extration algorithm[5℄.PageRank onstrut a o-ourrene graph where nodes represent web sitesand edges are links. A formula to ompute the sore of eah node is appliediteratively until they have all stabilized. A high sore an be ahieved by linkingand being linked to by other sites with a high sore.TextRank onstrut a o-ourrene graph where the nodes are the uniquenouns, proper nouns and adjetives of a doument. The edges are reated bymoving a �xed size window, of size 2 to 20 words, over the sentenes of thedoument. An edge of weight zero is put between every pair of nodes whosewords are within the window at any point and its weight is inremented by onefor eah o-ourrene.Formally, let G = (V,E) be an undireted graph with a set of verties V andset of edges E, where E is a subset of V ×V . Eah vertex represent a word andhold a positive sore and every edge hold a positive weight. For a given vertex
Vi, let Adj(Vi) be the set of adjaent verties to Vi.
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�Figure 3.1: Example of a o-ourrene graph.Experiments using a direted graph were performed in [16℄, where the di-retion of an edge was deided by the sequene of the words. If w1 preede w2there will be an edge from w1 to w2. The results did now show any signi�antdi�erene, therefore the undireted approah was used in this report.The word sore is alulated using formula 3.2, where d is a damping fatorand is set between 0 and 1 and wij is the weight of the edge between nodes
Vi and Vj . The reommended value for d is 0.85 [11, 16℄ but in this projetthe value is set to 0.01, whih gave better results. This value was derived fromempirial studies.

S(Vi) = (1− d) + d ·
∑

Vj∈Adj(Vi)

wij
∑

Vk∈Adj(Vj)

wjk

S(Vj) (3.2)Formula 3.2 is applied iteratively on the nodes of the graph until the soreshave all stabilized. The words with the highest sore are seleted for the nextstage of the proess, whih is to merge them into the phrases that will be thekeywords of the urrent doument.A word an be merged with another word or phrase if they are adjaent atany plae in the doument and if the di�erene in word sore does not exeeda set threshold value. When a merging our, the sore of the new phrase isomputed aording to formula 3.3, where w1, w2 are the words/phrases tomerge, size return the number of tokens of a phrase and termSize is de�ned asin formula 3.4.Sore = 2 ·
w1 · w2

w1 + w2
· termSize(size(w1) + size(w2)) (3.3)termSize(k)=









2 = 3

3 = 2else = small number (3.4)Formula 3.3 is inspired by the properties of the F-measure, the lowest pa-rameter value dominates the output. This is useful when merging high- andlow sore words, the word with high sore might be more worth extrating as asingle token keyphrase. 20



The termSize funtion is language dependent and onform to the number oftokens in the keywords for eah language (table 2.3). The English orpora tendto have keywords of two or three tokens and a vast majority of the keywords inthe Swedish orpora are single tokens. Formula 3.4 show the English version.3.3.1 ExpandRankAn extension of TextRank is the ExpandRank algorithm[21℄, that use neigh-borhood knowledge to extrat keywords. The knowledge is represented by the
k most similar douments from a referene orpus and is used to onstrut anextended graph.Formally, let d0 be the urrent doument, let d1, ..., dk be the k most sim-ilar doument with regard to d0 and let D = {d0, d1, .., dk} be the expandeddoument set used to build the extended graph.The k most similar douments are retrieved by omputing the osine sim-ilarity (formula 3.5) on vetor representations ~di of the urrent doument andthe douments of a orpus. Eah dimension in the vetor ontain the TFIDFsore for a ertain word in the doument.

simdoc(~di, ~dj) =
~di · ~dj

||~di|| ||~dj ||
(3.5)The ontribution of a neighborhood is altered edge weights. The weight ofthe edge between nodes vi, vj is given by formula 3.6, where count(vi, vj) is thenumber of o-ourrenes of words vi, vj in neighborhood doument dp. Theweight ontribution is regulated by the osine similarity where similar dou-ments will add more weight for every o-ourrene than unalike douments.

wij =
∑

dp∈D

simdoc( ~d0, ~dp) · count(vi, vj) (3.6)In [21℄ edge weights are normalized for eah vertex. Tests performed for thisreport showed that it resulted in a lower F-measure.3.4 Naive Bayesian Classi�erThe purpose of implementing the Naive Bayesian Classi�er (NBC) was mainlyto provide a knowledge representation[4℄ for the KBANN lassi�er (see setion3.5.1). When the neessary funtionality was written, it was easy onverting itto a standalone lassi�er.This lassi�er use probabilisti models built from training data to lassifyandidate keywords. Suh a model ontain the probabilities of eah feature (pre-sented in setion 2.4) being either present or not present for any andidate. Theprobabilities are weighed together to reate a total probability of a andidatebeing a keyword. The andidates with the highest total probability are lassi�edas keywords. 21



To understand the omputations of the NBC, one need to understand Bayestheorem (formula 3.7). Given two independent events A and B, the posteriorprobability P (A|B) of A an be omputed from the prior probability P (A), theevidene P (B) and the distribution funtion P (B|A) (the probability of B given
A).

P (A|B) =
P (B|A) · P (A)

P (B)
(3.7)Suppose that there are several given events B1, ..., Bn instead of just one.To ompute this posterior probability would be very omplex and therefore anassumption is made that the events B1, ..., Bn are all onditionally independent.The posterior probability of A an now be rephrased in formula 3.8. Note thatthe denominator does not depend on A and an therefore be removed sine itis onstant.

P (A|B1, ..., Bn) = P (A)

n
∏

i=1

P (Bi|A) (3.8)In the ase of the NBC there are several given boolean features (events)
F1, ..., Fn, where Fi ∈ {0, 1} for i ∈ {1, ..., n} and C is the event that theurrent andidate is a keyword. This is depited in formula 3.9 whih is a direttranslation of formula 3.8.

P (C|F1, ..., Fn) = P (C)

n
∏

i=1

P (Fi|C) (3.9)Formula 3.9 is inorret beause the denominator from formula 3.7 is notonstant and annot be removed. A feature an either be present Fi = 1 or notpresent Fi = 0 and the fator within the produt symbol need to be hangedaordingly. This is shown in formula 3.10.
P (C|F1, ..., Fn) = P (C)

n
∏

i=1

Fi · P (Fi = 1|C) + (1− Fi) · P (Fi = 0|C)

Fi · P (Fi = 1) + (1− Fi) · P (Fi = 0)
(3.10)Eah fator within the produt symbol in formula 3.10 now states how strongof an indiator the urrent feature is. A fator of 2 doubles the probability of aandidate being a keyword, while a fator of 1

2 halves it.For the NBC to funtion it is vital to use disretized features. If real valuefeatures would have are used instead, suh as TFIDF sore, the hypothesis spaewill grow in�nitely large. In theory, all possible andidates an have di�erentTFIDF sores, whih will lead to a serious over�tting issue.
22



3.5 Arti�ial Neural NetworkThe purpose of this lassi�er was to experiment with the onnetion betweendomain knowledge and redued training times. It is based on an ANN and usethe the andidate vetor representation as input to the network who lassi�esthe andidate.The network used in this report is a multilayered pereptron network. Apereptron is a simple mathematial model of the neuron devised by MCullohand Pitts[13℄. It holds a hyperplane represented by a weight vetor and an betrained or adjusted to separate data e�etively.Formally, let x ∈ R
n be the input vetor and w ∈ R

n be the weight vetor.The output of a pereptron is given by ~x · ~w + b, where b is the bias weight ofthe pereptron. It an also be expressed as a sum (formula 3.11).
b+

n
∑

i=0

xi · wi (3.11)The pereptron output is passed to an ativation funtion that squashes itto a boolean value, ative (1) or inative (-1).A multilayered pereptron network is a direted ayli graph where perep-trons are divided into layers of three ategories: the input layer whose outputis the given input vetor, an unde�ned number of hidden layers that eah mayvary in number of pereptrons and the output layer that alulate the outputfor the network. If the network output is 1, the urrent andidate is lassi�edas a keyword.An example arhiteture for an ANN an be seen in �gure 3.2, where theinput nodes are represented by squares. Normally the input layer is fully on-neted with the hidden layer, just as the hidden- and output layer are.The ANN training methods are desribed in setions 3.5.2 and 3.5.3.

Figure 3.2: The KBANN arhiteture used in this projet. Input node A is pairedup with the other input nodes B, C and D with the hidden nodes X, Y and Z.23



3.5.1 Knowledge Based Arti�ial Neural NetworkA KBANN is an ANN where domain knowledge is used to initialize the weightsof the neurons in the network, instead of using random values.The purpose of using domain knowledge is to redue the training time, whihhas been shown to be e�etive in [4℄. It an also avoid loal optima simplybeause the starting point is likely to be a shorter distane from the targethypothesis than a random starting point (�gure 3.3).

Figure 3.3: The piture represents the hypothesis spae. The shaded area is thetarget hypothesis. By using domain knowledge the starting hypothesis is likelyto lie loser than the hypothesis that is initialized randomly. The training timean be redued signi�antly using this method.The struture of the network used in this report is inspired by [4℄. Theonnetions from the input layer to the hidden layer are made up of every pairof nodes in the input layer suh that no node is paired up with itself and nonode is paired up with another node representing a feature of the same ategory.This is motivated sine at most one TFIDF feature and at most one PoS featurean be present for any andidate. The goal is to �nd strong ombinations offeatures.
woj = P (C|Fj = 1) (3.12)The weights of the onnetions to the hidden layer is retrieved from the NBCand is the posterior probability of the urrent andidate being a keyword giventhe presene of the assoiated feature. This is shown in formula 3.12, where Cis the event that the urrent andidate is a keyword and Fj is the j :th feature.The rest of the weights in the network are initialized to a random value in theinterval [−1, 1]. 24



3.5.2 BakpropagationBakpropagation is a ommonly used optimization method for multilayer per-eptron networks.Given a set of training data the algorithm employs gradient desent to mini-mize the error between the lassi�ation- and target values in the training data.The error is alulated on the output nodes and is propagated bakwards to thenodes onneted to the orresponding output node.In this report the weight deay and weight momentum extensions were im-plemented.Algorithm 3.1 Bakpropagation[10℄Input: A multilayer feed-forward network, a set of training data.Output: An optimized feed-forward network based on the set of training data.Eah training example (~x,~t ) onsist of the input vetor ~x and the output vetor
~t. Network weights are represented with wij , where i is the layer index and j isthe node index. ~o is the output vetor for the network.Errors are denoted by δk and δh, where k represents a node in the output layerand h represents a node in the hidden layer. The input from node i into node jis denoted by xji.Constants: η is the learning rate, α is the weight momentum, ǫ is the weightdeay.
• Loop until some termination riteria is met� For eah training example (~x,~t ) do1. Calulate the output ~o for the input vetor ~x2. For eah network output unit k, alulate its error term δk

δk ← tk − ok3. For eah hidden unit h, alulate its error term δh

δh ← oh(1− oh)
∑

k∈outputs

wkhδk4. Update the network weights
wji ← wji + (1− ǫ)∆wjiwhere

∆wji = ηδjxji + α∆wji(n− 1)

∆wji(n− 1) is the update on the previous iteration update.25



Weight deay[6℄ is used to neutralize large weight updates. The formula
(1− ǫ), where 0 ≤ ǫ < 1 is a onstant, is added to the weight update statement.
ǫ deides how muh of the update to remove. Small updates will not be a�etedby the weight deay.Weight momentum[10℄ is used to avoid the algorithm getting stuk in loaloptima and is based on the physial idea of inertia. When alulating theweight update, the update value in the previous iteration is taken into aount.This makes the weight ontinue to head towards the diretion it was headingin the past iteration. The formula α∆wji(n− 1) is added to the weight updatestatement, where 0 < α < 1 is a onstant and ∆wji(n− 1) is the update valuefrom the previous iteration.3.5.3 Partile Swarm OptimizationThe original algorithm was disovered while attempting to simulate soial be-havior for individuals in a group and was simpli�ed after the partiles wereobserved to be performing optimization[3℄.The Partile Swarm Optimization (PSO) algorithm holds a populations ofpartiles, eah of whih have a position and a veloity in a searh spae. Boththe positions and veloities of the partiles are initialized to a random value andare subsequently updated in a randomized manner. The updated veloity of apartile depends on three fators: the previous veloity and the ognitive- andsoial fators.The previous veloity is weighed with an inertia weight [20℄, whih usuallydereased from about 1.4 to about 0.4 over the ourse of an optimization. Thisfavors exploration in the early stages and exploitation in the later stages of anoptimization.The ognitive fator steer eah partile towards its own best position, whilethe soial fator steer them toward the swarm best position. Eah of thesefators are weighed by a random number in the interval [0,1℄ to make thebehavior of the partiles more stohasti.The implementation of PSO in this projet has been extended with funtionstrething [19℄ in order to avoid loal optima. When the algorithm is stuk in aloal optima, the �tness funtion undergoes a two stage transformation withoutdestroying any optima that is better than urrent best and the algorithm isrestarted. The algorithm is onsidered to be in a loal optima if the best solutionis not improved in a ertain number of iterations (default is 300). If no bettersolution is found in another set of iterations, it is believed that the global optimahas been found.
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Algorithm 3.2 Basi Partile Swarm Optimization[20℄Input: A multilayer feed-forward network, a set of training data.Output: An optimized feed-forward network based on the set of training data.The funtion to optimize is denoted by f : Rn → R. P is the set of partilesand N = |P | is the number of partiles. xij ∈ R is the position of partile i inthe j:th dimension and vij ∈ R is the veloity of partile i in the j:th dimension.The best position for partile i is denoted pbi and sb is the swarm best. r, r1and r2 are uniform random number in the interval [0, 1] and c1, c2 are onstantssuh that c1 + c2 < 4. w is the inertia weight.
• For eah partile i ∈ P1. Initialize partile positions, veloities and personal bests(a) xij ← xmin + r(xmax − xmin), i ∈ {1, .., N}, j ∈ {1, .., n}(b) vij ← −

1
2 (xmax − xmin) + r(xmax − xmin), i ∈ {1, .., N}, j ∈

{1, .., n}() pbi ← xi2. Initialize swarm best: sb← arg min (∀p ∈ P.f(p))3. Loop until some termination riteria is met� For eah partile i ∈ P and dimension j ∈ [1, n](a) Update veloity, vij ← wvij+c1r1(pbij−xij)+c2r2(sbj−xij)(b) Restrit veloities suh that |vij | ≤ vmax() Update position, xij ← xij + vij(a) Update partile best: if f(xi) < f(pbi) then pbi ← xi(b) Update swarm best: if f(pbi) < f(sb) then sb← pbi() Update inertia weight: if w > wmin then w← 0.99wFigure 3.4 shows an attempt at minimizing a funtion where the algorithmhas gotten stuk in a loal minimum. It also shows the two transformationstages where the loal minimum is transformed into a global maximum, withoutaltering the two global minima.
27



(a) Unmodi�ed funtion: f(x) = sinc(x).

(b) Stage 1

() Stage 2Figure 3.4: The unmodi�ed sin funtion and the two stages of the funtionstrething transformation. The algorithm is stuk in loal optima at the dot,the global optima an be seen to the right of the dot. Note that they remainunaltered, the sale on the y-axis has hanged from �gure 3.4a.28



The extended PSO algorithm has been tested against several funtions witha high number of loal optima with very good results (> 99.9% auray), inthis projet and in [19℄. One suh funtion is Levy No 5 with 760 loal and onlyone global optima in the [−10, 10]2 interval.The ANN is onverted into a vetor using its weights and then optimizedby the PSO algorithm. The F-measure is used as the �tness funtion and ismaximized.3.6 Support Vetor MahineIntrodued in 1995 by Vapnik [18℄, Support Vetor Mahines (SVMs) has madea big impat on the aademi world and the number of papers on the subjetexploded around 2000 [1℄.The SVM is a binary lassi�er, it sorts eah andidate into one of two at-egories: keyword or not keyword. Given a set of training data, the SVM buildsa model onsisting of a hyperplane that an separate unseen data and that alsomaximizes the margin between the two lasses.

Figure 3.5: An illustrative example of a separating plane.Not all sets of training data are separable in the input spae, the SVM solvesthis problem by mapping the data into a higher dimension alled a feature spae.One the data is mapped to the feature spae, the SVM an use a hyperplane toperform a linear separation of data that was not linearly separable in the inputspae, but is in the feature spae.The funtion used to map the data into a feature spae is alled a kernelfuntion. There are several types of kernel funtions who perform di�erently ondi�erent sets of data. 29



The SVM used in this report was implemented using Weka2, due to omplex-ity and time onstraints. It uses the andidate vetor representation desribedin setion 2.4 and the kernel funtion used is the Radial Basis Funtion (RBF).The only parameter optimization was whih weight to assign the instanes oftraining data lassi�ed as keywords, whih utilizes the PSO algorithm (see se-tion 3.5.3).3.7 EnsemblesThe onept of ensemble learning is to selet a olletion of lassi�ers and om-bine their preditions, hopefully improving the result ompared to using a singlelassi�er.Eah individual lassi�er makes a predition about the lassi�ation of aninstane. The preditions an be ombined in di�erent ways to produe a result.Using majority vote, at least half of the lassi�ers need to lassify an instaneas positive in order for the ensemble lassi�ation to be positive. Two more ex-amples is if any (union) or all (intersetion) of the lassi�ers predit an instaneto be positive, the ensemble lassi�ation will also be positive.In order for ensemble methods to be e�etive, eah lassi�er either need tobe trained on di�erent subsets of training data or on the same training databut with di�erent representations. An example is to train three lassi�ers ondi�erent sets of andidate keywords: N-grams, PoS and NP-hunks.3.7.1 RegressionThis is an ensemble method onsisting of non-binary lassi�ers. Eah andidatereeive a sore from eah lassi�er, whih are ombined to a total sore for eahandidate.This lassi�er ensemble was an attempt to mimi Hulth's impressive resultsin [7℄, that reahed an F-measure of 45.5.The regression ensemble was reated using three di�erent NBC lassi�ers,one for eah andidate seletion method. The NBC lassi�er was seleted be-ause it is the best regressive lassi�er, better than word frequeny and TFIDF.When lassifying douments, three sets of andidates are extrated. Eahlassi�er give a sore to eah andidate in their andidate set and then thesores are added for eah unique andidate. If a andidate is seleted by severallassi�ers, it has a higher hane of being lassi�ed as a keyword.2http://www.s.waikato.a.nz/~ml/weka/
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3.8 Post ProessingThe post proessing takes plae after a set of andidates have been lassi�ed.The purpose is to eliminate redundant keywords if ertain onditions are met.Keywords an be removed if they are ompletely subsumed by another andif the subsumed keyword does not our enough times on its own.For example, two of the keywords extrated from a doument are: �advie�and �sienti� advie�. The �rst our six times while the seond our �vetimes. Not only does the �rst keyword only our one by itself but the seondontain more information, whih makes it more spei� to the urrent doument.The assumption is made that the �rst keyword an be removed safely, withoutlowering the quality of the result.This proess is also performed by Hulth[7℄, but without onsidering thenumber of stand alone ourrenes.
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Chapter 4ResultsIn this hapter the results obtained in this projet are presented, they are alsoompared to results published in other papers. All preision-, reall- and F-measure values throughout this report are shown in perent.4.1 Performane evaluationThe best result for eah lassi�er for the main English orpus and the mainSwedish orpus is presented in this setion.Extensive result tables an be found in appendix B. They ontain results forthe andidate seletion methods without attahed lassi�ers, all ombinations ofandidates and lassi�ers, results for the two remaining orpora (Soialstyrelsenand NUS) and approximate running times for lassi�ation and training.The Word frequeny, TFIDF, TextRank, ExpandRank and NBC lassi�erswere instruted to extrat as many keywords as eah doument has been manu-ally assigned during these experiments. The KBANN and SVM lassi�ers on-form themselves to the number of manually assigned keywords in the trainingdata. These approahes will be disussed in setion 5.4.3.The experiments with the Word frequeny, TFIDF, TextRank and ExpandRanklassi�ers are lassi�ation of full orpora sine they are unsupervised methods.They do not utilize the manual keywords of the training data in lassi�ationof douments. The TFIDF lassi�er needs a referene orpus to alulate theIDF, but is independent of the orpora used in this report.The results presented for the NBC, KBANN and SVM lassi�ers are theaverage over ten runs of 10-fold ross validation in order to avoid over�tting.The results presented for the ensemble lassi�ers are from single runs of 10-foldross validation.Table 4.1 and 4.2 show the results for the main English and main Swedishorpora respetively.
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Table 4.1: Results for the Inspe orpus. The best result are shown in bold.Assign. Assign. Corr. Corr. P R FClassi�er tot. mean tot. meanWord frequeny 14 555 7.32 3 703 1.86 25.45 25.45 25.45TFIDF 14 555 7.32 3 966 1.99 27.25 27.25 27.25TextRank 14 555 7.32 4 627 2.33 31.84 31.84 31.84ExpandRank 14 555 7.32 4 423 2.22 30.41 30.41 30.41NBC 14 555 7.32 5 101 2.57 35.05 35.05 35.05KBANN-BP 49 405 24.85 8 919 4.49 18.06 61.28 27.89KBANN-PSO 23 384 11.76 7 341 3.69 31.39 50.44 38.70SVM 23 869 12.01 7 452 3.75 31.22 51.20 38.79Regression 27 353 13.76 8 136 4.09 29.74 55.90 38.82KBANN ensemble 23 503 11.82 7 380 3.71 31.40 50.70 38.78KBANN-TextRank 29 668 14.92 8 371 4.21 28.22 57.51 37.86Table 4.2: Results for the Mediin orpus. The best result are shown in bold.Assign. Assign. Corr. Corr. P R FClassi�er tot. mean tot. meanWord frequeny 3 587 5.35 753 1.13 21.00 21.00 21.00TFIDF 3 587 5.35 1 047 1.57 29.19 29.19 29.19TextRank 3 587 5.35 693 1.04 19.32 19.32 19.32ExpandRank 3 587 5.35 318 0.48 8.87 8.87 8.87NBC 3 587 5.35 1 046 1.56 29.17 29.17 29.17KBANN-BP 51 775 77.16 1 292 1.93 2.86 36.02 5.30KBANN-PSO 2 760 4.11 9 90 1.48 35.87 27.60 31.20SVM 2 667 3.97 9 76 1.45 36.60 27.21 31.21Regression 3 278 4.89 1 016 1.51 31.00 28.33 29.60KBANN ensemble 2 292 3.42 884 1.32 38.57 24.65 30.08KBANN-TextRank 8 207 12.23 1 297 1.93 15.81 36.16 22.00
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4.2 Comparative evaluationTable 4.3 show results reported in other papers that in�uened this projet andthat is (or was) state-of-the-art.Table 4.3: Results from other soures. The best ahieved result in this projetfor the Inspe orpus is also presented at the top of the table. Note that theInspe orpus was not split in onstant sets of training and validation data inthis projet, ross validation was used instead. This aounts for the largernumbers of assigned keywords and number of orret keywords.(* Uses the same orpus, �ve keywords extrated per doument.)Assign. Assign. Corr. Corr. P R FSoure Tot. Mean Tot. Mean CorpusThis projet 23 869 12.0 7 452 3.8 31.2 51.2 38.8 Inspe2 667 4.0 976 1.5 36.6 27.2 31.2 MediinHulth[7℄ 5 380 10.8 2 093 4.2 38.9 54.8 45.5 InspeTextRank[16℄ 6 784 13.7 2 116 4.2 31.2 43.1 36.2 InspeExpandRank[21℄ 28.8 35.4 31.7 DUC2001GenEx[17℄ 29.0 CustomKEA[12℄ 27.0 CustomFast ESP 15 509 8.0 3 090 1.6 19.9 26.9 22.9 InspeFast ESP 10 067 15.0 446 0.7 4.4 12.4 6.5 MediinSoure SettingsThis projet NP-hunk andidates, SVM lassi�erPoS andidates, SVM lassi�erHulth[7℄ RegressionTextRank[16℄ Undireted, Co-o,window=2ExpandRank[21℄ Neighborhood of 5 doumentsGenEx[17℄ Journal, Experiment 2 *KEA[12℄ Journal *Fast ESP Semanti PipelineFast ESP Semanti Pipeline
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Chapter 5DisussionThis hapter disuss the orpora and omponents of the projet, the results anddi�erent evaluation methods.5.1 CorporaIn this setion the properties of the orpora used in this report are disussedand also the impliations that follow.Due to the high density of keywords and low noise level in the Inspe orpus,better results should be obtained ompared to the other orpora. It is also likelythat the quality of the manual keywords, possibly the highest amongst the usedorpora, in�uened the result.There are suspiions that the low keyword density the high noise level in NUSwas the reason for the signi�antly worse results ompared to the other orpora.The low number of douments also aused the biggest drop in F-measure whenomparing results from the ross validation tests and results obtained whenusing the full orpus as both training- and validation data (from an F-Measureof 26-27 to 23).Both of the Swedish orpora have a noise level higher than Inspe but lowerthan NUS, whih is likely to a�et the results negatively.Using a general orpus to ompute IDF sores an improve performanesigni�antly[7℄. The purpose is that the language over a wider spetrum thana domain-spei� orpus and it would be interesting to experiment with a orpusontaining e.g. newspaper artiles. It is also possible to ombine a general- anda domain-spei� orpus to alulate IDF sores, this ould possibly improveresults even more.
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5.1.1 Manual keywordsDue to the statistis of PoS patterns (appendix A) and the number of tokens(table 2.3) of the keywords of the orpora used in this projet, the quality ofthe manual keywords an be questioned.Some manual keywords for Inspe have eight tokens, whih is more of asentene than a phrase. N-grams miss about 7% of the Inspe keywords sine itonly extrats andidates of up to three tokens. This property is also observablein the English PoS patterns where several patterns are four tokens long.The PoS patterns also indiate a poor quality of the manually assigned key-words. The lists for both languages ontain single adjetive and verb. Theseword lasses an be questioned as keywords, sine they do not ontain anyrelevant information on their own. There are also patterns that end with an ad-jetive or verb. From a linguisti point of view suh sequenes are not legitimate(nominal) phrases and an NP-Chunker will fail to identify them.There is the possibility that tokens are tagged erroneously, a possible ausefor some of the odd patterns.5.2 Candidate representationThe binary vetor andidate representation turned out to be ruial for theresults obtained from the NBC, KBANN and SVM lassi�ers. The hoie touse binary features, instead of numerial, made a big impat on both the resultand training times.The results obtained from the ross validation experiments di�ered very littleompared to when using the same data for both training and validation, the onlynotieable di�erene was for the NUS orpus (see setion 5.1). This points tolow over�tting whih is good.No over�tting an also be a sign of too low dimensionality in the data repre-sentation. If the dimensionality is too low, no lassi�er will be able to separateit e�etively. The goal is to reate a separation as good as possible withoutausing over�tting.If numerial features would have been used the dimensionality would be in-�nite, sine there would have been an in�nite number of possible vetors. Thismight make a more omplex and better separation of data possible, but thehigher the dimension, the harder it is for a lassi�er to �nd a good separa-tion. Experiments were onduted using numerial features, suh as normalizedTFIDF sore and also separating TF and IDF. The results did not improve andtesting beame extremely time onsuming. It is possible that further tests anddeeper analysis of the issue would yield better results.One of the biggest impats of hoosing binary features was that the trainingtimes for the KBANN and SVM lassi�er were dramatially dereased. Thetraining time of these lassi�ers is approximately proportional to the numberof training data. If using numerial features, the number of training data isroughly equal to the number of extrated andidates for the urrent full orpus,36



e.g. the number of NP-hunk andidates for the Mediin orpus is about 208000.Using binary features enables merging of equal piees of training data bysetting the weight to the number of piees of training data an instane atuallyrepresent. This also impose an upper bound on the number of training datafor eah language, whih is dependent on the number of features. For Englishthe boundary is 2240 and for Swedish it is 960. The atual number of trainingdata is muh lower, averaging about a third of the reported numbers. This isbeause there are ombinations that are very unlikely, e.g. if TFIDF High, oneof the PoS features and the rest of the misellaneous features are ative and theurrent andidate is not a keyword. This orresponds to a speed inrease in theorder of 100, ompared to using numerial features.The KBANN (using PSO) and SVM lassi�ers report similar results andbeause of this there are reasons to believe that the lassi�ers themselves is notthe limiting fator, the andidate representation is. If this projet was to berevamped, the andidate representation would be given muh needed attentionsine it plays suh an important role throughout the module. For example, theresult e�ets and impliit dependenies between the features need to be inves-tigated further. The number of features are probably too many than neessaryto ahieve the results presented in this report.5.3 Individual omponentsIn this setion the interesting individual omponents used in this projet andtheir properties are disussed.5.3.1 Text TokenizationThis area reeived little attention from the very start of the projet. It wasdeided early that it would not be a priority of the projet to develop a sophis-tiated text parser and it was assumed that the input to the module would bepure Uniode text. Also, no time was spent searhing an existing omponentthat ould be used in the projet.Changes made to the implemented parser turned out to have a great e�eton the F-measure. An example is splitting sentenes on ommas, olons andsemiolons in addition to puntuation, question mark and exlamation markthat inreased the F-measure with an average of 2%. Spending time imple-menting or �nding an existing more sophistiated parser would surely improvethe results further. Tokens suh as formulas and other �non-words� an mostlikely be removed without removing a keyword or a part of a keyword.The only meta information onsidered by the parser is the title of eahdoument. This ould be extended with hapter titles, abstrats, and bold anditali text to enable more keyword features.
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5.3.2 Part-of-Speeh and Noun Phrase-ChunkingA possible soure of negative in�uene on the results is the PoS tagger usedin this projet: Hunpos. The PoS and NP-hunk andidate seletion methodsdepend on it as well as all lassi�ers exept Word frequeny and TFIDF. Theauray has not been measured or been veri�ed from other soures. It is alsothe seond biggest bottlenek regarding lassi�ation speed.A possible extension and improvement of the PoS andidate seletion methodis to onsider ontext when extrating andidates. The ontext would be repre-sented by a window, spanning a number of words before and after the phrase ofinterest. This ould possibly reate a more disriminating result without havingto surrender too muh reall.The NP-hunk method produe the best results, both as stand-alone andwhen paired up with lassi�ers, with a few exeptions. As shown in table B.1it is able to reah a high preision while maintaining an aeptable reall. But,the reall is still onsiderably lower than both the N-grams and PoS methodsand the share of missed keywords range between 17-32%. It would thereforebe very interesting to investigate if there are any patterns amongst the missedkeywords and omplement with these, if the preision does not take to muhdamage.The NP-hunker is the biggest bottlenek with regards to lassi�ation speed.This is understandable when onsidering the amount of information it needs toproess and the omplexity of the task itself due to ambiguities in the writtenlanguage and in the grammar it uses. The omplexity of the English NP-hunkeris not known, but the Swedish has a omplexity of O(n2). It is possible thatit an be rewritten to be linear with a large hidden fator, but it would take aonsiderable amount of work.5.3.3 TextRank and ExpandRankThe original TextRank and ExpandRank algorithms[16, 21℄ di�er from the im-plementation used in this report, mainly in the keyword merging proess. Anattempt was made to implement the original TextRank, whih gave similarF-measure results to the original but di�ered signi�antly in the balane of pre-ision and reall. This version also yeilded muh worse overall results, but wasbetter on the Inspe orpus.When the words with highest word sore have been seleted, they an bemerged in many di�erent ways. It is stated in [16℄ that only words that weretaken out as keywords were merged if they were adjaent in the text. The resultswere hard to rereate using this method on the Inspe orpus.When using other methods, suh as the one mentioned in setion 3.3, thatfavored keywords of token size 2 or 3 when extrating keywords from Englishdouments, the F-measure inreased. The damping fator is usually de�ned as
d = 0.85, when using this setting the implementation gave lower test resultsompared to the �nal setting of d = 0.01.38



The results in [21℄ (ExpandRank) show that using a neighborhood an in-rease the F-measure. It is hard to pinpoint why the implementation used inthis report give lower results than the TextRank algorithm. They use a small,publily available orpus onsisting of news artiles that they annotated them-selves. The quality of the keywords an therefore be questioned and it would beinteresting to run their implementation on Inspe and ompare to the originalTextRank algorithm.Manual evaluation of the extrated keywords shows that the quality of thekeywords are good even though both algorithms miss the manually assignedkeywords.5.3.4 Knowledge-Based Arti�ial Neural NetworkThe use of knowledge, in the form of feature probabilities, did give the expetedresults. There was no notieable improvement in initial F-measure nor in train-ing time. It is possible that a di�erent type of representation would be morebene�ial, but has not been tested in this projet.There is room for improving the struture used in the underlying ANN,espeially in onnetion to the number of features. The goal would be to reduethe number of neurons as muh as possible without omprising the results. Thiswould speed up training time even more and it should be possible to at leasthalve the training time.The quality of the data separation is believed to be lose to optimal whenoptimizing the network with PSO. The reason for this hypothesis is that theSVM lassi�er show very similar results, whih perform very omplex separa-tions ompared to the other mahine learning lassi�ers. The suspiions thatthe performane of the KBANN lassi�er would be poor, mainly due to the highdimensionality of the optimization, turned out to be unfounded.Comparisons were performed between basi PSO and PSO enhaned withfuntion strething. There were lear di�erenes when testing on the Levy No5 funtion[19℄, but would probably not have been needed when separating thedata used in this projet. However, the extra omputations needed for funtionstrething are negligible and it adds a safety net to the PSO algorithm. Noinvestigation of the omplexity of the data used in this projet was performed,simply beause it is very hard to do.One variant of the Bakpropagation algorithm that would be interesting totest is �Bath-BP�. The di�erene to the normal Bakpropagation algorithm isthat it evaluates the whole set of training data and then alulates an averageerror, whih is propagated bakward.5.4 Evaluation approahesIn this setion di�erent evaluation methods are disussed. It is important tohave a performane measure that is as good as possible in order to know whihdiretion that will give better results. This is espeially important when using39



suh optimization algorithms suh as Partile Swarm Optimization that, in thisprojet, uses the F-measure as a �tness funtion.5.4.1 The F-measureIn this projet the F-measure is used to measure the performane of a keywordlassi�er. It is the standard method for this purpose, but is far from optimal.It only gives a guarantee that the measured lassi�er is �at least this good� andeven then there is an assumption that the manual keywords are good.Rather than a measure of performane, it an be seen as a ombination ofthe level of onsisteny in manual keywords and to whih degree some algorithmhas sueeded in following the observed patterns in the manual keywords.This introdues a theoretial upper limit, an algorithm an only attempt toonform itself to the observed patterns. If there are no lear patterns in theunderlying model, the lassi�er will perform bad. There is a deliate balanebetween following the observed patterns and avoiding over�tting. The upperbound exist in the model, namely how keyword andidates are represented andwhat features are aounted for. If low quality results are obtained, it is likelythat the model is �awed (too spei� or too general) and/or the training datais noisy.Natural language is ambiguous and written text is di�ult to parse, this willintrodue errors when translating the text. An algorithm an only be as goodas its underlying model and a model an only be as good as the data it is builton.Also, just beause a low F-measure is aquired does not mean that theextrated keywords are bad. It just means that the lassi�er has not been ableto follow the observed manual keyword patterns. The most aurate methodto measure the performane of a lassi�er is probably to perform a manualsurvey, where people read douments and then ategorize the automatiallyassigned keywords into �good�, �bad� and �neither�. The primary goal shouldbe to redue the number of �bad� keywords and the seondary to redue the�neither� keywords. However, this proess is very time onsuming and thereforenot interesting to use in iterative development, only to obtain a more preisemeasure of a �nal result.5.4.2 What onstitutes a keyword hit?In the training data used for this projet eah doument has a set of manualkeywords. When an algorithm extrats a keyword that is in the set of themanual keywords for that doument, it is alled a keyword hit. However, onlyaounting for exat mathes is a very pessimisti approah.The most ommon method is to perform lemmatized (or stemmed) ompari-son, i.e. if lemmas of two phrases are equal they are onsidered to be equal. Thismeans that the two phrases �brown dog� and �brown dogs� are equal, beausethe words dog and dogs have the same lemma.40



A more optimisti approah is to also aount for subsuming keywords, in ad-dition to the lemmatized omparison. This means that if all tokens in the man-ually assigned keywords are present in the automatially extrated keyphraseand their order is intat, it will onstitute as a keyword hit. The idea behindthis approah is that the automatially extrated keyword is at least as spei�as the manual keyword, information an only be added that makes it more spe-i� to the urrent doument. This means that the manual keyword �dog� willbe onsidered equal to the automatially extrated keyword �the brown dog�.Unfortunately this means that unwanted information an be added in the au-tomatially extrated keywords. However, this method is still believed, by theauthors of this paper, to be a too pessimisti measure of the true performaneof a keyword extration algorithm.To get the most aurate measure of an algorithms performane, one alsoneed to aount for synonyms and semanti relations between words. Thisis believed to be espeially important when lassifying tehnial papers wherewriters tend to vary their language in order to prevent repetition. The twowords �dog� and �anine� would then be onsidered equal, sine they refer tothe same physial objet. Semanti relations between words ould also be usedto enhane the evaluation auray. An automatially extrated keyword is onlyompared to the manual keyword it has the strongest semanti relation to. Ifthe strength of the relation exeeds some prede�ned threshold, it onstitutes akeyword hit. It is also possible to aount for frations of a hit, proportional tothe strength of the semanti relation.This would be a more aurate automati evaluation method, but it stilldoes not aount for good keywords that just were not in the set of manualkeywords. Therefore, to get the most aurate measure a manual study shouldbe arried out (as stated in 5.4.1).5.4.3 How many keywords to extrat?Turney [17℄ and Frank [12℄ performed experiments where they extrated �veand �fteen keywords per doument. This does not re�et the performane ofthe lassi�er sine extremely poor keywords might get extrated due to a lak ofproper andidates. A uto� value an be used to prevent this from happening.Zesh and Gurevyh[5℄ has slightly di�erent and better approah. Theyaount for the result of a doument if the number of automatially extratedkeywords and manually assigned keywords are equal . The drawbak of thismethod is that the number of douments that ontribute to the �nal result maybe small and thus the result may vary from orpus to orpus. To help preventthis one an use orpora with a high number of douments, suh as Inspe(≈2000 douments).The lassi�ers in this projet use two di�erent approahes to solve this prob-lem. The non-binary lassi�ers extrat the same number of keyword eah do-ument in the training data has been manually assigned. Note that this is onlyduring evaluation experiments, in live lassi�ation the desired number of key-words is passed as a parameter to the lassi�er.41



The binary lassi�ers onform themselves during training to extrat the samenumber of keywords eah manual doument has been assigned. They only ex-trat keywords that ful�ll their requirements. This is onsistent with regard tothe number of keywords and the keywords themselves assigned manually to thedouments in the training data as the gold standard.5.5 Result disussionThe overall results of this projet is not be as good as initially hoped, but theyare satisfatory.Fast ESP, the searh engine used by Findwise AB whih has the possibility toextrat keywords, has onsiderably worse performane than the best lassi�ersused in this projet, espeially for Swedish douments. The lassi�ers in thisprojet are also faster, but they an only extrat keywords. When lassifyingdouments, Fast ESP performs additional operations suh as entity extration.Beause of this the speed performane is hard to measure, but if keywords arethe only subjet of interest there is a lear winner with a fator of about three.Hulth's results remain impressive and is in another league than those re-ported in this projet. Even though the methods used in both projets maylook similar, suh as the features and andidate seletion methods, there is stilla big di�erene. The known di�erenes are the PoS tagger, NP-hunker andthe mahine learning algorithm. Sine the best lassi�ers show very good per-formane, it is believed that a big di�erene lies in the PoS tagger, NP-hunkerand the andidate representation. It is also possible that Hulth's partitioning ofthe Inspe orpus in�uenes the result, but should not aount for a di�erenemore than maybe a few perentages in F-measure.The lassi�ers, espeially KBANN and SVM, show impressive results andwould be a strong foundation to base further work on. By optimizing the an-didate representation and the features it is very likely that the results wouldimprove. Another possible improvement ould be to test other external tools,in addition to the PoS tagger and NP-hunker, though this would most likelylimit the supported languages to English only.The big disappointment of this projet is the poor results obtained fromthe di�erent ensemble methods that were tested. No ombination of lassi�ers,representations and training data gave any notieable improvement over singlelassi�ers what so ever. It is believed that the reason is the simpliity of re-ating a lose to optimal separation of the training data, every lassi�er in theensembles simply lassify nearly the same subset of andidates as keywords.
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Chapter 6ConlusionThere are no known distint statistial or linguisti patterns for �nding key-words. Human annotators disagree to a great extent[22℄. If an obtained F-measure is too high, this is likely a result of over�tting.By using linguisti information in andidate seletion methods, suh as PoSand NP-hunking, inreases the performane signi�antly ompared to N-grams.Translating text into numeri representations is hard. Muh information islost when words are onverted into a numerial feature vetors and the generateddata is partly ontraditory.Boolean features limited the number of permutations of andidate vetors.This lowered training times drastially and prevented over�tting but may havenarrowed the omplexity of data separation.Though simplisti in design, the NBC lassi�er is very powerful and ahievesnear similar results to the more sophistiated lassi�ers used in this report.The TextRank lassi�er show great potential and an be ompared to thebest supervised algorithms. The low F-measures ompared to [16℄ is believedto be aused by a laking implementation. Manual inspetion of extratedkeywords indiate good quality despite laking results.The knowledge model used in the KBANN lassi�er did not meet the ex-petations and the result in�uene, if any, was negative. A basi ANN wassu�ient.Enhaning the PSO algorithm with funtion strething was probably unne-essary, onsidering the simpliity of the feature vetors. The extra omputationsare negligible and improves auray signi�antly, whih ould prove useful inappliations of greater omplexity.The manual keywords were regarded as gold standard, but turned out to beof questionable quality. The quality of keywords extrated from douments in alive situation will be lower than if the manual keywords would have been better.This report shows that ombining NLP and ML algorithms an improvekeyword quality, ompared to other methods suh as TFIDF. The results aresatisfatory and outperform the Fast ESP suite used at Findwise AB to date.43



6.1 Future workWith the implemented module and report as a foundation, there several im-provements and extensions that are possible to enhane the results:General orpus Employ a bigger and more general doument set, with regardsto ontent, to alulate IDF sores.Parsing More sophistiated parser with support for additional meta info.Missed keywords Investigate possible patterns in keywords not extrated bythe NP-hunker.Additional andidate seletion method Use of dependeny grammar andhyperonyms.TextRank Improved keyword merge method and NP-hunk extension.PSO More extensive use for optimization of various parameters.Bakpropagation Bath BP extension.Boosting Use the boosting ensemble method.Semanti relations Use of WordNet and Saldo to measure the strength ofsemanti relations between pair of words.Manual keyword quality surveys Human evaluation is neessary to �nd a-tual quality of extrated keywords.
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Appendix APoS PatternsThe full list of tags, for eah language, used by the PoS andidate seletionmethod are presented in setion. The patterns extrated are based on statististaken from the attahed keywords in the orpora, every keyphrase pattern ourat least 10 times. Table A.1: PoS patterns.English Swedishjj nn vbg nn vbn nn nn nn nnp nn pnn nn vbg nnp nnp nn jj nn jj nn pm p nnjj nns vbg nns nn jj nns nnp nnp nns jj nn nn kn jjnn nnp nnp nnp jj vbg nn d nn jj pm pmnn nns jj vbg nn jj nnp vbg nn kn nn nn pp nnjj nn nn nn jj nn nn in nn nn vbg nns vbnnp nn vbg nn vbg nn nn vbnns jj nnp nn d nnp vbn jj nnnnp nn nnp jj nn rb jj nn nn jj nn nnjj nn nns vbn nn jj nnp nns vbn nn nnsnn nn nn nnp nn nns jj jj jj nn nns in nnjj jj nn jj nnp jj nn vbg vbznnp nns nns nn jj nns nn nns nnsjj jj nns jj jj vbg nn nnnn nn nns jj jj nn nns rb jj nnsjj jj nn nn nns vb nnnnp nnp nn nn nn nn nnp nn nn nnjj nn nn nn vbn nns vbn jj nnsnnp nn nn nn vbz nnp jj nnsjj jj nn nn jj vbg nns nnp nnp nnp nnp
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Appendix BExtensive result tablesThe test results presented in this setion are run on omputers with 2.1-2.4 GHzproessors. The runtimes and training times are not to be interpreted as 100%aurate, they are only presented to give an indiation of the speed. Only whenthere is a full order of magnitude in di�erene between two runtimes, it is safeto assume that there is a signi�ant di�erene in speed (e.g. 5s and 2m).Training times for the supervised mahine learning algorithms are not in-luded in their individual results and are presented separately in setion B.9.Explanations of the table olumn names used in this setion:
• Runtime - The time it takes to run the test.
• Assign. tot. - Total number of keywords extrated.
• Assign. mean - Mean number of keywords extrated for eah doument.
• Corr. tot. - Total number of orret keywords extrated.
• Corr. mean - Mean number of orret keywords per doument.
• P - Preision.
• R - Reall.
• F - F-measure.
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B.1 Candidate seletion methodsThe results below onern only andidate seletion methods, i.e. no lassi�ationalgorithms are applied on the extrated andidates.The runtimes for PoS inlude the time it takes to tag the douments withPoS tags. The atual time it takes to �nd the pattern mathes are omparableto the runtimes for N-grams.The runtimes for NP-hunk does not inlude the time it takes to tag thedouments with PoS tags.Table B.1: Statistis for the andidate seletion methods used in this projet.The best results for eah orpus are shown in bold.Runtime Assign. Assign. Corr. Corr. P R FMediin tot. mean tot. meanN-grams 5s 798 753 1 190.39 3 586 5.35 0.45 99.98 0.90PoS 1m 24s 430 693 641.87 3 478 5.19 0.81 96.97 1.61NP-hunk 3m 17s 208 745 311.10 2 704 4.03 1.30 75.39 2.55SoialstyrelsenN-grams 4s 491 077 333.39 3 445 2.35 0.71 97.05 1.40PoS 1m 11s 286 992 198.84 3 404 2.32 1.19 95.89 2.35NP-hunk 3m 10s 139 541 97.73 2 621 1.79 1.88 73.84 3.67InspeN-grams 1s 222 107 111.72 13 343 6.71 6.01 91.68 11.28PoS 12s 152 712 76.82 13 251 6.67 8.68 91.05 15.85NP-hunk 1m 1s 53 622 26.97 9 655 4.86 18.01 66.34 28.33NUSN-grams 3s 499 147 3 283.86 1 163 7.66 0.24 93.87 0.47PoS 1m 34s 294 716 1 938.92 1 164 7.66 0.40 93.95 0.79NP-hunk 3m 55s 143 855 946.41 1 031 6.79 0.72 83.22 1.43
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B.2 Word frequenyIn the results presented for this lassi�er, the number of keywords extrated isthe same as the number of manual keywords for eah doument. The runtimesdoes not inlude the time it takes to extrat andidate keywords.Table B.2: Statistis for the Word frequeny lassi�er. The best results for eahorpus are shown in bold. Runtime Corr. Corr. FMediin tot. meanN-grams 34s 655 0.98 18.27PoS 18s 550 0.82 15.34NP-hunk 42s 753 1.13 21.00SoialstyrelsenN-grams 15s 675 0.46 19.02PoS 11s 661 0.45 18.62NP-hunk 5s 842 0.58 23.72InspeN-grams 5s 2 207 1.11 15.17PoS 5s 3 210 1.61 22.06NP-hunk 20s 3 703 1.86 25.45NUSN-grams 46s 140 0.93 11.30PoS 24s 106 0.70 8.56NP-hunk 1m 6s 153 1.01 12.35
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B.3 TFIDFIn the results presented for this lassi�er, the number of keywords extrated isthe same as the number of manual keywords for eah doument. The runtimesdoes not inlude the time it takes to extrat andidate keywords.Table B.3: Statistis for the TFIDF lassi�er. The best results for eah orpusare shown in bold. Runtime Corr. Corr. FMediin tot. meanN-grams 26s 1 018 1.52 28.39PoS 14s 1 047 1.57 29.19NP-hunk 12s 1 035 1.55 28.86SoialstyrelsenN-grams 12s 621 0.43 17.50PoS 9s 721 0.49 20.31NP-hunk 3s 838 0.57 23.61InspeN-grams 3s 2 401 1.21 16.50PoS 3s 3 715 1.87 25.53NP-hunk 1s 3 966 1.99 27.25NUSN-grams 39s 212 1.40 17.12PoS 23s 184 1.22 14.86NP-hunk 19s 223 1.47 18.00
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B.4 TextRankBoth of the TextRank- and Expand lassi�ers are not dependent on havingandidate keywords given to them when lassifying a doument.B.4.1 TextRankTable B.4: Statistis for the TextRank lassi�er.Corpus Runtime Corr. Corr. Ftot. meanMediin 2m 12s 693 1.04 19.32Soialstyrelsen 1m 48s 710 0.49 20.01Inspe 31s 4 627 2.33 31.84NUS 5m 52s 83 0.55 6.87B.4.2 ExpandRankTable B.5: Statistis for the ExpandRank lassi�er.Corpus Runtime Corr. Corr. Ftot. meanMediin 7m 36s 318 0.48 8.87Soialstyrelsen 11m 18s 342 0.24 9.64Inspe 5m 31s 4 423 2.22 30.41NUS 7m 15s 64 0.43 5.17
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B.5 NBCIn the results presented for this lassi�er, the number of keywords extrated isthe same as the number of manual keywords for eah doument. To avoid anover�tted result, the results presented for the NBC lassi�er is the average from10 runs of 10-fold ross validation. The runtimes does not inlude the time ittakes to extrat andidates, only the lassi�ation of a full orpus.Table B.6: Statistis for the NBC lassi�er. The best results for eah orpusare shown in bold. Runtime Corr. Corr. FMediin tot. meanN-grams 59s 1 008 1.51 28.10PoS 28s 1 046 1.56 29.17NP-hunk 32s 1 019 1.52 28.40SoialstyrelsenN-grams 31s 791 0.54 22.29PoS 19s 915 0.62 25.78NP-hunk 24s 1 033 0.70 29.09InspeN-grams 10s 4 491 2.26 30.86PoS 8s 5 038 2.53 34.61NP-hunk 25s 5 101 2.57 35.05NUSN-grams 1m 24s 272 1.79 21.97PoS 46s 248 1.63 20.03NP-hunk 2m 8s 293 1.93 23.62
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B.6 KBANNThe KBANN lassi�er is based on a supervised mahine learning algorithm,therefore 10-fold ross validation is used. The results presented are the averageresults in eah ategory from 10 runs.The runtimes does not inlude the time it takes to extrat andidates, onlythe lassi�ation of a full orpus. The lassi�ation time is independent of whihoptimization algorithm that has been used, therefore the runtimes reported forBP and PSO equal.B.6.1 BakpropagationTable B.7: Statistis for the KBANN lassi�er using a network trained by BP.The best results for eah orpus are bold.Runtime Assign. Assign. Corr. Corr. P R FMediin tot. mean tot. meanN-grams 32s 89 650 133.61 1 264 1.88 1.51 35.24 2.90PoS 20s 59 130 88.12 1 283 1.91 2.47 35.77 4.62NP-hunk 28s 51 775 77.16 1 292 1.93 2.86 36.02 5.30SoialstyrelsenN-grams 21s 62 078 42.14 1 131 0.77 1.98 31.87 3.73PoS 15s 57 753 39.21 1 374 0.93 2.46 38.69 4.63NP-hunk 27s 35 158 23.87 1 304 0.89 3.71 36.73 6.74InspeN-grams 9s 94 751 47.66 8 962 4.51 9.46 61.58 16.40PoS 8s 68 999 34.71 10 545 5.30 15.29 72.45 25.25NP-hunk 21s 49 405 24.85 8 919 4.49 18.06 61.28 27.89NUSN-grams 1m 3s 3 878 25.51 308 2.03 7.94 24.86 12.04PoS 37s 3 440 22.63 313 2.06 9.10 25.26 13.38NP-hunk 1m 48s 5 097 33.53 372 2.45 7.30 30.02 11.74
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B.6.2 Partile Swarm OptimizationTable B.8: Statistis for the KBANN lassi�er using a network trained by PSO.The best results for eah orpus are bold.Runtime Assign. Assign. Corr. Corr. P R FMediin tot. mean tot. meanN-grams 32s 2 753 4.10 973 1.45 35.34 27.12 30.69PoS 20s 2 760 4.11 990 1.48 35.87 27.60 31.20NP-hunk 28s 2 314 3.45 881 1.31 38.07 24.56 29.86SoialstyrelsenN-grams 21s 3 996 2.71 1 053 0.71 26.35 29.66 27.91PoS 15s 3 760 2.55 994 0.67 26.44 28.00 27.20NP-hunk 27s 3 474 2.36 1 018 0.69 29.30 28.68 28.99InspeN-grams 9s 30 678 15.43 8 310 4.18 27.09 57.09 36.74PoS 8s 21 334 10.73 6 270 3.15 29.39 43.08 34.94NP-hunk 21s 23 384 11.76 7 341 3.69 31.39 50.44 38.70NUSN-grams 1m 3s 1 395 9.18 297 1.95 21.29 23.97 22.25PoS 37s 1 421 9.35 284 1.87 19.99 22.92 21.35NP-hunk 1m 48s 1 357 8.93 298 1.96 21.96 24.05 22.96
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B.7 SVMSine this is a supervised mahine learning algorithm, 10-fold ross validationis used. The results presented are the average results in eah ategory from 10runs. The runtime measures a single lassi�ation of a full orpus inluding thetime it takes to extrat the andidates.Table B.9: Statistis for the SVM lassi�er. The best results for eah orpusare bold. An outlier with 15.27 preision aused the preision for NP-hunk onSoialstyrelsen to drop by about 1.5 points.Runtime Assign. Assign. Corr. Corr. P R FMediin tot. mean tot. meanN-grams 2m 5s 2 650 3.95 953 1.42 35.96 26.57 30.56PoS 1m 11s 2 667 3.97 976 1.45 36.60 27.21 31.21NP-hunk 56s 2 224 3.31 868 1.29 39.03 24.20 29.88SoialstyrelsenN-grams 1m 16s 4 306 2.92 1 115 0.76 25.92 31.42 28.41PoS 49s 4 339 2.95 1 117 0.76 25.75 31.47 28.32NP-hunk 31s 3 851 2.61 1 029 0.70 27.88 28.98 28.42InspeN-grams 8s 22 667 11.40 5 894 2.96 26.00 40.49 31.67PoS 7s 20 776 10.45 6 060 3.05 29.17 41.64 34.31NP-hunk 24s 23 869 12.01 7 452 3.75 31.22 51.20 38.79NUSN-grams 1m 54s 1 538 10.12 307 2.02 19.96 24.78 22.11PoS 1m 10s 1 351 8.89 265 1.74 19.62 21.39 20.47NP-hunk 2m 12s 1 278 8.41 298 1.96 23.32 24.05 23.68
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B.8 EnsemblesIn this setion the results for some of the tested ensemble methods are pre-sented. All ensembles ontain at least one supervised lassi�er and 10-fold rossvalidation is therefore used. Training ensembles take onsiderable longer timethan single lassi�ers, so due to time onstraints the result are from a single runonly.Several other ensemble ombinations were tested, but no result was notie-ably better than the best single lassi�ers. Those result are therefore omittedfrom this report.B.8.1 RegressionTable B.10: Statistis for the Regression lassi�er.Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMediin 41s 3 278 4.89 1 016 1.51 31.00 28.33 29.60Soialstyrelsen 1m 16s 4 202 2.85 960 0.65 22.85 27.05 24.77Inspe 52s 27 353 13.76 8 136 4.09 29.74 55.90 38.82NUS 2m 22s 1 475 9.70 276 1.82 18.72 22.28 20.34B.8.2 KBANN ensembleThis lassi�er onsist of seven individual KBANN lassi�ers, eah trained on adi�erent subset of training data and use NP-hunk andidates.Table B.11: Statistis for the KBANN ensemble lassi�er using NP-hunk an-didates. Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMediin 46s 2 292 3.42 884 1.32 38.57 24.65 30.08Soialstyrelsen 37s 3 432 2.33 1 018 0.69 29.67 28.68 29.17Inspe 15s 23 503 11.82 7 380 3.71 31.40 50.70 38.78NUS 1m 20s 1 336 8.79 309 2.03 23.13 24.94 24.00
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B.8.3 KBANN and TextRankThis ensemble lassi�er onsist of a single KBANN lassi�er using NP-hunkandidates and a single TextRank lassi�er. The �nal result is the union ofkeywords extrated by both lassi�ers.Table B.12: Statistis for the KBANN-TextRank ensemble lassi�er using NP-hunk andidates. Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMediin 1m 13s 8 207 12.23 1 297 1.93 15.81 36.16 22.00Soialstyrelsen 1m 23s 9 179 6.23 1 559 1.06 16.99 43.92 24.50Inspe 10s 29 668 14.92 8 371 4.21 28.22 57.51 37.86NUS 2m 59s 3 396 22.34 363 2.39 10.69 29.30 15.67B.9 Training timesThe times presented in table B.13 are the average of ten training sessions.The training data is reated from andidates extrated using the N-gramsmethod, this is motivated by that it extrats the most andidates by far toreate a worst ase senario. If training is performed on NP-hunk andidates,the time for extrating them needs to be inluded in the times presented in tableB.13. The times for extrating the N-grams an then be ignored sine they areso small (see table B.1).The NBC lassi�er is the only trained lassi�er whose training times dependheavily on the number of extrated andidates. The size of the training dataused for the rest of the trained lassi�ers is restrited by the number of features(see setion 2.4). Only idential piees of training data are kept and are givenweights that orrespond to the atual number of instanes they orrespond to.Table B.13: Training times for the supervised algorithms.Algorithm Mediin Soialstyrelsen Inspe NUSNBC 34s 22s 10s 1m 4sKBANN-BP 44s 34s 28s 1m 10sKBANN-PSO 3m 17s 2m 45s 7m 4s 5m 35sSVM 58s 65s 72s 63sThe training times for the Regression lassi�er is approximately equal tothree times the training time for a single NBC lassi�er. The training time forthe KBANN ensemble is approximately equal to the training time required fora single KBANN lassi�er multiplied with the number of lassi�ers used in theensemble. The training time of the KBANN-TextRank lassi�er is equal to thetraining time of a single KBANN lassi�er.58
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