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Abstra
tThis master thesis evaluates di�erent approa
hes of keyword extra
tion. Nat-ural language pro
essing methods su
h as N-grams, Part-Of-Spee
h and NounPhrase-Chunking are used to extra
t keyword 
andidates. Ma
hine learningalgorithms are used to determine whether a 
andidate is a keyword or not.Unsupervised state-of-the-art algorithms are implemented and 
ompared to thema
hine learning 
lassi�ers. A number of keyword features, their representationand their impa
t on the results are investigated. The results show that 
ombin-ing natural language pro
essing and ma
hine learning algorithms 
an improvekeyword quality, 
ompared to other methods su
h as TFIDF.



KeywordsKeywords extra
ted from the title and abstra
t for this thesis.Keyword Extra
tion, Unsupervised state-of-the-art algorithms, ma
hine learn-ing, keyword features, keyword 
andidates, Natural language pro
essing methods,Noun Phrase-Chunking, keyword, master thesis, keyword quality.
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TerminologyStopwords Frequently o

urring words that do not add any 
ontext informa-tion.F-Measure Performan
e measure.Corpus A large set of do
uments.Token A single word from a phrase or senten
e.Keyword A word or a phrase that represent the 
ontent of a do
ument.Classi�er A fun
tion that map sets of input attributes to tagged 
lasses.PoS Part-of-Spee
h. The lexi
al 
lass of a word.Lemmatization The pro
ess of bringing in�e
ted words to their morphologi
alroot.Stemming The pro
ess of removing a�xes from a word.NP-Chunking Noun Phrase Chunking, the pro
ess of extra
ting nouns andproper nouns with modi�ers from a senten
e.PSO Parti
le Swarm Optimization, a sto
hasti
 optimization algorithm.KBANN Knowledge-Based Arti�
ial Neural Network, a neural network im-plementation using domain knowledge to set initial weights.TFIDF Term Frequen
y Inverse Do
ument Frequen
y.NBC Naive Bayesian Classi�er, a ma
hine learning 
lassi�er.SVM Support Ve
tor Ma
hine, a ma
hine learning 
lassi�er.
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Chapter 1Introdu
tionThis master thesis was 
arried out at Chalmers University of Te
hnology andFindwise AB1 in Gothenburg, Sweden. The goal was to 
reate a module forautomati
ally extra
ting keywords from do
uments in English and Swedish.1.1 Ba
kgroundKeyword extra
tion is the task of extra
ting a small set of words and phrasesfrom a do
ument whi
h des
ribe its 
ontent. This is di�erent from keywordassignment, where a set of prede�ned keywords are used. Regardless of thedo
ument 
ontent, keywords 
an only be sele
ted from the prede�ned set.Manual keyword extra
tion is performed by professional human annotatorsand is a very time-
onsuming task. The purpose of using an automated pro
essis to in
rease speed, without sa
ri�
ing too mu
h quality of the result.In semi-automati
 keyword extra
tion an automated pro
ess extra
ts a largenumber of keywords and a human has the �nal word. The quality might notbe as high as the manual pro
ess, but is mu
h faster and the quality should besigni�
antly higher than full automation.What 
onstitute a good keyword? Studies have shown the disagreement ratebetween two human indexers to be 20-80%[22℄. Using an automati
 or semi-automati
 pro
ess for keyword extra
tion will bring more 
onsisten
y, whi
h 
anbe an advantage. The manual keywords are regarded as gold standard and thema
hine learning 
lassi�ers are trained to 
onform themselves to this standard.As a 
onsequen
e, a 
lassi�er 
an only be as good as the keywords it is trainedon.What the keywords of a do
ument should be is highly subje
tive and dependon a number of fa
tors, e.g. the purpose of the keywords, the information thatis sought after and who is looking for it.1http://www.�ndwise.se/ 6



1.2 MotivationKeywords serve several purposes to a reader, who 
an qui
kly determine if ado
ument is in their �eld of interest or not. When browsing a large indexof do
uments and their 
orresponding keywords, the reader 
an de
ide whi
hdo
uments are worth looking into further.When making a sear
h query using keywords, the sear
h engine will yieldfewer and more spe
i�
 results[17℄.Not all do
uments have atta
hed keywords when put into databases andthe pro
ess of extra
ting (or assigning) keywords manually is time 
onsuming.When indexing large sets of do
uments for sear
h engines, a manual approa
his unreasonably slow. The pro
ess 
an be sped up using the automati
 keywordextra
tion methods des
ribed in this thesis.1.3 Earlier workIn the 1950s s
ientists elaborated on the idea of sear
hing texts with 
omputersand a method was proposed that suggested to use words for indexing do
umentsin information retrieval [15℄.Many di�erent approa
hes to keyword extra
tion has been tested sin
e, someof the major landmarks are listed below:TFIDF 1972. An improvement over 
omputing word frequen
ies is introdu
edby Spär
k[8℄. An inverse do
ument frequen
y, 
omputed using a 
orpus,is weighed with the word frequen
y to improve performan
e.GenEx 1999. A solution based on a geneti
 algorithm that tunes the parame-ters for a keyword extra
tor is developed by Turney[17℄.KEA 1999. Frank[12℄ introdu
ed a keyword extra
tion algorithm based onthe Naive Bayesian learning s
heme. The performan
e was 
omparable toGenEx.HITS 1999. Kleinberg[9℄ introdu
es a graph-based ranking algorithm similar toPageRank. Can be 
onverted into a keyword extra
tor using the TextRankapproa
h.Hulth 2004. Using both Natural Language Pro
essing and Ma
hine Learning,Hulth[7℄ developed a keyword extra
tor that has been 
onsidered to bestate-of-the-art[16℄.TextRank 2004. Based on Google's PageRank algorithm[11℄, Mihal
ea andTarau[16℄ introdu
e an unsupervised keyword extra
tor that utilizes aword 
o-o

urren
e graph.
7



1.4 Proje
t goals and delimitationsThe goal of this proje
t is to implement a module written in Java for automat-i
ally extra
ting keywords from English and Swedish do
uments. The moduleis supposed to fun
tion as stand alone appli
ation or integrated into Open-Pipeline2, a framework for 
rawling, parsing, analyzing and routing do
uments.A small number of sele
ted ma
hine learning algorithms will be implementedand improved, rather than making �shallow� implementations of many. Variantsof existing algorithms will be used, instead of developing new ones.The algorithms themselves will be the fo
us of the proje
t. Do
ument pars-ing and input retrieval will be given little or no attention. Words are assumedto be spelled 
orre
tly.Code will be written for as mu
h of the 
ontent as possible, with the ex
ep-tion of linguisti
 fun
tionality.Classi�
ation and training speed is to be given a signi�
ant amount of at-tention. This will enable more e�
ient testing and faster extra
tion of keywordsin live situations.The goal with regards to the quality of the result is an F-measure above40%, similar to what Hulth reported in [7℄.1.5 MethodThe task was �rst de�ned and split up into smaller segments for a literaturestudy, implementation, testing and veri�
ation.In order to get a
quainted with the �eld of keyword extra
tion a literaturestudy was 
arried out. Large paper databases (e.g. IEEE and ACM) weresear
hed and by reading frequently referen
ed papers, the most 
ommon ande�e
tive algorithms were dis
overed.After the literature study, a number of algorithms were sele
ted to be imple-mented. The implementation pro
ess was 
oupled with debugging and minoralgorithm parameter tweaking. Alongside the implementation of the 
lassi�
a-tion algorithms, the supporting stru
ture was built. This in
luded do
umentrepresentation, lemmatization and stemming, pre- and post pro
essing of do
u-ments and a test suite for evaluation of results.2http://www.openpipeline.org/
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The following software and external tools were used:
• SPARK - Swedish NP-
hunker.http://stp.lingfil.uu.se/~bea/resour
es/spark/
• EngChunker - English NP-
hunker.http://www.d
s.shef.a
.uk/~mark/phd/software/
hunker.html
• Hunpos - Part-of-Spee
h tagger for English and Swedish.http://
ode.google.
om/p/hunpos/
• Weka - Ma
hine learning pa
kage written in Java.http://www.
s.waikato.a
.nz/ml/weka/
• Findwise lemmatization and stemming.Proprietary software.The proje
t was wrapped up by generating result tables for the �nal version ofea
h algorithm and 
omparing the results to those presented in other papers.1.6 Pre
ision, Re
all and F-MeasureF-measure is one of the standard methods in information retrieval for evaluatingresults. It is most 
ommonly used to evaluate sear
h engine results, but 
an alsobe used in keyword extra
tion by repla
ing web sites for keywords.The F-measure is a fun
tion of pre
ision and re
all. To 
ompute these threevalues, two sets of words are needed for some do
ument: a set of manual key-words M and a set of automati
ally extra
ted keywords A.Pre
ision, re
all and the F-measure are 
omputed a

ording to formulae1.1-1.3. Pre
ision =

|M ∩ A|

|A|
(1.1)Re
all = |M ∩ A|

|M |
(1.2)F-measure = 2 ·

Pre
ision ·Re
allPre
ision+ Re
all (1.3)The F-measure has the property that it leans toward the smallest parametervalue, whether it be pre
ision or re
all. If there is a big di�eren
e betweenpre
ision and re
all, the F-measure will be approximately equal to double thesmallest of them. This behavior 
an observed in appendix B.
9



1.7 OutlineThe stru
ture of this report follow the stru
ture of implemented module, whi
his shown in �gure 1.1.
������ ���	
��
 �����������

����� �������	 �������
 ���

�������������� 

��������

��!"��#�
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Figure 1.1: Program �ow.Chapter 2 des
ribes the 
orpora and prepro
essing methods used in thisproje
t. The 
orpora are pro
essed to generate training- and validation data.Prepro
essing steps in
lude parsing, lemmatization, stemming, 
andidate sele
-tion and 
andidate abstra
tion.Chapter 3 presents the keyword 
lassi�
ation algorithms and post pro
essing.Extra
ted 
andidates are 
lassi�ed to be keyword or not keyword. The postpro
essing attempts to remove redundant keywords, those that are subsumedby others.Chapter 4 presents the brief version of the results from this proje
t and
ompare them to others. The extensive list of results 
an be found in appendixB. Chapter 5 
ontains dis
ussion of the results, evaluation methods and thingsthat 
ould have been done di�erently in order to a
hieve better results.Chapter 6 
on
lude the report with �nal remarks and ideas for future work.
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Chapter 2Text Pro
essingThis 
hapter des
ribe the 
orpora used in this proje
t whi
h is used to generatetraining- and validation data sets. The prepro
essing stages that do
umentsundergo before extra
ted 
andidates are 
lassi�ed are presented.2.1 CorporaThe 
orpora used in this report were all formatted before used. All do
umentswere enhan
ed with meta information, in the form of a title, in order for theparser to re
ognize the title of ea
h do
ument. Any manually assigned keywordsthat did not expli
itly appear in the asso
iated do
ument were removed. As aresult, some do
uments la
ked keywords all together, these were removed.Information about the 
orpora used in this report is shown in table 2.1, allreported numbers are post formatting.Table 2.1: Corpora information. (*Automati
ally extra
ted from)Name Language Sour
e In papersInspe
 English Hulth[7℄ [7, 16℄NUS English National University of Singaporea [2℄Medi
in Swedish * http://www.internetmedi
in.seSo
ialstyrelsen Swedish * http://www.so
ialstyrelsen.seNr of Nr of Avg. do
. Nr of Avg. nr ofName do
s. words size keywords keywordsInspe
 1 988 264 541 133 14 555 7.3NUS 152 1 071 026 7 046 1 239 8.1Medi
in 671 893 834 1 332 3 587 5.3So
ialstyrelsen 1 473 746 704 507 3 550 2.4ahttp://wing.
omp.nus.edu.sg/downloads/keyphraseCorpus/
orpus.tgz11



Inspe
 is the main 
orpus in this report. It has been used in two of thereferen
ed papers and is a 
olle
tion of abstra
ts from the Inspe
 database. Thetexts are short, 
lean1 and 
ontain a lot of information. The keywords are setby authors or professional annotators.NUS 
onsist of s
ienti�
 publi
ations from the National University of Singa-pore. The do
uments are long and 
ontain mu
h noise, in the form of remnanttokens from the pdf to text 
onversion.Internetmedi
in is a web site with the purpose of supplying do
tors andnurses with information about treatments and other information useful in theirdaily work. The texts are reviewed and maintained by professionals, the key-words are assumed to be set by the same people.So
ialstyrelsen is the Swedish National Board of Health and Welfare. Theboard establishes norms and general advi
es for muni
ipalities, 
ounty 
oun
ilsand lo
al authorities. The keywords are assumed to be set by the same peoplethat work for previously mentioned authorities.2.2 Lemmatization and stemmingLemmatization and stemming are used to redu
e an in�e
ted word to its baseform or stem. This serves two purposes by redu
ing the number of uniquekeyword 
andidates and also allows more a

urate 
omputations of word fre-quen
ies. The words �pirate�, �pirates� and �pirate's� are di�erent but have thesame base form. It is redundant to 
lassify all three as keywords sin
e they allrefer to the same obje
t.Lemmatization �nds the base form, or lemma, of words. Stemming use analgorithm to iteratively remove word a�xes until some termination 
riteria ismet. This means that a stem is not ne
essarily equal to the morphologi
al rootof the word (table 2.2).Table 2.2: Stemming and lemmatization examples.Word Stem LemmaRe
harging Re
harg Re
hargeRe
harged Re
harg Re
hargeCats Cat CatPonies Poni PonyRan Ran RunThere are both advantages and disadvantages of stemming. Morphologi
allysimilar words may be redu
ed to the same stem, but if they have no semanti
relation this is unwanted behavior. On the other hand, if two morphologi
allysimilar words have a strong semanti
 relation are redu
ed to the same stem, butdoes not share the same lemma, this is a

eptable behavior.1Texts that 
ontain few tokens that are not 
onsidered to be proper words, e.g. formulas.12



This proje
t used lemmatization with Porter's stemmer[14℄ as a fallba
k. Ifa word was not found in the lemmatization lexi
on it was stemmed instead. It isbelieved that this 
ombination has not been used before in the area of keywordextra
tion.2.3 Candidate sele
tionThe 
andidate sele
tion step serve the purposes of limiting the number of po-tential keywords and guarantees a 
ertain quality of the sele
ted 
andidates.If few poor 
andidates are extra
ted, the 
lassi�ers are less likely to sele
tpoor keywords. A de
reased number of 
andidates also mean less work for the
lassi�ers, whi
h in
rease speed.The text in the box below will be used throughout this se
tion to show howthe di�erent 
andidate sele
tion methods work.A new survey 
arried out by the �lm 
ompanies indi
ates that only seven of the109 torrent �les named in the 
ase had been taken o� The Pirate Bay, all ofwhi
h remained available via other sites.2.3.1 N-gramsThe simplest 
andidate sele
tion method used in this report is based on N-gramsand is also used in [12, 7, 17℄. It extra
ts sequen
es of up to n tokens. In thisreport n = 3, sin
e investigations on the 
orpora show that keyword of four ormore tokens are rare (table 2.3). Also, the number of 
andidates extra
ted byN-grams in
reases dramati
ally with large values of n.Table 2.3: The number of keywords 
onsisting of a 
ertain number of tokens(
olumns) for ea
h 
orpus. 1 2 3 4 5 6 7 8Inspe
 1 937 6 065 2 652 650 135 31 9 2NUS 379 623 168 50 17 3Medi
in 3 072 381 102 22 2So
ialstyrelsen 3 345 222 18 2 1The only 
andidates that get �ltered, are those that start or stop with astopword (in
luding single token sequen
es).An example of what the N-grams method extra
ts is shown in the box below:new survey 
arried �lm 
ompanies indi
atesnew survey 
arried 
ompaniesnew survey 
arried �lm 
ompanies indi
atessurvey �lm 
ompanies indi
ates13



2.3.2 Part-of-Spee
hA PoS tag is a label assigned to a word that 
ontain information of whi
h lexi
al
lass the word belong to and its in�e
tion, for example a singular or plural noun.The box below show a senten
e tagged with PoS tags:aDT newJJ surveyNN 
arriedVBD outRP byIN theDT �lmNN
ompaniesNNS indi
atesV BZ thatIN onlyRB sevenCD ofINtheDT 109CD torrentNN �lesV BZ namedV BN inIN theDT
aseNN hadV BD beenV BN takenV BN ofIN TheDT PirateNNPbay,NNP allDT ofIN whi
hWDT remainedVBD availableJJviaIN otherJJ sites.NNSThe same word 
an have di�erent meanings depending on the 
ontext, there-fore the tagger take the surrounding words into a

ount when assigning the tag.An example is the word �play� that 
an be either a noun or verb depending onthe 
ontext. In the senten
e �I want to play� it is a verb and in the senten
e �Iwent to a play� it is a noun.The PoS tags are used in two aspe
ts in this report: to extra
t 
andidatesthat mat
h 
ertain PoS patterns [7, 16, 21℄ and as keyword features [7℄ (see
hapter 2.4).The patterns used to extra
t 
andidates where found by examining the pat-terns of the keywords in the training data. If a pattern o

urred ten times ormore in the training data, it was in
luded in the 
andidate sele
tion.The most 
ommon patterns for English and Swedish and their explanationsare shown in table 2.4. A 
omplete list of the PoS tags used to extra
t 
andidates
an be found in appendix A.Table 2.4: The English and Swedish PoS tags are shown in the left table. PoStag des
riptions are shown in the right table.English Swedish Tag Des
riptionjj nn nn nn Noun, Singularnn nn nnp nns Noun, Pluraljj nns jj nn jj Adje
tivenn jj vb Verb, Base Formnn nns nn kn nn nnp Proper Noun, Singularjj nn vb kn Coordinating Conjun
tionnnp p
 p
 Parti
lenns p
 nn pp Prepositionnnp nn nn kn jjjj nn nns nnp nnpnn nn nn nn pp nn
14



An example of what the PoS 
andidate sele
tion method extra
t is shown inthe box below:new survey �lm torrent baysurvey �lm 
ompanies 
ase pirate bay�lm 
ompanies pirate other sites2.3.3 Noun Phrase-ChunkingNP-
hunking is the pro
ess of �nding phrases whose head is a noun or propernoun, optionally a

ompanied by a set of modi�ers. Similar to the PoS 
andidatesele
tion method, it sear
hes for patterns in the PoS tags of the words in asenten
e. The major di�eren
es are that NP-
hunking use a grammar insteadof prede�ned patterns and that the 
andidates are restri
ted to noun phrases.The grammar is used to redu
e a senten
e into a minimum number ofphrases, the goal is to �nd nouns and proper nouns with all their respe
tivemodi�ers. Longer phrases are preferred whi
h is 
onsistent with a minimumnumber of phrases.In the implementation of NP-
hunking in this proje
t, a post pro
essingstage is in
luded that removes opening determinants[7℄, su
h as �the�, �a� and�an�, and �lters 
andidates that are stopwords. The senten
e �A new survey�will be redu
ed to �new survey�. This is motivated by that the determinant doesnot 
ontain any relevant information.An example of what the NP-
hunking 
andidate sele
tion method extra
t isshown in the box below:new survey torrent other sites only seven�lm 
ompanies 
ase pirate bay2.4 Keyword features and 
andidate abstra
tionThe Naive Bayesian Classi�er, Arti�
ial Neural Networks and Support Ve
torMa
hines are similar, they attempt to 
reate an optimal separation of data.In order to 
reate separable data from a set of 
andidate keywords, ea
h
andidate keyword is abstra
ted into a numeri
al ve
tor where a dimensionrepresents a 
ertain feature. A feature is a property or attribute of a 
andidatethat is used as a keyword indi
ator (derived through empiri
al studies), e.g. ifthe 
andidate is in the title of a do
ument or if it has a high TFIDF s
ore. Usingthe ve
tor representation for 
andidates, the 
lassi�ers 
an 
reate a separationbetween those that are keywords and those that are not.This proje
t use boolean features, values of either 0 or 1. It is also possibleto use real values but this has both advantages and disadvantages. It 
an helpthe 
lassi�ers 
reate a more a

urate separation of data, but at the same time15



they will be more prone to over�tting and training the 
lassi�ers take longertime.Certain numeri
al measures (e.g. TFIDF) are 
onverted into a set of binaryfeatures by applying a number of intervals. The feature �TFIDF High� is 1 ofthe normalized TFIDF value is in the interval: 0.9 ≤ TFIDF ≤ 1.0 and 0otherwise.The TFIDF s
ore and �rst- and last o

urren
e values are normalized,mainly due to the reason that do
uments 
an vary heavily in length.A list of the features used in this proje
t is presented in table 2.5.Table 2.5: Keyword features. All mentions of TFIDF s
ores are normalizedwithin every do
ument. Tags su
h as (jj/nn) means that an adje
tive or a nounis a

eptable at the given position.Feature Additional info Des
riptionTFIDF High 0.9 ≤ TFIDF ≤ 1.0TFIDF Mid/High 0.7 ≤ TFIDF < 0.9TFIDF Low/Mid 0.3 ≤ TFIDF < 0.7TFIDF Low 0.1 ≤ TFIDF < 0.3Relative First O

urren
e 0 ≤ F.O ≤ 0.1

First o

urren
e of 
andidateis within �rst 10% of thedo
umentRelative Last O

urren
e 0.9 ≤ L.O ≤ 1.0

Last o

urren
e of 
andidateis within last 10% of thedo
umentIn Title If the 
andidate 
an be foundin the titleStarts Senten
e If the 
andidate at anylo
ation in the do
umentstarts a senten
eA
ronym If the 
andidate 
ontains ana
ronym or a sequen
e ofwords that is a
ronymized inthe textPoS: pm Swedish Tags are explained in table 2.4PoS: nn SwedishPoS: jj (jj/nn) (jj/nn) nn EnglishPoS: nn jj nn nn EnglishPoS: (jj/nn) vb nn EnglishPoS: (jj/nn) (jj/nn) nn EnglishPoS: (jj/nn) nn EnglishThe TFIDF measure is a good enough feature to be used on its own whenextra
ting keywords (see appendix B.3). It is used by Hulth[7℄ but as twoseparate features: TF and IDF. 16



The �rst- and last o

urren
e features are based on the layout of a
ademi
papers, where the beginning and end are usually dense in information. Key-words are likely to appear in abstra
ts and introdu
tion se
tions, as well asin summaries. These se
tions tend to summarize the 
ontent of a paper in a
ondensed manner.Titles of papers and se
tions give a short and information dense des
riptionof what the up
oming text will deal with. A good example is the title of thisMaster Thesis: �Keyword extra
tion using Ma
hine Learning�. In this reportonly do
ument titles were taken into a

ount, the notation for 
hapter andse
tion titles are too spe
i�
 for ea
h individual text to be 
onsidered.Tests showed that if a word starts a senten
e it is likely to be a keyword.When starting a new se
tion or 
hapter, a keyword often starts the �rst senten
e.An example from this report is: �Word frequen
y is the baseline ...�.Experiments also indi
ated that abbreviated phrases were likely to be key-words.

17



Chapter 3Keyword Classi�
ationThis 
hapter des
ribes the keyword 
lassi�ers used in this proje
t. Their taskis to 
lassify a set of 
andidates, ea
h being either keyword or not keyword. Theex
eptions are the TextRank and ExpandRank 
lassi�ers, that extra
t their ownkeyword 
andidates.The 
lassi�ers 
an be divided into two groups depending on what type ofresult they produ
e. Binary 
lassi�ers divide the 
andidates into two groups:keywords and not keywords. Other 
lassi�ers 
ompute a s
ore for ea
h 
andidateand 
lassify the 
andidates with the highest s
ores to be keywords.The post pro
essing that is performed after 
lassi�
ation on a set of extra
tedkeywords is also presented in this 
hapter. It 
an remove keywords if 
ertain
onditions are met, su
h as if one keyword subsumes another.3.1 Word Frequen
yWord frequen
y1 is the baseline algorithm in this report with regard to the F-measure performan
e. It 
ounts the number of o

urren
es of ea
h 
andidateand 
lassi�es the most frequent to be keywords.Certain words in domain-spe
i�
 do
uments, that are not stopwords, mayappear more frequently than others. It is not likely that they add any infor-mation that is unique to their do
uments and are therefore not likely to bekeywords. This is a short
oming of the word frequen
y approa
h, that willdisregard this fa
t.1Synonym to �term frequen
y�
18



3.2 TFIDFThe measure was introdu
ed Karen Spär
k Jones[8℄ in 1972 and is very 
ommonin keyword extra
tion and information retrieval in general.It weighs the term frequen
y (TF) of a 
andidate keyword in a given do
-ument with its inverse do
ument frequen
y (IDF), that requires a referen
e
orpus to 
ompute.Formula 3.1 show how to 
ompute the TFIDF s
ore, where tf is the termfrequen
y, D is the total number of referen
e do
uments and d is the number ofreferen
e do
uments that 
ontain the 
urrent 
andidate.TFIDF = tf · log

(

D + 1

d+ 1

) (3.1)Adding 1 in the denominator avoid division by zero and the logarithm of thequotient is motivated for two reasons. The �rst is that di�eren
es in d be
omesless signi�
ant, espe
ially when d is small. The se
ond and most importantreason is that terms that exist in nearly all referen
e do
uments will be given alow s
ore or even a s
ore of zero if they exist in all of them.The TFIDF measure weigh 
andidates that are unique for the 
urrent do
u-ment heavier than others and avoid the problem of word frequen
y by using theIDF of a 
andidate. By using a domain-spe
i�
 referen
e 
orpus, the quality ofthe keywords 
an be improved even more due to domain-frequent words being�ltered.3.3 TextRankBased on Google's PageRank algorithm[11, 16℄, TextRank is a state-of-the-artunsupervised keyword extra
tion algorithm[5℄.PageRank 
onstru
t a 
o-o

urren
e graph where nodes represent web sitesand edges are links. A formula to 
ompute the s
ore of ea
h node is appliediteratively until they have all stabilized. A high s
ore 
an be a
hieved by linkingand being linked to by other sites with a high s
ore.TextRank 
onstru
t a 
o-o

urren
e graph where the nodes are the uniquenouns, proper nouns and adje
tives of a do
ument. The edges are 
reated bymoving a �xed size window, of size 2 to 20 words, over the senten
es of thedo
ument. An edge of weight zero is put between every pair of nodes whosewords are within the window at any point and its weight is in
remented by onefor ea
h 
o-o

urren
e.Formally, let G = (V,E) be an undire
ted graph with a set of verti
es V andset of edges E, where E is a subset of V ×V . Ea
h vertex represent a word andhold a positive s
ore and every edge hold a positive weight. For a given vertex
Vi, let Adj(Vi) be the set of adja
ent verti
es to Vi.
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�Figure 3.1: Example of a 
o-o

urren
e graph.Experiments using a dire
ted graph were performed in [16℄, where the di-re
tion of an edge was de
ided by the sequen
e of the words. If w1 pre
ede w2there will be an edge from w1 to w2. The results did now show any signi�
antdi�eren
e, therefore the undire
ted approa
h was used in this report.The word s
ore is 
al
ulated using formula 3.2, where d is a damping fa
torand is set between 0 and 1 and wij is the weight of the edge between nodes
Vi and Vj . The re
ommended value for d is 0.85 [11, 16℄ but in this proje
tthe value is set to 0.01, whi
h gave better results. This value was derived fromempiri
al studies.

S(Vi) = (1− d) + d ·
∑

Vj∈Adj(Vi)

wij
∑

Vk∈Adj(Vj)

wjk

S(Vj) (3.2)Formula 3.2 is applied iteratively on the nodes of the graph until the s
oreshave all stabilized. The words with the highest s
ore are sele
ted for the nextstage of the pro
ess, whi
h is to merge them into the phrases that will be thekeywords of the 
urrent do
ument.A word 
an be merged with another word or phrase if they are adja
ent atany pla
e in the do
ument and if the di�eren
e in word s
ore does not ex
eeda set threshold value. When a merging o

ur, the s
ore of the new phrase is
omputed a

ording to formula 3.3, where w1, w2 are the words/phrases tomerge, size return the number of tokens of a phrase and termSize is de�ned asin formula 3.4.S
ore = 2 ·
w1 · w2

w1 + w2
· termSize(size(w1) + size(w2)) (3.3)termSize(k)=









2 = 3

3 = 2else = small number (3.4)Formula 3.3 is inspired by the properties of the F-measure, the lowest pa-rameter value dominates the output. This is useful when merging high- andlow s
ore words, the word with high s
ore might be more worth extra
ting as asingle token keyphrase. 20



The termSize fun
tion is language dependent and 
onform to the number oftokens in the keywords for ea
h language (table 2.3). The English 
orpora tendto have keywords of two or three tokens and a vast majority of the keywords inthe Swedish 
orpora are single tokens. Formula 3.4 show the English version.3.3.1 ExpandRankAn extension of TextRank is the ExpandRank algorithm[21℄, that use neigh-borhood knowledge to extra
t keywords. The knowledge is represented by the
k most similar do
uments from a referen
e 
orpus and is used to 
onstru
t anextended graph.Formally, let d0 be the 
urrent do
ument, let d1, ..., dk be the k most sim-ilar do
ument with regard to d0 and let D = {d0, d1, .., dk} be the expandeddo
ument set used to build the extended graph.The k most similar do
uments are retrieved by 
omputing the 
osine sim-ilarity (formula 3.5) on ve
tor representations ~di of the 
urrent do
ument andthe do
uments of a 
orpus. Ea
h dimension in the ve
tor 
ontain the TFIDFs
ore for a 
ertain word in the do
ument.

simdoc(~di, ~dj) =
~di · ~dj

||~di|| ||~dj ||
(3.5)The 
ontribution of a neighborhood is altered edge weights. The weight ofthe edge between nodes vi, vj is given by formula 3.6, where count(vi, vj) is thenumber of 
o-o

urren
es of words vi, vj in neighborhood do
ument dp. Theweight 
ontribution is regulated by the 
osine similarity where similar do
u-ments will add more weight for every 
o-o

urren
e than unalike do
uments.

wij =
∑

dp∈D

simdoc( ~d0, ~dp) · count(vi, vj) (3.6)In [21℄ edge weights are normalized for ea
h vertex. Tests performed for thisreport showed that it resulted in a lower F-measure.3.4 Naive Bayesian Classi�erThe purpose of implementing the Naive Bayesian Classi�er (NBC) was mainlyto provide a knowledge representation[4℄ for the KBANN 
lassi�er (see se
tion3.5.1). When the ne
essary fun
tionality was written, it was easy 
onverting itto a standalone 
lassi�er.This 
lassi�er use probabilisti
 models built from training data to 
lassify
andidate keywords. Su
h a model 
ontain the probabilities of ea
h feature (pre-sented in se
tion 2.4) being either present or not present for any 
andidate. Theprobabilities are weighed together to 
reate a total probability of a 
andidatebeing a keyword. The 
andidates with the highest total probability are 
lassi�edas keywords. 21



To understand the 
omputations of the NBC, one need to understand Bayestheorem (formula 3.7). Given two independent events A and B, the posteriorprobability P (A|B) of A 
an be 
omputed from the prior probability P (A), theeviden
e P (B) and the distribution fun
tion P (B|A) (the probability of B given
A).

P (A|B) =
P (B|A) · P (A)

P (B)
(3.7)Suppose that there are several given events B1, ..., Bn instead of just one.To 
ompute this posterior probability would be very 
omplex and therefore anassumption is made that the events B1, ..., Bn are all 
onditionally independent.The posterior probability of A 
an now be rephrased in formula 3.8. Note thatthe denominator does not depend on A and 
an therefore be removed sin
e itis 
onstant.

P (A|B1, ..., Bn) = P (A)

n
∏

i=1

P (Bi|A) (3.8)In the 
ase of the NBC there are several given boolean features (events)
F1, ..., Fn, where Fi ∈ {0, 1} for i ∈ {1, ..., n} and C is the event that the
urrent 
andidate is a keyword. This is depi
ted in formula 3.9 whi
h is a dire
ttranslation of formula 3.8.

P (C|F1, ..., Fn) = P (C)

n
∏

i=1

P (Fi|C) (3.9)Formula 3.9 is in
orre
t be
ause the denominator from formula 3.7 is not
onstant and 
annot be removed. A feature 
an either be present Fi = 1 or notpresent Fi = 0 and the fa
tor within the produ
t symbol need to be 
hangeda

ordingly. This is shown in formula 3.10.
P (C|F1, ..., Fn) = P (C)

n
∏

i=1

Fi · P (Fi = 1|C) + (1− Fi) · P (Fi = 0|C)

Fi · P (Fi = 1) + (1− Fi) · P (Fi = 0)
(3.10)Ea
h fa
tor within the produ
t symbol in formula 3.10 now states how strongof an indi
ator the 
urrent feature is. A fa
tor of 2 doubles the probability of a
andidate being a keyword, while a fa
tor of 1

2 halves it.For the NBC to fun
tion it is vital to use dis
retized features. If real valuefeatures would have are used instead, su
h as TFIDF s
ore, the hypothesis spa
ewill grow in�nitely large. In theory, all possible 
andidates 
an have di�erentTFIDF s
ores, whi
h will lead to a serious over�tting issue.
22



3.5 Arti�
ial Neural NetworkThe purpose of this 
lassi�er was to experiment with the 
onne
tion betweendomain knowledge and redu
ed training times. It is based on an ANN and usethe the 
andidate ve
tor representation as input to the network who 
lassi�esthe 
andidate.The network used in this report is a multilayered per
eptron network. Aper
eptron is a simple mathemati
al model of the neuron devised by M
Cullo
hand Pitts[13℄. It holds a hyperplane represented by a weight ve
tor and 
an betrained or adjusted to separate data e�e
tively.Formally, let x ∈ R
n be the input ve
tor and w ∈ R

n be the weight ve
tor.The output of a per
eptron is given by ~x · ~w + b, where b is the bias weight ofthe per
eptron. It 
an also be expressed as a sum (formula 3.11).
b+

n
∑

i=0

xi · wi (3.11)The per
eptron output is passed to an a
tivation fun
tion that squashes itto a boolean value, a
tive (1) or ina
tive (-1).A multilayered per
eptron network is a dire
ted a
y
li
 graph where per
ep-trons are divided into layers of three 
ategories: the input layer whose outputis the given input ve
tor, an unde�ned number of hidden layers that ea
h mayvary in number of per
eptrons and the output layer that 
al
ulate the outputfor the network. If the network output is 1, the 
urrent 
andidate is 
lassi�edas a keyword.An example ar
hite
ture for an ANN 
an be seen in �gure 3.2, where theinput nodes are represented by squares. Normally the input layer is fully 
on-ne
ted with the hidden layer, just as the hidden- and output layer are.The ANN training methods are des
ribed in se
tions 3.5.2 and 3.5.3.

Figure 3.2: The KBANN ar
hite
ture used in this proje
t. Input node A is pairedup with the other input nodes B, C and D with the hidden nodes X, Y and Z.23



3.5.1 Knowledge Based Arti�
ial Neural NetworkA KBANN is an ANN where domain knowledge is used to initialize the weightsof the neurons in the network, instead of using random values.The purpose of using domain knowledge is to redu
e the training time, whi
hhas been shown to be e�e
tive in [4℄. It 
an also avoid lo
al optima simplybe
ause the starting point is likely to be a shorter distan
e from the targethypothesis than a random starting point (�gure 3.3).

Figure 3.3: The pi
ture represents the hypothesis spa
e. The shaded area is thetarget hypothesis. By using domain knowledge the starting hypothesis is likelyto lie 
loser than the hypothesis that is initialized randomly. The training time
an be redu
ed signi�
antly using this method.The stru
ture of the network used in this report is inspired by [4℄. The
onne
tions from the input layer to the hidden layer are made up of every pairof nodes in the input layer su
h that no node is paired up with itself and nonode is paired up with another node representing a feature of the same 
ategory.This is motivated sin
e at most one TFIDF feature and at most one PoS feature
an be present for any 
andidate. The goal is to �nd strong 
ombinations offeatures.
woj = P (C|Fj = 1) (3.12)The weights of the 
onne
tions to the hidden layer is retrieved from the NBCand is the posterior probability of the 
urrent 
andidate being a keyword giventhe presen
e of the asso
iated feature. This is shown in formula 3.12, where Cis the event that the 
urrent 
andidate is a keyword and Fj is the j :th feature.The rest of the weights in the network are initialized to a random value in theinterval [−1, 1]. 24



3.5.2 Ba
kpropagationBa
kpropagation is a 
ommonly used optimization method for multilayer per-
eptron networks.Given a set of training data the algorithm employs gradient des
ent to mini-mize the error between the 
lassi�
ation- and target values in the training data.The error is 
al
ulated on the output nodes and is propagated ba
kwards to thenodes 
onne
ted to the 
orresponding output node.In this report the weight de
ay and weight momentum extensions were im-plemented.Algorithm 3.1 Ba
kpropagation[10℄Input: A multilayer feed-forward network, a set of training data.Output: An optimized feed-forward network based on the set of training data.Ea
h training example (~x,~t ) 
onsist of the input ve
tor ~x and the output ve
tor
~t. Network weights are represented with wij , where i is the layer index and j isthe node index. ~o is the output ve
tor for the network.Errors are denoted by δk and δh, where k represents a node in the output layerand h represents a node in the hidden layer. The input from node i into node jis denoted by xji.Constants: η is the learning rate, α is the weight momentum, ǫ is the weightde
ay.
• Loop until some termination 
riteria is met� For ea
h training example (~x,~t ) do1. Cal
ulate the output ~o for the input ve
tor ~x2. For ea
h network output unit k, 
al
ulate its error term δk

δk ← tk − ok3. For ea
h hidden unit h, 
al
ulate its error term δh

δh ← oh(1− oh)
∑

k∈outputs

wkhδk4. Update the network weights
wji ← wji + (1− ǫ)∆wjiwhere

∆wji = ηδjxji + α∆wji(n− 1)

∆wji(n− 1) is the update on the previous iteration update.25



Weight de
ay[6℄ is used to neutralize large weight updates. The formula
(1− ǫ), where 0 ≤ ǫ < 1 is a 
onstant, is added to the weight update statement.
ǫ de
ides how mu
h of the update to remove. Small updates will not be a�e
tedby the weight de
ay.Weight momentum[10℄ is used to avoid the algorithm getting stu
k in lo
aloptima and is based on the physi
al idea of inertia. When 
al
ulating theweight update, the update value in the previous iteration is taken into a

ount.This makes the weight 
ontinue to head towards the dire
tion it was headingin the past iteration. The formula α∆wji(n− 1) is added to the weight updatestatement, where 0 < α < 1 is a 
onstant and ∆wji(n− 1) is the update valuefrom the previous iteration.3.5.3 Parti
le Swarm OptimizationThe original algorithm was dis
overed while attempting to simulate so
ial be-havior for individuals in a group and was simpli�ed after the parti
les wereobserved to be performing optimization[3℄.The Parti
le Swarm Optimization (PSO) algorithm holds a populations ofparti
les, ea
h of whi
h have a position and a velo
ity in a sear
h spa
e. Boththe positions and velo
ities of the parti
les are initialized to a random value andare subsequently updated in a randomized manner. The updated velo
ity of aparti
le depends on three fa
tors: the previous velo
ity and the 
ognitive- andso
ial fa
tors.The previous velo
ity is weighed with an inertia weight [20℄, whi
h usuallyde
reased from about 1.4 to about 0.4 over the 
ourse of an optimization. Thisfavors exploration in the early stages and exploitation in the later stages of anoptimization.The 
ognitive fa
tor steer ea
h parti
le towards its own best position, whilethe so
ial fa
tor steer them toward the swarm best position. Ea
h of thesefa
tors are weighed by a random number in the interval [0,1℄ to make thebehavior of the parti
les more sto
hasti
.The implementation of PSO in this proje
t has been extended with fun
tionstret
hing [19℄ in order to avoid lo
al optima. When the algorithm is stu
k in alo
al optima, the �tness fun
tion undergoes a two stage transformation withoutdestroying any optima that is better than 
urrent best and the algorithm isrestarted. The algorithm is 
onsidered to be in a lo
al optima if the best solutionis not improved in a 
ertain number of iterations (default is 300). If no bettersolution is found in another set of iterations, it is believed that the global optimahas been found.
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Algorithm 3.2 Basi
 Parti
le Swarm Optimization[20℄Input: A multilayer feed-forward network, a set of training data.Output: An optimized feed-forward network based on the set of training data.The fun
tion to optimize is denoted by f : Rn → R. P is the set of parti
lesand N = |P | is the number of parti
les. xij ∈ R is the position of parti
le i inthe j:th dimension and vij ∈ R is the velo
ity of parti
le i in the j:th dimension.The best position for parti
le i is denoted pbi and sb is the swarm best. r, r1and r2 are uniform random number in the interval [0, 1] and c1, c2 are 
onstantssu
h that c1 + c2 < 4. w is the inertia weight.
• For ea
h parti
le i ∈ P1. Initialize parti
le positions, velo
ities and personal bests(a) xij ← xmin + r(xmax − xmin), i ∈ {1, .., N}, j ∈ {1, .., n}(b) vij ← −

1
2 (xmax − xmin) + r(xmax − xmin), i ∈ {1, .., N}, j ∈

{1, .., n}(
) pbi ← xi2. Initialize swarm best: sb← arg min (∀p ∈ P.f(p))3. Loop until some termination 
riteria is met� For ea
h parti
le i ∈ P and dimension j ∈ [1, n](a) Update velo
ity, vij ← wvij+c1r1(pbij−xij)+c2r2(sbj−xij)(b) Restri
t velo
ities su
h that |vij | ≤ vmax(
) Update position, xij ← xij + vij(a) Update parti
le best: if f(xi) < f(pbi) then pbi ← xi(b) Update swarm best: if f(pbi) < f(sb) then sb← pbi(
) Update inertia weight: if w > wmin then w← 0.99wFigure 3.4 shows an attempt at minimizing a fun
tion where the algorithmhas gotten stu
k in a lo
al minimum. It also shows the two transformationstages where the lo
al minimum is transformed into a global maximum, withoutaltering the two global minima.
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(a) Unmodi�ed fun
tion: f(x) = sinc(x).

(b) Stage 1

(
) Stage 2Figure 3.4: The unmodi�ed sin
 fun
tion and the two stages of the fun
tionstret
hing transformation. The algorithm is stu
k in lo
al optima at the dot,the global optima 
an be seen to the right of the dot. Note that they remainunaltered, the s
ale on the y-axis has 
hanged from �gure 3.4a.28



The extended PSO algorithm has been tested against several fun
tions witha high number of lo
al optima with very good results (> 99.9% a

ura
y), inthis proje
t and in [19℄. One su
h fun
tion is Levy No 5 with 760 lo
al and onlyone global optima in the [−10, 10]2 interval.The ANN is 
onverted into a ve
tor using its weights and then optimizedby the PSO algorithm. The F-measure is used as the �tness fun
tion and ismaximized.3.6 Support Ve
tor Ma
hineIntrodu
ed in 1995 by Vapnik [18℄, Support Ve
tor Ma
hines (SVMs) has madea big impa
t on the a
ademi
 world and the number of papers on the subje
texploded around 2000 [1℄.The SVM is a binary 
lassi�er, it sorts ea
h 
andidate into one of two 
at-egories: keyword or not keyword. Given a set of training data, the SVM buildsa model 
onsisting of a hyperplane that 
an separate unseen data and that alsomaximizes the margin between the two 
lasses.

Figure 3.5: An illustrative example of a separating plane.Not all sets of training data are separable in the input spa
e, the SVM solvesthis problem by mapping the data into a higher dimension 
alled a feature spa
e.On
e the data is mapped to the feature spa
e, the SVM 
an use a hyperplane toperform a linear separation of data that was not linearly separable in the inputspa
e, but is in the feature spa
e.The fun
tion used to map the data into a feature spa
e is 
alled a kernelfun
tion. There are several types of kernel fun
tions who perform di�erently ondi�erent sets of data. 29



The SVM used in this report was implemented using Weka2, due to 
omplex-ity and time 
onstraints. It uses the 
andidate ve
tor representation des
ribedin se
tion 2.4 and the kernel fun
tion used is the Radial Basis Fun
tion (RBF).The only parameter optimization was whi
h weight to assign the instan
es oftraining data 
lassi�ed as keywords, whi
h utilizes the PSO algorithm (see se
-tion 3.5.3).3.7 EnsemblesThe 
on
ept of ensemble learning is to sele
t a 
olle
tion of 
lassi�ers and 
om-bine their predi
tions, hopefully improving the result 
ompared to using a single
lassi�er.Ea
h individual 
lassi�er makes a predi
tion about the 
lassi�
ation of aninstan
e. The predi
tions 
an be 
ombined in di�erent ways to produ
e a result.Using majority vote, at least half of the 
lassi�ers need to 
lassify an instan
eas positive in order for the ensemble 
lassi�
ation to be positive. Two more ex-amples is if any (union) or all (interse
tion) of the 
lassi�ers predi
t an instan
eto be positive, the ensemble 
lassi�
ation will also be positive.In order for ensemble methods to be e�e
tive, ea
h 
lassi�er either need tobe trained on di�erent subsets of training data or on the same training databut with di�erent representations. An example is to train three 
lassi�ers ondi�erent sets of 
andidate keywords: N-grams, PoS and NP-
hunks.3.7.1 RegressionThis is an ensemble method 
onsisting of non-binary 
lassi�ers. Ea
h 
andidatere
eive a s
ore from ea
h 
lassi�er, whi
h are 
ombined to a total s
ore for ea
h
andidate.This 
lassi�er ensemble was an attempt to mimi
 Hulth's impressive resultsin [7℄, that rea
hed an F-measure of 45.5.The regression ensemble was 
reated using three di�erent NBC 
lassi�ers,one for ea
h 
andidate sele
tion method. The NBC 
lassi�er was sele
ted be-
ause it is the best regressive 
lassi�er, better than word frequen
y and TFIDF.When 
lassifying do
uments, three sets of 
andidates are extra
ted. Ea
h
lassi�er give a s
ore to ea
h 
andidate in their 
andidate set and then thes
ores are added for ea
h unique 
andidate. If a 
andidate is sele
ted by several
lassi�ers, it has a higher 
han
e of being 
lassi�ed as a keyword.2http://www.
s.waikato.a
.nz/~ml/weka/
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3.8 Post Pro
essingThe post pro
essing takes pla
e after a set of 
andidates have been 
lassi�ed.The purpose is to eliminate redundant keywords if 
ertain 
onditions are met.Keywords 
an be removed if they are 
ompletely subsumed by another andif the subsumed keyword does not o

ur enough times on its own.For example, two of the keywords extra
ted from a do
ument are: �advi
e�and �s
ienti�
 advi
e�. The �rst o

ur six times while the se
ond o

ur �vetimes. Not only does the �rst keyword only o

ur on
e by itself but the se
ond
ontain more information, whi
h makes it more spe
i�
 to the 
urrent do
ument.The assumption is made that the �rst keyword 
an be removed safely, withoutlowering the quality of the result.This pro
ess is also performed by Hulth[7℄, but without 
onsidering thenumber of stand alone o

urren
es.
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Chapter 4ResultsIn this 
hapter the results obtained in this proje
t are presented, they are also
ompared to results published in other papers. All pre
ision-, re
all- and F-measure values throughout this report are shown in per
ent.4.1 Performan
e evaluationThe best result for ea
h 
lassi�er for the main English 
orpus and the mainSwedish 
orpus is presented in this se
tion.Extensive result tables 
an be found in appendix B. They 
ontain results forthe 
andidate sele
tion methods without atta
hed 
lassi�ers, all 
ombinations of
andidates and 
lassi�ers, results for the two remaining 
orpora (So
ialstyrelsenand NUS) and approximate running times for 
lassi�
ation and training.The Word frequen
y, TFIDF, TextRank, ExpandRank and NBC 
lassi�erswere instru
ted to extra
t as many keywords as ea
h do
ument has been manu-ally assigned during these experiments. The KBANN and SVM 
lassi�ers 
on-form themselves to the number of manually assigned keywords in the trainingdata. These approa
hes will be dis
ussed in se
tion 5.4.3.The experiments with the Word frequen
y, TFIDF, TextRank and ExpandRank
lassi�ers are 
lassi�
ation of full 
orpora sin
e they are unsupervised methods.They do not utilize the manual keywords of the training data in 
lassi�
ationof do
uments. The TFIDF 
lassi�er needs a referen
e 
orpus to 
al
ulate theIDF, but is independent of the 
orpora used in this report.The results presented for the NBC, KBANN and SVM 
lassi�ers are theaverage over ten runs of 10-fold 
ross validation in order to avoid over�tting.The results presented for the ensemble 
lassi�ers are from single runs of 10-fold
ross validation.Table 4.1 and 4.2 show the results for the main English and main Swedish
orpora respe
tively.
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Table 4.1: Results for the Inspe
 
orpus. The best result are shown in bold.Assign. Assign. Corr. Corr. P R FClassi�er tot. mean tot. meanWord frequen
y 14 555 7.32 3 703 1.86 25.45 25.45 25.45TFIDF 14 555 7.32 3 966 1.99 27.25 27.25 27.25TextRank 14 555 7.32 4 627 2.33 31.84 31.84 31.84ExpandRank 14 555 7.32 4 423 2.22 30.41 30.41 30.41NBC 14 555 7.32 5 101 2.57 35.05 35.05 35.05KBANN-BP 49 405 24.85 8 919 4.49 18.06 61.28 27.89KBANN-PSO 23 384 11.76 7 341 3.69 31.39 50.44 38.70SVM 23 869 12.01 7 452 3.75 31.22 51.20 38.79Regression 27 353 13.76 8 136 4.09 29.74 55.90 38.82KBANN ensemble 23 503 11.82 7 380 3.71 31.40 50.70 38.78KBANN-TextRank 29 668 14.92 8 371 4.21 28.22 57.51 37.86Table 4.2: Results for the Medi
in 
orpus. The best result are shown in bold.Assign. Assign. Corr. Corr. P R FClassi�er tot. mean tot. meanWord frequen
y 3 587 5.35 753 1.13 21.00 21.00 21.00TFIDF 3 587 5.35 1 047 1.57 29.19 29.19 29.19TextRank 3 587 5.35 693 1.04 19.32 19.32 19.32ExpandRank 3 587 5.35 318 0.48 8.87 8.87 8.87NBC 3 587 5.35 1 046 1.56 29.17 29.17 29.17KBANN-BP 51 775 77.16 1 292 1.93 2.86 36.02 5.30KBANN-PSO 2 760 4.11 9 90 1.48 35.87 27.60 31.20SVM 2 667 3.97 9 76 1.45 36.60 27.21 31.21Regression 3 278 4.89 1 016 1.51 31.00 28.33 29.60KBANN ensemble 2 292 3.42 884 1.32 38.57 24.65 30.08KBANN-TextRank 8 207 12.23 1 297 1.93 15.81 36.16 22.00
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4.2 Comparative evaluationTable 4.3 show results reported in other papers that in�uen
ed this proje
t andthat is (or was) state-of-the-art.Table 4.3: Results from other sour
es. The best a
hieved result in this proje
tfor the Inspe
 
orpus is also presented at the top of the table. Note that theInspe
 
orpus was not split in 
onstant sets of training and validation data inthis proje
t, 
ross validation was used instead. This a

ounts for the largernumbers of assigned keywords and number of 
orre
t keywords.(* Uses the same 
orpus, �ve keywords extra
ted per do
ument.)Assign. Assign. Corr. Corr. P R FSour
e Tot. Mean Tot. Mean CorpusThis proje
t 23 869 12.0 7 452 3.8 31.2 51.2 38.8 Inspe
2 667 4.0 976 1.5 36.6 27.2 31.2 Medi
inHulth[7℄ 5 380 10.8 2 093 4.2 38.9 54.8 45.5 Inspe
TextRank[16℄ 6 784 13.7 2 116 4.2 31.2 43.1 36.2 Inspe
ExpandRank[21℄ 28.8 35.4 31.7 DUC2001GenEx[17℄ 29.0 CustomKEA[12℄ 27.0 CustomFast ESP 15 509 8.0 3 090 1.6 19.9 26.9 22.9 Inspe
Fast ESP 10 067 15.0 446 0.7 4.4 12.4 6.5 Medi
inSour
e SettingsThis proje
t NP-
hunk 
andidates, SVM 
lassi�erPoS 
andidates, SVM 
lassi�erHulth[7℄ RegressionTextRank[16℄ Undire
ted, Co-o

,window=2ExpandRank[21℄ Neighborhood of 5 do
umentsGenEx[17℄ Journal, Experiment 2 *KEA[12℄ Journal *Fast ESP Semanti
 PipelineFast ESP Semanti
 Pipeline
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Chapter 5Dis
ussionThis 
hapter dis
uss the 
orpora and 
omponents of the proje
t, the results anddi�erent evaluation methods.5.1 CorporaIn this se
tion the properties of the 
orpora used in this report are dis
ussedand also the impli
ations that follow.Due to the high density of keywords and low noise level in the Inspe
 
orpus,better results should be obtained 
ompared to the other 
orpora. It is also likelythat the quality of the manual keywords, possibly the highest amongst the used
orpora, in�uen
ed the result.There are suspi
ions that the low keyword density the high noise level in NUSwas the reason for the signi�
antly worse results 
ompared to the other 
orpora.The low number of do
uments also 
aused the biggest drop in F-measure when
omparing results from the 
ross validation tests and results obtained whenusing the full 
orpus as both training- and validation data (from an F-Measureof 26-27 to 23).Both of the Swedish 
orpora have a noise level higher than Inspe
 but lowerthan NUS, whi
h is likely to a�e
t the results negatively.Using a general 
orpus to 
ompute IDF s
ores 
an improve performan
esigni�
antly[7℄. The purpose is that the language 
over a wider spe
trum thana domain-spe
i�
 
orpus and it would be interesting to experiment with a 
orpus
ontaining e.g. newspaper arti
les. It is also possible to 
ombine a general- anda domain-spe
i�
 
orpus to 
al
ulate IDF s
ores, this 
ould possibly improveresults even more.
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5.1.1 Manual keywordsDue to the statisti
s of PoS patterns (appendix A) and the number of tokens(table 2.3) of the keywords of the 
orpora used in this proje
t, the quality ofthe manual keywords 
an be questioned.Some manual keywords for Inspe
 have eight tokens, whi
h is more of asenten
e than a phrase. N-grams miss about 7% of the Inspe
 keywords sin
e itonly extra
ts 
andidates of up to three tokens. This property is also observablein the English PoS patterns where several patterns are four tokens long.The PoS patterns also indi
ate a poor quality of the manually assigned key-words. The lists for both languages 
ontain single adje
tive and verb. Theseword 
lasses 
an be questioned as keywords, sin
e they do not 
ontain anyrelevant information on their own. There are also patterns that end with an ad-je
tive or verb. From a linguisti
 point of view su
h sequen
es are not legitimate(nominal) phrases and an NP-Chunker will fail to identify them.There is the possibility that tokens are tagged erroneously, a possible 
ausefor some of the odd patterns.5.2 Candidate representationThe binary ve
tor 
andidate representation turned out to be 
ru
ial for theresults obtained from the NBC, KBANN and SVM 
lassi�ers. The 
hoi
e touse binary features, instead of numeri
al, made a big impa
t on both the resultand training times.The results obtained from the 
ross validation experiments di�ered very little
ompared to when using the same data for both training and validation, the onlynoti
eable di�eren
e was for the NUS 
orpus (see se
tion 5.1). This points tolow over�tting whi
h is good.No over�tting 
an also be a sign of too low dimensionality in the data repre-sentation. If the dimensionality is too low, no 
lassi�er will be able to separateit e�e
tively. The goal is to 
reate a separation as good as possible without
ausing over�tting.If numeri
al features would have been used the dimensionality would be in-�nite, sin
e there would have been an in�nite number of possible ve
tors. Thismight make a more 
omplex and better separation of data possible, but thehigher the dimension, the harder it is for a 
lassi�er to �nd a good separa-tion. Experiments were 
ondu
ted using numeri
al features, su
h as normalizedTFIDF s
ore and also separating TF and IDF. The results did not improve andtesting be
ame extremely time 
onsuming. It is possible that further tests anddeeper analysis of the issue would yield better results.One of the biggest impa
ts of 
hoosing binary features was that the trainingtimes for the KBANN and SVM 
lassi�er were dramati
ally de
reased. Thetraining time of these 
lassi�ers is approximately proportional to the numberof training data. If using numeri
al features, the number of training data isroughly equal to the number of extra
ted 
andidates for the 
urrent full 
orpus,36



e.g. the number of NP-
hunk 
andidates for the Medi
in 
orpus is about 208000.Using binary features enables merging of equal pie
es of training data bysetting the weight to the number of pie
es of training data an instan
e a
tuallyrepresent. This also impose an upper bound on the number of training datafor ea
h language, whi
h is dependent on the number of features. For Englishthe boundary is 2240 and for Swedish it is 960. The a
tual number of trainingdata is mu
h lower, averaging about a third of the reported numbers. This isbe
ause there are 
ombinations that are very unlikely, e.g. if TFIDF High, oneof the PoS features and the rest of the mis
ellaneous features are a
tive and the
urrent 
andidate is not a keyword. This 
orresponds to a speed in
rease in theorder of 100, 
ompared to using numeri
al features.The KBANN (using PSO) and SVM 
lassi�ers report similar results andbe
ause of this there are reasons to believe that the 
lassi�ers themselves is notthe limiting fa
tor, the 
andidate representation is. If this proje
t was to berevamped, the 
andidate representation would be given mu
h needed attentionsin
e it plays su
h an important role throughout the module. For example, theresult e�e
ts and impli
it dependen
ies between the features need to be inves-tigated further. The number of features are probably too many than ne
essaryto a
hieve the results presented in this report.5.3 Individual 
omponentsIn this se
tion the interesting individual 
omponents used in this proje
t andtheir properties are dis
ussed.5.3.1 Text TokenizationThis area re
eived little attention from the very start of the proje
t. It wasde
ided early that it would not be a priority of the proje
t to develop a sophis-ti
ated text parser and it was assumed that the input to the module would bepure Uni
ode text. Also, no time was spent sear
hing an existing 
omponentthat 
ould be used in the proje
t.Changes made to the implemented parser turned out to have a great e�e
ton the F-measure. An example is splitting senten
es on 
ommas, 
olons andsemi
olons in addition to pun
tuation, question mark and ex
lamation markthat in
reased the F-measure with an average of 2%. Spending time imple-menting or �nding an existing more sophisti
ated parser would surely improvethe results further. Tokens su
h as formulas and other �non-words� 
an mostlikely be removed without removing a keyword or a part of a keyword.The only meta information 
onsidered by the parser is the title of ea
hdo
ument. This 
ould be extended with 
hapter titles, abstra
ts, and bold anditali
 text to enable more keyword features.
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5.3.2 Part-of-Spee
h and Noun Phrase-ChunkingA possible sour
e of negative in�uen
e on the results is the PoS tagger usedin this proje
t: Hunpos. The PoS and NP-
hunk 
andidate sele
tion methodsdepend on it as well as all 
lassi�ers ex
ept Word frequen
y and TFIDF. Thea

ura
y has not been measured or been veri�ed from other sour
es. It is alsothe se
ond biggest bottlene
k regarding 
lassi�
ation speed.A possible extension and improvement of the PoS 
andidate sele
tion methodis to 
onsider 
ontext when extra
ting 
andidates. The 
ontext would be repre-sented by a window, spanning a number of words before and after the phrase ofinterest. This 
ould possibly 
reate a more dis
riminating result without havingto surrender too mu
h re
all.The NP-
hunk method produ
e the best results, both as stand-alone andwhen paired up with 
lassi�ers, with a few ex
eptions. As shown in table B.1it is able to rea
h a high pre
ision while maintaining an a

eptable re
all. But,the re
all is still 
onsiderably lower than both the N-grams and PoS methodsand the share of missed keywords range between 17-32%. It would thereforebe very interesting to investigate if there are any patterns amongst the missedkeywords and 
omplement with these, if the pre
ision does not take to mu
hdamage.The NP-
hunker is the biggest bottlene
k with regards to 
lassi�
ation speed.This is understandable when 
onsidering the amount of information it needs topro
ess and the 
omplexity of the task itself due to ambiguities in the writtenlanguage and in the grammar it uses. The 
omplexity of the English NP-
hunkeris not known, but the Swedish has a 
omplexity of O(n2). It is possible thatit 
an be rewritten to be linear with a large hidden fa
tor, but it would take a
onsiderable amount of work.5.3.3 TextRank and ExpandRankThe original TextRank and ExpandRank algorithms[16, 21℄ di�er from the im-plementation used in this report, mainly in the keyword merging pro
ess. Anattempt was made to implement the original TextRank, whi
h gave similarF-measure results to the original but di�ered signi�
antly in the balan
e of pre-
ision and re
all. This version also yeilded mu
h worse overall results, but wasbetter on the Inspe
 
orpus.When the words with highest word s
ore have been sele
ted, they 
an bemerged in many di�erent ways. It is stated in [16℄ that only words that weretaken out as keywords were merged if they were adja
ent in the text. The resultswere hard to re
reate using this method on the Inspe
 
orpus.When using other methods, su
h as the one mentioned in se
tion 3.3, thatfavored keywords of token size 2 or 3 when extra
ting keywords from Englishdo
uments, the F-measure in
reased. The damping fa
tor is usually de�ned as
d = 0.85, when using this setting the implementation gave lower test results
ompared to the �nal setting of d = 0.01.38



The results in [21℄ (ExpandRank) show that using a neighborhood 
an in-
rease the F-measure. It is hard to pinpoint why the implementation used inthis report give lower results than the TextRank algorithm. They use a small,publi
ly available 
orpus 
onsisting of news arti
les that they annotated them-selves. The quality of the keywords 
an therefore be questioned and it would beinteresting to run their implementation on Inspe
 and 
ompare to the originalTextRank algorithm.Manual evaluation of the extra
ted keywords shows that the quality of thekeywords are good even though both algorithms miss the manually assignedkeywords.5.3.4 Knowledge-Based Arti�
ial Neural NetworkThe use of knowledge, in the form of feature probabilities, did give the expe
tedresults. There was no noti
eable improvement in initial F-measure nor in train-ing time. It is possible that a di�erent type of representation would be morebene�
ial, but has not been tested in this proje
t.There is room for improving the stru
ture used in the underlying ANN,espe
ially in 
onne
tion to the number of features. The goal would be to redu
ethe number of neurons as mu
h as possible without 
omprising the results. Thiswould speed up training time even more and it should be possible to at leasthalve the training time.The quality of the data separation is believed to be 
lose to optimal whenoptimizing the network with PSO. The reason for this hypothesis is that theSVM 
lassi�er show very similar results, whi
h perform very 
omplex separa-tions 
ompared to the other ma
hine learning 
lassi�ers. The suspi
ions thatthe performan
e of the KBANN 
lassi�er would be poor, mainly due to the highdimensionality of the optimization, turned out to be unfounded.Comparisons were performed between basi
 PSO and PSO enhan
ed withfun
tion stret
hing. There were 
lear di�eren
es when testing on the Levy No5 fun
tion[19℄, but would probably not have been needed when separating thedata used in this proje
t. However, the extra 
omputations needed for fun
tionstret
hing are negligible and it adds a safety net to the PSO algorithm. Noinvestigation of the 
omplexity of the data used in this proje
t was performed,simply be
ause it is very hard to do.One variant of the Ba
kpropagation algorithm that would be interesting totest is �Bat
h-BP�. The di�eren
e to the normal Ba
kpropagation algorithm isthat it evaluates the whole set of training data and then 
al
ulates an averageerror, whi
h is propagated ba
kward.5.4 Evaluation approa
hesIn this se
tion di�erent evaluation methods are dis
ussed. It is important tohave a performan
e measure that is as good as possible in order to know whi
hdire
tion that will give better results. This is espe
ially important when using39



su
h optimization algorithms su
h as Parti
le Swarm Optimization that, in thisproje
t, uses the F-measure as a �tness fun
tion.5.4.1 The F-measureIn this proje
t the F-measure is used to measure the performan
e of a keyword
lassi�er. It is the standard method for this purpose, but is far from optimal.It only gives a guarantee that the measured 
lassi�er is �at least this good� andeven then there is an assumption that the manual keywords are good.Rather than a measure of performan
e, it 
an be seen as a 
ombination ofthe level of 
onsisten
y in manual keywords and to whi
h degree some algorithmhas su

eeded in following the observed patterns in the manual keywords.This introdu
es a theoreti
al upper limit, an algorithm 
an only attempt to
onform itself to the observed patterns. If there are no 
lear patterns in theunderlying model, the 
lassi�er will perform bad. There is a deli
ate balan
ebetween following the observed patterns and avoiding over�tting. The upperbound exist in the model, namely how keyword 
andidates are represented andwhat features are a

ounted for. If low quality results are obtained, it is likelythat the model is �awed (too spe
i�
 or too general) and/or the training datais noisy.Natural language is ambiguous and written text is di�
ult to parse, this willintrodu
e errors when translating the text. An algorithm 
an only be as goodas its underlying model and a model 
an only be as good as the data it is builton.Also, just be
ause a low F-measure is a
quired does not mean that theextra
ted keywords are bad. It just means that the 
lassi�er has not been ableto follow the observed manual keyword patterns. The most a

urate methodto measure the performan
e of a 
lassi�er is probably to perform a manualsurvey, where people read do
uments and then 
ategorize the automati
allyassigned keywords into �good�, �bad� and �neither�. The primary goal shouldbe to redu
e the number of �bad� keywords and the se
ondary to redu
e the�neither� keywords. However, this pro
ess is very time 
onsuming and thereforenot interesting to use in iterative development, only to obtain a more pre
isemeasure of a �nal result.5.4.2 What 
onstitutes a keyword hit?In the training data used for this proje
t ea
h do
ument has a set of manualkeywords. When an algorithm extra
ts a keyword that is in the set of themanual keywords for that do
ument, it is 
alled a keyword hit. However, onlya

ounting for exa
t mat
hes is a very pessimisti
 approa
h.The most 
ommon method is to perform lemmatized (or stemmed) 
ompari-son, i.e. if lemmas of two phrases are equal they are 
onsidered to be equal. Thismeans that the two phrases �brown dog� and �brown dogs� are equal, be
ausethe words dog and dogs have the same lemma.40



A more optimisti
 approa
h is to also a

ount for subsuming keywords, in ad-dition to the lemmatized 
omparison. This means that if all tokens in the man-ually assigned keywords are present in the automati
ally extra
ted keyphraseand their order is inta
t, it will 
onstitute as a keyword hit. The idea behindthis approa
h is that the automati
ally extra
ted keyword is at least as spe
i�
as the manual keyword, information 
an only be added that makes it more spe-
i�
 to the 
urrent do
ument. This means that the manual keyword �dog� willbe 
onsidered equal to the automati
ally extra
ted keyword �the brown dog�.Unfortunately this means that unwanted information 
an be added in the au-tomati
ally extra
ted keywords. However, this method is still believed, by theauthors of this paper, to be a too pessimisti
 measure of the true performan
eof a keyword extra
tion algorithm.To get the most a

urate measure of an algorithms performan
e, one alsoneed to a

ount for synonyms and semanti
 relations between words. Thisis believed to be espe
ially important when 
lassifying te
hni
al papers wherewriters tend to vary their language in order to prevent repetition. The twowords �dog� and �
anine� would then be 
onsidered equal, sin
e they refer tothe same physi
al obje
t. Semanti
 relations between words 
ould also be usedto enhan
e the evaluation a

ura
y. An automati
ally extra
ted keyword is only
ompared to the manual keyword it has the strongest semanti
 relation to. Ifthe strength of the relation ex
eeds some prede�ned threshold, it 
onstitutes akeyword hit. It is also possible to a

ount for fra
tions of a hit, proportional tothe strength of the semanti
 relation.This would be a more a

urate automati
 evaluation method, but it stilldoes not a

ount for good keywords that just were not in the set of manualkeywords. Therefore, to get the most a

urate measure a manual study shouldbe 
arried out (as stated in 5.4.1).5.4.3 How many keywords to extra
t?Turney [17℄ and Frank [12℄ performed experiments where they extra
ted �veand �fteen keywords per do
ument. This does not re�e
t the performan
e ofthe 
lassi�er sin
e extremely poor keywords might get extra
ted due to a la
k ofproper 
andidates. A 
uto� value 
an be used to prevent this from happening.Zes
h and Gurevy
h[5℄ has slightly di�erent and better approa
h. Theya

ount for the result of a do
ument if the number of automati
ally extra
tedkeywords and manually assigned keywords are equal . The drawba
k of thismethod is that the number of do
uments that 
ontribute to the �nal result maybe small and thus the result may vary from 
orpus to 
orpus. To help preventthis one 
an use 
orpora with a high number of do
uments, su
h as Inspe
(≈2000 do
uments).The 
lassi�ers in this proje
t use two di�erent approa
hes to solve this prob-lem. The non-binary 
lassi�ers extra
t the same number of keyword ea
h do
-ument in the training data has been manually assigned. Note that this is onlyduring evaluation experiments, in live 
lassi�
ation the desired number of key-words is passed as a parameter to the 
lassi�er.41



The binary 
lassi�ers 
onform themselves during training to extra
t the samenumber of keywords ea
h manual do
ument has been assigned. They only ex-tra
t keywords that ful�ll their requirements. This is 
onsistent with regard tothe number of keywords and the keywords themselves assigned manually to thedo
uments in the training data as the gold standard.5.5 Result dis
ussionThe overall results of this proje
t is not be as good as initially hoped, but theyare satisfa
tory.Fast ESP, the sear
h engine used by Findwise AB whi
h has the possibility toextra
t keywords, has 
onsiderably worse performan
e than the best 
lassi�ersused in this proje
t, espe
ially for Swedish do
uments. The 
lassi�ers in thisproje
t are also faster, but they 
an only extra
t keywords. When 
lassifyingdo
uments, Fast ESP performs additional operations su
h as entity extra
tion.Be
ause of this the speed performan
e is hard to measure, but if keywords arethe only subje
t of interest there is a 
lear winner with a fa
tor of about three.Hulth's results remain impressive and is in another league than those re-ported in this proje
t. Even though the methods used in both proje
ts maylook similar, su
h as the features and 
andidate sele
tion methods, there is stilla big di�eren
e. The known di�eren
es are the PoS tagger, NP-
hunker andthe ma
hine learning algorithm. Sin
e the best 
lassi�ers show very good per-forman
e, it is believed that a big di�eren
e lies in the PoS tagger, NP-
hunkerand the 
andidate representation. It is also possible that Hulth's partitioning ofthe Inspe
 
orpus in�uen
es the result, but should not a

ount for a di�eren
emore than maybe a few per
entages in F-measure.The 
lassi�ers, espe
ially KBANN and SVM, show impressive results andwould be a strong foundation to base further work on. By optimizing the 
an-didate representation and the features it is very likely that the results wouldimprove. Another possible improvement 
ould be to test other external tools,in addition to the PoS tagger and NP-
hunker, though this would most likelylimit the supported languages to English only.The big disappointment of this proje
t is the poor results obtained fromthe di�erent ensemble methods that were tested. No 
ombination of 
lassi�ers,representations and training data gave any noti
eable improvement over single
lassi�ers what so ever. It is believed that the reason is the simpli
ity of 
re-ating a 
lose to optimal separation of the training data, every 
lassi�er in theensembles simply 
lassify nearly the same subset of 
andidates as keywords.
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Chapter 6Con
lusionThere are no known distin
t statisti
al or linguisti
 patterns for �nding key-words. Human annotators disagree to a great extent[22℄. If an obtained F-measure is too high, this is likely a result of over�tting.By using linguisti
 information in 
andidate sele
tion methods, su
h as PoSand NP-
hunking, in
reases the performan
e signi�
antly 
ompared to N-grams.Translating text into numeri
 representations is hard. Mu
h information islost when words are 
onverted into a numeri
al feature ve
tors and the generateddata is partly 
ontradi
tory.Boolean features limited the number of permutations of 
andidate ve
tors.This lowered training times drasti
ally and prevented over�tting but may havenarrowed the 
omplexity of data separation.Though simplisti
 in design, the NBC 
lassi�er is very powerful and a
hievesnear similar results to the more sophisti
ated 
lassi�ers used in this report.The TextRank 
lassi�er show great potential and 
an be 
ompared to thebest supervised algorithms. The low F-measures 
ompared to [16℄ is believedto be 
aused by a la
king implementation. Manual inspe
tion of extra
tedkeywords indi
ate good quality despite la
king results.The knowledge model used in the KBANN 
lassi�er did not meet the ex-pe
tations and the result in�uen
e, if any, was negative. A basi
 ANN wassu�
ient.Enhan
ing the PSO algorithm with fun
tion stret
hing was probably unne
-essary, 
onsidering the simpli
ity of the feature ve
tors. The extra 
omputationsare negligible and improves a

ura
y signi�
antly, whi
h 
ould prove useful inappli
ations of greater 
omplexity.The manual keywords were regarded as gold standard, but turned out to beof questionable quality. The quality of keywords extra
ted from do
uments in alive situation will be lower than if the manual keywords would have been better.This report shows that 
ombining NLP and ML algorithms 
an improvekeyword quality, 
ompared to other methods su
h as TFIDF. The results aresatisfa
tory and outperform the Fast ESP suite used at Findwise AB to date.43



6.1 Future workWith the implemented module and report as a foundation, there several im-provements and extensions that are possible to enhan
e the results:General 
orpus Employ a bigger and more general do
ument set, with regardsto 
ontent, to 
al
ulate IDF s
ores.Parsing More sophisti
ated parser with support for additional meta info.Missed keywords Investigate possible patterns in keywords not extra
ted bythe NP-
hunker.Additional 
andidate sele
tion method Use of dependen
y grammar andhyperonyms.TextRank Improved keyword merge method and NP-
hunk extension.PSO More extensive use for optimization of various parameters.Ba
kpropagation Bat
h BP extension.Boosting Use the boosting ensemble method.Semanti
 relations Use of WordNet and Saldo to measure the strength ofsemanti
 relations between pair of words.Manual keyword quality surveys Human evaluation is ne
essary to �nd a
-tual quality of extra
ted keywords.
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Appendix APoS PatternsThe full list of tags, for ea
h language, used by the PoS 
andidate sele
tionmethod are presented in se
tion. The patterns extra
ted are based on statisti
staken from the atta
hed keywords in the 
orpora, every keyphrase pattern o

urat least 10 times. Table A.1: PoS patterns.English Swedishjj nn vbg nn vbn nn nn nn nnp nn p
nn nn vbg nnp nnp nn jj nn jj nn pm p
 nnjj nns vbg nns nn jj nns nnp nnp nns jj nn nn kn jjnn nnp nnp nnp jj vbg nn 
d nn jj pm pmnn nns jj vbg nn jj nnp vbg nn kn nn nn pp nnjj nn nn nn jj nn nn in nn nn vbg nns vbnnp nn vbg nn vbg nn nn vbnns jj nnp nn 
d nnp vbn jj nnnnp nn nnp jj nn rb jj nn nn jj nn nnjj nn nns vbn nn jj nnp nns vbn nn nnsnn nn nn nnp nn nns jj jj jj nn nns in nnjj jj nn jj nnp jj nn vbg vbznnp nns nns nn jj nns nn nns nnsjj jj nns jj jj vbg nn nnnn nn nns jj jj nn nns rb jj nnsjj jj nn nn nns vb nnnnp nnp nn nn nn nn nnp nn nn nnjj nn nn nn vbn nns vbn jj nnsnnp nn nn nn vbz nnp jj nnsjj jj nn nn jj vbg nns nnp nnp nnp nnp
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Appendix BExtensive result tablesThe test results presented in this se
tion are run on 
omputers with 2.1-2.4 GHzpro
essors. The runtimes and training times are not to be interpreted as 100%a

urate, they are only presented to give an indi
ation of the speed. Only whenthere is a full order of magnitude in di�eren
e between two runtimes, it is safeto assume that there is a signi�
ant di�eren
e in speed (e.g. 5s and 2m).Training times for the supervised ma
hine learning algorithms are not in-
luded in their individual results and are presented separately in se
tion B.9.Explanations of the table 
olumn names used in this se
tion:
• Runtime - The time it takes to run the test.
• Assign. tot. - Total number of keywords extra
ted.
• Assign. mean - Mean number of keywords extra
ted for ea
h do
ument.
• Corr. tot. - Total number of 
orre
t keywords extra
ted.
• Corr. mean - Mean number of 
orre
t keywords per do
ument.
• P - Pre
ision.
• R - Re
all.
• F - F-measure.
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B.1 Candidate sele
tion methodsThe results below 
on
ern only 
andidate sele
tion methods, i.e. no 
lassi�
ationalgorithms are applied on the extra
ted 
andidates.The runtimes for PoS in
lude the time it takes to tag the do
uments withPoS tags. The a
tual time it takes to �nd the pattern mat
hes are 
omparableto the runtimes for N-grams.The runtimes for NP-
hunk does not in
lude the time it takes to tag thedo
uments with PoS tags.Table B.1: Statisti
s for the 
andidate sele
tion methods used in this proje
t.The best results for ea
h 
orpus are shown in bold.Runtime Assign. Assign. Corr. Corr. P R FMedi
in tot. mean tot. meanN-grams 5s 798 753 1 190.39 3 586 5.35 0.45 99.98 0.90PoS 1m 24s 430 693 641.87 3 478 5.19 0.81 96.97 1.61NP-
hunk 3m 17s 208 745 311.10 2 704 4.03 1.30 75.39 2.55So
ialstyrelsenN-grams 4s 491 077 333.39 3 445 2.35 0.71 97.05 1.40PoS 1m 11s 286 992 198.84 3 404 2.32 1.19 95.89 2.35NP-
hunk 3m 10s 139 541 97.73 2 621 1.79 1.88 73.84 3.67Inspe
N-grams 1s 222 107 111.72 13 343 6.71 6.01 91.68 11.28PoS 12s 152 712 76.82 13 251 6.67 8.68 91.05 15.85NP-
hunk 1m 1s 53 622 26.97 9 655 4.86 18.01 66.34 28.33NUSN-grams 3s 499 147 3 283.86 1 163 7.66 0.24 93.87 0.47PoS 1m 34s 294 716 1 938.92 1 164 7.66 0.40 93.95 0.79NP-
hunk 3m 55s 143 855 946.41 1 031 6.79 0.72 83.22 1.43
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B.2 Word frequen
yIn the results presented for this 
lassi�er, the number of keywords extra
ted isthe same as the number of manual keywords for ea
h do
ument. The runtimesdoes not in
lude the time it takes to extra
t 
andidate keywords.Table B.2: Statisti
s for the Word frequen
y 
lassi�er. The best results for ea
h
orpus are shown in bold. Runtime Corr. Corr. FMedi
in tot. meanN-grams 34s 655 0.98 18.27PoS 18s 550 0.82 15.34NP-
hunk 42s 753 1.13 21.00So
ialstyrelsenN-grams 15s 675 0.46 19.02PoS 11s 661 0.45 18.62NP-
hunk 5s 842 0.58 23.72Inspe
N-grams 5s 2 207 1.11 15.17PoS 5s 3 210 1.61 22.06NP-
hunk 20s 3 703 1.86 25.45NUSN-grams 46s 140 0.93 11.30PoS 24s 106 0.70 8.56NP-
hunk 1m 6s 153 1.01 12.35
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B.3 TFIDFIn the results presented for this 
lassi�er, the number of keywords extra
ted isthe same as the number of manual keywords for ea
h do
ument. The runtimesdoes not in
lude the time it takes to extra
t 
andidate keywords.Table B.3: Statisti
s for the TFIDF 
lassi�er. The best results for ea
h 
orpusare shown in bold. Runtime Corr. Corr. FMedi
in tot. meanN-grams 26s 1 018 1.52 28.39PoS 14s 1 047 1.57 29.19NP-
hunk 12s 1 035 1.55 28.86So
ialstyrelsenN-grams 12s 621 0.43 17.50PoS 9s 721 0.49 20.31NP-
hunk 3s 838 0.57 23.61Inspe
N-grams 3s 2 401 1.21 16.50PoS 3s 3 715 1.87 25.53NP-
hunk 1s 3 966 1.99 27.25NUSN-grams 39s 212 1.40 17.12PoS 23s 184 1.22 14.86NP-
hunk 19s 223 1.47 18.00
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B.4 TextRankBoth of the TextRank- and Expand 
lassi�ers are not dependent on having
andidate keywords given to them when 
lassifying a do
ument.B.4.1 TextRankTable B.4: Statisti
s for the TextRank 
lassi�er.Corpus Runtime Corr. Corr. Ftot. meanMedi
in 2m 12s 693 1.04 19.32So
ialstyrelsen 1m 48s 710 0.49 20.01Inspe
 31s 4 627 2.33 31.84NUS 5m 52s 83 0.55 6.87B.4.2 ExpandRankTable B.5: Statisti
s for the ExpandRank 
lassi�er.Corpus Runtime Corr. Corr. Ftot. meanMedi
in 7m 36s 318 0.48 8.87So
ialstyrelsen 11m 18s 342 0.24 9.64Inspe
 5m 31s 4 423 2.22 30.41NUS 7m 15s 64 0.43 5.17
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B.5 NBCIn the results presented for this 
lassi�er, the number of keywords extra
ted isthe same as the number of manual keywords for ea
h do
ument. To avoid anover�tted result, the results presented for the NBC 
lassi�er is the average from10 runs of 10-fold 
ross validation. The runtimes does not in
lude the time ittakes to extra
t 
andidates, only the 
lassi�
ation of a full 
orpus.Table B.6: Statisti
s for the NBC 
lassi�er. The best results for ea
h 
orpusare shown in bold. Runtime Corr. Corr. FMedi
in tot. meanN-grams 59s 1 008 1.51 28.10PoS 28s 1 046 1.56 29.17NP-
hunk 32s 1 019 1.52 28.40So
ialstyrelsenN-grams 31s 791 0.54 22.29PoS 19s 915 0.62 25.78NP-
hunk 24s 1 033 0.70 29.09Inspe
N-grams 10s 4 491 2.26 30.86PoS 8s 5 038 2.53 34.61NP-
hunk 25s 5 101 2.57 35.05NUSN-grams 1m 24s 272 1.79 21.97PoS 46s 248 1.63 20.03NP-
hunk 2m 8s 293 1.93 23.62
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B.6 KBANNThe KBANN 
lassi�er is based on a supervised ma
hine learning algorithm,therefore 10-fold 
ross validation is used. The results presented are the averageresults in ea
h 
ategory from 10 runs.The runtimes does not in
lude the time it takes to extra
t 
andidates, onlythe 
lassi�
ation of a full 
orpus. The 
lassi�
ation time is independent of whi
hoptimization algorithm that has been used, therefore the runtimes reported forBP and PSO equal.B.6.1 Ba
kpropagationTable B.7: Statisti
s for the KBANN 
lassi�er using a network trained by BP.The best results for ea
h 
orpus are bold.Runtime Assign. Assign. Corr. Corr. P R FMedi
in tot. mean tot. meanN-grams 32s 89 650 133.61 1 264 1.88 1.51 35.24 2.90PoS 20s 59 130 88.12 1 283 1.91 2.47 35.77 4.62NP-
hunk 28s 51 775 77.16 1 292 1.93 2.86 36.02 5.30So
ialstyrelsenN-grams 21s 62 078 42.14 1 131 0.77 1.98 31.87 3.73PoS 15s 57 753 39.21 1 374 0.93 2.46 38.69 4.63NP-
hunk 27s 35 158 23.87 1 304 0.89 3.71 36.73 6.74Inspe
N-grams 9s 94 751 47.66 8 962 4.51 9.46 61.58 16.40PoS 8s 68 999 34.71 10 545 5.30 15.29 72.45 25.25NP-
hunk 21s 49 405 24.85 8 919 4.49 18.06 61.28 27.89NUSN-grams 1m 3s 3 878 25.51 308 2.03 7.94 24.86 12.04PoS 37s 3 440 22.63 313 2.06 9.10 25.26 13.38NP-
hunk 1m 48s 5 097 33.53 372 2.45 7.30 30.02 11.74
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B.6.2 Parti
le Swarm OptimizationTable B.8: Statisti
s for the KBANN 
lassi�er using a network trained by PSO.The best results for ea
h 
orpus are bold.Runtime Assign. Assign. Corr. Corr. P R FMedi
in tot. mean tot. meanN-grams 32s 2 753 4.10 973 1.45 35.34 27.12 30.69PoS 20s 2 760 4.11 990 1.48 35.87 27.60 31.20NP-
hunk 28s 2 314 3.45 881 1.31 38.07 24.56 29.86So
ialstyrelsenN-grams 21s 3 996 2.71 1 053 0.71 26.35 29.66 27.91PoS 15s 3 760 2.55 994 0.67 26.44 28.00 27.20NP-
hunk 27s 3 474 2.36 1 018 0.69 29.30 28.68 28.99Inspe
N-grams 9s 30 678 15.43 8 310 4.18 27.09 57.09 36.74PoS 8s 21 334 10.73 6 270 3.15 29.39 43.08 34.94NP-
hunk 21s 23 384 11.76 7 341 3.69 31.39 50.44 38.70NUSN-grams 1m 3s 1 395 9.18 297 1.95 21.29 23.97 22.25PoS 37s 1 421 9.35 284 1.87 19.99 22.92 21.35NP-
hunk 1m 48s 1 357 8.93 298 1.96 21.96 24.05 22.96
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B.7 SVMSin
e this is a supervised ma
hine learning algorithm, 10-fold 
ross validationis used. The results presented are the average results in ea
h 
ategory from 10runs. The runtime measures a single 
lassi�
ation of a full 
orpus in
luding thetime it takes to extra
t the 
andidates.Table B.9: Statisti
s for the SVM 
lassi�er. The best results for ea
h 
orpusare bold. An outlier with 15.27 pre
ision 
aused the pre
ision for NP-
hunk onSo
ialstyrelsen to drop by about 1.5 points.Runtime Assign. Assign. Corr. Corr. P R FMedi
in tot. mean tot. meanN-grams 2m 5s 2 650 3.95 953 1.42 35.96 26.57 30.56PoS 1m 11s 2 667 3.97 976 1.45 36.60 27.21 31.21NP-
hunk 56s 2 224 3.31 868 1.29 39.03 24.20 29.88So
ialstyrelsenN-grams 1m 16s 4 306 2.92 1 115 0.76 25.92 31.42 28.41PoS 49s 4 339 2.95 1 117 0.76 25.75 31.47 28.32NP-
hunk 31s 3 851 2.61 1 029 0.70 27.88 28.98 28.42Inspe
N-grams 8s 22 667 11.40 5 894 2.96 26.00 40.49 31.67PoS 7s 20 776 10.45 6 060 3.05 29.17 41.64 34.31NP-
hunk 24s 23 869 12.01 7 452 3.75 31.22 51.20 38.79NUSN-grams 1m 54s 1 538 10.12 307 2.02 19.96 24.78 22.11PoS 1m 10s 1 351 8.89 265 1.74 19.62 21.39 20.47NP-
hunk 2m 12s 1 278 8.41 298 1.96 23.32 24.05 23.68
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B.8 EnsemblesIn this se
tion the results for some of the tested ensemble methods are pre-sented. All ensembles 
ontain at least one supervised 
lassi�er and 10-fold 
rossvalidation is therefore used. Training ensembles take 
onsiderable longer timethan single 
lassi�ers, so due to time 
onstraints the result are from a single runonly.Several other ensemble 
ombinations were tested, but no result was noti
e-ably better than the best single 
lassi�ers. Those result are therefore omittedfrom this report.B.8.1 RegressionTable B.10: Statisti
s for the Regression 
lassi�er.Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMedi
in 41s 3 278 4.89 1 016 1.51 31.00 28.33 29.60So
ialstyrelsen 1m 16s 4 202 2.85 960 0.65 22.85 27.05 24.77Inspe
 52s 27 353 13.76 8 136 4.09 29.74 55.90 38.82NUS 2m 22s 1 475 9.70 276 1.82 18.72 22.28 20.34B.8.2 KBANN ensembleThis 
lassi�er 
onsist of seven individual KBANN 
lassi�ers, ea
h trained on adi�erent subset of training data and use NP-
hunk 
andidates.Table B.11: Statisti
s for the KBANN ensemble 
lassi�er using NP-
hunk 
an-didates. Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMedi
in 46s 2 292 3.42 884 1.32 38.57 24.65 30.08So
ialstyrelsen 37s 3 432 2.33 1 018 0.69 29.67 28.68 29.17Inspe
 15s 23 503 11.82 7 380 3.71 31.40 50.70 38.78NUS 1m 20s 1 336 8.79 309 2.03 23.13 24.94 24.00
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B.8.3 KBANN and TextRankThis ensemble 
lassi�er 
onsist of a single KBANN 
lassi�er using NP-
hunk
andidates and a single TextRank 
lassi�er. The �nal result is the union ofkeywords extra
ted by both 
lassi�ers.Table B.12: Statisti
s for the KBANN-TextRank ensemble 
lassi�er using NP-
hunk 
andidates. Runtime Assign. Assign. Corr. Corr. P R FCorpus tot. mean tot. meanMedi
in 1m 13s 8 207 12.23 1 297 1.93 15.81 36.16 22.00So
ialstyrelsen 1m 23s 9 179 6.23 1 559 1.06 16.99 43.92 24.50Inspe
 10s 29 668 14.92 8 371 4.21 28.22 57.51 37.86NUS 2m 59s 3 396 22.34 363 2.39 10.69 29.30 15.67B.9 Training timesThe times presented in table B.13 are the average of ten training sessions.The training data is 
reated from 
andidates extra
ted using the N-gramsmethod, this is motivated by that it extra
ts the most 
andidates by far to
reate a worst 
ase s
enario. If training is performed on NP-
hunk 
andidates,the time for extra
ting them needs to be in
luded in the times presented in tableB.13. The times for extra
ting the N-grams 
an then be ignored sin
e they areso small (see table B.1).The NBC 
lassi�er is the only trained 
lassi�er whose training times dependheavily on the number of extra
ted 
andidates. The size of the training dataused for the rest of the trained 
lassi�ers is restri
ted by the number of features(see se
tion 2.4). Only identi
al pie
es of training data are kept and are givenweights that 
orrespond to the a
tual number of instan
es they 
orrespond to.Table B.13: Training times for the supervised algorithms.Algorithm Medi
in So
ialstyrelsen Inspe
 NUSNBC 34s 22s 10s 1m 4sKBANN-BP 44s 34s 28s 1m 10sKBANN-PSO 3m 17s 2m 45s 7m 4s 5m 35sSVM 58s 65s 72s 63sThe training times for the Regression 
lassi�er is approximately equal tothree times the training time for a single NBC 
lassi�er. The training time forthe KBANN ensemble is approximately equal to the training time required fora single KBANN 
lassi�er multiplied with the number of 
lassi�ers used in theensemble. The training time of the KBANN-TextRank 
lassi�er is equal to thetraining time of a single KBANN 
lassi�er.58
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