Keyword Extraction using Machine Learning

Master of Science Thesis
Computer Science: Algorithms, Languages and Logic

MARTIN JOHANSSON
PONTUS LINDSTROM

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Keyword Extraction using Machine Learning

MARTIN JOHANSSON
PONTUS LINDSTROM

© MARTIN JOHANSSON, June 2010.
© PONTUS LINDSTROM, June 2010.

Examiner: PETER DAMASCHKE

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goéteborg

Sweden

Telephone + 46 (0)31-772 1000

A key inserted into a lock.

Department of Computer Science and Engineering
Goteborg, Sweden June 2010

Abstract

This master thesis evaluates different approaches of keyword extraction. Nat-
ural language processing methods such as N-grams, Part-Of-Speech and Noun
Phrase-Chunking are used to extract keyword candidates. Machine learning
algorithms are used to determine whether a candidate is a keyword or not.
Unsupervised state-of-the-art algorithms are implemented and compared to the
machine learning classifiers. A number of keyword features, their representation
and their impact on the results are investigated. The results show that combin-
ing natural language processing and machine learning algorithms can improve
keyword quality, compared to other methods such as TFIDF.

Keywords

Keywords extracted from the title and abstract for this thesis.

Keyword Extraction, Unsupervised state-of-the-art algorithms, machine learn-
ing, keyword features, keyword candidates, Natural language processing methods,
Noun Phrase-Chunking, keyword, master thesis, keyword quality.

Acknowledgments

We would like to thank our supervisor at Findwise AB, Svetoslav Marinov for
providing several resources vital to the success of the project, for proof reading,
ideas and most of all for his enthusiasm.

We would like to thank Peter Damaschke, our supervisor at Chalmers Uni-
versity of Technology, for proof-reading, support with machine learning algo-
rithms and for swift responses when help was requested.

Contents

1 Introduction
1.1 Background
1.2 Motivation
1.3 Earlierwork
1.4 Project goals and delimitations
1.5 Method
1.6 Precision, Recall and F-Measure
1.7 Outline
2 Text Processing
2.1 Corpora
2.2 Lemmatization and stemming
2.3 Candidate selection o o
231 N-grams
2.3.2 Part-of-Speech oL
2.3.3 Noun Phrase-Chunking
2.4 Keyword features and candidate abstraction
3 Keyword Classification
3.1 Word Frequency
3.2 TFIDF
3.3 TextRank
3.3.1 ExpandRank
3.4 Naive Bayesian Classifier
3.5 Artificial Neural Network
3.5.1 Knowledge Based Artificial Neural Network
3.5.2 Backpropagation o000
3.5.3 Particle Swarm Optimization
3.6 Support Vector Machine
3.7 Ensembles
371 Regression.
3.8 Post Processing o

S O© 0000~~~

4 Results

4.1
4.2

Performance evaluation
Comparative evaluation

5 Discussion

5.1 Corporao i e
5.1.1 Manual keywords
5.2 Candidate representation
5.3 Individual components oo oL
5.3.1 Text Tokenization
5.3.2 Part-of-Speech and Noun Phrase-Chunking
5.3.3 TextRank and ExpandRank
5.3.4 Knowledge-Based Artificial Neural Network
5.4 Evaluation approaches
5.4.1 The F-measure
5.4.2 What constitutes a keyword hit?
5.4.3 How many keywords to extract?
5.5 Result discussion oL
6 Conclusion
6.1 Futurework
Bibliography

A PoS Patterns

B Extensive result tables

B.1
B.2
B.3
B.4

B.5
B.6

B.7
B.8

B.9

Candidate selection methods
Word frequency
TFIDF e
TextRank
B.4.1 TextRank
B.4.2 ExpandRank
NBC . . . e
KBANN . . e
B.6.1 Backpropagation 0oL
B.6.2 Particle Swarm Optimization
SVM . . e
Ensembles
B.8.1 Regression.,
B.8.2 KBANN ensemble
B.8.3 KBANN and TextRank
Training times

32
32
34

35
35
36
36
37
37
38
38
39
39
40
40
41
42

43
44

45

47

Terminology

Stopwords Frequently occurring words that do not add any context informa-
tion.

F-Measure Performance measure.

Corpus A large set of documents.

Token A single word from a phrase or sentence.

Keyword A word or a phrase that represent the content of a document.
Classifier A function that map sets of input attributes to tagged classes.
PoS Part-of-Speech. The lexical class of a word.

Lemmatization The process of bringing inflected words to their morphological
root.

Stemming The process of removing affixes from a word.

NP-Chunking Noun Phrase Chunking, the process of extracting nouns and
proper nouns with modifiers from a sentence.

PSO Particle Swarm Optimization, a stochastic optimization algorithm.

KBANN Knowledge-Based Artificial Neural Network, a neural network im-
plementation using domain knowledge to set initial weights.

TFIDF Term Frequency Inverse Document Frequency.
NBC Naive Bayesian Classifier, a machine learning classifier.

SVM Support Vector Machine, a machine learning classifier.

Chapter 1

Introduction

This master thesis was carried out at Chalmers University of Technology and
Findwise AB' in Gothenburg, Sweden. The goal was to create a module for
automatically extracting keywords from documents in English and Swedish.

1.1 Background

Keyword extraction is the task of extracting a small set of words and phrases
from a document which describe its content. This is different from keyword
assignment, where a set of predefined keywords are used. Regardless of the
document content, keywords can only be selected from the predefined set.

Manual keyword extraction is performed by professional human annotators
and is a very time-consuming task. The purpose of using an automated process
is to increase speed, without sacrificing too much quality of the result.

In semi-automatic keyword extraction an automated process extracts a large
number of keywords and a human has the final word. The quality might not
be as high as the manual process, but is much faster and the quality should be
significantly higher than full automation.

What constitute a good keyword? Studies have shown the disagreement rate
between two human indexers to be 20-80%[22]. Using an automatic or semi-
automatic process for keyword extraction will bring more consistency, which can
be an advantage. The manual keywords are regarded as gold standard and the
machine learning classifiers are trained to conform themselves to this standard.
As a consequence, a classifier can only be as good as the keywords it is trained
on.

What the keywords of a document should be is highly subjective and depend
on a number of factors, e.g. the purpose of the keywords, the information that
is sought after and who is looking for it.

Thttp://www.findwise.se/

1.2 Motivation

Keywords serve several purposes to a reader, who can quickly determine if a
document is in their field of interest or not. When browsing a large index
of documents and their corresponding keywords, the reader can decide which
documents are worth looking into further.

When making a search query using keywords, the search engine will yield
fewer and more specific results[17].

Not all documents have attached keywords when put into databases and
the process of extracting (or assigning) keywords manually is time consuming.
When indexing large sets of documents for search engines, a manual approach
is unreasonably slow. The process can be sped up using the automatic keyword
extraction methods described in this thesis.

1.3 Earlier work

In the 1950s scientists elaborated on the idea of searching texts with computers
and a method was proposed that suggested to use words for indexing documents
in information retrieval [15].

Many different approaches to keyword extraction has been tested since, some
of the major landmarks are listed below:

TFIDF 1972. An improvement over computing word frequencies is introduced
by Spérck[8]. An inverse document frequency, computed using a corpus,
is weighed with the word frequency to improve performance.

GenEx 1999. A solution based on a genetic algorithm that tunes the parame-
ters for a keyword extractor is developed by Turney[17].

KEA 1999. Frank[12] introduced a keyword extraction algorithm based on
the Naive Bayesian learning scheme. The performance was comparable to
GenEx.

HITS 1999. Kleinberg[9] introduces a graph-based ranking algorithm similar to
PageRank. Can be converted into a keyword extractor using the TextRank
approach.

Hulth 2004. Using both Natural Language Processing and Machine Learning,
Hulth[7] developed a keyword extractor that has been considered to be
state-of-the-art[16].

TextRank 2004. Based on Google’s PageRank algorithm[11], Mihalcea and
Tarau[16] introduce an unsupervised keyword extractor that utilizes a
word co-occurrence graph.

1.4 Project goals and delimitations

The goal of this project is to implement a module written in Java for automat-
ically extracting keywords from English and Swedish documents. The module
is supposed to function as stand alone application or integrated into Open-
Pipeline?, a framework for crawling, parsing, analyzing and routing documents.

A small number of selected machine learning algorithms will be implemented
and improved, rather than making “shallow” implementations of many. Variants
of existing algorithms will be used, instead of developing new ones.

The algorithms themselves will be the focus of the project. Document pars-
ing and input retrieval will be given little or no attention. Words are assumed
to be spelled correctly.

Code will be written for as much of the content as possible, with the excep-
tion of linguistic functionality.

Classification and training speed is to be given a significant amount of at-
tention. This will enable more efficient testing and faster extraction of keywords
in live situations.

The goal with regards to the quality of the result is an F-measure above
40%, similar to what Hulth reported in [7].

1.5 Method

The task was first defined and split up into smaller segments for a literature
study, implementation, testing and verification.

In order to get acquainted with the field of keyword extraction a literature
study was carried out. Large paper databases (e.g. IEEE and ACM) were
searched and by reading frequently referenced papers, the most common and
effective algorithms were discovered.

After the literature study, a number of algorithms were selected to be imple-
mented. The implementation process was coupled with debugging and minor
algorithm parameter tweaking. Alongside the implementation of the classifica-
tion algorithms, the supporting structure was built. This included document
representation, lemmatization and stemming, pre- and post processing of docu-
ments and a test suite for evaluation of results.

’http://wuw.openpipeline.org/

The following software and external tools were used:

e SPARK - Swedish NP-chunker.
http://stp.lingfil.uu.se/ bea/resources/spark/

e EngChunker - English NP-chunker.
http://www.dcs.shef.ac.uk/ mark/phd/software/chunker.html

e Hunpos - Part-of-Speech tagger for English and Swedish.
http://code.google.com/p/hunpos/

e Weka - Machine learning package written in Java.
http://wuw.cs.waikato.ac.nz/ml/weka/

e Findwise lemmatization and stemming.
Proprietary software.

The project was wrapped up by generating result tables for the final version of
each algorithm and comparing the results to those presented in other papers.

1.6 Precision, Recall and F-Measure

F-measure is one of the standard methods in information retrieval for evaluating
results. It is most commonly used to evaluate search engine results, but can also
be used in keyword extraction by replacing web sites for keywords.

The F-measure is a function of precision and recall. To compute these three
values, two sets of words are needed for some document: a set of manual key-
words M and a set of automatically extracted keywords A.

Precision, recall and the F-measure are computed according to formulae
1.1-1.3.

MNA
Precision = % (1.1)
MNA
Recall = % (12)

Precision - Recall
F- =2 1.3
fneasure Precision + Recall (1.3)

The F-measure has the property that it leans toward the smallest parameter
value, whether it be precision or recall. If there is a big difference between
precision and recall, the F-measure will be approximately equal to double the
smallest of them. This behavior can observed in appendix B.

1.7 Outline

The structure of this report follow the structure of implemented module, which
is shown in figure 1.1.

Document

I — I |
| |
| |
I NGrams NP Chunk PoS-Pattern I
| Candidate selection o
- - - - - - = =
| |
| | TFIDF NBC || KBANN | [TextRank SVM |
|Keyword Extraction o

¥

Post Processing

Keyv "ords

Figure 1.1: Program flow.

Chapter 2 describes the corpora and preprocessing methods used in this
project. The corpora are processed to generate training- and validation data.
Preprocessing steps include parsing, lemmatization, stemming, candidate selec-
tion and candidate abstraction.

Chapter 3 presents the keyword classification algorithms and post processing.
Extracted candidates are classified to be keyword or not keyword. The post
processing attempts to remove redundant keywords, those that are subsumed
by others.

Chapter 4 presents the brief version of the results from this project and
compare them to others. The extensive list of results can be found in appendix
B.

Chapter 5 contains discussion of the results, evaluation methods and things
that could have been done differently in order to achieve better results.

Chapter 6 conclude the report with final remarks and ideas for future work.

10

Chapter 2

Text Processing

This chapter describe the corpora used in this project which is used to generate
training- and validation data sets. The preprocessing stages that documents
undergo before extracted candidates are classified are presented.

2.1 Corpora

The corpora used in this report were all formatted before used. All documents
were enhanced with meta information, in the form of a title, in order for the
parser to recognize the title of each document. Any manually assigned keywords
that did not explicitly appear in the associated document were removed. As a

result, some documents lacked keywords all together, these were removed.

Information about the corpora used in this report is shown in table 2.1, all

reported numbers are post formatting.

Table 2.1: Corpora information. (*Automatically extracted from)

Name Language Source In papers
Inspec English Hulth[7] [7, 16]
NUS English | National University of Singapore® [2]
Medicin Swedish | * http://www.internetmedicin.se
Socialstyrelsen Swedish | * http://www.socialstyrelsen.se

Nr of Nr of | Avg. doc. Nr of | Avg. nr of

Name docs. words size | keywords keywords
Inspec 1 988 264 541 133 14 555 7.3
NUS 152 | 1071 026 7 046 1239 8.1
Medicin 671 893 834 1 332 3 587 5.3
Socialstyrelsen 1473 746 704 507 3 550 2.4

%http://wing.comp.nus.edu.sg/downloads/keyphraseCorpus/corpus.tgz

11

Inspec is the main corpus in this report. It has been used in two of the
referenced papers and is a collection of abstracts from the Inspec database. The
texts are short, clean' and contain a lot of information. The keywords are set
by authors or professional annotators.

NUS consist of scientific publications from the National University of Singa-
pore. The documents are long and contain much noise, in the form of remnant
tokens from the pdf to text conversion.

Internetmedicin is a web site with the purpose of supplying doctors and
nurses with information about treatments and other information useful in their
daily work. The texts are reviewed and maintained by professionals, the key-
words are assumed to be set by the same people.

Socialstyrelsen is the Swedish National Board of Health and Welfare. The
board establishes norms and general advices for municipalities, county councils
and local authorities. The keywords are assumed to be set by the same people
that work for previously mentioned authorities.

2.2 Lemmatization and stemming

Lemmatization and stemming are used to reduce an inflected word to its base
form or stem. This serves two purposes by reducing the number of unique
keyword candidates and also allows more accurate computations of word fre-
quencies. The words “pirate”, “pirates” and “pirate’s” are different but have the
same base form. It is redundant to classify all three as keywords since they all
refer to the same object.

Lemmatization finds the base form, or lemma, of words. Stemming use an
algorithm to iteratively remove word affixes until some termination criteria is
met. This means that a stem is not necessarily equal to the morphological root
of the word (table 2.2).

Table 2.2: Stemming and lemmatization examples.

Word Stem Lemma

Recharging | Recharg | Recharge
Recharged Recharg | Recharge

Cats Cat Cat
Ponies Poni Pony
Ran Ran Run

There are both advantages and disadvantages of stemming. Morphologically
similar words may be reduced to the same stem, but if they have no semantic
relation this is unwanted behavior. On the other hand, if two morphologically
similar words have a strong semantic relation are reduced to the same stem, but
does not share the same lemma, this is acceptable behavior.

ITexts that contain few tokens that are not considered to be proper words, e.g. formulas.

12

This project used lemmatization with Porter’s stemmer[14] as a fallback. If
a word was not found in the lemmatization lexicon it was stemmed instead. It is
believed that this combination has not been used before in the area of keyword
extraction.

2.3 Candidate selection

The candidate selection step serve the purposes of limiting the number of po-
tential keywords and guarantees a certain quality of the selected candidates.

If few poor candidates are extracted, the classifiers are less likely to select
poor keywords. A decreased number of candidates also mean less work for the
classifiers, which increase speed.

The text in the box below will be used throughout this section to show how
the different candidate selection methods work.

A new survey carried out by the film companies indicates that only seven of the
109 torrent files named in the case had been taken off The Pirate Bay, all of
which remained available via other sites.

2.3.1 N-grams

The simplest candidate selection method used in this report is based on N-grams
and is also used in [12, 7, 17]. Tt extracts sequences of up to n tokens. In this
report n = 3, since investigations on the corpora show that keyword of four or
more tokens are rare (table 2.3). Also, the number of candidates extracted by
N-grams increases dramatically with large values of n.

Table 2.3: The number of keywords consisting of a certain number of tokens
(columns) for each corpus.

1 2 3 4 5 6 7 8
Inspec 1937 6065 2652 650 135 31 9 2
NUS 379 623 168 50 17 3
Medicin 3072 381 102 22 2
Socialstyrelsen | 3 345 222 18 2 1

The only candidates that get filtered, are those that start or stop with a
stopword (including single token sequences).
An example of what the N-grams method extracts is shown in the box below:

new survey carried film companies indicates
new survey carried companies
new survey carried film companies indicates
survey film companies indicates

13

2.3.2 Part-of-Speech

A PoS tag is a label assigned to a word that contain information of which lexical
class the word belong to and its inflection, for example a singular or plural noun.
The box below show a sentence tagged with PoS tags:

aprT New jj Survey NN carriedVBD outpp bYIN theDT ﬁlmNN
companiesy g indicatesy gz thatry onlyrp sevencp ofry
thepr 109¢p torrent vy filesy gz namedy gy inyy thepr
CaSenN N hadVBD beenVBN takenVBN Of]N TheDT PirateNNp
bay,NNp allDT Of[N WhiChWDT remainedVBD availableJJ
viayy other ;s sites.yngs

The same word can have different meanings depending on the context, there-
fore the tagger take the surrounding words into account when assigning the tag.
An example is the word “play” that can be either a noun or verb depending on
the context. In the sentence “I want to play” it is a verb and in the sentence “I
went to a play” it is a noun.

The PoS tags are used in two aspects in this report: to extract candidates
that match certain PoS patterns [7, 16, 21| and as keyword features [7] (see
chapter 2.4).

The patterns used to extract candidates where found by examining the pat-
terns of the keywords in the training data. If a pattern occurred ten times or
more in the training data, it was included in the candidate selection.

The most common patterns for English and Swedish and their explanations
are shown in table 2.4. A complete list of the PoS tags used to extract candidates
can be found in appendix A.

Table 2.4: The English and Swedish PoS tags are shown in the left table. PoS
tag descriptions are shown in the right table.

English Swedish Tag | Description

jj nn nn nn Noun, Singular

nn nn nnp nns Noun, Plural

jj nns jj nn i Adjective

nn ji vb Verb, Base Form

nn nns nn kn nn nnp | Proper Noun, Singular
jj nn vb kn Coordinating Conjunction
nnp pc pc Particle

nns pc nn pp Preposition

nnp nn nn kn jj

jj nn nns | nnp nnp

nnnn nn | nn pp nn

14

An example of what the PoS candidate selection method extract is shown in
the box below:

new survey film torrent bay
survey film companies case pirate bay
film companies pirate other sites

2.3.3 Noun Phrase-Chunking

NP-chunking is the process of finding phrases whose head is a noun or proper
noun, optionally accompanied by a set of modifiers. Similar to the PoS candidate
selection method, it searches for patterns in the PoS tags of the words in a
sentence. The major differences are that NP-chunking use a grammar instead
of predefined patterns and that the candidates are restricted to noun phrases.

The grammar is used to reduce a sentence into a minimum number of
phrases, the goal is to find nouns and proper nouns with all their respective
modifiers. Longer phrases are preferred which is consistent with a minimum
number of phrases.

In the implementation of NP-chunking in this project, a post processing
stage is included that removes opening determinants|7], such as “the”, “a” and
“an”, and filters candidates that are stopwords. The sentence “A new survey”
will be reduced to “new survey”. This is motivated by that the determinant does
not contain any relevant information.

An example of what the NP-chunking candidate selection method extract is
shown in the box below:

new survey torrent other sites only seven
film companies case pirate bay

2.4 Keyword features and candidate abstraction

The Naive Bayesian Classifier, Artificial Neural Networks and Support Vector
Machines are similar, they attempt to create an optimal separation of data.

In order to create separable data from a set of candidate keywords, each
candidate keyword is abstracted into a numerical vector where a dimension
represents a certain feature. A feature is a property or attribute of a candidate
that is used as a keyword indicator (derived through empirical studies), e.g. if
the candidate is in the title of a document or if it has a high TFIDF score. Using
the vector representation for candidates, the classifiers can create a separation
between those that are keywords and those that are not.

This project use boolean features, values of either 0 or 1. It is also possible
to use real values but this has both advantages and disadvantages. It can help
the classifiers create a more accurate separation of data, but at the same time

15

they will be more prone to overfitting and training the classifiers take longer
time.

Certain numerical measures (e.g. TFIDF) are converted into a set of binary
features by applying a number of intervals. The feature “TFIDF High” is 1 of
the normalized TFIDF value is in the interval: 0.9 < TFIDF < 1.0 and 0
otherwise.

The TFIDF score and first- and last occurrence values are normalized,
mainly due to the reason that documents can vary heavily in length.

A list of the features used in this project is presented in table 2.5.

Table 2.5: Keyword features. All mentions of TFIDF scores are normalized
within every document. Tags such as (jj/nn) means that an adjective or a noun
is acceptable at the given position.

Feature | Additional info | Description

TFIDF High 09LZ<TFIDF<1.0

TFIDF Mid/High 0.7<TFIDF < 0.9

TFIDF Low/Mid 0.3<TFIDF <0.7

TFIDF Low 0.1<TFIDF <0.3
First occurrence of candidate

Relative First Occurrence | 0 < F.O < 0.1 is within first 10% of the
document

Last occurrence of candidate

Relative Last Occurrence | 0.9 < L.O <1.0 is within last 10% of the
document
In Title If the candidate can be found
in the title
Starts Sentence If the candidate at any

location in the document
starts a sentence

If the candidate contains an

acronym or a sequence of

Acronym . . .
words that is acronymized in
the text

PoS: pm Swedish Tags are explained in table 2.4

PoS: nn Swedish

PoS: jj (jj/nn) (jj/nn) nn | English

PoS: nn jj nn nn English

PoS: (jj/nn) vb nn English

PoS: (jj/nn) (jj/nn) nn English

PoS: (jj/nn) nn English

The TFIDF measure is a good enough feature to be used on its own when
extracting keywords (see appendix B.3). It is used by Hulth[7] but as two
separate features: TF and IDF.

16

The first- and last occurrence features are based on the layout of academic
papers, where the beginning and end are usually dense in information. Key-
words are likely to appear in abstracts and introduction sections, as well as
in summaries. These sections tend to summarize the content of a paper in a
condensed manner.

Titles of papers and sections give a short and information dense description
of what the upcoming text will deal with. A good example is the title of this
Master Thesis: “Keyword extraction using Machine Learning”. In this report
only document titles were taken into account, the notation for chapter and
section titles are too specific for each individual text to be considered.

Tests showed that if a word starts a sentence it is likely to be a keyword.
When starting a new section or chapter, a keyword often starts the first sentence.
An example from this report is: “Word frequency is the baseline ...”.

Experiments also indicated that abbreviated phrases were likely to be key-
words.

17

Chapter 3

Keyword Classification

This chapter describes the keyword classifiers used in this project. Their task
is to classify a set of candidates, each being either keyword or not keyword. The
exceptions are the TextRank and ExpandRank classifiers, that extract their own
keyword candidates.

The classifiers can be divided into two groups depending on what type of
result they produce. Binary classifiers divide the candidates into two groups:
keywords and not keywords. Other classifiers compute a score for each candidate
and classify the candidates with the highest scores to be keywords.

The post processing that is performed after classification on a set of extracted
keywords is also presented in this chapter. It can remove keywords if certain
conditions are met, such as if one keyword subsumes another.

3.1 Word Frequency

Word frequency! is the baseline algorithm in this report with regard to the F-
measure performance. It counts the number of occurrences of each candidate
and classifies the most frequent to be keywords.

Certain words in domain-specific documents, that are not stopwords, may
appear more frequently than others. It is not likely that they add any infor-
mation that is unique to their documents and are therefore not likely to be
keywords. This is a shortcoming of the word frequency approach, that will
disregard this fact.

1Synonym to “term frequency”

18

3.2 TFIDF

The measure was introduced Karen Spérck Jones[8] in 1972 and is very common
in keyword extraction and information retrieval in general.

It weighs the term frequency (TF) of a candidate keyword in a given doc-
ument with its inverse document frequency (IDF), that requires a reference
corpus to compute.

Formula 3.1 show how to compute the TFIDF score, where ¢f is the term
frequency, D is the total number of reference documents and d is the number of
reference documents that contain the current candidate.

D+1)

1 (3.1)

TFIDF =tf - log (

Adding 1 in the denominator avoid division by zero and the logarithm of the
quotient is motivated for two reasons. The first is that differences in d becomes
less significant, especially when d is small. The second and most important
reason is that terms that exist in nearly all reference documents will be given a
low score or even a score of zero if they exist in all of them.

The TFIDF measure weigh candidates that are unique for the current docu-
ment heavier than others and avoid the problem of word frequency by using the
IDF of a candidate. By using a domain-specific reference corpus, the quality of
the keywords can be improved even more due to domain-frequent words being
filtered.

3.3 TextRank

Based on Google’s PageRank algorithm[11, 16], TextRank is a state-of-the-art
unsupervised keyword extraction algorithm[5].

PageRank construct a co-occurrence graph where nodes represent web sites
and edges are links. A formula to compute the score of each node is applied
iteratively until they have all stabilized. A high score can be achieved by linking
and being linked to by other sites with a high score.

TextRank construct a co-occurrence graph where the nodes are the unique
nouns, proper nouns and adjectives of a document. The edges are created by
moving a fixed size window, of size 2 to 20 words, over the sentences of the
document. An edge of weight zero is put between every pair of nodes whose
words are within the window at any point and its weight is incremented by one
for each co-occurrence.

Formally, let G = (V, E) be an undirected graph with a set of vertices V" and
set of edges E, where E is a subset of V x V. Each vertex represent a word and
hold a positive score and every edge hold a positive weight. For a given vertex
Vi, let Adj(V;) be the set of adjacent vertices to V;.

19

extract
/ &

Keyword machine

X 6

learn 2

2
solution 5 \

separate —3— linear
2

Figure 3.1: Ezxample of a co-occurrence graph.

Experiments using a directed graph were performed in [16], where the di-
rection of an edge was decided by the sequence of the words. If w; precede wo
there will be an edge from w; to we. The results did now show any significant
difference, therefore the undirected approach was used in this report.

The word score is calculated using formula 3.2, where d is a damping factor
and is set between 0 and 1 and w;; is the weight of the edge between nodes
V; and V;. The recommended value for d is 0.85 [11, 16] but in this project
the value is set to 0.01, which gave better results. This value was derived from
empirical studies.

SV)=(1-d)+d- Y —=L—5(V)) (3.2)
VEALW) v ey

Formula 3.2 is applied iteratively on the nodes of the graph until the scores
have all stabilized. The words with the highest score are selected for the next
stage of the process, which is to merge them into the phrases that will be the
keywords of the current document.

A word can be merged with another word or phrase if they are adjacent at
any place in the document and if the difference in word score does not exceed
a set threshold value. When a merging occur, the score of the new phrase is
computed according to formula 3.3, where w;, wy are the words/phrases to
merge, size return the number of tokens of a phrase and termSize is defined as
in formula 3.4.

w1 - W2

Score =2 - - termSize(size + size 3.3
L termSine(size(wn) + size(us) (33
2 =3
termSize(k)= < 3 =2 (3.4)
else = small number

Formula 3.3 is inspired by the properties of the F-measure, the lowest pa-
rameter value dominates the output. This is useful when merging high- and
low score words, the word with high score might be more worth extracting as a
single token keyphrase.

20

The termSize function is language dependent and conform to the number of
tokens in the keywords for each language (table 2.3). The English corpora tend
to have keywords of two or three tokens and a vast majority of the keywords in
the Swedish corpora are single tokens. Formula 3.4 show the English version.

3.3.1 ExpandRank

An extension of TextRank is the ExpandRank algorithm[21], that use neigh-
borhood knowledge to extract keywords. The knowledge is represented by the
k most similar documents from a reference corpus and is used to construct an
extended graph.

Formally, let dy be the current document, let dy, ..., d; be the k& most sim-
ilar document with regard to dy and let D = {do,ds,..,dr} be the expanded
document set used to build the extended graph.

The k most similar documents are retrieved by computing the cosine sim-
ilarity (formula 3.5) on vector representations d; of the current document and
the documents of a corpus. Each dimension in the vector contain the TFIDF
score for a certain word in the document.

simaoe(dyd) = —5 i (3.5)
[ldtal [115]

The contribution of a neighborhood is altered edge weights. The weight of
the edge between nodes v;, v; is given by formula 3.6, where count(v;, v;) is the
number of co-occurrences of words v;, v; in neighborhood document d,. The
weight contribution is regulated by the cosine similarity where similar docu-
ments will add more weight for every co-occurrence than unalike documents.

wi; = Z simdoc(d_(;, d;) - count(v;, v;) (3.6)
dp,€D

In [21] edge weights are normalized for each vertex. Tests performed for this
report showed that it resulted in a lower F-measure.

3.4 Naive Bayesian Classifier

The purpose of implementing the Naive Bayesian Classifier (NBC) was mainly
to provide a knowledge representation[4] for the KBANN classifier (see section
3.5.1). When the necessary functionality was written, it was easy converting it
to a standalone classifier.

This classifier use probabilistic models built from training data to classify
candidate keywords. Such a model contain the probabilities of each feature (pre-
sented in section 2.4) being either present or not present for any candidate. The
probabilities are weighed together to create a total probability of a candidate
being a keyword. The candidates with the highest total probability are classified
as keywords.

21

To understand the computations of the NBC, one need to understand Bayes
theorem (formula 3.7). Given two independent events A and B, the posterior
probability P(A|B) of A can be computed from the prior probability P(A), the
evidence P(B) and the distribution function P(B|A) (the probability of B given
A).

P(B|A) - P(A)
P(B)

Suppose that there are several given events By, ..., B, instead of just one.
To compute this posterior probability would be very complex and therefore an
assumption is made that the events By, ..., B, are all conditionally independent.
The posterior probability of A can now be rephrased in formula 3.8. Note that
the denominator does not depend on A and can therefore be removed since it
is constant.

P(A|B) = (3.7)

P(A|By, ..., By) = P(A)ﬁP(BAA) (3.8)

In the case of the NBC there are several given boolean features (events)
Fi, ..., F,, where F; € {0,1} for i € {1,...,n} and C is the event that the
current candidate is a keyword. This is depicted in formula 3.9 which is a direct
translation of formula 3.8.

P(C|Fy, ..., F,) = P(O)][P(F|C) (3.9)
i=1
Formula 3.9 is incorrect because the denominator from formula 3.7 is not
constant and cannot be removed. A feature can either be present F; = 1 or not
present F; = 0 and the factor within the product symbol need to be changed
accordingly. This is shown in formula 3.10.

" F PR =1]C) + (1—
F-PF=1)+(1-

F;) - P(F; = 0|C)
F, —

) - P(F; = 0)

Each factor within the product symbol in formula 3.10 now states how strong
of an indicator the current feature is. A factor of 2 doubles the probability of a
candidate being a keyword, while a factor of % halves it.

For the NBC to function it is vital to use discretized features. If real value
features would have are used instead, such as TFIDF score, the hypothesis space
will grow infinitely large. In theory, all possible candidates can have different
TFIDF scores, which will lead to a serious overfitting issue.

P(CIF,, ... Fy) = P(C) i (3.10)

=1

22

3.5 Artificial Neural Network

The purpose of this classifier was to experiment with the connection between
domain knowledge and reduced training times. It is based on an ANN and use
the the candidate vector representation as input to the network who classifies
the candidate.

The network used in this report is a multilayered perceptron network. A
perceptron is a simple mathematical model of the neuron devised by McCulloch
and Pitts[13]. It holds a hyperplane represented by a weight vector and can be
trained or adjusted to separate data effectively.

Formally, let x € R™ be the input vector and w € R™ be the weight vector.
The output of a perceptron is given by & - w + b, where b is the bias weight of
the perceptron. It can also be expressed as a sum (formula 3.11).

n
b+) i w; (3.11)
i=0

The perceptron output is passed to an activation function that squashes it
to a boolean value, active (1) or inactive (-1).

A multilayered perceptron network is a directed acyclic graph where percep-
trons are divided into layers of three categories: the input layer whose output
is the given input vector, an undefined number of hidden layers that each may
vary in number of perceptrons and the output layer that calculate the output
for the network. If the network output is 1, the current candidate is classified
as a keyword.

An example architecture for an ANN can be seen in figure 3.2, where the
input nodes are represented by squares. Normally the input layer is fully con-
nected with the hidden layer, just as the hidden- and output layer are.

The ANN training methods are described in sections 3.5.2 and 3.5.3.

Input Hidden Output

Figure 3.2: The KBANN architecture used in this project. Input node A is paired
up with the other input nodes B, C and D with the hidden nodes X, Y and Z.

23

3.5.1 Knowledge Based Artificial Neural Network

A KBANN is an ANN where domain knowledge is used to initialize the weights
of the neurons in the network, instead of using random values.

The purpose of using domain knowledge is to reduce the training time, which
has been shown to be effective in [4]. It can also avoid local optima simply
because the starting point is likely to be a shorter distance from the target
hypothesis than a random starting point (figure 3.3).

Target hypothesis

Initial hypothesis
for KBANN

Initial hypothesis
with random weights

Figure 3.3: The picture represents the hypothesis space. The shaded area is the
target hypothesis. By using domain knowledge the starting hypothesis is likely
to lie closer than the hypothesis that is initialized randomly. The training time
can be reduced significantly using this method.

The structure of the network used in this report is inspired by [4]. The
connections from the input layer to the hidden layer are made up of every pair
of nodes in the input layer such that no node is paired up with itself and no
node is paired up with another node representing a feature of the same category.
This is motivated since at most one TFIDF feature and at most one PoS feature
can be present for any candidate. The goal is to find strong combinations of
features.

Woj = P(C|FJ = 1) (312)

The weights of the connections to the hidden layer is retrieved from the NBC
and is the posterior probability of the current candidate being a keyword given
the presence of the associated feature. This is shown in formula 3.12, where C'
is the event that the current candidate is a keyword and Fj is the j:th feature.
The rest of the weights in the network are initialized to a random value in the
interval [—1, 1].

24

3.5.2 Backpropagation

Backpropagation is a commonly used optimization method for multilayer per-
ceptron networks.

Given a set of training data the algorithm employs gradient descent to mini-
mize the error between the classification- and target values in the training data.
The error is calculated on the output nodes and is propagated backwards to the
nodes connected to the corresponding output node.

In this report the weight decay and weight momentum extensions were im-
plemented.

Algorithm 3.1 Backpropagation[10]

Input: A multilayer feed-forward network, a set of training data.
Output: An optimized feed-forward network based on the set of training data.

Each training example (Z, 5) consist of the input vector & and the output vector
t. Network weights are represented with wj;, where ¢ is the layer index and j is
the node index. ¢ is the output vector for the network.

Errors are denoted by d; and §5,, where k represents a node in the output layer
and h represents a node in the hidden layer. The input from node 7 into node j
is denoted by ;.

Constants: 7 is the learning rate, « is the weight momentum, € is the weight
decay.

e Loop until some termination criteria is met
— For each training example (Z,%) do

1. Calculate the output o for the input vector &
2. For each network output unit k, calculate its error term dy

5k<*tk*0k

3. For each hidden unit h, calculate its error term ¢y

5 < on(1 —op) Z Wi Ok

k€outputs

4. Update the network weights
Wi <= Wy; + (1 — e)ijZ-

where
iji = U(Sjl'ji + OéA’LUji (7’L - 1)

Awj;(n — 1) is the update on the previous iteration update.

25

Weight decay[6] is used to neutralize large weight updates. The formula
(1 —¢€), where 0 < € < 1is a constant, is added to the weight update statement.
€ decides how much of the update to remove. Small updates will not be affected
by the weight decay.

Weight momentum[10] is used to avoid the algorithm getting stuck in local
optima and is based on the physical idea of inertia. When calculating the
weight update, the update value in the previous iteration is taken into account.
This makes the weight continue to head towards the direction it was heading
in the past iteration. The formula aAw;;(n — 1) is added to the weight update
statement, where 0 < a < 1 is a constant and Aw,;(n — 1) is the update value
from the previous iteration.

3.5.3 Particle Swarm Optimization

The original algorithm was discovered while attempting to simulate social be-
havior for individuals in a group and was simplified after the particles were
observed to be performing optimization[3].

The Particle Swarm Optimization (PSO) algorithm holds a populations of
particles, each of which have a position and a velocity in a search space. Both
the positions and velocities of the particles are initialized to a random value and
are subsequently updated in a randomized manner. The updated velocity of a
particle depends on three factors: the previous velocity and the cognitive- and
social factors.

The previous velocity is weighed with an inertia weight[20], which usually
decreased from about 1.4 to about 0.4 over the course of an optimization. This
favors exploration in the early stages and exploitation in the later stages of an
optimization.

The cognitive factor steer each particle towards its own best position, while
the social factor steer them toward the swarm best position. Each of these
factors are weighed by a random number in the interval [0,1] to make the
behavior of the particles more stochastic.

The implementation of PSO in this project has been extended with function
stretching[19] in order to avoid local optima. When the algorithm is stuck in a
local optima, the fitness function undergoes a two stage transformation without
destroying any optima that is better than current best and the algorithm is
restarted. The algorithm is considered to be in a local optima if the best solution
is not improved in a certain number of iterations (default is 300). If no better
solution is found in another set of iterations, it is believed that the global optima
has been found.

26

Algorithm 3.2 Basic Particle Swarm Optimization[20]

Input: A multilayer feed-forward network, a set of training data.
Output: An optimized feed-forward network based on the set of training data.

The function to optimize is denoted by f : R®™ — R. P is the set of particles
and N = |P| is the number of particles. z;; € R is the position of particle 7 in
the j:th dimension and v;; € R is the velocity of particle ¢ in the j:th dimension.
The best position for particle i is denoted pb; and sb is the swarm best. r, 71
and ro are uniform random number in the interval [0, 1] and ¢1, ¢ are constants
such that ¢; 4+ co < 4. w is the inertia weight.

e For each particle : € P

1. Initialize particle positions, velocities and personal bests
(a) Zij < Tmin + 7 (Tmaz — Tmin), 1 € {1,.., N}, j € {1,..,n}
(b) vij + —3(Tmaz — Tmin) + "(Tmaz — Tmin), @ € {1,., N}, j €
{1,..,n}
(c) pb; + x;
2. Initialize swarm best: sb < argmin (Vp € P.f(p))
3. Loop until some termination criteria is met
— For each particle i € P and dimension j € [1, n]
(a) Update velocity, v;j <— wv;j+c171(pbij —xi5) +cara(sb; —x45)
(b) Restrict velocities such that |v;;] < Vpmaz
(c) Update position, z;; < x;; + v;;
(a) Update particle best: if f(xz;) < f(pb;) then pb; + x;
(b) Update swarm best: if f(pb;) < f(sb) then sb + pb;
(c) Update inertia weight: if w > wyin then w < 0.99w

Figure 3.4 shows an attempt at minimizing a function where the algorithm
has gotten stuck in a local minimum. It also shows the two transformation
stages where the local minimum is transformed into a global maximum, without
altering the two global minima.

27

stretching transformation.

T
f(x)

(a) Unmodified function: f(z) = sinc(z).

q(ﬁ

-20 -15 -10 -5 0 5 10

20

-

20

—
[[’/ i
"-\H‘J \\M] l\' i
| \ _,; | |
-20 -15 -10 -5 0 5 10 15
(c) Stage 2

28

Figure 3.4: The unmodified sinc function and the two stages of the function
The algorithm is stuck in local optima at the dot,
the global optima can be seen to the right of the dot. Note that they remain
unaltered, the scale on the y-azxis has changed from figure 38.4a.

The extended PSO algorithm has been tested against several functions with
a high number of local optima with very good results (> 99.9% accuracy), in
this project and in [19]. One such function is Levy No 5 with 760 local and only
one global optima in the [—10,10]? interval.

The ANN is converted into a vector using its weights and then optimized
by the PSO algorithm. The F-measure is used as the fitness function and is
maximized.

3.6 Support Vector Machine

Introduced in 1995 by Vapnik [18], Support Vector Machines (SVMs) has made
a big impact on the academic world and the number of papers on the subject
exploded around 2000 [1].

The SVM is a binary classifier, it sorts each candidate into one of two cat-
egories: keyword or not keyword. Given a set of training data, the SVM builds
a model consisting of a hyperplane that can separate unseen data and that also
maximizes the margin between the two classes.

FS

X

v

Figure 3.5: An illustrative ezample of a separating plane.

Not all sets of training data are separable in the input space, the SVM solves
this problem by mapping the data into a higher dimension called a feature space.
Once the data is mapped to the feature space, the SVM can use a hyperplane to
perform a linear separation of data that was not linearly separable in the input
space, but is in the feature space.

The function used to map the data into a feature space is called a kernel
function. There are several types of kernel functions who perform differently on
different sets of data.

29

The SVM used in this report was implemented using Weka?, due to complex-
ity and time constraints. It uses the candidate vector representation described
in section 2.4 and the kernel function used is the Radial Basis Function (RBF).
The only parameter optimization was which weight to assign the instances of
training data classified as keywords, which utilizes the PSO algorithm (see sec-
tion 3.5.3).

3.7 Ensembles

The concept of ensemble learning is to select a collection of classifiers and com-
bine their predictions, hopefully improving the result compared to using a single
classifier.

Each individual classifier makes a prediction about the classification of an
instance. The predictions can be combined in different ways to produce a result.
Using majority vote, at least half of the classifiers need to classify an instance
as positive in order for the ensemble classification to be positive. Two more ex-
amples is if any (union) or all (intersection) of the classifiers predict an instance
to be positive, the ensemble classification will also be positive.

In order for ensemble methods to be effective, each classifier either need to
be trained on different subsets of training data or on the same training data
but with different representations. An example is to train three classifiers on
different sets of candidate keywords: N-grams, PoS and NP-chunks.

3.7.1 Regression

This is an ensemble method consisting of non-binary classifiers. Each candidate
receive a score from each classifier, which are combined to a total score for each
candidate.

This classifier ensemble was an attempt to mimic Hulth’s impressive results
in [7], that reached an F-measure of 45.5.

The regression ensemble was created using three different NBC classifiers,
one for each candidate selection method. The NBC classifier was selected be-
cause it is the best regressive classifier, better than word frequency and TFIDF.

When classifying documents, three sets of candidates are extracted. Each
classifier give a score to each candidate in their candidate set and then the
scores are added for each unique candidate. If a candidate is selected by several
classifiers, it has a higher chance of being classified as a keyword.

2http://wuw.cs.waikato.ac.nz/~ml/weka/

30

3.8 Post Processing

The post processing takes place after a set of candidates have been classified.
The purpose is to eliminate redundant keywords if certain conditions are met.

Keywords can be removed if they are completely subsumed by another and
if the subsumed keyword does not occur enough times on its own.

For example, two of the keywords extracted from a document are: “advice”
and “scientific advice”. The first occur six times while the second occur five
times. Not only does the first keyword only occur once by itself but the second
contain more information, which makes it more specific to the current document.
The assumption is made that the first keyword can be removed safely, without
lowering the quality of the result.

This process is also performed by Hulth[7], but without considering the
number of stand alone occurrences.

31

Chapter 4

Results

In this chapter the results obtained in this project are presented, they are also
compared to results published in other papers. All precision-, recall- and F-
measure values throughout this report are shown in percent.

4.1 Performance evaluation

The best result for each classifier for the main English corpus and the main
Swedish corpus is presented in this section.

Extensive result tables can be found in appendix B. They contain results for
the candidate selection methods without attached classifiers, all combinations of
candidates and classifiers, results for the two remaining corpora (Socialstyrelsen
and NUS) and approximate running times for classification and training.

The Word frequency, TFIDF, TextRank, ExpandRank and NBC classifiers
were instructed to extract as many keywords as each document has been manu-
ally assigned during these experiments. The KBANN and SVM classifiers con-
form themselves to the number of manually assigned keywords in the training
data. These approaches will be discussed in section 5.4.3.

The experiments with the Word frequency, TFIDF, TextRank and ExpandRank
classifiers are classification of full corpora since they are unsupervised methods.
They do not utilize the manual keywords of the training data in classification
of documents. The TFIDF classifier needs a reference corpus to calculate the
IDF, but is independent of the corpora used in this report.

The results presented for the NBC, KBANN and SVM classifiers are the
average over ten runs of 10-fold cross validation in order to avoid overfitting.
The results presented for the ensemble classifiers are from single runs of 10-fold
cross validation.

Table 4.1 and 4.2 show the results for the main English and main Swedish
corpora respectively.

32

Table 4.1: Results for the Inspec corpus. The best result are shown in bold.

Assign. Assign. Corr. Corr. P R F
Classifier tot. mean tot. mean

Word frequency 14 555 7.32 3703 1.86 25.45 25.45 25.45
TFIDF 14 555 7.32 3966 1.99 27.25 27.25 27.25
TextRank 14 555 7.32 4627 2.33 31.84 31.84 31.84
ExpandRank 14 555 7.32 4423 2.22 30.41 30.41 30.41
NBC 14 555 7.32 5101 2.57 35.05 35.05 35.05
KBANN-BP 49 405 24.85 8919 4.49 18.06 61.28 27.89
KBANN-PSO 23 384 11.76 7 341 3.69 31.39 50.44 38.70
SVM 23 869 12.01 7 452 3.75 31.22 51.20 38.79
Regression 27 353 13.76 8 136 4.09 29.74 55.90 38.82
KBANN ensemble 23 503 11.82 7 380 3.71 31.40 50.70 38.78
KBANN-TextRank 29 668 14.92 8371 4.21 28.22 57.51 37.86

Table 4.2: Results for the Medicin corpus. The best result are shown in bold.

Assign. Assign. Corr. Corr. P R F
Classifier tot. mean tot. mean

Word frequency 3 587 5.35 753 1.13 21.00 21.00 21.00
TFIDF 3 587 5.35 1047 1.57 29.19 29.19 29.19
TextRank 3 587 5.35 693 1.04 19.32 19.32 19.32
ExpandRank 3 587 5.35 318 0.48 8.87 8.87 8.87
NBC 3 587 5.35 1046 1.56 29.17 29.17 29.17
KBANN-BP 51 775 77.16 1292 1.93 2.86 36.02 5.30
KBANN-PSO 2 760 4.11 9 90 1.48 35.87 27.60 31.20
SVM 2 667 3.97 976 1.45 36.60 27.21 31.21
Regression 3 278 4.89 1016 1.51 31.00 28.33 29.60
KBANN ensemble 2 292 3.42 884 1.32 38.57 24.65 30.08
KBANN-TextRank 8 207 12.23 1297 1.93 15.81 36.16 22.00

33

4.2 Comparative evaluation

Table 4.3 show results reported in other papers that influenced this project and

that is (or was) state-of-the-art.

Table 4.3: Results from other sources. The best achieved result in this project
for the Inspec corpus is also presented at the top of the table. Note that the
Inspec corpus was not split in constant sets of training and validation data in
this project, cross validation was used instead. This accounts for the larger

numbers of assigned keywords and number of correct keywords.
(* Uses the same corpus, five keywords extracted per document.)

Assign. Assign. Corr. Corr. P R F
Source Tot. Mean Tot. Mean Corpus
This project 23 869 12.0 7 452 3.8 31.2 51.2 38.8 | Inspec
2 667 4.0 976 1.5 36.6 27.2 31.2 | Medicin
Hulth[7] 5 380 10.8 2093 4.2 38.9 54.8 45.5 | Inspec
TextRank[16] 6 784 13.7 2116 4.2 31.2 43.1 36.2 | Inspec
ExpandRank[21] 28.8 35.4 31.7 | DUC2001
GenEx[17] 29.0 Custom
KEA[12] 27.0 Custom
Fast ESP 15 509 8.0 3090 1.6 19.9 26.9 22.9 | Inspec
Fast ESP 10 067 15.0 446 0.7 4.4 124 6.5 | Medicin
Source Settings
This project NP-chunk candidates, SVM classifier
PoS candidates, SVM classifier
Hulth[7] Regression
TextRank[16] Undirected, Co-occ,window=2
ExpandRank|21] Neighborhood of 5 documents
GenEx[17] Journal, Experiment 2 *
KEA[12] Journal *
Fast ESP Semantic Pipeline
Fast ESP Semantic Pipeline

34

Chapter 5

Discussion

This chapter discuss the corpora and components of the project, the results and
different evaluation methods.

5.1 Corpora

In this section the properties of the corpora used in this report are discussed
and also the implications that follow.

Due to the high density of keywords and low noise level in the Inspec corpus,
better results should be obtained compared to the other corpora. It is also likely
that the quality of the manual keywords, possibly the highest amongst the used
corpora, influenced the result.

There are suspicions that the low keyword density the high noise level in NUS
was the reason for the significantly worse results compared to the other corpora.
The low number of documents also caused the biggest drop in F-measure when
comparing results from the cross validation tests and results obtained when
using the full corpus as both training- and validation data (from an F-Measure
of 26-27 to 23).

Both of the Swedish corpora have a noise level higher than Inspec but lower
than NUS, which is likely to affect the results negatively.

Using a general corpus to compute IDF scores can improve performance
significantly[7]. The purpose is that the language cover a wider spectrum than
a domain-specific corpus and it would be interesting to experiment with a corpus
containing e.g. newspaper articles. It is also possible to combine a general- and
a domain-specific corpus to calculate IDF scores, this could possibly improve
results even more.

35

5.1.1 Manual keywords

Due to the statistics of PoS patterns (appendix A) and the number of tokens
(table 2.3) of the keywords of the corpora used in this project, the quality of
the manual keywords can be questioned.

Some manual keywords for Inspec have eight tokens, which is more of a
sentence than a phrase. N-grams miss about 7% of the Inspec keywords since it
only extracts candidates of up to three tokens. This property is also observable
in the English PoS patterns where several patterns are four tokens long.

The PoS patterns also indicate a poor quality of the manually assigned key-
words. The lists for both languages contain single adjective and verb. These
word classes can be questioned as keywords, since they do not contain any
relevant information on their own. There are also patterns that end with an ad-
jective or verb. From a linguistic point of view such sequences are not legitimate
(nominal) phrases and an NP-Chunker will fail to identify them.

There is the possibility that tokens are tagged erroneously, a possible cause
for some of the odd patterns.

5.2 Candidate representation

The binary vector candidate representation turned out to be crucial for the
results obtained from the NBC, KBANN and SVM classifiers. The choice to
use binary features, instead of numerical, made a big impact on both the result
and training times.

The results obtained from the cross validation experiments differed very little
compared to when using the same data for both training and validation, the only
noticeable difference was for the NUS corpus (see section 5.1). This points to
low overfitting which is good.

No overfitting can also be a sign of too low dimensionality in the data repre-
sentation. If the dimensionality is too low, no classifier will be able to separate
it effectively. The goal is to create a separation as good as possible without
causing overfitting.

If numerical features would have been used the dimensionality would be in-
finite, since there would have been an infinite number of possible vectors. This
might make a more complex and better separation of data possible, but the
higher the dimension, the harder it is for a classifier to find a good separa-
tion. Experiments were conducted using numerical features, such as normalized
TFIDF score and also separating TF and IDF. The results did not improve and
testing became extremely time consuming. It is possible that further tests and
deeper analysis of the issue would yield better results.

One of the biggest impacts of choosing binary features was that the training
times for the KBANN and SVM classifier were dramatically decreased. The
training time of these classifiers is approximately proportional to the number
of training data. If using numerical features, the number of training data is
roughly equal to the number of extracted candidates for the current full corpus,

36

e.g. the number of NP-chunk candidates for the Medicin corpus is about 208000.

Using binary features enables merging of equal pieces of training data by
setting the weight to the number of pieces of training data an instance actually
represent. This also impose an upper bound on the number of training data
for each language, which is dependent on the number of features. For English
the boundary is 2240 and for Swedish it is 960. The actual number of training
data is much lower, averaging about a third of the reported numbers. This is
because there are combinations that are very unlikely, e.g. if TFIDF High, one
of the PoS features and the rest of the miscellaneous features are active and the
current candidate is not a keyword. This corresponds to a speed increase in the
order of 100, compared to using numerical features.

The KBANN (using PSO) and SVM classifiers report similar results and
because of this there are reasons to believe that the classifiers themselves is not
the limiting factor, the candidate representation is. If this project was to be
revamped, the candidate representation would be given much needed attention
since it plays such an important role throughout the module. For example, the
result effects and implicit dependencies between the features need to be inves-
tigated further. The number of features are probably too many than necessary
to achieve the results presented in this report.

5.3 Individual components

In this section the interesting individual components used in this project and
their properties are discussed.

5.3.1 Text Tokenization

This area received little attention from the very start of the project. It was
decided early that it would not be a priority of the project to develop a sophis-
ticated text parser and it was assumed that the input to the module would be
pure Unicode text. Also, no time was spent searching an existing component
that could be used in the project.

Changes made to the implemented parser turned out to have a great effect
on the F-measure. An example is splitting sentences on commas, colons and
semicolons in addition to punctuation, question mark and exclamation mark
that increased the F-measure with an average of 2%. Spending time imple-
menting or finding an existing more sophisticated parser would surely improve
the results further. Tokens such as formulas and other “non-words” can most
likely be removed without removing a keyword or a part of a keyword.

The only meta information considered by the parser is the title of each
document. This could be extended with chapter titles, abstracts, and bold and
italic text to enable more keyword features.

37

5.3.2 Part-of-Speech and Noun Phrase-Chunking

A possible source of negative influence on the results is the PoS tagger used
in this project: Hunpos. The PoS and NP-chunk candidate selection methods
depend on it as well as all classifiers except Word frequency and TFIDF. The
accuracy has not been measured or been verified from other sources. It is also
the second biggest bottleneck regarding classification speed.

A possible extension and improvement of the PoS candidate selection method
is to consider context when extracting candidates. The context would be repre-
sented by a window, spanning a number of words before and after the phrase of
interest. This could possibly create a more discriminating result without having
to surrender too much recall.

The NP-chunk method produce the best results, both as stand-alone and
when paired up with classifiers, with a few exceptions. As shown in table B.1
it is able to reach a high precision while maintaining an acceptable recall. But,
the recall is still considerably lower than both the N-grams and PoS methods
and the share of missed keywords range between 17-32%. It would therefore
be very interesting to investigate if there are any patterns amongst the missed
keywords and complement with these, if the precision does not take to much
damage.

The NP-chunker is the biggest bottleneck with regards to classification speed.
This is understandable when considering the amount of information it needs to
process and the complexity of the task itself due to ambiguities in the written
language and in the grammar it uses. The complexity of the English NP-chunker
is not known, but the Swedish has a complexity of O(n?). It is possible that
it can be rewritten to be linear with a large hidden factor, but it would take a
considerable amount of work.

5.3.3 TextRank and ExpandRank

The original TextRank and ExpandRank algorithms[16, 21] differ from the im-
plementation used in this report, mainly in the keyword merging process. An
attempt was made to implement the original TextRank, which gave similar
F-measure results to the original but differed significantly in the balance of pre-
cision and recall. This version also yeilded much worse overall results, but was
better on the Inspec corpus.

When the words with highest word score have been selected, they can be
merged in many different ways. It is stated in [16] that only words that were
taken out as keywords were merged if they were adjacent in the text. The results
were hard to recreate using this method on the Inspec corpus.

When using other methods, such as the one mentioned in section 3.3, that
favored keywords of token size 2 or 3 when extracting keywords from English
documents, the F-measure increased. The damping factor is usually defined as
d = 0.85, when using this setting the implementation gave lower test results
compared to the final setting of d = 0.01.

38

The results in [21] (ExpandRank) show that using a neighborhood can in-
crease the F-measure. It is hard to pinpoint why the implementation used in
this report give lower results than the TextRank algorithm. They use a small,
publicly available corpus consisting of news articles that they annotated them-
selves. The quality of the keywords can therefore be questioned and it would be
interesting to run their implementation on Inspec and compare to the original
TextRank algorithm.

Manual evaluation of the extracted keywords shows that the quality of the
keywords are good even though both algorithms miss the manually assigned
keywords.

5.3.4 Knowledge-Based Artificial Neural Network

The use of knowledge, in the form of feature probabilities, did give the expected
results. There was no noticeable improvement in initial F-measure nor in train-
ing time. It is possible that a different type of representation would be more
beneficial, but has not been tested in this project.

There is room for improving the structure used in the underlying ANN,
especially in connection to the number of features. The goal would be to reduce
the number of neurons as much as possible without comprising the results. This
would speed up training time even more and it should be possible to at least
halve the training time.

The quality of the data separation is believed to be close to optimal when
optimizing the network with PSO. The reason for this hypothesis is that the
SVM classifier show very similar results, which perform very complex separa-
tions compared to the other machine learning classifiers. The suspicions that
the performance of the KBANN classifier would be poor, mainly due to the high
dimensionality of the optimization, turned out to be unfounded.

Comparisons were performed between basic PSO and PSO enhanced with
function stretching. There were clear differences when testing on the Levy No
5 function[19], but would probably not have been needed when separating the
data used in this project. However, the extra computations needed for function
stretching are negligible and it adds a safety net to the PSO algorithm. No
investigation of the complexity of the data used in this project was performed,
simply because it is very hard to do.

One variant of the Backpropagation algorithm that would be interesting to
test is “Batch-BP”. The difference to the normal Backpropagation algorithm is
that it evaluates the whole set of training data and then calculates an average
error, which is propagated backward.

5.4 Evaluation approaches
In this section different evaluation methods are discussed. It is important to

have a performance measure that is as good as possible in order to know which
direction that will give better results. This is especially important when using

39

such optimization algorithms such as Particle Swarm Optimization that, in this
project, uses the F-measure as a fitness function.

5.4.1 The F-measure

In this project the F-measure is used to measure the performance of a keyword
classifier. It is the standard method for this purpose, but is far from optimal.
It only gives a guarantee that the measured classifier is “at least this good” and
even then there is an assumption that the manual keywords are good.

Rather than a measure of performance, it can be seen as a combination of
the level of consistency in manual keywords and to which degree some algorithm
has succeeded in following the observed patterns in the manual keywords.

This introduces a theoretical upper limit, an algorithm can only attempt to
conform itself to the observed patterns. If there are no clear patterns in the
underlying model, the classifier will perform bad. There is a delicate balance
between following the observed patterns and avoiding overfitting. The upper
bound exist in the model, namely how keyword candidates are represented and
what features are accounted for. If low quality results are obtained, it is likely
that the model is flawed (too specific or too general) and/or the training data
is noisy.

Natural language is ambiguous and written text is difficult to parse, this will
introduce errors when translating the text. An algorithm can only be as good
as its underlying model and a model can only be as good as the data it is built
on.

Also, just because a low F-measure is acquired does not mean that the
extracted keywords are bad. It just means that the classifier has not been able
to follow the observed manual keyword patterns. The most accurate method
to measure the performance of a classifier is probably to perform a manual
survey, where people read documents and then categorize the automatically
assigned keywords into “good”, “bad” and “neither”. The primary goal should
be to reduce the number of “bad” keywords and the secondary to reduce the
“neither” keywords. However, this process is very time consuming and therefore
not interesting to use in iterative development, only to obtain a more precise
measure of a final result.

5.4.2 What constitutes a keyword hit?

In the training data used for this project each document has a set of manual
keywords. When an algorithm extracts a keyword that is in the set of the
manual keywords for that document, it is called a keyword hit. However, only
accounting for exact matches is a very pessimistic approach.

The most common method is to perform lemmatized (or stemmed) compari-
son, i.e. if lemmas of two phrases are equal they are considered to be equal. This
means that the two phrases “brown dog” and “brown dogs” are equal, because
the words dog and dogs have the same lemma.

40

A more optimistic approach is to also account for subsuming keywords, in ad-
dition to the lemmatized comparison. This means that if all tokens in the man-
ually assigned keywords are present in the automatically extracted keyphrase
and their order is intact, it will constitute as a keyword hit. The idea behind
this approach is that the automatically extracted keyword is at least as specific
as the manual keyword, information can only be added that makes it more spe-
cific to the current document. This means that the manual keyword “dog” will
be considered equal to the automatically extracted keyword “the brown dog”.
Unfortunately this means that unwanted information can be added in the au-
tomatically extracted keywords. However, this method is still believed, by the
authors of this paper, to be a too pessimistic measure of the true performance
of a keyword extraction algorithm.

To get the most accurate measure of an algorithms performance, one also
need to account for synonyms and semantic relations between words. This
is believed to be especially important when classifying technical papers where
writers tend to vary their language in order to prevent repetition. The two
words “dog” and “canine” would then be considered equal, since they refer to
the same physical object. Semantic relations between words could also be used
to enhance the evaluation accuracy. An automatically extracted keyword is only
compared to the manual keyword it has the strongest semantic relation to. If
the strength of the relation exceeds some predefined threshold, it constitutes a
keyword hit. It is also possible to account for fractions of a hit, proportional to
the strength of the semantic relation.

This would be a more accurate automatic evaluation method, but it still
does not account for good keywords that just were not in the set of manual
keywords. Therefore, to get the most accurate measure a manual study should
be carried out (as stated in 5.4.1).

5.4.3 How many keywords to extract?

Turney [17] and Frank [12] performed experiments where they extracted five
and fifteen keywords per document. This does not reflect the performance of
the classifier since extremely poor keywords might get extracted due to a lack of
proper candidates. A cutoff value can be used to prevent this from happening.

Zesch and Gurevych[5] has slightly different and better approach. They
account for the result of a document if the number of automatically extracted
keywords and manually assigned keywords are equal . The drawback of this
method is that the number of documents that contribute to the final result may
be small and thus the result may vary from corpus to corpus. To help prevent
this one can use corpora with a high number of documents, such as Inspec
(~2000 documents).

The classifiers in this project use two different approaches to solve this prob-
lem. The non-binary classifiers extract the same number of keyword each doc-
ument in the training data has been manually assigned. Note that this is only
during evaluation experiments, in live classification the desired number of key-
words is passed as a parameter to the classifier.

41

The binary classifiers conform themselves during training to extract the same
number of keywords each manual document has been assigned. They only ex-
tract keywords that fulfill their requirements. This is consistent with regard to
the number of keywords and the keywords themselves assigned manually to the
documents in the training data as the gold standard.

5.5 Result discussion

The overall results of this project is not be as good as initially hoped, but they
are satisfactory.

Fast ESP, the search engine used by Findwise AB which has the possibility to
extract keywords, has considerably worse performance than the best classifiers
used in this project, especially for Swedish documents. The classifiers in this
project are also faster, but they can only extract keywords. When classifying
documents, Fast ESP performs additional operations such as entity extraction.
Because of this the speed performance is hard to measure, but if keywords are
the only subject of interest there is a clear winner with a factor of about three.

Hulth’s results remain impressive and is in another league than those re-
ported in this project. Even though the methods used in both projects may
look similar, such as the features and candidate selection methods, there is still
a big difference. The known differences are the PoS tagger, NP-chunker and
the machine learning algorithm. Since the best classifiers show very good per-
formance, it is believed that a big difference lies in the PoS tagger, NP-chunker
and the candidate representation. It is also possible that Hulth’s partitioning of
the Inspec corpus influences the result, but should not account for a difference
more than maybe a few percentages in F-measure.

The classifiers, especially KBANN and SVM, show impressive results and
would be a strong foundation to base further work on. By optimizing the can-
didate representation and the features it is very likely that the results would
improve. Another possible improvement could be to test other external tools,
in addition to the PoS tagger and NP-chunker, though this would most likely
limit the supported languages to English only.

The big disappointment of this project is the poor results obtained from
the different ensemble methods that were tested. No combination of classifiers,
representations and training data gave any noticeable improvement over single
classifiers what so ever. It is believed that the reason is the simplicity of cre-
ating a close to optimal separation of the training data, every classifier in the
ensembles simply classify nearly the same subset of candidates as keywords.

42

Chapter 6

Conclusion

There are no known distinct statistical or linguistic patterns for finding key-
words. Human annotators disagree to a great extent[22]. If an obtained F-
measure is too high, this is likely a result of overfitting.

By using linguistic information in candidate selection methods, such as PoS
and NP-chunking, increases the performance significantly compared to N-grams.

Translating text into numeric representations is hard. Much information is
lost when words are converted into a numerical feature vectors and the generated
data is partly contradictory.

Boolean features limited the number of permutations of candidate vectors.
This lowered training times drastically and prevented overfitting but may have
narrowed the complexity of data separation.

Though simplistic in design, the NBC classifier is very powerful and achieves
near similar results to the more sophisticated classifiers used in this report.

The TextRank classifier show great potential and can be compared to the
best supervised algorithms. The low F-measures compared to [16] is believed
to be caused by a lacking implementation. Manual inspection of extracted
keywords indicate good quality despite lacking results.

The knowledge model used in the KBANN classifier did not meet the ex-
pectations and the result influence, if any, was negative. A basic ANN was
sufficient.

Enhancing the PSO algorithm with function stretching was probably unnec-
essary, considering the simplicity of the feature vectors. The extra computations
are negligible and improves accuracy significantly, which could prove useful in
applications of greater complexity.

The manual keywords were regarded as gold standard, but turned out to be
of questionable quality. The quality of keywords extracted from documents in a
live situation will be lower than if the manual keywords would have been better.

This report shows that combining NLP and ML algorithms can improve

keyword quality, compared to other methods such as TFIDF. The results are
satisfactory and outperform the Fast ESP suite used at Findwise AB to date.

43

6.1 Future work

With the implemented module and report as a foundation, there several im-
provements and extensions that are possible to enhance the results:

General corpus Employ a bigger and more general document set, with regards
to content, to calculate IDF scores.

Parsing More sophisticated parser with support for additional meta info.

Missed keywords Investigate possible patterns in keywords not extracted by
the NP-chunker.

Additional candidate selection method Use of dependency grammar and
hyperonyms.

TextRank Improved keyword merge method and NP-chunk extension.
PSO More extensive use for optimization of various parameters.
Backpropagation Batch BP extension.

Boosting Use the boosting ensemble method.

Semantic relations Use of WordNet and Saldo to measure the strength of
semantic relations between pair of words.

Manual keyword quality surveys Human evaluation is necessary to find ac-
tual quality of extracted keywords.

44

Bibliography

1]

2]
3]
[4]

[5]

[6]

7]

8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

Kristin P. Bennett, Colin Campbell. Support vector machines: Hype or
halleluja? 2000.

Nguyen Thuy Dung. Automatic keyphrase generation. 2006.
James Kennedy, Russell Eberhart. Particle swarm optimization. 1995.

Ram Dayal Goyal. Knowledge based neural network for text classification.
2007.

T. Zesch, I. Gurevych. Approximate matching for evaluating keyphrase
extraction. 2009.

Simon Haykin. Neural Networks and Learning Machines. Peason, 2009.
ISBN 978-0-13-129376-2.

Anette Hulth. Combining machine learning and natural language process-
ing for automatic keyword extraction. 2004.

K. Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 28(1):11-21, 1972.

Jon M. Kleinberg. Authoritative source in a hyperlinked environment. 1999.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997. ISBN 0-07-
115467-1.

Larry Page, Sergey Brin, Rajeev Motwani. The pagerank citation ranking:
Bringing order to the web. 1999.

Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, Craig C.
Nevill-Manning. Domain-specific keyphrase extraction. 1999.

Warren S. McCulloch, Walter H. Pitts. A logical calculus of the ideas
immanent in nervous activity. 1943.

M.F. Porter. An algorithm for suffix stripping. 1980.

Amit Singhal. Modern information retrieval: A brief overview. 2001.

45

[16] Rada Mihalcea, Paul Tarau. Textrank: Bringing order into texts. 2004.
[17] Peter D. Turney. Learning algorithms for keyphrase extraction. 1999.
[18] Vladimir N. Vapnik. The nature of statistical learning theory. 1995.

[19] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, M.N. Vrahatis.
Stretching technique for obtaining global minimizers through particle
swarm optimization. 2000.

[20] Mattias Wahde. Biological Inspired Optimization Methods. WIT Press,
2008. ISBN 978-1-84564-148-1.

[21] Xiaojun Wan, Juanguo Xiao. Single document keyphrase extraction using
neighbourhood knowledge. 2008.

[22] M.E. Dexter, P Zunde. Indexing consistency and quality. American Docu-
mentation, 20(4):259-267, 1969.

46

Appendix A

PoS Patterns

The full list of tags, for each language, used by the PoS candidate selection
method are presented in section. The patterns extracted are based on statistics
taken from the attached keywords in the corpora, every keyphrase pattern occur

at least 10 times.

Table A.1: PoS patterns.

English Swedish
jj nn vbg nn vbn nn nn nn nnp nn pc
nn nn vbg nnp nnp nn jj nn jj nn pm pc nn
jj nns vbg nns nn jj nns nnp nnp nns jj nn nn kn jj
nn nnp nnp nnp | jj vbg nn cd nn ii pm pm
nn nns ji vbg nn jj nnp vbg nn kn nn nn pp nn
jj nn nn nn jj nn nn in nn nn vbg nns vb
nnp nn vbg nn vbg nn nn vb
nns jj nnp nn cd nnp vbn jj nn
nnp nn nnp jj nn rb jj nn nn jj nn nn
jj nn nns vbn nn jj nnp nns vbn nn nns
nn nn nn nnp nn nns ji jjjj nn nns in nn
jj jj nn jj nnp jj nn vbg vbz
nnp nns nns nn jj nns nn nns nns
Jj jj nns i vbg nn nn
nn nn nns jj jj nn nns rb jj nns
ji jj nn nn nns vb nn
nnp nnp nn nn nn nn nnp nn nn nn
jj nn nn nn vbn nns vbn jj nns
nnp nn nn nn vbz nnp jj nns
jj jj nn nn jj vbg nns nnp nnp nnp nnp

47

Appendix B

Extensive result tables

The test results presented in this section are run on computers with 2.1-2.4 GHz

processors. The runtimes and training times are not to be interpreted as 100%

accurate, they are only presented to give an indication of the speed. Only when

there is a full order of magnitude in difference between two runtimes, it is safe

to assume that there is a significant difference in speed (e.g. 5s and 2m).
Training times for the supervised machine learning algorithms are not in-

cluded in their individual results and are presented separately in section B.9.
Explanations of the table column names used in this section:

e Runtime - The time it takes to run the test.

e Assign. tot. - Total number of keywords extracted.

e Assign. mean - Mean number of keywords extracted for each document.
e Corr. tot. - Total number of correct keywords extracted.

e Corr. mean - Mean number of correct keywords per document.

e P - Precision.

e R - Recall.

e F - F-measure.

48

B.1 Candidate selection methods

The results below concern only candidate selection methods, i.e. no classification

algorithms are applied on the extracted candidates.

The runtimes for PoS include the time it takes to tag the documents with
PoS tags. The actual time it takes to find the pattern matches are comparable
to the runtimes for N-grams.

The runtimes for NP-chunk does not include the time it takes to tag the

documents with PoS tags.

Table B.1: Statistics for the candidate selection methods used in this project.
The best results for each corpus are shown in bold.

Runtime Assign. Assign. Corr. Corr. P R F

Medicin tot. mean tot. mean

N-grams 5s 798 753 1 190.39 3 586 5.35 0.45 99.98 0.90

PoS 1m 24s 430 693 641.87 3478 5.19 0.81 96.97 1.61

NP-chunk 3m 17s 208 745 311.10 2 704 4.03 1.30 75.39 2.55
Socialstyrelsen

N-grams 4s 491 077 333.39 3 445 2.35 0.71 97.05 1.40

PoS Im 11s 286 992 198.84 3 404 2.32 1.19 95.89 2.35

NP-chunk 3m 10s 139 541 97.73 2 621 1.79 1.88 73.84 3.67
Inspec

N-grams 1s 222 107 111.72 13 343 6.71 6.01 91.68 11.28

PoS 12s 152 712 76.82 13 251 6.67 8.68 91.05 15.85

NP-chunk 1m 1s 53 622 26.97 9 655 4.86 18.01 66.34 28.33
NUS

N-grams 3s 499 147 3 283.86 1163 7.66 0.24 93.87 0.47

PoS 1m 34s 294 716 1 938.92 1164 7.66 0.40 93.95 0.79

NP-chunk 3m 55s 143 855 946.41 1031 6.79 0.72 83.22 1.43

49

B.2 Word frequency

In the results presented for this classifier, the number of keywords extracted is
the same as the number of manual keywords for each document. The runtimes
does not include the time it takes to extract candidate keywords.

Table B.2: Statistics for the Word frequency classifier. The best results for each
corpus are shown in bold.

Runtime Corr. Corr. F

Medicin tot. mean

N-grams 34s 655 0.98 18.27

PoS 18s 550 0.82 15.34

NP-chunk 42s 753 1.13 21.00
Socialstyrelsen

N-grams 158 675 0.46 19.02

PoS 11s 661 0.45 18.62

NP-chunk 5s 842 0.58 23.72
Inspec

N-grams 5s 2207 1.11 15.17

PoS 55 3210 1.61 22.06

NP-chunk 20s 3 703 1.86 25.45
NUS

N-grams 46s 140 0.93 11.30

PosS 24s 106 0.70 8.56

NP-chunk 1m 6s 153 1.01 12.35

50

B.3 TFIDF

In the results presented for this classifier, the number of keywords extracted is
the same as the number of manual keywords for each document. The runtimes
does not include the time it takes to extract candidate keywords.

Table B.3: Statistics for the TFIDF classifier. The best results for each corpus
are shown in bold.

Runtime Corr. Corr. F

Medicin tot. mean

N-grams 26s 1018 1.52 28.39

PoS 14s 1 047 1.57 29.19

NP-chunk 12s 1035 1.55 28.86
Socialstyrelsen

N-grams 12s 621 0.43 17.50

PoS 9s 721 0.49 20.31

NP-chunk 3s 838 0.57 23.61
Inspec

N-grams 3s 2401 1.21 16.50

PoS 3s 3715 1.87 25.53

NP-chunk 1s 3 966 1.99 27.25
NUS

N-grams 39s 212 1.40 17.12

PosS 23s 184 1.22 14.86

NP-chunk 19s 223 1.47 18.00

51

B.4 TextRank

Both of the TextRank- and Expand classifiers are not dependent on having
candidate keywords given to them when classifying a document.

B.4.1 TextRank

Table B.4: Statistics for the TextRank classifier.

Corpus Runtime Corr. Corr. F

tot. mean

Medicin 2m 12s 693 1.04 19.32
Socialstyrelsen 1m 48s 710 0.49 20.01
Inspec 31s 4627 2.33 31.84
NUS 5m 52s 83 0.55 6.87

B.4.2 ExpandRank

Table B.5: Statistics for the ExpandRank classifier.

Corpus Runtime Corr. Corr. F

tot. mean

Medicin 7m 36s 318 0.48 8.87
Socialstyrelsen 11m 18s 342 0.24 9.64
Inspec 5m 31s 4 423 2.22 3041
NUS 7m 15s 64 0.43 5.17

52

B.5 NBC

In the results presented for this classifier, the number of keywords extracted is
the same as the number of manual keywords for each document. To avoid an
overfitted result, the results presented for the NBC classifier is the average from
10 runs of 10-fold cross validation. The runtimes does not include the time it
takes to extract candidates, only the classification of a full corpus.

Table B.6: Statistics for the NBC classifier. The best results for each corpus
are shown in bold.

Runtime Corr. Corr. F

Medicin tot. mean

N-grams 59s 1008 1.51 28.10

PoS 28s 1046 1.56 29.17

NP-chunk 32s 1019 1.52 28.40
Socialstyrelsen

N-grams 31s 791 0.54 22.29

PoS 19s 915 0.62 25.78

NP-chunk 24s 1033 0.70 29.09
Inspec

N-grams 10s 4 491 2.26 30.86

PoS 8 5038 2.53 34.61

NP-chunk 258 5101 2.57 35.05
NUS

N-grams 1m 24s 272 1.79 21.97

PoS 46s 248 1.63 20.03

NP-chunk 2m 8s 293 1.93 23.62

93

B.6 KBANN

The KBANN classifier is based on a supervised machine learning algorithm,
therefore 10-fold cross validation is used. The results presented are the average
results in each category from 10 runs.

The runtimes does not include the time it takes to extract candidates, only
the classification of a full corpus. The classification time is independent of which
optimization algorithm that has been used, therefore the runtimes reported for
BP and PSO equal.

B.6.1

Backpropagation

Table B.7: Statistics for the KBANN classifier using a network trained by BP.
The best results for each corpus are bold.

Runtime Assign. Assign. Corr. Corr. P R F

Medicin tot. mean tot. mean

N-grams 32s 89 650 133.61 1264 1.88 1.51 35.24 2.90

PoS 20s 59 130 88.12 1 283 1.91 2.47 35.77 4.62

NP-chunk 28s 51 775 77.16 1292 1.93 2.86 36.02 5.30
Socialstyrelsen

N-grams 21s 62 078 42.14 1131 0.77 1.98 31.87 3.73

PoS 15s 57 753 39.21 1374 0.93 2.46 38.69 4.63

NP-chunk 27s 35 158 23.87 1304 0.89 3.71 36.73 6.74
Inspec

N-grams 9s 94 751 47.66 8 962 4.51 9.46 61.58 16.40

PoS 8s 68 999 34.71 10 545 5.30 15.29 72.45 25.25

NP-chunk 21s 49 405 24.85 8 919 449 18.06 61.28 27.89
NUS

N-grams 1m 3s 3 878 25.51 308 2.03 7.94 24.86 12.04

PoS 37s 3 440 22.63 313 2.06 9.10 25.26 13.38

NP-chunk 1m 48s 5097 33.53 372 2.45 7.30 30.02 11.74

o4

B.6.2 Particle Swarm Optimization

Table B.8: Statistics for the KBANN classifier using a network trained by PSO.
The best results for each corpus are bold.

Runtime Assign. Assign. Corr. Corr. P R F

Medicin tot. mean tot. mean

N-grams 32s 2 753 4.10 973 1.45 35.34 27.12 30.69

PoS 20s 2 760 4.11 990 1.48 35.87 27.60 31.20

NP-chunk 28s 2 314 3.45 881 1.31 38.07 24.56 29.86
Socialstyrelsen

N-grams 21s 3 996 271 1053 0.71 26.35 29.66 27.91

PoS 15s 3 760 2.55 994 0.67 26.44 28.00 27.20

NP-chunk 27s 3474 2.36 1018 0.69 29.30 28.68 28.99
Inspec

N-grams 9s 30 678 15.43 8 310 4.18 27.09 57.09 36.74

PoS 8s 21 334 10.73 6 270 3.15 29.39 43.08 34.94

NP-chunk 21s 23 384 11.76 7 341 3.69 31.39 50.44 38.70
NUS

N-grams 1m 3s 1395 9.18 297 1.95 21.29 23.97 22.25

PoS 37s 1421 9.35 284 1.87 19.99 22.92 21.35

NP-chunk 1m 48s 1 357 8.93 298 1.96 21.96 24.05 22.96

35

B.7 SVM

Since this is a supervised machine learning algorithm, 10-fold cross validation
is used. The results presented are the average results in each category from 10
runs. The runtime measures a single classification of a full corpus including the
time it takes to extract the candidates.

Table B.9: Statistics for the SVM classifier. The best results for each corpus
are bold. An outlier with 15.27 precision caused the precision for NP-chunk on
Socialstyrelsen to drop by about 1.5 points.

Runtime Assign. Assign. Corr. Corr. P R F

Medicin tot. mean tot. mean

N-grams 2m 5s 2 650 3.95 953 1.42 35.96 26.57 30.56

PoS 1m 11s 2 667 3.97 976 1.45 36.60 27.21 31.21

NP-chunk 565 2224 3.31 868 1.29 39.03 24.20 29.88
Socialstyrelsen

N-grams 1m 16s 4 306 292 1115 0.76 25.92 31.42 28.41

PoS 49s 4 339 295 1117 0.76 25.75 31.47 28.32

NP-chunk 31s 3 851 2.61 1029 0.70 27.88 28.98 28.42
Inspec

N-grams 8s 22 667 11.40 5894 2.96 26.00 40.49 31.67

PoS 7s 20 776 10.45 6 060 3.05 29.17 41.64 34.31

NP-chunk 24s 23 869 12.01 7 452 3.75 31.22 51.20 38.79
NUS

N-grams 1m 54s 1538 10.12 307 2.02 19.96 24.78 22.11

PoS 1m 10s 1 351 8.89 265 1.74 19.62 21.39 20.47

NP-chunk 2m 12s 1278 8.41 298 1.96 23.32 24.05 23.68

o6

B.8 Ensembles

In this section the results for some of the tested ensemble methods are pre-
sented. All ensembles contain at least one supervised classifier and 10-fold cross
validation is therefore used. Training ensembles take considerable longer time
than single classifiers, so due to time constraints the result are from a single run
only.

Several other ensemble combinations were tested, but no result was notice-
ably better than the best single classifiers. Those result are therefore omitted
from this report.

B.8.1 Regression

Table B.10: Statistics for the Regression classifier.

Runtime Assign. Assign. Corr. Corr. P R F

Corpus tot. mean tot. mean
Medicin 41s 3278 4.89 1016 1.51 31.00 28.33 29.60
Socialstyrelsen 1m 16s 4 202 2.85 960 0.65 22.85 27.05 24.77
Inspec 52s 27 353 13.76 8 136 4.09 29.74 55,90 38.82
NUS 2m 22s 1475 9.70 276 1.82 18.72 22.28 20.34

B.8.2 KBANN ensemble

This classifier consist of seven individual KBANN classifiers, each trained on a
different subset of training data and use NP-chunk candidates.

Table B.11: Statistics for the KBANN ensemble classifier using NP-chunk can-
didates.

Runtime Assign. Assign. Corr. Corr. P R F

Corpus tot. mean tot. mean
Medicin 46s 2 292 3.42 884 1.32 38.57 24.65 30.08
Socialstyrelsen 37s 3 432 2.33 1018 0.69 29.67 28.68 29.17
Inspec 15s 23 503 11.82 7 380 3.71 3140 50.70 38.78
NUS 1m 20s 1 336 8.79 309 2.03 23.13 2494 24.00

o7

B.8.3 KBANN and TextRank

This ensemble classifier consist of a single KBANN classifier using NP-chunk
candidates and a single TextRank classifier. The final result is the union of
keywords extracted by both classifiers.

Table B.12: Statistics for the KBANN-TextRank ensemble classifier using NP-
chunk candidates.

Runtime Assign. Assign. Corr. Corr. P R F

Corpus tot. mean tot. mean
Medicin 1m 13s 8 207 12.23 1297 1.93 15.81 36.16 22.00
Socialstyrelsen 1m 23s 9179 6.23 1559 1.06 16.99 43.92 24.50
Inspec 10s 29 668 1492 8371 4.21 28.22 57.51 37.86
NUS 2m 59s 3 396 22.34 363 2.39 10.69 29.30 15.67

B.9 Training times

The times presented in table B.13 are the average of ten training sessions.

The training data is created from candidates extracted using the N-grams
method, this is motivated by that it extracts the most candidates by far to
create a worst case scenario. If training is performed on NP-chunk candidates,
the time for extracting them needs to be included in the times presented in table
B.13. The times for extracting the N-grams can then be ignored since they are
so small (see table B.1).

The NBC classifier is the only trained classifier whose training times depend
heavily on the number of extracted candidates. The size of the training data
used for the rest of the trained classifiers is restricted by the number of features
(see section 2.4). Only identical pieces of training data are kept and are given
weights that correspond to the actual number of instances they correspond to.

Table B.13: Training times for the supervised algorithms.

Algorithm Medicin Socialstyrelsen Inspec NUS
NBC 34s 22s 10s 1m 4s
KBANN-BP 44s 34s 28s 1m 10s
KBANN-PSO 3m 17s 2m 45s Tm 4s 5m 35s
SVM 58s 65s 72s 63s

The training times for the Regression classifier is approximately equal to
three times the training time for a single NBC classifier. The training time for
the KBANN ensemble is approximately equal to the training time required for
a single KBANN classifier multiplied with the number of classifiers used in the
ensemble. The training time of the KBANN-TextRank classifier is equal to the
training time of a single KBANN classifier.

58

	Master of Science Thesis
	Martin johansson
	PONTUS LINDSTRÖM

