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Secondary Tasks in Steady State Car Following Situations 

Master’s Thesis in the Master’s programme of Automotive Engineering  
ANDRE FERNANDEZ 
Department of Applied Mechanics 
Division of Vehicle Safety 
Chalmers University of Technology 

 

ABSTRACT 

Naturalistic driving studies and field operational tests are important tools for traffic 
and road safety research. Naturalistic driving data and accident data show that rear-
end collisions are the most common type of accident in car following situations. 
Furthermore, distraction from secondary- tasks-has been shown to be one of the 
leading causes of rear-end collisions. 

The aim of this thesis was to analyze driver behaviour in car following situations in 
order to gain insight into the influence of factors such as secondary tasks to the 
likeliness of rear-end collisions. A steady state car following scenario was defined and 
used to extract data representing car following situations from commutes on main 
arterial road segments. This data was studied to determine the effects of secondary 
tasks on driver behaviour measured by, among other variables, headway time to the 
lead vehicle. Driving data from passenger vehicles in the euroFOT project –the largest 
ongoing field operational test in Europe— was used in this study. 

The results presented in this thesis indicate that traditional measures of longitudinal 
and lateral control such as lane position and headway time are less affected by 
secondary tasks than measures related to driver control inputs such as peak steering 
angle acceleration in steady state following situations.  

 

Key words: Traffic safety, naturalistic driving study, field operational test, car 
following, secondary tasks. 
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1. Introduction 

1.1. Background 
The second half of the 21st century has seen much progress in the field of automobile 
safety. Still, around 1.2 million people die on the road every year in traffic accidents 
with as many as 500 million more being injured (W.H.O., 2009). Rear-end collisions 
occur in car following situations when a following vehicle fails to maintain a safe 
distance and collides with the rear of the lead vehicle. Accidents in car following 
situations account for approximately 30% of all automobile crashes that occur in the 
United States every year. Further, research has established rear-end collisions as one 
of the major types of automobile accidents in the world (NHTSA, 2009).  A leading 
cause of rear-end collisions is driver inattention due to a secondary task in the 
following vehicle. A secondary task is defined as a driver task that distracts the driver 
from the driving task such as phone use (NHTSA, 2009). Driver inattention was a 
contributing factor in 93% of all rear-end collisions in the 100 Car study with over 
30% of all crashes and over 25% of all near crashes being caused solely by secondary-
task-induced inattention (Klauer, 2006).  

The effect of secondary tasks on driver performance has been a hot topic in recent 
years. Numerous studies have been conducted by both private and governmental 
organisations, seeking to better understand the effects of secondary tasks on traffic 
safety. According to the NHTSA, 5,870 people were killed in the United States during 
2008 alone, with some form of distraction being a contributing factor while, 
approximately 515,000 were reported as injured (NHTSA, 2009).  

Naturalistic driving studies (NDS’s) such as the 100 car study (Dingus, 2006) and 
SHRP21 collected and in the case of SHRP2, are still collecting driving data from 
instrumented vehicles driven by subjects under naturalistic (quasi-experimental) 
conditions. NDS’s are an important tool in road safety research, aiding the study of 
human factors, accident causation and crash avoidance. Advanced driver assistance 
systems (ADAS) such as adaptive cruise control and lane departure warning are 
systems that aid the driver in driving safer and more efficiently. Field operational tests 
such as SeMiFOT (SeMiFOT, 2008) and euroFOT (EuroFOT, 2010) are NDS’s 
which, in addition to driving data, also collect driving data from vehicles equipped 
with ADAS’s and allow the impact of these systems on driving to be studied. Driving 
data used in this study was collected from company cars driven by employees of 
Volvo Car Corporation during the euroFOT project. 

                                                 
1 Strategic Highway Research Program 2, NDS which will study highway crashes and congestion. 
Currently ongoing and scheduled to run until March 2015. 
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1.  

1.1.  

1.2.  

1.3.  

Time gap between two vehicles in a car following situation is referred to as headway 
time. Previous studies have shown that headway time is influenced by secondary task 
distraction (Dey, 2007). Engaging in secondary task performance in certain situations 
poses a higher level of risk than others (McDonald, et al., 1997). Car following is one 
of these situations, as inattention while following another vehicle may lead to a rear-
end collision if the lead vehicle has to brake unexpectedly. A better understanding of 
headway time and secondary task distraction in following situations could aid the 
development of future active safety systems. 

An important step in the analysis of naturalistic driving data is finding valid data from 
the driving situation being studied, in the case of this thesis - car following situations. 
Drives through lightly trafficked road segments display a variety of headways as most 
drivers choose to switch lanes to a free lane if possible (McDonald, et al., 2007). This 
means that while instances where a driver appears to follow another vehicle may exist 
in a trip, several of these do not represent true car following but transient segments 
(lane changes, intermittent radar contacts etc.). Dey et al. studied headway behaviour 
and found when drives on lightly trafficked roads are considered, a range of headways 
are noted as drivers switch lanes to maintain a desired speed. On heavily trafficked 
roads however, switching between lanes in not possible and drivers are constrained to 
a following a vehicle (Dey, 2007). This situation is an example of a steady state car 
following situation and represents true car following. 

Data extracted from this steady state represents true car following. Given appropriate 
data extraction criterion, the effect of the factors that influence headway time in car 
following situations can be studied without the influence of other factors such as the 
effects of lane changes etc.  Since drivers in steady state car following situations are 
forced to adapt their headway to the constraining factors (the leading vehicle) this 
should make headway a good indicator of the driver’s attention (Dey, 2007).  

NDS’s have shown that for several drivers, trips over a few road segments (see Figure 
1) represent most of the total distance driven (LeBlanc, 2006). This thesis focus on 
driving data from such frequently traversed road segments. That is, segments of road 
along the home-work-home daily commute. The method proposed and implemented 
disregards data from non-steady state following situations.  
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Figure 1: Percentage of distance travelled per traversal of road segment (RDCW FOT 
Methodology and results, 2006) 

Previous studies have shown that secondary tasks have a significant effect on 
variables such as lane position and steering wheel angle. It was therefore expected 
that measures of these variables would play an important role in the analysis. 

1.2. Literature review 

1.2.1. Car following and headway time 
The lead vehicle in a car following situation is defined as the vehicle being followed 
by another vehicle. This study focused on the following vehicle in this situation which 
is here on after called the subject vehicle. Headway time or time gap in this study is 
defined as the time interval between the front bumper of the subject vehicle and the 
rear bumper of a lead vehicle measured in seconds.  

 
 (1)

 
The term headway can be used both to describe the gap between a lead vehicle and a follower 
vehicle in terms of both distance2 and time3. Headway time has been described as a 
fundamental building block of traffic flow and indicators of traffic safety (Dey, 2007). Larger 
headway times have been thought to provide larger margins of safety (Yacov, et al., 2002). 
Vogel et al. found that small headway times indicate potentially dangerous situations (Vogel, 
2001). Several national road agencies such as the Swedish national road administration 
recommend maintaining a headway time of at least 3 seconds (Vogel, 2001).  
 
Headway time has been extensively studied in the past. Studies by Schuhl, Khasnabis and 
Dawson are among the more well-known researchers in this area. These studies used 
statistical methods to describe and model headway time (Schuhl, 1955; Khasnabis, 1980; 
Dawson, 1968).  

                                                 
2 Headway distance 
3 Headway time 
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Headway time in a car following situation is an important factor in the understanding 
of rear-end collisions. The maintenance of a safe headway time is a primary concern 
of drivers in car following situations (Vogel, 2001; Yacov, o.a., 2002). Headway time 
in a car following situation is constantly monitored by the driver so that any sudden 
deceleration of the lead vehicle can be handled safely by braking one’s own vehicle 
within the available braking distance between the two vehicles thus the term ‘safe 
braking distance’. Headway time varies considerably between individuals, is affected 
strongly by driver inattention and particularly by inattention due to secondary tasks 
(McDonald, et al., 1997; McDonald, et al., 2007; Yacov, et al., 2002). Research exists 
to support the fact that headway time indicates car-following, free-driving or partially 
constrained driving. Karjala et al. found that car following interactions cease above 
headway times of six seconds. (Karjala, et al., 2010). Bennet et al. found that headway 
times of up to 2.5 seconds describe pure car following behaviour. Headway times 
between 2.5 and 9 seconds were found to describe partially constrained driving (a mix 
between free flow and car following) with headways above 9 seconds describing free 
flowing driving (Dunn, et al., 1994). McDonald et al. studied car following using an 
instrumented vehicle in an experimental setup. It was found that day to day variations 
in headway time were greater than variations between the drivers (McDonald, et al., 
1997).  

Headway time is proposed as an indicator of car following behaviour. Although 
headway time has been studied in the past, few studies exist that make use of 
naturalistic driving data with most studies reviewed making use of either simulated 
data or data from closed test track experiments. No study has been found during the 
literature review of this thesis that models the effect of secondary tasks and other 
parameters on headway time in car following situations. A need for more work in this 
area presents itself due to its potential application in the design of future ADAS’s and 
its role in the understanding of driver distraction and human factors.  

1.2.2. Secondary tasks 
Previous research has shown that secondary tasks have an effect on driving 
performance (Sayer, et al., 2005; NHTSA, 2009; Ranney, 2008; Dingus, 2006). In a 
review of the 100 Car study, Vicki et al. found that secondary task performance was 
the largest source of driver distraction in the study (Neale, et al., 2002). An NHTSA 
review of the 100 Car study found that secondary task distraction was a contributing 
factor in 22% of all crash and near crash situations (NHTSA, 2009; Dingus, 2006). 
During the same study 93% of all rear-end collisions (13 out of 14 collisions) and 
68% of all near crashes involving some form of driver inattention (Neale, et al., 
2002).  

Klauer et al. found that engaging in a visually demanding or complex task while 
driving raises the crash risk by three times (Klauer, 2006). The same study suggests 
that the increased risk is partly due to the driver having to glance away from the road 
for periods longer than 2 seconds. The results from these studies suggest that in 
vehicle interaction with passengers, increased usage of handheld devices and other 
forms of in-vehicle distraction may stretch a driver’s visual and cognitive resources to 
the point where a potentially dangerous situation may easily cause an accident.  

Secondary tasks most observed during NDS’s are mobile telephone/ PDA use, 
conversation with passengers, eating and grooming (Neale, et al., 2002; NHTSA, 



CHALMERS, Applied Mechanics, Master’s Thesis 2011:65 5 

2009; Sayer, et al., 2005). Conversation with passengers and mobile telephone 
conversations are the most often cited causes of driving performance degradation 
(Horrey, 2004; Neale, et al., 2002; Ranney, 2008). 

The effect of mobile telephones and handheld PDA devices on driver distraction has 
become an issue in recent years. Vicki et al. found that phone or PDA use was a 
leading contributor to near-crash and crash relevant events in the 100 Car study, 
however only 8.7% of all crashes occurred while the driver was involved in a phone 
conversation suggesting that drivers take precautionary action while on the phone 
such as increasing headway time (Neale, et al., 2002).  

Richardson et al. in an experimental study on the effects of conversational demand on 
driver distraction found that conversation significantly affected lateral control of the 
vehicle (Richardson, 2007). Visual-manual tasks (e-mails, SMS etc.) and speaking on 
the phone represent different levels of cognitive demand. Studies have shown that 
visual tasks are more demanding than speaking on the phone, resulting in greater lane 
keeping variance and reduced speed (Engström, o.a., 2005). 

In a meta-analysis of existing phone driving studies, Horrey et al. found that phone 
use affected reaction time to critical events far more than tracking tasks such as lane 
keeping (Horrey, 2004). Horrey et al. further suggests that the two tasks demanded 
different resources and are therefore impacted differently by phone conversations. 

1.3. Naturalistic driving data, field operational tests and 
EuroFOT  

Naturalistic driving data is obtained from test vehicles equipped with data acquisition 
systems and sensors (EuroFOT, 2009). These vehicles are typically driven by test 
subjects with directions to be used as their own vehicles with a few restrictions such 
as being restricted to drive within certain geographic boundaries or certain routes. The 
subject operates the vehicle over an extended period of time and due to this comes to 
pay little attention to the data capture equipment (LeBlanc, 2006; Dingus, 2006). Data 
is typically stored in the vehicle and is transferred periodically to a central collection 
system for storage and analysis.  Some data comes from interviews and 
questionnaires.  

The data used in this study comes from Volvo Car Corporation’s test vehicles in the 
euroFOT project. euroFOT is a European Commission sponsored effort; with 28 
partners whose main goals are to test modern ADAS’s on drivers under naturalistic 
driving conditions and assess the impact of these systems on safety, efficiency, 
mobility and the environment.  

The data available from the euroFOT driving study includes 
• Information from the vehicles internal CAN bus(example: steering wheel 

angle) 
• Video data from in-vehicle cameras. 5 channels of video data are available.  

o Driver camera 
o Road camera 
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o Rearward facing camera 
o Foot camera 
o Eye Tracker camera 

• Data from GPS, accelerometers etc.  

Driving data was saved to an on-board medium at a frequency of 10 Hz. Data was 
then downloaded, post processed and made accessible for research within the 
contractual boundaries of the euroFOT project. Other NDS’s and field operational 
tests such as the 100 Car study and the RDCW FOT4 also share a similar 
methodology (LeBlanc, 2006; Dingus, 2006). 

 

 

 

The ADAS’s tested in the euroFOT included:  

• Forward collision warning systems 
• Adaptive cruise control 
• Lane departure warning systems 
• Impairment warning systems 
• Blind spot information systems 

Data security in NDS’s is a delicate and important issue. Information such as the 
coordinates of the test subjects residences and video data of the test subjects are 
examples of potentially sensitive information, as well as commercially sensitive data 
from the vehicle manufacturer where e.g. warning strategies or sensor performance 
can be reverse engineered. Data is thus treated with the utmost regard for the privacy 
of the test drivers and with regard to the commercial aspect with strict protocols 
governing the access, use and extraction of data (Bärgman, o.a., 2011; FESTA, 2008).  

1.4. Aim  
This research aims to study secondary task distraction in car following situations. A 
method will be developed where steady state car following situations will be defined 
and these segments identified from the data. This data will then be extracted and used 
to build statistical models of secondary task performance. It is hoped that an insight 
will be gained into the effects of secondary tasks on driving performance during 
steady state car following. Headway time and other variables will be used as measures 
of driver performance during these steady state following situations.  

 

 

 
                                                 
4 Road Departure Crash Warning System FOT 
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2. Method 
In the course of this study, data segments from the euroFOT database were extracted, 
annotated for secondary task performance and analysed. Logistic regression was used 
to study the effects of secondary tasks on car following. Data from each trip made by 
drivers in the euroFOT was available as individual files in the euroFOT database. All 
data processing was performed in the MATLAB software environment (Mathworks, 
2011). A naturalistic driving data analysis tool, FOTware (FOTware, 2010) was used 
to analyse data.  

 

Preliminary Data 
Processing 

Extracting Steady 
State Following 

Situations 

Video Annotation 

Data Analysis 
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Figure 2: Methodology: Overview  

Figure 2  illustrates the methodology of this study.  After the drivers were selected, all 
valid trips from the database made by those drivers were saved to local data files to 
simplify further processing and analysis. Driving data from selected road segments 
was extracted and filtered into data segments representing steady state car following 
situations. Video clips of the road and driver cameras from the steady state following 
segments were then made. These clips were annotated for secondary task performance 
and statistical measures of the data were calculated. Logistic regression was then used 
to study the effect of secondary task performance on car following.  

This thesis work was conducted at SAFER, Vehicle and Traffic Safety centre, 
Chalmers. This thesis was conducted while data for the euroFOT was still being 
collected in the field. This meant that a limited set of data was available at SAFER for 
the analysis part of this thesis. 

 

 

2.1. Road segments 
The test vehicles considered in this study were full sized Volvo sedans and station 
wagons. The subject drivers were all VCC employees with a mean age of 35 years. 
Figure 3 shows a typical drive for the subject drivers. As noted in the previous chapter 
most of a driver’s mileage is made over relatively few road segments. In urban driving 
environments these heavily trafficked road segments are typically main arterial roads 
with the appropriate Swedish term being ‘Motortrafikled’ (Encyklopedin, 2011). This 
type of road normally has two lanes in each direction, with a steel divider. Data from 
selected main arterial road segments was extracted for this study. The average length 
of the road segments in the study was approximately 3 kilometres.  

Radius of curvature of a point on a road is defined as the radius of a circle that best 
fits the curvature of the road at that point. A perfectly straight road has an infinite 
radius of curvature while sharp curves are considered to be between 100 to 400 metres 
in radius. Note that several factors including superelevation5, road surface friction etc. 
influences the sharpness of a curve. For example a curve with a relatively small radius 
of curvature may be considered less sharp than a curve with a larger radius if the 
smaller curve has a higher superelevation angle than the larger. However radius of 
curvature alone was used to define the curvature of road segments in this study. Past 
studies consider roads with radii greater than 500 meters to be straight (ISO 17361: 
2007, (Visvikis, et al., 2008). Roads Curve radius has been shown to have significant 
effects on driving (Rune Elvik, 2009). Studies have shown that accident rates are 
significantly higher on curves than on straight road sections (Othman, 2008). Elvik et 
al. noted a slight increase in the accident rate with decreasing curve radii of between 
1000 to 400 metres. A sharp increase in accidents was seen on curves less than 300 
metres in radius (Rune Elvik, 2009). In order to negate the effect of curves on the 

                                                 
5 The banking of a road to counter centripetal forces in a vehicle on a curved road section. Values 
range from 10 degrees(full super-elevation) to -2 degrees(normal super-elevation) 
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variables in the study it was decided to focus on relatively straight road segments. 
Data from curves less than 300 metres in radius was thus excluded from the analysis.  

Radius of curvature of the road was found from the equation given below (Carlson, 
o.a., 2006). 

       (2) 

Where 

 

   

Δ   

   

 

2.2. Drivers   
Drivers were selected based on several criteria with the highest priority being that the 
driver was associated with large volumes of time history data from the road segments 
of interest. GPS traces (Figure 4) were used to infer the routes most commonly driven 
by the subject driver. Drivers typically used their vehicles for commuting between 
their place of work and residences during the week and tended to favour a particular 
route or a few routes. Usage for recreational purposes was less frequent. Therefore by 
extracting data from only heavily trafficked road segments a preference was shown to 
data from commuting between home and the driver’s work spot. 
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Figure 3: Example of a typical commute (Source: Google Maps) 

Figure 3 illustrates a typical daily commute of a driver in this study. The driver starts 
at a semi- suburban residential district, drives most of the distance on a motortrafikled 
and arrives at the commercial or industrial area where he or she is employed. 

Figure 4 shows a GPS trace of the driving history of a typical driver. Regions of 
greater intensity allowed a rudimentary estimation of the trip density through those 
segments and helped in the selection of work commute road segments. A count of 
trips through these road segments was made and the final road segments were 
selected.    

 
Figure 4: GPS Trace of Driver 

2.3. Independent variables 
Independent variables in this study are time varying quantities which are either 
continuous or categorical in nature. Independent variables hypothesized to have an 
effect on the aspects of car following in this study were selected. The most prominent 
of these were used as predictors in the statistical analysis to study the effect of 
secondary tasks on headway time.  

Data such as CAN signals, Video data etc. were available from the euroFOT database. 
Variables were selected for study on the basis of their hypothesized influence on car 
following. Continuous independent variables were mostly physical quantities such as 
vehicle dynamics information while categorical variables were indicators such as 
wiper flags, daytime flags etc. Complete descriptions of variables used in this thesis 
can be seen in Appendix A. 

Information on secondary tasks was categorical, with null values signifying no 
instances of a secondary task in a data segment and a value of one signifying a 
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secondary task. This information was obtained by annotating video clips from the data 
segments.  

FOTware is a tool for the visualization and analysis of naturalistic driving data 
developed at SAFER, FOTware was used to analyse the variables. The variation in 
each variable in relation to other variables can be visualized while simultaneously 
watching synchronized video feeds from the test vehicle cameras. Figure 5 shows a 
typical layout with the signal viewer on the left and video from the road and driver 
cameras on the right. 

 

 
 

Figure 5: FOTware 

 

2.3.1. Secondary task variables 
Data on secondary tasks was not available from the euroFOT database and had to be 
obtained by the manual annotation of videos (see section 2.8). Previous research has 
shown that the leading sources of secondary task distraction are mobile phones, 
conversations with passengers, eating and grooming (Sayer, o.a., 2005; Dingus, 
2006). These four tasks were chosen and their effect on car following was 
investigated. Instances of secondary tasks were identified by annotating video from 
the driver facing camera. Audio data was not available for use in the analysis. The 
Coding variables handbook developed at SAFER was used a basis for the definitions 
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of the secondary tasks, brief descriptions of which are given below. For more detailed 
descriptions please refer Appendix A. 

2.3.1.1. Mobile telephone use 
Phone use among drivers can be categorised as either hand held or hand free usage. 
Hand held usage includes conversations while holding the phone to the ear, text 
messaging, using a smartphone to check emails etc. While studies suggest that the 
different modes of phone use among drivers demand varying amounts of the driver’s 
cognition this study placed all types of phone use under a single category. 

2.3.1.2. Conversations and passenger related activity 
Conversation with passengers was defined as instances where the driver was seen to 
actively participate in a conversation with their fellow passengers. It was not possible 
to annotate instances where the driver participated in a conversation as a listener 
although this type of conversation also places demands on the driver’s mental 
resources. Instances where the drivers was seen to utter a single word or move their 
mouth’s in a manner suggesting a single word were not considered as constituting a 
conversation.  

2.3.1.3. Eating 
Eating was defined as instances where the driver was observed eating food from a 
utensil or paper bag with their own hands or with the aid of a fork or spoon etc. 
Chewing gum use identified from extended periods of repetitive jaw movement was 
not considered eating.  

2.3.1.4. Grooming 
Grooming was defined as instances of the driver diverting attention away from the 
driving task to concentrate on any aspect of their personal appearance. This included 
the combing of hair, dental hygiene, makeup application etc. 

2.4. Data processing 
Data extraction is a crucial part of the analysis of naturalistic driving data. After a 
general idea of the types of data and statistical methods that would be used in the 
analysis was formed, data was extracted from the euroFOT database and compiled 
into driver specific data files. These files were further processed to extract car 
following data. Data was extracted and processed in two steps:  

• Preliminary data processing. 
• Extraction of steady state car following data. 

2.5. Preliminary data processing 
The euroFOT data is stored at SAFER within a closed computer network. Data on this 
network is available in the form of Matlab (Mathworks, 2011) compatible data files 
and as an Oracle based database. This study makes use of the data files. Each data file 
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represents a single trip made by a driver. A trip is defined as the time from when the 
vehicle ignition is turned on and when the vehicle ignition is turned off. These trip 
files are imported into Matlab and filtered to extract the required information.   

All valid data for the selected driver was extracted from the euroFOT database and 
saved for further processing.  This allowed for several road segments to be evaluated 
for car following and secondary task segments before the final road segments were 
chosen. From a GPS trace (Figure 6) it is seen that a significant amount of driving 
data from the road segment highlighted in red was available. The driving data from 
this road segment was evaluated for data integrity (missing variables, missing video 
data etc.). If data quality was found to be acceptable, the road segment would be 
selected for further analysis and data from the segment (Figure 7) was then saved 
separately.    

 
Figure 6 : GPS trace: Areas of greater intensity indicate high trip density 

2.6. Extraction of steady state car following data  
Data from the selected road segment was then processed to extract car following data. 
Figure 7 shows car following data from a road segment.  This section presents the 
definition of steady state car following and the extraction of data from these segments. 
After data from car following situations was extracted, statistical measures of 
independent variables were calculated and saved into a spread sheet.  
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Figure 7: Steady state car following segments 

As introduced in Section 1.3, steady state car following defines a driving situation 
where the following behaviour exhibited by the driver of the subject vehicle can be 
said to be defined by the behaviour of the leading vehicle. The factors used in the 
definition of the steady state are described below.  

2.6.1. ACC 
Adaptive cruise control maintains a pre-set minimum distance or headway time from 
a leading vehicle. This removes the need for a longitudinal control input from the 
driver and makes these segments irrelevant for the purpose of this study. Data 
segments where the ACC is activated were therefore excluded. 

2.6.2. Speed of subject vehicle  
 Vehicle speed was used to exclude data from low speed manoeuvring/ traffic gridlock 
situations. A minimum vehicle speed of 20 kmph was used as a threshold speed and 
all data falling below this speed was excluded. 

2.6.3. Lane changes and lane change residuals 
Lane change manoeuvres involve the driver steering the vehicle into another lane. 
This could invalidate the segment by combining data from the lead vehicle in the first 
segment with data from the lead vehicles in the second segment. It was necessary to 
eliminate lane change manoeuvres. Lane changes were detected by two methods. 
Spikes in the radar range signify events where the radar range changes suddenly, as it 
would when the driver changes lanes and starts to follow a lead vehicle driving at a 
different speed than the first lead vehicle. This approach does not detect situations 
where, after a lane change the driver begins to follow a lead vehicle driving at 
approximately the same speed as the first lead vehicle as no spike would be observed 
in this case. The cars turning radius was used to detect and filter these situations. Lane 
change events inferred from the vehicles yaw rate were available from the database 
but were not used to identify lane change events as they did not identify all lane 
change events.  
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Previous studies show that most lane changes take approximately 5 seconds to 
complete (Salvucci, o.a., 2002). Changes in driver behaviour have been noted in the 
period before the driver initiates a lane change. This phase was termed the lane 
change preparatory phase. The period from the initiation of the lane change 
preparatory phase to the conclusion of the lane change does not represent steady state 
car following and was filtered.  

2.6.4. Lead vehicle cut –ins/cut – outs 
Cut- ins are defined as when a third vehicle from another lane steers into the lane of 
the subject vehicle and places itself between the subject vehicle and the lead vehicle.  
A cut out is defined as when a lead vehicle steers out of the subject vehicle lane and a 
new radar contact is immediately picked up by the subject vehicle. Spikes in the 
difference between successive radar range values were used to identify cut-ins and 
cut-outs. 

 

 

 

2.6.5. Range to lead vehicle 
The range to a lead vehicle is highly correlated with headway time. From driving 
studies it is known that following situations are defined by headway times of 6 
seconds with headways of above 9 seconds coming from free driving situations 
(Dunn, et al., 1994). From analysis of the data it was found that a range of 100 metres 
or less to the lead vehicle correlates to a headway of around 6 seconds. This range was 
thus used as a threshold and data from ranges above 100 metres was excluded. 

2.6.6. Segment length 
A minimum segment length was defined and used as an exclusion criterion. Data 
segments were to be a minimum length of 100 metres (travelled on road) to be 
considered steady state segments.  This was to filter segments where steady state 
following lasts for short durations (typically of 1 – 3 seconds in duration). These 
segments are hypothesised to be transient in nature and not representative of true 
steady state following. A good example for a situation of this type is one where a 
driver wishes to steer into the right hand lane and momentarily comes to within 100 
metres of a vehicle in the left lane. 

2.7. Assumption of independence 
Time series data from NDS’s tends to exhibit a degree of autocorrelation. That is, 
datapoints from the same period of time are related to one other. This violates the 
assumption of independent observations in statistical methods such as linear 
regression and is termed autocorrelation. Thus in this study, when statistical measures 
from data segments in the same trips were used to study car following autocorrelation 
between concurrent trip segments may bias the findings. This can be exemplified by 
taking two following segments from the same trip, each occurring within 30 metres of 
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the other. Variables from these segments would tend to be very similar thus biasing 
any models fit to this data.  

Autocorrelation in this study was not explicitly calculated but was minimized in two 
ways. Firstly, data from the same trip but from different trip segments were assumed 
to be independent if the lead vehicle in each following trip segment was different. 
This assumption was based on findings from previous research that indicates different 
lead vehicles impose different constraints on the following driver, forcing the 
following driver to alter following behaviour when the lead vehicle is changed. 
Mulder et al. and Mc. Donald et al. take car following to be a compensatory action 
where the following driver seeks to maintain a constant headway time and keep 
relative velocity between the vehicles as close to zero as possible (Mulder, o.a., 2006; 
McDonald, o.a., 1997). The velocity profile of the lead vehicle therefore has a strong 
effect on the following driver. The size and type of the lead vehicle is also a factor in 
car following. Drivers in a following situation tend to maintain shorter headways if 
the road ahead was not visible past the leading vehicle (Sayer, et al., 2009; McDonald, 
et al., 2007). The same studies also found that drivers tended to maintain shorter 
headway times to commercial vehicles hypothesizing that the degree of trust shown to 
professional drivers was greater than the trust in private drivers. 

 

Secondly, autocorrelation between segments from the same trip and with the same 
lead vehicle arise from situations where the driver intermittently approaches and 
backs away from the lead vehicle. Mc. Donald et al. used a separation time of 5 
seconds to avoid excessive autocorrelation between readings (McDonald, et al., 
1997). In this study, autocorrelation from these segments was handled by introducing 
a minimum separation criterion of 8 seconds. At average motorway speeds this 
corresponds approximately to a mean separation of 150 metres between segments. 
Consecutive trip segments found to lie closer to each other than 8 seconds were 
combined into a single segment6.  

2.8. Video annotation 
This step involved the annotation of video clips from car following segments (see 
section 2.6) for instances of secondary tasks. Annotation using FOTware was found to 
be time consuming. It was found to be more efficient to create video clips from the 
original video files of the whole trip and watch the clips with a media player. Video 
files were watched and annotated for secondary tasks. Instances of secondary tasks 
were saved as binary variables and tabulated using Microsoft Excel. Segments that 
were found to have missing or corrupted video (over exposure7  etc.) were excluded. 
Several drivers were excluded from the study for these reasons. 
 
The video Annotation codebook (Viström, 2011) developed at SAFER was used as a 
starting point in developing guidelines for secondary task annotation.  Duration of 
task performance and the duration of glances away from the road were the primary 

                                                 
6 Please refer section 3.2.1 for more details. 
7 Excessive light. 
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factors considered in the rating of trip segments as secondary task segments. To be 
considered a secondary task instance the driver should have been observed performing 
the task for more than two seconds. Although the relative duration of the secondary 
task to the trip segment was not found to be an issue in an overwhelming majority of 
the cases and therefore was not considered, a few instances such as long trip segments 
where the secondary task lasted for a small fraction of the total trip duration were 
excluded. 
 
In order to qualify as a secondary task instance, an increase in the frequency of 
glances away from the road must also have been noticed. Previous research has found 
that an increased frequency of eye glances away from the roadway has been found to 
be common in secondary task instances (Klauer, 2006). Phone usage for messaging or 
e-mails in particular was found to result in a greatly increased eye glance frequency 
with frequencies of 1 Hz being observed in some instances. 
 
An important point to note is that annotating driver behaviour is a subjective matter 
that requires video data to be interpreted. Individual drivers display unique driving 
styles, for example a certain individual’s baseline eye glance frequency might be the 
same as that shown by other drivers during secondary task instances. It was therefore 
important to for the annotator to get familiar with the different drivers normal 
behaviour in order to understand if secondary task performance had any effect on their 
driving. This was done by viewing videos from baseline driving segments to 
understand driver specific traits such as eye glance duration and frequency of glances 
away from the roadway. Video annotation in this study was carried out by a single 
annotator – the author of this thesis. 

2.9. Dataset summary 
The results discussed in this report will focus on a single driver. Two versions of the 
dataset were used in the analysis. The first was the entire car following dataset (see 
section 2.6). This dataset potentially contained data from both partially and fully 
constrained car following segments. The second version of the dataset seeks to 
exclude partially constrained segments using the headway time8 and relative velocity9 
as filter criteria. Segments with headway times greater than 2.5 seconds and relative 
velocities of greater than 2 km/h were excluded. 

As shown in Table 2 the unfiltered dataset used in the study contained 165 
observations from 64 trips. 54 segments were combined to limit autocorrelation 
between trip segments (see section 2.7) and an additional 76 were removed when 
constraints based on mean headway time and mean absolute relative velocity were 
imposed (Table 1: Row 2). Secondary task instances are listed with the number of 

                                                 
8 Studies have shown headway times less than 2.5 seconds describe fully constrained ’true’ car 
following situations (Dunn, o.a., 1994). 
9 Drivers in fully constrained car following maintain the relative velocity between lead and subject 
vehicle as close to zero as possible, typically less than  km/h (McDonald, o.a., 1997). 
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trips from which the observations were drawn. No instances of grooming or eating 
were observed. 
Table 1: Dataset Summary  

 Total 
following 
segments 

Total 
trips 

Phone 
Use 

Instances 

Conversation Grooming Eating Number 
of 

segments 
combined 

Unfiltered 
dataset 

165 64 40 in 20 
trips 

5 in 3 trips 1 2 in 1 
trip 

54 

Headway < 2.5 
seconds & 
Relative velocity 
< 2 km/h 

89 50 19 in 15 
trips 

4 in 3  trips 0 0 

 

Table 2 shows secondary task performance expressed in terms of total trip percentage.  
Table 2: Secondary Task Performance 

Phone Use (% of trips) Conversation (%) Eating (%) Grooming (%) 

21  4.5 0 0 

 

2.10. Data analysis: Logistic regression analysis 
Logistic regression models a dichotomous (binary) variable using one or more 
independent variables as predictors. Logistic regression in this study was used to 
model secondary tasks instances using measures of independent variables as 
predictors.  

The logistic function can be written as: 

   (3) 

The variable  is expressed as: 

  (4) 

Where 
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Univariate logistic models of secondary task occurrence were first fit using 
independent variable measures as predictor variables (See Appendix A for a complete 
listing of measures). A p value of 0.05 was used as a threshold for the Univariate 
model. However any measure with a p value lower than 0.25 (Hosmer, et al., 2000 p. 
95) was considered significant in the variable selection step of the multivariate model. 
The relatively high value of p is based on research that that suggests using a lower 
value of p in the variable selection stage often results in important variables being 
missed10. A drawback of a high value is that variables of questionable importance 
may be selected for use in the model. Phone use was first used as a predicted variable. 
Models were then fit to a combination of all secondary tasks11. 

Significant measures of variables identified during the univariate analysis were used 
as predictors in the multivariate model of secondary task occurrence. Interaction 
effects were considered in the multivariate model. The accuracy of the models were 
assessed using their ROC curve12 and t test statistics (Hosmer, et al., 2000 p. 93). 
Figure 8 shows the logistic curve of the model using relative velocity as an 
independent variable. The plots indicates the calculated probability of phone use 
occurring in the data segment with values of 1 suggesting phone use and values of 0 
suggesting baseline driving. An iterative approach was used here where each variable 
was individually combined with the other variables iterating through all the possible 
combinations. 

 
Figure 8: Logistic curve: Univariate model of phone use from relative velocity 

2.10.1. ROC curve 
The ROC (Receiver Operating Characteristics) curve originates from signal detection 
theory developed during the Second World War. ROC curves plot a systems 
sensitivity (true positive rate) against its false positive rate (specificity) for different 
cut-off points. The cut-off points in the case of this study are the threshold values of 

                                                 
10 See Applied Logistic Regression (Hosmer, et al., 2000), p. 95 
11 A variable indicating the performance of any secondary task.  
12 See Section 2.10.1 
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classifier scores from the logistic model. The ROC curve is thus a visualization of the 
trade-off between the sensitivity and specificity of the model. Figure 9 shows a general 
ROC curve with threshold points indicated. A good model of a dichotomous variable 
will have a high detection rate of both true positives and true negatives.  The curve in 
this case would at one point lie near the upper left corner (100% sensitivity, 100% 
specificity) (Zweig, et al., 1993). The model can also be assessed by the area under 
the ROC curve (Hosmer, et al., 2000 p. 160). The area under the ROC curve can be 
related to the models accuracy by the values listed below (Hosmer, et al., 2000 p. 162) 

Area under curve = 0.5 – No discrimination 

Area under curve between 0.7 & 0.8 – Acceptable discrimination 

Area under curve between 0.8 & 0.9 – Excellent discrimination 

Area under curve > 0.9 – Outstanding discrimination 

 

 
Figure 9: ROC curve(Illustration) 

2.11. Data analysis: T-test 
Statistical measures such as standard deviation are commonly used to study 
independent variables in NDS’s. This study considered baseline situations to be car 
following situations containing no secondary task instances. Comparisons were made 
between measures from baseline segments and secondary task segments to infer a 
connection between secondary task engagement and changes in the measures. Only 
statistically significant variables identified from the logistic regression analysis were 
analysed further in this section.  

Measures from the logistic regression analysis found to be significantly correlated 
with secondary tasks were tested against the alternative hypothesis that the means of 
baseline and secondary task segments are unequal. It is possible to test the 
significance of variates in the logistic model with the two sample T-test (Hosmer, et 
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al., 2000 p. 92). Independent T-tests of all significant measures from the logistic 
analysis were performed and baseline and secondary task segments of interesting 
measures were then compared. The results are described in section 3.2. 

 

 

 

 

 

 

 

 

3. Results 
Results from the statistical analysis are presented in this chapter. The results are 
presented based on the analysis of data obtained from a single driver driving over a 
single stretch of road.  

3.1. Data analysis: Logistic regression analysis 
Results from the univariate and multivariate logistic regression analysis of the filtered 
dataset are presented in this section. Only statistically significant results or results that 
came close to being significant are listed here. See Appendix C for a complete listing 
of results from the logistic regression analysis.  

3.1.1. Univariate logistic regression 
Results from the model predicting phone use are presented in Table 3. Several 
measures were found to be statistically significant (Peak & SD steering angle 
acceleration, peak brake pressure, SD longitudinal jerk & acceleration, mean & SD 
relative velocity). Significant results are highlighted in bold. See Appendix C for a 
complete listing of results. No measures reached significance in the model which was 
used data from the unfiltered dataset. 

Table 3: Single Predictor model: Phone Usage (Filtered Dataset) 

Measure P value 

Peak steering angle acceleration 0.0197 

SD steering angle acceleration 0.0251 



CHALMERS, Applied Mechanics, Master’s Thesis 2011:65 22 

Mean steering angle velocity 0.0508 

SD steering angle velocity 0.1046 

Mean Headway time 0.1219 

Peak brake pressure 0.0311 

SD brake pressure 0.1022 

SD longitudinal jerk 0.0462 

Max longitudinal acceleration 0.1555 

SD longitudinal acceleration 0.0173 

Mean relative velocity 0.0020 

SD Relative Velocity 0.0039 

 

Results using any secondary task13 as a predicted variable are presented in Table 4. In 
the analysis of the filtered dataset only peak and standard deviation of steering angle 
acceleration and mean and standard deviation of relative velocity reached 
significance. Fewer significant measures (4 compared to 7) were noticed when 
comparing the results from this test (Table 4) with the previous (Table 3). No 
measures reached significance for the unfiltered dataset.  
Table 4: Single Predictor - Any Secondary Task (Filtered Dataset) 

Measure P values 

Peak Steering Angle 
Acceleration 

0.046 

SD Steering Angle Acceleration 0.028 

Mean Steering Angle Velocity 0.062 

SD Steering Angle Velocity 0.156 

Mean Abs Relative Velocity 0.019 

SD Relative Velocity 0.034 

SD Longitudinal Acceleration 0.085 

SD Longitudinal Jerk 0.136 

 

                                                 
13 Variable indicating the performance of any secondary task. 
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Figure 10 shows the ROC curve for Mean relative velocity (phone usage, filtered 
dataset). From the curve shape it was seen that the model performs well in identifying 
phone use events (true positives) and baseline segments (true negatives). The area 
under the curve (Table 5) for this model (0.89) also indicates good classification.  

 

 
Figure 10: ROC curve(Relative velocity) 

The ROC curve of mean steering angle velocity (Figure 11) indicates that in the case 
of the driver in question, the measure may not be as good a classifier as relative 
velocity. However an AUC of 0.72 indicates that mean steering angle velocity may be 
a fair classifier of phone usage. 
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Figure 11: ROC curve(Steering Angle Velocity) 

Figure 12 shows the ROC curve of peak longitudinal acceleration. Compared to the 
curves described previously, this curve lies much closer to the diagonal. The area 
under the curve in this case is 0.65 indicating a poor fit. ROC curves from other 
significant measures can be found in Appendix C. 

 

 
Figure 12: ROC curve(Peak Longitudical Acceleration) 

 
Table 5: Single predictor: Area under curve 

Measure AUC 

Peak steering angle acceleration 0.71 

SD steering angle acceleration 0.67 

Peak brake pressure 0.81 

SD longitudinal jerk 0.71 

SD longitudinal acceleration 0.74 

Mean relative velocity 0.89 

ROC curves of statistically significant14 measures from the univariate logistic analysis 
yield for the most part acceptable AUC values (Table 5). The AUC values of 
measures that were not statistically significant were low (Table 6). No statistically 

                                                 
14 P value 
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insignificant predictor yielded an AUC value higher than 0.53. A full list of AUC 
values can be seen in Appendix C. 

 
Table 6: Single Predictor: Area under curve (Insignificant Factors) 

Measure AUC 

Mean Yaw Rate 0.50 

Max Yaw Rate 0.51 

SD Yaw Rate 0.49 

 

3.1.2. Multivariate logistic regression 
Table 8 lists results from the multivariate logistic analysis of phone use. The first 
model used all significant measures from the univariate analysis as predictors. This 
model did not consider interaction effects (Table 7: Row 1). Steering wheel angle 
measures were found to remain significant while the other measures did not. Selected 
results from the modelling of phone use with selected lateral and longitudinal 
measures are also seen in the table. The peak steering acceleration, peak brake 
pressure and longitudinal jerk terms were seen to be significant indicators of phone 
use. Interaction terms from all tests were not statistically significant.  
Table 7: Multivariate Logistic Regression: Phone Use 

Test Significant Measures P value 

All significant measures from 
single predictor model, no 
interaction effects. 

Peak steering angle acceleration  0.0212 

SD  steering angle acceleration 0.0209 

Peak steering angle 
acceleration & brake pressure 
with interaction effects 

Peak steering angle acceleration 0.0040 

Peak brake pressure 0.0062 

SD  steering angle 
Acceleration & peak brake 
pressure with interaction 
effects 

SD  steering angle acceleration 0.0026 

Peak brake pressure 0.0043 

Peak Steering Angle with 
interaction effects 
Acceleration &  SD 
longitudinal jerk 

Peak steering angle acceleration 0.0086 

SD longitudinal jerk 0.0156 

Mean headway & SD 
longitudinal jerk 

Mean Headway 0.1471 

SD longitudinal jerk 0.0886 
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3.2. Data analysis: T-test 
Table 8 lists the results from two sample T test hypothesis testing of selected 
measures. Values of 1 indicate rejection of the null hypothesis and values of 0 indicate 
a failure to reject the null hypothesis at a 95% confidence limit. Continuous 
performance indicators such as headway and lane offset were not found to be 
significantly affected by phone use. However indicators of driver control input (or 
responses to critical events) such peak steering angle acceleration, peak brake 
pressure and standard deviation were significantly affected.  

When data from phone use and baseline segments in the unfiltered dataset were 
compared no significant difference was found between baseline and phone use 
segments. This reflects similar results from the logistic regression analysis. 
Table 8: T-test (Phone Use) 

Measure T-test  

 Unfiltered 
dataset 

Headway < 
2.5, 
Relative 
velocity < 2 

Mean of 
Means(baseline, 
filtered dataset) 

Mean of Means 
(secondary task, 
filtered dataset) 

Mean Headway(s) 1 0 1.0671 0.8976 

Peak steering angle 
acceleration(deg/s/s) 

0 1 247 337.6 

SD steering angle 
acceleration 

0 1 38.80 48.47 

Peak Brake Pressure(bar) 1 1 4.6 8 

SD longitudinal 
jerk(m/s/s/s) 

0 1 1.7 1.9 

SD longitudinal 
acceleration(m/s/s) 

0 1 0.3914   0.4762 

Mean relative 
velocity(km/h) 

0 1 1.6427 1.3513 
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3.2.1. Peak steering angle acceleration 
Peak steering angle acceleration was shown to be a statistically significant factor in 
the logistic regression analysis. Standard deviation of the mean values from baseline 
segments was seen to be lower than the values from secondary task segments. 
Secondary task segments exhibit a higher mean of means. The mean of means was 
found by finding the mean over all values of mean peak steering angle acceleration 
from the segment under study.  

 
Figure 13: Peak steering angle acceleration 

Table 9: Peak Steering Angle Acceleration: Phone Use 

Peak Steering Angle 
Acceleration(m/s/s) 

Mean of Means SD of Means 

Baseline Segments 247 111.4 

Secondary Task   337.6 197.3 
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3.2.2. SD steering angle acceleration 
Standard deviation of steering angle acceleration was found to be clearly statistically 
significant in the logistic regression analysis. The mean of means and standard 
deviation of baseline segments were seen to be lower than the values from secondary 
task segments.  

 
Figure 14: SD steering angle acceleration 

Table 10: SD Steering Angle Acceleration: Phone Use 

SD Steering Angle 
Acceleration 

Mean of Means SD  

Baseline Segments 38.8 14.65 

Secondary Task 48.4 19 
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3.2.3. Peak brake pressure 
The mean of means of baseline segments were less than the means from secondary 
task segments. SD values from baseline segments were higher than secondary task 
segments. 

 
Figure 15: Peak brake pressure 

 

Table 11: Peak brake pressure: Phone Use 

SD Peak Brake Pressure Mean of Means SD 

Baseline Segments 4.6 5.6 

Secondary Task 8 5.2 
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3.2.4. Mean absolute relative velocity 
Mean absolute relative velocity has been shown to significantly affect the logistic 
analysis (see Sections 2.9& 4.1.1). The standard deviation of the mean values from 
baseline segments was shown to be less than the standard deviation of secondary task 
segments. Secondary task segments also exhibited a higher mean value of 1.7 seconds 
against 1.4 seconds for baseline segments the difference in values being .3 seconds 
(see Table 11).  

 
Figure 16: Mean absolute relative velocity 

Table 12: Mean Relative Velocity: Phone Use 

Mean Absolute Relative 
Velocity(km/h) 

Mean of Means SD of Means 

Baseline Segments 1.3 0.33 

Secondary Task 1.7 0.25 

 

Figure 17 plots the mean of means of baseline trip segments against the mean of means 
of trip segments with phone use for the following measures: 

• Peak steering angle acceleration 
• SD steering angle acceleration 
• Peak brake pressure 
• SD longitudinal jerk 
• SD longitudinal acceleration 
• Mean absolute relative velocity 
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The mean values from baseline segments were observed to be lower than the mean 
values from secondary task segments for the variables presented in Figure 17. 

 
Figure 17: Mean of measures: Baseline segments vs. phone use 

Standard deviation of the measures is shown in Figure 18. The trend here is not so 
clear with the standard deviation of peak brake pressure and mean absolute relative 
velocity of the baseline segments being higher than the segments with phone use. 
Other measures exhibit lower values of standard deviation than segments with phone 
usage. 
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Figure 18: Standard deviation of measures: Baseline vs. Phone use 

3.2.5. ADAS warnings 
Warnings from the ADAS (FCW, BLIS, LDW, etc.) systems were not observed to 
affect driver headway selection or secondary task performance. A small difference of 
.16 seconds was noted between the mean headways of segments with ADAS warnings 
and the mean headway of segments without ADAS warnings. A T-test was used to 
test the alternative hypothesis that mean headway times of baseline and segments with 
ADAS warnings are significantly different. The null hypothesis in this case could not 
be rejected (p>0.05). 

 
Figure 19: Mean headway: Baseline vs. ADAS segments 
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4. Discussion 

4.1. Logistic regression analysis 
Results of the logistic analysis seem to support previous findings (Horrey, 2004) 
which indicate secondary task performance during steady state car following affects 
the drivers response to critical (or potentially critical events) events such as sudden 
lead vehicle deceleration, more than continuous performance indicators.  

4.1.1. Univariate logistic analysis 
The univariate logistic analysis found several statistically significant measures when 
predicting phone use. The larger number of significant measures identified in the 
filtered dataset (see Table 3, column 4) may be attributed to the headway and relative 
velocity thresholds which selects only data from fully constrained car following 
situations where the driver may have been more inclined to perform secondary tasks 
than partially constrained situations where the drivers cognitive resources may have 
been more in demand. It was known that drivers in fully constrained car following 
situations tend to maintain a relative velocity below 3 km/h (McDonald, 1997) and 
headway times (Dunn, et al., 1994) of less than 2.5 seconds (See Section 2.9).  

The increase in significant factors noted between filtered and unfiltered datasets may 
indicate an increase in compensatory control in fully constrained car following during 
phone use i.e. the driver pays more attention to following the lead vehicle while 
performing a secondary task. Relative velocity and headway time are therefore 
important factors affecting secondary task performance in steady state car following 
situations. 

 Significant measures (peak brake pressure, peak steering wheel acceleration etc.) are 
hypothesized to be related to secondary tasks in the sense that these values tend to 
peak in segments where a driver during a secondary task, glances away from the road 
more frequently than during baseline driving. This could lead to the driver having to 
compensate more frequently for any real or perceived change in the relative position 
of the lead vehicle. As suggested in the previous paragraph an alternative explanation 
is to attribute these measures to heightened concentration during secondary task 
performance.   

Standard deviation of longitudinal jerk, acceleration, relative velocity and steering 
angle acceleration were found to be significant from the univariate analysis. 
Secondary task segments had a larger standard deviation than baseline segments for 
steering angle acceleration and longitudinal jerk while the reverse was true for relative 
velocity and longitudinal acceleration (see Figure 18). The smaller value of standard 
deviation in relative velocity may indicate a higher level of concentration and 
compensatory control during phone use. This is supported by the larger standard 
deviation noted in signals related to control particularly steering angle acceleration. 
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4.1.2. Multivariate logistic analysis 
Measures found significant in the univariate analysis were found to remain significant 
in the multivariate logistic analysis. Steering angle measures were found to remain 
significant in a model that used all seven identified measures15 as predictors. This 
may indicate that steering angle measures are more relevant as indicators of 
compensatory control.  Interaction effects from all tests were statistically insignificant 
indicating that the driver compensated during a secondary task by either braking or 
steering thus rendering insignificant the instances where both lateral and longitudinal 
control inputs were required. 

4.2. T-test 
Baseline and secondary task populations of measures16 were shown to be significantly 
different which supports an assertion that phone use induced changes in the 
compensatory control behaviour shown by the driver. The driver in this case felt an 
increased need to make control inputs to cope with a real or perceived change in the 
steady state following (e.g. lead vehicle deceleration). The higher mean values of 
independent variable measures seen from  Figure 17 seems to support this. A similar 
trend was noted in the SD of measures; however peak brake pressure and relative 
velocity showed a reverse trend with the SD of phone use segments being lower than 
baseline segments (see Figure 18). As stated in section 4.1.1 this may indicate 
compensatory control and a higher degree of driver concentration. The driver in these 
sections exercised more control over brake pressure and relative velocity thus leading 
to smaller standard deviations of these measures.  

It was interesting to note that measures, such as lane offset which has traditionally 
been used to study driving behaviour, did not show significant difference between 
baseline and secondary task segments.  ADAS warnings were also found to not have a 
significant effect on driver headway behaviour. 

4.3. Study limitations 
The euroFOT database at SAFER is in a state of expansion as more field data is being 
uploaded intermittently. Due to the transient state of the database, the volume of 
driving data available for analysis dictated the selection of drivers and geographical 
study areas. The amount of usable data was thus limited. Although data was available 
from a total of approximately 20,000 valid trips, few drivers had logged enough data 
on the arterial road segments under study. Of these 25 drivers a point of interest is that 
only 2 drivers regularly performed secondary tasks while driving. This was partly 
expected as secondary tasks make up for a small percentage of trip time for most 
drivers. Other factors such as age and occupation may also have an effect on the 
chances that a driver would perform a secondary task while driving. An alternative 
explanation might be that the study drivers did not perform secondary tasks while in 
car following situation but during free driving situations.   

                                                 
15 From the logistic analysis 
16 Significant measures identified from the logistic analysis 
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A considerable amount of data17 was excluded from the analysis due to the data being 
incomplete. Missing video data was the leading reason for data being excluded 
although a small percentage of trips were excluded due to missing variables.  A small 
amount of data segments were excluded as the driver in the segment was someone 
other than the study driver. This is not unexpected as NDS’s aim for as near real 
driving conditions as possible and this means imposing very few restrictions on the 
test subjects. 

The test dataset was used to perform a number of statistical tests for a variety of 
variables. No correction was made for the number of tests performed. 

Certain situations that might constitute secondary task performance were not 
considered to be such. These include instances of the driver concentrating on other 
objects in his forward view field such as signboards and other distractions and 
instances where the driver seems to have the leading vehicle in clear view but in fact 
has temporarily lost track of the leading vehicle as his cognitive resources are 
focussed elsewhere (an upcoming meeting etc.) – the ‘Looking but not seeing’ 
situation. While instances similar to the two described can be identified and studied 
from established patterns in driving data and with the use of eyetracker data this 
involves significantly more work and placed this type of analysis outside the bounds 
of this study.  

4.4.  Conclusion 
The main findings of this study are listed below 

• No measures reached significance when using the unfiltered dataset in both the 
logistic regression analysis and T-test analysis. When relative velocity and 
headway time filters were applied (See section 2.9) this resulted in several 
measures reaching significance. This may indicate increased compensatory 
control or the driver being more inclined to perform secondary tasks during 
fully constrained car following (See section 4.1.1). 

• Univariate logistic regression analysis found seven measures to be significant. 
These measures were peak & SD steering angle acceleration, peak brake 
pressure, SD longitudinal jerk & acceleration, mean & SD relative velocity. 
These measures may all be interpreted as measures of compensatory control. 

• Multivariate logistic regression analysis showed steering angle measures 
remained significant in a combined model of phone use using all available 
measures as predictors. Subsequent models using fewer predictors showed 
other significant measures18 also remained significant when not paired with 
more than one steering angle measure. 

• The T-test analysis found baseline and phone use segments in all seven 
measures identified from the logistic analysis to be significantly different. 

 

                                                 
17 Approximately 20% 
18 Measures found significant in the univariate logistic analysis. 
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In conclusion this study supports previous findings which suggest secondary tasks 
may have a greater effect on driver reaction time to critical events than normal 
driving. Identified measures which were shown to be statistically significant 
indicators of phone use are hypothesised to be related with reaction time to critical 
events.  

4.5. Future work 
The availability of a larger set of data than the one available for this thesis would 
greatly increase the statistical reliability of this study. Data from varied drivers and 
road segments would allow a cross comparison of results and greatly add to the utility 
of this study. More data would also allow an in depth analysis of the difference (if 
any) in effects of phone conversations and phone visual tasks in car following 
situations.  
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Appendix A: (Independent Variables) 
Steering wheel jerk rate 

Steering wheel information is an important indicator of latitudinal control. Although 
its effect on headway is limited it might be interesting to note the variation of steering 
wheel angle in an attempt to quantify driver inattention levels.  The variation in 
steering angle versus headway and distributions of steering angle between secondary 
task and non-secondary task segments are thus noted.  

Yaw rate 

The rate at which the vehicle is rotating about the vertical axis. Expressed in units of 
radians per second.  

Lane offset 

Distance from vehicle centre to the left or right marking. Measured as the distance 
from the forward facing camera. 

Lateral acceleration and jerk 

1st and 2nd derivatives of lateral velocity of subject vehicle. Obtained from the 
vehicles CAN bus. 

Longitudinal acceleration and jerk 

1st and 2nd derivatives of longitudinal velocity of subject vehicle. Obtained from the 
vehicles CAN bus. 

Lead vehicle Velocity 

Velocity of the lead vehicle in a steady state car following situation. Calculated from 
the radar information and the subject vehicle speed.  

Subject vehicle velocity 

Longitudinal velocity of the subject vehicle obtained from the CAN bus. 

Relative velocity 

Velocity relative to the lead vehicle. 

Range 

Distance from the vehicle radar to the lead vehicle calculated from the CAN bus radar 
information. This information was available from the database. Radar range was 
accurate up to a range of 150 metres. Range is a significant indicator of secondary 
effects on car following. A driver typically tries to maintain a fixed range. When the 
car in front brakes unexpectedly the range will decrease much more than usual. 
Therefore mean range is compared between secondary task and non secondary task 
segments. This correlates to reaction time to potentially critical events. It has been 
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found that secondary tasks normally lead to decreased reaction time to events. A 
measure of this may be the range keeping behaviour.  

Brake pressure 

Brake pressure is defined as the amount of pressure in the brake circuit and thus 
proportional to the amount of braking desired by the driver. Brakes are used only 
when necessary with the pressure being applied gradually in order to effect a 
reduction in the velocity while keeping the peak deceleration as low as possible. It 
was hypothesized that high peak values of brake pressure indicate situations where the 
driver was distracted by a secondary task.  

 

Categorical performance indicators 

Passenger indicators 

The presence of passengers inferred from seat belt usage. Indicators of the four 
passenger seatbelts are fused to create one passenger flag. 

FCW 

The FCW system alerts the driver to an impending collision. Warnings however are 
rare despite a high level of usage in the test vehicles. Alerts from this system are 
relatively rare. 

LDW and BLIS 

The LDW system alerts the driver to an impending unexpected lane departure while 
the BLIS system alerts the driver to objects in the vehicles blind spots. Warnings from 
these systems could have an effect on headway time and are factors in this study. 
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Appendix B: (Matlab code) 
1. Processing 
Clear all 
Close all 
Clc 
% 
Cd('P:\Matlab\closedmat\Data\Driver_xx\Segment A\Range less than 100\') 
Addpath('P:\Matlab\closedmat\Data\Driver_xx\Segment A\') 
Addpath('P:\Matlab\closedmat\Data\Scripts') 
  
Load Segmented 
Counter = 0; 
  
Files = fieldnames(Segmented.Driver_id_xx); 
Driver = 'Driver_id_xx'; 
  
% LOADS TRIP FILE 
For i = 1:length(files)                                                                         % LOOPS THROUGH TRIPS 
        Lanenames = fieldnames(Segmented.(Driver).(files{i}).Lane); 
        For j = 1:length(lanenames)                                             % LOOPS THROUGH LANES 
        Vomeasuredatanames = 
fieldnames(Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata); 
        Onoffnames = fieldnames(Segmented.(Driver).(files{i}).Lane.(lanenames{j}).onoff);  
        Range = Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mdistmainvhlahead; 
        Vehspd = Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mvehiclespeed; 
        Distrav = Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mdistancetraveled; 
        Acc = Segmented.(Driver).(files{i}).Lane.(lanenames{j}).onoff.maccstate;        
        Logic = logical(range <= 100 & vehspd >= 20 & (acc <= 1)); % LOGIC VECTOR 
         
        If numel(logic)>1 % 
(isempty(Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mlatitude_GPS) ~= 1) && 
(Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mdistancetraveled(end) - 
Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.mdistancetraveled(1) > 10);% 
distrav > 10 metres 
  
% BUILDS AN INDEX VECTOR             
            For k = 1:length(logic)            % LOOPS THROUGH ALL DATA POINTS EACH TRIP 
                If logic(k) == 0        % IF VALUE IS NAN OR DOES NOT FIT  RANGE CRITERIA 
                    Index.(files{i}).(lanenames{j}).Ind(k) = nan;     % CREATES NAN IN INDEX VECTOR 
                Elseif logic(k) == 1               % IF VALUE IS NOT LESS THAN RANGE CRITERIA 
                    Index.(files{i}).(lanenames{j}).Ind(k) =  k ;  % ENTERS THE CURRENT ITERATION 
INTO THE INDEX VECTOR. THE POSITIONS OF FIRST AND LAST VALUES ARE FOUND  
                End 
            End 
            Index_values_to_save = findfirstandlast(Index.(files{i}).(lanenames{j}).Ind);     
            If ~isempty(index_values_to_save)        % IF DISTANCE VECTOR IS NOT EMPTY 
                Lengthofindex = length(index_values_to_save); 
                N = lengthofindex;    % NUMBER OF TIMES FOR LOOP TO EXECUTE CALCULATED 
FROM THE INDEXLIST(CORRESPONDS TO NUMBER OF SEGMENTS) 
   
                For k = 1:2:n                          % LOOPS THROUGH NUMBER OF SEGMENTS                   
                    Firstvalue = index_values_to_save(k); 
                    Secondvalue = index_values_to_save(k+1); 
                     Minimumdistance = distrav(secondvalue)- distrav(firstvalue);                                              
                    If (minimumdistance > 50)     %<-- TEST FOR MINIMUM DISTANCE OF SEGMENT 
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                        Lanesegmentname = [lanenames{j} '_Segment' num2str(k) ]; 
                        Counter = counter +1; 
                         
                        For l = 1:length(vomeasuredatanames) 
                            Var1 = 
Segmented.(Driver).(files{i}).Lane.(lanenames{j}).vomeasuredata.(vomeasuredatanames{l})(firstvalue
:secondvalue); % SAVES ALL FILES IN THE VOMEASUREDATA SUBSTRUCT 
                            
Saved.(Driver).(files{i}).Lane.(lanesegmentname).vomeasuredata.(vomeasuredatanames{l}) = var1; 
                        End 
                         
                        For l = 1:length(onoffnames) 
                            Var2 = 
Segmented.(Driver).(files{i}).Lane.(lanenames{j}).onoff.(onoffnames{l})(firstvalue:secondvalue); % 
SAVES ALL FILES IN THE SEGMENT SUBSTRUCT 
                            Saved.(Driver).(files{i}).Lane.(lanesegmentname).onoff.(onoffnames{l}) = var2; 
                        End 
  
                        Plotname = [(files{i}) ' ' (lanesegmentname)]; 
                         
                        Figure(2) 
                        
Plot(Saved.(Driver).(files{i}).Lane.(lanesegmentname).vomeasuredata.mlongitude_GPS,Saved.(Driver
).(files{i}).Lane.(lanesegmentname).vomeasuredata.mlatitude_GPS,'disp',(plotname)) 
                        Hold on 
                         
                        Saved.Driver_id_xx.(files{i}).osegmentinfo = 
Segmented.(Driver).(files{i}).osegmentinfo; 
                    End 
                     End 
                     End 
                    End 
            End 
    End 
  
Save Stage2 Saved 
 
2 . Extract Videos 
  
clear all 
close all 
clc 
cd('D:\Videos') % segment A 
addpath('P:\Matlab\ClosedMat\Data\Driver_xx\Segment A\Range less than 100\') 
addpath('P:\FOTware\v.3.7\VideoIO') 
  
load Stage2 
files = fieldnames(Saved.Driver_id_xx); 
  
for i = 1:length(files); %  plotting commands 
    segmentnames = fieldnames(Saved.Driver_id_xx.(files{i}).Lane); 
     
    for j = 1:length(segmentnames)               
        % 
        filepath = ['K:' Saved.Driver_id_xx.(files{i}).oSegmentInfo.voVideoSources(1,2).sRelativePath 
];% (1,1) road cam (1,2) driver cam <-------CHOOSE CAMERA 
        % 
        videopath = (filepath); 
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        % 
        if  exist(videopath,'file') 
            %         segmentnames = fieldnames(Saved.Driver_id_xx.(files{i}).Segment); 
            a = 
isfinite(Saved.Driver_id_xx.(files{i}).Lane.(segmentnames{j}).voMeasureData.mVideo1Indices); 
            vector = 
Saved.Driver_id_xx.(files{i}).Lane.(segmentnames{j}).voMeasureData.mVideo1Indices;  % 1 
DRIVER CAM, 0 ROAD CAM <--------------------CHOOSE INDEX VECTOR 
            Video.(files{i}).(segmentnames{j}).mov = videoread((filepath),vector); 
            VideoName = ['Driver cam' files{i} segmentnames{j}]; 
            movie2avi(Video.(files{i}).(segmentnames{j}).mov, (VideoName)) 
            clear Video 
            %                 figure(1) 
plot(Saved.Driver_id_xx.(files{i}).Lane.(segmentnames{j}).voMeasureData.mSteeringAngleJerkRate,'
disp',files{i}) 
            %                 hold on 
        end 
    end 
    end 
 
3 . Creates dataset with selected measures and calculates statistics 
 
close all 
clear 
clc 
 cd('P:\Matlab\ClosedMat\Data\Driver_xx\Segment A\Range less than 100') 
 load Stage2                                                                  % LOADS DATA FILE 
 files = fieldnames(Saved.Driver_id_xx); 
data = dataset;                                                             % CREATES DATASET 
counter = 0; 
   
for i = 1:length(files)                                                     % LOOPS THROUGH FILES 
    segmentnames = fieldnames(Saved.Driver_id_xx.(files{i}).Lane);   % CREATES CELL WITH 
SEGMENTNAMES 
    counter = counter +1; 
    for j = 1:length(segmentnames)                                  % LOOPS THROUGH SEGMENTS 
        Trip = files{i}; 
        segment = segmentnames{j}; 
         
        % MEANS 
        mYawRate = 
nanmean(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mYawRate)); 
        mSteeringAngleJerk = 
nanmean(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mSteeringAngleJerk)); 
        mSteeringAngleJerkRate = 
max(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mSteeringAngleJerkRate)); 
        PeakLatAcc = 
max(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLateralAcc)); 
        mLateralJerk 
=max(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLateralJerk)); 
        PeakLongAcc = 
max(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLongAcc)); 
        mLongJerk = max(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLongJerk)); 
        mLeftLaneOffset = 
nanmean(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLeftLaneOffset)); 
        mRightLaneOffset = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mRightLaneOffset); 
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        MeanVehSpd = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mVehicleSpeed); 
        MeanRange = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mDistMainVhlAhead); 
        MeanHeadway = nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mTHW); 
        MeanVelVehAhead = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mVelMainVhlAhead); 
        RelVelMainVhlAhead = 
nanmean(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mRelVelMainVhlAhead));% 
negative values 
        AccelPedalPos = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mAccelPedalPos); 
        BrakePressure = 
max(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mBrakePressure); 
                    
        mSteeringAngle = 
nanmean(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mSteeringAngle)); 
         
        % MEANS OF PASSENGER INDICATORS 
%         Passenger = nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mPassengerBuckled); 
%         RearBuckLeft = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mRearBuckleLeft); 
%         RearBuckMid = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mRearBuckleMid); 
%         RearBuckRight = 
nanmean(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mRearBuckleRight); 
         
        Passenger = 
max((Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mPassengerBuckled)+(Saved.Driver_id_xx.(T
rip).Lane.(segment).OnOff.mRearBuckleLeft)+(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mR
earBuckleMid)... 
            +(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mRearBuckleRight));  
             
        % PEAK VALUES 
%         DisTrav = 
max(Saved.Driver_id_xx.(Trip).Segment.(segment).voMeasureData.mDistanceTraveled)/1000; % 
DISTANCE TRAVELLED IN KILOMETRES        
%         laneposition = 
std(abs(Saved.Driver_id_xx.(Trip).Lane.(segment).voMeasureData.mLeftLaneOffset)); 
         
        % SYSTEMS 
        mADASWarning = 
max((Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mBLISLeftWarning)+(Saved.Driver_id_xx.(T
rip).Lane.(segment).OnOff.mBLISRightWarning)+(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.
mLDWWarning)... 
            +(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mFCWWarning)); 
%          
%         mLDWWarning = max(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mLDWWarning); 
%         mBLISLeftWarning =  
max(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mBLISLeftWarning); 
%         mBLISRightWarning =  
max(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mBLISRightWarning); 
%         mFCWWarning =  max(Saved.Driver_id_xx.(Trip).Lane.(segment).OnOff.mFCWWarning); 
        Trip_id = Trip; 
        segmentid = segment; 
         
        plotname = [(Trip_id) (segmentid)]; 
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        data = [data; 
dataset(MeanVehSpd,MeanRange,MeanHeadway,MeanVelVehAhead,RelVelMainVhlAhead, 
AccelPedalPos,BrakePressure,mYawRate,Daylight,... 
            
mSteeringAngle,mSteeringAngleJerk,mSteeringAngleJerkRate,Passenger,PeakLatAcc,mLateralJerk,... 
            PeakLongAcc,mLongJerk,mLeftLaneOffset,mRightLaneOffset,mADASWarning... % 
mAmbientLightCond,mACCState,{nominal(Trip_id),'Trip'},{nominal(segmentid),'Segment'})]; % 
DISTANCE IN METRES,SPEED IN KMPH 
            end 
end 
  
%     export(data,'XLSfile','data') 
 
4 . Logistic regression example (standard deviations - with filtered data - headway < 2.5 seconds) 
  
close all 
clear 
clc 
  
cd 'G:\Thesis\FromFOTNet' 
  
data = dataset('XLSFile','TEST_DATASET_1'); 
  
Secondary_tasks = data.Secondary_Tasks_Combined((data.MeanHeadway < 2.5)); 
  
Predictors(:,1) = data.STDYawRate((data.MeanHeadway < 2.5)); 
Predictors(:,2) = data.STDSteeringAngleAcceleration((data.MeanHeadway < 2.5)); 
Predictors(:,3) = data.STDSteeringAngleVelocity((data.MeanHeadway < 2.5)); 
Predictors(:,4) = data.STDLatAcc((data.MeanHeadway < 2.5));  
Predictors(:,5) = data.STDLatJerk((data.MeanHeadway < 2.5));  
Predictors(:,6) = data.STDLongAcc((data.MeanHeadway < 2.5));  
Predictors(:,7) = data.STDLongJerk((data.MeanHeadway < 2.5));  
Predictors(:,8) = data.STDLaneOffset((data.MeanHeadway < 2.5));  
Predictors(:,9) = data.Passenger((data.MeanHeadway < 2.5));  
Predictors(:,10) = data.ADASWarning((data.MeanHeadway < 2.5));  
Predictors(:,11) = data.MeanHeadway((data.MeanHeadway < 2.5));  
Predictors(:,12) = data.STDHeadway((data.MeanHeadway < 2.5));  
  
Predictors(:,13) = data.PeakBrakePressure((data.MeanHeadway < 2.5));  
Predictors(:,14) = data.STDBrakePressure((data.MeanHeadway < 2.5));  
Predictors(:,15) = data.ButtonPressed((data.MeanHeadway < 2.5));  
Predictors(:,16) = data.MeanRange((data.MeanHeadway < 2.5));  
Predictors(:,17) = data.MeanEgoVel((data.MeanHeadway < 2.5));  
  
  
[coefficient_estimates,deviance,stats] = glmfit(Predictors,Secondary_tasks,'binomial'); 
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Appendix C :( Results) 
Logistic Regression 
 

Table 13: Univariate Logistic Analysis - Phone Usage 

Measure P values 

Unfiltered 
dataset 

Headway < 2.5, Relative 
velocity < 2 

Peak Steering Angle Acceleration     0.2348 0.0197 

SD Steering Angle Acceleration     0.1848 0.0251 

SD Abs Steering Angle 
Acceleration 

0.2166 0.0331 

Mean Steering Angle Velocity 0.5561 0.0508 

SD Steering Angle Velocity  0.1046 

Mean Headway time 0.0314 0.1219 

Peak Brake Pressure 0.0252 0.0311 

SD Brake Pressure 0.0475 0.1022 

SD Long Jerk 0.1448 0.0462 

Max Abs Long Acc  0.1555 

SD Long Acc 0.3694 0.0173 

Mean Abs Rel Vel 0.9963 0.0020 

SD Rel Vel 0.1155 0.0039 
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Table 14: Univariate Logistic Analysis - Any Secondary Task 

Measure P values 

Peak Steering Angle 
Acceleration 

0.0469 

SD Steering Angle 
Acceleration 

0.0283 

SD Abs Steering Angle 
Acceleration 

0.0483 

Mean Steering Angle 
Velocity 

0.0629 

SD Steering Angle 
Velocity 

0.1561 

Mean Lane Offset 0.1303 

Mean Abs Rel Vel 0.0198 

SD Rel Vel 0.0341 

SD Longitudinal 
Acceleration 

0.0851 

SD Long Jerk 0.1368 
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ROC curves – Significant Factors 

 

 

 

 

 

 

 

 

Figure 22: ROC: SD Steering angle acceleration 

Figure 22: ROC: Mean Headway Figure 22: ROC: Peak brake pressure 

Figure 23: ROC: SD Steering Angle Velocity 
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Table 15:  AUC (Significant factors and factors close to significance) 

 

Measure AUC 

Peak steering angle acceleration 0.71 

SD steering angle acceleration 0.67 

Mean steering angle velocity 0.72 

SD steering angle velocity 0.66 

Mean Headway time 0.62 

Peak brake pressure 0.81 

SD brake pressure 0.67 

SD longitudinal jerk 0.71 

Figure 27: ROC: SD brake pressure Figure 27: ROC: Peak steering angle acceleration 

Figure 27: ROC: SD longitudinal jerk Figure 27: ROC: SD longitudinal acceleration 
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Max longitudinal acceleration 0.65 

SD longitudinal acceleration 0.74 

Mean relative velocity 0.89 

SD relative velocity 0.72 

 

 
Figure 28: ROC curve: SD relative velocity 
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ROC curves – Non-Significant Factors 
Table 16:  AUC (Non-Significant Factors) 

Measure AUC 

MeanAbsYawRate 0.50 

MaxAbsYawRate 0.51 

SD Yaw Rate 0.49 

MaxAbsLatAcc 0.51 

STDLatAcc 0.53 

MaxAbsLatJerk 0.49 

STDLatJerk_1 0.48 

STDLaneOffset 0.51 

MaxAbsLongJerk 0.53 

STDHeadway 0.50 

MeanEgoVel 0.49 

MeanLeadVel 0.53 

 

SD Longitudinal Jerk 

 
Figure 29: SD Longitudinal jerk 
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Table 17:  AUC (Non-Significant Factors) 

SD Longitudinal Acceleration Mean of Means SD 

Baseline Segments  1.74 0.32 

Secondary Task 1.92 0.38 

 

SD Longitudinal Acceleration 

 
Figure 30: SD Longitudinal acceleration 

 
Table 18:  AUC (Non-Significant Factors) 

SD Longitudinal Acceleration Mean of Means SD 

Baseline Segments  0.41 0.2 

Secondary Task 0.49 0.25 

 


	1. Introduction
	1.1. Background
	1.
	1.1.
	1.2.
	1.3.

	1.2. Literature review
	1.2.1. Car following and headway time
	1.2.2. Secondary tasks
	1.3. Naturalistic driving data, field operational tests and EuroFOT
	1.4. Aim

	2. Method
	2.1. Road segments
	2.2. Drivers
	2.3. Independent variables
	2.3.1. Secondary task variables
	2.3.1.1. Mobile telephone use
	2.3.1.2. Conversations and passenger related activity
	2.3.1.3. Eating
	2.3.1.4. Grooming

	2.4. Data processing
	2.5. Preliminary data processing
	2.6. Extraction of steady state car following data
	2.6.1. ACC
	2.6.2. Speed of subject vehicle
	2.6.3. Lane changes and lane change residuals
	2.6.4. Lead vehicle cut –ins/cut – outs
	2.6.5. Range to lead vehicle
	2.6.6. Segment length

	2.7. Assumption of independence
	2.8. Video annotation
	2.9. Dataset summary
	2.10. Data analysis: Logistic regression analysis
	2.10.1. ROC curve

	2.11. Data analysis: T-test

	3. Results
	3.1. Data analysis: Logistic regression analysis
	3.1.1. Univariate logistic regression
	3.1.2. Multivariate logistic regression

	3.2. Data analysis: T-test
	3.2.1. Peak steering angle acceleration
	3.2.2. SD steering angle acceleration
	3.2.3. Peak brake pressure
	3.2.4. Mean absolute relative velocity
	3.2.5. ADAS warnings


	4. Discussion
	4.1. Logistic regression analysis
	4.1.1. Univariate logistic analysis
	4.1.2. Multivariate logistic analysis

	4.2. T-test
	4.3. Study limitations
	4.4.  Conclusion
	4.5. Future work

	References
	Appendix A: (Independent Variables)
	Appendix B: (Matlab code)
	Appendix C :( Results)

