

An Agda proof of the correctness of
Valiant’s algorithm for context free
parsing
Master’s Thesis in Computer Science – algorithms, languages and
logic

Thomas Bååth Sjöblom

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden May 2013

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of
Gothenburg store the Work electronically and make it accessible on the Internet.

An Agda proof of the correctness of Valiant’s algorithm for context free parsing

Thomas Bååth Sjöblom

c© Thomas Bååth Sjöblom, May 2013.

Examiner: Patrik Jansson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2013

Abstract

Parsing is an important problem with applications ranging from compilers to bioinfor-
matics. To perform the parsing more quickly, it would be desirable to be able to parse
in parallel. Valiant’s algorithm [Valiant, 1975] is a divide and conquer algorithm for
parsing and can be used to perform a large part of the work in parallel. It is fairly easy
to implement in a functional programming languages, using pattern matching. Agda is
a dependently typed functional programming language that doubles as a proof assistant
and is hence very suitable for implementing and proving the correctness of Valiant’s
algorithm.

In this thesis, we provide a very natural specification for the parsing problem and
prove that it is equivalent to the specification of the transitive closure used in [Valiant,
1975], that is further removed from both parsing and proving. We compare the two
specifications and use our specification to derive Valiant’s algorithm. We then imple-
ment it in Agda and prove our implementation correct (we prove that it satisfies our
specification).

We also give short introductions to parsing, programming and proving with Agda
and to using algebraic structures in Agda.

Keywords: Dependently typed programming, Formal proof, Agda, Valiant, Parallel
parsing, Transitive closure, Nonassociative multiplication, Algebra

Acknowledgements
I would like to thank my supervisor Jean-Phillipe Bernardy and my examiner Patrik
Jansson for their support, patience and optimism during the creation of this master’s
thesis.

I would also like to thank Anders Martinsson for listening to me failing to explain
what parsing is on three separate occasions.

Thomas Bååth Sjöblom, Gothenburg, May 29 2013

Contents

1 Introduction 1

2 Agda 3
2.1 Introduction . 3

2.1.1 General introduction . 3
2.1.2 Starting the extended example . 5

2.2 The Curry–Howard Correspondence . 7
2.2.1 Propositional logic . 8
2.2.2 Predicate logic . 9
2.2.3 Decidability . 9

2.3 Continuing the example . 10
2.3.1 Defining maxL . 10
2.3.2 Indexing function and specification 11

2.4 Proving the correctness . 13
2.4.1 Informal proof . 13
2.4.2 Lemmas . 13
2.4.3 Assembling the proof . 15

2.5 Final remarks about Agda . 16

3 Algebra 18
3.1 Introductory definitions . 18

3.1.1 Equivalence relations . 18
3.1.2 Propositions about one operation 20
3.1.3 Propositions about two operations 21

3.2 Sets with one operation . 22
3.2.1 Monoid-like structures . 23
3.2.2 Equational Reasoning in Commutative Monoids 25

3.3 Sets with two operations . 26
3.3.1 Ring-like structures . 26
3.3.2 Matrices . 29

i

3.3.3 Upper triangular matrices . 33

4 Parsing 37
4.1 Definitions . 37
4.2 Grammar as a nonassociative semiring . 40
4.3 A specification for parsing . 40

5 Valiant’s Algorithm 44
5.1 Derivation . 44

5.1.1 Main structure . 44
5.1.2 The overlap part . 45
5.1.3 Summary of Valiant’s algorithm 46

5.2 Datatypes . 48
5.2.1 Discussion . 48
5.2.2 A first attempt at an Agda implementation 50
5.2.3 Mat and Tri . 51
5.2.4 Operations on our datatypes . 52
5.2.5 Nonassociative Semirings . 55

5.3 Implementation and proof of correctness 57
5.3.1 Implementing the algorithm . 57
5.3.2 Specification in Agda . 58
5.3.3 The proof . 58

6 Concluding remarks 60

Bibliography 63

Chapter 1

Introduction

Agda is a dependently typed functional programming language based on Martin–Löf
type theory that can also be used as a proof assistant. Valiant’s algorithm is a highly
parallel algorithm for computing the transitive closure of a matrix in the time needed to
multiply two matrices. Computing the transitive closure of an upper triangular matrix
is a problem that appears when parsing a context free language.

In this thesis, we use Agda to formalise enough matrix algebra to formally prove
the correctness of Valiant’s algorithm. The full formalisation and proof is made up of
around 3500 lines of code, partitioned into around 30 modules, all of which is available
at https://github.com/thobaa/Algebra-of-Parallel-Programming-in-Agda.

Parsing is used as an early step in a many places where it is necessary to analyse
some kind of text. Examples include compilers, where source code is turned into a tree
structure that contains information about the properties a segment of code has (is it a
statement, an if-expression, etc.) to help with type checking and machine code genera-
tion. With the advent of CPUs with multiple cores, it becomes increasingly attractive to
try and parse in parallel. Because the functions in a functional programming language
lack side effects, functional languages seem suitable for writing parallel programs. Addi-
tionally, working in Agda allows us to write an algorithm with syntax similar to Haskell
and prove its correctness simultaneously.

The choice of Valiant’s algorithm is due to the fact that, although it was initially
discovered to prove that parsing can be done in the time needed to perform a matrix
multiplication, it also happens to be highly parallelizable. Additionally, it is a simple
enough algorithm to make it feasible to write a formal proof of its correctness.

We begin the report with Section 2, which a short introduction to Agda, where we
use it to define and prove the correctness of a maximum function on lists. Next, in
Section 3, we introduce the algebra relevant for parsing (some parts of which are fairly
non-standard, in particular, we need to consider structures with non-associative multi-
plication). We give definitions of algebraic structures both as “mathematical” definitions
(as seen in an algebra textbook) and as Agda definitions, to display the similarity be-
tween Agda syntax and ordinary mathematics, and to provide the base for later chapters.
The main algebraic structures we discuss are commutative monoids and nonassociative

1

https://github.com/thobaa/Algebra-of-Parallel-Programming-in-Agda

semirings. We also define matrices over the nonassociative semirings. In Section 4, we
then give a short introduction to Parsing, mainly to relate it to the algebra we have just
presented, and show that Parsing is equivalent to computing the transitive closure of
an upper triangular matrix. In the final part of our thesis, Section 5, we first present
Valiant’s algorithm for computing the transitive closure and implement it in Agda. Then
we combine the algebra with the ideas in the parsing section to prove the correctness of
the algorithm.

This report is meant to be usable as an introduction to proving things in Agda
for people not familiar with the programming language, but it is helpful to have some
previous experience with either functional programming or abstract algebra.

Chapter 2

Agda

Agda is a dependently typed functional language based on Martin-Löf type theory
[Martin-Löf, 1984]. The implementation of the current version of Agda, Agda 2, was
started by Ulf Norell as a part of his PhD [Norell, 2007]. In this section, we give a short
introduction to using Agda to write programs and proofs.

2.1 Introduction
That Agda is a functional programming language means that programs consist of a
sequence of definitions of datatypes and functions. We begin with some general intro-
duction to Agda in Section 2.1.1, and then begin with an extended example in 2.1.2,
that we keep up for the remainder of Section 2, to motivate the introduction of new
concepts.

2.1.1 General introduction

One of the simplest datatypes we can define is the type Bool of truth values, consisting
of the elements True and False. In Agda, we define it like this:

data Bool : Set where
True : Bool
False : Bool

There are a couple of things to note about the definition:

• The word data states that we are defining a new datatype. The list of constructors
follow the word where.

• Following data, we give the name of the new type, Bool.

Moreover, everything has a type, and we generally need to provide the types as opposed
to languages like Haskell or ML, where it is usually possible for the compiler to infer
them. Statements of the form a : b mean that a is an element of type b. In this

3

case, True and False are elements of type Bool, while Bool is an element of type Set,
the type of small types (which itself is an element of Set1, which is an element of Set2,
and so on). The spacing in the above example is important. Agda allows identifiers
to be almost any sequence of Unicode symbols, excluding spaces and parentheses (but
including Unicode characters like 1 in Set1). Because of this, we need to write spaces
in Bool : Set, because Bool:Set is a valid identifier. In the same spirit, there are no
rules specifying that some identifiers need to begin with upper or lower case letters (as
opposed to Haskell’s requirement that constructors and types begin with an upper case
letter and variables begin with a lower case letter). We could define a (different, but
isomorphic) type bool:

data bool : Set where -- this type is not used in this report,
true : bool -- included here only as an example
False : bool

Note that different types can have constructors with the same name (like False for Bool
and bool), but this can lead to some hard to understand error messages from the type
checker.

As an example of a function definition, we define a function not that takes one Bool
and returns the other one:

not : Bool→ Bool -- (1)
not True = False -- (2)
not False = True -- (3)

Line (1) is the type definition, not has type Bool → Bool (function from Bool to Bool).
Next, we define not, and this is done by pattern matching. On Line (2), we state that
not applied to True is False, and on Line (3) that not applied to False is True. As in
Haskell, function application is written without parentheses: f x means f applied to x,
and associates to the left: g x y means (g x) y, where g : X → Y → Z. The type
X → Y → Z means X → (Y → Z) (i.e., the arrow → associates to the right), so that
g x : Y→ Z.

Agda is a total programming language, which means that every function terminates,
and programs never crash. In particular, the following definitions are not legal Agda
code. First,

not’ : Bool→ Bool
not’ True = False

is illegal, because if not’ would be applied to False the program would crash. This is
fairly easy to control: roughly speaking the system just needs to make sure that all
available constructors appear in the definition. Second,

not” : Bool→ Bool
not” x = not” x

is illegal because trying to evaluate not” e would reduce it to not” e, which then has to
be evaluated, creating an infinite loop. This is more difficult to control, since it is well
known that there is no program that can determine if an arbitrary program eventually
terminates or not (the Halting problem cannot be solved Turing [1936]). Agda sidesteps
this problem by using a conservative termination-checker that only accepts a subset of
terminating programs. Among other things, it requires that recursive calls are only made
of subexpressions of the arguments (see Agda team [2011] for a more detailed discussion
of the termination checker).

If we only want to use a function locally, we can define an anonymous function using
a λ expression, as in λ x → not (not x). Such functions are accepted whenever a
function is needed. We cannot use pattern matching to define anonymous functions.

2.1.2 Starting the extended example

In this section, we will define a function that takes a list of natural numbers and returns
its maximum. The return value should be greater than or equal to every element in the
list. In Section 2.3.2, we state this property using Agda, and finally, in Section 2.4.3 we
are going to prove in Agda that this property hold.

The first reason for doing this is to continue our introduction to Agda, by defining
more complicated functions and pointing out additional features of the language (and
in particular proving things with it). The second reason is that a proof in Agda can
require quite a bit of boilerplate code, and hence, in later sections, we only include parts
of them, and we feel that there should be a complete proof written in Agda somewhere
in this thesis. First, we need to define the datatype of natural numbers, which we denote
by the Unicode character N).

data N : Set where
zero : N
suc : N→ N

This datatype has two constructors, zero and suc. The constructor zero is an element of
N, intended to be interpreted as 0, and the constructor suc is a function taking a natural
number as input and returning what is to be thought of as the successor of the number.
For example, we can define

one : N
one = suc zero
five : N
five = suc (suc (suc (suc (suc zero))))

This is a fairly cumbersome way of writing numbers, and it is possible to make Agda
support a more standard notation for elements of N using the pragmas

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

so that we may write definitions like:

two : N
two = 2

Next, we define lists,

data [] (a : Set) : Set where
[] : [a]
:: : a→ [a]→ [a]

infixr 8 _::_

We have chosen the notation to be similar to the Haskell notation for lists. The (a : Set)
before the colon means the type of lists depends on a parameter, which is an arbitrary
(small) type a. The underscore denotes where the argument is placed, so [a] is a list of
elements from a, [N] a list of natural numbers, etc. In the same way, _::_ is a function
of two arguments, the first of type a (written in the place of the first underscore), the
second of type [a] (written in place of the second underscore). The last line defines that
the infix operator _::_ associates to the right (the r) and the 8 defines how tightly it
binds (to determine whether an expression including other operators needs parentheses
or not). In the remainder, we omit the infix declarations from this text, but use them
to give operations the bindings we expect (so that, for example, multiplication binds
tighter than addition).

We give an example of a list of natural numbers:

exampleList : [N]
exampleList = 5 :: 2 :: 12 :: 0 :: 23 :: []

Next, we define some functions on N and [N]. In particular, to define the maximum
of a list of natural numbers, we need to be able to find the maximum of a pair of natural
numbers. We define this as follows:

max : N→ N→ N
max zero n = n
max (suc m) zero = suc m
max (suc m) (suc n) = suc (max m n)

Here, we need to pattern match on both variables. The first variable is either zero or
suc m, for some m. In the first case, we know that the maximum is the second argument.
In the second case, we must pattern match on the second variable. If it is zero, we are
again done. If it is suc n for some n, we recursively find max m n (note that max is
called with two arguments, both of which contain one fewer applications of suc, so the
recursion will terminate, eventually), and increase it.

Next, we want to define a function maxL that returns the maximum of a list. We
decide to only define maxL on nonempty lists. It could be argued that maxL [] = 0

is sensible, but if we were to generalise the definition to an arbitrary total order on an
arbitrary type, in general, there is no least element (just consider the integers Z). We
still want to use the same datatype of lists though (we could assume that we have built
a large library that depends on them).

To force the list to be non-empty, we want maxL to take two arguments, the first
of which is a list xs, and the second of which is a proof that the length of xs is greater
than 0. Writing the function length for N should be easy by now, so we decide to write
it for arbitrary types a:

length : {a : Set}→ [a]→ N
length [] = zero
length (x :: xs) = suc (length xs)

Here, the {a : Set} means that a is an implicit argument to the function (that Agda
can infer by looking at the type of x in this case). The fact that a is given a name
and appears in the types following it means that the types depend on the value of a,
and this is what it means to be a dependent type. This is an example of a dependent
function space. More generally, the fact that we can give any function argument a name
and have the types following it depend on it means that Agda is a dependently typed
language. We write (a : Set) instead if we want a to be an explicit named argument.
It is also possible to define multiple elements, say a, b, c, of the same type A by writing
{a b c : A} or (a b c : A). When needed (when Agda cannot infer them), implicit
arguments can be provided in curly brackets.

In the next section, we discuss the second part of what we need to give the type of
maxL, that is, a way to define proofs in Agda.

2.2 The Curry–Howard Correspondence
To consider proofs and propositions in Agda, and to allow functions to depend on them
and their existence, we use the Curry–Howard correspondence: propositions as types,
proofs as programs (for a more detailed introduction to it, see for example Bove and
Dybjer [2009]). The Curry–Howard correspondence states that a proposition P can
be seen as the type containing all “proof objects”, of P (we will refer to them simply
as proofs in the remainder). To prove P then means to give an element of the type
corresponding to P (i.e., a proof of P).

To give an example of viewing propositions as types, we take a look at the proposition
“m is at most n”. In Agda, we make the following definition:

data _6_ : N→ N→ Set where
z6n : {n : N}→ zero 6 n
s6s : {m n : N}→m 6 n→ suc m 6 suc n

Here we note the placement of the Ns in the first line. They are placed on the right side
of the colon because they are indices of _6_. This means that we are defining a type

family (consisting of the types m 6 n for every m n : N. We can see that we need
to do this from the fact that the two constructors produce elements of different types,
zero 6 n and suc m 6 suc n, respectively. We also make note of the names we have
given the constructors. In the remainder of this report, we often use the convention that
Pxy (without the spaces) is the name of an element of datatype P x y (with spaces), so
m6n is a proof that m 6 n.

If we have an element of type m 6 n it is either constructed by z6n, which means
that m is zero, so that the proposition “m is at most n” is true. Or it is constructed by
s6s, and we must have m = suc k, n = suc l for some k, l and an element of type
k 6 l. But then, the proposition “k is at most than l” is true, and hence, again “m is at
most n” is true. So providing an element of type m 6 n means providing a proof that
m 6 n. Intuitively, we see that identifying propositions and types makes sense.

We now present the logical operations (as interpreted in constructive logic) that are
done on propositions to generate new propositions, and their implementations in Agda,
using syntax similar to the one used in logic, through the Curry–Howard correspondence.

2.2.1 Propositional logic

We begin with concepts from propositional logic, and in the next section, we consider
predicate logic.

To define a conjunction between two propositions P and Q, we use the pair, defined
as

data _∧_ (P Q : Set) : Set where
, : P→ Q→ P ∧ Q

This coincides with the logical notion of a conjunction, which requires a proof of both
conjuncts, because as seen above, to construct an element of P ∧ Q, one needs an
element of each of P and Q.

For disjunction, we use a disjoint sum:

data _∨_ (P Q : Set) : Set where
inl : P → P ∨ Q
inr : Q→ P ∨ Q

The two constructors mean that to construct an element of P ∨ Q we need either an
element of P or of Q.

For implication, one simply uses functions, P→ Q, because implication in construc-
tive logic means a method for converting a proof of P to a proof of Q, and this is exactly
what a function is.

The last predicate logic operation is negation. Constructively, the negation of a
proposition means that the proposition implies falsity. We use the empty type to repre-
sent falsity:

data ⊥ : Set where

This can thus be seen as a proposition with no proof, which is exactly what falsity is.
We then define negation by

¬ : Set→ Set
¬ P = P→⊥

For convenience, we also define the true proposition >, as a set with one constructor

data > : Set where
tt : >

To prove this proposition we simply use the element tt.

2.2.2 Predicate logic

Now we move on to define the quantifiers (universal and existential) in predicate logic.
For universal quantification, we again use functions, but this time, dependent func-

tions: If P is a predicate on X (a function that takes elements of X to propositions
P (x)), the proposition ∀x.P (x) corresponds to the type (x : X)→ P x, since to give a
function of that type would mean providing a way to construct an element of P x (that
is, a proof of P (x)) for every x : X, which is what ∀x.P (x) means. Agda includes the
syntax ∀ x for (x :) in type definitions (where the underscore indicates that the type
should be inferred), so that ∀ x→ P x means exactly what we expect it to mean.

Finally, existential quantification, ∃x.P (x), which in constructive logic is interpreted
to be true if there is a pair (x0, Px0) of a witness x0 along with a proof of P (x0). Like
for conjunction, we use a pair. But this time, the second element of the pair depends on
the first:

data ∃ {X : Set} (P : X→ Set) : Set where
, : (x : X)→ P x→∃ P

2.2.3 Decidability

Finally we discuss decidable propositions. Constructively, the law of excluded middle—
saying that for any proposition P , P ∨ ¬P is true—is not valid. There is no algorithm
that takes an arbitrary proposition and returns either a proof of it, or a proof that it
implies ⊥. However, there are many propositions for which it is valid. These propositions
are said to be decidable. In Agda, if P is a proposition, we define the proposition that P
is decidable as Dec P:

data Dec (P : Set) : Set where
yes : P→ Dec P
no : ¬ P→ Dec P

So an element of Dec P is a proof that P is decidable, since it contains either a proof of
P or a proof of ¬ P.

An example of a proposition that is decidable is the proposition that m 6 n, where
m and n are natural numbers. To prove that this is decidable for any m and n, we give
a function that takes m and n and returns an element of Dec (m 6 n):

6? : (m n : N)→ Dec (m 6 n)

We present this function case by case. If m is 0, we can construct a proof that m 6 n
with the constructor z6n:

0 6? n = yes z6n

if m is suc k, we pattern match on n. If n is 0, there is no proof of m 6 n, since no
constructor of _6_ constructs an element of type suc k 6 0. The fact that there are
no such proofs is denoted by λ () (we basically write an anonymous function of type
(suc k 6 0)→⊥ by pattern matching on the empty type suc k 6 0).

suc k 6? 0 = no (λ ())

If n is suc l, we use a with statement to add an extra argument to the function, to
pattern match on Dec (k 6 l), which is decidable by induction:

suc k 6? suc l with k 6? l
suc k 6? suc l | yes k6l = yes (s6s k6l)
suc k 6? suc l | no ¬k6l = no (λ sm6sn→¬k6l (p6p sm6sn))
where p6p : {m n : N}→ suc m 6 suc n→m 6 n

p6p (s6s m6n) = m6n

2.3 Continuing the example
We now go back to the example started in Section 2.1.2.

2.3.1 Defining maxL
First, we define the maxL function.

For convenience, we define a strictly less than relation:

< : N→ N→ Set
m < n = suc m 6 n

We do not need to create a new datatype using data for this because we can use the fact
that m < n should be equivalent to suc m 6 n. In fact, with this definition, Agda
will evaluate any occurrence of m < n to suc m 6 n internally, which helps us when
we write proofs.

Now, we can define the type of the maxL function:

maxL : (xs : [N])→ (0 < length xs)→ N

That is, maxL takes a list of natural numbers xs and a proof that the length of xs is
greater than zero and returns the maximum of the list. To define the function, we
pattern match on the first argument:

maxL [] ()
maxL (x :: []) = x
maxL (x :: (x’ :: xs)) = max x (maxL (x’ :: xs) (s6s z6n))

On the first line, we use the absurd pattern () to denote the empty case resulting from
pattern matching on the proof (there are no cases when pattern matching on an element
of 1 6 0, and () is used to denote this, since Agda does not allow us to just leave out
a case). On the second two lines, we do not care about what the input proof is (it is
s6s z6n in both cases, so we write , which takes the place of the variable but does not
allow it to be used in the definition to signify that it is not important).

2.3.2 Indexing function and specification

We also need an indexing function (to specify that maxL xs is in the list), and again,
we only define it for sensible inputs (nonempty lists). The simplest definition would
probably be:

index : ∀ {a}→ (xs : [a])→ (i : N)→ (i < length xs)→ a
index [] i ()
index (x :: xs) 0 = x
index (x :: xs) (suc i) (s6s m6n) = index xs i m6n

Where we need the proof in the last line, to call the index function recursively.
However, we can shorten the function definition by including the fact that the index

is less than the length of the list by using a datatype that combines the index and the
proof. This datatype is known as Fin, where Fin n contains the set of all natural numbers
strictly less than n. One way to define Fin would be to use a dependent pair, which we
define again to give it a syntax for types (as opposed to the “logical” ∃):

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A)→ B x→ Σ A B

The order these definitions should be done is, first define Σ, then define A ∧ B =
Σ A (λ x → B) and ∃ P = Σ P, where the underscore is used to denote the
fact that the first argument of Σ can be inferred from the type of the second. Then, we
could define Fin as:

Fin : N→ Set
Fin n = Σ N (λ i→ i < n)

With Fin n defined we can use the Haskell notation !! for indexing:

!! : ∀ {a}→ (xs : [a])→ Fin (length xs)→ a
[] !! (i , ())
(x :: xs) !! (0 ,) = x
(x :: xs) !! (suc i, s6s m6n) = xs !! (i,m6n)

We note, however, that we do not really use the proof part for anything important. This,
along with the fact that N is inductively defined (and the structure of the definition of
6) lets us use an even nicer formulation, where the proof is further embedded into
the datatype we use.

Instead, we choose to define Fin as a type family, using the simple fact that if n = 1+k,
then 0 ≤ n, and if n = 1 + k and i ≤ k, then 1 + i ≤ n:

data Fin : N→ Set where
f0 : {n : N}→ Fin (suc n)
fsuc : {n : N}→ Fin n→ Fin (suc n)

That is, f0 (representing 0, but given a different name for clarity—it is not equal to the
natural number 0, they do not even have the same type) is less than any number of the
form suc n, and for any number i, less than some number n, fsuc i is less than suc n (we
can see this definition as instantiating the second argument of _6_ to suc n). As with
6, the N is on the right hand side of the colon since because we are defining a type
family. One disadvantage of the choice of Fin is that we are not dealing with natural
numbers, at all. Instead, we have to define functions like

toN : {n : N}→ Fin n→ N
toN f0 = 0
toN (fsuc i) = suc (toN i)

and

fromN : (n : N)→ Fin (suc n)
fromN 0 = f0
fromN (suc y) = fsuc (fromN y)

and prove that they do what we expect (like that toN (fromN i) equals i).
These two different ways of defining things will be used later when we define upper

triangular matrices as a datatype. When we represent matrices abstractly (as functions
from their indices) in Section 3.3.3 with the datatype Triangle, we do not have a nice
inductive definition of them, so we have to use the pairing of a matrix and a proof that
it is upper triangular. In Section 5.2.3, on the other hand, we define the datatype Tri
of a concrete representation of upper triangular matrices which have a built in “proof”
that the matrix is triangular. Then, we do not need to worry about the proof when
defining multiplication, for example. If our definition returns a Tri, then the result is
upper triangular.

We now define the indexing function using the inductive family Fin:

!! : ∀ {a}→ (xs : [a])→ (i : Fin (length xs))→ a
[] !! ()
(x :: xs) !! f0 = x
(x :: xs) !! fsuc i = xs !! i

Now we can finally express our specification in Agda.

max-greatest : (xs : [N])→ (pf : 0 < length xs)→
(i : Fin (length xs))→ xs !! i 6 maxL xs pf

To prove this property of the maxL function, we must produce an inhabitant of the above
type. We do this in the next section.

2.4 Proving the correctness
To prove a proposition in Agda, it is important to look at the structure of the proposition.
Then one needs to determine which part of the proposition one should pattern match
on. To do this, it is a good idea to have a plan for the proof.

2.4.1 Informal proof

We formulate the proof informally. The main idea we use is pattern matching on the
index into the list. If the index is 0, we want to prove the simpler proposition that
x 6 maxL (x :: xs) pf, which we call max-greatest-base, because it is the base case in
an induction on the index:

max-greatest-base : (x : N) (xs : [N])→ x 6 maxL (x :: xs) (s6s z6n)

On the other hand, if the index is i + 1, the list has length at least 2, and we proceed
by noting:

1. By induction, the ith element of the tail is less than the greatest element of the
tail.

2. The ith element of the tail equals the (i+ 1)th element of the list.

3. By the definition of maxL, we get that maxL (x :: (x’ :: xs)) pf reduces to
max x (maxL (x’ :: xs) pf’), and for any x and y, we should have y 6 max x y.

2.4.2 Lemmas

To translate the induction case into Agda code, we need to introduce two new lemmas.
By induction, we already know that Point 1 is true. Additionally, Agda infers Point 2,
so there is nothing to prove. However, we still need to prove the second part of Point 3:

max-62 : {m n : N}→ n 6 max m n

where the subscript 2 refers to the fact that it is the second argument of max that is on
the left hand side of the inequality. Then, to combine the three points, we need a way
to piece together inequalities, if i 6 j and j 6 k, then i 6 k (i.e., _6_ is transitive,
see Section 3.1):

6-trans : { i j k : N}→ i 6 j→ j 6 k→ i 6 k

Now we begin proving these lemmas, starting with 6-trans as it does not depend on
the others (all the other lemmas will require further sub-lemmas to prove). We pattern
match on the first proof, i 6 j. If it is z6n, Agda infers that i is 0, so the resulting
proof if z6n:

6-trans z6n j6k = z6n

If it is s6s a6b, Agda infers that i is suc a, and j is suc b for some a, b, where a6b is
a proof that a 6 b. We then pattern match on the proof of j 6 k, which has to be
s6s b6c since j is suc b. Hence, we can use induction to get a proof that a 6 c, and
apply s6s to that proof:

6-trans (s6s a6b) (s6s b6c) = s6s (6-trans a6b b6c)

and we are done.
We also introduce another lemma about _6_: 6-refl, stating that for any n, n 6 n

(i.e., _6_ is reflexive, see Section 3.1), which is very easy to prove (if n is 0, a proof is
given by the constructor z6n, and if n is suc m, by induction, we find a proof of m 6 m
and s6s takes that proof to a proof that n 6 n:

6-refl : {n : N}→ n 6 n
6-refl {0} = z6n
6-refl {suc n} = s6s 6-refl

Now we prove max-62. We pattern matching on the second argument. If it is 0, we use
the constructor z6n, regardless of what the first argument is:

max-62 {m} {0} = z6n

If it is suc l, we pattern match on the first argument. If it is 0, then, max 0 (suc l)
reduces to suc l, so we prove suc l 6 suc l using 6-refl (we can note that we did not
actually need the fact that the second argument was non-zero, since max 0 n reduces
to n no matter what n is):

max-62 {0} {suc l} = 6-refl

On the other hand if the first argument is suc k, we find a proof of l 6 max k l
using max-62—we need to supply the first implicit argument which Agda is unable

to infer—and use s6s on it to get suc l 6 suc (max k l), which Agda reduces
max (suc k) (suc l) to suc (max k l), and we are done:

max-62 {suc k} {suc l} = s6s (max-62 {k})

We also prove the similar proposition, that max is greater than its first argument, in
essentially the same way. We pattern match first on the first argument instead, and this
time, Agda is able to infer the arguments of max-61 in the induction case, so we leave
them out:

max-61 : {m n : N}→m 6 max m n
max-61 {0} {n} = z6n
max-61 {suc k} {0} = 6-refl
max-61 {suc k} {suc l} = s6s max-61

2.4.3 Assembling the proof

Using max-61 and 6-refl, we are able to prove the initial step in the induction proof,
max-greatest-base. We pattern match on xs. If it is [], we need to show that x 6 x,
which we do with 6-refl, again:

max-greatest-base x [] = 6-refl

If it is x’ :: xs, we need to prove that x 6 maxL (x :: (x’ :: xs)) . Agda reduces the
right hand side to max x (maxL (x’ :: xs)), so we just need to use max-61 does:

max-greatest-base x (x’ :: xs) = max-61

Finally, we finish our proof, max-greatest. As we said above, we want to pattern
match on the index, however, this is not possible to do right away, since the available
constructors (if any) for Fin (length xs) depends on the length of xs. Therefore, we
begin by pattern matching on the list. If the list is empty, we fill in the absurd pattern
() for the proof that it is nonempty:

max-greatest [] ()

Otherwise, Fin (length xs) is non-empty, and can pattern match on the index. If the in-
dex is f0, we use the initial step max-greatest-base, to prove that x 6 maxL (x :: xs) pf:

max-greatest (x :: xs) (s6s z6n) f0 = max-greatest-base x xs

If the index is fsuc i, we pattern match on the tail of the list. If it is empty, we know
that the index cannot be fsuc i, because we would have i : Fin 0, so we fill in i with the
absurd pattern ():

max-greatest (x :: []) (s6s z6n) (fsuc ())

The last case is when the list is x :: (x’ :: xs), and the index is fsuc i. As we said
above, we use induction to prove that (x’ :: xs) !! i 6 maxL (x’ :: xs) . By the
definition of !!, (x :: (x’ :: xs)) !! (fsuc i) reduces to (x’ :: xs) !! i. So by induction,
max-greatest i proves that (x :: (x’ :: xs)) !! (fsuc i) 6 maxL (x’ :: xs) pf. From
the definition of maxL, maxL (x :: (x’ :: xs)) reduces to max x (maxL (x’ :: xs)).
So using max-62, and 6-trans to put things together, we finish the proof:

max-greatest (x :: (x’ :: xs)) (s6s z6n) (fsuc i) = 6-trans
(max-greatest i)
(max-62 {x})

We put the whole proof in Figure 2.1.

2.5 Final remarks about Agda
We end the section about Agda by going over a few parts of Agda that we have not
mentioned but will be used in the remainder of the report.

First, Agda has Standard Library [Agda team, 2013] that contains most of the def-
initions we have made above (sometimes under slightly different names, for example,
∧ is called _×_, and in more generality—definitions are made to work for all of Set1,
Set2, . . .). In the remainder of the report, and in our library proving the correctness of
Valiant’s algorithm, we use the Standard Library definitions whenever possible.

Our second comment is about the structure of Agda programs. Agda code is par-
titioned into modules, which contain a sequence of function and datatype definitions.
Modules can be imported, and an imported module can be opened to bring all defini-
tions into scope in the current module. Additionally, modules can be parametrised by
elements of a datatype, which basically means that all functions in the module take an
extra argument of that type. To open a parametrised module, an element of the param-
eter type is needed. We use parametrised modules frequently in this report and in our
library, starting in Section 3.3.2.

Finally, there is another way to define a datatype: as a record. A record is similar to
a product type, but each field is given a name. This is useful when there is a lot of fields
and there is no natural ordering of them. Records behave like small modules, they can
contain function definitions, and they can be parametrised and opened, like modules,
bringing all their fields and definitions into scope. As an example, we define a record
type of a pair:

record Pair (A B : Set) : Set where
field
fst : A
snd : B

When defining algebraic structures in Section 3, records are very useful for handling the
axioms needed, since they have no natural ordering.

-- general lemmas about _6_:
6-refl : {n : N}→ n 6 n
6-refl {0} = z6n
6-refl {suc n} = s6s 6-refl
6-trans : { i j k : N}→ i 6 j→ j 6 k→ i 6 k
6-trans z6n j6k = z6n
6-trans (s6s a6b) (s6s b6c) = s6s (6-trans a6b b6c)
-- properties of max

max-61 : {m n : N}→m 6 max m n
max-61 {0} {n} = z6n
max-61 {suc k} {0} = 6-refl
max-61 {suc k} {suc l} = s6s max-61

max-62 : {m n : N}→ n 6 max m n
max-62 {m} {0} = z6n
max-62 {0} {suc l} = 6-refl
max-62 {suc k} {suc l} = s6s (max-62 {k})
-- base case

max-greatest-base : (x : N) (xs : [N])→ x 6 maxL (x :: xs) (s6s z6n)
max-greatest-base x [] = 6-refl
max-greatest-base x (x’ :: xs) = max-61

-- the proof
max-greatest : (xs : [N])→ (pf : 0 < length xs)→

(i : Fin (length xs))→ xs !! i 6 maxL xs pf
max-greatest [] ()
max-greatest (x :: xs) (s6s z6n) f0 = max-greatest-base x xs
max-greatest (x :: []) (s6s z6n) (fsuc ())
max-greatest (x :: (x’ :: xs)) (s6s z6n) (fsuc i) = 6-trans

(max-greatest i)
(max-62 {x})

Figure 2.1: Proof that the maxL function finds a maximal element in the list.

Chapter 3

Algebra

In this section, we are going to introduce a number of algebraic definitions. Some (like
commutative monoid and nonassociative semiring) will be useful later in the report,
while other (like group and ring) are mentioned as possibly familiar examples and for
comparison.

In Section 3.1, we introduce a number of well known propositions that show up in
the definitions of algebraic structures as axioms and comment on differences between
defining an algebraic structure in mathematics and in Agda. Then, in Sections 3.2 and
3.3, we use these properties to define algebraic structures consisting of sets with one and
two binary operations, respectively.

3.1 Introductory definitions
When defining an algebraic structure (consisting of just one set), one gives the set of
objects, a number of binary operations on the objects and a number of axioms that the
set and the operations are required to satisfy. In this section, we are going to introduce
common such axioms.

3.1.1 Equivalence relations

The axioms usually refer to equalities between different sequences of operation applica-
tions, like the axiom in a group that x · (y · z) = (x · y) · z for all x, y and z. However,
to define these things in Agda, we note that we do not have a concept of equality for
terms of an arbitrary datatype. Further, the most “basic” equality definition (called
propositional equality), stating just that x = x for all x and defined by

data _≡_ {A : Set} : A→ A→ Set where
refl : {x : A}→ x ≡ x

is often not what we want. For the datatype N, it coincides with the “mathematical”
equality of natural numbers, because N is inductively defined (in particular, if two things

18

are built in different ways by zero and suc, they cannot be equal). But if we were to
define the integers Z as differences between natural numbers:

data Z : Set where
- : N→ N→ Z

we want a concept of equality that considers 5 - 3 as equal to 0 - 2, for example.
Also, if we define a datatype of sets, we want sets where the elements have been added
in different orders to be equal. Hence, we need to generalise the propositional equality
to some kind of relation that behaves well. We cannot choose an arbitrary relation, for
example, < does not behave as we expect equality to.

It turns out that there are three properties we want a concept of equality to have.
First, it should be reflexive: every element should be equal to itself. Second, it should
be symmetric: if a is equal to b, b should be equal to a. Third, it should be transitive: if
a is equal to b and b is equal to c, then a should be equal to c. A relation that satisfies
this is called an equivalence relation:

Definition 3.1.1. A relation ∼ ⊆ X ×X is called an equivalence relation if it is

• Reflexive: for x ∈ X, x ∼ x.

• Symmetric: for x, y ∈ X, if x ∼ y, then y ∼ x.

• Transitive: for x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

The following proposition formalises the way it behaves like an equality:

Proposition 3.1.2. An equivalence relation ∼ partitions the elements of a set X into
disjoint nonempty equivalence classes (subsets [x] = {y ∈ X | y ∼ x}) satisfying:

• For every x ∈ X, x ∈ [x].

• If x ∈ [y], then [x] = [y].

This means that if we use an equivalence relation as “equality” on a set, we are saying
that two elements are equal if they generate the same equivalence class, so we let actual
equality on the equivalence classes give us an “equality” on the members of the set.

To define an equivalence relation in Agda, use the fact that a relation (on a single set
X) is an element of type X→ X→ Set. That is, it takes two elements of X and produces
the proposition (recall that propositions are types) that the elements are related.

Next, we give the types for the propositions it should satisfy. Given a relation _∼_,
reflexivity is given by the type

Reflexive _∼_ = ∀ {x}→ x ∼ x

symmetry by the type

Symmetric _∼_ = ∀ {x y}→ x ∼ y→ y ∼ x

and transitivity by

Transitive _∼_ = ∀ {x y z}→ x ∼ y→ y ∼ z→ x ∼ z

That we decide to make the arguments x, y and z implicit is somewhat arbitrary, they
can be inferred from the types appearing later, and we follow the definitions from the
Standard Library.

Then, we define the record IsEquivalence, for expressing the proposition that a relation
is an equivalence relation (we use a record so that we can give names to the three axioms,
for use in proofs)

record IsEquivalence {X : Set} (_∼_ : X→ X→ Set) : Set where
field
refl : Reflexive _∼_
sym : Symmetric _∼_
trans : Transitive _∼_

In the remainder of the report, we actually use the slightly more general IsEquivalence
definition in the Agda Standard Library, because it lets us use the EqReasoning module
from the Standard Library for equational reasoning, as exemplified in Section 3.2.2.
When a relation is an equivalence relation, we will usually denote it by ≈ instead of ∼.

3.1.2 Propositions about one operation

Next, we define some propositions that binary operations (i.e., functions X → X → X)
can satisfy. These are properties that ordinary addition and multiplication of numbers
satisfy.

Definition 3.1.3. A binary operation · on a set X is associative if x · (y · z) = (x · y) · z
for all x, y, z ∈ X.

In Agda, the proposition that _•_ is associative, with respect to a given equivalence
relation _≈_ is given by the type:

Associative _≈_ _•_ = ∀ x y z→ (x • (y • z)) ≈ ((x • y) • z)

Many familiar basic mathematical operations, like addition and multiplication of
numbers, are associative. On the other hand, operations like subtraction and division
are not, since x − (y − z) = x − y + z 6= (x − y) − z (but this is because they are in
some sense the combination of addition and inversion: x− y = x+ (−y)). In functional
programming, a very important example of an associative operation is list concatenation.
In this thesis, we are very interested in a non-associative operation related to parsing,
defined in Section 4.2

Definition 3.1.4. A binary operation · on a set X is commutative if x · y = y · x for all
x, y ∈ X.

In Agda, this proposition is given by the type

Commutative _≈_ _•_ = ∀ x y→ (x • y) ≈ (y • x)

Again, many familiar basic mathematical operations are commutative, like addition and
multiplication of numbers, but matrix multiplication (for matrices of size n× n, n ≥ 2)
is an example of an operation that is not commutative. In this thesis, we are interested
in the commutative operation set union, ∪.

Now, we present two properties that relate elements to the operations:

Definition 3.1.5. An element e ∈ X is an identity element of a binary operation · if
x · e = e · x = x for all x ∈ X.

In Agda, the type of this proposition is

Identity _≈_ e _•_ = (∀ x→ (e • x) ≈ x) ∧ (∀ x→ (x • e) ≈ x)

We quantify over x in both conjuncts to make our code compatible with the Agda
Standard Library and because the two conjuncts make sense as individual propositions:
an element can be just a left identity or a right identity. It might be the case that
some element e is only an identity of _•_ when multiplied on the left, for example. The
parentheses in the type are needed to give ∀ the correct scope.

The identity element of addition of numbers is zero, and the identity element of
multiplication is one.

Definition 3.1.6. An element x−1 ∈ X is the inverse of x with respect to a binary
operation · if x−1 · x = x · x−1 = e.

When discussing inverses, it is usually required that every (or nearly every) element
has an inverse. In Agda, since the proposition that every element has an inverse is
a universal quantification, it is proved by a function _-1 that takes an element to its
inverse. Given such a function, the statement that x -1 is the inverse of x is given by
the type

Inverse _≈_ _-1 e _•_ = (∀ x→ ((x -1) • x) ≈ e) ∧ (∀ x→ (x • (x -1)) ≈ e)

If the operation is addition of numbers, the inverse of x is given by −x, and if the
operation is multiplication of numbers, the inverse is given by 1/x. In computer science,
inverses occur more rarely. Indeed, none of the algebraic structures we have used to
prove the correctness of Valiant’s algorithm include inverses.

3.1.3 Propositions about two operations

When we have two different binary operations on the same set, we often want them to
interact with each other sensibly. Here we define two such ways of interaction.

We recall the distributive law x · (y + z) = x · y + x · z, where x, y, and z are
numbers and · and + are multiplication and addition, respectively and generalise it to
two arbitrary operations:

Definition 3.1.7. A binary operation · on X distributes over a binary operation + if,
for all x, y, z ∈ X,

• x · (y + z) = x · y + x · z,

• (y + z) · x = y · x+ z · x,

where we assume that · binds its arguments tighter than +.

In Agda, given binary operations _+_ and _•_, we define the proposition that _•_
distributes over _+_, with respect to a given equivalence relations _≈_ as follows:

Distributive _≈_ _•_ _+_ = (∀ x y z→ (x • (y + z)) ≈ ((x • y) + (x • z)))
∧
(∀ x y z→ ((y + z) • x) ≈ ((y • x) + (z • x)))

In the Agda Standard Library, the module containing the function properties is parametrised
by an equivalence relation, so the properties do not need the argument _≈_. Instead of
Distributive, the property is called _DistributesOver_ in the standard library, giving it a
very readable syntax.

The second such interaction we will consider comes from the fact that 0 absorbs
when involved in a multiplication of numbers: 0 · x = x · 0 = 0. The reason we consider
this a property of a pair of operations is that if we have an operation + for which we
have an identity element 0 and every element has an inverse, and an operation · which
distributes over +, we automatically get 0 · x = 0:

0 · x = (0 + 0) · x = 0 · x+ 0 · x,

where the first equality follows from the fact that 0 is an identity element for +, and
the second from that · distributes over +. We can then cancel 0 · x on both sides to get
0 = 0 · x.

If we do not have inverses, we cannot perform the final step (for example, if + would
happen to be idempotent: x + x = x for all x ∈ X, like set union ∪ is, we could not
conclude that 0 = 0 · x), and then, it makes sense to have the following as an axiom:

Definition 3.1.8. An element z ∈ X is a zero element (also known as an absorbing
element) of a binary operation · if z · x = x · z = z for every x ∈ X.

In Agda, we give the proposition that z is a zero element as the conjunction

Zero _≈_ z _•_ = (∀ x→ (z • x) ≈ z) ∧ (∀ x→ (x • z) ≈ z)

3.2 Sets with one operation
In this section, we are going to discuss algebraic structures made up of a set and a binary
operation on the set.

3.2.1 Monoid-like structures

In mathematics, the most common such structure is the group. Many mathematical
objects form groups, including the integers Z, the rational numbers Q, the real numbers
R and the complex numbers C, with addition as the binary operation, and the non-zero
rational numbers Q \ 0, non-zero real numbers R \ 0, and non-zero complex numbers
C \ 0, with multiplication as the binary operation. Although groups satisfy too many
axioms to be useful to us, we give the definition below, to clarify the difference between
them and the perhaps less familiar structure, the monoid, that we present next.

Definition 3.2.1. A group is a set G together with a binary operation · on G, satisfying
the following:

• The operation · is associative: for all x, y, z ∈ G, (x · y) · z = x · (y · z).

• There is an identity element e ∈ G: for all x ∈ G, e · x = x · e = x.

• For every x ∈ G, there is an inverse element x−1: x · x−1 = x−1 · x = e.

A group where the binary operation is commutative is said to be Abelian.

We move on to discuss monoids, which are slightly more general than groups in that
they do not require the existence of inverses. Monoids are important for programming
because it is rare that a datatype satisfies all the axioms of a group.

Example of monoids (that are not also groups) include the natural numbers, with ·
as either multiplication or addition, sets (M is a collection of sets, · is union and the
identity element is the empty set), lists (M is a collection of lists, · is list concatenation
and the identity element is the empty list).

Definition 3.2.2. A monoid is a set M , together with a binary operation · on M , that
satisfies the following:

• The operation · is associative: x, y, z ∈M , (x · y) · z = x · (y · z).

• There is an identity element e ∈M : for all x ∈M , e · x = x · e = x.

A monoid where the binary operation is commutative is a commutative monoid.

In Agda, we again define a record datatype for the proposition IsMonoid:

record IsMonoid {M : Set} (_≈_ : M→M→ Set) (_•_ : M→M→M)
(e : M) : Set where

field
isEquivalence : IsEquivalence _≈_
•-cong : ∀ {x x’ y y’}→ x ≈ x’→ y ≈ y’→ (x • y) ≈ (x’ • y’)
assoc : Associative _≈_ _•_
identity : Identity _≈_ e _•_

-- (∀ x→ (e • x) ≈ x) ∧ (∀ x→ (x • e) ≈ x)

We add the line

open IsEquivalence isEquivalence public

in the record to put the fields from IsEquivalence in scope when the IsMonoid record is
opened.

The set M is sometimes called the carrier of the monoid (or any other structure),
and the Agda Standard Library uses this name.

We note that we need to include the the equality _≈_ along with the fact that it
should be an equivalence relation in the definition. We also want a proof that •-cong
that the operation and the equality interact nicely, if x and x’ are equal and y and y’ are
equal, then x • y and x’ • y’ should be equal.

We can then define a record for the type Monoid, containing all monoids. Note that
the type of Monoid is Set1, because like Set itself, Monoid is “too big” to be in Set.

record Monoid : Set1 where
field

M : Set
≈ : M→M→ Set
• : M→M→M
e : M
isMonoid : IsMonoid _≈_ _•_ e

open IsMonoid isMonoid public

We also add a definition setoid to our monoid record, which lets us use monoids in
equational reasoning, see Section 3.2.2.

setoid : Setoid
setoid = record { isEquivalence = IsMonoid.isEquivalence isMonoid}

To prove something is a monoid, we construct an inhabitant of the type IsMonoid.
We usually also give the monoid record containing the object a name, to be able to use
it in places where an object of type monoid is wanted.

We now define commutative monoids. We begin with the proposition that something
is a commutative monoid. The proposition contains a proof that it is a monoid and a
proof that the operation is commutative, and we open the IsMonoid record so that the
proofs that the structure is a monoid are in scope.

record IsCommutativeMonoid {A : Set} (_≈_ : A→ A→ Set)
(_•_ : A→ A→ A) (e : A) : Set where

field
isMonoid : IsMonoid _≈_ _•_ e
comm : ∀ x y→ (x • y) ≈ (y • x)

open IsMonoid isMonoid public

In the definition of IsCommutativeMonoid, we are taking a slightly different approach
than the Agda Standard Library: we require the user to provide a proof that the op-
erations form a monoid, which in turn requires a proof that e is an identity element of
•:

(∀ x→ (e • x) ≈ x) ∧ (∀ x→ (x • e) ≈ x)

while because of commutativity, x • e ≈ e • x, so it would be enough to require a
proof of just one of the conjuncts.

Next we define the datatype of commutative monoids, and open the records so that
all definitions are in scope:

record CommutativeMonoid : Set1 where
field
M : Set
≈ : M→M→ Set
• : M→M→M
e : M
isCommutativeMonoid : IsCommutativeMonoid _≈_ _•_ e

open IsCommutativeMonoid isCommutativeMonoid public
monoid : Monoid
monoid = record { isMonoid = isMonoid}
open Monoid monoid public using (setoid)

3.2.2 Equational Reasoning in Commutative Monoids

Commutative monoids are one of the datatypes we will use the most, in particular, we
will want to prove equalities among members of a commutative monoid. The Agda
Standard Library contains a module EqReasoning that lets us reason about equalities
using a very natural syntax. To allow easy access to this module, we we import it, give
it the alias EqR:

import Relation.Binary.EqReasoning as EqR

and make the following module definition:

module CM-Reasoning (cm : CommutativeMonoid) where
open CommutativeMonoid cm public
open EqR setoid public

So that the module CM-Reasoning takes a commutative monoid as a parameter and
brings into scope the commutative monoid axioms and the contents of the EqReasoning
module. We often use this module locally, using a where-definition.

As an example of equational reasoning, we prove a simple lemma with it, that if two
elements in a commutative monoid are equal to the identity element, then so is their

sum. We use a let statement in the type to open the record CommutativeMonoid locally
and make the type more readable.

e’•e”≈e : ∀ cm→ let open CommutativeMonoid cm in
{e’ e” : M}→ e’ ≈ e→ e” ≈ e→ e’ • e” ≈ e

e’•e”≈e cm {e’} {e”} e’≈e e”≈e = begin
e’ • e”
≈〈 •-cong e’≈e e”≈e 〉

e • e
≈〈 proj1 identity e 〉

e �
where open CM-Reasoning cm

On the first line (after begin), we write the expression on the left hand side of the
equality we want to prove. Then, we write a sequence of expressions and proofs that the
expressions are equal, ending with the expression on the right hand side, followed by �.

The syntax makes the proof a lot easier to follow, and even more so with longer
proofs. Without it, the proof would be written as:

e’•e”≈e cm e’≈e e”≈e = trans (•-cong e’≈e e”≈e) (proj1 identity e)

where proj1 is the projection that takes a pair to its first element.
For more complicated lemmas, or in case of many lemmas, there are automated ap-

proaches to proving equalities in commutative monoids in Agda, but they were not used
for this thesis, see for example https://personal.cis.strath.ac.uk/conor.mcbride/
pub/Hmm/CMon.agda.

3.3 Sets with two operations
In this section, we discuss algebraic structures that consist of a set together with two
binary operations. As we discussed in Section 3.1.3, we want them to interact sensibly.

3.3.1 Ring-like structures

The basic example of this kind of structure is a ring:

Definition 3.3.1. A set R together with two binary operations + and ∗ (called addition
and multiplication) forms a ring if:

• It is an Abelian group with respect to +.

• It is a monoid with respect to ∗.

• ∗ distributes over +.

https://personal.cis.strath.ac.uk/conor.mcbride/pub/Hmm/CMon.agda
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Hmm/CMon.agda

Examples of rings include the integers, real and complex numbers with the usual
addition and multiplication.

However, for the applications we have in mind, parsing, the algebraic structure in
question (see Section 4.2) does not even have associative multiplication, and does not
have inverses for addition. We still have an additive 0 (the empty set—representing no
parse), which is a zero element with regard to multiplication (if the left, say, substring
has no parse, then the whole string has no parse). We also do not have a unit element
for multiplication (there is no guarantee that there is a string A such that A followed
by X has the same parse as X for every string X). The usual proof that 0 is an
absorbing element depends on the existence of the ability to cancel (which is implied by
the existence of additive inverses in a group), as seen in section 3.1.3. So if we are to
define an algebraic structure modelling this, we need to include as an axiom that zero
absorbs.

There are a number of fairly standard generalisations of a ring, but none of these
matches our requirements. One generalisation is the semiring, which has the same axioms
as a ring, except that addition need not have inverses:

Definition 3.3.2. A set R together with two binary operations + and ∗ forms a semiring
if:

• It is a commutative monoid with respect to +.

• It is a monoid with respect to ∗.

• ∗ distributes over +.

• 0 ∗ x = x ∗ 0 = 0 for all x ∈ R.

Another generalisation is the nonassociative ring, which instead does away with the
requirement that multiplication is associative and that there is an identity element for
multiplication.

Definition 3.3.3. A set R together with two binary operations + and ∗ forms a non-
associative ring if:

• It is an Abelian group with respect to +.

• It is closed under ∗.

• ∗ distributes over +.

We take this to mean that the modifier nonassociative removes the requirement that
the set together with ∗ is a monoid from the axioms of the structure. Hence, we make
the following (nonstandard) definition:

Definition 3.3.4. A set R together with two binary operations + and ∗ forms a non-
associative semiring if:

• It is a commutative monoid with respect to +.

• ∗ distributes over +.

• 0 ∗ x = x ∗ 0 = 0 for all x ∈ R.

In Agda, we begin by defining the proposition that something is a nonassocia-
tive semiring, with operations _+_ and _∗_ and additive identity 0R . We open the
IsCommutativeMonoid record for _+_, and prefix the ones referring to addition with +-.

record IsNonassociativeSemiring {R : Set} (_≈_ : R→ R→ Set)
(_+_ _∗_ : R→ R→ R)
(0R : R) : Set1 where

field
∗-cong : ∀ {x x’ y y’}→ x ≈ x’→ y ≈ y’→ (x ∗ y) ≈ (x’ ∗ y’)
+-isCommutativeMonoid : IsCommutativeMonoid _≈_ _+_ 0R

distrib : Distributive _≈_ _∗_ _+_
zero : Zero _≈_ 0R _∗_

open IsCommutativeMonoid +-isCommutativeMonoid public
renaming (assoc to +-assoc

; •-cong to +-cong
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)

Then, we define the record datatype containing all nonassociative semirings:

record NonassociativeSemiring : Set1 where
field
R : Set
≈ : R→ R→ Set
+ : R→ R→ R
∗ : R→ R→ R
0R : R
isNonassociativeSemiring : IsNonassociativeSemiring _≈_ _+_ _∗_ 0R

open IsNonassociativeSemiring isNonassociativeSemiring public

We want to be able to access the fact that it is a commutative monoid with _+_, so we
give this a name and open it:

+-commutativeMonoid : CommutativeMonoid
+-commutativeMonoid = record { isCommutativeMonoid =

+-isCommutativeMonoid}
open CommutativeMonoid +-commutativeMonoid public using (setoid)
renaming (monoid to +-monoid)

As with the commutative monoids, we will spend a bit of time proving equalities of
nonassociative semiring elements, so we define a module similar to the one in Section
3.2.2:

module NS-Reasoning (ns : NonassociativeSemiring) where
open NonassociativeSemiring ns public
open EqR setoid public

3.3.2 Matrices

A matrix is in some sense really just a collection of numbers arranged in a rectangle, so
there is nothing stopping us from defining such a matrix with entries from an arbitrary
set, as opposed to from R or C. To be similar to the definition we will make in Agda
of an abstract matrix (one without a specific implementation in mind), we consider a
matrix of size m×n as a function from a pair of natural numbers (i, j), with 0 ≤ i < m,
0 ≤ j < n (or, i ∈ Finm, j ∈ Finn), and hence, after currying, define:

Definition 3.3.5. A matrix A over a set R is a function A : Finm→ Finn→ R.

When talking about matrices from a mathematical point of view, we will write Aij

for A i j
In our Agda development we only define the type of a matrix over a nonassociative

semiring. For simplicity, and to allow us to avoid adding the nonassociative semiring as
an argument to every function and proposition, we decide to parametrize the module we
place the definition of a matrix in by a nonassociative semiring, and open the nonasso-
ciative semiring, renaming things so they start with “R-” to make it clear when we are
referring to the concepts in the underlying nonassociative semiring:

module Matrix (NaSr : NonassociativeSemiring) where
open NonassociativeSemiring NaSr
renaming (_+_ to _+

R
_

; _∗_ to _∗
R

_
; _≈_ to _≈

R
_

; zero to R-zero
;+-cong to +

R
-cong

;+-comm to +
R
-comm

;+-identity to +
R
-identity

; refl to R-refl
;+-commutativeMonoid to +

R
-CM

)

If we had not opened the record, then instead of a +
R

b for adding a to b, we would
have to write the much less readable

(NonassociativeSemiring._+_ NaSr) a b

Now we define our matrix type in Agda:

Matrix : N→ N→ Set
Matrix m n = Fin m→ Fin n→ R

As with the algebraic structures previously, we want to be able to say that two
matrices are equal. We will thus define matrix equality, which we denote by _≈

M
_ to

disambiguate it from the regular equality. It should take two matrices to the proposition
that they are equal, and two matrices A and B are equal if for all indices i and j, A i j
and B i j are equal.

_≈
M

_ : {m n : N}→Matrix m n→Matrix m n→ Set
A ≈

M
B = ∀ i j→ A i j ≈

R
B i j

We also define the zero matrix. It should be a matrix whose elements are all equal
to the zero in the nonassociative semiring.

zeroMatrix : {m n : N}→Matrix m n
zeroMatrix i j = 0R

If R is a nonassociative semiring, we can define addition and multiplication of ma-
trices with the usual formulas:

(A+B)ij = Aij +Bij

and

(AB)ij =
n∑

k=1
AikBkj .

To define the addition in Agda is straightforward:

_+
M

_ : {m n : N}→Matrix m n→Matrix m n→Matrix m n
A +

M
B = λ i j→ A i j +

R
B i j

To define multiplication, on the other hand, we consider the alternative definition of
the product as the matrix formed by taking scalar products between the rows of A and
the columns of B:

(AB)ij = ai · bj, (3.1)

where ai is the ith row vector of A and bj is the jth column vector of B.
For this, we define the datatype Vector of a (mathematical) vector, represented as a

function from indices to elements of a nonassociative semiring:

Vector : N→ Set
Vector n = Fin n→ R

We define the dot product by pattern matching on the length of the vector, making local
definitions of head and tail for clarity:

• : {n : N}→ Vector n→ Vector n→ R
• {zero} u v = 0R

• {suc n} u v = (head u ∗
R

head v) +
R

(tail u • tail v)
where head : {n : N}→ Vector (suc n)→ R

head v = v fzero
tail : {n : N}→ Vector (suc n)→ Vector n
tail v = λ i→ v (fsuc i)

With it, we define matrix multiplication (in Agda, we cannot use AB or A B for matrix
multiplication since juxtaposition means function application):

_∗
M

_ : {m n p : N}→Matrix m n→Matrix n p→Matrix m p
(A ∗

M
B) i j = row i A • col j B

where row : {m n : N}→ Fin m→Matrix m n→ Vector n
row i A = λ k→ A i k
col : {m n : N}→ Fin n→Matrix m n→ Vector m
col j B = λ k→ B k j

Here, Agda helps us in making sure that the definition is correct. If we start from the
fact that the product of a m× n matrix and an n× p matrix is an m× p matrix, Agda
more or less makes sure that our vectors are row vectors for A and column vectors for B.
Alternatively, if we by writing down the formula (3.1) as the definition, Agda forces A
to have as many rows as B has columns.

The most interesting fact about matrices (to our application) is the following two
propositions:

Proposition 3.3.6. If R is a ring (nonassociative semiring), then the matrices of size
n×n over R also form a ring (nonassociative semiring). Additionally, the matrices over
R of size m × n form an Abelian group (commutative monoid) under matrix addition.
In both cases, the zero matrix plays the role of the zero element.

The proof is fairly easy but boring. We provide part of the proof when R is a
nonassociative semiring in Agda: we prove that addition is commutative and that the
zero matrix is a zero element of multiplication. The whole proof for a nonassociative
semiring is available in our library.

We begin to prove that they form a commutative monoid. This is done by giving an
element M+-isCommutativeMonoid of type

M+-isCommutativeMonoid : ∀ {m n}→
IsCommutativeMonoid (_≈

M
_ {m} {n}) _+

M
_ zeroMatrix

We need to supply the implicit arguments to _≈
M

_ to make Agda understand what size
of matrices the proposition concerns. To define this element, we need to give a proof

that it is a monoid, and a proof that it is commutative. Here, we only include the proof
of the comm-axiom, the proofs involved in proving isMonoid are similar to it. The proof
should be an element of type

M+-comm : ∀ {m n}→ (x y : Matrix m n)→ x +
M

y ≈
M

y +
M

x

Then, we recall the definitions of _+
M

_ and _≈
M

_, in particular that they are both
pointwise operations. In fact, Agda tells us that the type reduces to:

(i : Fin .m) (j : Fin .n)→
NonassociativeSemiring._≈_ NaSr
(NonassociativeSemiring._+_ NaSr (x i j) (y i j))
(NonassociativeSemiring._+_ NaSr (y i j) (x i j))

which is the same as:

(i : Fin m) (j : Fin n)→
(x i j) +

R
(y i j) ≈

R
(y i j) +

R
(x i j))

Hence, we should provide function that takes i : Fin m and j : Fin n to a proof that the
nonassociative semiring elements x i j and y i j commute. But R-comm proves that
any two elements of R commute, so we define M+-comm as:

M+-comm x y = λ i j→ +
R
-comm (x i j) (y i j)

To prove that the square matrices form a nonassociative semiring, we need to give
an element M-isNonassociativeSemiring of type

M-isNonassociativeSemiring : ∀ {n}→
IsNonassociativeSemiring (_≈

M
_ {n}) (_+

M
_) _∗

M
_ zeroMatrix

which includes giving proofs that matrices with addition form a commutative monoid,
along with proofs that matrix multiplication respects matrix equality and distributes
over matrix addition, and that zeroMatrix is a zero element. The last part consists of
two conjuncts. We prove the left one here.

To prove this, we want to give an element:

M-zerol : ∀ {n}→ (x : Matrix n n)→
zeroMatrix {n} {n} ∗

M
x ≈

M
zeroMatrix

Agda tells us that the type of M-zerol {n} reduces to

(x : Matrix n n) (i j : Fin n)→ (zeroVector • col j x) ≈
R

0R

where

zeroVector : {n : N}→ Vector n
zeroVector = 0R

We prove that zeroVector • v ≈ 0R for any v by induction on the length. The only
interesting fact that appears is that the type of •-zero {suc n} {v} reduces to

(0R ∗
R

head v) +
R

(zeroVector • tail v) ≈
R

0R

so we apply our lemma from Section 3.2.2:

•-zero : ∀ {n v}→ zeroVector {n} • v ≈
R

0R

•-zero {zero} = R-refl
•-zero {suc n} {v} = e’•e”≈e +

R
-CM (proj1 R-zero (head v))

(•-zero {n})

Then we define

M-zerol {n} x i j = •-zero {n}

Finally, we give a name to the matrix nonassociative semiring, so we can supply it as
an element of type NonassociativeSemiring (we do the same with commutative monoid):

M-nonassociativeSemiring : ∀ {n}→ NonassociativeSemiring
M-nonassociativeSemiring {n} = record {

isNonassociativeSemiring = M-isNonassociativeSemiring {n}}

3.3.3 Upper triangular matrices

For our applications, we will be interested in matrices that have no nonzero elements on
or below the diagonal.

Definition 3.3.7. A matrix is upper triangular if all elements on or below its diagonal
are equal to zero.

The standard definition of upper triangular matrix allows nonzero elements on the
diagonal (for example, the identity matrix is both upper and lower triangular), but we
only consider matrices with zeros on the diagonal, so the above definition simplifies our
language considerably. Since we are only interested in upper triangular matrices, we
will usually refer to them as just triangular matrices. In Agda, there are two obvious
ways to define a triangular matrix. The first is to use records, where a triangular matrix
is a matrix along with a proof that it is triangular. The second way would be to use
functions that take two arguments and return a ring element, but where the second
argument must be strictly greater than the first. We illustrate these two approaches in
Figure 3.1.

We choose the first approach here, because it will make it possible to use the majority
of the work from when we proved that matrices form a nonassociative semiring to show
that triangular matrices also form a nonassociative semiring (or a ring, if their elements
come from a ring), under the obvious multiplication, addition and equality. The only
problem we will have is to prove that the multiplication is closed.

0 a12 a1n

0 0 a23 . . . a2n
...

...
0 0 an−1n

0 0 0 0 0

a12 a1n

a23 . . . a2n

.
an−1n

Figure 3.1: A figure showing an upper triangular matrix on the left and a “triangle” on
the right.

One additional reason for not choosing the second approach is that it involves more
inequalities between elements of Fin, and inequalities for Fin are a bit difficult to work
with in Agda.

We define a datatype of triangular matrices, which we name Triangle as a record
with a field mat for a matrix, and a field tri for a proof that it is zero on and below the
diagonal:

record Triangle (n : N) : Set where
field
mat : Matrix n n
tri : (i j : Fin n)→ toN j 6 toN i→mat i j ≈

R
0R

We also define two Triangles to be equal if they have the same underlying matrix,
since the proof is only there to ensure us that they are actually upper triangular and
should not matter when comparing matrices.

_≈
T

_ : {n : N}→ Triangle n→ Triangle n→ Set
A ≈

T
B = Triangle.mat A ≈

M
Triangle.mat B

Next, we go on to define addition and multiplication of triangles. We apply the matrix
operations to the mat fields and modify the tri proofs appropriately. For addition, the
proof modification is straightforward (we take care of the 0R +

R
0R with e’•e”≈e):

_+
T

_ : {n : N}→ Triangle n→ Triangle n→ Triangle n
A +

T
B = record

{mat = Triangle.mat A +
M

Triangle.mat B
; tri = λ i j i6j→ e’•e”≈e +

R
-CM (Triangle.tri A i j i6j)

(Triangle.tri B i j i6j)
}

For multiplication, the proof modification required is a bit more complicated, and
requires a lemma related to dot-products. We first prove that the dot product of two
vectors u and v is zero if for every i, either the ith component of u or the ith component
of v is zero. To do this, we need a further (short) lemma that the product of two

elements, one of which is zero is zero. We include the case where the first element is
zero:

r*s-zero : (r s : R)→ (r ≈
R

0R) ∨ (s ≈
R

0R)→ r ∗
R

s ≈
R

0R

r*s-zero r s (inj1 r≈0) = begin
r ∗

R
s

≈〈 ∗-cong r≈0 refl 〉
0R ∗

R
s

≈〈 proj1 R-zero s 〉
0R �
where open CM-Reasoning +

R
-CM

and the case where s is zero is similar.

u•v-zero : ∀ {n} (u v : Vector n)→
((i : Fin n)→ u i ≈

R
0R ∨ v i ≈

R
0R)→ u • v ≈

R
0R

u•v-zero {zero} u v one0 = R-refl
u•v-zero {suc n} u v one0 = begin

(head u ∗
R

head v) +
R

(tail u • tail v)
≈〈 +

R
-cong (r*s-zero (u fzero) (v fzero) (one0 fzero))

(u•v-zero (tail u) (tail v) (λ i→ one0 (fsuc i))) 〉
0R +

R
0R

≈〈 proj1 +
R
-identity 0R 〉

0R �
where open CM-Reasoning +

R
-CM renaming (_•_ to _+_)

Next, we use the fact that inequalities among natural numbers are decidable, see the
end of Section 2.2, to extract a proof that for an arbitrary k, if j ≤ i, then either Aik or
Bkj is zero (if k ≤ i then Aik is zero, and if ¬(k ≤ i) then j ≤ k, so Bjk is zero):

one0-mat : {n : }→ (A B : Triangle n)→ (i j : Fin n)
→ toN j 6 toN i→ (k : Fin n)
→ Triangle.mat A i k ≈

R
0R ∨ Triangle.mat B k j ≈

R
0R

one0-mat A B i j j6i k with toN k 6? toN i
one0-mat A B i j j6i k | yes k6i = inj1 (Triangle.tri A i k k6i)
one0-mat A B i j j6i k | no k�i = inj2 (Triangle.tri B k j (begin

toN j
6〈 j6i 〉

toN i
6〈 n61+n (toN i) 〉

suc (toN i)
6〈 �⇒> k�i 〉

toN k �))
where open Data.Nat.6-Reasoning

where the module 6-Reasoning lets us use syntax similar to the one we used in Section
3.2.2 to prove that inequalities among natural numbers.

Now, we combine these to give the proof of triangularity for A ∗
T

B.

_∗
T

_ : {n : N}→ Triangle n→ Triangle n→ Triangle n
A ∗

T
B = record

{mat = Triangle.mat A ∗
M

Triangle.mat B
; tri = λ i j j6i→ u•v-zero (row i (Triangle.mat A))

(col j (Triangle.mat B))
(one0-mat A B i j j6i)

}

To prove that upper triangular matrices form a ring, all we need to do is apply the
matrix results to Triangle.mat.

In our library, we use a more general definition of triangularity: a matrix is triangular
of degree d if it is zero whenever j − i ≤ d, that is, it is zero on the main diagonal and
on d − 1 diagonals above it (an upper triangular matrix is triangular of degree 1). We
prove there that if A is triangular of degree dA and B is triangular of degree dB, then
AB is triangular of degree dA + dB. In particular, any product of at least n − 1 upper
triangular matrices is equal to the zero matrix (there are n−1 diagonals above the main
diagonal, and the product has to be zero on them all). We use this fact in Section 4.3 to
prove (not in Agda) that the (seemingly infinite) sum (4.3) is actually finite and hence
defines a unique upper triangular matrix.

Chapter 4

Parsing

Parsing is about analysing the structure of a sequence of tokens coming from some al-
phabet. We only give a brief overview of it here. We begin by introducing some concepts
of parsing in Section 4.1. Then, in Section 4.2, we tie these concept together with the
algebra from Section 3, and finally, in Section 4.3, we show that parsing is equivalent to
computing the transitive closure of an upper triangular matrix. In Section 5, we then
focus on a particular algorithm for computing the transitive closure, Valiant’s algorithm,
that we implement and prove correct using Agda.

4.1 Definitions
The goal of parsing is first to decide if a given sequence of tokens belongs to a given
language, and second to describe its structure within the language. For this, we consider
the process opposite to parsing: generating a string in a given language. To do this,
one uses a grammar for the language, which contains rules that can be used to build all
strings in the language. Here, we define concepts relevant to our thesis.

Definition 4.1.1. A grammar G is a tuple (N,Σ, P, S), where

• N is a finite set of nonterminals.

• Σ, is a finite set of terminals, with N ∩ Σ = ∅.

• P , is a finite set of production rules, written as α→ β, where α and β are sequences
of terminals and nonterminals, and α contains at least one nonterminal.

• S ∈ N is the start symbol.

We use upper case letters to denote nonterminals, lower case letters to denote terminals
and Greek letters to denote sequences of both terminals and nonterminals.

The terminals are the tokens that belong to the alphabet (and could be English
words), while nonterminals are structural properties of sequence of tokens (for English
words, they could stand for things like “noun” and “verb phrase”).

37

Symbols Explanation
E Start symbol
E + T 2 on E
E + T + T 2 on E
T + T + T 1 on E
T + T + T ∗ F 4 on rightmost T
T + T + T ∗ (E) 5 on F
T + T + T ∗ (T + T) 2, then 1 on E
N +N +N ∗ (N +N) 4, then 6 on all T s
3 + 5 + 7 ∗ (2 + 3) 7 on all Ns

Figure 4.1: Generating the string 3 + 5 + 7 ∗ (2 + 3) with the grammar in Example 4.1.1.

A grammar generates a string of terminals by repeatedly applying production rules
to the start symbol, until there are no nonterminals left. The language generated by a
grammar is the set of strings of terminals (or tokens) it generates.

Parsing is then the process of taking a string and figuring out what (if any) sequence
of expansions might have produced it. Often, one creates a datastructure annotating
the string with the nonterminals generating the parts of the string.

Example 4.1.1. We present a simple grammar for a language of arithmetic expressions
(which appears in slightly modified form in [Lange and Leiß, 2009]):

• Σ = {1, . . . , 9,+, ∗, (,)},

• N = {E, T, F,N}, for “expression”, “term”, “factor” and “number”, respectively.

• The production rules are

1. E → T

2. E → E + T

3. T → F

4. T → T ∗ F
5. F → (E)
6. F → N

7. N → i, for i = 1, . . . 9.

• S = E.

In Figure 4.1, we give an example of generating the string 3 + 5 + 7 ∗ (2 + 3) with this
grammar. To parse the string, we begin at the bottom of the figure, and apply the rules
“backwards”.

We are not going to consider arbitrary grammars in this report, so we give two
restrictions to the definition above:

Definition 4.1.2. A grammar is context free if the left hand side of every production
rule is a single nonterminal: A→ β.

Definition 4.1.3. A grammar is in (reduced) Chomsky Normal Form (CNF) [Chomsky,
1959] if the every production rule is of one of the following two forms:

A→ a

A→ BC

It is well known that any Context Free Grammar can be converted into a grammar in
CNF (which generates the same language), with a size increase that is at most quadratic
[Lange and Leiß, 2009]. In the remainder of the report, we only consider grammars in
Chomsky Normal Form.

Example 4.1.2. We give a grammar in Chomsky Normal Form generating the same
language as the one in Example 4.1.1 (which again appears, slightly modified, in [Lange
and Leiß, 2009]) by introducing new nonterminals and production rules to get rid of the
production rules which had the wrong form:

• Σ = {1, . . . , 9,+, ∗, (,)} (the same as before),

• N = {E, T, F,X, Y, Z, T+, T∗, T(, T)}.

• The production rules (where A→ β | γ is short for A→ β and A→ γ, and i = 1,
. . . , 9) are:

1. E → TX | TY | T(| i
2. T → TY | T(| i
3. F → T(Z | i
4. X → T+T

5. Y → T∗F

6. Z → ET)

7. T+ → +
8. T∗ → ∗
9. T(→ (

10. T) →)

• S = E.

4.2 Grammar as a nonassociative semiring
The set of production rules for a grammar in Chomsky Normal Form which have the
form A → BC could almost be used directly as a definition of multiplication on the
nonterminals by replacing the arrows by equals signs:

BC = A

However, there are two problems with this. First, there can be nonterminals B and C
with no production A → BC. Second, there can be many different nonterminals that
expand to the same thing: there can be A1 and A2 such that A1 → BC and A2 → BC
are both productions.

The solution to these two problems is to instead consider sets of nonterminals, with
the following multiplication:

x · y = {A | B ∈ x, C ∈ y, A→ BC ∈ P}.

In general, this multiplication does not satisfy any algebraic axioms on its own, it
is neither associative nor commutative. Since we are considering sets, it is natural to
choose set union as addition and hence ∅ as 0, and with this, the above multiplication
distributes over addition and the empty set is an absorbing (or zero) element for it.
That is, the sets with set union and the above multiplication form a nonassociative
semiring (see Definition 3.3.4). In the remainder of the report, we will prove things for
an arbitrary nonassociative semiring.

4.3 A specification for parsing
In this section, we find a specification for the problem of parsing a string with a grammar
in Chomsky Normal Form. Then, in the next section, we compare it to the specification
used in [Valiant, 1975].

One approach to parsing a string w of length n is to form a matrix X containing the
sets of all non-terminals that generate a substring: if we define w[i, j) to be the substring
starting at the ith symbol in w and ending at the (j − 1)st, we let Xij be the set of all
nonterminals generating w[i, j). The matrix formed this way is upper triangular since if
j ≤ i, Xij is the set of all parses of an empty string.

Now, if we consider what nonterminals should be in the set Xij , we note that:

• If j = i+ 1, then w[i, j) is a single token a. The only ways to generate w[i, j) are
using a production rules of the form A → a, so Xij is the set of all A such that
A→ a ∈ P .

• If j > i+ 1, then w[i, j) contains more than one token. The only ways to generate
w[i, j) are thus using a production rule A→ BC, where B generates w[i, k) and C
generates w[k, j), for some k. For a fixed k, we find all nonterminals A such that

A → BC ∈ P , where B generates w[i, k) and C generates w[k, j) by computing
Xik ·Xkj . Hence,

Xij =
⋃
k

Xik ·Xkj =
∑

k

XikXkj = (XX)ij (4.1)

Combining the two points, we get:

X = XX + C, (4.2)

where C is the matrix whose only nonzero entries are Cii+1 = {A | A→ w[i, i+1) ∈ P}.
The above equation is the one we are going to use to derive Valiant’s algorithm and
prove it correct in Section 5.

We now present the specification used in [Valiant, 1975], and prove that it is equiv-
alent to our specification above (4.2). In particular, this implies that our specification
defines a unique X, and proving that Valiant’s algorithm computes it (in Section 5.3.3)
proves that it exists.

In [Valiant, 1975], the following definition of the transitive closure of a matrix is used:

Definition 4.3.1. The (non-associative) transitive closure of an upper triangular square
matrix C is the matrix C+ defined by

C+ =
∞∑

i=1
C(i), (4.3)

where C(n) is the sum of all possible products of n factors C, defined recursively by:

C(1) = C and C(n) =
n−1∑
i=1

C(i)C(n−i).

The sum in (4.3) is actually finite, because as we mentioned in the end of Section
3.3.3, any product of at least n − 1 upper triangular matrices equals the zero matrix.
Hence, if we show that X defined in (4.2) and C+ defined in (4.3) are equal, we could
use (4.3) to compute it, and it must therefore be unique.

Proposition 4.3.2. The two equations (4.2) and (4.3) are equivalent: If C is upper
triangular, then X is upper triangular and satisfies

X = XX + C (4.4)

if and only if

X =
∞∑

i=1
C(i). (4.5)

Proof. Assume first that X =
∑∞

i=1C
(i) =

∑n−1
i=1 C

(i), where n×n is the size of X. It is
clear that X is upper triangular since X is a sum of upper triangular matrices. Further,

XX =
(

n−1∑
i=1

C(i)
)n−1∑

j=1
C(j)

 =
n−1∑
i=1

n−1∑
j=1

C(i)C(j) =
n−1∑
i=1

n−i−1∑
j=1

C(i)C(j),

where the last equality holds because the remaining terms contain more than n − 1
factors C, and hence equal zero. The above sum contains one copy of C(i)C(j) for each
i = 1, . . .n− 1 j = 1, . . ., n− i− 1. Another way to sum these up (we can rearrange the
sums since the addition is commutative) is to consider the sum k = i + j and for each
k = 2, . . . , n− 1 generate all products of k factors. Hence, the above sum equals

n−1∑
k=2

k−1∑
l=1

C(l)C(k−l) =
n−1∑
k=2

C(k),

and so, XX + C =
∑n−1

k=1 C
(k) = X.

Next, we assume that X is upper triangular and satisfies

X = XX + C

We define Rk inductively by

R1 = XX + C and Rn+1 = RnRn + C.

Since X = R1, and if X = Rn, then by inserting Rn in the right hand side of (4.3),
X = RnRn + C = Rn+1, so by induction, X = Rk for any k. We note also that after
multiplying out (using the distributivity of multiplication over addition), Rk is a sum of
terms consisting of products of X and C (only). Now, we want to prove:

1. For all i, j ≥ 1, there is a k such that C(i)C(j) is a term in Rk.

2. If C(i)C(j), for i, j ≥ 1, is a term in Rk, then it is also a term in Rk+1.

3. For every k, there are no structurally equal terms in Rk (terms that are products
of the same factors, in the same order, including parentheses).

4. The number of factors in terms containing X in Rk is at least k + 1.

From these facts, we can deduce that X =
∑n−1

i=1 C
(i): By 1 and 2, there is a Rk

that contains all products C(i)C(j) with i < n − 1, j < n − 1, and hence contains
the sum

∑n−1
i=2 C

(i). By definition, it also contains C, so it contains
∑n−1

i=1 C
(i). Thus,

(for example) Rk+n also contains the whole sum. Since any term in Rk+n involving X
contains at least k + n + 1 factors by 4, those terms are zero. So any other terms in
Rk+n are products of Cs only. But any such term would either be a product of more
than n − 1 Cs, and hence equal to zero, or a product of at most n − 1 Cs, and hence
nonexistent since by 3 there are no duplicates, and the term is in the sum

∑n−1
i=1 C

(i), so
X = Rk+n =

∑n−1
i=1 C

(i).

We prove 2 by induction on i+j. If i+j = 2, we get the statement that CC is a term
in every Rk, k ≥ 2 (since it is a term in R2), and this is clearly true, since Rk−1 = Y +C,
so that Rk = (Y + C)(Y + C) + C = Y Y + Y C + CY + CC + C. If i+ j = n+ 1, and
C(i)C(j) is a term in Rk for some k ≥ 2, then from the definition of Rk, C(i) and C(j)

are terms in Rk−1, and hence are terms in every Rl, l ≥ k − 1 by induction (since each
of C(i) and C(j) are either equal to C and hence a term in every Rl, or a sum of C(i′)j′,
with i′ + j′ = i or j which is at most n).

Next, we prove 1, again by induction on i + j. If i + j = 2, then C(i)C(j) = CC,
which is a term in R2. If i+ j = n+ 1, then there are ki and kj such that C(i) and C(j)

are terms of Rki
and Rkj

respectively (if i or j is 1, then R1 will do, otherwise we use
induction, since i and j ≤ n). Then if we let k = max(ki, kj), by 2, Rk contains both,
and hence, Rk+1 contains their product.

We prove 3 by induction on k. First, R1 contains no structurally equal terms. Second,
if Rk contains no structurally equal terms, then if Rk+1 contains two structurally equal
terms, they must both be products, say X1Y1 and X2Y2, and then, Rk contains all four
factors X1, Y1, X2 and Y2, but for X1Y1 to be structurally equal to X2Y2, their outermost
parentheses must be equal, and so we must have that X1 is structurally equal to X2 and
Y1 is structurally equal to Y2, since otherwise the placement of the parentheses would
be different in the products.

We prove 4 by induction on k. In R1, XX is the only term containing X, and
contains 2 factors. If it is true for k = n, then when forming Rn+1, we multiply each
term containing X, which contains at least n + 1 factors, by something and the result
thus contains at least n+ 2 factors.

Since we have proven that our specification (4.2) is equivalent to Valiant’s definition
of transitive closure, (4.3), we will refer to our upper triangular matrixX as the transitive
closure of C.

Although our specification (4.2) is seemingly less “computational” than (4.3), which
could be used to compute the transitive closure of C by computing the value of the
sum, ours is a lot simpler to use to derive Valiant’s algorithm, as we do in Section
5.1. In particular, using our specification together with a block matrix makes Valiant’s
algorithm fall out almost immediately, while simply proving the correctness of it using
(4.3) is a difficult task.

Additionally, we feel that our specification ties in with the problem of parsing a string
much more naturally than (4.3) does. By considering elements of the parse chart, it is
clear that the chart should satisfy (4.2), while to go from parsing to (4.3) involves using
the fact that an element of the parse chart should contain all possible “formally distinct”
sequences of nonterminals [Valiant, 1975].

Chapter 5

Valiant’s Algorithm

In Valiant [1975], Leslie G. Valiant gave a divide and conquer algorithm for computing
the transitive closure of an upper triangular matrix to prove that context free parsing
has the same time complexity as matrix multiplication. The algorithm divides a string
into two parts, parses them recursively, and then puts them together through a fairly
complicated procedure that requires a constant number of matrix multiplications.

Since the algorithm is a divide and conquer algorithm (where the combine step is also
fairly parallelizable), it could potentially be used for parsing in parallel, as suggested in
[Bernardy and Claessen, 2013].

5.1 Derivation
In this section, we are going to derive Valiant’s algorithm from our specification (4.2).

5.1.1 Main structure

We want to compute the transitive closure of a parse chart. The main idea of the
algorithm is to split the chart into two subcharts and a rectangular overlap region (con-
taining parses of strings that overlap the corresponding splitting of the string). Next,
compute the transitive closures of the subcharts, and combine them (somehow) to fill in
the overlap part. A chart of size 1× 1 contains just one element, which is zero because
it is upper triangular, and the transitive closure of this is again the zero matrix.

When the chart X is n× n, with n > 1, we can write it down as a block matrix

C =
(
U R
0 L

)

where U is upper triangular and is the chart corresponding to the first part of the string
(the upper part of the chart), L is upper triangular and is the chart corresponding to
the second part of the string (the lower part of the chart), and R corresponds to the
parses that start in the first string and end in the second string (the rectangular part of
the chart).

44

If we put this into the specification, we get:(
U+ R∗

0 L+

)
=
(
U+ R∗

0 L+

)(
U+ R∗

0 L+

)
+
(
U R
0 L

)

where U+, R∗, L+ are the part of C+s corresponding to U , R and L (a priori, we do not
know if U+ and L+ are the transitive closures of U , L). Performing the multiplication
and addition, we get:(

U+ R∗

0 L+

)
=
(
U+U+ +R∗0 + U U+R∗ +R∗L+ +R

0 0R+ L+L+ + L

)
.

Since 0 is a zero element and since all elements of two matrices need to be equal for the
matrices to be equal, we get the set of equations:

U+ = U+U+ + U (5.1)
R∗ = U+R∗ +R∗L+ +R (5.2)
L+ = L+L+ + L, (5.3)

We see that it the condition that C+ is the transitive closure of C is equivalent to the
conditions that the upper and lower parts of C+ are the transitive closures of the upper
and lower parts of C, respectively and the rectangular part of C+ satisfies the equation
(5.2), which we will refer to as the overlap specification. Intuitively, this makes sense,
since the transitive closure of the first part describes the ways to get between nodes in
the first part, and these do not depend on the second part, and vice versa, since the
matrix is upper triangular. To parse a subset of the of the first part of a string, it does
not matter what the second part of the string is, because the grammar is context free.

5.1.2 The overlap part

To compute the overlap part, we need to consider four separate cases, depending on the
dimensions of R. We will derive a recursive algorithm for computing R∗ from R, U+

and L+.
First, if R is a 1 × 1 matrix, in which case we must have that U+ and L+ are also

1 × 1 matrices, and since they are upper triangular, they both equal the zero matrix.
Hence, by (5.2), R∗ = R.

We leave out the cases where R is 1× n or n× 1. They are similar to the case when
R is m× n with both m and n greater than 1 (and could be derived from it by allowing
blocks with 0 width or height, which we discuss in Section 5.2.1).

Now, if R is an m × n matrix, with m > 1, n > 1, we can subdivide R along both
rows and columns, into four blocks (A is an i× k matrix, B an i× l matrix and so on):

R =
k l()

i A B
j C D

We subdivide U+ and L+ along the same rows and columns:

U+ =
i j()

i U+
U U∗R

j 0 U+
L

and L+ =
k l()

k L+
U L∗R

l 0 L+
L

Inserting this in the overlap specification, (5.2), and performing the multiplications
gives us, (

A∗ B∗

C∗ D∗

)
=
(
U+

U A
∗ + U∗RC

∗ U+
U B

∗ + U∗RD
∗

U+
L C
∗ U+

L D
∗

)
+

+
(
A∗L+

U A∗L∗R +B∗L+
L

C∗L+
U C∗L∗R +D∗L+

L

)
+
(
A B
C D

)

where we have again written A∗, B∗, C∗ and D∗, for the parts of R∗ corresponding to
A, B, C and D (which a priori do not satisfy the overlap specification for anything).
Hence, after rearranging (and inserting parentheses to make things clearer), we get the
equations

A∗ = U+
U A
∗ +A∗L+

U + (U∗RC∗ +A)
B∗ = U+

U B
∗ +B∗L+

L + (U∗RD∗ +A∗L∗R +B)
C∗ = U+

L C
∗ + C∗L+

U + C

D∗ = U+
L D

∗ +D∗L+
L + (C∗L∗R +D).

Now, recall that the overlap specification of R∗ (5.2) contains three parts, something
to multiply with on the left, denoted by U+, something to multiply with on the right,
denoted by L+ and something to add, denoted by R. Looking at the above equations,
we see that they state that A∗, B∗, C∗ and D∗ satisfy the overlap specification for some
particular choices of R, U+ and L+.

The third equation states that C∗ satisfies the overlap specification with U+ = U+
L ,

L+ = L+
U and R = C. The first equation states that A∗ satisfies it with U+ = U+

U ,
L+ = L+

U , R = U∗RC
∗ +A. Similarly for the second and fourth equations.

We see also that the equation for B∗ contains A∗ and D∗. The equations for A∗ and
D∗ in turn both contain C∗, while C∗ does not contain any of the other parts. So we can
compute them recursively, starting with C∗, and then computing A∗ and D∗, finishing
with B∗. We illustrate the recursion paths in Figure 5.1.

5.1.3 Summary of Valiant’s algorithm

Summing up, we give the algorithm for computing the transitive closure C+ of an upper
triangular matrix C here (including the cases where the rectangular part is a row or
column vector) as a function Valiant(C):

• If C has size 1× 1, return C.

U+
U

U∗R A B

U+
L C∗ D

L+
U

L∗R

L+
L

(a) Computation of A∗.

U+
U

U∗R A∗ B

U+
L C∗ D∗

L+
U

L∗R

L+
L

(b) Computation of B∗.

U+
U

U∗R A B

U+
L C D

L+
U

L∗R

L+
L

(c) Computation of C∗.

U+
U

U∗R A B

U+
L C∗ D

L+
U

L∗R

L+
L

(d) Computation of D∗.

Figure 5.1: Illustration of the overlap step. Overlap is called on the two triangles and
the square to which we add any circled parts, multiplied according to the arrows.

• Otherwise C has size n× n, with n > 1. Split C into

C =
(
U R
0 L

)
,

and then:

1. Recursively compute U+ = Valiant(U) and L+ = Valiant(L).
2. Compute the overlap R∗ with a function Overlap(U+, R, L+) defined by:

– If R has size 1× 1, return R.
– If R has size n × 1, n > 1, then L+ is the 1 × 1 zero matrix. Split U+

and R into
U+ =

(
U+

U U∗R
0 U+

L

)
and R =

(
u
v

)
and recursively compute

v∗ = Overlap(U+
L , v,0)

u∗ = Overlap(U+
U , U

∗
Rv
∗ + u,0).

Return
(
u∗

v∗

)
.

– If R has size 1× n, n > 1, then U+ is the 1× 1 zero matrix. Split R and
L+ into

R =
(
u v

)
and L+ =

(
L+

U L∗R
0 L+

L

)
and recursively compute

u∗ = Overlap(0, u, L+
U)

v∗ = Overlap(0, u∗L∗R + v, L+
L).

Return
(
u∗ v∗

)
.

– Otherwise, R has size m×n with m > 1 and n > 1. Split U+, R and L+

into

U+ =
(
U+

U U∗R
0 U+

L

)
and R =

(
A B
C D

)
and L+ =

(
L+

U L∗R
0 L+

L

)

and recursively compute

C∗ = Overlap(U+
L , C, L

+
U)

A∗ = Overlap(U+
U , U

∗
RC
∗ +A,L+

U)
D∗ = Overlap(U+

L , C
∗L∗R +D,L+

L)
B∗ = Overlap(U+

U , U
∗
RD
∗ +A∗L∗R +B,L+

L).

Return
(
A∗ B∗

C∗ D∗

)
.

3. Return
(
U+ R∗

0 L+

)
.

5.2 Datatypes
In this section, we are going to define datatypes to use when we implement Valiant’s
algorithm in 5.3.

5.2.1 Discussion

To implement this in Agda using the Matrix and Triangle datatypes from Sections 3.3.2
and 3.3.3 would be very complicated since we would have to handle the splitting and
triangularity proofs manually. Instead, we define concrete representations for the ma-
trices and triangle that have the way we split them built in. We will call the datatypes
we use Mat and Tri for general matrices and upper triangular matrices, respectively. To
build the split into the data types, we give them constructors for building a large Mat
or Tri from four smaller Mats or two Tri and one Mat respectively. We begin with Mat
since it is needed to define Tri.

By the above reasoning, we have one constructor, which we will call quad that takes
four smaller matrices and puts them together into a big one. Written mathematically,
we want the meaning to be:

quad(A,B,C,D) =
(
A B
C D

)
,

where A has the same number of rows as B, C has the same number of rows as D, A
has the same number of columns as C and B has the same number of columns as D.
Thinking about what “small” structures should have constructors, we should definitely
have a constructor sing for single element matrices. We realize that it is not enough to
simply allow these 1×1 matrices, as it would imply that any matrix is a 2n×2n matrix,
where n is the number of times we use quad.

One way to allow arbitrary dimensions for the matrices is to have a constructor empty
for “empty” matrices of any dimension, that play two different roles. First, empty 0×n
matrices are used to allow quad to put two matrices with the same number of rows next
to each others:

quad(A,B, e0 m, e0 n) =
(
A B
e0 m e0 n

)
= (A,B), (5.4)

where em and en are empty m × 0 and n × 0 matrices respectively. Similarly, empty
n × 0 matrices are used to put two matrices with the same number of columns on top
of each others. Second, an empty m × n matrix, m > 0, n > 0, represents a m × n
matrix whose entries are all zero. One advantages of this method is that we could give
fast implementations of addition and multiplication of “empty” matrices:

em n +A = A

A+ em n = A

em nA = em p

Aen p = em p,

where A is an arbitrary m × n, n × p and m × n matrix, respectively. Another is that
it keeps the number of constructors down (three constructors for the matrix type), and
this is desirable when proving things with Agda, since we generally pattern match on
the structures, and this gives us a case for each constructor.

One downside is that there are multiple constructors for matrices of the same size
(there is always empty and a nonempty way when m > 0, n > 0), removing some of the
advantage we get from having few constructors.

Another approach, which is the one we take in this report, is to have constructors
for row and column vectors, 1 × n and n × 1 matrices for arbitrary n > 1, along with
the single element matrices. We define rVec and cVec to take a vector of length n > 1
and turn it into a 1× n or n× 1 matrix respectively. This approach has the advantage
that we can define all matrices in a simple way, and that we could potentially specialise
algorithms when the input is a vector, but introduces one extra constructor (sing, rVec,
cVec and quad compared to empty, sing and quad).

We then need a concrete representation Vec of vectors. Since we want to be able to
split vectors along the middle (to implement Valiant’s algorithm in the case where R is
a vector), we give them a constructor two that takes a vector of length m and one of
length n and concatenates them. For our base cases, we need to be able to build single
element vectors, this is enough to build any vector. To implement this approach, we
need to define the datatypes Vec of vectors and Mat of matrices (that should be concrete
representations of Vector and Matrix).

5.2.2 A first attempt at an Agda implementation

The naive way (and not the way we finally decide on, for reasons that become clear later,
hence we add an apostrophe to the datatype names), which stays close to the Vector and
Matrix datatypes would be to define Vec’ as something like

data Vec’ : N→ Set where
one : R→ Vec’ 1
two : {m n : N}→ Vec’ m→ Vec’ n→ Vec’ (m + n)

and then defining Mat’ as

data Mat’ : N→ N→ Set where
sing : R→Mat’ 1 1
rVec : {n : N}→ Vec’ (suc (suc n))→Mat’ 1 (suc (suc n))
cVec : {n : N}→ Vec’ (suc (suc n))→Mat’ (suc (suc n)) 1
quad : {r1 r2 c1 c2 : N}→Mat’ r1 c1→Mat’ r1 c2→

Mat’ r2 c1→Mat’ r2 c2
→Mat’ (r1 + r2) (c1 + c2)

Finally, to define Tri’ is straightforward. There is only one base case, that of the 1 × 1
zero triangle, with constructor zer. We only need one size argument since it is a square
matrix.

data Tri’ : N→ Set where
zer : Tri’ 1
tri : {m n : N}→ Tri’ m→Mat’ m n→

Tri’ n
→ Tri’ (m + n)

While the above looks very natural, it will not work well when we want to prove things
about the matrices. If we pattern match on a Mat’, one problem that appears is that
Agda is unable to see that in the quad case, both indices must be at least 2, and that
both r1 and r2 (say) have to be at least 1. It is possible to write lemmas proving this,
and use them at every step, but this clutters the proofs. Additionally, when Agda will
be unable to infer for example that the different parts have been built the same way.
For example when trying to define the overlap row step, m = 1, n > 1 we pattern match

on R and L, and Agda infers that they have sizes x + y and x’ + y’, but cannot infer
(since it need not be true) that their x equals x’ and y equals y’, which is required to
compute the overlap for the parts of R recursively.

5.2.3 Mat and Tri
Instead we want to use an approach for indexing our matrices where we build the splitting
further into the datatypes. Looking at the first attempt to define quad, we see that we
only use constant Ns and _+_ (we never use suc to increase the size of a matrix). So we
could use a datatype like N, but, instead of having suc as a constructor, it has _+_. We
define such a datatype and call Splitting, since it determines the splitting of the matrix,
and define it as follows

data Splitting : Set where
one : Splitting
bin : Splitting→ Splitting→ Splitting

where one plays the role of suc zero (since there is no reason to have dimensions 0 for
matrices, and bin plays the role of _+_ (we have chosen the name bin to connect it to
binary trees: we can think of N as the type of list with elements the one element type,
then Splitting is the type of binary trees with elements from the one element type).

We can define the translation function that takes a Splitting to an element of N, by
giving the one-splitting the value 1 and summing the sub splittings otherwise:

splitToN : Splitting→ N
splitToN one = 1
splitToN (bin s1 s2) = splitToN s1 + splitToN s2

Using this datatype we can finally define our datatypes Mat and Tri. Mimicking
the above, but using Splittings as indices (the code is essentially the same, with every
instance of “N” replaced by “Splitting”), we first define Vec as:

data Vec : Splitting→ Set where
one : R→ Vec one
two : {s1 s2 : Splitting}→ Vec s1→ Vec s2→ Vec (bin s1 s2)

We can note that where Splitting is a binary tree of elements of the unit type, Vec is
instead a binary tree of R (with elements in the leaves). We move on to defining Mat as:

data Mat : Splitting→ Splitting→ Set where
sing : R→Mat one one
rVec : {s1 s2 : Splitting}→ Vec (bin s1 s2)→Mat one (bin s1 s2)
cVec : {s1 s2 : Splitting}→ Vec (bin s1 s2)→Mat (bin s1 s2) one
quad : {r1 r2 c1 c2 : Splitting}→Mat r1 c1→Mat r1 c2→

Mat r2 c1→Mat r2 c2→
Mat (bin r1 r2) (bin c1 c2)

Finally, Tri:

data Tri : Splitting→ Set where
zer : Tri one
tri : {s1 s2 : Splitting}→ Tri s1→Mat s1 s2→

Tri s2
→ Tri (bin s1 s2)

Later, we are going to prove that Tri s is a nonassociative semiring for any s, and
that Vec s and Mat s1 s2 are commutative monoids (under addition). For this, we
need to define their zero elements (also, we need these to define multiplication, since
multiplying a Tri one by a Mat one n gives a zero matrix):

We define them by pattern matching on splittings:

zeroVec : {s : Splitting}→ Vec s
zeroVec {one} = one 0R

zeroVec {bin s1 s2} = two zeroVec zeroVec
zeroMat : {s1 s2 : Splitting}→Mat s1 s2
zeroMat {one} {one} = sing 0R

zeroMat {one} {bin s1 s2} = rVec zeroVec
zeroMat {bin s1 s2} {one} = cVec zeroVec
zeroMat {bin s1 s2} {bin s1’ s2’} = quad zeroMat zeroMat

zeroMat zeroMat
zeroTri : {s : Splitting}→ Tri s
zeroTri {one} = zer
zeroTri {bin s1 s2} = tri zeroTri zeroMat zeroTri

5.2.4 Operations on our datatypes

In this section, we will define operations: addition, multiplication and equality, for Vec,
Mat and Tri.

Addition is straightforward, since matrix addition is done pointwise, so we just re-
curse on the subparts, first we need to define it for Vec:

_+
v
_ : {s : Splitting}→ Vec s→ Vec s→ Vec s

one x +
v

one x’ = one (x +
R

x’)
two u v +

v
two u’ v’ = two (u +

v
u’) (v +

v
v’)

then for Mat:

_+
m

_ : {s1 s2 : Splitting}→Mat s1 s2→Mat s1 s2→Mat s1 s2
sing x +

m
sing x’ = sing (x +

R
x’)

rVec v +
m

rVec v’ = rVec (v +
v

v’)
cVec v +

m
cVec v’ = cVec (v +

v
v’)

quad A B C D +
m

quad A’ B’ C’ D’ = quad (A +
m

A’) (B +
m

B’)
(C +

m
C’) (D +

m
D’)

and finally for Tri:

_+
t
_ : {s : Splitting}→ Tri s→ Tri s→ Tri s

zer +
t

zer = zer
tri U R L +

t
tri U’ R’ L’ = tri (U +

t
U’) (R +

m
R’) (L +

t
L’)

For multiplication, we need to do a bit more work. The first thing to note is that if we
have two matrices split into blocks, where the splitting of the columns of the first matrix
equals the splitting of the rows of the second, matrix multiplication works out nicely
with regard to the block structures:(

A B
C D

)(
A′ B′

C ′ D′

)
=
(
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

)
.

We will use this formula to define multiplication for Mat. We will therefore not define
multiplication for Mats where the inner splittings are not equal—so our Mat multiplica-
tion is less general that arbitrary matrix multiplication, but it is all we need, and the
simplicity of it is very helpful.

Nevertheless, the definition takes quite a bit of work (we need to define multiplication
of Mat s1 s2 and an Mat s2 s3, for all cases of s1, s2 and s3, in all, 8 different cases).
The above equation takes care of the case when s1 s2 and s3 are all bin of something. To
take care of the remaining cases, we should consider vector–vector multiplication (two
cases, depending on whether we are multiplying a row vector by a column vector or a
column vector by a row vector), vector–matrix multiplication, matrix–vector multiplica-
tion, scalar–vector multiplication, vector–scalar multiplication, and finally scalar–scalar
multiplication. All of which are different, but all can be derived from the above equa-
tion, if we allow the submatrices to have 0 as a dimension, for example, vector–matrix
multiplication is given by

(
u v

)(A B
C D

)
=
(
uA+ vC uB + vD

)
,

and column vector–row vector multiplication (the outer product) is given by(
u
v

)(
u v

)
=
(
uu′ uv′

vu′ vv′

)
.

We now begin defining these multiplications in Agda. There is some dependency
between them, for example, to define outer product, we need both kinds of scalar–vector
multiplication (although we do not need anything to define the dot product). We hence
begin with the simplest kinds of multiplication, first scalar–vector multiplication:

_ ∗
R v

_ : {s : Splitting}→ R→ Vec s→ Vec s
x ∗

R v
one x’ = one (x ∗

R
x’)

x ∗
R v

two u v = two (x ∗
R v

u) (x ∗
R v

v)

Vector–scalar, scalar–matrix and matrix–scalar multiplication are similar, so we leave
them out. We define the dot product:

• : {s : Splitting}→ Vec s→ Vec s→ R
one x • one x’ = x ∗

R
x’

two u v • two u’ v’ = u • u’ +
R

v • v’

and the outer product:

⊗ : {s1 s2 : Splitting}→ Vec s1→ Vec s2→Mat s1 s2
one x ⊗ one x’ = sing (x ∗

R
x’)

one x ⊗ two u v = rVec (two (x ∗
R v

u) (x ∗
R v

v))
two u v ⊗ one x = cVec (two (u ∗

v R
x) (v ∗

v R
x))

two u v ⊗ two u’ v’ = quad (u ⊗ u’) (u ⊗ v’) (v ⊗ u’) (v ⊗ v’)

We give the types of vector–matrix and matrix–vector multiplication (but leave out their
straightforward implementation):

_ ∗
v m

_ : {s1 s2 : Splitting}→ Vec s1→Mat s1 s2→ Vec s2

_ ∗
m v

_ : {s1 s2 : Splitting}→Mat s1 s2→ Vec s2→ Vec s1

Finally, using all of the above definitions, we can define matrix multiplication:

_∗
m

_ : {s1 s2 s3 : Splitting}→Mat s1 s2→Mat s2 s3→Mat s1 s3
sing x ∗

m
sing x’ = sing (x ∗

R
x’)

sing x ∗
m

rVec v = rVec (x ∗
R v

v)
rVec v ∗

m
cVec v’ = sing (v • v’)

rVec (two u v) ∗
m

quad A B C D = rVec
(two (u ∗

v m
A +

v
v ∗

v m
C) (u ∗

v m
B +

v
v ∗

v m
D))

cVec v ∗
m

sing x = cVec (v ∗
v R

x)
cVec v ∗

m
rVec v’ = v ⊗ v’

quad A B C D ∗
m

cVec (two u v) = cVec (two (A ∗
m v

u +
v

B ∗
m v

v)
(C ∗

m v
u +

v
D ∗

m v
v))

quad A B C D ∗
m

quad A’ B’ C’ D’ = quad
(A ∗

m
A’ +

m
B ∗

m
C’) (A ∗

m
B’ +

m
B ∗

m
D’)

(C ∗
m

A’ +
m

D ∗
m

C’) (C ∗
m

B’ +
m

D ∗
m

D’)

To define triangle multiplication is simpler, since we only need to consider one index.
However, we need matrix multiplication in its full generality, because in general, the
Splitting involved is not a balanced binary tree, and hence, the row and column splittings
differ. We also need to define multiplication between Vec and Tri and between Mat and
Tri, all of which are straight-forward to define:

_ ∗
v t

_ : {s : Splitting}→ Vec s → Tri s → Vec s
_ ∗

t v
_ : {s : Splitting}→ Tri s → Vec s → Vec s

_ ∗
m t

_ : {s1 s2 : Splitting}→Mat s1 s2→ Tri s2 →Mat s1 s2
_ ∗

t m
_ : {s1 s2 : Splitting}→ Tri s1 →Mat s1 s2→Mat s1 s2

Using these, we can define triangle–triangle multiplication:

_∗
t
_ : {s : Splitting}→ Tri s→ Tri s→ Tri s

zer ∗
t

zer = zer
tri U R L ∗

t
tri U’ R’ L’ = tri (U ∗

t
U’) (U ∗

t m
R’ +

m
R ∗

m t
L’)

(L ∗
t

L’)

The final part needed to express the transitive closure specification (4.2) in Agda is
a concept of equality among triangles (and for this, we need equality for matrices and
vectors, as before). In all cases, we want to lift the nonassociative semiring-equality to
the datatype in question. We begin with Vec, where one element vectors if they contain
the same element, and two element vectors are equal if their left parts are equal and
their right parts are equal:

_≈
v
_ : {s : Splitting}→ Vec s→ Vec s→ Set

one x ≈
v

one x’ = x ≈
R

x’
two u v ≈

v
two u’ v’ = (u ≈

v
u’) ∧ (v ≈

v
v’)

Note that this (and the other equality definitions) only apply to vectors with the same
splitting, so vectors which contain the same elements can be unequal and have the same
length.

We move on to equality for Mat:

_≈
m

_ : {s1 s2 : Splitting}→Mat s1 s2→Mat s1 s2→ Set
sing x ≈

m
sing x’ = x ≈

R
x’

rVec v ≈
m

rVec v’ = v ≈
v

v’
cVec v ≈

m
cVec v’ = v ≈

v
v’

quad A B C D ≈
m

quad A’ B’ C’ D’ = (A ≈
m

A’) ∧ (B ≈
m

B’) ∧
(C ≈

m
C’) ∧ (D ≈

m
D’)

and to finish this section, equality for Tri:

_≈
t
_ : {s : Splitting}→ Tri s→ Tri s→ Set

zer ≈
t

zer = >
tri U R L ≈

t
tri U’ R’ L’ = (U ≈

t
U’) ∧ (R ≈

m
R’) ∧ (L ≈

t
L’)

where two zer are always equal (> is the true proposition).

5.2.5 Nonassociative Semirings

We will now prove that Vec, Mat and Tri are commutative monoids with _+
v
_, _+

m
_

and _+
t
_, and Tri is a nonassociative semiring with _+

t
_ and _∗

t
_ as defined above. One

big reason for doing this is that it will make it possible to use the equational reasoning
introduced in Section 3.2.2. We will prove

∀ {s} → IsCommutativeMonoid _≈
v
_ _+

v
_ (zeroVec {s})

∀ {s1 s2}→ IsCommutativeMonoid _≈
m

_ _+
m

_ (zeroMat {s1} {s2})
∀ {s} → IsCommutativeMonoid _≈

t
_ _+

t
_ (zeroTri {s})

∀ {s} → IsNonassociativeSemiring _≈
t
_ _+

t
_ _∗

t
_ (zeroTri {s})

The reason we include the Splitting in the zero elements is that we need to make Agda
infer what datatype we are talking about. To prove these things is generally very easy,
but requires a lot of code. Complete proofs are available in our library. We also define
instances of CommutativeMonoid (for Vec, Mat and Tri) and NonassociativeSemiring (for
Tri).

Proving things about addition means pushing the statements into the algebraic struc-
ture below. We exemplify by proving that zeroVec is the left identity of _+

v
_:

Vec-identityl : {s : Splitting}→ (x : Vec s)→ zeroVec +
v

x ≈
v

x
Vec-identityl (one x) = proj1 +

R
-identity x

Vec-identityl (two u v) = (Vec-identityl u), (Vec-identityl v)

Proving things about multiplication also means moving the properties down to the
nonassociative semiring below, but here, the path is longer. We exemplify the beginning
of this path by giving the proof that zeroTri is a left zero of _∗

t
_, and that _∗

t
_ distributes

over _+
t
_, on the left:

∗
t
-zerol : {s : Splitting}→ (x : Tri s)→ zeroTri ∗

t
x ≈

t
zeroTri

∗
t
-zerol zer = tt
∗

t
-zerol {bin s1 s2} (tri U R L) =
(∗

t
-zerol U

, e’•e”≈e Mat-commutativeMonoid {zeroTri ∗
t m

R} {zeroMat ∗
m t

L}
(∗

t m
-zerol R) (∗

m t
-zerol {s1} L)

, ∗
t
-zerol L

)

where tt is the constructor of the true proposition (we want to prove that any two zer
are equal), and

∗
t m

-zerol : {s1 s2 : Splitting}→ (x : Mat s1 s2)
→ zeroTri ∗

t m
x ≈

m
zeroMat

∗
m t

-zerol : {s1 s2 : Splitting}→ (x : Tri s2)
→ (zeroMat {s1} {s2}) ∗

m t
x ≈

m
zeroMat

are the proofs (that we would need to write) that zeroTri is a “left zero” of _ ∗
t m

_, and
that zeroMat is a “left zero” of _ ∗

m t
_ (if the concept of a zero is slightly generalised to

“operations” f : A→ B→ A and f : A→ B→ B).

5.3 Implementation and proof of correctness
We are now ready to implement the algorithm in Agda.

5.3.1 Implementing the algorithm

Using the above operations, we can now define Valiant’s algorithm in Agda, following
the outline in Section 5.1.3. First we define functions for the overlap part (we introduce
two new functions overlapRow and overlapCol for the cases when one dimension of the
matrix is 1):

overlapRow : {s : Splitting}→ Vec s→ Tri s→ Vec s
overlapRow (one x) zer = one x
overlapRow (two u v) (tri U+ R× L+) = two u× v×
where u× = overlapRow u U+

v× = overlapRow (u× ∗
v m

R× +
v

v) L+

overlapCol : {s : Splitting}→ Tri s→ Vec s→ Vec s
overlapCol zer (one x) = one x
overlapCol (tri U+ R× L+) (two u v) = two u× v×
where v× = overlapCol L+ v

u× = overlapCol U+ (R× ∗
m v

v× +
v

u)
overlap : {s1 s2 : Splitting}→ Tri s1→Mat s1 s2→ Tri s2→Mat s1 s2
overlap zer (sing x) zer = sing x
overlap zer (rVec v) L+ = rVec (overlapRow v L+)
overlap U+ (cVec v) zer = cVec (overlapCol U+ v)
overlap (tri U+ R× L+) (quad A B C D) (tri U’+ R’× L’+) = quad A× B×

C× D×
where C× = overlap L+ C U’+

A× = overlap U+ (A +
m

R× ∗
m

C×) U’+
D× = overlap L+ (D +

m
C× ∗

m
R’×) L’+

B× = overlap U+ (B +
m

R× ∗
m

D× +
m

A× ∗
m

R’×) L’+

we use where definitions to avoid having to repeat code and to show that things are not
mutually recursive. Then we define the actual algorithm

valiant : {s : Splitting}→ Tri s→ Tri s
valiant zer = zer
valiant (tri U R L) = tri U+ (overlap U+ R L+) L+

where U+ = valiant U
L+ = valiant L

In the next section, we give a specification for the algorithm, and in Section 5.3.3, we
prove it correct.

5.3.2 Specification in Agda

We are now ready to express the transitive closure problem in Agda. It is a relation
between two Tris, that is, a function that takes two Tris, C+ and C, and returns the
proposition that C+ is the transitive closure of C, which is true if C+ and C satisfy the
specification (4.2) as implemented in Agda:

is-tc-of : {s : Splitting}→ Tri s→ Tri s→ Set
C+ is-tc-of C = C+ ≈

t
C+ ∗

t
C+ +

t
C

Additionally, for use in our proof, we want to define three sub-specifications: (5.2) and
its restriction to the case when one dimension is 1, where the first one is considered as a
relation between a Mat and a Tri (the Mat satisfies the specification when inserting the
parts of the Tri):

is-tcMat-of : {s1 s2 : Splitting}→Mat s1 s2→ Tri (bin s1 s2)→ Set
R× is-tcMat-of (tri U+ R L+) = R× ≈

m
U+ ∗

t m
R× +

m
R× ∗

m t
L+ +

m
R

For the row and column part, instead consider a relation between a Vec and a pair of a
Vec and a Tri, with the intent that the Vec is put on top of the Tri. We do this to avoid
dealing separately with the 1× 1-vector case:

is-tcRow-of : {s : Splitting}→ Vec s→ Vec s × Tri s→ Set
v× is-tcRow-of (v, L+) = v× ≈

v
v× ∗

v t
L+ +

v
v

is-tcCol-of : {s : Splitting}→ Vec s→ (Tri s × Vec s)→ Set
v× is-tcCol-of (U+, v) = v× ≈

v
U+ ∗

t v
v× +

v
v

5.3.3 The proof

In this section, we are going to prove the correctness of Valiant’s algorithm, as defined
in the previous section, in words, for every splitting s and every upper triangular matrix
C : Tri s, valiant C is the transitive closure of C. We begin by giving the types of the
different propositions, so we can use them in an arbitrary order later. The first is the
main proposition:

v-tc : {s : Splitting} (C : Tri s)→ (valiant C) is-tc-of C
v-mat : {s1 s2 : Splitting} (U+ : Tri s1) (R : Mat s1 s2) (L+ : Tri s2)→

(overlap U+ R L+) is-tcMat-of (tri U+ R L+)
v-row : {s : Splitting} (v : Vec s) (L+ : Tri s)→

(overlapRow v L+) is-tcRow-of (v , L+)
v-col : {s : Splitting} (U+ : Tri s) (v : Vec s) →

(overlapCol U+ v) is-tcCol-of (U+, v)

giving an object of the first type is easy:

v-tc zer = tt
v-tc (tri U R L) = (v-tc U, v-mat (valiant U) R (valiant L), v-tc L)

The other parts take a bit more code, but that code is for shuffling nonassociative
semiring objects around and is easy to write. We include the proof of the correctness of
overlapRow here:

v-row (one x) zer = R-sym (proj1 +
R
-identity x)

v-row {bin s1 s2} (two u v) (tri U R L) = (v-row u U), (begin
overlapRow (overlapRow u U ∗

v m
R +

v
v) L

≈〈 v-row (overlapRow u U ∗
v m

R +
v

v) L 〉
v1 +

v
(v2 +

v
v)

≈〈 sym (assoc v1 v2 v) 〉
(v1 +

v
v2) +

v
v

≈〈 •-cong (comm v1 v2) refl 〉
(v2 +

v
v1) +

v
v

≈〈 refl 〉
overlapRow u U ∗

v m
R +

v

(overlapRow (overlapRow u U ∗
v m

R +
v

v) L) ∗
v t

L +
v

v �)
where open CM-Reasoning (Vec-commutativeMonoid {s2})

v1 = overlapRow (overlapRow u U ∗
v m

R +
v

v) L ∗
v t

L
v2 = overlapRow u U ∗

v m
R

the other proofs are similar.

Chapter 6

Concluding remarks

This thesis was initially intended to put Valiant’s algorithm into the Algebra of program-
ming framework [Bird and Moor, 1997]. Algebra of programming is about expressing
specifications as a relation, using relational catamorphisms and the converses of catamor-
phisms, and then derive a function that refines the relation using universal properties of
catamorphisms. We wanted to use Agda for this, because there has been some work on
doing Algebra of programming derivations in Agda [Mu et al., 2009], and because of the
ability to implement the algorithm and prove it correct in the same language, ensuring
us that we made no implementation errors. We see two main reasons for failing to do
this.

First, Valiant’s algorithm is a catamorphism on the Tri datatype (it recurses on the
two sub-triangles and then combines them), but we did not find a way to express the
overlap step using ideas from resembled Algebra of programming. In part, this was
because the recursion is fairly complicated (first compute the lower left part recursively,
then use that result to compute the upper left and lower right parts recursively, and
finally use those results to compute the upper right part). So we did not know what we
were supposed to aim for in our derivation.

Second, the relation we have used as specification: X is the transitive closure of an
upper triangular matrix C if X is upper triangular and satisfies X = XX + C, is very
nice to work with mathematically. Indeed, as we saw in Section 5.1, by combining the
specification with block matrices, the algorithm falls out immediately. However, the
relation does contain a lot of hidden information: mainly the fact that matrix multi-
plication is a fairly complicated function when defined on our datatypes (see Section
5.2.4), that we have failed to express within Algebra of programming. Hence, we have
neither a starting point, nor an end point of our derivation. It might be the case that
other specifications or other datatypes for matrices are more suitable to do Algebra of
programming-style derivations.

The algebra involved in this thesis is fairly trivial. From an algebraic point of view,
the most interesting fact is perhaps that the multiplication involved in parsing (see Sec-
tion 4.2) is an example of a “basic” nonassociative operation. It is not the combination of
more basic operations and functions that satisfy axioms that force it to be nonassociative

60

(as is the case with subtraction in a group, for example).
Doing algebra in Agda has the advantage of making it visible where the axioms are

used, and hence, whether they are needed or not. In particular, since the origin of the
algebraic structure for parsing (the nonassociative semiring) is as a set with set union
and a multiplication, early on, we thought that we might need the axiom that addition is
idempotent (x+ x = x for all x), which holds for set union. But after writing the proof,
we found that we had never used the axiom, and so we removed it from our algebraic
structure.

A big problem of doing algebra in Agda is that if we change the definition of some
datatype slightly (for example, if we allow empty matrices, or if we decide to remove the
sing constructor and use one element vectors instead), almost all our proofs break, and
we will have to redo them. To solve this problem, we could make our programs more
modular, using interface-like records for nonassociative semirings that have splittings
which respect addition and multiplication (to represent the triangles and matrices)—
similar to the way the algebraic structures provide an interface to the addition and
multiplication. However, doing this has two drawbacks in our case. First, we would
have to write almost all the code to prove that the splittings respect addition and
multiplication (so we gain little from doing it). Second, using these interfaces would
make it impossible to use Agda’s built in pattern matching tools, which would make
proof writing take longer. We are not sure whether a better solution to this exists.

Bibliography

The Agda team. The Agda reference manual: Totality. http://wiki.
portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Totality, December
2011. Accessed: 2013–05–30.

The Agda team. The Agda standard library, version 0.7. http://wiki.portal.
chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary, January 2013. Ac-
cessed: 2013–05–30.

Jean-Philippe Bernardy and Koen Claessen. Efficient parallel and incremental pars-
ing of practical context-free languages. http://publications.lib.chalmers.se/
publication/175113, March 2013.

Richard Bird and Oege de Moor. Algebra of programming. Prentice Hall, London, 1997.
ISBN 0-13-507245-X.

Ana Bove and Peter Dybjer. Dependent types at work. In Ana Bove, Luís Soares Bar-
bosa, Alberto Pardo, and Jorge Sousa Pinto, editors, Language Engineering and Rig-
orous Software Development, pages 57–99. Springer-Verlag, Berlin, Heidelberg, 2009.
ISBN 978-3-642-03152-6. doi: 10.1007/978-3-642-03153-3_2.

Noam Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, 1959. ISSN 0019-9958. doi: 10.1016/S0019-9958(59)90362-6.

Martin Lange and Hans Leiß. To CNF or not to CNF? An efficient yet presentable
version of the CYK algorithm. Informatica Didactica, (8), 2009. ISSN 1615-1771.

Per Martin-Löf. Intuitionistic type theory : notes by Giovanni Sambin of a series of
lectures given in Padua, June 1980. Bibliopolis, Napoli, 1984. ISBN 88-7088-105-9.

Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. Algebra of programming in
Agda: Dependent types for relational program derivation. Journal of Functional
Programming, 19(05):545–579, 2009. doi: 10.1017/S0956796809007345.

62

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Totality
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Totality
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Libraries.StandardLibrary
http://publications.lib.chalmers.se/publication/175113
http://publications.lib.chalmers.se/publication/175113

Ulf Norell. Towards a practical programming language based on dependent type theory.
Chalmers University of Technology, Göteborg, 2007. ISBN 978-91-7291-996-9. Diss.
Göteborg : Chalmers tekniska högskola, 2007.

Alan M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput.
Syst. Sci., 10(2):308–314, April 1975. ISSN 0022-0000. doi: 10.1016/S0022-0000(75)
80046-8.

	Introduction
	Agda
	Introduction
	General introduction
	Starting the extended example

	The Curry–Howard Correspondence
	Propositional logic
	Predicate logic
	Decidability

	Continuing the example
	Defining maxL
	Indexing function and specification

	Proving the correctness
	Informal proof
	Lemmas
	Assembling the proof

	Final remarks about Agda

	Algebra
	Introductory definitions
	Equivalence relations
	Propositions about one operation
	Propositions about two operations

	Sets with one operation
	Monoid-like structures
	Equational Reasoning in Commutative Monoids

	Sets with two operations
	Ring-like structures
	Matrices
	Upper triangular matrices

	Parsing
	Definitions
	Grammar as a nonassociative semiring
	A specification for parsing

	Valiant's Algorithm
	Derivation
	Main structure
	The overlap part
	Summary of Valiant's algorithm

	Datatypes
	Discussion
	A first attempt at an Agda implementation
	Mat and Tri
	Operations on our datatypes
	Nonassociative Semirings

	Implementation and proof of correctness
	Implementing the algorithm
	Specification in Agda
	The proof

	Concluding remarks
	 Bibliography

