

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, March 2010

Overlay Networks and Distributed Denial of Service

Attacks: Overview, study and evaluation of an

application-enabled approach.

Master of Science Thesis in Computer Science and Engineering

NEGIN FATHOLLAH NEJAD ASL

RICARDO MOSCOSO ROMERO

2 .
 | Chalmers University of Technology

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Overlay Networks and Distributed Denial of Service Attacks: An overview and evaluation

of an application-enabled approach.

NEGIN FATHOLLAH NEJAD ASL

RICARDO MOSCOSO ROMERO

© Negin Fathollah Nejad Asl, March 2010.

© Ricardo Moscoso Romero, March 2010.

Examiner: Marina Papatriantafilou

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden March 2010

i .
 | Chalmers University of Technology

Abstract

Distributed denial-of-service attack (DDoS) as one of the most common

Internet attacks today is an attempt to prevent legitimate network traffic from

reaching the target and consequently to disable all services that this resource

provides to the victim. The most common method to perpetrate DDoS attack is

flooding the network with malicious packets to exhaust the network resources.

This work is based on the fact that many network-based applications

commonly open some known port(s) to communicate with their users;

therefore, making themselves vulnerable to DoS or DDoS attacks. One of the

main approaches to perform DDoS attack is to leverage the distributed network

architecture (peer to peer networks) to create huge armies of zombies. These

zombies are used to flood the victim with legitimate traffic. As there are large

number of attacker machines in this method, defending against this attack is

extremely complex. As peer to peer networks have become very important as

one of the most popular content-delivery systems recently, the issue of defense

against DDoS attack which use peer to peer network as their weapon turned

into a big concern.

Considering this problem the main goal of this dissertation, after understanding

the DoS and DDoS attacks deeply, is to simulate a DDoS defense system using

a “pseudo-random port-hopping”” approach (called HOPERAA and BIG

WHEEL algorithm) using ns-2, and analyze its performance under different

circumstances. This “port hopping” approach is based on the work developed

in [5]. The idea of this approach is to implement a solution capable of

establishing a communication among the involved parties as well as hoping in

a synchronized manner from port to port.

The analysis and evaluations performed in this dissertation include the

overhead created by implementing the defense algorithm in a network under

different defined conditions. Also the algorithms‟ behavior has been studied

under variable clock drifts between the parties in the network. Simulating and

analyzing the performance of these algorithms showed that this defense

method behaves as expected and the results are consistent with the description

given in [5].

ii .
 | Chalmers University of Technology

Acknowledgements

It is a pleasure to thank those who made this thesis possible especially my

parents who gave me the main support and encouragement I needed and my

professor, Marina Papatriantafilou, and Zhang Fu whose supervision from the

preliminary to the concluding level enabled me to develop an understanding of

the subject. It would have been next to impossible to write this thesis without

Marina and Zhang‟s help and guidance.

I also want to appreciate the help and support of my friend and colleague

Ricardo Moscoso Romero and his great cooperation during almost one year of

work on this thesis.

Finally I want to dedicate this dissertation to the brave people in Iran who

proved their care about freedom of their country once again during recent

summer while I was working on this project in Sweden.

Negin Fathollah Nejad Asl

February 2010

iii .
 | Chalmers University of Technology

Acknowledgements

First of all, I cannot thank “The Swedish Foundation for International

Cooperation in Research and Higher Education” enough for giving me their

full support in this journey that I started quite a while ago; without them,

things may have turned out different for me and, probably I would not have

met such an amazing people, lived so many enriching experiences or even get

to appreciate so many different cultures. I am also deeply grateful to one of my

bachelor‟s professor, Gustavo Cervantes Ornelas; with whom, I will always be

indebted not only for all the things I learned from him but, for all the

unconditional help he has given me throughout these years.

My sincere gratitude goes to Marina Papatriantafilou and Zhang Fu; incredible

hard-working people and amazing role models; their motivation and dedication

inspired us to work harder and do our best in whatever task we were working

on. They dealt with us for months not only with infinite patience but also with

an absolute support and resolve; without their serenity, critique and continuous

suggestions, this dissertation would have not been as entertaining and

enlightening as it was.

I would like to thank all of my friends who played a huge role in my life; they

have made me laugh with their irreverence but, also taught me the importance

of taking a break whenever you feel like there is nothing left in you to go on…

My special gratitude goes to Kasyab who let me crash at his place for what it

was supposed to be “one month or two” and, turned out to be way much more;

my roommates at Frölunda, who always were there for me even when I could

not do the same for them; my friends back in Mexico whom, no matter how

busy they were, always had time to spend and party with me whenever I went

back home during Summer or Christmas; Shuvo, Rony, Cyril, Azadeh, Nojan,

Molood, Sofia and so many other people that, even though I don‟t mention

them, each one of them played a very important role not only during the time

this dissertation took but, from the very moment I met them and realized how

difficult it would be to carry on without them.

iv .
 | Chalmers University of Technology

I will eternally be indebted and grateful to God for my loving family, they

have always given me exactly what I need, their love, support and complete

understanding. My sincere gratitude goes to them for, gladly and without any

doubt in their hearts, letting me pursue every single one of the dreams I have

had no matter how outrageous they were.

Finally, I would like to thank Negin for being there for me whenever I needed

her, not only as my partner in this thesis but also, as one of my dearest

friends…

Ricardo Moscoso Romero

December 2009

v .
 | Chalmers University of Technology

Table of Contents

INTRODUCTION .. 1

1.1 MOTIVATION ... 3
1.2 OUTLINE ... 5

BACKGROUND .. 6

2.1 P2P NETWORKS ... 7
2.1.1 P2P Network Definition .. 7
2.1.2 P2P Benefits ... 11

2.2 DISTRIBUTED DENIAL OF SERVICE (DDOS) ... 13
2.2.1 DDoS Attacks Classification .. 13

2.3 P2P & DDOS ATTACKS .. 17
2.3.1 Index poisoning attack ... 17
2.3.2 Routing table poisoning ... 19

A PORT HOPPING APPROACH AGAINST DDOS .. 20

3.1 HOPPING PERIOD, ALIGN AND ADJUST ALGORITHM ... 21
3.1.1 HOPERAA’s Description .. 21

3.2 BIG WHEEL ALGORITHM .. 27

IMPLEMENTATION IN NS-2 ... 28

4.1 THE NETWORK SIMULATOR (NS) .. 29
4.1.1 Ns’ Fundamentals .. 29

4.2 HOPERAA IMPLEMENTATION IN NS-2 .. 32
4.2.1 Adding the new Agent into ns-2 ... 32
4.2.2 HOPERAA Packet taxonomy ... 34
4.2.3 HOPERAA in relation to ns ... 34
4.2.4 Modifications to ns Source Code .. 38
4.2.5 Simulating Clock Drifts in ns ... 40
4.2.6 Example: Single Client/Server Scenario .. 42

ANALYSIS AND EVALUATION .. 46

5.1 STUDY CASE 1: SINGLE CLIENT/SERVER SCENARIO ... 47
5.1.1 Experiment Specification .. 47
5.1.2 Results’ Analysis: Scenario 5.1.1 .. 50
5.1.3 Results’ Analysis: Scenario 5.1.2 .. 53
5.1.4 Results’ Analysis: Scenario 5.1.3 .. 56

5.2 STUDY CASE 2: VARIABLE CLOCK DRIFTS ... 62
5.2.1 Experiment Specification .. 62
5.2.2 Results’ Analysis ... 63

5.3 STUDY CASE 3: VARIABLE CLOCK DRIFTS (2) .. 68
5.3.1 Experiment Specification .. 68
5.3.2 Results’ Analysis ... 69

vi .
 | Chalmers University of Technology

5.4 STUDY CASE 4: FRAMEWORK’S OVERHEAD ... 73

5.4.1 Experiment Specification .. 73
5.4.2 Results’ Analysis: Scenario 5.4.1 .. 76
5.4.3 Results’ Analysis: Scenario 5.4.2 .. 77
5.4.4 Results’ Analysis: Scenario 5.4.3 .. 79
5.4.5 Results’ Analysis: Scenario 5.4.4 .. 81

5.5 STUDY CASE 5: DEFENSE FRAMEWORK AND THE DDOS PROBLEM. ... 83
5.5.1 Experiment Specification .. 83
5.5.2 Results’ Analysis: Scenario 5.5.1 .. 85
5.5.3 Results’ Analysis: Scenario 5.5.2 .. 87
5.5.4 Results’ Analysis: Scenario 5.5.3 .. 90

FUTURE WORK .. 93

6.1 THOROUGHLY INVESTIGATE ALGORITHM’S PERFORMANCE IN DIFFERENT NETWORK ARCHITECTURES 93
6.2 EXTEND THE FRAMEWORK’S DEFENSE CAPABILITIES ... 94

CONCLUSIONS... 96

APPENDIX ... 98

A.1 INDIVIDUAL CONTRIBUTIONS TO THIS WORK ... 98
A.2 HOPERAA.H ... 100
A.3 SUPPORTFUNCTIONS.H .. 101
A.4 HOPERAA.CC .. 103
A.5 CLOSEDPORT.CC ... 109
A.6 TEST1.TCL ... 110
A.7 TEST2.TCL ... 111

BIBLIOGRAPHY .. 115

vii .
 | Chalmers University of Technology

List of Abbreviations

ACK

Acknowledgment

CBQ

Class-Based Queuing

CBR

Constant Bit Rate

CONSER

Collaborative Simulation for Education and Research

DARPA

Defense Advanced Research Project Administration

DDoS

Distributed Denial of Service

DFS

Depth First Search

DHS

Distributed Hash Tables

DoS

Denial of Service

FTP

File Transfer Protocol

HOPERAA

Hopping Period, Align and Adjust Algorithm

IP

Internet Protocol

NAM

Network Animator

ns or ns-2

Network Simulator

NSF

Network Specific Facility

Otcl

Object-Oriented extension of Tcl

P2P

Peer-to-Peer

RED

Random Early Detection

SAMAN

Simulation Augmented by Measurement and Analysis for

Networks

Tcl

Tool Command Language

TCP

Transmission Control Protocol

TELNET

Teletype Network

UDP

User Datagram Protocol

VBR

Variable Bit Rate

VINT

Virtual InterNetwork Testbed

1 .
 | Chalmers University of Technology

 1
Introduction

In the past few years, Peer-to-peer networks (from now on we will use the

acronym “P2P” when referring to this kind of networks) have become

immensely important as one of the most popular Content-Delivery systems.

Proof of this, is evident when looking at the Ipoque‟s Internet Study for

2008/2009, which provides an overview of the Internet's current state based on

the analysis of 1.3 petabytes of Internet traffic in eight regions of the world

(Northern Africa, Southern Africa, South America, Middle East, Eastern

Europe, Southern Europe, Southwestern Europe, Germany). From this analysis

it was concluded that even though the amount of P2P traffic has decreased,

since the last time the study was conducted, it still generates the most traffic in

all regions [1].

During the early beginnings, P2P networks and applications were mainly used

in between home users, since it offered a way for people to share files among

each other in a very reliable way; however, nowadays companies have been

using the same approach for their own business strategy, shifting from the

usual Client-Server model to the Peer-to-Peer model. Two examples of the

previous statement are SKYPE which uses P2P protocols to forward phone

calls around the net, and JOOST which offers “peer-to-peer” internet

Television. The end-service might be different, but these and many other

companies understood the importance of this approach and its many

advantages, such as extensive object replication (due to the large number of

peers) which at the same time increases availability, lowers cost of ownership

and achieves fault tolerance, all in one.

“Cyber attacks have plunged
entire cities into darkness.”

- Barack Obama

Introduction 1. INTRODUCTION

2 .
 | Chalmers University of Technology

The importance in between P2P Networks and the topic from this thesis is that

nowadays, Attackers are capable of create huge armies of “zombies” by taking

advantage of this kind of architecture. Perpetration requires little effort on the

attacker‟s side, since a vast number of insecure machines (peers) provide

fertile ground to create “zombies” and, prevention of the attack is extremely

complicated due to the large number of attacking machines and the similarity

between legitimate and attack traffic. [2]

Distributed Denial of Service attacks (DDoS) had been aimed to organisms

like government organizations, commercial enterprises, banks and social

networking sites [3] with the porpoise of disable, or diminish, the services they

provide to millions of end-users; but also, they have targeted specific users

such as the case of a Georgian blogger whose accounts on Twitter, Facebook,

LiveJournal, Google's Blogger and YouTube were targeted in a denial-of-

service attack, disabling his/her Twitter account and raising several problems

at the other sites. According to Max Kelly, chief security officer at Facebook,

"It was a simultaneous attack across a number of properties, targeting him to

keep his voice from being heard”. [4] As you can see, just anyone can be

targeted as a victim, and the next one could easily be you or me.

This thesis will explore the problem of DDoS defense from two directions: (1)

it strives to understand the problem by analyzing DDoS attacks, first how they

work in a minor scale (DOS attacks) to then move on in studying them at a

wider scale (DDoS attacks); this will give the reader a more specific

knowledge of the problem being faced and denote the importance of the given

solution. (2) It presents the analysis and implementation of a DDoS defense

system using a “Port-Hopping” approach. Our study is based on the work

developed on [5]. In this paper, the authors suggest an approach to deal with

“Application level floods” on a Client – Server Scenario however, since each

Client interacts with the Server on an individual basis, just as TCP does, the

algorithm is highly suitable for P2P uses as well.

The work in this thesis aims to take it further, by understanding and evaluating

the algorithm‟s behavior under different circumstances to the ones presented in

[5].

Motivation 1. INTRODUCTION

3 .
 | Chalmers University of Technology

1.1 Motivation

As briefly discussed in the previous section, our study is based on the work by

Zhang Fu, Papatriantafilou Marina and Philippas Tsigas in their paper

“Mitigating Distributed Denial of Service Attacks in Multiparty Applications

in the Presence of Clock Drifts”.[5]

In the latter, the authors focused their efforts in developing a solution for one

of the main methods used by an attacker, in order to deplete the computational

resources of a specific target. Their work is based on the fact that many

network-based applications commonly open some known port(s) to

communicate with their users; therefore, making themselves vulnerable to

Denial of Service (DoS) attacks. With the purpose of solving this problem, a

“pseudo-random port-hopping” approach was followed; the goal behind this,

was to implement a solution capable of establish a communication among the

involved parties yet, being able to hop in a synchronized manner from port to

port on the meanwhile. However, in order to achieve this, was also necessary

to implement a practical, yet not intrusive, way to keep some sort of

synchronization in between the time drift from the clocks of all the involved

entities. Based on this scenario, two algorithms were proposed: (1) BIG

WHEEL, which not only allows servers to communicate with multiple clients

in a port-hopping manner but, also accomplishes communication-

independency among the Clients; and (2) HOPERAA, which is the algorithm

that allows each Client to hop, in a synchronized manner with the server,

taking in consideration the presence of clock-drifts.

The authors analyzed the algorithm‟s performance and, in the “Experimental

Study” section, gathered promising results under a scenario in which a single

adversary was capable of perform blind and directed attacks to a set of ports in

the Server; however, they did not studied in detail the algorithm‟s behavior by

looking at how the different variables involved are adjusted and how such

adjustment is affected under specific circumstances. Based on [3], [6], [7] we

can conclude that the adversaries are getting more creative with time and,

attacks are getting more and more intensive; that‟s why, under the supervision

of Marina Papatriantafilou and with the help of Fu Zhang, we decided to take

their work one step ahead and analyze how will these algorithms perform

under different circumstances.

Motivation 1. INTRODUCTION

4 .
 | Chalmers University of Technology

Since creating the right environment for our study cases, in the real world, will

require of access to specific resources and particular conditions, we decided to

set up our implementation and test-case scenario on a network simulator. For

this purpose, we are using “ns” an event-based simulator, well-established

within the research community, which uses

C++ and an object orientated version of Tcl called, OTcl. Simulations are

written using Tcl scripts and the protocols are implemented in C++; since ns

does not include any visualization tools by default, we will use the network

animator NAM so as to obtain a graphic representation of the simulated

scenario.

Outline 1. INTRODUCTION

5 .
 | Chalmers University of Technology

1.2 Outline

This dissertation is structured as follows. First we begin by giving an overview

about all the related topics that will be discussed throughout this thesis. In

chapter 2 we discuss about the DoS dilemma in order to denote the magnitude

of problem and give the reader a more concrete knowledge about how it works.

Also in chapter 2, we explain what a P2P networks is, its definition,

architecture and benefits but more importantly, for the focus of this thesis, how

can they be exploited to launch DDoS Attacks; after this chapter, the Reader

will have all the necessary knowledge to understand how the solution, studied

in this work, helps to mitigate the DDoS problem.

Since our study is based on the paper “Mitigating Distributed Denial of Service

Attacks in Multiparty Applications in the Presence of Clock Drifts” [5] by

Zhang Fu, Papatriantafilou Marina and Philippas Tsigas, in chapter 3 we lay

the foundation to understand how the defense framework works. In this chapter

we explain in detail the two algorithms suggested in [5]; first we explain all the

steps and variables involved when executing the HOPERAA algorithm, used

for synchronous port hopping in the presence of clock-drifts; and then, we

explain how the BIG WHEEL is used for servers to support communication

with multiple clients, in a port-hopping manner.

In chapter 4 we present a brief background and important highlights

concerning the simulator; also, we introduce a practical approach of how the

HOPERAA algorithm would function on a single Client/Server model (by

using hand-derived calculations), explaining the outcome derived from each

step and how each variable calculated would behave; but more importantly, an

extensive and detailed explanation of how the framework, explained in chapter

3, was implemented and which scenarios were considered in order to gather

significant data for this work. Finally, based on the knowledge and experience

gathered throughout the development of this dissertation, in chapter 5 and 6 we

present our points of view regarding future work and conclusions, respectively.

6 .
 | Chalmers University of Technology

 2
Background

In this chapter, we give an overview about all the related topics that will be

discussed throughout this thesis. In order to really understand the magnitude of

the DDoS problem, the reader should have some knowledge about how does it

work; but above all, its possible repercussions.

We have discussed how P2P Networks provide fertile ground for an adversary

to create “zombies”; since in most of the cases, attackers had taken advantage

of insecure networks to deploy DDoS attacks, we consider is important to

understand what they are, how they operate, but specially how are they related

to the DDoS problem. Also in this chapter, we will analyze the problem to be

mitigated by the implemented solution [5]; in this part we will study DDoS

attacks by first, comprehending how they are launched in a minor scale (DOS

attacks) to then understand their taxonomy at a wider extent (DDoS attacks).

After this chapter, the Reader will not only have all the necessary knowledge

to understand how the presented solution helps to mitigate the DDoS problem

but also, a general knowledge of how these attacks work and the damage they

can cause.

”Technological progress is like
an axe in the hands of a
pathological criminal.”

- Albert Einstein

P2P Networks 2. BACKGROUND

7 .
 | Chalmers University of Technology

2.1 P2P Networks

As the title asserts, this section talks about the main features of Peer-to-Peer

(commonly referred as P2P) Networks and how they work. In the subsequent

segments, we will give an extensive explanation about the topic by covering

areas such as its definition, architecture and benefits but more importantly, for

the focus of this thesis, how can they be exploited to launch DDoS Attacks.

2.1.1 P2P Network Definition

Peer-to-peer (P2P) systems are distributed systems in which nodes of equal

roles and capabilities exchange information and services directly with each

other. [9] Let‟s disassemble this into pieces in order to understand it better;

first of all, all users or components in the network are called “peers”, and each

one of them is capable of retrieving objects directly from each other without

intervention of a centralized server. Unlike the traditional Client-Server

architecture, in a P2P network each component within the system, depending

on the situation, can play the role of a Server or a Client at any time and

simultaneously. For example, when a peer allows others to download a file

from its hard drive, the peer plays the role of a server; conversely, this peer

could be also obtaining files from other peers hence acting as a client.

Whenever a peer is in the lookout for a specific file, messages are interchanged

among the parties in order to discover other peers and determine which one of

them has the desired object. Once the object has been found, the peer who

started the search can download the file directly from the peer providing it

since, as discussed earlier, in a peer-to-peer topology all transfers are always

done directly between the peer sharing the file and the peer requesting for it;

nevertheless the control process, prior to the file transfer, can be implemented

in many different ways.

P2P Networks 2. BACKGROUND

8 .
 | Chalmers University of Technology

Once we have understood what P2P networks are and how they work, we

employ [8] and [10] to identify some of the most common models:

- Centralized: In this model, each peer publishes information about

the content they offer for sharing, along with a peer ID, IP address,

and other type of information, into a well-known central directory.

(See figure 1) A TCP connection is established with the central

server and whenever one of the peers wants to retrieve a file, the first

thing it does is to send a query message to the server; this query

usually includes some keyword or identifier of some kind which, at

the server‟s side, is evaluated against the directory. The server then

creates a list with all the peers that best match the request and sends

it back to the client; on receiving the list, the peer selects a peer from

which it directly retrieves objects. When a peer leaves the P2P

network, the server detects the disappearance through the

termination of the TCP connection. Since this model requires a

centralized infrastructure to store the information of all peers, it is

prone to show some scalability limits, since it might require bigger

servers when the number of requests escalate, or larger storage when

the number of users increase; also, in the topic this thesis concerns, it

becomes a vulnerable point which could be targeted by an attacker

in order to disable the whole network.

Some popular applications using this model are Napster, OpenNap,

and instant messaging applications such as ICQ, Yahoo messenger,

and MSN messages.

Download

Search

Figure 1: Centralized Peer-to-Peer network.

P2P Networks 2. BACKGROUND

9 .
 | Chalmers University of Technology

- Flooded requests or Decentralized: In this architecture, all peers

are equal and there is no directory server so, is commonly referred as

“pure P2P” (See figure 2). When a peer joins the network, it first

sends a request to a bootstrapping node which provides him with a

list of IP addresses of peers that have already participated in the

network; then the new peer, advertises its address to the other parties

thus creating a “neighborhood”. When a peer wants to retrieve an

object, the request is flooded (broadcasted) to directly connected

peers, whom consequently flood their neighbors thus distributing the

request throughout the whole parties; process is terminated when the

request is answered or, a maximum number of flooding steps has

occurred.

One of its main advantages, over the other models, is that the failure

of one or even several of the nodes has little impact on the

performance of the network since there is no single point of failure.

Gnutella and Freenet are typical applications using this mechanism.

Download

Search

Figure 2: Decentralized P2P Network. Each node is only connected to its direct

neighbors; file download can be established with nodes not directly connected.

P2P Networks 2. BACKGROUND

10 .
 | Chalmers University of Technology

- Controlled Decentralized: This model employs a hybrid,

combination of the centralized and decentralized frameworks; in this

architecture peers are clustered into groups so, the entire P2P

network is logically formed by a conjunction of different groups.

When a peer joins the network, it has to become a member of a

specific group. In a group, there is a leader („super-node‟ or

„ultrapeer‟) which maintains information of the objects deposited by

peers in the group; thus, registration, query and objects retrieval in a

group, are similar to the one in the Centralized architecture.

Additionally, to achieve more results, one super-node can forward

queries from its client peers to another super-node. (See figure 3)

-

Super-nodes change dynamically as bandwidth and the network

topology change. A client-node keeps only a small number of

connections open and each of those connections is to a super-node.

Third generation P2P such as Morpheus, KaZaA, eDonkey2000,

Groove, WinMX and FastTrack are typical applications using this

model.

Download

Search

Group 1

Group 2

Group 3

Figure 3: Controlled Decentralized P2P network. Each node in a group connected to a super-

node. File download can be established with node from different groups.

P2P Networks 2. BACKGROUND

11 .
 | Chalmers University of Technology

2.1.2 P2P Benefits

In this section we want to denote the benefits derived from using P2P

networks, in order to magnify the reason why, in recent years, they have

become a popular way to share huge volumes of data; increasingly receiving

attention, from both industry and research community.

According to [8], selecting a P2P approach is often driven by one or more of

the following benefits.

- Cost distribution/reduction

In centralized systems, as they grow bigger, it becomes more

expensive to support all the clients; however in P2P networks, such

cost is distributed among all the peers. For example in the case of

Napster, the centralized directory was only responsible for keeping

the index required for sharing; while the cost for file storage, was

never a problem since it was taken care of by the members in the

network.

- Resource aggregation and interoperability

Another great benefit derived from using P2P networks is that they

can grow depending on the required needs so, attributes such as high

compute power or storage space can be achieved relatively easy.

P2P structures can be used to solve larger problems by segmenting

them into small pieces and assigning them to each peer rather than,

trying to solve the whole problem just by using a single machine.

“File sharing systems, such as Napster, Gnutella, and so forth, also

aggregate resources. In these cases, it is both disk space to store the

community‟s collection of data and bandwidth to move the data that

is aggregated.” [8]

- Improved scalability/reliability

This feature is achieved in conjunction with the algorithm

implemented within the network, whether is centralized,

decentralized or a hybrid of some kind, the network can become

highly reliable (Capable of tolerating high node failures while

maintaining connectivity and resolving searches within few

messages [12]) and scalable (The ability of an unbounded number of

new peers to join in the system [11]).

P2P Networks 2. BACKGROUND

12 .
 | Chalmers University of Technology

- Anonymity and privacy

By using a P2P structure, all activities are local to the peers. The

latter allows them a greater degree of autonomy and control over

their data and resources; once in the system, users can avoid having

to provide any information about themselves to anyone else; this is

not the case in a central server approach, where the server will

typically be able to identify the client, at least by Internet address.

- Enables ad-hoc communication and collaboration

It instinctively offers dynamism and certain degree of freedom, since

all members can connect and disconnect from the network at any

time. The system does not rely on an established infrastructure,

rather than a logical assembly, thus collaboration is achieved and

highly scalable by just adding more peers into the network.

- Greater Autonomy

Since each peer within the network is independent, the P2P model

allows a high degree of autonomy for its peers, because it eliminates

the need to rely on, and follow the rules set by, a single central

resource provider.

P2P & DDoS Attacks 2. BACKGROUND

13 .
 | Chalmers University of Technology

2.2 Distributed Denial of Service (DDoS)

A DoS attack is an attempt to prevent legitimate users of a service or network

resource from accessing that service or resource. DoS attacks usually make use

of software bugs to crash or freeze a service, resource, or bandwidth limits by

saturating all bandwidth. [15]

Based on this definition, we will explore the problem first by defining what a

DOS attack is. A Denial of Service (DoS) attack is one of the most common

attacks today. Different to many other threats, these attacks are not targeted at

stealing, modifying or destroying information but to prevent legitimate

network traffic from reaching the target thus, disabling all services the latter

provides to its users. Although there exist many forms or methods to perpetrate

a DOS attack the most common form consists in flooding the network with

bogus packets, hence preventing legitimate network traffic. Another method is

to drown the victim in fastidious computation so that it is too busy to do

answer any other queries; in a DoS attack, only one machine is used to

generate malicious traffic. Distributed DoS (DDoS) on the other hand, is an

attack concerning a big number of subverted machines (zombies), coordinated

by a central intelligence (attacker), launching simultaneous DOS attacks.

2.2.1 DDoS Attacks Classification

Now that we have a better understanding of what DDoS attacks are, we present

the following taxonomy in which attacks are classified under common

characteristics; for this, we use [15] and [16].

- Degree of automation

In order to perform a DDoS attack, the adversary must achieve 3

basic objectives:

1. Recruit multiple machines, known as zombies (recruit phase)

2. Acquire certain control level over them (exploit phase)

3. Instruct them to launch an attack over a specific target (attack

phase).

P2P & DDoS Attacks 2. BACKGROUND

14 .
 | Chalmers University of Technology

In the early stages of DDoS attacks these phases were performed

manually, by scanning remote machines for vulnerabilities, breaking

into them, installing attack code and then command the attack;

however, nowadays the process has been automated thus reducing,

or even avoiding, the need for any communication between attacker

and agent machines. After the recruit and exploit phases, the agent

machine may propagate the attack code as follows:

 Central source approach: The attack code resides on a

central source from where it is downloaded by the

compromised host.

 Back-chaining approach: The attack code is downloaded

from the machine that was used to exploit the system rather

than from a centralized location.

 Autonomous approach: The attack code is injected during the

exploit phase.

- Weaknesses Exploited

DDoS attacks exploit different weaknesses in order to achieve their

goal; based on this, we can classify them into:

 Vulnerability attacks: Known also as „semantic attacks‟, their

aim is starvation of resources in the victim by exploiting

implementation bugs, specific features or applications

running in the victim‟s end.

 Flooding attacks: Known also as „brute force attacks‟, their

aim is starvation of resources in the victim by exasperating it

with many „seemingly legitimate transactions‟ up to the

point, when it becomes unable to accept any more

transactions.

- Victim‟s Type

As discussed previously, attacks are not necessarily aimed against

single host machine. Depending on what they target, victims can be

applications running on the target host, part of a network

infrastructure or resources, such as bandwidth, or resources into the

victim‟s network like router or a bottleneck link.

P2P & DDoS Attacks 2. BACKGROUND

15 .
 | Chalmers University of Technology

- Attack Rate Dynamics

During the attack, each zombie is instructed to send a stream of

packets to the victim; depending on the way these are sent, we

differentiate between:

 Constant rate attacks: After the attack is commanded, the

zombies generate attack packets at a fixed rate, usually as

many as their resources permit. The main feature of this

approach is that is capable of disrupt the victim's services

quickly, due to the sudden increase of packets.

 Variable rate attacks: This attack aims to gradually degrade

the victim‟s performance by changing the frequency rate at

which the zombie sends packets to the victim.

- Impact on the Victim

Depending on the impact of a DDoS attack in the victim, attacks can

be disruptive, in which the goal is to completely deny the victim's

service to its clients; or degrading, in which the objective is to

strategically consume portion of a victim's resources, in order to

degrade the service‟s quality offered to legitimate customers; since

these attacks do not lead to total service disruption, they could

remain undetected for a long time.

The reason why DDoS attacks are so popular nowadays is because they are

very difficult to counterattack since, as mentioned before, they use a large

number of computers to generate malicious traffic and these attacker machines

could easily be spread all over the Internet or even be legitimate users; but

also, as mentioned in [2], DDoS traffic very difficult to detect since it is highly

similar to legitimate traffic so, it blends completely with the small amount of

legitimate client traffic thus making detection very difficult until is too late.

 Taking in consideration the previous, one would think that because DDoS

attacks are distributed threats, the best approach would be to implement a

distributed solution; however, wide deployment of any defense system is very

difficult to enforce because Internet is administered in a distributed manner;

and this is where the framework studied in this dissertation falls into place.

P2P & DDoS Attacks 2. BACKGROUND

16 .
 | Chalmers University of Technology

To conclude our discussion about DDoS attacks, we would like to answer one

very important question, “Why do people perpetrate DDoS attacks?”

The main goal, no matter the case, is to inflict as much damage as possible on

the victim or, to whoever relies on the target's correct operation. Ulterior

motives may include personal reasons (such as revenge or merely for fun), or

prestige (successful attacks on popular Web servers gain the respect of the

hacker community [19]). However, some DDoS attacks are performed with

darker motives in mind, such as material gain (like for example, the attacker

could target possible competitors in order to disable their capability of offering

a service or their corporate image [20]; as well as blackmail a company trying

to obtain a financial benefit [18]), political reasons (aiming to create instability

in the country [17] or simply to discredit and silence an specific public figure,

like the case presented in [4]) and even could be used as a weapon during war

times.

P2P & DDoS Attacks 2. BACKGROUND

17 .
 | Chalmers University of Technology

2.3 P2P & DDoS Attacks

So far we have discussed the many benefits derived from using a P2P strategy;

however, now it is time to analyze how these same advantages, turn P2P

networks into the weapon of choice for many attackers. With such a huge user

base and lack of any authentication, P2P networks can be leveraged by an

adversary to launch a DDoS attack against a victim machine on the Internet.

The victim need not be a participant in the P2P network, and could be a web

server, a mail server or even a home user‟s desktop. In this section, using [13]

we focus on DDoS attacks triggered from exploiting P2P systems. The

algorithms in a P2P system enable a peer to join the group, and maintain

information about other members, even though nodes may join or leave the

system. To scale to large group sizes, nodes maintain knowledge of only a

small subset of group members and, this is where two of the most common

attack approaches are used, index poisoning and routing table poisoning. [14]

2.3.1 Index poisoning attack

In index poisoning attack, the aim of the attacker is to make several peers

believe that some popular file is present with the victim. To achieve this, the

attacker A sends a false index record with the victim‟s IP address and port

number to all the other nodes. The attacker usually uses the file hash of a very

popular file so that there will be a large number of requests for it. On receiving

the false index record, the peer B adds it into its index along with the location

of the victim. B does not verify whether the victim has the corresponding file

or even that A or victim is a participant in the P2P network. When some other

peer C searches for that file, B will send V‟s record to C and the latter will try

to establishing a TCP connection and retrieve the file from V. (See Figure 4)

Since V could or not be part of the P2P network, it may not understand the

message, thus ignoring it, replying with some error message or even terminate

the connection. Unable to download the file, the downloading peer C may retry

after some time.

P2P & DDoS Attacks 2. BACKGROUND

18 .
 | Chalmers University of Technology

As we stated before, since it is popular file the victim will receive a large

number of requests from others peers whom, just like C, believe A has the

desired file hence, making V unavailable to accept connections from legitimate

users. (See Figure 4.2) Making things worse, Index poisoning can become a

resilient attack since the fake records persist in the indexes for hours; even

after the peers have failed on retrieve the requested file from the target.

REQ, F

A

X

Z

B

C

A

X

Z

B

V

C

1) 2)

REQ, F

REQ, F

RESP, V

SND, Fake Record

Figure 4: (1) Attacker „A‟ sends fake record to every crawled peer, the latter add it into its index.

(2) „C‟ requests file „F‟ from B and tries to retrieve „F‟ from „V‟, who might not even have the

requested file.

REQ, F

 RESP, V

P2P & DDoS Attacks 2. BACKGROUND

19 .
 | Chalmers University of Technology

2.3.2 Routing table poisoning

In routing table poisoning attack, the aim of the attacker is to make the peers

add the victim as their neighbor. To achieve this, the attacker A sends node

announcement message to every crawled peer. In these messages, the attacker

includes the victim‟s IP address and port number so that B includes it into its

routing table. Whenever a peer receives a search query or a maintenance

message, it may select the victim from its routing table and forward the

message to the victim. If the attacker poisons the routing table of a large

number of peers, the victim may receive a flood of search queries and

maintenance messages, saturating the victim‟s link. (See at figure 5)

Since the victim is not a participant in the P2P network, it will typically

respond with a „Port unreachable‟ message, flooding not only on upstream but

also on downstream direction. The routing table poisoning generates a burst of

messages directed at the victim but, different to the previous attack, after the

victim fails to respond it may be removed from the poisoned routing table.

Figure 5: (1) Attacker „A‟ sends node announcement message (V‟s information) to every crawled peer.

(2) Whenever any of those peers receives a search query or a maintenance message, it forwards

the message to the victim flooding its links.

Fake node announcement

messages

P2P

Peers

A V

P2P

Peers

A V

Search queries and

maintenance messages

20 .
 | Chalmers University of Technology

 3
 A port hopping approach

against DDoS

In this chapter, we give an extensive and detailed explanation of how the

framework designed in [5] works.

To begin with, the solution was designed to overcome a very common

vulnerability, present at the application layer, in which certain programs may

open ”well-known ports” in order to perform whatever action they're meant to

do thus, an attacker, can eavesdrop some packages, discover which port is

being used and launch a directed attack over such port; or, even if it can‟t

discover which port is being used, I can still perform blind attacks (sending

packets to a largely random set of ports, to then target any of the ports who

responded) and eventually accomplish the same objective. Taking this scenario

in consideration, the solution studied is based on the idea that the parties

involved are capable of communicating with each other “hopping” in between

different available ports over time; thanks to this, an attacker is not able to

perform a attack over a particular/vulnerable port (used for communication)

since the latter is always changing in a synchronized manner. In order to

achieve such behavior, and overcome the need of a global synchronization

mechanism in the system, two algorithms were proposed; (1) BIG WHEEL,

which is used for servers to support communication with multiple clients, in a

port-hopping manner and; (2) HOPERAA, used for synchronous port hopping

in the presence of clock-drifts. In the following sections, we will discuss in

detail how these algorithms work.

“Defense is the stronger form with
the negative object, and attack the
weaker form with the positive
object.”

- Ernest Hemingway

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

21 .
 | Chalmers University of Technology

3.1 Hopping Period, Align and Adjust Algorithm

The Hopping Period, Align and Adjust algorithm (Referred as to HOPERAA

in this thesis) is an adaptive algorithm, which is executed by each client when

its hopping period length and alignment drift apart from the server‟s; the latter,

ensure synchronization among the parties, without having to rely on a

“common synchronization” server.

Within a network, is very common for the clients to have local clocks which

differs from the one of the server, sometimes it could be slower and sometimes

faster; since the ports being used for communication become available and

unavailable over time, the periods of the Client and Server may start drifting

apart from each other after some time, causing messages loss due to the fact

that the Client may send messages to some of the Server‟s ports that has been

closed or not yet open due to asynchronous clocks. The HOPERAA algorithm

fulfill its objective by dealing with problems as the previous scenario and,

avoiding messages losses due to unsynchronized port hops.

3.1.1 HOPERAA’s Description

Before explaining how the algorithm works, first we set the following ground

rules and assumptions:

 Each communication party has its own clock and the clock rate of

each local clock is constant.

 The server's clock is used as reference for the whole operation hence

each client's clock drift is defined as the ratio between its own clock

and the server's clock rate.

 The client and server share a “common secret”, which is a pseudo-

random function “fψ” used to generate the port number for

transmission

 “μ” is the maximum round-trip delivery latency for the messages.

 This solution mitigates attacks based on the application layer;

therefore it‟s assumed that network is always available and attacks

depleting the bandwidth of the server's network are not considered.

 The server has a set of N ports (Port Number Space) available for

communicating with legitimate clients.

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

22 .
 | Chalmers University of Technology

 Ports opened at the server‟s side can be of two types, based on their

function. (1) Worker ports, used for receiving data messages from

the client or (2) Guard Ports, used for receiving coordination

messages from the client. Guard Ports can become worker ports after

some time.

 Worker ports are opened every “L” time units and, they remain open

for “L+ μ” time units. (figure 6)

Now that we have established a common ground, let‟s study how the solution

operates. Communication is achieved throughout these phases:

- Phase 1: Contact-Initialization

During this phase, the Client contacts the Server without any “well-

known” port being opened at neither the server‟s side nor, “C”

having to rely on a third-party to get the port information.

In order to achieve this, the server must do the following:

1. Divide the range of port numbers into “k” intervals

evenly.

2. Open “k” different guard ports at the same time, one of

them per one interval, and changes them every “τ” time

units.

0 0.3 0.4 0.6 0.7 0.9 1.2 1.3 1.6 1.0

Port (i)

Port (i + 1)

Port (i + 2)

Port (i + 3)

Port (i + 4)

Figure 6: Assuming that L=0.3 and μ = 0.1, the worker ports at the server side will open

and close as above presented.

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

23 .
 | Chalmers University of Technology

After the server has executed the previous actions, the algorithm

then performs like this:

1. Client tries to contact the Server by sending “contact-

initiation messages” to all the ports in a randomly-chosen

interval. In this message the Client includes a timestamp

“time” with the time at which the message was sent.

2. When the Server receives the “contact-initiation

message”, it waits until the next worker port opens, open

a session for the Client who contacted it and replies with

the following information:

a. “σ”, seed used to compute the next worker port.

b. “time”, Timestamp at which the reply was sent.

c. “t1”, time at which the Server received the

contact-initiation message from the Client.

d. “h1”, timestamp at which the Client sent the

contact-initiation message

3. If the Server doesn‟t receive any message from the Client

by the next worker port, the session opened in the step 2

will be closed; on the other hand, if the Client doesn‟t

receive any reply from the Server, after “2μ +L” time

units it will send “contact-initiation messages” to another

randomly chosen interval.

The actions described above, from both Client and Server, are

presented as an algorithm in figure 7.

Figure 7: (1) Algorithm for the Client in the Contact-Initiation Phase

 (2) Algorithm for the Server in the Contact-Initiation Phase

Tc = undef;

Reply = false;

 Sending contact-initiation messages:

while (Reply == false) do

 I = SELECT (Ii | i ε {1, 2, ..., k})

 for (all ports in „I‟) do

 SEND (init, time, p)

 end for

 WAIT (2μ +L)

end while

 After receiving (init, time, p):

 t1 = time(now);

 If (session == undef) then

 OPEN (session, C);

 h1 = time;

 end if

 WAIT (Next worker port opens)

 SEND (reply, σ, timestamp, h1, t1)

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

24 .
 | Chalmers University of Technology

- Phase 2: HOPERAA Execution

“Roughly speaking, after the contact-initiation phase, the application

data from C to S is sent out through ports of S that change with

period L time units of S‟s clock, corresponding to „Pc‟ time units in

C‟s clock (initially Pc = L)” [5] however, before actually start

sending data to the Server, the Client has to perform the actions

described in this section. As previously mentioned, this phase is

reached after the Client has received the reply from the Server and,

before it starts sending Data Packets; in this phase, the HOPERAA

algorithm uses the clock‟s information, from the exchanged

messages, to determine whether the Client‟s clock is slower or faster

than the Server‟s and, based on such, it takes the proper actions to

ensure successful data transmission. The reply sent by the Server to

the Client is structured as follows:

Pkt (reply, h1, t1, timestamp, seed)

In order to keep synchronous communication in between the parties,

the following actions are performed:

1. The “HOPERAA execution interval” is initiated to 0.

2. The Client initializes the following variables:

a. Hc (t4) = Time at which the Client received the

reply from the Server.

b. Hc (t1) = h1

c. t2 = t1

d. t3 = timestamp

3. The Client, bounds its clock drift using the following:

 ρLow ≤ ρ ≤ ρUp

Where:

4. The “HOPERAA execution interval” is calculated based

on the following conditions:

a. If (ρLow < ρUp < 1) then

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

25 .
 | Chalmers University of Technology

b. If (1 < ρLow < ρUp) then

c. If (ρLow < 1) and (1 < ρUp) then

5. The “HOPERAA execution interval” and the value of

“Pc” are both adjusted based on the following conditions:

a. If (1 ≤ ρLow ≤ ρUp) then Pc = L (ρLow) and

b. If (ρLow ≤ ρUp ≤ 1) then Pc = L (ρUp) and

c. If none of the conditions above are fulfilled then,

do nothing.

Figure 8: Algorithm used by the Client to send Data to the Server.

 Receiving (reply, σ, timestamp, h1, t1):

if (Reply == false) then

 Reply = True;

 Tc = 0;

 Pc = L;

 /* Start sending DATA */

 Seq = 0;

 Pold = f ψ (σ);

 Pnew = f ψ (σ + 1);

 While true do

 SEND (Data, Pold)

 If (i(Pc) - µ ≤ Tc ≤ i(Pc)) then

 SEND (Data, Pold)

 end if

 If (Tc == i(Pc)) then

 Pold = Pnew;

 Pnew = f ψ (σ + i + 1);

 i ++;

 end if

 end while

end if

HOPERAA Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

26 .
 | Chalmers University of Technology

- Phase 3: Data Transmission

This phase is executed immediately after the Client has finished with

the calculation from “phase 2” and, the following actions are taken:

1. As soon as the Client receives the reply, it performs the

following:

a. Sets its internal timer “Tc” to 0. This variable

increases at the same rate as the client‟s local

clock.

b. Uses the seed “σ” and pseudo-random function

“fψ” to generate the worker ports Pi = fψ(σ) and

Pi+1 = fψ(σ+1).

2. After calculating the worker ports, the Client will send

the data messages immediately to Pi.

3. During the interval “[i(Pc) - µ ≤ Tc ≤ i(Pc)]”, messages

will be sent to both “Pi” and “Pi + 1”.

4. When “Tc becomes equal to “i(Pc)”, “Pi” changes its

value for the one of “Pi+1” and “Pi+1” is recalculated by

using “fψ(σ+i+1)”, at every i ε N*. Roughly speaking, we

can say that “i” acts as an index, whose initial value is 1,

and it increases every time “Pi” and “pi+1” are updated.

Depending on the value of the HOPERAAA execution interval, the

transmission may be stopped to execute Phase 1 and 2; however,

data transmission will be resumed after the latter two phases

accomplish their purpose.

Actions described above, are presented as an algorithm in figure 8.

- Phase 4: Termination

The Client will end the communication, by sending a “termination-

message” and getting it acknowledged by the Server.

We tried to develop this section so that it would be as comprehensible as

possible however; if something is not clear and to avoid confusions, we

strongly recommend that the reader refers to reference [5] for more details on

specific issues.

BIG WHEEL Algorithm 3. A PORT HOPPING APROACH AGAINST DDoS

27 .
 | Chalmers University of Technology

3.2 BIG WHEEL Algorithm

In this section the BIG WHEEL algorithm is considered to deal with multi-

party communication, supporting several Clients connected to the same Server.

Since each Client follows the Server‟s hopping procedure, and take the

Server‟s clock as reference, they are capable of communicate independently

from each other.

When using BIG WHEEL, worker ports still remain open for “L + μ” units of

time but now the Server will support “m” port number sequences instead of

just one, as in the previous section (see figure 9); this afford more clients and

also decrease the maximum waiting time for each one of them. In the Clients

side, by using λ and the pseudo-random function “f ψ” it is possible to generate

different port number sequences if different values of λ are given.

Apart from these changes, the phases previously explained and the actions

performed in each one of them are the same, so when the server receives a

contact-initiation message from the Clients, it will send the reply at the closest

opening time of a worker port (considering all “m” sequences) along with the

corresponding value of λ for the sequence to which that worker port belongs.

The pseudo-code is the following:

Figure 9: Shows the situation of m = 3 and the open time of P0
i is t.

 Buffer B stores all contact-initiation messages received

 Whenever is time to open a new port from any of the “m” intervals:

if (time(now) == OpenTime Pi
J) then

 λ = Corresponding value for sequence “j”

 σ = Corresponding value for Pi
J;

 for all clients in B do
 if (session == undef) then

 OPEN(session, C)

 h1 = timestamp of the corresponding contact-initiation message

 end if

 SEND(reply, σ, timestamp, h1, t1,λ)

 end for

 CLEAR(buffer B)

28 .
 | Chalmers University of Technology

 4

Implementation

in ns-2

In this chapter, we present an extensive and detailed explanation of how the

framework, explained in the previous chapter, was implemented in the

Network Simulator. First, we give a general impression on the network

simulator and briefly discuss its basic structure, components, capabilities, etc.

Since HOPERAA was implemented in ns by introducing a new Agent,

throughout the second section we give an extensive explanation of how

HOPERAA was implemented, the steps followed to simulate the algorithm and

how to configure the simulator in order to support this new agent. One of the

major breakthroughs of the HOPERAA algorithm is its ability to “hop”

synchronously among different ports, when the parties involved have different

clock rates; the strategy followed, in order to attain the latter, is also described

in this chapter. In the last section, we present a practical approach of how the

HOPERAA algorithm would function on a single Client/Server model (by

using hand-derived calculations) then, we explain the outcome from each step

and how each variable calculated would behave depending on the situation.

We believe this is important since, it will help the reader to understand how the

pseudo-code described in chapter 3 “looks like” in a practical environment,

what sort of adjustment are expected from each time HOPERAA is executed

but more importantly, this will set a baseline in understanding what the values

obtained mean and what the expected performance will be.

“There are no secrets to success. It is
the result of preparation, hard work,
and learning from failure.”

- Colin Powell

Ns-2 Simulator 4. IMPLEMENTATION IN Ns-2

29 .
 | Chalmers University of Technology

4.1 The Network Simulator (ns)

In this section we use [26] to give a general impression on the network

simulator (commonly known as ns-2, in reference to its current generation). Ns

is a discrete event network simulator, developed at UC Berkeley, capable of

simulate a wide variety of IP networks. It implements network protocols such

as TCP and UPD; it can model traffic sources such as FTP, Telnet, Web, CBR

and VBR; router queue management mechanism like Drop Tail, RED, CBQ

and more. Apart from the already mentioned, one of the main reasons why ns

was chosen as a tool for this thesis is because of its flexibility, since its open

source and it offers a plentiful online documentation, it is possible to extend its

original capabilities into fulfilling a special purpose. (As we will demonstrate

further in this chapter)

Ns was built in C++ and provides a simulation interface through OTcl, an

object-oriented dialect of Tcl. The user describes a network topology by

writing OTcl scripts, and then the main ns program simulates that topology

with specified parameters. Currently ns development is supported through

DARPA with SAMAN and through NSF with CONSER, both in collaboration

with other researchers including ACIRI.

4.1.1 Ns’ Fundamentals

The simulator‟s version used in this thesis is ns - 2.31. This section talks

briefly about the basic structure of ns and most of the information, used in

describing the ns basic structure and network components, can be found in the

5th VINT/ns Simulator Tutorial/Workshop slides and the ns Manual (formerly

called "ns Notes and Documentation") [25] and [22] respectively. In its most

basic definition, ns is an Object-oriented Tcl script interpreter which offers

several components such as a simulation event scheduler, network component

object libraries, and network setup module libraries. In other words, to setup

and run a simulation network, a user has to write an OTcl script that initiates

an event scheduler, sets up the network topology using the network objects and

execute specific actions throughout the simulation time.

All the different elements, necessary to build a specific topology, are defined

in the simulator‟s object library, so users have the possibility of using a

predefined object from this library or create a new network object to

accomplish a specific task.

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Tcl

Ns-2 Simulator 4. IMPLEMENTATION IN Ns-2

30 .
 | Chalmers University of Technology

The event scheduler in ns is the one responsible for keeping track of the

simulation time and, when the time is right, firing a particular event from the

event queue; even if two or more events were scheduled to execute at the same

time, since ns offers a single thread of control, the risk of locking or race

conditions is inexistent. Each event scheduled, happens in an instant of virtual

(simulated) time but, takes an arbitrary amount of real time to execute.

As we previously mentioned in the first section, ns uses two languages (OTcl

and C++); the reason for this, is because it has two different kinds of things it

needs to do. For instance, a detailed simulation of protocols requires of a

programming language which can efficiently manipulate bytes, packet headers,

and implement algorithms that run over large data sets. For these tasks, run-

time speed is important and turn-around time (run simulation, find bug, fix

bug, recompile, re-run) is not; on the other hand, a large part of network

research involves slightly varying parameters or configurations, or quickly

exploring a number of scenarios and for these tasks, turn-around time becomes

a priority thus need for another language. In simpler words, C++ is fast to run

but slower to change which makes it suitable for detailed protocol

implementation; conversely, OTcl runs much slower but can be changed very

quickly (and interactively), making it ideal for simulation configuration. As

recommended by [22], having two languages raises the question of which

language should be used for what purpose; their basic advice is:

In order to obtain NS simulation results, the first step is to create a Tcl script,

feed it to the simulator and, when the simulation of such script is finished, NS

will produce one or more text-based output files containing detailed simulation

data; the data then, can be used for simulation analysis or as an input to a

graphical simulation display tool called Network Animator (NAM).

Tcl

 Simple Configuration

and Setup Scenario.

 If the problem can be

modeled using any of

the already defined

Tcl modules.

C++

 Anything that requires

processing each packet

 If it is necessary to

modify the behavior of

an existing module or

create a new one.

Ns-2 Simulator 4. IMPLEMENTATION IN Ns-2

31 .
 | Chalmers University of Technology

In this work, we used Nam as an aid to obtain a visual demonstration of NS

output and have a general overview of how the implementation behaves. NAM

was developed as a part of VINT project and it offers a graphical user interface

similar to that of a CD player (play, fast forward, rewind, and pause) as well as

a display speed controller; although it can graphically present information such

as throughput and number of packet drops at each link, the graphical

information derived from NAM alone, cannot be used for accurate simulation

analysis. [26]

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

32 .
 | Chalmers University of Technology

4.2 HOPERAA implementation in ns-2

In this section we will discuss in detail how HOPERAA was implemented in

ns-2; we will cover different topics from what changes were made to the ns

source files in order to add a new agent, how the clock‟s drifts were simulated,

the structure of the packets created for the HOPERAA agent, etc.

First of all, HOPERAA was implemented in ns-2 as a whole new agent due to

the nature of the algorithm, from chapter 3 is easy to notice that in order to

make it work, it is necessary to define a new type of packet which includes all

the information related specifically to the algorithm also, this new entity

should be able of processing each packet and derive an specific action based on

the time it was received; because of these, and many other reasons, we decided

that the easiest way to do it was to implement a new agent capable of dealing

directly with all the actions involved in the HOPERAA Algorithm. In the

following section, we explain more in deep how the whole simulation was

defined and all the steps taken in order to cover these specific needs.

4.2.1 Adding the new Agent into ns-2

Whenever is necessary to add new agents into ns-2, there are several steps that

have to be followed; reference [24] is the one we used as guideline to create

our new agent and, to configure the simulator so that this new hoperaa agent

could be invoked from the OTcl script.

As previously discussed, we will need to create a new type of packet which

will include all the information necessary for the HOPERAA algorithm (struct

„hdr_hoperaa‟ in „hoperaa.h‟); for this, we defined a new packet type for the

hoperaa agent. The first step to achieve the latter is to edit the file 'ns-

2.xx/common/packet.h' and include the new definition for PT_HOPERAA:

enum packet_t {

 ………………......

 // insert new packet types here

 ………………......

 PT_HOPERAA, //Packet protocol ID for HOPERAA

 PT_NTYPE // This MUST be the LAST one

};

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

33 .
 | Chalmers University of Technology

Also in this file, is necessary to edit the pinfo() as follows:

The file 'ns-2.xx/tcl/lib/ns-default.tcl' has to be edited too. This is the file

where all default values for the Tcl objects are defined; it is necessary to make

sure that in this file insert the following lines to set the default value for the

packet size and the variables bound in „hoperaa.cc‟ (see Appendix section),

otherwise when the Otcl script is interpreted by ns, warning messages will be

displayed.

Finally, add into the list of object files, in the 'Makefile', one entry for each

new cc file defined and recompile ns by typing 'make' in the ns directory.

Remember to do a 'make depend' before you do the 'make', otherwise these two

files might not be recompiled.

class p_info {

public:

 p_info() {

 name_[PT_TCP]= "tcp";

 name_[PT_UDP]= "udp";

 ...

 name_[PT_TFRC]= "tcpFriend";

 name_[PT_HOPERAA]="hoperaa";

 name_[PT_NTYPE]= "undefined";

 }

 …

Agent/hoperaa set packetSize_ 40

Agent/hoperaa set periodL_ 0

Agent/hoperaa set maxDeliveryLatency_ 0

Agent/hoperaa set totalPackets_ 0

Agent/hoperaa set noIntervals_ 0

Agent/hoperaa set cDrift_ 0

Agent/hoperaa set deltaTime_ 0

Agent/hoperaa set noSequences_ 0

Agent/hoperaa set totalPorts_ 0

Agent/hoperaa set sessionStatus_ 0

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

34 .
 | Chalmers University of Technology

4.2.2 HOPERAA Packet taxonomy

This new agent will communicate with other agents alike by sending hoperaa

packets; in these packets we include the following information:

1. A control variable which takes different values depending on the step

the HOPERAA algorithm is in.

2. A time-stamp which is used by the involved parties to determine the

sending time from each packet and initialize variables from the

HOPERAA algorithm such as „h1‟ or ‟t3‟ depending the case. (Look

at chapter 3 for more information)

3. The seed value with which the receiver can calculate the next port

that will be used for data transmission. (known as worker port)

4. The time at which the Server received the first contact initialization

message from the Client (t1).

5. The time-stamp from the first contact initialization message received

by the Server (h1).

6. And in the case of the BIG WHEEL algorithm, we include also the

value of „λ‟ which is used, in conjunction with the seed, to calculate

the next worker port.

Each packet coming out from a hoperaa agent has this structure; however in

some cases, like for example during the contact initialization phase, fields like

„h1‟,‟seed‟ and „t1‟are not filled in since those are only used for when the

Server sends the reply back to the client.

We are aware that the code might not be the best possible implementation and,

it could always be improved or extended, that is why the definition of the

packet can be found in „struct hdr_hoperaa‟ inside „hoperaa.h‟ at the appendix

section.

4.2.3 HOPERAA in relation to ns

So far we have pointed out the presence of hoperaa agents and hoperaa packets

however, in this section we will explain the role of this agent into the

simulation and, more importantly, how does it relates to the rest of the objects

from ns.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

35 .
 | Chalmers University of Technology

In our simulation, the topology is basically constructed using the following

elements:

- Hoperaa Agents

This agent is responsible of transmitting all the information required

by Hoperaa thus, is the one sending “hoperaa packets” from one

point to the other. This entity is responsible of sending all the

contact messages during the contact initialization phase also, is the

one who calculates the ”Hoperaa execution interval” when the reply

from the server has been received and, it schedules the next time at

which the client must re-synchronize with the server. (There is an

agent of this kind attached to the Server and, to each Client in the

simulation)

- TCP Agents

For our simulation, we are considering TCP as a protocol so we are

using ns-2 Tahoe TCP agent “Agent/TCP” to simulate such

behavior. (This agent is present at the client‟s side only)

- FTP applications

We are using this entity, attached to the TCP agent, to generate

traffic for our simulation. (This agent is present at the client‟s side

only and, has to be attached to the TCP agent)

- TCP-Sinks

This agent is used to receive the traffic generated from the FTP

application and transmitted through the TCP agent; for this we are

using a base TCP sink object “Agent/TCPSink” which is responsible

for returning ACKs to a TCP source object for each packet received.

(This agent is attached at the Server‟s side only)

- Duplex Links

Used to connect the nodes with each other and achieve data

communication in between the parties.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

36 .
 | Chalmers University of Technology

Now that we know which elements are involved, we can start explaining how

all of them relate to each other. The best way to explain this is with an

example, let assume that we have the following topology in ns:

Internally, the Client node is constructed like this:

Alternatively the structure of the Server node is the following:

Node

Port

Classifier

0

1

entry_

Address

Classifier

classifier_

demux_

agents_

 Agent/Hoperaa

Agent/Tcp

 Application/Ftp

dst_addr : 1

Link “node 0” to “node 1”

Node Entry

Node

Port

Classifier

1

0

 entry_

Address

Classifier

 classifier_

demux_

agents_

 Agent/Hoperaa

 Agent/Tcp-Sink

Link “node 1” to “node 0”)

Node Entry

1 0

Client Server

Duplex Link

Figure 10: Shows a Single Client – Server Topology.

Figure 11: Shows the internal structure of a Client Node, its

agents and internal communication links.

Figure 12: Shows the internal structure of a Server Node, its

agents and internal communication links.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

37 .
 | Chalmers University of Technology

Now, let‟s say that the Client wants to communicate with the server so, the

Server node first has to divide the range of port numbers into ‟k‟ intervals

evenly (See chapter 3). The latter is achieved through the hoperaa agent, which

is also responsible of opening ‟k‟ different ports (one port per one interval) and

change them every ‟τ‟ time unit; in each opened port, the hoperaa agent will be

the responsible of receiving the contact initialization messages from the Client

and store the timestamp values from such contact.

The first step for the Client node, is to reach the Server by starting the

‟Contact-Initialization‟ phase, for this the node uses its own hoperaa agent

which will send contact initialization messages to all the ports in a randomly

chosen interval. When one of those messages arrive in one of the open ports,

the hoperaa agent from the server will process such message accordingly and

will send the reply at the moment the next worker port is opened hence,

sending the Client all the data it needs to calculate the Hoperaa Execution

Interval. When the packet is received at the Client‟s side, it is processed by the

hoperaa Agent which will calculate the Hoperaa Execution Interval and,

according to this value, will schedule when to re-synchronize with the Server.

Once the hoperaa agent has finished its calculation, it will use the seed

(received from the hoperaa packet) to calculate the value of the worker ports

“Pold” and “Pnew”. After all of this is done, the hoperaa agent configures the

TCP agent so that this one send all the data to the specific port Pold, and hands

over the control to the latter agent which will command the FTP application to

start generating data packets. When it‟s time to re-synchronize with the Server,

the hoperaa agent will ”tell” the TCP agent to stop sending packets (which in

consequence will stop the FTP application) so that it can send contact

initialization messages to the Server and a new Hoperaa Execution Interval is

calculated. When the hoperaa agent at the Server‟s side receives the contact-

initialization message from the Client, it will check the stored values from the

timestamps of the first contact initialization message received and will send the

reply at the moment the next worker port is open thus, starting the described

process all over again.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

38 .
 | Chalmers University of Technology

4.2.4 Modifications to ns Source Code

Now that we have a better idea about how all the agents and elements from ns

relate to each other, there are some other changes we have to make. We didn‟t

explain these changes in the previous sections because we wanted to set the

proper background so that these modifications would make sense to the reader.

From the previous section, we know that the one responsible of transmitting

the data packets in the TCP agent and, the one responsible of receiving, and

sending the acknowledgment from each packet received is the TCP Sink; when

we were creating the topology for our simulations, we came across with the

following problems:

1. When it comes to TCP connection establishment in ns, the first

packet sent by the Client‟s TCP agent is a control packet which is

received by the TCP Sink at the Server‟s side and replied with an

ACK, this allows the Client to start sending the data packets (It

simulates the way TCP performs the Connection establishment in

between 2 parties, however ns uses a two-way handshake); the

problem arises when we have a scenario in which two or more clients

contact the Server at the same time and, have to share the same

worker port for a period of time; since for each TCP agent there has

to be a TCP Sink associated, in the previous scenario we needed to

attach the 2 TCP Sinks at the same port (so that it could receive data

from Client 1 and Client 2) and the predicament was, that when you

do that in ns (setting two TCP Sinks at the same port), although both

sinks will receive such contact packet only one reply will be sent.

The problem with this is that since only one of the Clients received

the reply, the other one will have to wait unnecessarily and contact

the Server at another time hence, interfering with the correct

development of our implementation. (Look at ”test1.tcl” in the

appendix section for an example of this situation)

To give solution to this problem, we modified “tcp-sink.cc”, by

including the following code inside “void TcpSink::ack(Packet*

opkt)”:

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

39 .
 | Chalmers University of Technology

2. In contrast, another problem we came across with was how to

achieve packet replication when the HOPERAA algorithm requires

it? As we know from the previous chapter, in HOPERAA there will

be an interval in which the Client will have to send the exact same

packets to “Pold” and “Pnew” alike; this becomes a problem when

simulating in ns because the original TCP agent does have the

capability of sending an exact replica of the packet to 2 different

ports at the same time.

The solution to this problem required for us to bound into “tcp.cc” a

new variable called “replicate_”; the default value of this variable

must be “-1” and whenever it takes a different value, the TCP agent

will send a copy of the packet to the port given by the new value of

“replicate_”. Once the variable “replicate_” has been included in the

code, the following has to be included in “void TcpAgent::output (int

seqno, int reason)”:

void TcpSink::ack(Packet* opkt)

{

 Packet* npkt = allocpkt();

 // opkt is the "old" packet that was received

 ………………………………………………………….

 // Andrei Gurtov

 acker_->last_ack_sent_ = ntcp->seqno();

 // printf("ACK %d ts %f\n", ntcp->seqno(), ntcp->ts_echo());

 hdr_ip *iph = hdr_ip::access(opkt);

 hdr_ip *iph_new = hdr_ip::access(npkt);

 iph_new->daddr() = iph->saddr();

 double t = Scheduler::instance().clock();

 printf("\n [TIME: %f : Sending ack to Packet #%d received in port %d

 from Node %d]",t,ntcp->seqno(),iph->dport(),iph_new->daddr());

 send(npkt, 0);

 // send it

}

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

40 .
 | Chalmers University of Technology

4.2.5 Simulating Clock Drifts in ns

Simulating different clocks for each node was another problem that we faced

when implementing the algorithm in ns. Since the simulator is running in a

single computer, we had to find a way to ensure that each Client would have a

different clock than the one used by the Server so that the time-stamps from

the packets, would diverge thus obtaining relevant results. In order to achieve

the latter, we used a very simple approach; let‟s assume that we have 3

different nodes, one of them is the Server and the other two are Clients, one of

the clients is running two times faster than the Server‟s clock (Client 1) and the

other one two times slower (Client 2).

From the previous statement we can conclude that we will use the Server‟s

Clock as a reference to simulate Clients running faster or slower depending on

the situation and, that we will need to simulate 3 different clocks in order to get

different timestamps out of all the hoperaa packets being transmitted. What we

did, was to use the simulator‟s clock for the Server and also as a reference for

the rest of the “Application Clocks” in each client so, for example, when we

say that the Client is two times faster than the Server then it means that for

each unit of time that passes for the Server two will have passed for the Client

and the same logic is applied for the Client that is two times slower.

void TcpAgent::output(int seqno, int reason)

{

 int force_set_rtx_timer = 0;

 ………………………………………………………….

 send(p, 0);

 if (replicate_ != -1) {

 // Declare “t” at the beginning of the file

 t = Scheduler::instance().clock();

 Packet* pa = allocpkt();

 pa=p->copy();

 hdr_tcp *tcph_pa = hdr_tcp::access(pa);

 hdr_ip *iph_pa = hdr_ip::access(pa);

 iph_pa->dport() = replicate_;

 printf("\n [TIME: %f : Node %d sends replicate (from packet#

 %d) to port %d]",t,addr(),tcph_pa->seqno(),replicate_);

 send (pa,0);

 }

 if (seqno == curseq_ && seqno > maxseq_)

 ………………………………………………………….

 }

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

41 .
 | Chalmers University of Technology

 Graphically speaking we will have the following timeline:

Based on the above, we “play” with the simulation time in order to obtain the

desired behavior out of each node. For example, every packet sent by the

Client 1 will be stamped with (simulator‟s time) * (2) and the same applies to

each action this agent performs; for instance, if the Client 1 has to send contact

initialization messages at time = 0.5 (on the client‟s clock) then it would mean

that ns will schedule such action to be executed at simulation time = 0.25. The

time-stamp from the packets received by the Server will have the value 0.5 and

the Server, when sending the reply, will stamp the packet with the actual

simulation time (since the Server‟s and the simulator‟s clock are the same); if

we assume that the server sent the reply at simulation time 0.3 and, it takes

0.05 to reach the Client 1, then it means that the Client will receive the packet

at 0.35 “simulation time” but at 0.65 according to the Client‟s clock; we do this

by subtracting 0.05 (the time it takes for the packet to travel from one point to

the other) from 0.35 and then multiplying the result 0.30 by 2 which is equal to

0.60 (this value represents the time on the Client 1‟s clock at which the packet

was sent by the Server). Finally we add the 0.05 that we subtracted at the

beginning hence obtaining 0.65 which is the time at which the reply was

received, according to the “application clock” in Client 1. This same logic

applies to the Client 2 although, instead of multiplying the simulator‟s time by

2, we divide it by such value. By doing this, we can achieve different time-

stamps in each packet that is being transmitted thus, obtaining significant

results whenever the Hoperaa Execution Interval is calculated.

We can use the timeline presented above, to map a relation in between the

“application time” from each node and the simulation time at which it

corresponds in ns.

Server – Timeline

(Simulator‟s time)
0.0 0.1 0.2 0.3 0.4

0.05 0.15 0.25 0.35

Client 1 - Timeline

0.0 0.2 0.4 0.6 0.8
0.1 0.3 0.5 0.7

Client 2 - Timeline

0.0 0.05 0.1 0.15 0.2
 0.025 0.075 0.125 0.175

Figure 13: Shows the relation in between the “application time”

from each node in contrast with the simulator‟s time.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

42 .
 | Chalmers University of Technology

4.2.6 Example: Single Client/Server Scenario

Before presenting the results obtained from implementing HOPERAA in ns,

we want to give a brief explanation of how the calculations are performed; this

will set a baseline in understanding what the values obtained mean and what

the expected performance will be.

For simplicity purposes in this case, let assume the following:

1. We will use a topology as the one showed in figure 10. (A single

Client/Server)

2. The Client will be 2 times faster than the Server. (See previous

section for further explanation)

3. We are assuming the following values of:

a. µ = 0.1

b. L = 0.3

Now, at time = 0 Client 1 will start the “Contact-Initialization” phase by

sending packets to all the ports in a randomly chosen interval. These packets

will have the following format:

Pkt (init, timestamp, port)

Where timestamp is equal to 0; the Server will receive a contact initialization

message at time = 0.05 (remember that µ is the round-trip maximum delivery

latency) and will wait until the next worker port is opened (t = 0.3). Since the

Client is 2 times faster than the Server, it means that at time =0.25, the Client‟s

clock will be 0.5 (2µ + L) and the Client will start the contact initialization

phase again (Since so far it hasn‟t gotten any reply from the Server) now with

the timestamp value 0.5. The server will receive another contact Initialization

message at time 0.30 but, it will send a reply with the information of the first

contact initialization message received:

Pkt (reply,h1, t1, timestamp, seed)

Where:

- h1 = 0.0

- t1 = 0.05

- Timestamp = 0.3

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

43 .
 | Chalmers University of Technology

The client will receive the replay at time = 0.65 and will give value to the

following variables:

- t2 = 0.05

- t3 = 0.30

- Hc (t1) = 0.0

- Hc (t4) = 0.65

Now, it will calculate the values of “ρUp” and “ρLow”:

- rhoUp = 2.60

- rhoLow = 1.45

Next, it will calculate the value of the hoperaa execution interval, which is the

variable responsible of determining when to execute Hoperaa again:

- Since both “rhoUp” and “rhoLow” larger than 1, the hoperaa

execution Interval is 0.162441 (Look at chapter 3 for more detail

of how this result was obtained.)

Finally, it will adjust the value of the variable Pc and will calculate the value of

the hoperaa execution interval if necessary. In this case, since “1 ≤ rhoLow ≤

rhoUp” the updated values of Pc and Hoperaa Execution Interval are:

- hopExeInt = 0.327

- Pc = 0.435

From the above calculation, we can conclude following:

1. The next resynchronization will be at time = 0.65 + 0.327 = 0.977

which means that it will be scheduled in ns at time = 0.977 / 2 =

0.489. (Look at previous section)

2. The original value of Pc was 0.3 (Pc = L) so, this new value is the

algorithm‟s adjustment in order to determine at which rate the

Server‟s Worker ports are being opened.

3. The values of “rhoUp” and “rhoLow” will determine just how big the

drift in between the Client and the server‟s clock is.

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

44 .
 | Chalmers University of Technology

Let‟s assume that we allow Hoperaa to execute for a second time at time =

0.977. At this point, Client 1 will start the “Contact-Initialization” phase by

sending packets to all the ports in a randomly chosen interval. These packets

will have the following format:

Pkt (init, timestamp, port)

Where timestamp is equal to 0.977; the Server will receive a contact

initialization message at time = 0.539 and will wait until the next worker port

is opened (t = 0.6). At time 0.60 the Server will send a reply with the

information of the first contact initialization message received:

Pkt (reply,h1, t1, timestamp, seed)

Where:

- h1 = 0.0

- t1 = 0.05

- Timestamp = 0.6

Once again, the client will receive the replay at time = 1.25 and will give value

to the following variables:

- t2 = 0.05

- t3 = 0.60

- Hc (t1) = 0.0

- Hc (t4) = 1.25

Now, it will calculate the values of “ρUp” and “ρLow”:

- rhoUp = 2.27

- rhoLow = 1.66

Next, the value of the hoperaa execution interval will be:

- Since both “rhoUp” and “rhoLow” larger than 1, the hoperaa

execution Interval is 0.179

HOPERAA implementation in Ns-2 4. IMPLEMENTATION IN Ns-2

45 .
 | Chalmers University of Technology

Finally, it will adjust the value of the variable Pc and will calculate the value of

the hoperaa execution interval if necessary.

In this case, since “1 ≤ rhoLow ≤ rhoUp” the updated values of Pc and

Hoperaa Execution Interval are:

- hopExeInt = 0.62

- Pc = 0.50

Even though Hoperaa was simulated only 2 times in this brief example; based

on [5], we can expect the following behavior:

1. If we were to continue with the simulation, we will notice that the

Hoperaa Execution Intervals are increasing every time the

resynchronization phase is executed; this means that, as the

simulation goes on, the Client is capable of sending more and more

data before it has to stop to resynchronize with the Server.

2. We also notice that the value of Pc is being updated every time;

however, if we were to continue with the simulation we will notice

that eventually “Pc ≈ 0.6” The reason for this is because the Client is

2 times faster than the Server and, Pc represents the period of time

(for the client‟s clock) at which the worker ports are being opened on

the Server‟s side. (Roughly speaking such value would be “L * 2” for

this case)

3. Finally, the values of “rhoUp” and “rhoLow” represent the drift in

between the Client and the Server. If we were to continue with the

simulation, we will notice that the range “ρLow ≤ ρ ≤ ρUp” will

eventually become closer to 2 which would mean that the Clock from

the Client is “ρ = 2” times faster than the Clock from the Server.

We believe that at this point, the reader should have a better understanding of

exactly how the algorithm works and also a clearer idea of how all the

information, from the previous chapters, fall into place in the simulation. In the

next sections we will, extend this scenario as part of a full simulation and

endorse, with more concrete results, that the Hoperaa Implementation performs

as described.

Study Case 2 5. ANALYSIS AND EVALUATION

46 .
 | Chalmers University of Technology

 5
Analysis and

Evaluation

In chapter 4, we gave an overview about how the HOPERAA was

implemented in the simulator; in this chapter, we focus our efforts on studying

how the implementation will behave under specific conditions, in order to

understand the framework and how is it affected when certain changes are

applied. Throughout this chapter we demonstrate, with more concrete results,

that the Hoperaa Implementation performs as described in [5] and also, we will

present and analyze the results obtained from simulating different scenarios in

ns. By using this approach, we will fulfill two important purposes, the first one

is to show that the simulation is consistent with the expected behavior from the

algorithm and, the second one is to make evident how each one of the elements

involved relate and affect each other depending on their different values and

particular circumstances; results obtained from each case scenario will be

presented, and analyzed, all throughout the following sections.

” Curiosity begins as an act of
tearing to pieces or analysis.”

- Samuel Alexander

Study Case 2 5. ANALYSIS AND EVALUATION

47 .
 | Chalmers University of Technology

5.1 Study Case 1: Single Client/Server Scenario

5.1.1 Experiment Specification

As previously mentioned, this first Study Case will be used to endorse with

more concrete results that the Hoperaa Implementation performs as described

in [5]. In this Scenario we study a first approach of the HOPERAA algorithm

by running a simulation of the framework on a single Client/Server scenario.

For this we will use a similar configuration as the one presented in the

“Example 1”.

Figure 14 presents the topology being used for this case and, as we can see

from comparing figure 14 and figure 10, the topology differs a little from the

one used previously. For this case, we are using a three node topology in which

the nodes labeled “Client 1” and “Central Directory” are the ones

communicating with each other using HOPERAA; node 4, the node in

between, works only as an intermediary in the communication and no

“Hoperaa agent” has been attached to it hence, takes no part in the algorithm;

we developed this topology to demonstrate that, due to the natural attributes

from NS, we can place as many nodes in between as necessary and still, node

“Client 1” will be able to successfully communicate with the “Central

Directory”.

Figure 14: Shows a Single Client/Server topology as presented

by NAM using Ns.

Study Case 2 5. ANALYSIS AND EVALUATION

48 .
 | Chalmers University of Technology

The function of a node when it receives a packet is to examine the packet's

fields, usually its destination address, and on occasion, its source address so,

when “Client 1” sends a packet for “Central Directory”, the node(s) in between

will check the header in the packet received and, will process it accordingly; in

this case, such action is to forward it so that it reaches the proper node, “Node

0”. Figure 14 differs from the figures used so far because, it shows exactly how

the topology looks in NAM when using the results obtained from ns to produce

a graphic simulation. From now on we will use this kind of images to present

how the scenarios look when implemented in ns.

For this study case, we will use the following specifications:

1. µ = 0.1

Since “µ” is the packet “round-trip maximum delivery latency” this

means that the packet takes 0.05 milliseconds to go from point A to

point B (in this case “Client 1” to “Central Directory”) so, for

simulation purposes, the packets takes 0.025 milliseconds to go from

Node 1 to Node 4 and then 0.025 milliseconds to go from Node 4 to

Node 0.

2. L = 0.3

The Server opens Worker Ports every 0.3 milliseconds.

3. τ = 1

The Server changes “guard ports” every 1 second.

4. A single sequence of 6000 ports, divided into 6 different intervals.

The elements above presented are general for each case but, in order to identify

specific behaviors, we will use different study scenarios:

- Scenario 5.1.1: Identify how the framework, and the elements

derived from its implementation, behaves when the Client is faster

than the Server. For this we will run different simulations on which

we will vary the value of “ρ” as follows:

 ρ = 2 | 3, ∆ = 0.1

When “ρ = 2” it means that the Clock from the Client is 2

times faster than the server‟s; intuitively, if “ρ = 3” then the

Client is 3 times faster than the Server.

Study Case 2 5. ANALYSIS AND EVALUATION

49 .
 | Chalmers University of Technology

- Scenario 5.1.2: This scenario will be somewhat similar to Scenario

5.1.1 but in this case, we will point out how the framework behaves

when the Client is slower than the Server. For this we will use:

 ρ = 0.33 | 0.5, ∆ = 0.1

When “ρ < 1” it means that the Client is Slower than the

Server hence, “ρ = 0.33” and “ρ = 0.5” represent the cases in

which the Client is 2 and 3 times slower than the Server,

respectively.

- Scenario 5.1.3: In this final approach, we will change the value of

delta “∆” from each simulation. First we will consider the case in

which the Client is faster than the Server and latter, another one in

which the Client is slower; the results obtained from this scenario

will indicate how “∆”affects the overall process.

 ρ = 2, ∆= 0.05 | 0.1 | 0.2

 ρ = 0.5, ∆= 0.05 | 0.1 | 0.2

For Scenario 5.1.3, it is important to mention lemma 5 from [5]:

“Using the HOPERAA algorithm, consider that client starts

sending data messages to port “p” at time “t” (according to the

Server’s Clock) and changes the destination port at t’

(according to the Server’s Clock). Then “t” will not be ∆ time

units smaller than the corresponding opening time of port “p”

by the Server, and t’ will not be ∆ time units greater than the

corresponding closing time of port “p” by the Server”.

The previous statement guarantees that the Client‟s hopping times will not drift

“∆” time units away from the server‟s. This statement was presented in [5] as

part of their study; however in this case (Scenario 5.3.3), we will focus on

understanding how this changes also affects other elements derived from the

implementation such as “rhoUp”, “rhoLow”, “Pc” or the “Hoperaa Execution

Intervals” growth.

Study Case 2 5. ANALYSIS AND EVALUATION

50 .
 | Chalmers University of Technology

5.1.2 Results’ Analysis: Scenario 5.1.1

For this first case, we will run two different simulations; both simulation will

use a “∆ = 0.1”and they will set a common background on how the algorithm

behaves under the assumption that the Client‟s Clock Drift “ρ” is constant and

greater than the Server‟s.

Next, we present table 1 and table 2 with the results obtained from simulating a

scenario in which “ρ = 2” and “ρ = 3”, correspondingly.

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0 0 0 0.3

2 0.325 1.44467 2.6007 0.4334

3 0.625 1.66682 2.2730 0.5000

4 6.325 1.96126 2.0240 0.5884

5 15.325 1.98383 2.0098 0.5951

6 24.325 1.98978 2.0062 0.5969

7 37.225 1.99331 2.0040 0.5980

8 61.225 1.99593 2.0025 0.5988

9 94.525 1.99736 2.0016 0.5992

10 144.325 1.99827 2.0010 0.5995

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0 0 0 0.3

2 0.325 1.8573 4.3340 0.5572

3 0.775 2.3847 3.4446 0.7154

4 1.225 2.5790 3.2668 0.7737

5 6.625 2.9121 3.0460 0.8736

6 10.675 2.9448 3.0284 0.8835

7 18.325 2.9676 3.0165 0.8903

8 27.775 2.9786 3.0108 0.8936

9 45.325 2.9868 3.0066 0.8960

10 78.175 2.9924 3.0038 0.8977

Table 1: Shows the results obtained from allowing the

simulation to run HOPERAA 9 times, using ρ = 2 and ∆ = 0.1.

Table 2: Shows the results obtained from allowing the

simulation to run HOPERAA 9 times, using ρ = 3 and ∆ = 0.1.

Study Case 2 5. ANALYSIS AND EVALUATION

51 .
 | Chalmers University of Technology

The tables in this and the remaining sections, they all will be organized in the

same manner; the first column represent the number of times HOPERAA was

executed, the second one illustrates the value of the “Hoperaa Execution

Intervals” derived from each time the Client re-synchronizes with the Server,

the third and forth correspond to the values “rhoLow” and “rhoUp” from the

range “ρLow ≤ ρ ≤ ρUp”; finally, the fifth one shows the value of “Pc” which,

as presented earlier, is used when sending application data from the Client to

the Server and, should be in between the range “L ≥ Pc ≤ ρL” being “L” its

original value and “ρL” its ideal. (For more information on what this variables

are look at Chapter 3)

As expected from the algorithms natural definition, we can notice the

following:

1. The value of “Pc”, depending on the case, is slowly being adjusted to

its “ideal value” 0.6 or 0.9. We can denote this behavior on Graph 1

and 2, “ρ=2” and “ρ=3” respectively, in which we can see that the

lines are growing dramatically throughout the first times HOPERAA

is executed and, the increment becomes less obvious as they come

closer to the values 0.6 and 0.9 correspondingly.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

Graph 1 (at the Left) presents the “Pc” grow rate for a simulation with “ρ = 2”

Graph 2 (at the right) presents the same grow rate but for a simulation where “ρ = 3”.

Pc Pc

Study Case 2 5. ANALYSIS AND EVALUATION

52 .
 | Chalmers University of Technology

2. From tables 1 and 2 and, observing the lines plotted in graphs 3 and

4, we can conclude that “rhoLow” and “rhoUp” both remain in

between the range “ρLow ≤ ρ ≤ ρUp” and, effectively approximating

to the values defined for each simulation; in Graph 3 we observe that

the range slowly closes around 2 and, in Graph 4 we note the same

behavior although the range approximates to 3.

3. Regardless of the value of “ρ”, by looking at Graph 5 and 6 we can

observe that the “Hoperaa Execution Intervals” increase

exponentially, as defined in [5], every time the resynchronization

phase is executed.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

Graph 5 (at the Left) presents the “Hoperaa Execution Interval” grow rate for a simulation with “ρ = 3”

Graph 6 (at the right) presents the same grow rate but for a simulation where “ρ = 2”.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9

Time Units

Number of Executions of HOPERAA

rhoLow

rhoUp

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1 2 3 4 5 6 7 8 9

Time Units

Number of Executions of HOPERAA

rhoLow

rhoUp

Graph 3 (at the Left) presents the values of “rhoLow” and “rhoUp” as the simulation progresses, when “ρ = 2”

Graph 4 (at the right) presents the same values of “rhoLow” and “rhoUp” but for a simulation where “ρ = 3”.

ρ ρ

HopExcInt
HopExcInt

Study Case 2 5. ANALYSIS AND EVALUATION

53 .
 | Chalmers University of Technology

5.1.3 Results’ Analysis: Scenario 5.1.2

In this instance, we use a similar configuration as the one used in the previous

scenario but now, we consider that the Client‟s Clock Drift “ρ” is constant and

smaller than the Server‟s. For this, we present table 3 and table 4 with the

results obtained from the simulation:

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0 0 0 0.3

2 0.100 0.4445 0.8001 0.2400

3 0.250 0.4762 0.5882 0.1765

4 3.475 0.4982 0.5055 0.1516

5 10.300 0.4994 0.5018 0.1505

6 16.300 0.4996 0.5012 0.1503

7 29.800 0.4998 0.5006 0.1502

8 53.500 0.4999 0.5004 0.1501

9 81.550 0.4999 0.5002 0.1501

10 127.150 0.5000 0.5001 0.1500

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.075 0.3334 0.6001 0.3

2 0.175 0.3334 0.4118 0.1800

3 2.825 0.3333 0.3373 0.1235

4 14.275 0.3333 0.3341 0.1012

5 26.975 0.3333 0.3337 0.1002

6 42.775 0.3333 0.3336 0.1001

7 69.225 0.3333 0.3335 0.1001

8 105.875 0.3333 0.3334 0.1000

9 159.875 0.3333 0.3334 0.1000

Table 3: Shows the results obtained from a topology in which the

Client is 2 times slower than the Server, ρ = 0.5 and ∆ = 0.1.

Table 4: Shows the results obtained from a topology in which the

Client is 3 times slower than the Server, ρ = 0.33 and ∆ = 0.1.

Study Case 2 5. ANALYSIS AND EVALUATION

54 .
 | Chalmers University of Technology

From table 3 and table 4, we notice the following:

1. In the previous case, we observed that when the Client was faster

than the Server, “rhoLow” and “rhoUp” were greater than 1 and

slowly being adjusted to “the number of times the Client was faster

than the Server”. In this case, we can see that “rhoLow” and “rhoUp”

are smaller than 1 and, are slowly approaching to the value

“1/number of times the Client is slower than the Server”. The latter is

evident when looking at graphs 7 and 8; if the Client is 2 times

slower than the Server then “rhoLow ≤ 0.5 ≤ rhoUp” since “1/2 =

0.5”and, “rhoLow ≤ 0.33 ≤ rhoUp”, when the Client is 3 times

slower than the Server, since “1/3 = 0.33”. We also notice that when

the Client is slower, the value of “rhoLow”, in comparison to the

value of “rhoUp”, requires little adjustment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

rhoLow

rhoUp

Graph 7 presents the values of “rhoLow” and “rhoUp” as the simulation

progresses, when the Client is 2 times slower than the Server.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

rhoLow

rhoUp

Graph 8 presents the values of “rhoLow” and “rhoUp” as the simulation

progresses, when the Client is 3 times slower than the Server.

ρ

ρ

Study Case 2 5. ANALYSIS AND EVALUATION

55 .
 | Chalmers University of Technology

2. Using tables 3 and 4, we know what the ideal value of “ρ” should be

so, by looking at graph 9 and 10 we can conclude that the value of

“Pc”, depending on the case, is slowly being adjusted to its “ideal

value = ρL”; when the Client is 2 times slower Pc should

approximate to “0.5(0.3) = 0.15” and, when the Client is 3 times

slower then Pc should slowly be adjusted to “0.33 (0.3) = 0.1”.

3. Just as observed in the previous scenario, regardless of the value of

“ρ” the “Hoperaa Execution Intervals” increase exponentially every

time the resynchronization phase is executed.

Graph 11 (at the Left) presents the “Hoperaa Execution Interval” growth rate for a simulation with “ρ = 0.5”

Graph 12 (at the right) presents the same grow rate but for a simulation where “ρ = 0.33”.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Time Units

Number of Executions of HOPERAA

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

Graph 9 (at the Left) presents the “Pc” growth rate for a simulation with “ρ = 0.5”

Graph 10 (at the right) presents the same grow rate but for a simulation where “ρ = 0.33”

Pc Pc

HopExcInt HopExcInt

Study Case 2 5. ANALYSIS AND EVALUATION

56 .
 | Chalmers University of Technology

5.1.4 Results’ Analysis: Scenario 5.1.3

For this Scenario we varied the value of delta “∆” from each simulation, in

order to indicate how this change affects the overall process. Next, we present

the results obtained from running different simulations, each one of them using

a different value of delta (“∆”). First we present the values obtained when

Client is 2 times faster than Server.

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.163 1.4450 2.6017 0.4335

2 0.313 1.6670 2.2734 0.5001

3 0.463 1.7622 2.1769 0.5287

4 1.663 1.9276 2.0463 0.5783

5 3.163 1.9613 2.0241 0.5884

6 4.213 1.9708 2.0180 0.5912

7 5.563 1.9778 2.0136 0.5933

8 7.063 1.9825 2.0107 0.5947

9 9.163 1.9865 2.0082 0.5959

10 11.713 1.9894 2.0064 0.5968

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.325 1.4447 2.6007 0.4334

2 0.625 1.6668 2.2730 0.5001

3 1.225 1.8149 2.1306 0.5445

4 2.425 1.9020 2.0639 0.5706

5 3.925 1.9383 2.0390 0.5815

6 6.025 1.9594 2.0252 0.5878

7 10.225 1.9759 2.0148 0.5928

8 15.625 1.9841 2.0097 0.5952

9 24.325 1.9898 2.0062 0.5969

10 36.625 1.9932 2.0041 0.5980

Table 5: Shows the results obtained from allowing the simulation to

run HOPERAA 10 times, using ρ = 2 and ∆ = 0.05.

Table 6: Shows the results obtained from allowing the

simulation to run HOPERAA 10 times, using ρ = 2 and ∆ = 0.1.

Study Case 2 5. ANALYSIS AND EVALUATION

57 .
 | Chalmers University of Technology

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.450 1.2859 3.0011 0.3858

2 1.050 1.6155 2.3336 0.4847

3 2.850 1.8388 2.1112 0.5516

4 6.450 1.9254 2.0477 0.5776

5 13.650 1.9641 2.0222 0.5892

6 28.050 1.9823 2.0108 0.5947

7 56.850 1.9913 2.0053 0.5974

8 114.450 1.9956 2.0026 0.5987

9 229.650 1.9978 2.0013 0.5994

10 469.050 1.9989 2.0006 0.5997

Now, table 8 to 10 present the values obtained in a simulation where the Client

is 2 times slower than Server.

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.050 0.4446 0.8005 0.2401

2 0.538 0.4943 0.5181 0.1554

3 1.213 0.4974 0.5079 0.1524

4 1.663 0.4981 0.5057 0.1517

5 2.750 0.4989 0.5034 0.1510

6 4.475 0.4993 0.5021 0.1506

7 6.275 0.4995 0.5015 0.1505

8 8.150 0.4996 0.5012 0.1503

9 11.113 0.4997 0.5008 0.1503

10 14.188 0.4998 0.5007 0.1502

Table 7: Shows the results obtained from allowing the

simulation to run HOPERAA 10 times, using ρ = 2 and ∆ = 0.2.

Table 8: Shows the results obtained from allowing the simulation to

run HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.05.

Study Case 2 5. ANALYSIS AND EVALUATION

58 .
 | Chalmers University of Technology

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.075 0.4287 1.0005 0.3000

2 0.225 0.4737 0.6001 0.1800

3 2.175 0.4971 0.5088 0.1526

4 3.375 0.4982 0.5056 0.1517

5 5.625 0.4989 0.5034 0.1510

6 9.750 0.4994 0.5019 0.1506

7 16.725 0.4996 0.5011 0.1503

8 28.200 0.4998 0.5007 0.1502

9 42.375 0.4999 0.5004 0.1501

10 64.650 0.4999 0.5003 0.1501

Hoperaa Times HopExecInt rhoLow rhoUp Pc

0 0 0 0 0.3

1 0.200 0.4446 0.8005 0.2402

2 0.500 0.4763 0.5884 0.1765

3 1.100 0.4889 0.5366 0.1610

4 3.350 0.4963 0.5115 0.1534

5 8.300 0.4985 0.5046 0.1514

6 34.250 0.4996 0.5011 0.1503

7 71.150 0.4998 0.5005 0.1502

8 164.900 0.4999 0.5002 0.1501

9 341.000 0.5000 0.5001 0.1500

10 692.150 0.5000 0.5001 0.1500

It is important to mention that, based on the results previously presented and

the ones from these tables, we notice that at the beginning every adjustment

results on a severe change on the value from each variable and, as the

simulation progresses, the adjustment becomes less radical; this is because, the

algorithm is designed to improve with each execution; therefore, in the early

stages the adjustment is very notorious since the original value is far from the

ideal but, as the simulation progresses, the values from “rhoUp”, “rhoLow”

and “Pc” they all approach closer to the ideal value making the changes less

apparent.

Table 9: Shows the results obtained from allowing the simulation to run

HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.1.

Table 10: Shows the results obtained from allowing the simulation to run

HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.2.

Study Case 2 5. ANALYSIS AND EVALUATION

59 .
 | Chalmers University of Technology

Now, using Graph 13 and 14 we can observe that, independently of the value

of “ρ”:

1. The “Hoperaa Execution Intervals” increase exponentially every time

the resynchronization phase is executed; which allows the Client to

send more data before it has to stop to resynchronize with the Server.

2. From the formula used to derive the “Hoperaa Execution interval”

(see Chapter 3), the value of the latter is intrinsically related to that

of Delta (“∆”) thus; the smaller Delta (“∆”) is, the slower the

“Hoperaa Execution Intervals” grow.

Graph 13 presents a comparison of the “Hoperaa Execution Interval” values

from each simulation when ρ = 2 and, ∆ is equal to 0.05, 0.1 and 0.2

1 2 3 4 5 6 7 8 9 10

delta = 0.05 0.1625 0.3125 0.4625 1.6625 3.1625 4.2125 5.5625 7.0625 9.1625 11.7125

delta = 0.1 0.325 0.625 1.225 2.425 3.925 6.025 10.225 15.625 24.325 36.625

delta = 0.2 0.450 1.050 2.850 6.450 13.650 28.050 56.850 114.450 229.650 469.050

0

50

100

150

200

250

300

350

400

450

500

Time Units

delta = 0.05

delta = 0.1

delta = 0.2

Graph 14 presents a comparison of the “Hoperaa Execution Interval” values

from each simulation when ρ = 0.5 and, ∆ is equal to 0.05, 0.1 and 0.2

1 2 3 4 5 6 7 8 9 10

delta = 0.05 0.050 0.538 1.213 1.663 2.750 4.475 6.275 8.150 11.113 14.188

delta = 0.1 0.075 0.225 2.175 3.375 5.625 9.750 16.725 28.200 42.375 64.650

delta = 0.2 0.200 0.500 1.100 3.350 8.300 34.250 71.150 164.900 341.000 692.150

0

100

200

300

400

500

600

700

800

Time Units

delta = 0.05

delta = 0.1

delta = 0.2

HopExcInt

HopExcInt

Study Case 2 5. ANALYSIS AND EVALUATION

60 .
 | Chalmers University of Technology

One of the advantages that we have by simulating the algorithm, rather than

implementing it in the “real world”, is that we know the exact value of “ρ”,

which represents the clock‟s drift in between the Client and the Sever. Using

graph 15 and 16 as a reference, we can conclude that in each case, the value of

Pc continuously becomes closer to its ideal value “0.6” and “0.15” depending

on the case and regardless of the value of “∆”.

Using Graph 17 and 18, we can show that the range “ρLow ≤ ρ ≤ ρUp” is

eventually enclosing around its ideal value “2” and “0.5” regardless of the

value of “∆”. In the mentioned graphs, the values from “rhoUp” and “rhoLow”

are represented by the lines above and below 2.0 and 0.5, depending on the

graph and the value of “ρ”.

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 1 2 3 4 5 6 7 8 9 10

Time Units

Numer of Executions of HOPERAA

Delta = 0.05

Delta = 0.1

Delta = 0.2

Graph 15 (at the Left) presents a comparison of how “Pc” is adjusted, depending on the value of “∆”, when ρ = 2.
Graph 16 (at the Right) presents a comparison of how “Pc” is adjusted, depending on the value of “∆”, when ρ = 0.5.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7 8 9 10

Time Units

Numer of Executions of HOPERAA

Delta = 0.05

Delta = 0.1

Delta = 0.2

Pc Pc

Graph 17 (at the Left) and 18 (at the Right) present a comparison of how “rhoUp” and “rhoLow” are adjusted,

depending on the value of “∆”, when ρ = 2 and ρ = 0.5, correspondingly.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

Delta = 0.05

Delta = 0.1

Delta = 0.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 2 3 4 5 6 7 8 9 10

Time Units

Number of Executions of HOPERAA

Delta = 0.05

Delta = 0.1

Delta = 0.2

ρ ρ

Study Case 2 5. ANALYSIS AND EVALUATION

61 .
 | Chalmers University of Technology

Thanks to the results presented in this section, we can corroborate:

1. That our implementation, behaves as described in [5].

2. That the description given at the end of the previous chapter (section

“Example 1”) holds as predicted.

3. The HOPERAA algorithm‟s behavior and, how the values of

“rhoUp”, “rhoLow” and “Pc” (derived from the framework‟s

execution) are adjusted throughout the simulation when the Client is

faster than the server and, vice versa.

4. How different values of “∆” affect the overall behavior of the

simulation in the different stages of the algorithm.

5. From the results obtained in Scenario 5.1.3, and looking at graphs 13

and 14; we can conclude that, out of all the variables derived from

implementing the framework, the “Hoperaa Execution Interval” is

the only one notoriously affected by the value of Delta (“∆”).

Study Case 2 5. ANALYSIS AND EVALUATION

62 .
 | Chalmers University of Technology

5.2 Study Case 2: Variable Clock Drifts

5.2.1 Experiment Specification

So far we have assumed that Clock Drift “ρ” in between the Client and the

Server remains constant throughout the whole communication process

however; although the following was never considered or assumed in the

original model [5], in this work we wanted to study how the algorithm would

behave when the clock drift from the Client changes unexpectedly at some

point during the transmission hence, it is no longer constant.

For the latter, we will use a similar scenario to the one used in the “Study Case

1” nevertheless, in this case the Client will start a communication with the

Server by having a particular Clock Drift “ρ” and, after HOPERAA has been

executed a specific number of times, the drift will change to “ρ + 1” for the

rest of the communication. For example, we can say that for the first 5 times

HOPERAA is executed the Clock Drift will be “2” and, from the 6
th

time on,

the drift will increase to “3” and will remain like that until the simulation has

finished. The latter will allow us to denote and study how the algorithm

behaves under these circumstances and what kinds of changes are observed in

the different variables involved such as “rhoLow”, “rhoUp”, “Pc” and the

“Hoperaa Execution Intervals”. First we will consider the case in which the

drift “ρ” changes from 2 to 3; then we will study the inverse scenario, in which

the drift “ρ” is originally 3 and then changes to 2; to finally consider the

extreme case in which the drift “ρ” changes from 2 to 3 and then from 3 to 4 to

remain as 4 throughout the whole communication process. As previously

discussed, we will use a topology as the one shown in figure 14 and using the

following specifications for the simulation:

1. ρ = 2 | 3 | 4

It means that the existent “Clock Drift” in between the Client and

Server will vary among these values. We are using the number of

times HOPERAA is executed, in order to determine when and which

value of “ρ” will be used for the rest of the communication process.

2. µ = 0.1

3. L = 0.3

4. τ = 1

5. ∆= 0.1

6. A single sequence of 1800 ports, divided into 9 different intervals.

Study Case 2 5. ANALYSIS AND EVALUATION

63 .
 | Chalmers University of Technology

5.2.2 Results’ Analysis

As stipulated previously, with this Study Case we want to study how the

algorithms performs when the assumed Clock Drift “ρ”, in between the Client

and the Server, does not remains constant throughout the whole

communication process.

Thanks to the results obtained in “Study Case 1” we have established a

common baseline of what kind of behavior is expected from each situation,

considering “ρ” as a constant variable now, let‟s observe what happens when

such condition is not longer imposed and “ρ” changes sometime along the

simulation. In this section we will study the following simulations:

1. The Client and Server have an original Clock Drift “ρ = 2” during the

first 6 times HOPERAA is executed and then, the Clock Drift

increases to “ρ = 3” for the rest of the simulation.

2. This Simulation is similar to the previous but in this case, the original

Clock Drift is “ρ = 3” and, after the 6
th

 time HOPERAA is executed,

it decreases to “ρ = 2”.

3. For the final case, we will consider a scenario in which the original

Clock Drift is “ρ = 2”, after the 5
th

 time HOPERAA is executed it

changes to “ρ = 3” and finally, after the 10
th

 time HOPERAA is

executed, it changes to “ρ = 4”.

Tables 11, 12 and 13 present the values obtained for each one of the scenarios

above described.

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0.150 1.0008 3.0003 0.3002
2 0.325 1.4451 2.6020 0.4335
3 0.625 1.6671 2.2735 0.5001
4 7.332 1.9665 2.0207 0.5900
5 18.132 1.9863 2.0083 0.5960
6 50.585 1.9951 2.0030 0.5985
7 127.939 3.1551 3.1629 0.9465
8 208.495 3.0946 3.0992 0.9284
9 346.018 3.0552 3.0579 0.9166

10 512.241 3.0356 3.0374 0.9107
11 831.023 3.0229 3.0240 0.9069
12 1298.905 3.0150 3.0157 0.9045

Table 11: Shows the results obtained from allowing the simulation to run

HOPERAA 6 times using ρ = 2, another 6 with ρ = 3, and ∆= 0.1.

Study Case 2 5. ANALYSIS AND EVALUATION

64 .
 | Chalmers University of Technology

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0.207 1.4009 4.3340 0.4203

2 0.475 2.1119 3.8026 0.6336

3 0.925 2.4672 3.3647 0.7402

4 1.525 2.6526 3.2111 0.7958

5 29.410 2.9798 3.0103 0.8940

6 48.549 2.9877 3.0062 0.8963

7 49.827 1.8641 1.8711 0.5592

8 85.976 1.9206 1.9249 0.5762

9 153.061 1.9549 1.9574 0.5865

10 243.049 1.9712 1.9728 0.5914

11 392.674 1.9811 1.9821 0.5943

12 658.823 1.9879 1.9885 0.5964

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0.325 1.4446 2.6003 0.4334

2 0.625 1.6667 2.2729 0.5

3 1.225 1.8149 2.1305 0.5445

4 2.425 1.902 2.0639 0.5706

5 3.925 1.9383 2.039 0.5815

6 14.255 3.4106 3.4942 1.1732

7 21.945 3.3103 3.361 1.0231

8 40.846 3.2209 3.2465 0.9663

9 61.292 3.143 3.1592 0.9429

10 93.225 3.0936 3.1039 0.9281

11 199.878 4.1176 4.1261 1.2353

12 308.161 4.0766 4.082 1.223

13 468.886 4.0493 4.0528 1.2148

14 707.511 4.0328 4.0351 1.2098

15 1078.727 4.0218 4.0233 1.2065

Table 12: Shows the results obtained from allowing the simulation to run

HOPERAA 6 times using ρ = 3, another 6 with ρ = 2, and ∆= 0.1.

Table 13: Shows the results obtained from allowing the simulation to run HOPERAA

5 times using ρ = 2, 5 times more with ρ = 3 and 5 last times with ρ = 4; using, ∆= 0.1.

Study Case 2 5. ANALYSIS AND EVALUATION

65 .
 | Chalmers University of Technology

As we can see from the tables 11, 12 and 13, it is very easy to denote the

interval in which the Clock Drift is changing by looking at how the values of

“rhoUp”, “rhoLow” and “Pc” increment and get adjusted; although it might

seems that the algorithm is behaving as expected, we can conclude that there

are some slight differences in comparison to the cases in which “ρ” remained

constant; these differences are the following:

1. Despite of the number given to “ρ”, we can conclude that “Pc” will

continue approximating to its ideal value in any case; this is evident,

when looking at the values in each table. In the graphs 19, 20 and 21,

we can see that every time “ρ” changes, the value of “Pc” slowly

starts to adjust into becoming 0.6, 0.9 or 1.2, based on the value of

“ρ”. Using the graphs below we can notice how “Pc” at the

beginning is being adjusted to a particular value but, as the

simulation progresses and the value of “ρ” is modified, it changes the

adjustment from one value to the other.

Graph 19 (Top Left): Represents the values of Pc

when allowing the Client to change from ρ = 2 to

ρ = 3 after HOPERAA was executed for 6 times.

Graph 20 (Top Right): Represents the values of

Pc when allowing the Client to change from ρ = 3

to ρ = 2 after HOPERAA was executed for 6

times.

Graph 21 (Bottom Left): Represents the values of

Pc when allowing the Client to change from ρ = 2

to ρ = 3 after HOPERAA was executed for 5

times, and then to ρ = 4 after HOPERAA was

executed for 10 times.
.

Pc Pc

Pc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Executions of HOPERAA

Study Case 2 5. ANALYSIS AND EVALUATION

66 .
 | Chalmers University of Technology

2. We can perceive that the change in “ρ” affected the rate at which the

“Hoperaa Execution Interval” incremented. In every case it is very

noticeable that whenever the Clock Drift changed to a higher

number, the “Hoperaa Execution Interval” incremented dramatically

(look at Table 11 and 13) in comparison to the case when “ρ”

decreased from 3 to 2 (Look at table 12) where, although there was

also an increment, it was more subtle. Remembering Chapter 3, we

know that in this case, because of the value of “ρ”, the HOPERAA

execution interval is set to “(ρUp)(ρLow)(∆) / ρUp – ρLow”. By

looking at the formula, it is easier to understand that sudden change

of “rhoUp” and “rhoLow”, is the reason for the behavior observed

every time “ρ” was changed to a higher or lower value.

HopExcInt

HopExcInt HopExcInt

Graph 22 (Top Left): Represents the values of the

“Hoperaa Execution Intervals” when allowing the

Client to change from ρ = 2 to ρ = 3 after

HOPERAA was executed for 6 times.

Graph 23 (Top Right): Represents the values of

the “Hoperaa Execution Intervals” when allowing

the Client to change from ρ = 3 to ρ = 2 after

HOPERAA was executed for 6 times.

Graph 24 (Bottom Left): Represents the values of

the “Hoperaa Execution Intervals” when allowing

the Client to change from ρ = 2 to ρ = 3 after

HOPERAA was executed for 5 times, and then to

ρ = 4 after HOPERAA was executed for 10 times.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Executions of HOPERAA

Study Case 2 5. ANALYSIS AND EVALUATION

67 .
 | Chalmers University of Technology

3. This is probably the most essential change that we noticed; by

looking at the graphs presented below, we can see that throughout

the first HOPERAA executions the values of “rhoUp” and “rhoLow”

were in between the range of “ρLow ≤ ρ ≤ ρUp” as expected;

however when the Clock Drift changed, the values of “rhoUp” and

“rhoLow” were in between the range of “ρ ≤ ρLow ≤ ρUp” hence

breaking the condition, stipulated in [5], for these variables. This

behavior is evident in every case no matter what sort of change “ρ”

goes through, whether is decreasing or increasing. In spite of this, we

can see that eventually the values of “rhoUp” and “rhoLow” slowly

are getting adjusted to their ideal values as the simulation progresses.

According to the description of the framework, we can speculate that

apart from the fact that “rhoUp” and “rhoLow” are no longer in

between the range of “ρLow ≤ ρ ≤ ρUp”, if we were to continue with

the simulation we will also notice that the restriction given by “∆”

will no longer hold thus, making the implementation to behave

outside of the acceptance margin.

Graph 25 (Top Left): Represents the values of

“rhoUp” and “rhoLow” when allowing the Client

to change from ρ = 2 to ρ = 3 after HOPERAA

was executed for 6 times.

Graph 26 (Top Right): Represents the values of

“rhoUp” and “rhoLow” when allowing the Client

to change from ρ = 3 to ρ = 2 after HOPERAA

was executed for 6 times.

Graph 27 (Bottom Left): Represents the values of

“rhoUp” and “rhoLow” when allowing the Client

to change from ρ = 2 to ρ = 3 after HOPERAA

was executed for 5 times, and then to ρ = 4 after

HOPERAA was executed for 10 times.

ρ

ρ

ρ

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

rhoLow

rhoUp

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

1 2 3 4 5 6 7 8 9 10 11 12

Number of Executions of HOPERAA

rhoLow

rhoUp

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Executions of HOPERAA

rhoLow

rhoUp

Study Case 3 5. ANALYSIS AND EVALUATION

68 .
 | Chalmers University of Technology

5.3 Study Case 3: Variable Clock Drifts (2)

5.3.1 Experiment Specification

For this study case we will use a similar scenario as the one used last in the

previous section which means that, the Clock Drift “ρ” will change from 2 to 3

and then from 3 to 4 to remain as 4 throughout the whole communication

process. Once again, we will study how the algorithm performs when we have

the presence of variable Clock Drifts but, unlike the previous time, now we

want to show that the reason why the algorithm behave the way it did,

whenever we change the value of “ρ”, is related to the values of:

1. “t1”, time at which the Server received the first contact-initiation

message from the Client.

2. “h1”, timestamp at which the Client sent the first contact-initiation

message.

Taking in consideration what we know from the previous case, let‟s assume

that at the beginning, when “ρ = 2” the values of h1 is “6.0” and the one from

t1 is “3.05”, under these circumstances we can see that the correlation from

both values is “2” since “6.0” is equivalent to “3.0” on the Server‟s Clock;

however, when the Clock Drift changed in the previous studied case, the

correlation in between “t1” and “h1” was still “2” regardless of the new value

of “ρ”, making the algorithm to behave inappropriately.

It is because we are using the same values of “h1”, “t1” (regardless of the new

value of “ρ”) and, because the influence of the delivery latency (“µ”) is quite

small, which allows the values of “rhoUp” and “rhoLow” to be close to each

other and in between the range of “ρ ≤ ρLow ≤ ρUp”, instead of “ρLow ≤ ρ ≤

ρUp”; the latter is pretty obvious when looking at graphs 25 to 27, where we

can see that the values of “rhoLow” and “rhoUp” almost overlap each other

after the first change of “ρ”.

For this study case, we will assume that whenever the value of “rhoLow” gets

closer to the value of “rhoUp”, as we saw in the graphs, we allow the Client to

take for granted that it‟s Clock Rate has changed and, let the Server know that

it has to record new values of “h1” and “t1” in order to compensate for such

change. The results derived from the latter change in the algorithm‟s behavior,

are presented in the following subsections.

Study Case 3 5. ANALYSIS AND EVALUATION

69 .
 | Chalmers University of Technology

5.3.2 Results’ Analysis

As stipulated previously, we want to study how the algorithms performs when

the assumed Clock Drift “ρ”, in between the Client and the Server, does not

remain constant throughout the whole communication process but also, under

the assumption that the Server can record new values of “t1” and “h1” every

time “ρ” changes; for this, we will use a similar simulation as the one

presented at the end of “Study Case 2”. The results obtained in the latter will

be used to set a baseline on how the algorithm behaved back then and how

does it behaves when this change is applied.

Hoperaa Times HopExecInt rhoLow rhoUp Pc

1 0.1250 1.0010 5.0233 0.300

2 0.3250 1.4452 2.6024 0.434

3 20.1250 1.9877 2.0075 0.596

4 33.3250 1.9925 2.0045 0.598

5 74.1250 1.9966 2.0020 0.599

6 112.3250 1.9978 2.0013 0.599

7 176.1250 1.9986 2.0009 0.600

8 305.3250 1.9992 2.0005 0.600

9 0.1937 1.4770 6.2213 0.443

10 0.4937 2.1359 3.7648 0.641

11 0.9437 2.4760 3.3567 0.743

12 1.5437 2.6563 3.2084 0.797

13 45.1937 2.9868 3.0067 0.896

14 98.7437 2.9939 3.0031 0.898

15 198.3440 2.9970 3.0015 0.899

16 300.1940 2.9980 3.0010 0.899

18 0.2250 1.8005 9.0116 0.540

19 0.4250 2.4291 5.6692 0.729

20 0.6250 2.7782 5.0013 0.833

21 1.2250 3.2670 4.4551 0.980

22 50.2250 3.9782 4.0100 1.193

23 108.2250 3.9899 4.0046 1.197

24 190.0250 3.9942 4.0026 1.198

25 292.2250 3.9962 4.0017 1.199

Table 14: Shows the results obtained from allowing the simulation to run HOPERAA 8 times

using ρ = 2, 8 times more with ρ = 3 and 8 last times using ρ = 4; using, ∆= 0.1.

Study Case 3 5. ANALYSIS AND EVALUATION

70 .
 | Chalmers University of Technology

Based on the results presented in Table 14, we can conclude the following:

1. The number of times Hoperaa is executed increases although we are

using less amount of simulation time than before. The reason for this

is because now, whenever “ρ” changes and the Server records new

values of “h1” and “t1”, the behavior observed from the algorithm is

similar to the one it had when we were using constant values for “ρ”.

The previous assertion is very noticeable by looking at graph 28

where we can see that when “ρ = 2” the “Hoperaa Execution

Interval” grows from 0 to as much as possible and, when “ρ = 3 or 4”

it decreases back to 0 and follows the same pattern; unlike the

previous case, when we observed that the Intervals grew constantly

no matter what value of “ρ” we had.

2. As we can see from graph 29, “Pc” behaves as expected; its value

remains in between the range “L ≥ Pc ≤ ρL” and its successfully

being adjusted to its ideal value “ρL”.

Graph 28: Represents the values of the “Hoperaa Execution Intervals” when allowing the Client‟s

clock drift to change from 2 to 4. (Values obtained from table 14)

HopExcInt

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Executions of HOPERAA

Study Case 3 5. ANALYSIS AND EVALUATION

71 .
 | Chalmers University of Technology

3. Lastly, different to the previous case, we can observe that now no

matter how “ρ” increments, the values of “rhoUp” and “rhoLow”

will remain in between the range of “ρLow ≤ ρ ≤ ρUp” as defined by

the algorithm‟s definition; this behavior is evident in every case no

matter what sort of change “ρ” goes through. (See Graph 30)

Graph 29: Represents the different values of “Pc” when allowing the Client‟s clock drift to change

from 2 to 4. (Values obtained from table 14)

Pc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Executions of HOPERAA

Graph 30: Represents the values of “rhoLow” and “rhoUp” when allowing the Client‟s clock drift

to change from 2 to 4. (Values obtained from table 14)

ρ

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Executions of HOPERAA

rhoLow

rhoUp

Study Case 3 5. ANALYSIS AND EVALUATION

72 .
 | Chalmers University of Technology

From “Study Case 2” we were able to denote that when “ρ” changes, the

framework break two of the conditions established by the algorithm‟s

definition in [5], as shown previously. Now, thanks to the results presented in

this section, we can conclude that when we allow the Server to record new

values of “h1” and “t1”, whenever the Clock Drift changes, the algorithm‟s

behavior will be inside of the acceptance margin and will perform as if it had

no record that there were ever a drift change to begin with; the latter allows the

variables “rhoLow”, ”rhoUp”, “Pc” and “Hoperaa Execution Interval” to act as

defined by the algorithm and, their respective values, to be more comparable to

the ones obtained when “ρ” was constant.

Study Case 4 5. ANALYSIS AND EVALUATION

73 .
 | Chalmers University of Technology

5.4 Study Case 4: Framework‟s overhead

5.4.1 Experiment Specification

For this case we will study a scenario as the one presented in figure 15. The

topology in this case is formed by a single Server Node (labeled “Server”) and,

three different Clients. Although every client has its own link, the traffic from

all 3 concentrates on a gateway node which then, forwards it to the Server.

This gateway node works only as an intermediary in the communication and

takes no part in the algorithm; as previously mentioned, we included this

gateway node in order to confirm that, due to the natural attributes from NS,

we can place as many nodes in between as necessary and still, the “Client”

nodes will be able to successfully communicate with the “Server”.

Similar to the study cases presented so far, in this instance we will use the

following specifications for the simulation:

1. ρ1 = 2

This means that the Clock from the “Client 1” is 2 times faster than

the server‟s.

2. ρ2 = 0.5

This means that the Clock from the “Client 2” is 2 times slower than

the server‟s.

3. ρ3 = 0.33

This means that the Clock from the “Client 3” is 3 times slower than

the server‟s.

Figure 15: Shows a topology in which 3 Clients communicate

with a single server.

Study Case 4 5. ANALYSIS AND EVALUATION

74 .
 | Chalmers University of Technology

4. µ = 0.1

5. L = 0.3

6. τ = 1

7. ∆= 0.1

In order to study this case, we will use a different approach to the one used so

far; for this, we need to define specific and differentiable packet‟s sizes for

each packet being transferred during the simulation:

8. Data Packet Size: 1040

9. HOPERAA Packet Size: 60

10. TCP Handshake Packet Size: 40

Unlike the prior study case, in this occasion we will use different scenarios in

order to study the framework‟s behavior under specific circumstances:

- Scenario 5.4.1: Due to the defense framework implementation, data

transmission is interrupted to resynchronize with the Server; the

latter, makes the client takes longer when sending a specific amount

of data. In this scenario, using a fixed time period, we will study the

differences (in terms of overall transfer performance) between a

topology using the defense framework and another one which

doesn‟t.

- Scenario 5.4.2: When implementing the defense framework, data

transmission takes longer due in part to the fact that the Client has to

resynchronize with the Sever but also, because of the time the Client

has to wait, after sending contact-initialization messages, before

getting a reply from the Server. In this Scenario, we will study the

relation in between the time Clients have to wait for a reply and, the

number of sequences being hosted by the Server.

- Scenario 5.4.3: As we know by now, when using HOPERAA, data

transmission is interrupted so that the Client resynchronizes with the

Server thus, affecting the number of data packets sent in every

interval. By using this scenario we will study how, as the simulation

progresses, the frequency at which the Client has to resynchronize

with the Server decreases hence, allowing the Client to send more

data before having to stop to resynchronize again.

Study Case 4 5. ANALYSIS AND EVALUATION

75 .
 | Chalmers University of Technology

- Scenario 5.4.4: Every time the Client has to resynchronize with the

Server, it has to perform the same actions as in the “Contact-

Initialization phase” therefore; it means that it has to send “contact-

initialization messages” to all the ports from a randomly chosen

interval thus, increasing the amount of packets being exchange by the

Server and the Client. By studying this scenario, we want to observe

the relation in between the number of intervals “k” and, the

network‟s packet overhead (the total amount of packets travelling

through the network).

The information gathered from the points above described, will be compared to

the one obtained from the baseline case study. In order to establish a proper

baseline, first we will create a scenario with a similar composition but, using

neither HOPERAA nor BIG WHEEL. Out of all the specification already

defined, for this scenario we will use only µ = 0.1 since it is the only feature

applicable from one Scenario to the other. The methodology followed in these

cases, was to study the information logged by the simulator into the “trace” file

and, use Microsoft Excel to create graphs and analyze how every node in the

network behaves.

Study Case 4 5. ANALYSIS AND EVALUATION

76 .
 | Chalmers University of Technology

5.4.2 Results’ Analysis: Scenario 5.4.1

For this case, first we will focus our attention on studying how a regular

network (not using the defense framework) performs. As can be seen in graph

30a, the client starts by sending a 40 bytes packet in order to simulate the

handshake phase from TCP. After it has received a reply from the Sever, a

session is started and the Client slowly starts sending data packets. As we can

see, once the Client receives the reply and starts sending data packets, it will

not stop until the transmission has been completed reason why, in the graph we

can notice a horizontal line in 1040 which represents an uninterrupted “data

packets” transmission.

Graph 31: Represents the relation in between time (X-axis) and, the size of

the packets (Y-axis) being transferred.

b)

a)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0.000000 0.500000 1.000000 1.500000 2.000000 2.500000

Study Case 4 5. ANALYSIS AND EVALUATION

77 .
 | Chalmers University of Technology

Now we will use a similar approach but, we will gather information from the

network in which the HOPERAA and BIGWHEEL algorithms have been

implemented. Graph 31b shows the same information as graph 31a but now,

we want to point out how the performance is affected when implementing the

defense framework. In this case we are using a network in which the Server is

hosting only one single sequence for all three clients. Looking at the graph

carefully, we can see that from 0 to 0.3 there is a horizontal line at 60, which

represents the size of a “hoperaa packet”; this is because throughout that time,

the Client (which is 2 times faster than the Server) is sending “contact-

initiation” messages to the Server. At time 0.35 (simulation time), the Client

will receive the reply and it will send a 40 bytes packet (in order to establish a

session with the Server) and once it receives the reply, it will send data packets

(with size 1040 bytes) until the next hoperaa execution interval. This behavior

can be seen in graph 31b by looking at the range from 0.0 to 0.5 (X axis).

Every time the Client resynchronizes with the Server, we can see a decrease in

the graph from 1040 to 60 which mean that at such point, the data transmission

has been stopped and the Client is waiting for a reply from the Server. This

behavior is evident throughout the whole simulation but, as described by the

algorithm in [5], we can see that after every resynchronization the hoperaa

execution intervals increase and the Client is capable of sending more data

thus, reducing the overhead on the network‟s infrastructure.

5.4.3 Results’ Analysis: Scenario 5.4.2

In this case, we want to show that there is a close relationship in between the

framework‟s time overhead and the number of sequences being hosted by the

Server. Graph 32 shows the graphical representation of the packet transmission

rate for a client in two different situations. The blue line represents the node

“client 3” which belongs to a network where the server only has one sequence

available while; the other one, represents the same situation but in this instance

the Server hosts 3 different sequences instead of just one. By looking closely at

both graphs, we can observe that the data transmission is faster, since the client

has to wait less time before getting a reply from the Server hence it reaches the

“data transmission” phase faster and the overall transmission time is decreased.

Study Case 4 5. ANALYSIS AND EVALUATION

78 .
 | Chalmers University of Technology

Based on the previous, we can conclude in the following:

- Depending on the number of sequences available, as explained in

section 4 from [5], the client‟s waiting time decreases and the

maximum waiting time is bounded to the following:

- Based on the data presented in graph 31, we can conclude that the

overhead derived from the framework, can be affected by the number

of intervals hosted at the server; therefore, the “time overhead” (the

total amount of time it takes to complete the transmission) can be

reduced if the waiting time bounded to the client is also reduced.

Client‟s Maximum

waiting time
=

Graph 32: Represents the amount of data packets transmitted from a Client, 3 times slower

than the server. Black shows the situation in which the Server hosts 3 sequences and; blue

shows the situation in which only one sequence is being hosted.

Time Units

Packet Size

Study Case 4 5. ANALYSIS AND EVALUATION

79 .
 | Chalmers University of Technology

5.4.4 Results’ Analysis: Scenario 5.4.3

In this scenario, we will observe more in detail how the data transmission is

affected from implementing HOPERAA and BIG WHEEL. For this case, once

again we use the behavior, observed in a network where the defense

framework was not implemented, as baseline and in order to point out the

differences in between both architectures. For this section, we ran several

simulations in which we varied the number of times the Client resynchronized

with the Server so for example, in graph 33c the first interval represents the

number of packets that the a Client sent on a simulation in which HOPERAA

was executed only for one time; the second interval, represents the results

obtained from another simulation, in which the Client executed HOPERAA for

2 times and so on, up to 7 times. From the previous simulations, we took in

consideration the amount of time each scenario took and, to gather results for

the case in which the defense framework has not been implemented, we ran

different simulations in which, the time periods considered, were the duration

of time that it took for the network, with defense mechanism implemented,

from the beginning of simulation to the “n
th

” HOPERAA execution.

In each of the following graphs, the blue bars represent the amount of data

packets sent throughout that simulation; while the red ones, represent the

amount of “contact-initiation packets”.

In the network with HOPERAA and BIG WHEEL implemented, we are using

a simple scenario in which the Server has 60 ports divided into 3 different

intervals “k” with 20 ports each. By looking carefully at the graphs, we can

denote the following:

1. In graph 33a we can see that, as the time goes by, the number of data

packets being sent increases due to the fact that the HOPERAA

Execution Intervals increase after every resynchronization with the

Server. Looking at the graph, we can conclude that as the

transmission progresses, the overhead derived from the algorithm‟s

implementation is reduced and the amount of data packets being sent

overcome the amount of “contact-initialization” packets required; we

can also perceive how overhead is reduced after some time so, if the

amount of data packets to send is too small then, the cost due to the

defense framework, would be relatively larger.

Study Case 4 5. ANALYSIS AND EVALUATION

80 .
 | Chalmers University of Technology

2. Comparing graph 33a with graph 33b, the first evident difference is

that the network, where the defense framework was not

implemented, is capable of sending more data packets in the same

amount of time that it took the other network to execute HOPERAA

a specific number of times. This can be seen more clearly in graph

33c where we are using the same y axis scale to present the results

from graphs 33a and 33b. In graph 33c, the green bars represent the

amount of data packets sent when the defense framework was not

implemented while; blue bars represent the transmitted data packets

when the framework was present, the red bars are related to the

“contact-initialization” packets sent throughout each simulation. As

mentioned before each of these simulations are related to different

number of HOPERAA executions and this number is growing in

each simulation from 1 to 7.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7

Packets

Number of executions of HOPERAA

Hoperaa Packets

Data Packets

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7

Packets

Number of executions of HOPERAA

Data Packets

a)

b)

Study Case 4 5. ANALYSIS AND EVALUATION

81 .
 | Chalmers University of Technology

5.4.5 Results’ Analysis: Scenario 5.4.4

When a client has to resynchronize with the server or, contact it for the first

time; it has to execute the “contact initiation phase” which implies sending

“contact-initialization” messages to all the ports from a randomly chosen

interval and, wait “2µ+L” time units before retrying. Derived from that

behavior and comparing graph 34a and 34b, we can observe the overhead

induced by the HOPERAA algorithm, as discussed in [5] section 5, can be

modeled by the formula:

In our cases we have assumed the same number of ports which means “N” in

both cases is 150; however, the value of “k” in 34a and 34b is 3 and 10

respectively. Taking this in consideration, 34a shows the performance of the

network in which 150 ports and 3 intervals has been assumed, this means that

each interval contains 50 ports; 34b on the other hand, shows the same network

but this time with 150 ports and 10 intervals, which means that each interval

includes 15 ports. Here, each combination of red and blue bars shows

independent simulations with “n
th

” execution of HOPERAA. So basically each

of these combinations shows the whole amount of data packet and contact

initiation packets from the beginning of simulation until the “n
th

” execution of

HOPERAA algorithm.

Graph 33: Represents the number of data packets and control packets

during nth execution of HOPERAA algorithm.

c)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7

Packets

Number of executions of HOPERAA

Hoperaa Packets

Data Packets (Using Hoperaa)

Data Packets (without Hoperaa)

Study Case 4 5. ANALYSIS AND EVALUATION

82 .
 | Chalmers University of Technology

If we look at graph 34a and 34b, we would notice that the amount of contact

initialization messages, represented by the red bars, is different for each case;

now, if we also take in consideration the formula:

we can deduce that, out of all the variables involved, the overheard is

inherently related to the value of “k”. By looking closely to the variables

considered by this formula, if we can assume that “N” and “ ” are constant

in both cases, then we can also say that the overheard depends merely on the

value of “k” so, the smaller “k” is, the greater the overhead will be. This can be

seen clearly by comparing the height of the red bars from the two graphs

previously discussed. Using the results obtained in this section, we have

observed that having more intervals will decrease the message overhead but,

will also increase the number of guard ports available which, could not always

be a good thing since, it means that the number of ports vulnerable for an

attack will also increase.

Graph 34a: Represents the amount of data and control packets, during nth

execution of HOPERAA, using 150 ports divided into k=3 intervals.

Graph 34b: Represents the amount of data and control packets, during nth

execution of HOPERAA, using 150 ports divided into k=10 intervals.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7

Packets

Number of executions of HOPERAA

Hoperaa Packets

Data Packets

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7

Packets

Number of executions of HOPERAA

Hoperaa Packets

Data Packets

Study Case 5 5. ANALYSIS AND EVALUATION

83 .
 | Chalmers University of Technology

5.5 Study Case 5: Defense Framework and the

DDOS problem.

5.5.1 Experiment Specification

In this section, we want to put things in perspective by giving a brief insight

and comparison on how the defense framework, suggested in [5] and studied

so far, performs compared to a network which is under a DDOS attack.

Let‟s assume, for the sake of this study case, that we have a Gnutella P2P

Network which looks like follows:

From chapter 3, we know that Peer-to-peer (P2P) systems are distributed

systems in which nodes of equal roles and capabilities exchange information

and services directly with each other and, the network presented above is no

different in this sense. Based on what we have studied so far from the Defense

Framework, and the results from “Study Case 4”, we know that the algorithm‟s

overhead is counterbalanced by the amount of data to be transmitted so; in this

case, we will focus our efforts on the data transmission and we will assume

that control process, prior to the file transfer, has already been implemented

and taken care of.

Figure 16: Simple P2P network formed by several nodes of equal

roles and capabilities which exchange information and services

directly with each other.

Study Case 5 5. ANALYSIS AND EVALUATION

84 .
 | Chalmers University of Technology

In order to gather results for this study case, we will pay particular attention to

only one section of the network presented in figure 16 (look at figure 17); in

the sub-network that we are going to study, data packets are being transferred

from the “sender” to the “receiver” node throughout “router 1” and “router 2”

however, depending on the scenario, the condition of the network may change

affecting the data transfer in between the nodes. Since for this case, we want to

denote how the defense network can be used to mitigate, or reduce, the damage

caused by a DDOS attack on a network, the sub-network presented in figure 17

was implemented in ns-2 as follows:

Sender

Receiver

Router 1

Router 2

Sub-network

Figure 17: Sub-network derived from the P2P network in figure 16;

used to gather results for the scenarios defined in this study case.

Figure 18: Shows how the Sub-network, presented in figure 17, looks

like when simulated in Ns-2

Study Case 5 5. ANALYSIS AND EVALUATION

85 .
 | Chalmers University of Technology

The network above presented, was used to simulate and gather results for the

study of the following scenarios:

- Scenario 5.5.1: We will use this case to gather information about

how the network behaves under normal circumstances; for this, we

will use ns-2 to run a simulation in which the “receiver” and the

“sender” interchange data packets with each other for 7 seconds

without the intervention from an attacker.

- Scenario 5.5.2: Using the results obtained in “Scenario 5.5.1” as a

baseline, we will study how the data transmission (in between

“sender” and “receiver”) gets affected when an attacker starts

sending as many packets as possible to the “receiver”. For this, we

will consider 2 possible cases:

 Case (1): The attacker‟s goal is not to completely disable the

“receiver” but rather, diminish the quality of the service by

decreasing the amount of legitimate data packets the

“receiver” gets.

 Case (2): The attacker‟s goal is to completely disable the

“receiver” so that the communication with the “sender” gets

completely interrupted.

- Scenario 5.5.3: In this last case, we will study the main differences in

between the result obtained in the previous 2 scenarios and, the

results obtained from a network which implements the defense

network suggested in [5] and studied throughout this dissertation.

5.5.2 Results’ Analysis: Scenario 5.5.1

For this case, first we will focus our attention on studying how the network

behaves under normal circumstances; the results obtained from the latter, will

help us to define a common ground so later on, we can compare the network‟s

performance throughout the remaining defined scenarios. With the aim of

gathering data results for this section, we used ns-2 in which we defined a

network as the one presented in the “Experiment Specification”; we let the

simulation run for 7 seconds, with no intervention from an attacker

whatsoever, and we centered our attention on the amount of packets being

transferred in between the parties.

Study Case 5 5. ANALYSIS AND EVALUATION

86 .
 | Chalmers University of Technology

To achieve the latter, we monitored the simulation and logged, every 0.05 sec,

the amount of acknowledgements received at the “sender”, from the “receiver”

end (Since the receiver send a reply for every packet received, we can assume

that every acknowledgment (referred to as “ack” from now on) received means

that the packet effectively reached the receiver thus, the packet‟s transfer was

successful).

For this study case, the Roundtrip Maximum Delivery Latency (“µ”) was

defined as “µ = 1.0”; that is the reason why, in graph 35 throughout the first

seconds, the line remains on “0” since the “ack” from the packets sent at time

0, and received at 0.5 in the receiver‟s end, has not reached the “sender” yet.

We can see that after the first “ack” is received (around 1.0 in graph 35), the

line grows at a constant and steady rate throughout the rest of the simulation;

the latter means, that the communication is never interrupted thus the sender is

able to successfully transmit (By “transmit”, we mean that the Client sent a

packet, and received the “ack” from that packet eventually in the time span of

the simulation) a total of 1038 packets, at a constant rate.

From the results obtained in this scenario, we can conclude that in 7.0 seconds

(simulation time) the Sender was able to successfully transmit 1038 packets

uninterruptedly and, at a constant rate.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Packets

Time Units

Graph 35: Shows the amount of acknowledgements received by the “sender”,

from the “receiver”, in a period of 7 seconds and, when the communication is

not affected by a third-party (attacker).

Study Case 5 5. ANALYSIS AND EVALUATION

87 .
 | Chalmers University of Technology

5.5.3 Results’ Analysis: Scenario 5.5.2

Now that we understand how the network behaves when there is no

intervention from a third party, is time to analyze what will happen when an

attacker starts sending as many packets as possible to the Receiver, so that the

quality of the service, which is providing to the Sender, gets diminished (1) or;

the receiver is completely disabled (2).

In order to study the behavior on the network in these two cases (1) and (2), we

used a similar approach as the one used in “Scenario 5.5.1” but now, we will

take in consideration the following changes:

1. All traffic generated by the Sender is being directed to the default

Gnutella port (6346).

2. We included several other nodes (attackers) which create as much

traffic as possible and direct it also to the port 6346. The function of

the attackers, defined for this and the remaining sections, is only

centered on creating as much traffic as possible and, directing it to a

specific port.

3. The attack begins at simulation time 1.0.

4. The results gathered for this section represent the ones of a simple

network with no defense mechanism implemented whatsoever.

In order to study how the data transmission is affected, we use a similar

methodology as the one used before; which means, that once again we used ns-

2 to define a network and let the simulation run for 7 seconds, centering our

attention on the amount of packets being transferred in between the parties by

monitoring the simulation and logging, every 0.05 sec, the amount of

acknowledgements received at the “sender‟s” side. To begin with, we will

study how the transmission gets affected just by looking at the graphs obtained

from the acknowledgements received at the sender‟s side; and then, we will

compare these graphs with the one obtained in Scenario 5.5.1, when there is no

attack present. Graph 36 and 37 present the amount of packet acknowledged

when, the attacker diminishes the quality of the communication (1) and, when

it completely disables the Receiver (2), respectively.

Study Case 5 5. ANALYSIS AND EVALUATION

88 .
 | Chalmers University of Technology

The first big difference that we can notice is that in “Scenario 5.5.1”, the

sender was able to successfully transmit 1038 packets uninterruptedly and, at a

constant rate. Now, looking at the graph 36 from the first case (1) of this

scenario, we can denote that the sender was able to send only 213 packets in

the same amount of time; also, after the attack started (at time 1.0) the sender

was not able to get an “ack” for about 2 seconds and even after that, the rate at

which it was receiving them was not constant.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

Packets

Time Units

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

Packets

Time Units

Graph 37: Shows the amount of acknowledgements received by the “sender”,

from the “receiver”, in a period of 7 seconds and, when the communication is

completely disabled by a third-party (attacker).

Graph 36: Shows the amount of acknowledgements received by the “sender”,

from the “receiver”, in a period of 7 seconds and, when the communication‟s

quality is diminished by a third-party (attacker).

Study Case 5 5. ANALYSIS AND EVALUATION

89 .
 | Chalmers University of Technology

The latter is obvious when looking at graph 36 ; if we look closely, after time

3.0 we can see that the even though the amount of packets increases, the graph

has a “step like” form; the reason for this, is because out of all the packets the

sender sent some of them were acknowledged and some other no (due to the

fact that the attacker‟s packets were consuming the resources at the receiving

end therefore, the latter was not able to receive all the packets from the sender)

so, the ones that were not, had to be sent again and that is why the graph looks

the way it does. Graph 37 represents what happens when the attacker is

capable of completely disable the receiver (2), in this case is very obvious that

after the attack started the sender was not able to receive any more

acknowledgments, the reason for this is because the receiver was too “busy”

dealing with the attacker‟s packets hence not being able to process any of the

packets from the sender; that is why in graph 37, we can see that the sender

successfully transmitted 20 packets but, after the attack started, it did not

receive any other “ack”; the moment at which the receiver is unable to

communicate with the sender, is represented in the graph by the horizontal line

starting at 1.2 (X-axis).

Although we have already discussed the main differences in between the

results obtained in this and Scenario 5.5.1; graph 38 presents an accurate, and

probably more understandable, comparison on how different these results are

from a more graphical point of view. We also want to point out that, as we can

see in graph 38, from 0 to 1.0 all three cases behave in the same way and the

reason for this is because the attack started only at 1.0 so, it‟s from that

moment on that the behavior changes depending on whether it is case (1) or

case (2).

Graph 38: Presents a graphical comparison of all the results obtained so far; scenario 5.5.1 when

there is no attack; scenario 5.5.2 (1), when the quality of the communication gets weakened; and,

scenario 5.5.2 (2) when the communication is completely disabled.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 1 2 3 4 5 6 7 8

Scenario 1

Scenario 2 (1)

Scenario 2 (2)

Time Units

Packets

Study Case 5 5. ANALYSIS AND EVALUATION

90 .
 | Chalmers University of Technology

5.5.4 Results’ Analysis: Scenario 5.5.3

In this last case, we will study the main differences in between the result

obtained in the previous 2 scenarios and, the results obtained from a network

which implements the defense network suggested in [5] and studied throughout

this dissertation. In order to study the latter and keep the results as comparable

as possible, we used a similar approach as the one used so far but now, due to

the definition of the HOPERAA and BIG WHEEL algorithm, we will take in

consideration the following aspects for the sake of the results involved in this

study:

1. The receiver hosts only one sequence with 6000 ports available for

data transmission; ports are divided into “k = 6” hence, each interval

has 1000 ports evenly.

2. We are considering the “ideal scenario” in which “contact-

initialization” packets are never lost and always reach the receiver

thus, every time the sender has to resynchronize with the receiver,

the latter sends the reply as soon as possible.

3. All traffic generated by the Sender is sent to the ports calculated by

the Algorithm thus; they are no longer directed to a single port.

4. As for the network‟s attributes, we are using:

 µ = 0.1

 L = 0.3

 τ = 1

 ∆= 0.1

 ρ = 2

From “Scenario 5.5.1”, we know that the “sender” is able to send a total of

1038 packets in 7 seconds (simulation time) therefore; in this case, we will

study how long does it take for this network, using the defense framework, to

send the same amount of packets. Graph 39 shows how the network behaves

when the defense network is implemented and, as we can see, in this case it

took 8.3 seconds to send the 1038 packets; just as we did before, graph 39

represents the amount of acknowledgements received by the “sender”, from the

“receiver”.

Study Case 5 5. ANALYSIS AND EVALUATION

91 .
 | Chalmers University of Technology

By looking at the graph we can notice the following:

1. The squares in the graph represent the moments at which no “ack”

was received since the “sender” stop data transmission in order to

resynchronize with the “receiver”.

2. By looking at the distance from each square in the graph, we can

conclude that effectively the “Hoperaa Execution Intervals” are

increasing hence; the “sender” is capable of transmitting more and

more packets after every time the resynchronization phase is reached.

3. We can see a constant and steady growth in the way packets are

being acknowledged by the “receiver”.

Now that we know how long it takes, for the network with the defense

framework implemented, to send the same amount of packets as the network

from “Scenario 5.5.1”, we can affirmatively say that even though the growth

presented in this case is still not as good as the one seen in “Scenario 5.5.1”

(Look at graph 35), it is definitely better to the ones seen in “Scenario 5.5.2”.

(Look at graphs 36 and 37)

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

Packets

Time Units

Graph 39: Shows the moments at which the “sender” is re-synchronizing with the “receiver”

and, the amount of acknowledgements received; when considering a network in which the

defense framework has been implemented.

Study Case 5 5. ANALYSIS AND EVALUATION

92 .
 | Chalmers University of Technology

From the results obtained from “Scenario 5.5.1”, “Scenario 5.5.2” and the ones

from this, we can conclude:

1. As previously discussed, the network with the defense framework

implemented, doesn‟t perform as well as the one presented in

“Scenario 5.5.1” but still performs better than any of the ones

presented in “Scenario 5.5.2”. The following table presents the

results obtained in the previous scenarios compared to the one

obtained in this:

2. For this case, we considered the “ideal scenario” in which “contact-

initialization” packets are never lost and always reach the “receiver”

however; when the latter holds no more and according to the results

obtained in 5.4, the time it takes to transmit the same amount of

packets could increase due to the fact that the “Sender” has to wait

until it gets a reply from the “receiver” after every resynchronization.

If the latter were to happen, we will notice that the lines marked (by

the squares) in graph 39 will increase in longitude hence increasing

the overall transmission time.

3. Also based on the results obtained in 5.4, we know that increasing

the number of sequences being hosted at the “receiver” can affect the

waiting time of the “sender”. In this section we used only one

sequence but, if we were to increase the number of these, we will

notice that the lines marked (by the squares) in graph 39 will

decrease in longitude hence reducing the overall transmission time.

4. For this particular case, even if the attacker were to “find out” one of

the ports being used during the transmission, the damage caused by

the attack would not be so critical, since the overall transmission

time will not be severely affected due to the fact that the ports are

continuously changing.

Table 15: Shows the amount of packets transmitted in 7 seconds (simulation time),

by each one of the networks used in “Scenario 5.5.1”, “Scenario 5.5.2” and

“Scenario 5.5.3”.

 Simulation Time Packets Transmitted

Scenario 5.5.1 7.0 sec 1038

Scenario 5.5.2 (1) 7.0 sec 213

Scenario 5.5.2 (2) 7.0 sec 20

Scenario 5.5.3 7.0 sec 828

93 .
 | Chalmers University of Technology

 6
 FUTURE WORK

In this chapter, based on the knowledge and experience gathered throughout

the development of this dissertation, we focus on pointing out what we

consider as areas of improvement for future study, on the subject discussed in

this work.

6.1 Thoroughly investigate algorithm‟s

performance in different network architectures

According to [5], we know that the algorithm was designed with two very

important features on mind, the first one is that each Client is able to interact

with the Server on an individual basis; the second one is that this is an

application-level solution. These two features combined, make the framework

highly suitable for implementation on different network architectures, such as

P2P Networks. Ever since we started implementing this solution in ns, we had

in mind the possibilities of the algorithm so, when designing the new agents,

we tried to create them so that theoretically, this extension would be possible

by using most of the code developed in this dissertation.

From Chapter 4, we know that in the simulation the “HOPERAA agents” are

the ones responsible of transmitting all the information required by Hoperaa,

also the ones who calculate the “Hoperaa execution interval” and, to schedule

the next time at which the client must re-synchronize with the server.

“A generation which ignores history
has no past and no future.”

- Robert Heinlein

 6. FUTURE WORK

94 .
 | Chalmers University of Technology

For the Client-Server model studied in Chapter 4, we know that there is an

agent of this kind attached to the Server and, to each Client in the simulation;

however, no matter where the “HOPERAA Agents” are located, they all have

the same capabilities; the only difference is that the “HOPERAA agent” in the

Server is calling different methods to the ones being called by the agent at the

Client‟s side. The previous statement would theoretically make possible for the

simulation to be extended, without major changes, into a P2P network in which

all nodes have equal roles and capabilities to exchange information and

services directly with each other.

Based on this, further analysis of the framework in different architectures is

probably an interesting prolongation of the work started in [5] and continued in

this dissertation.

6.2 Extend the Framework‟s Defense Capabilities

As discussed in Chapter 1 and 2, in the past few years, Peer-to-peer networks

have become immensely important as one of the most popular Content-

Delivery systems [1] but also, unsecure networks had provided fertile ground

for attackers to create “zombies” and use them to deploy more powerful DDoS

attacks. Taking the previous in consideration, we suggest strengthening the

Framework, by grouping several servers as one logical entity. (See figure 19)

In this example the “Server” is a logical unit internally formed by 3 different

nodes; unlike the case studied earlier, each one of these nodes will host one

sequence of ports. Previously, all the sequence were hosted in the same Server

and the Client, depending on the time from its “contact-initiation” message,

would hop from one sequence to the other.

Figure 19: Shows how the Defense Framework can be strengthened by logically

grouping several servers as one entity.

Logical Server Entity

 6. FUTURE WORK

95 .
 | Chalmers University of Technology

In this case, each node will be hosting one sequence and, every time the Client

hops from sequence, it will change also the node with who it was

communicating. In the original approach, if for any reason the server was

disabled, the entire framework would be compromised and none of the Clients

would be able to continue with their transmission; this approach has the main

advantage that even if one of the internal nodes is disabled, the Clients still

have two more sequences (and also the nodes hosting them) available to

continue with the transmission.

Nevertheless, this alternative also raises the following problems:

- Depending on the number of Clients involved, the bandwidth

required, in the links from internal nodes of the logical unit, will

increase thus, creating a greater overhead on the overall framework.

- Previously, the Client only stored information, such as address,

number of sequences, ports in each sequence, etc, from a single

Server; but now, depending on the methodology followed, the

Clients may have to store more information at its end, depending on

which node they are communicating with.

- This approach also would increase the number of session being

established. Before, only one was necessary since the

communication was only with one node; but in this case, because of

the sequence being used, the number of sessions established could

increase depending on the node hosting such sequence.

- Since Clients will be hopping from node to node depending on the

time from their “contact-initiation” messages, it is necessary to

design a way for each node (inside the server unit) to be able to

access the information from a Client that is contacting it for the first

time but, started the communication process with a prior node.

- The most natural solution, for the previous case, would be to have a

central repository in which each “server node” would log data such

as h1 and t1 (recorded during the first contact with the Client) or the

status of the TCP Session; however, this approach would be more

disadvantageous than beneficial since, the attacker could target this

central repository instead hence, disabling the whole architecture.

Based on the previous observations, and many other that probably we didn‟t

even think of, we believe that the study of this case would be of high

importance in determining whether is feasible or not to improve the

framework, suggested in [5], by using this approach.

96 .
 | Chalmers University of Technology

 7
 CONCLUSIONS

As we discussed throughout this dissertation, Distributed Denial of Service

attack is a grave problem which has no easy solution; as defined in the

beginning of this work, DDOS attacks are deployed in order to prevent

legitimate users of a service, or network resource, from accessing that service

or resource. This thesis, among other things, has presented a detailed study and

evaluation of HOPERAA and BIG WHEEL, two algorithms derived from the

work in [5], used to mitigate this kind of attacks by using a “Port-Hopping”

approach while allowing multiparty communication in the presence of clock

drifts; from the study of these two algorithms and the results obtained from the

study cases considered in this work, we can conclude that:

1. Derived from the analysis of the results obtained in the study cases, we

can conclude that the implementation of the Algorithms‟ in the

simulator ns-2, behaves as expected and the results are consistent with

the description given in the paper used as reference. Thanks to the

prior, this implementation can be used as a reference for further study

of the defense framework under circumstances different to the ones

considered in this work.

2. The algorithm‟s definition clearly specifies that it will behave as

described whenever the clock drift in between the parties remain

constant throughout the whole communication process. From “Study

Case 2” we were able to denote that, when “ρ” changes, two of the

conditions established by the algorithm‟s definition are broken, since

the values of “rhoUp” and “rhoLow” go from being in between the

range of “ρLow ≤ ρ ≤ ρUp”, as expected; to the range of “ρ ≤ ρLow ≤

ρUp”.

“A conclusion is the place where
you get tired of thinking.”

- Arthur Bloch

97 .
 | Chalmers University of Technology

This behavior is evident in every case, no matter whether “ρ” is

increased or decreased from its original value. In spite of the latter, we

could observe that the values of “rhoUp” and “rhoLow” were

eventually adjusted to their ideal values as the simulation progressed

however, according to the framework‟s description, if we were to

continue with the simulation we will also notice that the restriction

given by “∆” will no longer hold thus, making the implementation to

behave outside of the acceptance margin.

3. From the results obtained from the “Study Case 3”, we were able to

conclude that whenever the clock drift in between the parties does not

remain constant throughout the whole communication process but, we

allow the Server to record new values of “h1” and “t1”, the algorithm‟s

behavior will remain inside of the acceptance margin and perform as if

it had no record that there were ever a drift change to begin with; the

latter, allows the variables “rhoLow”, ”rhoUp”, “Pc” and “Hoperaa

Execution Interval” to act as defined in [5] and, their respective values,

to be more comparable to the ones obtained from when “ρ” was

constant.

4. Based on the analysis of the results obtained in the “Study Case 4”, we

were able to verify that the overhead created by the defense framework

can be affected by several aspects such as:

a) Number of sequences hosted by the server

b) Number of intervals in which ports are divided

c) Number of attempts before the Client gets a reply for the

server

5. Finally, from the results gathered in the “Study Case 5” we were able to

show that even though a network with the defense framework

implemented, doesn‟t perform as well as one with no defense

mechanism whatsoever (in terms of overhead and overall data/time

transmission), the algorithm‟s overhead will be counterbalanced by the

amount of data to be transmitted and the reliability of the network

whenever the latter is under a DDOS attack.

In this section, we wanted to give the reader a better idea about the analysis

and the possible repercussion of the results obtained throughout the develop of

this work; however, we strongly recommend the reader to study each

subsection included in chapter 5, since in each one of them we give a more

detailed explanation and insight about the results and their derived implications

as far as the defense framework concerns.

98 .
 | Chalmers University of Technology

Appendix

A.1 Individual contributions to this work

This paper gives a detailed approach to what Distributed Denial of Service

attacks are and, the precarious problem they present for today most common

internet-based services and resources. For the work of this thesis, we have

included several sections in order to give the reader a complete picture of the

problem and, then presented a detailed study, evaluation and explanation of

how HOPERAA and BIG WHEEL, two algorithms derived from the work in

[5], are suggested in order to mitigate DDOS attacks and also, how they were

implemented in the simulator ns-2 and all the necessary changes in order to

make such implementation works and behaves as the one presented in the

paper “Mitigating Distributed Denial of Service Attacks in Multiparty

Applications in the Presence of Clock Drifts” by Zhang Fu, Papatriantafilou

Marina and Philippas Tsigas.

Some of the content of this thesis is based on the references specified in the

next section; however, most of it was written up based on our understanding

about the discussed topic. The following table presents a complete description

of all the contributions made by each one of the members, whatever content

included in each section (graphs, diagrams, tables, etc) was also structured,

studied and created by the person in charge of the overall segment:

Thesis’ Report Content Responsible (s)

 Abstract Negin F.

 Acknowledgements Ricardo M. and Negin F.

 Introduction Ricardo M.

1.1 Motivation Ricardo M.

1.2 Outline Ricardo M.

 Background Ricardo M.

2.1 P2P Networks Ricardo M.

2.2 Distributed Denial of Service Attacks (DDOS) Ricardo M.

2.3 P2P & DDOS attacks Ricardo M.

 A port-hopping approach against DDOS Ricardo M.

3.1 HOPPING PERIOD, ALIGN AND ADJUST

ALGORITHM
Ricardo M.

3.2 BIG WHEEL Algorithm Ricardo M.

99 .
 | Chalmers University of Technology

As for the simulation of the algorithms in ns-2 and the scenarios used to

analyze their behavior, Ricardo Moscoso was the one responsible for

implementing their respective counterpart in C++ and OTcl; nevertheless, for

each one of the study cases there were several actions to be followed and a

person responsible for each one of them; reason why, this section was not

included in the prior table but, it‟s included in the following:

Thesis’ Report Content Responsible (s)

 Implementation in ns-2 Ricardo M.

4.1 The network Simulator Ricardo M.

4.2 HOPERAA Implementation in ns-2 Ricardo M.

 Analysis and Evaluation -

5.1 Study Case 1: Single Client/Server Scenario -

5.2 Study Case 2: Variable Clock Drifts -

5.3 Study Case 3: Variable Clock Drifts (2) -

5.4 Study Case 4: Frameworks Overhead -

5.5 Study Case 5: Defense Framework and the

DDOS Problem
-

 Future Work Ricardo M.

6.1 Thoroughly investigate the algorithms’

performance in different architectures
Ricardo M. and Negin F.

6.2 Extend the Defense Framework’s capabilities Ricardo M.

 Conclusions Ricardo M.

Section’s Name Scenario

Design

Testing Result’s

Analysis

 Analysis and Evaluation Ricardo M. Negin F. Ricardo M

1.1 Study Case 1: Single

Client/Server Scenario
Ricardo M. Negin F. Ricardo M.

1.2 Study Case 2: Variable Clock

Drifts
Ricardo M. Negin F. Ricardo M.

1.3 Study Case 3: Variable Clock

Drifts (2)
Ricardo M. Negin F. Ricardo M.

1.4 Study Case 4: Frameworks

Overhead
Negin F. Negin F. Negin F.

1.5 Study Case 5: Defense

Framework and the DDOS

Problem

Ricardo M. Negin F. Ricardo M.

100 .
 | Chalmers University of Technology

A.2 hoperaa.h

101 .
 | Chalmers University of Technology

A.3 supportFunctions.h

102 .
 | Chalmers University of Technology

103 .
 | Chalmers University of Technology

A.4 hoperaa.cc

104 .
 | Chalmers University of Technology

105 .
 | Chalmers University of Technology

106 .
 | Chalmers University of Technology

107 .
 | Chalmers University of Technology

108 .
 | Chalmers University of Technology

109 .
 | Chalmers University of Technology

A.5 closedPort.cc

110 .
 | Chalmers University of Technology

A.6 test1.tcl

111 .
 | Chalmers University of Technology

A.7 test2.tcl

112 .
 | Chalmers University of Technology

113 .
 | Chalmers University of Technology

114 .
 | Chalmers University of Technology

115 .
 | Chalmers University of Technology

Bibliography

[1] Ipoque. “Internet Study 2008/2009”

Retrieved September 24, 2009, from:

http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

[2] Jelena Mirkovic, Peter Reiher, “D-WARD: A Source-End Defense against

Flooding Denial-of-Service Attacks,” IEEE Transactions on Dependable and Secure

Computing, vol. 2, no. 3, pp. 216-232, July-Sept. 2005, doi:10.1109/TDSC.2005.35.

[3] Ashfrod, W. “Denial of service attacks on the increase, says C&W,” September 18,

2008.

Retrieved September 24, 2009, from ComputerWeekly:

http://www.computerweekly.com/Articles/2009/09/18/237771/denial-of-service-

attacks-on-the-increase-says-cw.htm

[4] Mills, E. “Twitter, Facebook attack targeted one user,” August 06, 2009.

Retrieved September 24, 2009, from CNET:

http://news.cnet.com/8301-27080_3-10305200-245.html

[5] Zhang Fu, Marina Papatriantafilou, Philippas Tsigas, “Mitigating Distributed

Denial of Service Attacks in Multiparty Applications in the Presence of Clock Drifts,”

srds, pp.63-72, 2008 Symposium on Reliable Distributed Systems, 2008

[6] Pingdom. “The anatomy of a DDoS attack,” March 10, 2009.

Retrieved September 25, 2009, from Royal Pingdom:

http://royal.pingdom.com/2009/03/10/the-anatomy-of-a-ddos-attack/

[7] Benson, P. Greene, R. Jie-ae, S. “U.S. government sites among those hit by

cyberattack,” July 8, 2009.

Retrieved September 25, 2009, from CNN:

http://edition.cnn.com/2009/TECH/07/08/government.hacking/index.html

[8] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,

Bruno Richard, Sami Rollins, Zhichen Xu, "Peer-to-Peer Computing," HP

Laboratories, Palo Alto, HPL-2002-57, 2003

[9] Beverly Yang, Hector Garcia-Molina, “Improving Search in Peer-to-Peer

Networks,” icdcs, pp.5, 22nd IEEE International Conference on Distributed

Computing Systems (ICDCS'02), 2002

[10] “Peer-to-Peer File Sharing: The Effects of File Sharing on a Service Provider's

Network,” Sandvine Whitepaper, 2002

http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.computerweekly.com/Articles/2009/09/18/237771/denial-of-service-attacks-on-the-increase-says-cw.htm
http://www.computerweekly.com/Articles/2009/09/18/237771/denial-of-service-attacks-on-the-increase-says-cw.htm
http://news.cnet.com/8301-27080_3-10305200-245.html
http://royal.pingdom.com/2009/03/10/the-anatomy-of-a-ddos-attack/
http://edition.cnn.com/2009/TECH/07/08/government.hacking/index.html

116 .
 | Chalmers University of Technology

[11] Saad N. Ahmad “Business Models of P2P Companies: An outlook of P2P

architecture usage in business today,” Humboldt University Berlin, Faculty of

Economics and Management Sciences, Berlin, Germany, 2003

[12] William Acosta, Surendar Chandra, “Unstructured peer-to-peer networks - next

generation of performance and reliability” in IEEE INFOCOM, March 2005

[13] Pankaj Kohli, Umadevi Ganugula “DDoS Attacks using P2P Networks,” April

2007

[14] Xin Sun, Ruben Torres, Sanjay Rao, "DDoS Attacks by Subverting Membership

Management in P2P Systems," npsec, pp.1-6, 2007 3rd IEEE Workshop on Secure

Network Protocols, 2007

[15] Giovanni Branca “A Distributed Denial-of-Service (DDoS) Attack using

BitTorrent Peer-to Peer (P2P) Network,” presented in Internet Sicherheit (Seminar) at

Technische Universität, Berlin, Germany, 2008

[16] Jelena Mirkovic , Peter Reiher, “A taxonomy of DDoS attack and DDoS defense

mechanisms,” ACM SIGCOMM Computer Communication Review, v.34 n.2, April

2004, doi: 10.1145/997150.997156.

[17] Coleman, K. “Russia Now 3 and 0 in Cyber Warfare,” January 30, 2009.

Retrieved September 29, 2009, from defensetech.org:

http://www.defensetech.org/archives/004667.html

[18] Leyden J. “Techwatch weathers DDoS extortion attack,”January 30, 2009.

Retrieved September 29, 2009, from The Register:

http://www.theregister.co.uk/2009/01/30/techwatch_ddos/

[19] Starkie S. “Twitter is weapon of war on the net,” August 17, 2009.

Retrieved September 29, 2009, from:

 http://www.iomtoday.co.im/business-columns/Twitter-is-weapon-of-war.5560459.jp

[20] InfoSec News, “Police arrest DDoS hackers in Bac Ninh,” August 2, 2006.

Retrieved September 29, 2009, from:

http://lists.jammed.com/ISN/2006/08/0007.html

[21] Teerawat Issariyakul, Ekram Hossain, “Introduction to Network Simulator NS2,”

Springer Publishing Company, Incorporated, 2008

[22] The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC. “The ns

Manual,” Kevin Fall and Kannan Varadhan, Edition 2005

http://www.defensetech.org/archives/004667.html
http://www.theregister.co.uk/2009/01/30/techwatch_ddos/
http://www.iomtoday.co.im/business-columns/Twitter-is-weapon-of-war.5560459.jp
http://lists.jammed.com/ISN/2006/08/0007.html

117 .
 | Chalmers University of Technology

[23] Eitan Altman, Tania Jimenez, “Ns simulator for beginners,” Lecture notes, Univ.

de Los Andes, Merida, Venezuela and ESSI, Sophia-Antipolis, France, 2003

[24] Greis M.; Tutorial for the network simulator Ns.

Retrieved September 30, 2009 from:

http://www.isi.edu/nsnam/ns/tutorial/

[25] 5th VINT/Ns Simulator Tutorial/Workshop

Retrieved October 14, 2009 from:

 http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html

[26] Chung J. Claypool M.; “Ns by Example”

Retrieved October 14, 2009 from:

http://nile.wpi.edu/NS/

http://www.isi.edu/nsnam/ns/tutorial/
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html
http://nile.wpi.edu/NS/

