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Abstract 

 
 

Distributed denial-of-service attack (DDoS) as one of the most common 

Internet attacks today is an attempt to prevent legitimate network traffic from 

reaching the target and consequently to disable all services that this resource 

provides to the victim. The most common method to perpetrate DDoS attack is 

flooding the network with malicious packets to exhaust the network resources. 

This work is based on the fact that many network-based applications 

commonly open some known port(s) to communicate with their users; 

therefore, making themselves vulnerable to DoS or DDoS attacks. One of the 

main approaches to perform DDoS attack is to leverage the distributed network 

architecture (peer to peer networks) to create huge armies of zombies. These 

zombies are used to flood the victim with legitimate traffic. As there are large 

number of attacker machines in this method, defending against this attack is 

extremely complex. As peer to peer networks have become very important as 

one of the most popular content-delivery systems recently, the issue of defense 

against DDoS attack which use peer to peer network as their weapon turned 

into a big concern.  

 

Considering this problem the main goal of this dissertation, after understanding 

the DoS and DDoS attacks deeply, is to simulate a DDoS defense system using 

a “pseudo-random port-hopping”” approach (called HOPERAA and BIG 

WHEEL algorithm) using ns-2, and analyze its performance under different 

circumstances. This “port hopping” approach is based on the work developed 

in [5]. The idea of this approach is to implement a solution capable of 

establishing a communication among the involved parties as well as hoping in 

a synchronized manner from port to port.  

 

The analysis and evaluations performed in this dissertation include the 

overhead created by implementing the defense algorithm in a network under 

different defined conditions. Also the algorithms‟ behavior has been studied 

under variable clock drifts between the parties in the network. Simulating and 

analyzing the performance of these algorithms showed that this defense 

method behaves as expected and the results are consistent with the description 

given in [5]. 
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    1 
Introduction 

 
  
 
 
 

In the past few years, Peer-to-peer networks (from now on we will use the 

acronym “P2P” when referring to this kind of networks) have become 

immensely important as one of the most popular Content-Delivery systems. 

Proof of this, is evident when looking at the Ipoque‟s Internet Study for 

2008/2009, which provides an overview of the Internet's current state based on 

the analysis of 1.3 petabytes of Internet traffic in eight regions of the world 

(Northern Africa, Southern Africa, South America, Middle East, Eastern 

Europe, Southern Europe, Southwestern Europe, Germany). From this analysis 

it was concluded that even though the amount of P2P traffic has decreased, 

since the last time the study was conducted, it still generates the most traffic in 

all regions [1]. 

 

During the early beginnings, P2P networks and applications were mainly used 

in between home users, since it offered a way for people to share files among 

each other in a very reliable way; however, nowadays companies have been 

using the same approach for their own business strategy, shifting from the 

usual Client-Server model to the Peer-to-Peer model. Two examples of the 

previous statement are SKYPE which uses P2P protocols to forward phone 

calls around the net, and JOOST which offers “peer-to-peer” internet 

Television. The end-service might be different, but these and many other 

companies understood the importance of this approach and its many 

advantages, such as extensive object replication (due to the large number of 

peers) which at the same time increases availability, lowers cost of ownership 

and achieves fault tolerance, all in one. 

 

 

“Cyber attacks have plunged 
entire cities into darkness.” 

- Barack Obama 
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The importance in between P2P Networks and the topic from this thesis is that 

nowadays, Attackers are capable of create huge armies of “zombies” by taking 

advantage of this kind of architecture. Perpetration requires little effort on the 

attacker‟s side, since a vast number of insecure machines (peers) provide 

fertile ground to create “zombies” and, prevention of the attack is extremely 

complicated due to the large number of attacking machines and the similarity 

between legitimate and attack traffic. [2] 

  

Distributed Denial of Service attacks (DDoS) had been  aimed to organisms 

like government organizations, commercial enterprises, banks and social 

networking sites [3] with the porpoise of disable, or diminish, the services they 

provide to millions of end-users; but also, they have targeted specific users 

such as the case of a Georgian blogger whose accounts on Twitter, Facebook, 

LiveJournal, Google's Blogger and YouTube were targeted in a denial-of-

service attack, disabling his/her Twitter account and raising several problems 

at the other sites. According to Max Kelly, chief security officer at Facebook, 

"It was a simultaneous attack across a number of properties, targeting him to 

keep his voice from being heard”. [4] As you can see, just anyone can be 

targeted as a victim, and the next one could easily be you or me. 

 

This thesis will explore the problem of DDoS defense from two directions: (1) 

it strives to understand the problem by analyzing DDoS attacks, first how they 

work in a minor scale (DOS attacks) to then move on in studying them at a 

wider scale (DDoS attacks); this will give the reader a more specific 

knowledge of the problem being faced and denote the importance of the given 

solution. (2) It presents the analysis and implementation of a DDoS defense 

system using a “Port-Hopping” approach. Our study is based on the work 

developed on [5]. In this paper, the authors suggest an approach to deal with 

“Application level floods” on a Client – Server Scenario however, since each 

Client interacts with the Server on an individual basis, just as TCP does, the 

algorithm is highly suitable for P2P uses as well.  

The work in this thesis aims to take it further, by understanding and evaluating 

the algorithm‟s behavior under different circumstances to the ones presented in 

[5].  
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1.1 Motivation 

 
As briefly discussed in the previous section, our study is based on the work by 

Zhang Fu, Papatriantafilou Marina and Philippas Tsigas in their paper 

“Mitigating Distributed Denial of Service Attacks in Multiparty Applications 

in the Presence of Clock Drifts”.[5]  

 

In the latter, the authors focused their efforts in developing a solution for one 

of the main methods used by an attacker, in order to deplete the computational 

resources of a specific target. Their work is based on the fact that many 

network-based applications commonly open some known port(s) to 

communicate with their users; therefore, making themselves vulnerable to 

Denial of Service (DoS) attacks. With the purpose of solving this problem, a 

“pseudo-random port-hopping” approach was followed; the goal behind this, 

was to implement a solution capable of establish a communication among the 

involved parties yet, being able to  hop in a synchronized manner from port to 

port on the meanwhile. However, in order to achieve this, was also necessary 

to implement a practical, yet not intrusive, way to keep some sort of 

synchronization in between the time drift from the clocks of all the involved 

entities. Based on this scenario, two algorithms were proposed: (1) BIG 

WHEEL, which not only allows servers to communicate with multiple clients 

in a port-hopping manner but, also accomplishes communication-

independency among the Clients; and (2) HOPERAA, which is the algorithm 

that allows each Client to hop, in a synchronized manner with the server, 

taking in consideration the presence of clock-drifts. 

 

The authors analyzed the algorithm‟s performance and, in the “Experimental 

Study” section, gathered promising results under a scenario in which a single 

adversary was capable of perform blind and directed attacks to a set of ports in 

the Server; however, they did not studied in detail the algorithm‟s behavior by 

looking at how the different variables involved are adjusted and how such 

adjustment is affected under specific circumstances. Based on [3], [6], [7] we 

can conclude that the adversaries are getting more creative with time and, 

attacks are getting more and more intensive; that‟s why, under the supervision 

of Marina Papatriantafilou and with the help of Fu Zhang, we decided to take 

their work one step ahead and analyze how will these algorithms perform 

under different circumstances.  
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Since creating the right environment for our study cases, in the real world, will 

require of access to specific resources and particular conditions, we decided to 

set up our implementation and test-case scenario on a network simulator. For 

this purpose, we are using “ns” an event-based simulator, well-established 

within the research community, which uses  

C++ and an object orientated version of Tcl called, OTcl. Simulations are 

written using Tcl scripts and the protocols are implemented in C++; since ns 

does not include any visualization tools by default, we will use the network 

animator NAM so as to obtain a graphic representation of the simulated 

scenario.  
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1.2 Outline 

 
This dissertation is structured as follows. First we begin by giving an overview 

about all the related topics that will be discussed throughout this thesis. In 

chapter 2 we discuss about the DoS dilemma in order to denote the magnitude 

of problem and give the reader a more concrete knowledge about how it works. 

Also in chapter 2, we explain what a P2P networks is, its definition, 

architecture and benefits but more importantly, for the focus of this thesis, how 

can they be exploited to launch DDoS Attacks; after this chapter, the Reader 

will have all the necessary knowledge to understand how the solution, studied 

in this work, helps to mitigate the DDoS problem.  

Since our study is based on the paper “Mitigating Distributed Denial of Service 

Attacks in Multiparty Applications in the Presence of Clock Drifts” [5] by 

Zhang Fu, Papatriantafilou Marina and Philippas Tsigas, in chapter 3 we lay 

the foundation to understand how the defense framework works. In this chapter 

we explain in detail the two algorithms suggested in [5]; first we explain all the 

steps and variables involved when executing the HOPERAA algorithm, used 

for synchronous port hopping in the presence of clock-drifts; and then, we 

explain how the BIG WHEEL is used for servers to support communication 

with multiple clients, in a port-hopping manner. 

In chapter 4 we present a brief background and important highlights 

concerning the simulator; also, we introduce a practical approach of how the 

HOPERAA algorithm would function on a single Client/Server model (by 

using hand-derived calculations), explaining the outcome derived from each 

step and how each variable calculated would behave; but more importantly, an 

extensive and detailed explanation of how the framework, explained in chapter 

3, was implemented and which scenarios were considered in order to gather 

significant data for this work. Finally, based on the knowledge and experience 

gathered throughout the development of this dissertation, in chapter 5 and 6 we 

present our points of view regarding future work and conclusions, respectively. 
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    2 
Background 

 
  
 
 
 

In this chapter, we give an overview about all the related topics that will be 

discussed throughout this thesis. In order to really understand the magnitude of 

the DDoS problem, the reader should have some knowledge about how does it 

work; but above all, its possible repercussions.  

 

We have discussed how P2P Networks provide fertile ground for an adversary 

to create “zombies”; since in most of the cases, attackers had taken advantage 

of insecure networks to deploy DDoS attacks, we consider is important to 

understand what they are, how they operate, but specially how are they related 

to the DDoS problem. Also in this chapter, we will analyze the problem to be 

mitigated by the implemented solution [5]; in this part we will study DDoS 

attacks by first, comprehending how they are launched in a minor scale (DOS 

attacks) to then understand their taxonomy at a wider extent (DDoS attacks). 

After this chapter, the Reader will not only have all the necessary knowledge 

to understand how the presented solution helps to mitigate the DDoS problem 

but also, a general knowledge of how these attacks work and the damage they 

can cause. 

”Technological progress is like 
an axe in the hands of a 
pathological criminal.” 

- Albert Einstein 
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2.1 P2P Networks  

 
As the title asserts, this section talks about the main features of Peer-to-Peer 

(commonly referred as P2P) Networks and how they work. In the subsequent 

segments, we will give an extensive explanation about the topic by covering 

areas such as its definition, architecture and benefits but more importantly, for 

the focus of this thesis, how can they be exploited to launch DDoS Attacks.  

 

2.1.1 P2P Network Definition 
  

Peer-to-peer (P2P) systems are distributed systems in which nodes of equal 

roles and capabilities exchange information and services directly with each 

other. [9] Let‟s disassemble this into pieces in order to understand it better; 

first of all, all users or components in the network are called “peers”, and each 

one of them is capable of retrieving objects directly from each other without 

intervention of a centralized server. Unlike the traditional Client-Server 

architecture, in a P2P network each component within the system, depending 

on the situation, can play the role of a Server or a Client at any time and 

simultaneously. For example, when a peer allows others to download a file 

from its hard drive, the peer plays the role of a server; conversely, this peer 

could be also obtaining files from other peers hence acting as a client. 

Whenever a peer is in the lookout for a specific file, messages are interchanged 

among the parties in order to discover other peers and determine which one of 

them has the desired object. Once the object has been found, the peer who 

started the search can download the file directly from the peer providing it 

since, as discussed earlier, in a peer-to-peer topology all transfers are always 

done directly between the peer sharing the file and the peer requesting for it; 

nevertheless the control process, prior to the file transfer, can be implemented 

in many different ways.  
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Once we have understood what P2P networks are and how they work, we 

employ [8] and [10] to identify some of the most common models:  

 

- Centralized: In this model, each peer publishes information about 

the content they offer for sharing, along with a peer ID, IP address, 

and other type of information, into a well-known central directory. 

(See figure 1) A TCP connection is established with the central 

server and whenever one of the peers wants to retrieve a file, the first 

thing it does is to send a query message to the server; this query 

usually includes some keyword or identifier of some kind which, at 

the server‟s side, is evaluated against the directory. The server then 

creates a list with all the peers that best match the request and sends 

it back to the client; on receiving the list, the peer selects a peer from 

which it directly retrieves objects. When a peer leaves the P2P 

network, the server detects the disappearance through the 

termination of the TCP connection. Since this model requires a 

centralized infrastructure to store the information of all peers, it is 

prone to show some scalability limits, since it might require bigger 

servers when the number of requests escalate, or larger storage when 

the number of users increase; also, in the topic this thesis concerns, it 

becomes a vulnerable point which could be targeted by an attacker 

in order to disable the whole network.  

 

 

 

 

 

 

 

 

 
                         

 

 

Some popular applications using this model are Napster, OpenNap, 

and instant messaging applications such as ICQ, Yahoo messenger, 

and MSN messages. 

 

 

 

 

Download 

 

Search 

Figure 1: Centralized Peer-to-Peer network. 
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- Flooded requests or Decentralized: In this architecture, all peers 

are equal and there is no directory server so, is commonly referred as 

“pure P2P” (See figure 2). When a peer joins the network, it first 

sends a request to a bootstrapping node which provides him with a 

list of IP addresses of peers that have already participated in the 

network; then the new peer, advertises its address to the other parties 

thus creating a “neighborhood”. When a peer wants to retrieve an 

object, the request is flooded (broadcasted) to directly connected 

peers, whom consequently flood their neighbors thus distributing the 

request throughout the whole parties; process is terminated when the 

request is answered or, a maximum number of flooding steps has 

occurred.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of its main advantages, over the other models, is that the failure 

of one or even several of the nodes has little impact on the 

performance of the network since there is no single point of failure.  

Gnutella and Freenet are typical applications using this mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Download 

 

Search 

Figure 2: Decentralized P2P Network. Each node  is only connected to its direct 

neighbors; file download can be established with nodes not directly connected. 
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- Controlled Decentralized: This model employs a hybrid, 

combination of the centralized and decentralized frameworks; in this 

architecture peers are clustered into groups so, the entire P2P 

network is logically formed by a conjunction of different groups. 

When a peer joins the network, it has to become a member of a 

specific group. In a group, there is a leader („super-node‟ or 

„ultrapeer‟) which maintains information of the objects deposited by 

peers in the group; thus, registration, query and objects retrieval in a 

group, are similar to the one in the Centralized architecture. 

Additionally, to achieve more results, one super-node can forward 

queries from its client peers to another super-node. (See figure 3) 

-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Super-nodes change dynamically as bandwidth and the network 

topology change. A client-node keeps only a small number of 

connections open and each of those connections is to a super-node. 

Third generation P2P such as Morpheus, KaZaA, eDonkey2000, 

Groove, WinMX and FastTrack are typical applications using this 

model. 

Download 

 

Search 

Group 1 

Group 2 

Group 3 

Figure 3: Controlled Decentralized P2P network. Each node in a group connected to a super-

node. File download can be established with node from different groups. 
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2.1.2 P2P Benefits 
 

In this section we want to denote the benefits derived from using P2P 

networks, in order to magnify the reason why, in recent years, they have 

become a popular way to share huge volumes of data; increasingly receiving 

attention, from both industry and research community.  

According to [8], selecting a P2P approach is often driven by one or more of 

the following benefits.  

 

- Cost distribution/reduction  

In centralized systems, as they grow bigger, it becomes more 

expensive to support all the clients; however in P2P networks, such 

cost is distributed among all the peers. For example in the case of 

Napster, the centralized directory was only responsible for keeping 

the index required for sharing; while the cost for file storage, was 

never a problem since it was taken care of by the members in the 

network.    

 

- Resource aggregation and interoperability 

Another great benefit derived from using P2P networks is that they 

can grow depending on the required needs so, attributes such as high 

compute power or storage space can be achieved relatively easy. 

P2P structures can be used to solve larger problems by segmenting 

them into small pieces and assigning them to each peer rather than, 

trying to solve the whole problem just by using a single machine. 

“File sharing systems, such as Napster, Gnutella, and so forth, also 

aggregate resources. In these cases, it is both disk space to store the 

community‟s collection of data and bandwidth to move the data that 

is aggregated.” [8] 

 

- Improved scalability/reliability 

This feature is achieved in conjunction with the algorithm 

implemented within the network, whether is centralized, 

decentralized or a hybrid of some kind, the network can become 

highly reliable (Capable of tolerating high node failures while 

maintaining connectivity and resolving searches within few 

messages [12]) and scalable (The ability of an unbounded number of 

new peers to join in the system [11]). 
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- Anonymity and privacy 

By using a P2P structure, all activities are local to the peers. The 

latter allows them a greater degree of autonomy and control over 

their data and resources; once in the system, users can avoid having 

to provide any information about themselves to anyone else; this is 

not the case in a central server approach, where the server will 

typically be able to identify the client, at least by Internet address. 

 

- Enables ad-hoc communication and collaboration 

It instinctively offers dynamism and certain degree of freedom, since 

all members can connect and disconnect from the network at any 

time. The system does not rely on an established infrastructure, 

rather than a logical assembly, thus collaboration is achieved and 

highly scalable by just adding more peers into the network. 

 

- Greater Autonomy 

Since each peer within the network is independent, the P2P model 

allows a high degree of autonomy for its peers, because it eliminates 

the need to rely on, and follow the rules set by, a single central 

resource provider. 



P2P & DDoS Attacks  2. BACKGROUND 
 

13 .                                                              
                                                                                             | Chalmers University of Technology 

 

 

2.2 Distributed Denial of Service (DDoS) 

 
A DoS attack is an attempt to prevent legitimate users of a service or network 

resource from accessing that service or resource. DoS attacks usually make use 

of software bugs to crash or freeze a service, resource, or bandwidth limits by 

saturating all bandwidth. [15] 

 

Based on this definition, we will explore the problem first by defining what a 

DOS attack is. A Denial of Service (DoS) attack is one of the most common 

attacks today. Different to many other threats, these attacks are not targeted at 

stealing, modifying or destroying information but to prevent legitimate 

network traffic from reaching the target thus, disabling all services the latter 

provides to its users. Although there exist many forms or methods to perpetrate 

a DOS attack the most common form consists in flooding the network with 

bogus packets, hence preventing legitimate network traffic. Another method is 

to drown the victim in fastidious computation so that it is too busy to do 

answer any other queries; in a DoS attack, only one machine is used to 

generate malicious traffic. Distributed DoS (DDoS) on the other hand, is an 

attack concerning a big number of subverted machines (zombies), coordinated 

by a central intelligence (attacker), launching simultaneous DOS attacks. 

 

 

2.2.1 DDoS Attacks Classification 
 

Now that we have a better understanding of what DDoS attacks are, we present 

the following taxonomy in which attacks are classified under common 

characteristics; for this, we use [15] and [16].  

 

- Degree of automation 

 

In order to perform a DDoS attack, the adversary must achieve 3 

basic objectives:  

 

1. Recruit multiple machines, known as zombies (recruit phase) 

2. Acquire certain control level over them (exploit phase)  

3. Instruct them to launch an attack over a specific target (attack 

phase).  
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In the early stages of DDoS attacks these phases were performed 

manually, by scanning remote machines for vulnerabilities, breaking 

into them, installing attack code and then command the attack; 

however, nowadays the process has been automated thus reducing, 

or even avoiding, the need for any communication between attacker 

and agent machines. After the recruit and exploit phases, the agent 

machine may propagate the attack code as follows: 

 

 Central source approach: The attack code resides on a 

central source from where it is downloaded by the 

compromised host. 

 Back-chaining approach: The attack code is downloaded 

from the machine that was used to exploit the system rather 

than from a centralized location. 

 Autonomous approach: The attack code is injected during the 

exploit phase. 

 

- Weaknesses Exploited 

 

DDoS attacks exploit different weaknesses in order to achieve their 

goal; based on this, we can classify them into: 

 

 Vulnerability attacks: Known also as „semantic attacks‟, their 

aim is starvation of resources in the victim by exploiting 

implementation bugs, specific features or applications 

running in the victim‟s end. 

 Flooding attacks: Known also as „brute force attacks‟, their 

aim is starvation of resources in the victim by exasperating it 

with many „seemingly legitimate transactions‟ up to the 

point, when it becomes unable to accept any more 

transactions. 

 

- Victim‟s Type  

 

As discussed previously, attacks are not necessarily aimed against 

single host machine. Depending on what they target, victims can be 

applications running on the target host, part of a network 

infrastructure or resources, such as bandwidth, or resources into the 

victim‟s network like router or a bottleneck link. 
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- Attack Rate Dynamics  

 

During the attack, each zombie is instructed to send a stream of 

packets to the victim; depending on the way these are sent, we 

differentiate between:  

 

 Constant rate attacks: After the attack is commanded, the 

zombies generate attack packets at a fixed rate, usually as 

many as their resources permit. The main feature of this 

approach is that is capable of disrupt the victim's services 

quickly, due to the sudden increase of packets.  

 Variable rate attacks: This attack aims to gradually degrade 

the victim‟s performance by changing the frequency rate at 

which the zombie sends packets to the victim.  

 

 

- Impact on the Victim 

 

Depending on the impact of a DDoS attack in the victim, attacks can 

be disruptive, in which the goal is to completely deny the victim's 

service to its clients; or degrading, in which the objective is to 

strategically consume portion of a victim's resources, in order to 

degrade the service‟s quality offered to legitimate customers; since 

these attacks do not lead to total service disruption, they could 

remain undetected for a long time. 

 

The reason why DDoS attacks are so popular nowadays is because they are 

very difficult to counterattack since, as mentioned before, they use a large 

number of computers to generate malicious traffic and these attacker machines 

could easily be spread all over the Internet or even be legitimate users; but 

also, as mentioned in [2], DDoS traffic very difficult to detect since it is highly 

similar to legitimate traffic so, it blends completely with the small amount of 

legitimate client traffic thus making detection very difficult until is too late. 

 Taking in consideration the previous, one would think that because DDoS 

attacks are distributed threats, the best approach would be to implement a 

distributed solution; however, wide deployment of any defense system is very 

difficult to enforce because Internet is administered in a distributed manner; 

and this is where the framework studied in this dissertation falls into place. 
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To conclude our discussion about DDoS attacks, we would like to answer one 

very important question, “Why do people perpetrate DDoS attacks?” 

The main goal, no matter the case, is to inflict as much damage as possible on 

the victim or, to whoever relies on the target's correct operation. Ulterior 

motives may include personal reasons (such as revenge or merely for fun), or 

prestige (successful attacks on popular Web servers gain the respect of the 

hacker community [19]). However, some DDoS attacks are performed with 

darker motives in mind, such as material gain (like for example, the attacker 

could target possible competitors in order to disable their capability of offering 

a service or their corporate image [20]; as well as blackmail a company trying 

to obtain a financial benefit [18]), political reasons (aiming to create instability 

in the country [17] or simply to discredit and silence an specific public figure, 

like the case presented in [4]) and even could be used as a weapon during war 

times. 
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2.3 P2P & DDoS Attacks 

 
So far we have discussed the many benefits derived from using a P2P strategy; 

however, now it is time to analyze how these same advantages, turn P2P 

networks into the weapon of choice for many attackers. With such a huge user 

base and lack of any authentication, P2P networks can be leveraged by an 

adversary to launch a DDoS attack against a victim machine on the Internet. 

The victim need not be a participant in the P2P network, and could be a web 

server, a mail server or even a home user‟s desktop.  In this section, using [13] 

we focus on DDoS attacks triggered from exploiting P2P systems. The 

algorithms in a P2P system enable a peer to join the group, and maintain 

information about other members, even though nodes may join or leave the 

system. To scale to large group sizes, nodes maintain knowledge of only a 

small subset of group members and, this is where two of the most common 

attack approaches are used, index poisoning and routing table poisoning. [14] 

 
2.3.1 Index poisoning attack 

 

In index poisoning attack, the aim of the attacker is to make several peers 

believe that some popular file is present with the victim. To achieve this, the 

attacker A sends a false index record with the victim‟s IP address and port 

number to all the other nodes. The attacker usually uses the file hash of a very 

popular file so that there will be a large number of requests for it. On receiving 

the false index record, the peer B adds it into its index along with the location 

of the victim. B does not verify whether the victim has the corresponding file 

or even that A or victim is a participant in the P2P network. When some other 

peer C searches for that file, B will send V‟s record to C and the latter will try 

to establishing a TCP connection and retrieve the file from V. (See Figure 4) 

Since V could or not be part of the P2P network, it may not understand the 

message, thus ignoring it, replying with some error message or even terminate 

the connection. Unable to download the file, the downloading peer C may retry 

after some time.  
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As we stated before, since it is popular file the victim will receive a large 

number of requests from others peers whom, just like C, believe A has the 

desired file hence, making V unavailable to accept connections from legitimate 

users. (See Figure 4.2) Making things worse, Index poisoning can become a 

resilient attack since the fake records persist in the indexes for hours; even 

after the peers have failed on retrieve the requested file from the target. 
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Figure 4: (1) Attacker „A‟ sends fake record to every crawled peer, the latter add it into its index. 

(2) „C‟ requests file „F‟ from B and tries to retrieve „F‟ from „V‟, who might not even have the 

requested file. 
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2.3.2 Routing table poisoning 
 

In routing table poisoning attack, the aim of the attacker is to make the peers 

add the victim as their neighbor. To achieve this, the attacker A sends node 

announcement message to every crawled peer. In these messages, the attacker 

includes the victim‟s IP address and port number so that B includes it into its 

routing table. Whenever a peer receives a search query or a maintenance 

message, it may select the victim from its routing table and forward the 

message to the victim. If the attacker poisons the routing table of a large 

number of peers, the victim may receive a flood of search queries and 

maintenance messages, saturating the victim‟s link. (See at figure 5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the victim is not a participant in the P2P network, it will typically 

respond with a „Port unreachable‟ message, flooding not only on upstream but 

also on downstream direction. The routing table poisoning generates a burst of 

messages directed at the victim but, different to the previous attack, after the 

victim fails to respond it may be removed from the poisoned routing table. 

Figure 5: (1) Attacker „A‟ sends node announcement message (V‟s information) to every crawled peer.  

(2) Whenever any of those peers receives a search query or a maintenance message, it forwards  

the message to the victim flooding its links. 
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    3  
                    A port hopping approach 

against DDoS  

 
  
 
 
 

In this chapter, we give an extensive and detailed explanation of how the 

framework designed in [5] works.  

To begin with, the solution was designed to overcome a very common 

vulnerability, present at the application layer, in which certain programs may 

open ”well-known ports” in order to perform whatever action they're meant to 

do thus, an attacker, can eavesdrop some packages, discover which port is 

being used and launch a directed attack over such port; or, even if it can‟t 

discover which port is being used, I can still perform blind attacks (sending 

packets to a largely random set of ports, to then target any of the ports who 

responded) and eventually accomplish the same objective. Taking this scenario 

in consideration, the solution studied is based on the idea that the parties 

involved are capable of communicating with each other “hopping” in between 

different available ports over time; thanks to this, an attacker is not able to 

perform a attack over a particular/vulnerable port (used for communication) 

since the latter is always changing in a synchronized manner. In order to 

achieve such behavior, and overcome the need of a global synchronization 

mechanism in the system, two algorithms were proposed; (1) BIG WHEEL, 

which is used for servers to support communication with multiple clients, in a 

port-hopping manner and; (2) HOPERAA, used for synchronous port hopping 

in the presence of clock-drifts. In the following sections, we will discuss in 

detail how these algorithms work. 

“Defense is the stronger form with 
the negative object, and attack the 
weaker form with the positive 
object.” 

- Ernest Hemingway 
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3.1 Hopping Period, Align and Adjust Algorithm 

 
The Hopping Period, Align and Adjust algorithm (Referred as to HOPERAA 

in this thesis) is an adaptive algorithm, which is executed by each client when 

its hopping period length and alignment drift apart from the server‟s; the latter, 

ensure synchronization among the parties, without having to rely on a 

“common synchronization” server.  

Within a network, is very common for the clients to have local clocks which 

differs from the one of the server, sometimes it could be slower and sometimes 

faster; since the ports being used for communication become available and 

unavailable over time, the periods of the Client and Server may start drifting 

apart from each other after some time, causing  messages loss due to the fact 

that the Client may send messages to some of the Server‟s ports that has been 

closed or not yet open due to asynchronous clocks. The HOPERAA algorithm 

fulfill its objective by dealing with problems as the previous scenario and, 

avoiding messages losses due to unsynchronized port hops. 

 

3.1.1 HOPERAA’s Description   
 

Before explaining how the algorithm works, first we set the following ground 

rules and assumptions: 

 

 Each communication party has its own clock and the clock rate of 

each local clock is constant. 

 The server's clock is used as reference for the whole operation hence 

each client's clock drift is defined as the ratio between its own clock 

and the server's clock rate.  

 The client and server share a “common secret”, which is a pseudo-

random function “fψ” used to generate the port number for 

transmission  

 “μ” is the maximum round-trip delivery latency for the messages.  

 This solution mitigates attacks based on the application layer; 

therefore it‟s assumed that network is always available and attacks 

depleting the bandwidth of the server's network are not considered. 

 The server has a set of N ports (Port Number Space) available for 

communicating with legitimate clients.  
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 Ports opened at the server‟s side can be of two types, based on their 

function. (1) Worker ports, used for receiving data messages from 

the client or (2) Guard Ports, used for receiving coordination 

messages from the client. Guard Ports can become worker ports after 

some time. 

 Worker ports are opened every “L” time units and, they remain open 

for “L+ μ” time units. (figure 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now that we have established a common ground, let‟s study how the solution 

operates. Communication is achieved throughout these phases: 

  

- Phase 1: Contact-Initialization 

 

During this phase, the Client contacts the Server without any “well-

known” port being opened at neither the server‟s side nor, “C” 

having to rely on a third-party to get the port information.  

In order to achieve this, the server must do the following: 

 

1. Divide the range of port numbers into “k” intervals 

evenly. 

2. Open “k” different guard ports at the same time, one of 

them per one interval, and changes them every “τ” time 

units.  

 

 

 

 

 

0 0.3 0.4 0.6 0.7 0.9 1.2 1.3 1.6 1.0 

Port ( i ) 

Port ( i + 1 ) 

Port ( i + 2 ) 

Port ( i + 3 ) 

Port ( i + 4 ) 

Figure 6: Assuming that L=0.3 and μ = 0.1,  the worker ports at the server side will open 

and close as above presented. 
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After the server has executed the previous actions, the algorithm 

then performs like this:  

 

1. Client tries to contact the Server by sending “contact-

initiation messages” to all the ports in a randomly-chosen 

interval. In this message the Client includes a timestamp 

“time” with the time at which the message was sent. 

2. When the Server receives the “contact-initiation 

message”, it waits until the next worker port opens, open 

a session for the Client who contacted it and replies with 

the following information:  

a.  “σ”, seed used to compute the next worker port.  

b. “time”, Timestamp at which the reply was sent. 

c. “t1”, time at which the Server received the 

contact-initiation message from the Client. 

d. “h1”, timestamp at which the Client sent the 

contact-initiation message 

3. If the Server doesn‟t receive any message from the Client 

by the next worker port, the session opened in the step 2 

will be closed; on the other hand, if the Client doesn‟t 

receive any reply from the Server, after “2μ +L” time 

units it will send “contact-initiation messages” to another 

randomly chosen interval. 

 

The actions described above, from both Client and Server, are 

presented as an algorithm in figure 7.  

 

 

 

 

 

 

 

 

 

 

Figure 7: (1) Algorithm for the Client in the Contact-Initiation Phase 

                 (2) Algorithm for the Server in the Contact-Initiation Phase 

 

Tc = undef; 

Reply = false; 

 

 Sending contact-initiation messages: 

 

while (Reply == false) do  

     I = SELECT (Ii | i ε {1, 2, ..., k})   

     for (all ports in „I‟) do 

             SEND (init, time, p) 

     end for 

     WAIT (2μ +L)  

end while 

 After receiving (init, time, p): 

 

          t1 = time(now); 

          If (session == undef) then  

               OPEN (session, C); 

                h1 = time;  

          end if 

          WAIT (Next worker port opens) 

      SEND (reply, σ, timestamp, h1, t1) 
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- Phase 2: HOPERAA Execution 

 

“Roughly speaking, after the contact-initiation phase, the application 

data from C to S is sent out through ports of S that change with 

period L time units of S‟s clock, corresponding to „Pc‟ time units in 

C‟s clock (initially Pc = L)” [5] however, before actually start 

sending data to the Server, the Client has to perform the actions 

described in this section. As previously mentioned, this phase is 

reached after the Client has received the reply from the Server and, 

before it starts sending Data Packets; in this phase, the HOPERAA 

algorithm uses the clock‟s information, from the exchanged 

messages, to determine whether the Client‟s clock is slower or faster 

than the Server‟s and, based on such, it takes the proper actions to 

ensure successful data transmission. The reply sent by the Server to 

the Client is structured as follows: 

 

Pkt (reply, h1, t1, timestamp, seed) 

 

In order to keep synchronous communication in between the parties, 

the following actions are performed: 

 

1. The “HOPERAA execution interval” is initiated to 0. 

2. The Client initializes the following variables:  

a. Hc (t4) = Time at which the Client received the 

reply from the Server. 

b. Hc (t1) = h1 

c. t2 = t1 

d. t3 = timestamp  

3. The Client, bounds its clock drift using the following: 

    ρLow ≤ ρ ≤ ρUp 

Where: 

 

 

4. The “HOPERAA execution interval” is calculated based 

on the following conditions: 

 

a. If (ρLow < ρUp < 1) then  
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b. If (1 < ρLow < ρUp) then  

 
 

c. If (ρLow < 1) and (1 < ρUp) then  

 

 

 

 

5. The “HOPERAA execution interval” and the value of 

“Pc” are both adjusted based on the following conditions: 

 

a. If (1 ≤ ρLow ≤ ρUp) then Pc = L (ρLow) and  

 

 

 

b. If (ρLow ≤ ρUp ≤ 1) then Pc = L (ρUp) and  

 

 

 

c. If none of the conditions above are fulfilled then, 

do nothing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Algorithm used by the Client to send Data to the Server.  
 

 Receiving (reply, σ, timestamp, h1, t1): 

 

if (Reply == false) then  

     Reply = True; 

     Tc = 0; 

     Pc = L; 

                           /* Start sending DATA */ 

            Seq = 0; 

            Pold = f ψ (σ); 

            Pnew = f ψ (σ + 1); 

            While true do 

    SEND (Data, Pold) 

                   If (i(Pc) - µ ≤ Tc ≤ i(Pc)) then 

          SEND (Data, Pold) 

                   end if 

                   If (Tc == i(Pc)) then 

          Pold = Pnew; 

                         Pnew = f ψ (σ + i + 1); 

                         i ++; 

                   end if 

             end while  

end if 
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- Phase 3: Data Transmission 

 

This phase is executed immediately after the Client has finished with 

the calculation from “phase 2” and, the following actions are taken: 

 

1. As soon as the Client receives the reply, it performs the 

following: 

a. Sets its internal timer “Tc” to 0. This variable 

increases at the same rate as the client‟s local 

clock. 

b. Uses the seed “σ” and pseudo-random function 

“fψ” to generate the worker ports Pi = fψ(σ) and 

Pi+1 = fψ(σ+1). 

2. After calculating the worker ports, the Client will send 

the data messages immediately to Pi. 

3. During the interval “[i(Pc) - µ ≤ Tc ≤ i(Pc)]”, messages 

will be sent to both “Pi” and “Pi + 1”. 

4. When “Tc becomes equal to “i(Pc)”, “Pi” changes its 

value for the one of “Pi+1” and “Pi+1” is recalculated by 

using  “fψ(σ+i+1)”, at every i ε N*. Roughly speaking, we 

can say that “i” acts as an index, whose initial value is 1, 

and it increases every time “Pi” and “pi+1” are updated.  

 

Depending on the value of the HOPERAAA execution interval, the 

transmission may be stopped to execute Phase 1 and 2; however, 

data transmission will be resumed after the latter two phases 

accomplish their purpose.   

Actions described above, are presented as an algorithm in figure 8.  

 

- Phase 4: Termination  

 

The Client will end the communication, by sending a “termination-

message” and getting it acknowledged by the Server. 

 
We tried to develop this section so that it would be as comprehensible as 

possible however; if something is not clear and to avoid confusions, we 

strongly recommend that the reader refers to reference [5] for more details on 

specific issues. 
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3.2 BIG WHEEL Algorithm 

 
In this section the BIG WHEEL algorithm is considered to deal with multi-

party communication, supporting several Clients connected to the same Server. 

Since each Client follows the Server‟s hopping procedure, and take the 

Server‟s clock as reference, they are capable of communicate independently 

from each other.  

 

 
 

 

 

When using BIG WHEEL, worker ports still remain open for “L + μ” units of 

time but now the Server will support “m” port number sequences instead of 

just one, as in the previous section (see figure 9); this afford more clients and 

also decrease the maximum waiting time for each one of them. In the Clients 

side, by using λ and the pseudo-random function “f ψ” it is possible to generate 

different port number sequences if different values of λ are given. 

Apart from these changes, the phases previously explained and the actions 

performed in each one of them are the same, so when the server receives a 

contact-initiation message from the Clients, it will send the reply at the closest 

opening time of a worker port (considering all “m” sequences) along with the 

corresponding value of λ for the sequence to which that worker port belongs. 

The pseudo-code is the following: 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Shows the situation of m = 3 and the open time of P0
i  is t. 

 

 Buffer B stores all contact-initiation messages received 

 Whenever is time to open a new port from any of the “m” intervals: 

 

if (time(now) == OpenTime Pi
J) then  

     λ = Corresponding value for sequence “j” 

     σ = Corresponding value for Pi
J; 

     for all clients in B do 
            if (session == undef) then  

                 OPEN(session, C) 

                 h1 = timestamp of the corresponding contact-initiation message 

            end if 

            SEND(reply, σ, timestamp, h1, t1,λ)      

      end for 

  CLEAR(buffer B) 
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    4 
            

Implementation 

in ns-2 

 
  
 
 

 

 

 

In this chapter, we present an extensive and detailed explanation of how the 

framework, explained in the previous chapter, was implemented in the 

Network Simulator. First, we give a general impression on the network 

simulator and briefly discuss its basic structure, components, capabilities, etc. 

Since HOPERAA was implemented in ns by introducing a new Agent, 

throughout the second section we give an extensive explanation of how 

HOPERAA was implemented, the steps followed to simulate the algorithm and 

how to configure the simulator in order to support this new agent. One of the 

major breakthroughs of the HOPERAA algorithm is its ability to “hop” 

synchronously among different ports, when the parties involved have different 

clock rates; the strategy followed, in order to attain the latter, is also described 

in this chapter. In the last section, we present a practical approach of how the 

HOPERAA algorithm would function on a single Client/Server model (by 

using hand-derived calculations) then, we explain the outcome from each step 

and how each variable calculated would behave depending on the situation. 

We believe this is important since, it will help the reader to understand how the 

pseudo-code described in chapter 3 “looks like” in a practical environment, 

what sort of adjustment are expected from each time HOPERAA is executed 

but more importantly, this will set a baseline in understanding what the values 

obtained mean and what the expected performance will be. 

 

 

“There are no secrets to success. It is 
the result of preparation, hard work, 
and learning from failure.” 

- Colin Powell 
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4.1 The Network Simulator (ns) 
 

In this section we use [26] to give a general impression on the network 

simulator (commonly known as ns-2, in reference to its current generation). Ns 

is a discrete event network simulator, developed at UC Berkeley, capable of 

simulate a wide variety of IP networks. It implements network protocols such 

as TCP and UPD; it can model traffic sources such as FTP, Telnet, Web, CBR 

and VBR; router queue management mechanism like Drop Tail, RED, CBQ 

and more. Apart from the already mentioned, one of the main reasons why ns 

was chosen as a tool for this thesis is because of its flexibility, since its open 

source and it offers a plentiful online documentation, it is possible to extend its 

original capabilities into fulfilling a special purpose. (As we will demonstrate 

further in this chapter) 

Ns was built in C++ and provides a simulation interface through OTcl, an 

object-oriented dialect of Tcl. The user describes a network topology by 

writing OTcl scripts, and then the main ns program simulates that topology 

with specified parameters. Currently ns development is supported through 

DARPA with SAMAN and through NSF with CONSER, both in collaboration 

with other researchers including ACIRI.  

 

4.1.1 Ns’ Fundamentals    
 

The simulator‟s version used in this thesis is ns - 2.31. This section talks 

briefly about the basic structure of ns and most of the information, used in 

describing the ns basic structure and network components, can be found in the 

5th VINT/ns Simulator Tutorial/Workshop slides and the ns Manual (formerly 

called "ns Notes and Documentation") [25] and [22] respectively. In its most 

basic definition, ns is an Object-oriented Tcl script interpreter which offers 

several components such as a simulation event scheduler, network component 

object libraries, and network setup module libraries. In other words, to setup 

and run a simulation network, a user has to write an OTcl script that initiates 

an event scheduler, sets up the network topology using the network objects and 

execute specific actions throughout the simulation time.  

All the different elements, necessary to build a specific topology, are defined 

in the simulator‟s object library, so users have the possibility of using a 

predefined object from this library or create a new network object to 

accomplish a specific task.  

 

 

 

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Tcl
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The event scheduler in ns is the one responsible for keeping track of the 

simulation time and, when the time is right, firing a particular event from the 

event queue; even if two or more events were scheduled to execute at the same 

time, since ns offers a single thread of control, the risk of locking or race 

conditions is inexistent. Each event scheduled, happens in an instant of virtual 

(simulated) time but, takes an arbitrary amount of real time to execute.  

As we previously mentioned in the first section, ns uses two languages (OTcl 

and C++); the reason for this, is because it has two different kinds of things it 

needs to do. For instance, a detailed simulation of protocols requires of a 

programming language which can efficiently manipulate bytes, packet headers, 

and implement algorithms that run over large data sets. For these tasks, run-

time speed is important and turn-around time (run simulation, find bug, fix 

bug, recompile, re-run) is not; on the other hand, a large part of network 

research involves slightly varying parameters or configurations, or quickly 

exploring a number of scenarios and for these tasks, turn-around time becomes 

a priority thus need for another language. In simpler words, C++ is fast to run 

but slower to change which makes it suitable for detailed protocol 

implementation; conversely, OTcl runs much slower but can be changed very 

quickly (and interactively), making it ideal for simulation configuration. As 

recommended by [22], having two languages raises the question of which 

language should be used for what purpose; their basic advice is: 

 

 

 

 

 

 

 

 
 

In order to obtain NS simulation results, the first step is to create a Tcl script, 

feed it to the simulator and, when the simulation of such script is finished, NS 

will produce one or more text-based output files containing detailed simulation 

data; the data then, can be used for simulation analysis or as an input to a 

graphical simulation display tool called Network Animator (NAM).   

 

 

Tcl 

 
 Simple Configuration 

and Setup Scenario. 

 If the problem can be 

modeled using any of 

the already defined 

Tcl modules.  

 

C++ 

 Anything that requires 

processing each packet 

 If it is necessary to 

modify the behavior of 

an existing module or 

create a new one. 
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In this work, we used Nam as an aid to obtain a visual demonstration of NS 

output and have a general overview of how the implementation behaves. NAM 

was developed as a part of VINT project and it offers a graphical user interface 

similar to that of a CD player (play, fast forward, rewind, and pause) as well as 

a display speed controller; although it can graphically present information such 

as throughput and number of packet drops at each link, the graphical 

information derived from NAM alone, cannot be used for accurate simulation 

analysis. [26] 
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4.2 HOPERAA implementation in ns-2 
 

In this section we will discuss in detail how HOPERAA was implemented in 

ns-2; we will cover different topics from what changes were made to the ns 

source files in order to add a new agent, how the clock‟s drifts were simulated, 

the structure of the packets created for the HOPERAA agent, etc. 

First of all, HOPERAA was implemented in ns-2 as a whole new agent due to 

the nature of the algorithm, from chapter 3 is easy to notice that in order to 

make it work, it is necessary to define a new type of packet which includes all 

the information related specifically to the algorithm also, this new entity 

should be able of processing each packet and derive an specific action based on 

the time it was received; because of these, and many other reasons, we decided 

that the easiest way to do it was to implement a new agent capable of dealing 

directly with all the actions involved in the HOPERAA Algorithm. In the 

following section, we explain more in deep how the whole simulation was 

defined and all the steps taken in order to cover these specific needs.      

 

4.2.1 Adding the new Agent into ns-2    
 

Whenever is necessary to add new agents into ns-2, there are several steps that 

have to be followed; reference [24] is the one we used as guideline to create 

our new agent and, to configure the simulator so that this new hoperaa agent 

could be invoked from the OTcl script.  

As previously discussed, we will need to create a new type of packet which 

will include all the information necessary for the HOPERAA algorithm (struct 

„hdr_hoperaa‟ in „hoperaa.h‟); for this, we defined a new packet type for the 

hoperaa agent. The first step to achieve the latter is to edit the file 'ns-

2.xx/common/packet.h' and include the new definition for PT_HOPERAA:  

 

 

 

 

 

 

 

 

enum packet_t { 

           ………………...... 

 // insert new packet types here 

           ………………...... 

 PT_HOPERAA, //Packet protocol ID for HOPERAA 

 PT_NTYPE  // This MUST be the LAST one 

}; 
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Also in this file, is necessary to edit the pinfo() as follows: 

 

 

 

 

 

 

 

The file 'ns-2.xx/tcl/lib/ns-default.tcl' has to be edited too. This is the file 

where all default values for the Tcl objects are defined; it is necessary to make 

sure that in this file insert the following lines to set the default value for the 

packet size and the variables bound in „hoperaa.cc‟ (see Appendix section), 

otherwise when the Otcl script is interpreted by ns, warning messages will be 

displayed. 

 

 

 

 

 

 

 

Finally, add into the list of object files, in the 'Makefile', one entry for each 

new cc file defined and  recompile ns by typing 'make' in the ns directory. 

Remember to do a 'make depend' before you do the 'make', otherwise these two 

files might not be recompiled. 

 

  

   

 

 

 

 

class p_info { 

public: 

 p_info() { 

  name_[PT_TCP]= "tcp"; 

  name_[PT_UDP]= "udp"; 

                  ......................................... 

   name_[PT_TFRC]= "tcpFriend"; 

  name_[PT_HOPERAA]="hoperaa"; 

 

  name_[PT_NTYPE]= "undefined"; 

 } 

      … 

 

Agent/hoperaa set packetSize_ 40 

Agent/hoperaa set periodL_ 0 

Agent/hoperaa set maxDeliveryLatency_ 0 

Agent/hoperaa set totalPackets_ 0 

Agent/hoperaa set noIntervals_ 0 

Agent/hoperaa set cDrift_ 0 

Agent/hoperaa set deltaTime_ 0 

Agent/hoperaa set noSequences_ 0 

Agent/hoperaa set totalPorts_ 0 

Agent/hoperaa set sessionStatus_ 0 
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4.2.2 HOPERAA Packet taxonomy    

 

This new agent will communicate with other agents alike by sending hoperaa 

packets; in these packets we include the following information: 

 

1. A control variable which takes different values depending on the step 

the HOPERAA algorithm is in. 

2. A time-stamp which is used by the involved parties to determine the 

sending time from each packet and initialize variables from the 

HOPERAA algorithm such as „h1‟ or ‟t3‟ depending the case. (Look 

at chapter 3 for more information) 

3. The seed value with which the receiver can calculate the next port 

that will be used for data transmission. (known as worker port) 

4. The time at which the Server received the first contact initialization 

message from the Client (t1). 

5. The time-stamp from the first contact initialization message received 

by the Server (h1). 

6. And in the case of the BIG WHEEL algorithm, we include also the 

value of „λ‟ which is used, in conjunction with the seed, to calculate 

the next worker port. 

 

Each packet coming out from a hoperaa agent has this structure; however in 

some cases, like for example during the contact initialization phase, fields like 

„h1‟,‟seed‟ and „t1‟are not filled in since those are only used for when the 

Server sends the reply back to the client.  

We are aware that the code might not be the best possible implementation and, 

it could always be improved or extended,  that is why the definition of the 

packet can be found in „struct hdr_hoperaa‟ inside „hoperaa.h‟ at the appendix 

section. 

 

4.2.3 HOPERAA in relation to ns 

 
So far we have pointed out the presence of hoperaa agents and hoperaa packets 

however, in this section we will explain the role of this agent into the 

simulation and, more importantly, how does it relates to the rest of the objects 

from ns.  
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In our simulation, the topology is basically constructed using the following 

elements: 

 

- Hoperaa Agents  

 

This agent is responsible of transmitting all the information required 

by Hoperaa thus, is the one sending “hoperaa packets” from one 

point to the other. This entity is responsible of sending all the 

contact messages during the contact initialization phase also, is the 

one who calculates the ”Hoperaa execution interval” when the reply 

from the server has been received and, it schedules the next time at 

which the client must re-synchronize with the server. (There is an 

agent of this kind attached to the Server and, to each Client in the 

simulation) 

 

- TCP Agents  

 

For our simulation, we are considering TCP as a protocol so we are 

using ns-2 Tahoe TCP agent “Agent/TCP” to simulate such 

behavior. (This agent is present at the client‟s side only) 

   

- FTP applications 

 

We are using this entity, attached to the TCP agent, to generate 

traffic for our simulation. (This agent is present at the client‟s side 

only and, has to be attached to the TCP agent) 

 

- TCP-Sinks 

 

This agent is used to receive the traffic generated from the FTP 

application and transmitted through the TCP agent; for this we are 

using a base TCP sink object “Agent/TCPSink” which is responsible 

for returning ACKs to a TCP source object for each packet received. 

(This agent is attached at the Server‟s side only) 

 

- Duplex Links 

 

Used to connect the nodes with each other and achieve data 

communication in between the parties. 
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Now that we know which elements are involved, we can start explaining how 

all of them relate to each other. The best way to explain this is with an 

example, let assume that we have the following topology in ns: 

 

 

 

 

 

 

 

Internally, the Client node is constructed like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternatively the structure of the Server node is the following:   
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1 0 
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Figure 10: Shows a Single Client – Server Topology. 

 

Figure 11: Shows the internal structure of a Client Node, its 

agents and internal communication links. 

Figure 12: Shows the internal structure of a Server Node, its 

agents and internal communication links. 
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Now, let‟s say that the Client wants to communicate with the server so, the 

Server node first has to divide the range of port numbers into ‟k‟ intervals 

evenly (See chapter 3). The latter is achieved through the hoperaa agent, which 

is also responsible of opening ‟k‟ different ports (one port per one interval) and 

change them every ‟τ‟ time unit; in each opened port, the hoperaa agent will be 

the responsible of receiving the contact initialization messages from the Client 

and store the timestamp values from such contact. 

The first step for the Client node, is to reach the Server by starting the 

‟Contact-Initialization‟ phase, for this the node uses its own hoperaa agent 

which will send contact initialization messages to all the ports in a randomly 

chosen interval. When one of those messages arrive in one of the open ports, 

the hoperaa agent from the server will process such message accordingly and 

will send the reply at the moment the next worker port is opened hence, 

sending the Client all the data it needs to calculate the Hoperaa Execution 

Interval. When the packet is received at the Client‟s side, it is processed by the 

hoperaa Agent which will calculate the Hoperaa Execution Interval and, 

according to this value, will schedule when to re-synchronize with the Server. 

Once the hoperaa agent has finished its calculation, it will use the seed 

(received from the hoperaa packet) to calculate the value of the worker ports 

“Pold” and “Pnew”. After all of this is done, the hoperaa agent configures the 

TCP agent so that this one send all the data to the specific port Pold, and hands 

over the control to the latter agent which will command the FTP application to 

start generating data packets. When it‟s time to re-synchronize with the Server, 

the hoperaa agent will ”tell” the TCP agent to stop sending packets (which in 

consequence will stop the FTP application) so that it can send contact 

initialization messages to the Server and a new Hoperaa Execution Interval is 

calculated. When the hoperaa agent at the Server‟s side receives the contact-

initialization message from the Client, it will check the stored values from the 

timestamps of the first contact initialization message received and will send the 

reply at the moment the next worker port is open thus, starting the described 

process all over again.   
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4.2.4 Modifications to ns Source Code    
 

Now that we have a better idea about how all the agents and elements from ns 

relate to each other, there are some other changes we have to make. We didn‟t 

explain these changes in the previous sections because we wanted to set the 

proper background so that these modifications would make sense to the reader.  

From the previous section, we know that the one responsible of transmitting 

the data packets in the TCP agent and, the one responsible of receiving, and 

sending the acknowledgment from each packet received is the TCP Sink; when 

we were creating the topology for our simulations, we came across with the 

following problems:  

 

1. When it comes to TCP connection establishment in ns,  the first 

packet sent by the Client‟s TCP agent is a control packet which is 

received by the TCP Sink at the Server‟s side and replied with an 

ACK, this allows the Client to start sending the data packets (It 

simulates the way TCP performs the Connection establishment in 

between 2 parties, however ns uses a two-way handshake); the 

problem arises when we have a scenario in which two or more clients 

contact the Server at the same time and, have to share the same 

worker port for a period of time; since for each TCP agent there has 

to be a TCP Sink associated, in the previous scenario we needed to 

attach the 2 TCP Sinks at the same port (so that it could receive data 

from Client 1 and Client 2) and the predicament was, that when you 

do that in ns (setting two TCP Sinks at the same port), although both 

sinks will receive such contact packet only one reply will be sent. 

The problem with this is that since only one of the Clients received 

the reply, the other one will have to wait unnecessarily and contact 

the Server at another time hence, interfering with the correct 

development of our implementation. (Look at ”test1.tcl” in the 

appendix section for an example of this situation) 

To give solution to this problem, we modified “tcp-sink.cc”, by 

including the following code inside “void TcpSink::ack(Packet* 

opkt)”: 
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2. In contrast, another problem we came across with was how to 

achieve packet replication when the HOPERAA algorithm requires 

it? As we know from the previous chapter, in HOPERAA there will 

be an interval in which the Client will have to send the exact same 

packets to “Pold” and “Pnew” alike; this becomes a problem when 

simulating in ns because the original TCP agent does have the 

capability of sending an exact replica of the packet to 2 different 

ports at the same time. 

The solution to this problem required for us to bound into “tcp.cc” a 

new variable called “replicate_”; the default value of this variable 

must be “-1” and whenever it takes a different value, the TCP agent 

will send a copy of the packet to the port given by the new value of 

“replicate_”. Once the variable “replicate_” has been included in the 

code, the following has to be included in “void TcpAgent::output (int 

seqno, int reason)”: 

 

 

 

 

 

 

 

 

void TcpSink::ack(Packet* opkt) 

{ 

     Packet* npkt = allocpkt(); 

     // opkt is the "old" packet that was received 

       …………………………………………………………. 

     // Andrei Gurtov 

      acker_->last_ack_sent_ = ntcp->seqno(); 

      // printf("ACK %d ts %f\n", ntcp->seqno(), ntcp->ts_echo()); 

  

       hdr_ip *iph = hdr_ip::access(opkt); 

       hdr_ip *iph_new = hdr_ip::access(npkt); 

       iph_new->daddr() = iph->saddr(); 

       double t = Scheduler::instance().clock(); 

       printf("\n       [ TIME: %f : Sending ack to Packet #%d received in port %d  

                  from Node %d]",t,ntcp->seqno(),iph->dport(),iph_new->daddr()); 

        

      send(npkt, 0); 

      // send it 

} 
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4.2.5 Simulating Clock Drifts in ns    
 

Simulating different clocks for each node was another problem that we faced 

when implementing the algorithm in ns. Since the simulator is running in a 

single computer, we had to find a way to ensure that each Client would have a 

different clock than the one used by the Server so that the time-stamps from 

the packets, would diverge thus obtaining relevant results. In order to achieve 

the latter, we used a very simple approach; let‟s assume that we have 3 

different nodes, one of them is the Server and the other two are Clients, one of 

the clients is running two times faster than the Server‟s clock (Client 1) and the 

other one two times slower (Client 2).  

From the previous statement we can conclude that we will use the Server‟s 

Clock as a reference to simulate Clients running faster or slower depending on 

the situation and, that we will need to simulate 3 different clocks in order to get 

different timestamps out of all the hoperaa packets being transmitted. What we 

did, was to use the simulator‟s clock for the Server and also as a reference for 

the rest of the “Application Clocks” in each client so, for example, when we 

say that the Client is two times faster than the Server then it means that for 

each unit of time that passes for the Server two will have passed for the Client 

and the same logic is applied for the Client that is two times slower. 

 

 

void TcpAgent::output(int seqno, int reason) 

{ 

       int force_set_rtx_timer = 0; 

       …………………………………………………………. 

       send(p, 0); 

   

       if (replicate_ != -1) { 

 // Declare “t” at the beginning of the file 

 t = Scheduler::instance().clock(); 

 Packet* pa = allocpkt(); 

 pa=p->copy(); 

 hdr_tcp *tcph_pa = hdr_tcp::access(pa); 

 hdr_ip *iph_pa = hdr_ip::access(pa); 

 iph_pa->dport() = replicate_; 

 printf("\n       [ TIME: %f : Node %d sends replicate (from packet# 

                                     %d) to port %d ]",t,addr(),tcph_pa->seqno(),replicate_); 

 send (pa,0); 

        } 

        if (seqno == curseq_ && seqno > maxseq_)       

        …………………………………………………………. 

 } 
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 Graphically speaking we will have the following timeline: 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the above, we “play” with the simulation time in order to obtain the 

desired behavior out of each node. For example, every packet sent by the 

Client 1 will be stamped with (simulator‟s time) * (2) and the same applies to 

each action this agent performs; for instance, if the Client 1 has to send contact 

initialization messages at time = 0.5 (on the client‟s clock) then it would mean 

that ns will schedule such action to be executed at simulation time = 0.25. The 

time-stamp from the packets received by the Server will have the value 0.5 and 

the Server, when sending the reply, will stamp the packet with the actual 

simulation time (since the Server‟s and the simulator‟s clock are the same); if 

we assume that the server sent the reply at simulation time 0.3 and, it takes 

0.05 to reach the Client 1, then it means that the Client will receive the packet 

at 0.35 “simulation time” but at 0.65 according to the Client‟s clock; we do this 

by subtracting 0.05 (the time it takes for the packet to travel from one point to 

the other) from 0.35 and then multiplying the result 0.30 by 2 which is equal to 

0.60 (this value represents the time on the Client 1‟s clock at which the packet 

was sent by the Server). Finally we add the 0.05 that we subtracted at the 

beginning hence obtaining 0.65 which is the time at which the reply was 

received, according to the “application clock” in Client 1. This same logic 

applies to the Client 2 although, instead of multiplying the simulator‟s time by 

2, we divide it by such value. By doing this, we can achieve different time-

stamps in each packet that is being transmitted thus, obtaining significant 

results whenever the Hoperaa Execution Interval is calculated.  

We can use the timeline presented above, to map a relation in between the 

“application time” from each node and the simulation time at which it 

corresponds in ns. 

 

 

Server – Timeline 

(Simulator‟s time) 
0.0 0.1 0.2 0.3 0.4 

0.05 0.15 0.25 0.35 

Client 1 - Timeline 

0.0 0.2 0.4 0.6 0.8 
0.1 0.3 0.5 0.7 

Client 2 - Timeline 

0.0 0.05 0.1 0.15 0.2 
  0.025   0.075 0.125 0.175 

Figure 13: Shows the relation in between the “application time” 

from each node in contrast with the simulator‟s time. 
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4.2.6 Example: Single Client/Server Scenario    
 

Before presenting the results obtained from implementing HOPERAA in ns, 

we want to give a brief explanation of how the calculations are performed; this 

will set a baseline in understanding what the values obtained mean and what 

the expected performance will be.  

For simplicity purposes in this case, let assume the following: 

 

1. We will use a topology as the one showed in figure 10. (A single 

Client/Server) 

2. The Client will be 2 times faster than the Server. (See previous 

section for further explanation) 

3. We are assuming the following values of: 

a.    µ = 0.1  

b. L = 0.3 

 

Now, at time = 0 Client 1 will start the “Contact-Initialization” phase by 

sending packets to all the ports in a randomly chosen interval. These packets 

will have the following format: 

 

Pkt (init, timestamp, port) 

 

Where timestamp is equal to 0; the Server will receive a contact initialization 

message at time = 0.05 (remember that µ is the round-trip maximum delivery 

latency) and will wait until the next worker port is opened (t = 0.3). Since the 

Client is 2 times faster than the Server, it means that at time =0.25, the Client‟s 

clock will be 0.5 (2µ + L) and the Client will start the contact initialization 

phase again (Since so far it hasn‟t gotten any reply from the Server) now with 

the timestamp value 0.5. The server will receive another contact Initialization 

message at time 0.30 but, it will send a reply with the information of the first 

contact initialization message received: 

 

Pkt (reply,h1, t1, timestamp, seed) 

 

Where: 

- h1 = 0.0 

- t1 = 0.05 

- Timestamp = 0.3  
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The client will receive the replay at time = 0.65 and will give value to the 

following variables: 

 

- t2 = 0.05 

- t3 = 0.30 

- Hc (t1)  = 0.0 

- Hc (t4)  = 0.65 

 

Now, it will calculate the values of “ρUp” and “ρLow”: 

 

- rhoUp = 2.60  

- rhoLow = 1.45 

 

Next, it will calculate the value of the hoperaa execution interval, which is the 

variable responsible of determining when to execute Hoperaa again: 

 

- Since both “rhoUp” and “rhoLow” larger than 1, the hoperaa 

execution Interval is 0.162441 (Look at chapter 3 for more detail 

of how this result was obtained.) 

 

Finally, it will adjust the value of the variable Pc and will calculate the value of 

the hoperaa execution interval if necessary. In this case, since “1 ≤ rhoLow ≤ 

rhoUp” the updated values of Pc and Hoperaa Execution Interval are:  

 

- hopExeInt = 0.327 

- Pc = 0.435 

 

From the above calculation, we can conclude following: 

 

1. The next resynchronization will be at time = 0.65 + 0.327 = 0.977 

which means that it will be scheduled in ns at time = 0.977 / 2 = 

0.489. (Look at previous section) 

2. The original value of Pc was 0.3 (Pc = L) so, this new value is the 

algorithm‟s adjustment in order to determine at which rate the 

Server‟s Worker ports are being opened.   

3. The values of “rhoUp” and “rhoLow” will determine just how big the 

drift in between the Client and the server‟s clock is.  
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Let‟s assume that we allow Hoperaa to execute for a second time at time = 

0.977. At this point, Client 1 will start the “Contact-Initialization” phase by 

sending packets to all the ports in a randomly chosen interval. These packets 

will have the following format: 

 

Pkt (init, timestamp, port) 

 

Where timestamp is equal to 0.977; the Server will receive a contact 

initialization message at time = 0.539 and will wait until the next worker port 

is opened (t = 0.6). At time 0.60 the Server will send a reply with the 

information of the first contact initialization message received: 

 

Pkt (reply,h1, t1, timestamp, seed) 

 

Where: 

- h1 = 0.0 

- t1 = 0.05 

- Timestamp = 0.6  

 
Once again, the client will receive the replay at time = 1.25 and will give value 

to the following variables: 

 

- t2 = 0.05 

- t3 = 0.60 

- Hc (t1)  = 0.0 

- Hc (t4)  = 1.25 

 

Now, it will calculate the values of “ρUp” and “ρLow”: 

 

- rhoUp = 2.27  

- rhoLow = 1.66 

 

Next, the value of the hoperaa execution interval will be:  

 

- Since both “rhoUp” and “rhoLow” larger than 1, the hoperaa 

execution Interval is 0.179 
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Finally, it will adjust the value of the variable Pc and will calculate the value of 

the hoperaa execution interval if necessary.  

In this case, since “1 ≤ rhoLow ≤ rhoUp” the updated values of Pc and 

Hoperaa Execution Interval are:  

 

- hopExeInt = 0.62 

- Pc = 0.50 

 
Even though Hoperaa was simulated only 2 times in this brief example; based 

on [5], we can expect the following behavior: 

 

1. If we were to continue with the simulation, we will notice that the 

Hoperaa Execution Intervals are increasing every time the 

resynchronization phase is executed; this means that, as the 

simulation goes on, the Client is capable of sending more and more 

data before it has to stop to resynchronize with the Server. 

2. We also notice that the value of Pc is being updated every time; 

however, if we were to continue with the simulation we will notice 

that eventually “Pc ≈ 0.6” The reason for this is because the Client is 

2 times faster than the Server and, Pc represents the period of time 

(for the client‟s clock) at which the worker ports are being opened on 

the Server‟s side. (Roughly speaking such value would be “L * 2” for 

this case) 

3. Finally, the values of “rhoUp” and “rhoLow” represent the drift in 

between the Client and the Server. If we were to continue with the 

simulation, we will notice that the range “ρLow ≤ ρ ≤ ρUp” will 

eventually become closer to 2 which would mean that the Clock from 

the Client is “ρ = 2” times faster than the Clock from the Server. 

 

We believe that at this point, the reader should have a better understanding of 

exactly how the algorithm works and also a clearer idea of how all the 

information, from the previous chapters, fall into place in the simulation. In the 

next sections we will, extend this scenario as part of a full simulation and 

endorse, with more concrete results, that the Hoperaa Implementation performs 

as described. 
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    5 
Analysis and 

Evaluation 

 
  
 
 
 

In chapter 4, we gave an overview about how the HOPERAA was 

implemented in the simulator; in this chapter, we focus our efforts on studying 

how the implementation will behave under specific conditions, in order to 

understand the framework and how is it affected when certain changes are 

applied. Throughout this chapter we demonstrate, with more concrete results, 

that the Hoperaa Implementation performs as described in [5] and also, we will 

present and analyze the results obtained from simulating different scenarios in 

ns. By using this approach, we will fulfill two important purposes, the first one 

is to show that the simulation is consistent with the expected behavior from the 

algorithm and, the second one is to make evident how each one of the elements 

involved relate and affect each other depending on their different values and 

particular circumstances; results obtained from each case scenario will be 

presented, and analyzed, all throughout the following sections. 

” Curiosity begins as an act of 
tearing to pieces or analysis.” 
 

- Samuel Alexander 
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5.1 Study Case 1: Single Client/Server Scenario 

 
5.1.1 Experiment Specification    

 
As previously mentioned, this first Study Case will be used to endorse with 

more concrete results that the Hoperaa Implementation performs as described 

in [5]. In this Scenario we study a first approach of the HOPERAA algorithm 

by running a simulation of the framework on a single Client/Server scenario. 

For this we will use a similar configuration as the one presented in the 

“Example 1”.  

 

 
 

 

 

Figure 14 presents the topology being used for this case and, as we can see 

from comparing figure 14 and figure 10, the topology differs a little from the 

one used previously. For this case, we are using a three node topology in which 

the nodes labeled “Client 1” and “Central Directory” are the ones 

communicating with each other using HOPERAA; node 4, the node in 

between, works only as an intermediary in the communication and no 

“Hoperaa agent” has been attached to it hence, takes no part in the algorithm; 

we developed this topology to demonstrate that, due to the natural attributes 

from NS, we can place as many nodes in between as necessary and still, node 

“Client 1” will be able to successfully communicate with the “Central 

Directory”. 

 

 

 

Figure 14: Shows a Single Client/Server topology as presented 

by NAM using Ns. 
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The function of a node when it receives a packet is to examine the packet's 

fields, usually its destination address, and on occasion, its source address so, 

when “Client 1” sends a packet for “Central Directory”, the node(s) in between 

will check the header in the packet received and, will process it accordingly; in 

this case, such action is to forward it so that it reaches the proper node, “Node 

0”. Figure 14 differs from the figures used so far because, it shows exactly how 

the topology looks in NAM when using the results obtained from ns to produce 

a graphic simulation. From now on we will use this kind of images to present 

how the scenarios look when implemented in ns. 

 

For this study case, we will use the following specifications:  

 

1. µ = 0.1 

Since “µ” is the packet “round-trip maximum delivery latency” this 

means that the packet takes 0.05 milliseconds to go from point A to 

point B (in this case “Client 1” to “Central Directory”) so, for 

simulation purposes, the packets takes 0.025 milliseconds to go from 

Node 1 to Node 4 and then 0.025 milliseconds to go from Node 4 to 

Node 0.  

2. L = 0.3  

The Server opens Worker Ports every 0.3 milliseconds.  

3. τ = 1 

The Server changes “guard ports” every 1 second. 

4. A single sequence of 6000 ports, divided into 6 different intervals. 

 

The elements above presented are general for each case but, in order to identify 

specific behaviors, we will use different study scenarios:  

 

- Scenario 5.1.1: Identify how the framework, and the elements 

derived from its implementation, behaves when the Client is faster 

than the Server. For this we will run different simulations on which 

we will vary the value of “ρ” as follows:  

 

 ρ = 2 | 3, ∆ = 0.1  

When “ρ = 2” it means that the Clock from the Client is 2 

times faster than the server‟s; intuitively, if “ρ = 3” then the 

Client is 3 times faster than the Server.  
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- Scenario 5.1.2: This scenario will be somewhat similar to Scenario 

5.1.1 but in this case, we will point out how the framework behaves 

when the Client is slower than the Server. For this we will use: 

 

 ρ = 0.33 | 0.5, ∆ = 0.1 

When “ρ < 1” it means that the Client is Slower than the 

Server hence, “ρ = 0.33” and “ρ = 0.5” represent the cases in 

which the Client is 2 and 3 times slower than the Server, 

respectively. 

 

- Scenario 5.1.3: In this final approach, we will change the value of 

delta “∆” from each simulation. First we will consider the case in 

which the Client is faster than the Server and latter, another one in 

which the Client is slower; the results obtained from this scenario 

will indicate how “∆”affects the overall process.  

 

 ρ = 2, ∆= 0.05 | 0.1 | 0.2 

 ρ = 0.5, ∆= 0.05 | 0.1 | 0.2 

 

For Scenario 5.1.3, it is important to mention lemma 5 from [5]:  

 

“Using the HOPERAA algorithm, consider that client starts 

sending data messages to port “p” at time “t” (according to the 

Server’s Clock) and changes the destination port at t’ 

(according to the Server’s Clock). Then “t” will not be ∆ time 

units smaller than the corresponding opening time of port “p” 

by the Server, and t’ will not be ∆ time units greater than the 

corresponding closing time of port “p” by the Server”.  

 

The previous statement guarantees that the Client‟s hopping times will not drift 

“∆” time units away from the server‟s. This statement was presented in [5] as 

part of their study; however in this case (Scenario 5.3.3), we will focus on 

understanding how this changes also affects other elements derived from the 

implementation such as “rhoUp”, “rhoLow”, “Pc” or the “Hoperaa Execution 

Intervals” growth. 
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5.1.2 Results’ Analysis: Scenario 5.1.1 

 
For this first case, we will run two different simulations; both simulation will 

use a “∆ = 0.1”and they will set a common background on how the algorithm 

behaves under the assumption that the Client‟s Clock Drift “ρ” is constant and 

greater than the Server‟s.  

Next, we present table 1 and table 2 with the results obtained from simulating a 

scenario in which “ρ = 2” and “ρ = 3”, correspondingly. 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0 0 0 0.3 

2 0.325 1.44467 2.6007 0.4334 

3 0.625 1.66682 2.2730 0.5000 

4 6.325 1.96126 2.0240 0.5884 

5 15.325 1.98383 2.0098 0.5951 

6 24.325 1.98978 2.0062 0.5969 

7 37.225 1.99331 2.0040 0.5980 

8 61.225 1.99593 2.0025 0.5988 

9 94.525 1.99736 2.0016 0.5992 

10 144.325 1.99827 2.0010 0.5995 

 

 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0 0 0 0.3 

2 0.325 1.8573 4.3340 0.5572 

3 0.775 2.3847 3.4446 0.7154 

4 1.225 2.5790 3.2668 0.7737 

5 6.625 2.9121 3.0460 0.8736 

6 10.675 2.9448 3.0284 0.8835 

7 18.325 2.9676 3.0165 0.8903 

8 27.775 2.9786 3.0108 0.8936 

9 45.325 2.9868 3.0066 0.8960 

10 78.175 2.9924 3.0038 0.8977 

 

 

 

 

 

 

Table 1: Shows the results obtained from allowing the 

simulation to run HOPERAA 9 times, using ρ = 2 and ∆ = 0.1. 

Table 2: Shows the results obtained from allowing the 

simulation to run HOPERAA 9 times, using ρ = 3 and ∆ = 0.1. 
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The tables in this and the remaining sections, they all will be organized in the 

same manner; the first column represent the number of times HOPERAA was 

executed, the second one illustrates the value of the “Hoperaa Execution 

Intervals” derived from each time the Client re-synchronizes with the Server, 

the third and forth correspond to the values “rhoLow” and “rhoUp” from the 

range “ρLow ≤ ρ ≤ ρUp”; finally,  the fifth one shows the value of “Pc” which, 

as presented earlier,  is used when sending application data from the Client to 

the Server and, should be in between the range “L ≥ Pc ≤ ρL” being “L” its 

original value and “ρL” its ideal. (For more information on what this variables 

are look at Chapter 3) 

 

As expected from the algorithms natural definition, we can notice the 

following: 

 

1. The value of “Pc”, depending on the case, is slowly being adjusted to 

its “ideal value” 0.6 or 0.9. We can denote this behavior on Graph 1 

and 2, “ρ=2” and “ρ=3” respectively, in which we can see that the 

lines are growing dramatically throughout the first times HOPERAA 

is executed and, the increment becomes less obvious as they come 

closer to the values 0.6 and 0.9 correspondingly. 
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Graph 1 (at the Left) presents the “Pc” grow rate for a simulation with “ρ = 2” 

Graph 2 (at the right) presents the same grow rate but for a simulation where “ρ = 3”. 
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2. From tables 1 and 2 and, observing the lines plotted in graphs 3 and 

4, we can conclude that “rhoLow” and “rhoUp” both remain in 

between the range “ρLow ≤ ρ ≤ ρUp” and, effectively approximating 

to the values defined for each simulation; in Graph 3 we observe that 

the range slowly closes around 2 and, in Graph 4 we note the same 

behavior although the range approximates to 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Regardless of the value of “ρ”, by looking at Graph 5 and 6 we can 

observe that the “Hoperaa Execution Intervals” increase 

exponentially, as defined in [5], every time the resynchronization 

phase is executed. 
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Graph 5 (at the Left) presents the “Hoperaa Execution Interval” grow rate for a simulation with “ρ = 3” 

Graph 6 (at the right) presents the same grow rate but for a simulation where “ρ = 2”. 
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Graph 3 (at the Left) presents the values of “rhoLow” and “rhoUp” as the simulation progresses, when “ρ = 2” 

Graph 4 (at the right) presents the same values of “rhoLow” and “rhoUp” but for a simulation where “ρ = 3”. 
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5.1.3 Results’ Analysis: Scenario 5.1.2    

 
In this instance, we use a similar configuration as the one used in the previous 

scenario but now, we consider that the Client‟s Clock Drift “ρ” is constant and 

smaller than the Server‟s. For this, we present table 3 and table 4 with the 

results obtained from the simulation: 

 

  

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0 0 0 0.3 

2 0.100 0.4445 0.8001 0.2400 

3 0.250 0.4762 0.5882 0.1765 

4 3.475 0.4982 0.5055 0.1516 

5 10.300 0.4994 0.5018 0.1505 

6 16.300 0.4996 0.5012 0.1503 

7 29.800 0.4998 0.5006 0.1502 

8 53.500 0.4999 0.5004 0.1501 

9 81.550 0.4999 0.5002 0.1501 

10 127.150 0.5000 0.5001 0.1500 

 

 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.075 0.3334 0.6001 0.3 

2 0.175 0.3334 0.4118 0.1800 

3 2.825 0.3333 0.3373 0.1235 

4 14.275 0.3333 0.3341 0.1012 

5 26.975 0.3333 0.3337 0.1002 

6 42.775 0.3333 0.3336 0.1001 

7 69.225 0.3333 0.3335 0.1001 

8 105.875 0.3333 0.3334 0.1000 

9 159.875 0.3333 0.3334 0.1000 

 

 

 

 

 

 

 

Table 3: Shows the results obtained from a topology in which the 

Client is 2 times slower than the Server, ρ = 0.5 and ∆ = 0.1. 

Table 4: Shows the results obtained from a topology in which the 

Client is 3 times slower than the Server, ρ = 0.33 and ∆ = 0.1. 
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From table 3 and table 4, we notice the following: 

 

1. In the previous case, we observed that when the Client was faster 

than the Server, “rhoLow” and “rhoUp” were greater than 1 and 

slowly being adjusted to “the number of times the Client was faster 

than the Server”. In this case, we can see that “rhoLow” and “rhoUp” 

are smaller than 1 and, are slowly approaching to the value 

“1/number of times the Client is slower than the Server”. The latter is 

evident when looking at graphs 7 and 8; if the Client is 2 times 

slower than the Server then “rhoLow ≤ 0.5 ≤ rhoUp” since “1/2 = 

0.5”and, “rhoLow ≤ 0.33 ≤ rhoUp”, when the Client is 3 times 

slower than the Server, since “1/3 = 0.33”.  We also notice that when 

the Client is slower, the value of “rhoLow”, in comparison to the 

value of “rhoUp”, requires little adjustment.  
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Graph 7 presents the values of “rhoLow” and “rhoUp” as the simulation 

progresses, when the Client is 2 times slower than the Server. 
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Graph 8 presents the values of “rhoLow” and “rhoUp” as the simulation 

progresses, when the Client is 3 times slower than the Server. 
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2. Using tables 3 and 4, we know what the ideal value of “ρ” should be 

so, by looking at graph 9 and 10 we can conclude that the value of 

“Pc”, depending on the case, is slowly being adjusted to its “ideal 

value = ρL”; when the Client is 2 times slower Pc should 

approximate to “0.5(0.3) = 0.15” and, when the Client is 3 times 

slower then Pc should slowly be adjusted to “0.33 (0.3) = 0.1”. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Just as observed in the previous scenario, regardless of the value of 

“ρ” the “Hoperaa Execution Intervals” increase exponentially every 

time the resynchronization phase is executed. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 11 (at the Left) presents the “Hoperaa Execution Interval” growth rate for a simulation with “ρ = 0.5” 

Graph 12 (at the right) presents the same grow rate but for a simulation where “ρ = 0.33”. 
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Graph 9 (at the Left) presents the “Pc” growth rate for a simulation with “ρ = 0.5” 

Graph 10 (at the right) presents the same grow rate but for a simulation where “ρ = 0.33” 
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5.1.4 Results’ Analysis: Scenario 5.1.3 

 
For this Scenario we varied the value of delta “∆” from each simulation, in 

order to indicate how this change affects the overall process. Next, we present 

the results obtained from running different simulations, each one of them using 

a different value of delta (“∆”). First we present the values obtained when 

Client is 2 times faster than Server.  

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.163 1.4450 2.6017 0.4335 

2 0.313 1.6670 2.2734 0.5001 

3 0.463 1.7622 2.1769 0.5287 

4 1.663 1.9276 2.0463 0.5783 

5 3.163 1.9613 2.0241 0.5884 

6 4.213 1.9708 2.0180 0.5912 

7 5.563 1.9778 2.0136 0.5933 

8 7.063 1.9825 2.0107 0.5947 

9 9.163 1.9865 2.0082 0.5959 

10 11.713 1.9894 2.0064 0.5968 

 

 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.325 1.4447 2.6007 0.4334 

2 0.625 1.6668 2.2730 0.5001 

3 1.225 1.8149 2.1306 0.5445 

4 2.425 1.9020 2.0639 0.5706 

5 3.925 1.9383 2.0390 0.5815 

6 6.025 1.9594 2.0252 0.5878 

7 10.225 1.9759 2.0148 0.5928 

8 15.625 1.9841 2.0097 0.5952 

9 24.325 1.9898 2.0062 0.5969 

10 36.625 1.9932 2.0041 0.5980 

 

 

 

 

 

Table 5: Shows the results obtained from allowing the simulation to 

run HOPERAA 10 times, using ρ = 2 and ∆ = 0.05. 

Table 6: Shows the results obtained from allowing the 

simulation to run HOPERAA 10 times, using ρ = 2 and ∆ = 0.1. 
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Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.450 1.2859 3.0011 0.3858 

2 1.050 1.6155 2.3336 0.4847 

3 2.850 1.8388 2.1112 0.5516 

4 6.450 1.9254 2.0477 0.5776 

5 13.650 1.9641 2.0222 0.5892 

6 28.050 1.9823 2.0108 0.5947 

7 56.850 1.9913 2.0053 0.5974 

8 114.450 1.9956 2.0026 0.5987 

9 229.650 1.9978 2.0013 0.5994 

10 469.050 1.9989 2.0006 0.5997 

 

 

 

 

Now, table 8 to 10 present the values obtained in a simulation where the Client 

is 2 times slower than Server.  

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.050 0.4446 0.8005 0.2401 

2 0.538 0.4943 0.5181 0.1554 

3 1.213 0.4974 0.5079 0.1524 

4 1.663 0.4981 0.5057 0.1517 

5 2.750 0.4989 0.5034 0.1510 

6 4.475 0.4993 0.5021 0.1506 

7 6.275 0.4995 0.5015 0.1505 

8 8.150 0.4996 0.5012 0.1503 

9 11.113 0.4997 0.5008 0.1503 

10 14.188 0.4998 0.5007 0.1502 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Shows the results obtained from allowing the 

simulation to run HOPERAA 10 times, using ρ = 2 and ∆ = 0.2. 

Table 8: Shows the results obtained from allowing the simulation to 

run HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.05. 
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Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.075 0.4287 1.0005 0.3000 

2 0.225 0.4737 0.6001 0.1800 

3 2.175 0.4971 0.5088 0.1526 

4 3.375 0.4982 0.5056 0.1517 

5 5.625 0.4989 0.5034 0.1510 

6 9.750 0.4994 0.5019 0.1506 

7 16.725 0.4996 0.5011 0.1503 

8 28.200 0.4998 0.5007 0.1502 

9 42.375 0.4999 0.5004 0.1501 

10 64.650 0.4999 0.5003 0.1501 

 

 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

0 0 0 0 0.3 

1 0.200 0.4446 0.8005 0.2402 

2 0.500 0.4763 0.5884 0.1765 

3 1.100 0.4889 0.5366 0.1610 

4 3.350 0.4963 0.5115 0.1534 

5 8.300 0.4985 0.5046 0.1514 

6 34.250 0.4996 0.5011 0.1503 

7 71.150 0.4998 0.5005 0.1502 

8 164.900 0.4999 0.5002 0.1501 

9 341.000 0.5000 0.5001 0.1500 

10 692.150 0.5000 0.5001 0.1500 

 

 

 

 

It is important to mention that, based on the results previously presented and 

the ones from these tables, we notice that at the beginning every adjustment 

results on a severe change on the value from each variable and, as the 

simulation progresses, the adjustment becomes less radical; this is because, the 

algorithm is designed to improve with each execution; therefore, in the early 

stages the adjustment is very notorious since the original value is far from the 

ideal but, as the simulation progresses, the values from “rhoUp”, “rhoLow” 

and “Pc” they all approach closer to the ideal value making the changes less 

apparent. 

 

Table 9: Shows the results obtained from allowing the simulation to run 

HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.1. 
 

Table 10: Shows the results obtained from allowing the simulation to run 

HOPERAA 10 times, using ρ = 0.5 and ∆ = 0.2. 
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Now, using Graph 13 and 14 we can observe that, independently of the value 

of “ρ”: 

 

1. The “Hoperaa Execution Intervals” increase exponentially every time 

the resynchronization phase is executed; which allows the Client to 

send more data before it has to stop to resynchronize with the Server. 

2. From the formula used to derive the “Hoperaa Execution interval” 

(see Chapter 3), the value of the latter is intrinsically related to that 

of Delta (“∆”) thus; the smaller Delta (“∆”) is, the slower the 

“Hoperaa Execution Intervals” grow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Graph 13 presents a comparison of the “Hoperaa Execution Interval” values 

from each simulation when ρ = 2 and, ∆ is equal to 0.05, 0.1 and 0.2 
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Graph 14 presents a comparison of the “Hoperaa Execution Interval” values 

from each simulation when ρ = 0.5 and, ∆ is equal to 0.05, 0.1 and 0.2 
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One of the advantages that we have by simulating the algorithm, rather than 

implementing it in the “real world”, is that we know the exact value of “ρ”, 

which represents the clock‟s drift in between the Client and the Sever. Using 

graph 15 and 16 as a reference, we can conclude that in each case, the value of 

Pc continuously becomes closer to its ideal value “0.6” and “0.15” depending 

on the case and regardless of the value of “∆”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Graph 17 and 18, we can show that the range “ρLow ≤ ρ ≤ ρUp” is 

eventually enclosing around its ideal value “2” and “0.5” regardless of the 

value of “∆”. In the mentioned graphs, the values from “rhoUp” and “rhoLow” 

are represented by the lines above and below 2.0 and 0.5, depending on the 

graph and the value of “ρ”. 
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Graph 15 (at the Left) presents a comparison of how “Pc” is adjusted, depending on the value of “∆”, when ρ = 2. 
Graph 16 (at the Right) presents a comparison of how “Pc” is adjusted, depending on the value of “∆”, when ρ = 0.5. 
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Thanks to the results presented in this section, we can corroborate: 

 

1. That our implementation, behaves as described in [5]. 

2. That the description given at the end of the previous chapter (section 

“Example 1”) holds as predicted. 

3. The HOPERAA algorithm‟s behavior and, how the values of 

“rhoUp”, “rhoLow” and “Pc” (derived from the framework‟s 

execution) are adjusted throughout the simulation when the Client is 

faster than the server and, vice versa.  

4. How different values of “∆” affect the overall behavior of the 

simulation in the different stages of the algorithm. 

5. From the results obtained in Scenario 5.1.3, and looking at graphs 13 

and 14; we can conclude that, out of all the variables derived from 

implementing the framework, the “Hoperaa Execution Interval” is 

the only one notoriously affected by the value of Delta (“∆”). 
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5.2 Study Case 2: Variable Clock Drifts 

 
5.2.1 Experiment Specification    

 
So far we have assumed that Clock Drift “ρ” in between the Client and the 

Server remains constant throughout the whole communication process 

however; although the following was never considered or assumed in the 

original model [5], in this work we wanted to study how the algorithm would 

behave when the clock drift from the Client changes unexpectedly at some 

point during the transmission hence, it is no longer constant.  

For the latter, we will use a similar scenario to the one used in the “Study Case 

1” nevertheless, in this case the Client will start a communication with the 

Server by having a particular Clock Drift “ρ” and, after HOPERAA has been 

executed a specific number of times, the drift will change to “ρ + 1” for the 

rest of the communication. For example, we can say that for the first 5 times 

HOPERAA is executed the Clock Drift will be “2” and, from the 6
th 

time on, 

the drift will increase to “3” and will remain like that until the simulation has 

finished. The latter will allow us to denote and study how the algorithm 

behaves under these circumstances and what kinds of changes are observed in 

the different variables involved such as “rhoLow”, “rhoUp”, “Pc” and the 

“Hoperaa Execution Intervals”. First we will consider the case in which the 

drift “ρ” changes from 2 to 3; then we will study the inverse scenario, in which 

the drift “ρ” is originally 3 and then changes to 2; to finally consider the 

extreme case in which the drift “ρ” changes from 2 to 3 and then from 3 to 4 to 

remain as 4 throughout the whole communication process. As previously 

discussed, we will use a topology as the one shown in figure 14 and using the 

following specifications for the simulation: 

 

1. ρ = 2 | 3 | 4  

It means that the existent “Clock Drift” in between the Client and 

Server will vary among these values. We are using the number of 

times HOPERAA is executed, in order to determine when and which 

value of “ρ” will be used for the rest of the communication process.  

2. µ = 0.1 

3. L = 0.3  

4. τ = 1 

5. ∆= 0.1  

6. A single sequence of 1800 ports, divided into 9 different intervals. 
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5.2.2 Results’ Analysis    
 

As stipulated previously, with this Study Case we want to study how the 

algorithms performs when the assumed Clock Drift “ρ”, in between the Client 

and the Server, does not remains constant throughout the whole 

communication process. 

Thanks to the results obtained in “Study Case 1” we have established a 

common baseline of what kind of behavior is expected from each situation, 

considering “ρ” as a constant variable now, let‟s observe what happens when 

such condition is not longer imposed and “ρ” changes sometime along the 

simulation. In this section we will study the following simulations: 

 

1. The Client and Server have an original Clock Drift “ρ = 2” during the 

first 6 times HOPERAA is executed and then, the Clock Drift 

increases to “ρ = 3” for the rest of the simulation. 

2. This Simulation is similar to the previous but in this case, the original 

Clock Drift is “ρ = 3” and, after the 6
th

 time HOPERAA is executed, 

it decreases to “ρ = 2”. 

3. For the final case, we will consider a scenario in which the original 

Clock Drift is “ρ = 2”, after the 5
th

 time HOPERAA is executed it 

changes to “ρ = 3” and finally, after the 10
th

 time HOPERAA is 

executed, it changes to “ρ = 4”.  

 

Tables 11, 12 and 13 present the values obtained for each one of the scenarios 

above described.  

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0.150 1.0008 3.0003 0.3002 
2 0.325 1.4451 2.6020 0.4335 
3 0.625 1.6671 2.2735 0.5001 
4 7.332 1.9665 2.0207 0.5900 
5 18.132 1.9863 2.0083 0.5960 
6 50.585 1.9951 2.0030 0.5985 
7 127.939 3.1551 3.1629 0.9465 
8 208.495 3.0946 3.0992 0.9284 
9 346.018 3.0552 3.0579 0.9166 

10 512.241 3.0356 3.0374 0.9107 
11 831.023 3.0229 3.0240 0.9069 
12 1298.905 3.0150 3.0157 0.9045 

 

 

 

 

Table 11: Shows the results obtained from allowing the simulation to run 

HOPERAA 6 times using ρ = 2, another 6 with ρ = 3, and ∆= 0.1. 
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Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0.207 1.4009 4.3340 0.4203 

2 0.475 2.1119 3.8026 0.6336 

3 0.925 2.4672 3.3647 0.7402 

4 1.525 2.6526 3.2111 0.7958 

5 29.410 2.9798 3.0103 0.8940 

6 48.549 2.9877 3.0062 0.8963 

7 49.827 1.8641 1.8711 0.5592 

8 85.976 1.9206 1.9249 0.5762 

9 153.061 1.9549 1.9574 0.5865 

10 243.049 1.9712 1.9728 0.5914 

11 392.674 1.9811 1.9821 0.5943 

12 658.823 1.9879 1.9885 0.5964 

 

 

 

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0.325 1.4446 2.6003 0.4334 

2 0.625 1.6667 2.2729 0.5 

3 1.225 1.8149 2.1305 0.5445 

4 2.425 1.902 2.0639 0.5706 

5 3.925 1.9383 2.039 0.5815 

6 14.255 3.4106 3.4942 1.1732 

7 21.945 3.3103 3.361 1.0231 

8 40.846 3.2209 3.2465 0.9663 

9 61.292 3.143 3.1592 0.9429 

10 93.225 3.0936 3.1039 0.9281 

11 199.878 4.1176 4.1261 1.2353 

12 308.161 4.0766 4.082 1.223 

13 468.886 4.0493 4.0528 1.2148 

14 707.511 4.0328 4.0351 1.2098 

15 1078.727 4.0218 4.0233 1.2065 

 

 

 

 

 

 

 

 

 

Table 12: Shows the results obtained from allowing the simulation to run 

HOPERAA 6 times using ρ = 3, another 6 with ρ = 2, and ∆= 0.1. 
 

Table 13: Shows the results obtained from allowing the simulation to run HOPERAA 

5 times using ρ = 2, 5 times more with ρ = 3 and 5 last times with ρ = 4; using, ∆= 0.1. 
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As we can see from the tables 11, 12 and 13, it is very easy to denote the 

interval in which the Clock Drift is changing by looking at how the values of 

“rhoUp”, “rhoLow” and “Pc” increment and get adjusted; although it might 

seems that the algorithm is behaving as expected, we can conclude that there 

are some slight differences in comparison to the cases in which “ρ” remained 

constant; these differences are the following: 

 

1. Despite of the number given to “ρ”, we can conclude that “Pc” will 

continue approximating to its ideal value in any case; this is evident, 

when looking at the values in each table. In the graphs 19, 20 and 21, 

we can see that every time “ρ” changes, the value of “Pc” slowly 

starts to adjust into becoming 0.6, 0.9 or 1.2, based on the value of 

“ρ”. Using the graphs below we can notice how “Pc” at the 

beginning is being adjusted to a particular value but, as the 

simulation progresses and the value of “ρ” is modified, it changes the 

adjustment from one value to the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Graph 19 (Top Left): Represents the values of Pc 

when allowing the Client to change from ρ = 2 to 

ρ = 3 after HOPERAA was executed for 6 times.  
 
Graph 20 (Top Right): Represents the values of 

Pc when allowing the Client to change from ρ = 3 

to ρ = 2 after HOPERAA was executed for 6 

times.  
 
Graph 21 (Bottom Left): Represents the values of 

Pc when allowing the Client to change from ρ = 2 

to ρ = 3 after HOPERAA was executed for 5 

times, and then to ρ = 4 after HOPERAA was 

executed for 10 times.  
.  
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2. We can perceive that the change in “ρ” affected the rate at which the 

“Hoperaa Execution Interval” incremented. In every case it is very 

noticeable that whenever the Clock Drift changed to a higher 

number, the “Hoperaa Execution Interval” incremented dramatically 

(look at Table 11 and 13) in comparison to the case when “ρ” 

decreased from 3 to 2 (Look at table 12) where, although there was 

also an increment, it was more subtle. Remembering Chapter 3, we 

know that in this case, because of the value of “ρ”, the HOPERAA 

execution interval is set to “(ρUp)( ρLow)(∆) / ρUp – ρLow”. By 

looking at the formula, it is easier to understand that sudden change 

of “rhoUp” and “rhoLow”, is the reason for the behavior observed 

every time “ρ” was changed to a higher or lower value. 
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Graph 22 (Top Left): Represents the values of the 

“Hoperaa Execution Intervals” when allowing the 

Client to change from ρ = 2 to ρ = 3 after 

HOPERAA was executed for 6 times.  
 
Graph 23 (Top Right): Represents the values of 

the “Hoperaa Execution Intervals” when allowing 

the Client to change from ρ = 3 to ρ = 2 after 

HOPERAA was executed for 6 times.  
 
Graph 24 (Bottom Left): Represents the values of 

the “Hoperaa Execution Intervals” when allowing 

the Client to change from ρ = 2 to ρ = 3 after 

HOPERAA was executed for 5 times, and then to 

ρ = 4 after HOPERAA was executed for 10 times.  
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3. This is probably the most essential change that we noticed; by 

looking at the graphs presented below, we can see that throughout 

the first HOPERAA executions the values of “rhoUp” and “rhoLow” 

were in between the range of “ρLow ≤ ρ ≤ ρUp” as expected; 

however when the Clock Drift changed, the values of “rhoUp” and 

“rhoLow” were in between the range of “ρ ≤ ρLow ≤ ρUp” hence 

breaking the condition, stipulated in [5], for these variables. This 

behavior is evident in every case no matter what sort of change “ρ” 

goes through, whether is decreasing or increasing. In spite of this, we 

can see that eventually the values of “rhoUp” and “rhoLow” slowly 

are getting adjusted to their ideal values as the simulation progresses.  

According to the description of the framework, we can speculate that 

apart from the fact that “rhoUp” and “rhoLow” are no longer in 

between the range of “ρLow ≤ ρ ≤ ρUp”, if we were to continue with 

the simulation we will also notice that the restriction given by “∆” 

will no longer hold thus, making the implementation to behave 

outside of the acceptance margin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 25 (Top Left): Represents the values of 

“rhoUp” and “rhoLow” when allowing the Client 

to change from ρ = 2 to ρ = 3 after HOPERAA 

was executed for 6 times.  
 
Graph 26 (Top Right): Represents the values of 

“rhoUp” and “rhoLow” when allowing the Client 

to change from ρ = 3 to ρ = 2 after HOPERAA 

was executed for 6 times.  
 
Graph 27 (Bottom Left): Represents the values of 

“rhoUp” and “rhoLow” when allowing the Client 

to change from ρ = 2 to ρ = 3 after HOPERAA 

was executed for 5 times, and then to ρ = 4 after 

HOPERAA was executed for 10 times.  
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5.3 Study Case 3: Variable Clock Drifts (2) 

 
5.3.1 Experiment Specification    
 

For this study case we will use a similar scenario as the one used last in the 

previous section which means that, the Clock Drift “ρ” will change from 2 to 3 

and then from 3 to 4 to remain as 4 throughout the whole communication 

process. Once again, we will study how the algorithm performs when we have 

the presence of variable Clock Drifts but, unlike the previous time, now we 

want to show that the reason why the algorithm behave the way it did, 

whenever we change the value of “ρ”, is related to the values of: 

 

1. “t1”, time at which the Server received the first contact-initiation 

message from the Client. 

2. “h1”, timestamp at which the Client sent the first contact-initiation 

message. 

 

Taking in consideration what we know from the previous case, let‟s assume 

that at the beginning, when “ρ = 2” the values of h1 is “6.0” and the one from 

t1 is “3.05”, under these circumstances we can see that the correlation from 

both values is “2” since “6.0” is equivalent to “3.0” on the Server‟s Clock; 

however, when the Clock Drift changed in the previous studied case, the 

correlation in between “t1” and “h1” was still “2” regardless of the new value 

of “ρ”, making the algorithm to behave inappropriately.  

It is because we are using the same values of “h1”, “t1” (regardless of the new 

value of “ρ”) and, because the influence of the delivery latency (“µ”) is quite 

small, which allows the values of “rhoUp” and “rhoLow” to be close to each 

other and in between the range of “ρ ≤ ρLow ≤ ρUp”, instead of “ρLow ≤ ρ ≤ 

ρUp”; the latter is pretty obvious when looking at graphs 25 to 27, where we 

can see that the values of “rhoLow” and “rhoUp” almost overlap each other 

after the first change of “ρ”.  

For this study case, we will assume that whenever the value of “rhoLow” gets 

closer to the value of “rhoUp”, as we saw in the graphs, we allow the Client to 

take for granted that it‟s Clock Rate has changed and, let the Server know that 

it has to record new values of “h1” and “t1” in order to compensate for such 

change. The results derived from the latter change in the algorithm‟s behavior, 

are presented in the following subsections.  
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5.3.2 Results’ Analysis    
 

As stipulated previously, we want to study how the algorithms performs when 

the assumed Clock Drift “ρ”, in between the Client and the Server, does not 

remain constant throughout the whole communication process but also, under 

the assumption that the Server can record new values of “t1” and “h1” every 

time “ρ” changes; for this, we will use a similar simulation as the one 

presented at the end of “Study Case 2”. The results obtained in the latter will 

be used to set a baseline on how the algorithm behaved back then and how 

does it behaves when this change is applied. 

  

 

Hoperaa Times HopExecInt rhoLow rhoUp Pc 

1 0.1250 1.0010 5.0233 0.300 

2 0.3250 1.4452 2.6024 0.434 

3 20.1250 1.9877 2.0075 0.596 

4 33.3250 1.9925 2.0045 0.598 

5 74.1250 1.9966 2.0020 0.599 

6 112.3250 1.9978 2.0013 0.599 

7 176.1250 1.9986 2.0009 0.600 

8 305.3250 1.9992 2.0005 0.600 

9 0.1937 1.4770 6.2213 0.443 

10 0.4937 2.1359 3.7648 0.641 

11 0.9437 2.4760 3.3567 0.743 

12 1.5437 2.6563 3.2084 0.797 

13 45.1937 2.9868 3.0067 0.896 

14 98.7437 2.9939 3.0031 0.898 

15 198.3440 2.9970 3.0015 0.899 

16 300.1940 2.9980 3.0010 0.899 

18 0.2250 1.8005 9.0116 0.540 

19 0.4250 2.4291 5.6692 0.729 

20 0.6250 2.7782 5.0013 0.833 

21 1.2250 3.2670 4.4551 0.980 

22 50.2250 3.9782 4.0100 1.193 

23 108.2250 3.9899 4.0046 1.197 

24 190.0250 3.9942 4.0026 1.198 

25 292.2250 3.9962 4.0017 1.199 

 

 

 

 

 

Table 14: Shows the results obtained from allowing the simulation to run HOPERAA 8 times 

using ρ = 2, 8 times more with ρ = 3 and 8 last times using ρ = 4; using, ∆= 0.1. 
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Based on the results presented in Table 14, we can conclude the following: 

 

1. The number of times Hoperaa is executed increases although we are 

using less amount of simulation time than before. The reason for this 

is because now, whenever “ρ” changes and the Server records new 

values of “h1” and “t1”, the behavior observed from the algorithm is 

similar to the one it had when we were using constant values for “ρ”. 

The previous assertion is very noticeable by looking at graph 28 

where we can see that when “ρ = 2” the “Hoperaa Execution 

Interval” grows from 0 to as much as possible and, when “ρ = 3 or 4” 

it decreases back to 0 and follows the same pattern; unlike the 

previous case, when we observed that the Intervals grew constantly 

no matter what value of “ρ” we had.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. As we can see from graph 29, “Pc” behaves as expected; its value 

remains in between the range “L ≥ Pc ≤ ρL” and its successfully 

being adjusted to its ideal value “ρL”. 

 

 

Graph 28: Represents the values of the “Hoperaa Execution Intervals” when allowing the Client‟s 

clock drift to change from 2 to 4. (Values obtained from table 14) 
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3. Lastly, different to the previous case, we can observe that now no 

matter how “ρ” increments, the values of “rhoUp” and “rhoLow” 

will remain in between the range of “ρLow ≤ ρ ≤ ρUp” as defined by 

the algorithm‟s definition; this behavior is evident in every case no 

matter what sort of change “ρ” goes through. (See Graph 30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 29: Represents the different values of “Pc” when allowing the Client‟s clock drift to change 

from 2 to 4. (Values obtained from table 14) 
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Graph 30: Represents the values of “rhoLow” and “rhoUp” when allowing the Client‟s clock drift 

to change from 2 to 4. (Values obtained from table 14) 
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From “Study Case 2” we were able to denote that when “ρ” changes, the 

framework break two of the conditions established by the algorithm‟s 

definition in [5], as shown previously. Now, thanks to the results presented in 

this section, we can conclude that when we allow the Server to record new 

values of “h1” and “t1”, whenever the Clock Drift changes, the algorithm‟s 

behavior will be  inside of the acceptance margin and will perform as if it had 

no record that there were ever a drift change to begin with; the latter allows the 

variables “rhoLow”, ”rhoUp”, “Pc” and “Hoperaa Execution Interval” to act as 

defined by the algorithm and, their respective values, to be more comparable to 

the ones obtained when “ρ” was constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Study Case 4                                                                                 5. ANALYSIS AND EVALUATION   
 

73 .                                                              
                                                                                             | Chalmers University of Technology 

 

 

5.4 Study Case 4: Framework‟s overhead 

 
5.4.1 Experiment Specification    
 

For this case we will study a scenario as the one presented in figure 15. The 

topology in this case is formed by a single Server Node (labeled “Server”) and, 

three different Clients. Although every client has its own link, the traffic from 

all 3 concentrates on a gateway node which then, forwards it to the Server. 

This gateway node works only as an intermediary in the communication and 

takes no part in the algorithm; as previously mentioned, we included this 

gateway node in order to confirm that, due to the natural attributes from NS, 

we can place as many nodes in between as necessary and still, the “Client” 

nodes will be able to successfully communicate with the “Server”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar to the study cases presented so far, in this instance we will use the 

following specifications for the simulation: 

 

1. ρ1 = 2  

This means that the Clock from the “Client 1” is 2 times faster than 

the server‟s.  

2. ρ2 = 0.5 

This means that the Clock from the “Client 2” is 2 times slower than 

the server‟s.  

3. ρ3 = 0.33  

This means that the Clock from the “Client 3” is 3 times slower than 

the server‟s.  

Figure 15: Shows a topology in which 3 Clients communicate 

with a single server. 
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4. µ = 0.1 

5. L = 0.3  

6. τ = 1 

7. ∆= 0.1  

 

In order to study this case, we will use a different approach to the one used so 

far; for this, we need to define specific and differentiable packet‟s sizes for 

each packet being transferred during the simulation: 

 

8.  Data Packet Size: 1040 

9.  HOPERAA Packet Size: 60 

10.  TCP Handshake Packet Size: 40 

 

Unlike the prior study case, in this occasion we will use different scenarios in 

order to study the framework‟s behavior under specific circumstances:  

 

- Scenario 5.4.1: Due to the defense framework implementation, data 

transmission is interrupted to resynchronize with the Server; the 

latter, makes the client takes longer when sending a specific amount 

of data. In this scenario, using a fixed time period, we will study the 

differences (in terms of overall transfer performance) between a 

topology using the defense framework and another one which 

doesn‟t. 

 

- Scenario 5.4.2: When implementing the defense framework, data 

transmission takes longer due in part to the fact that the Client has to 

resynchronize with the Sever but also, because of the time the Client 

has to wait, after sending contact-initialization messages, before 

getting a reply from the Server. In this Scenario, we will study the 

relation in between the time Clients have to wait for a reply and, the 

number of sequences being hosted by the Server.  

 

- Scenario 5.4.3: As we know by now, when using HOPERAA, data 

transmission is interrupted so that the Client resynchronizes with the 

Server thus, affecting the number of data packets sent in every 

interval. By using this scenario we will study how, as the simulation 

progresses, the frequency at which the Client has to resynchronize 

with the Server decreases hence, allowing the Client to send more 

data before having to stop to resynchronize again.  
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- Scenario 5.4.4: Every time the Client has to resynchronize with the 

Server, it has to perform the same actions as in the “Contact-

Initialization phase” therefore; it means that it has to send “contact-

initialization messages” to all the ports from a randomly chosen 

interval thus, increasing the amount of packets being exchange by the 

Server and the Client. By studying this scenario, we want to observe 

the relation in between the number of intervals “k” and, the 

network‟s packet overhead (the total amount of packets travelling 

through the network). 

 

The information gathered from the points above described, will be compared to 

the one obtained from the baseline case study. In order to establish a proper 

baseline, first we will create a scenario with a similar composition but, using 

neither HOPERAA nor BIG WHEEL. Out of all the specification already 

defined, for this scenario we will use only µ = 0.1 since it is the only feature 

applicable from one Scenario to the other. The methodology followed in these 

cases, was to study the information logged by the simulator into the “trace” file 

and, use Microsoft Excel to create graphs and analyze how every node in the 

network behaves. 
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5.4.2 Results’ Analysis: Scenario 5.4.1    
 

For this case, first we will focus our attention on studying how a regular 

network (not using the defense framework) performs. As can be seen in graph 

30a, the client starts by sending a 40 bytes packet in order to simulate the 

handshake phase from TCP. After it has received a reply from the Sever, a 

session is started and the Client slowly starts sending data packets. As we can 

see, once the Client receives the reply and starts sending data packets, it will 

not stop until the transmission has been completed reason why, in the graph we 

can notice a horizontal line in 1040 which represents an uninterrupted “data 

packets” transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 31: Represents the relation in between time (X-axis) and, the size of 

the packets (Y-axis) being transferred.  
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Now we will use a similar approach but, we will gather information from the 

network in which the HOPERAA and BIGWHEEL algorithms have been 

implemented. Graph 31b shows the same information as graph 31a but now, 

we want to point out how the performance is affected when implementing the 

defense framework.  In this case we are using a network in which the Server is 

hosting only one single sequence for all three clients. Looking at the graph 

carefully, we can see that from 0 to 0.3 there is a horizontal line at 60, which 

represents the size of a “hoperaa packet”; this is because throughout that time, 

the Client (which is 2 times faster than the Server) is sending “contact-

initiation” messages to the Server. At time 0.35 (simulation time), the Client 

will receive the reply and it will send a 40 bytes packet (in order to establish a 

session with the Server) and once it receives the reply, it will send data packets 

(with size 1040 bytes) until the next hoperaa execution interval. This behavior 

can be seen in graph 31b by looking at the range from 0.0 to 0.5 (X axis).   

Every time the Client resynchronizes with the Server, we can see a decrease in 

the graph from 1040 to 60 which mean that at such point, the data transmission 

has been stopped and the Client is waiting for a reply from the Server. This 

behavior is evident throughout the whole simulation but, as described by the 

algorithm in [5], we can see that after every resynchronization the hoperaa 

execution intervals increase and the Client is capable of sending more data 

thus, reducing the overhead on the network‟s infrastructure.  

 

 

5.4.3 Results’ Analysis: Scenario 5.4.2    
 

In this case, we want to show that there is a close relationship in between the 

framework‟s time overhead and the number of sequences being hosted by the 

Server. Graph 32 shows the graphical representation of the packet transmission 

rate for a client in two different situations. The blue line represents the node 

“client 3” which belongs to a network where the server only has one sequence 

available while; the other one, represents the same situation but in this instance 

the Server hosts 3 different sequences instead of just one. By looking closely at 

both graphs, we can observe that the data transmission is faster, since the client 

has to wait less time before getting a reply from the Server hence it reaches the 

“data transmission” phase faster and the overall transmission time is decreased.  
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Based on the previous, we can conclude in the following:  

 

- Depending on the number of sequences available, as explained in 

section 4 from [5], the client‟s waiting time decreases and the 

maximum waiting time is bounded to the following:  

 

 

 

 

- Based on the data presented in graph 31, we can conclude that the 

overhead derived from the framework, can be affected by the number 

of intervals hosted at the server; therefore, the “time overhead” (the 

total amount of time it takes to complete the transmission) can be 

reduced if the waiting time bounded to the client is also reduced. 
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= 

Graph 32: Represents the amount of data packets transmitted from a Client, 3 times slower 

than the server. Black shows the situation in which the Server hosts 3 sequences and; blue 

shows the situation in which only one sequence is being hosted.  
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5.4.4 Results’ Analysis: Scenario 5.4.3    
 

In this scenario, we will observe more in detail how the data transmission is 

affected from implementing HOPERAA and BIG WHEEL. For this case, once 

again we use the behavior, observed in a network where the defense 

framework was not implemented, as baseline and in order to point out the 

differences in between both architectures. For this section, we ran several 

simulations in which we varied the number of times the Client resynchronized 

with the Server so for example, in graph 33c the first interval represents the 

number of packets that the a Client sent on a simulation in which HOPERAA 

was executed only for one time; the second interval, represents the results 

obtained from another simulation, in which the Client executed HOPERAA for 

2 times and so on, up to 7 times. From the previous simulations, we took in 

consideration the amount of time each scenario took and, to gather results for 

the case in which the defense framework has not been implemented, we ran 

different simulations in which, the time periods considered, were the duration 

of time that it took for the network, with defense mechanism implemented, 

from the beginning of simulation to the “n
th

” HOPERAA execution. 

In each of the following graphs, the blue bars represent the amount of data 

packets sent throughout that simulation; while the red ones, represent the 

amount of “contact-initiation packets”. 

  

In the network with HOPERAA and BIG WHEEL implemented, we are using 

a simple scenario in which the Server has 60 ports divided into 3 different 

intervals “k” with 20 ports each. By looking carefully at the graphs, we can 

denote the following: 

 

1. In graph 33a we can see that, as the time goes by, the number of data 

packets being sent increases due to the fact that the HOPERAA 

Execution Intervals increase after every resynchronization with the 

Server. Looking at the graph, we can conclude that as the 

transmission progresses, the overhead derived from the algorithm‟s 

implementation is reduced and the amount of data packets being sent 

overcome the amount of “contact-initialization” packets required; we 

can also perceive how overhead is reduced after some time so, if the 

amount of data packets to send is too small then, the cost due to the 

defense framework, would be relatively larger. 
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2. Comparing graph 33a with graph 33b, the first evident difference is 

that the network, where the defense framework was not 

implemented, is capable of sending more data packets in the same 

amount of time that it took the other network to execute HOPERAA 

a specific number of times. This can be seen more clearly in graph 

33c where we are using the same y axis scale to present the results 

from graphs 33a and 33b. In graph 33c, the green bars represent the 

amount of data packets sent when the defense framework was not 

implemented while; blue bars represent the transmitted data packets 

when the framework was present, the red bars are related to the 

“contact-initialization” packets sent throughout each simulation. As 

mentioned before each of these simulations are related to different 

number of HOPERAA executions and this number is growing in 

each simulation from 1 to 7. 
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5.4.5 Results’ Analysis: Scenario 5.4.4    
 

When a client has to resynchronize with the server or, contact it for the first 

time; it has to execute the “contact initiation phase” which implies sending 

“contact-initialization” messages to all the ports from a randomly chosen 

interval and, wait “2µ+L” time units before retrying. Derived from that 

behavior and comparing graph 34a and 34b, we can observe the overhead 

induced by the HOPERAA algorithm, as discussed in [5] section 5, can be 

modeled by the formula: 

 

 

In our cases we have assumed the same number of ports which means “N” in 

both cases is 150; however, the value of “k” in 34a and 34b is 3 and 10 

respectively. Taking this in consideration, 34a shows the performance of the 

network in which 150 ports and 3 intervals has been assumed, this means that 

each interval contains 50 ports; 34b on the other hand, shows the same network 

but this time with 150 ports and 10 intervals, which means that each interval 

includes 15 ports. Here, each combination of red and blue bars shows 

independent simulations with “n
th

” execution of HOPERAA. So basically each 

of these combinations shows the whole amount of data packet and contact 

initiation packets from the beginning of simulation until the “n
th

” execution of 

HOPERAA algorithm.  

 

 

Graph 33: Represents the number of data packets and control packets 

during nth execution of HOPERAA algorithm. 
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If we look at graph 34a and 34b, we would notice that the amount of contact 

initialization messages, represented by the red bars, is different for each case; 

now, if we also take in consideration the formula: 

 

we can deduce that, out of all the variables involved, the overheard is 

inherently related to the value of “k”. By looking closely to the variables 

considered by this formula, if we can assume that “N” and “         ” are constant 

in both cases, then we can also say that the overheard depends merely on the 

value of “k” so, the smaller “k” is, the greater the overhead will be. This can be 

seen clearly by comparing the height of the red bars from the two graphs 

previously discussed. Using the results obtained in this section, we have 

observed that having more intervals will decrease the message overhead but, 

will also increase the number of guard ports available which, could not always 

be a good thing since, it means that the number of ports vulnerable for an 

attack will also increase. 

Graph 34a: Represents the amount of data and control packets, during nth 

execution of HOPERAA, using 150 ports divided into k=3 intervals. 
 

Graph 34b: Represents the amount of data and control packets, during nth 

execution of HOPERAA, using 150 ports divided into k=10 intervals. 
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5.5 Study Case 5: Defense Framework and the 

DDOS problem. 

 
5.5.1 Experiment Specification    

 
In this section, we want to put things in perspective by giving a brief insight 

and comparison on how the defense framework, suggested in [5] and studied 

so far, performs compared to a network which is under a DDOS attack.  

Let‟s assume, for the sake of this study case, that we have a Gnutella P2P 

Network which looks like follows: 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

From chapter 3, we know that Peer-to-peer (P2P) systems are distributed 

systems in which nodes of equal roles and capabilities exchange information 

and services directly with each other and, the network presented above is no 

different in this sense. Based on what we have studied so far from the Defense 

Framework, and the results from “Study Case 4”, we know that the algorithm‟s 

overhead is counterbalanced by the amount of data to be transmitted so; in this 

case, we will focus our efforts on the data transmission and we will assume 

that control process, prior to the file transfer, has already been implemented 

and taken care of. 

 

 

 

 

 

 

Figure 16: Simple P2P network formed by several nodes of equal 

roles and capabilities which exchange information and services 

directly with each other. 
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In order to gather results for this study case, we will pay particular attention to 

only one section of the network presented in figure 16 (look at figure 17); in 

the sub-network that we are going to study, data packets are being transferred 

from the “sender” to the “receiver” node throughout “router 1” and “router 2” 

however, depending on the scenario, the condition of the network may change 

affecting the data transfer in between the nodes. Since for this case, we want to 

denote how the defense network can be used to mitigate, or reduce, the damage 

caused by a DDOS attack on a network, the sub-network presented in figure 17 

was implemented in ns-2 as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sender 

Receiver 

Router 1 

Router 2 

Sub-network 

Figure 17: Sub-network derived from the P2P network in figure 16; 

used to gather results for the scenarios defined in this study case. 
 

Figure 18: Shows how the Sub-network, presented in figure 17, looks 

like when simulated in Ns-2  
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The network above presented, was used to simulate and gather results for the 

study of the following scenarios:  

 

- Scenario 5.5.1: We will use this case to gather information about 

how the network behaves under normal circumstances; for this, we 

will use ns-2 to run a simulation in which the “receiver” and the 

“sender” interchange data packets with each other for 7 seconds 

without the intervention from an attacker. 

- Scenario 5.5.2: Using the results obtained in “Scenario 5.5.1” as a 

baseline, we will study how the data transmission (in between 

“sender” and “receiver”) gets affected when an attacker starts 

sending as many packets as possible to the “receiver”. For this, we 

will consider 2 possible cases: 

 Case (1): The attacker‟s goal is not to completely disable the 

“receiver” but rather, diminish the quality of the service by 

decreasing the amount of legitimate data packets the 

“receiver” gets. 

 Case (2): The attacker‟s goal is to completely disable the 

“receiver” so that the communication with the “sender” gets 

completely interrupted. 

- Scenario 5.5.3: In this last case, we will study the main differences in 

between the result obtained in the previous 2 scenarios and, the 

results obtained from a network which implements the defense 

network suggested in [5] and studied throughout this dissertation. 

 

 

5.5.2 Results’ Analysis: Scenario 5.5.1 
 

For this case, first we will focus our attention on studying how the network 

behaves under normal circumstances; the results obtained from the latter, will 

help us to define a common ground so later on, we can compare the network‟s 

performance throughout the remaining defined scenarios. With the aim of 

gathering data results for this section, we used ns-2 in which we defined a 

network as the one presented in the “Experiment Specification”; we let the 

simulation run for 7 seconds, with no intervention from an attacker 

whatsoever, and we centered our attention on the amount of packets being 

transferred in between the parties.  
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To achieve the latter, we monitored the simulation and logged, every 0.05 sec, 

the amount of acknowledgements received at the “sender”, from the “receiver” 

end (Since the receiver send a reply for every packet received, we can assume 

that every acknowledgment (referred to as “ack” from now on) received means 

that the packet effectively reached the receiver thus, the packet‟s transfer was 

successful). 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

For this study case, the Roundtrip Maximum Delivery Latency (“µ”) was 

defined as “µ = 1.0”; that is the reason why, in graph 35 throughout the first 

seconds, the line remains on “0” since the “ack” from the packets sent at time 

0, and received at 0.5 in the receiver‟s end, has not reached the “sender” yet. 

We can see that after the first “ack” is received (around 1.0 in graph 35), the 

line grows at a constant and steady rate throughout the rest of the simulation; 

the latter means, that the communication is never interrupted thus the sender is 

able to successfully transmit (By “transmit”, we mean that the Client sent a 

packet, and received the “ack” from that packet eventually in the time span of 

the simulation) a total of 1038 packets, at a constant rate.  

From the results obtained in this scenario, we can conclude that in 7.0 seconds 

(simulation time) the Sender was able to successfully transmit 1038 packets 

uninterruptedly and, at a constant rate. 
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Graph 35: Shows the amount of acknowledgements received by the “sender”, 

from the “receiver”, in a period of 7 seconds and, when the communication is 

not affected by a third-party (attacker).   
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5.5.3 Results’ Analysis: Scenario 5.5.2 

 
Now that we understand how the network behaves when there is no 

intervention from a third party, is time to analyze what will happen when an 

attacker starts sending as many packets as possible to the Receiver, so that the 

quality of the service, which is providing to the Sender, gets diminished (1) or; 

the receiver is completely disabled (2).  

In order to study the behavior on the network in these two cases (1) and (2), we 

used a similar approach as the one used in “Scenario 5.5.1” but now, we will 

take in consideration the following changes:  

 

1. All traffic generated by the Sender is being directed to the default 

Gnutella port (6346). 

2. We included several other nodes (attackers) which create as much 

traffic as possible and direct it also to the port 6346. The function of 

the attackers, defined for this and the remaining sections, is only 

centered on creating as much traffic as possible and, directing it to a 

specific port.  

3. The attack begins at simulation time 1.0. 

4. The results gathered for this section represent the ones of a simple 

network with no defense mechanism implemented whatsoever. 

 

In order to study how the data transmission is affected, we use a similar 

methodology as the one used before; which means, that once again we used ns-

2 to define a network and let the simulation run for 7 seconds, centering our 

attention on the amount of packets being transferred in between the parties by 

monitoring the simulation and logging, every 0.05 sec, the amount of 

acknowledgements received at the “sender‟s” side. To begin with, we will 

study how the transmission gets affected just by looking at the graphs obtained 

from the acknowledgements received at the sender‟s side; and then, we will 

compare these graphs with the one obtained in Scenario 5.5.1, when there is no 

attack present. Graph 36 and 37 present the amount of packet acknowledged 

when, the attacker diminishes the quality of the communication (1) and, when 

it completely disables the Receiver (2), respectively. 
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The first big difference that we can notice is that in “Scenario 5.5.1”, the 

sender was able to successfully transmit 1038 packets uninterruptedly and, at a 

constant rate. Now, looking at the graph 36 from the first case (1) of this 

scenario, we can denote that the sender was able to send only 213 packets in 

the same amount of time; also, after the attack started (at time 1.0) the sender 

was not able to get an “ack” for about 2 seconds and even after that, the rate at 

which it was receiving them was not constant. 
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Graph 37: Shows the amount of acknowledgements received by the “sender”, 

from the “receiver”, in a period of 7 seconds and, when the communication is 

completely disabled by a third-party (attacker). 

Graph 36: Shows the amount of acknowledgements received by the “sender”, 

from the “receiver”, in a period of 7 seconds and, when the communication‟s 

quality is diminished by a third-party (attacker). 
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The latter is obvious when looking at graph 36 ; if we look closely, after time 

3.0 we can see that the even though the amount of packets increases, the graph 

has a “step like” form; the reason for this, is because out of all the packets the 

sender sent some of them were acknowledged and some other no (due to the 

fact that the attacker‟s packets were consuming the resources at the receiving 

end therefore, the latter was not able to receive all the packets from the sender) 

so, the ones that were not, had to be sent again and that is why the graph looks 

the way it does. Graph 37 represents what happens when the attacker is 

capable of completely disable the receiver (2), in this case is very obvious that 

after the attack started the sender was not able to receive any more 

acknowledgments, the reason for this is because the receiver was too “busy” 

dealing with the attacker‟s packets hence not being able to process any of the 

packets from the sender; that is why in graph 37, we can see that the sender 

successfully transmitted 20 packets but, after the attack started, it did not 

receive any other “ack”; the moment at which the receiver is unable to 

communicate with the sender, is represented in the graph by the horizontal line 

starting at 1.2 (X-axis).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although we have already discussed the main differences in between the 

results obtained in this and Scenario 5.5.1; graph 38 presents an accurate, and 

probably more understandable, comparison on how different these results are 

from a more graphical point of view. We also want to point out that, as we can 

see in graph 38, from 0 to 1.0 all three cases behave in the same way and the 

reason for this is because the attack started only at 1.0 so, it‟s from that 

moment on that the behavior changes depending on whether it is case (1) or 

case (2).  

 

Graph 38: Presents a graphical comparison of all the results obtained so far; scenario 5.5.1 when 

there is no attack; scenario 5.5.2 (1), when the quality of the communication gets weakened; and, 

scenario 5.5.2 (2) when the communication is completely disabled.  
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5.5.4 Results’ Analysis: Scenario 5.5.3 

 
In this last case, we will study the main differences in between the result 

obtained in the previous 2 scenarios and, the results obtained from a network 

which implements the defense network suggested in [5] and studied throughout 

this dissertation. In order to study the latter and keep the results as comparable 

as possible, we used a similar approach as the one used so far but now, due to 

the definition of the HOPERAA and BIG WHEEL algorithm, we will take in 

consideration the following aspects for the sake of the results involved in this 

study:  

 

1. The receiver hosts only one sequence with 6000 ports available for 

data transmission; ports are divided into “k = 6” hence, each interval 

has 1000 ports evenly. 

2. We are considering the “ideal scenario” in which “contact-

initialization” packets are never lost and always reach the receiver 

thus, every time the sender has to resynchronize with the receiver, 

the latter sends the reply as soon as possible.  

3. All traffic generated by the Sender is sent to the ports calculated by 

the Algorithm thus; they are no longer directed to a single port. 

4. As for the network‟s attributes, we are using: 

 

 µ = 0.1 

 L = 0.3  

 τ = 1 

 ∆= 0.1  

 ρ = 2 

 

From “Scenario 5.5.1”, we know that the “sender” is able to send a total of 

1038 packets in 7 seconds (simulation time) therefore; in this case, we will 

study how long does it take for this network, using the defense framework, to 

send the same amount of packets. Graph 39 shows how the network behaves 

when the defense network is implemented and, as we can see, in this case it 

took 8.3 seconds to send the 1038 packets; just as we did before, graph 39 

represents the amount of acknowledgements received by the “sender”, from the 

“receiver”.  
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By looking at the graph we can notice the following: 

 

1. The squares in the graph represent the moments at which no “ack” 

was received since the “sender” stop data transmission in order to 

resynchronize with the “receiver”. 

2. By looking at the distance from each square in the graph, we can 

conclude that effectively the “Hoperaa Execution Intervals” are 

increasing hence; the “sender” is capable of transmitting more and 

more packets after every time the resynchronization phase is reached. 

3. We can see a constant and steady growth in the way packets are 

being acknowledged by the “receiver”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now that we know how long it takes, for the network with the defense 

framework implemented, to send the same amount of packets as the network 

from “Scenario 5.5.1”, we can affirmatively say that even though the growth 

presented in this case is still not as good as the one seen in “Scenario 5.5.1” 

(Look at graph 35), it is definitely better to the ones seen in “Scenario 5.5.2”. 

(Look at graphs 36 and 37)    
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Graph 39: Shows the moments at which the “sender” is re-synchronizing with the “receiver” 

and, the amount of acknowledgements received; when considering a network in which the 

defense framework has been implemented.  
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From the results obtained from “Scenario 5.5.1”, “Scenario 5.5.2” and the ones 

from this, we can conclude: 

 

1. As previously discussed, the network with the defense framework 

implemented, doesn‟t perform as well as the one presented in 

“Scenario 5.5.1” but still performs better than any of the ones 

presented in “Scenario 5.5.2”. The following table presents the 

results obtained in the previous scenarios compared to the one 

obtained in this: 

 

 

 

 

 

 

 

 

 

 

2. For this case, we considered the “ideal scenario” in which “contact-

initialization” packets are never lost and always reach the “receiver” 

however; when the latter holds no more and according to the results 

obtained in 5.4, the time it takes to transmit the same amount of 

packets could increase due to the fact that the “Sender” has to wait 

until it gets a reply from the “receiver” after every resynchronization. 

If the latter were to happen, we will notice that the lines marked (by 

the squares) in graph 39 will increase in longitude hence increasing 

the overall transmission time. 

3. Also based on the results obtained in 5.4, we know that increasing 

the number of sequences being hosted at the “receiver” can affect the 

waiting time of the “sender”. In this section we used only one 

sequence but, if we were to increase the number of these, we will 

notice that the lines marked (by the squares) in graph 39 will 

decrease in longitude hence reducing the overall transmission time. 

4. For this particular case, even if the attacker were to “find out” one of 

the ports being used during the transmission, the damage caused by 

the attack would not be so critical, since the overall transmission 

time will not be severely affected due to the fact that the ports are 

continuously changing.    

Table 15: Shows the amount of packets transmitted in 7 seconds (simulation time), 

by each one of the networks used in “Scenario 5.5.1”, “Scenario 5.5.2” and 

“Scenario 5.5.3”. 
 

 Simulation Time Packets Transmitted 

Scenario 5.5.1 7.0 sec 1038 

Scenario 5.5.2 (1) 7.0 sec 213 

Scenario 5.5.2 (2) 7.0 sec 20 

Scenario 5.5.3 7.0 sec 828 
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    6 
            FUTURE WORK 

 
  
 
 

 

In this chapter, based on the knowledge and experience gathered throughout 

the development of this dissertation, we focus on pointing out what we 

consider as areas of improvement for future study, on the subject discussed in 

this work.  

 

6.1 Thoroughly investigate algorithm‟s 

performance in different network architectures 
 

According to [5], we know that the algorithm was designed with two very 

important features on mind, the first one is that each Client is able to interact 

with the Server on an individual basis; the second one is that this is an 

application-level solution. These two features combined, make the framework 

highly suitable for implementation on different network architectures, such as 

P2P Networks. Ever since we started implementing this solution in ns, we had 

in mind the possibilities of the algorithm so, when designing the new agents, 

we tried to create them so that theoretically, this extension would be possible 

by using most of the code developed in this dissertation. 

From Chapter 4, we know that in the simulation the “HOPERAA agents” are 

the ones responsible of transmitting all the information required by Hoperaa, 

also the ones who calculate the “Hoperaa execution interval” and, to schedule 

the next time at which the client must re-synchronize with the server.  

 

 

 

 

“A generation which ignores history 
has no past and no future.” 

- Robert Heinlein 
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For the Client-Server model studied in Chapter 4, we know that there is an 

agent of this kind attached to the Server and, to each Client in the simulation; 

however, no matter where the “HOPERAA Agents” are located, they all have 

the same capabilities; the only difference is that the “HOPERAA agent” in the 

Server is calling different methods to the ones being called by the agent at the 

Client‟s side. The previous statement would theoretically make possible for the 

simulation to be extended, without major changes, into a P2P network in which 

all nodes have equal roles and capabilities to exchange information and 

services directly with each other.  

Based on this, further analysis of the framework in different architectures is 

probably an interesting prolongation of the work started in [5] and continued in 

this dissertation.   

 

6.2 Extend the Framework‟s Defense Capabilities 
 

As discussed in Chapter 1 and 2, in the past few years, Peer-to-peer networks 

have become immensely important as one of the most popular Content-

Delivery systems [1] but also, unsecure networks had provided fertile ground 

for attackers to create “zombies” and use them to deploy more powerful DDoS 

attacks.  Taking the previous in consideration, we suggest strengthening the 

Framework, by grouping several servers as one logical entity. (See figure 19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this example the “Server” is a logical unit internally formed by 3 different 

nodes; unlike the case studied earlier, each one of these nodes will host one 

sequence of ports. Previously, all the sequence were hosted in the same Server 

and the Client, depending on the time from its “contact-initiation” message, 

would hop from one sequence to the other.  

 

Figure 19: Shows how the Defense Framework can be strengthened by logically 

grouping several servers as one entity. 

 

 

 

Logical Server Entity 
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In this case, each node will be hosting one sequence and, every time the Client 

hops from sequence, it will change also the node with who it was 

communicating. In the original approach, if for any reason the server was 

disabled, the entire framework would be compromised and none of the Clients 

would be able to continue with their transmission; this approach has the main 

advantage that even if one of the internal nodes is disabled, the Clients still 

have two more sequences (and also the nodes hosting them) available to 

continue with the transmission.  

Nevertheless, this alternative also raises the following problems: 

 

- Depending on the number of Clients involved, the bandwidth 

required, in the links from internal nodes of the logical unit, will 

increase thus, creating a greater overhead on the overall framework. 

- Previously, the Client only stored information, such as address, 

number of sequences, ports in each sequence, etc, from a single 

Server; but now, depending on the methodology followed, the 

Clients may have to store more information at its end, depending on 

which node they are communicating with.  

- This approach also would increase the number of session being 

established. Before, only one was necessary since the 

communication was only with one node; but in this case, because of 

the sequence being used, the number of sessions established could 

increase depending on the node hosting such sequence. 

- Since Clients will be hopping from node to node depending on the 

time from their “contact-initiation” messages, it is necessary to 

design a way for each node (inside the server unit) to be able to 

access the information from a Client that is contacting it for the first 

time but, started the communication process with a prior node. 

- The most natural solution, for the previous case, would be to have a 

central repository in which each “server node” would log data such 

as h1 and t1 (recorded during the first contact with the Client) or the 

status of the TCP Session; however, this approach would be more 

disadvantageous than beneficial since, the attacker could target this 

central repository instead hence, disabling the whole architecture. 

 

Based on the previous observations, and many other that probably we didn‟t 

even think of, we believe that the study of this case would be of high 

importance in determining whether is feasible or not to improve the 

framework, suggested in [5], by using this approach. 
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  7 
                  CONCLUSIONS 

 
  
 
 

 

As we discussed throughout this dissertation, Distributed Denial of Service 

attack is a grave problem which has no easy solution; as defined in the 

beginning of this work, DDOS attacks are deployed in order to prevent 

legitimate users of a service, or network resource, from accessing that service 

or resource. This thesis, among other things, has presented a detailed study and 

evaluation of HOPERAA and BIG WHEEL, two algorithms derived from the 

work in [5], used to mitigate this kind of attacks by using a “Port-Hopping” 

approach while allowing multiparty communication in the presence of clock 

drifts; from the study of these two algorithms and the results obtained from the 

study cases considered in this work, we can conclude that: 

 

1. Derived from the analysis of the results obtained in the study cases, we 

can conclude that the implementation of the Algorithms‟ in the 

simulator ns-2, behaves as expected and the results are consistent with 

the description given in the paper used as reference. Thanks to the 

prior, this implementation can be used as a reference for further study 

of the defense framework under circumstances different to the ones 

considered in this work. 

2. The algorithm‟s definition clearly specifies that it will behave as 

described whenever the clock drift in between the parties remain 

constant throughout the whole communication process. From “Study 

Case 2” we were able to denote that, when “ρ” changes, two of the 

conditions established by the algorithm‟s definition are broken, since 

the values of “rhoUp” and “rhoLow” go from being in between the 

range of “ρLow ≤ ρ ≤ ρUp”, as expected; to the range of  “ρ ≤ ρLow ≤ 

ρUp”.  

 

“A conclusion is the place where 
you get tired of thinking.” 

 
- Arthur Bloch 
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This behavior is evident in every case, no matter whether “ρ” is 

increased or decreased from its original value. In spite of the latter, we 

could observe that the values of “rhoUp” and “rhoLow” were 

eventually adjusted to their ideal values as the simulation progressed 

however, according to the framework‟s description, if we were to 

continue with the simulation we will also notice that the restriction 

given by “∆” will no longer hold thus, making the implementation to 

behave outside of the acceptance margin. 

3. From the results obtained from the “Study Case 3”, we were able to 

conclude that whenever the clock drift in between the parties does not 

remain constant throughout the whole communication process but, we 

allow the Server to record new values of “h1” and “t1”, the algorithm‟s 

behavior will remain inside of the acceptance margin and perform as if 

it had no record that there were ever a drift change to begin with; the 

latter, allows the variables “rhoLow”, ”rhoUp”, “Pc” and “Hoperaa 

Execution Interval” to act as defined in [5] and, their respective values, 

to be more comparable to the ones obtained from when “ρ” was 

constant.  

4. Based on the analysis of the results obtained in the “Study Case 4”, we 

were able to verify that the overhead created by the defense framework 

can be affected by several aspects such as: 

a) Number of sequences hosted by the server 

b) Number of intervals in which ports are divided 

c) Number of attempts before the Client gets a reply for the 

server 

5. Finally, from the results gathered in the “Study Case 5” we were able to 

show that even though a network with the defense framework 

implemented, doesn‟t perform as well as one with no defense 

mechanism whatsoever (in terms of overhead and overall data/time 

transmission), the algorithm‟s overhead will be counterbalanced by the 

amount of data to be transmitted and the reliability of the network 

whenever the latter is under a DDOS attack. 

 

In this section, we wanted to give the reader a better idea about the analysis 

and the possible repercussion of the results obtained throughout the develop of 

this work; however, we strongly recommend the reader to study each 

subsection included in chapter 5, since in each one of them we give a more 

detailed explanation and insight about the results and their derived implications 

as far as the defense framework concerns.    
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Appendix   
 

A.1 Individual contributions to this work  

 
This paper gives a detailed approach to what Distributed Denial of Service 

attacks are and, the precarious problem they present for today most common 

internet-based services and resources. For the work of this thesis, we have 

included several sections in order to give the reader a complete picture of the 

problem and, then presented a detailed study, evaluation and explanation of 

how HOPERAA and BIG WHEEL, two algorithms derived from the work in 

[5], are suggested in order to mitigate DDOS attacks and also, how they were 

implemented in the simulator ns-2 and all the necessary changes in order to 

make such implementation works and behaves as the one presented in the 

paper “Mitigating Distributed Denial of Service Attacks in Multiparty 

Applications in the Presence of Clock Drifts” by Zhang Fu, Papatriantafilou 

Marina and Philippas Tsigas.  

Some of the content of this thesis is based on the references specified in the 

next section; however, most of it was written up based on our understanding 

about the discussed topic. The following table presents a complete description 

of all the contributions made by each one of the members, whatever content 

included in each section (graphs, diagrams, tables, etc) was also structured, 

studied and created by the person in charge of the overall segment: 

 

Thesis’ Report Content  Responsible (s) 

   Abstract Negin F. 

   Acknowledgements Ricardo M. and Negin F. 

   Introduction Ricardo M. 

1.1 Motivation Ricardo M. 

1.2 Outline Ricardo M. 

   Background Ricardo M. 

2.1 P2P Networks Ricardo M. 

2.2 Distributed Denial of Service Attacks (DDOS) Ricardo M. 

2.3 P2P & DDOS attacks Ricardo M. 

   A port-hopping approach against DDOS Ricardo M. 

3.1 HOPPING PERIOD, ALIGN AND ADJUST 

ALGORITHM 
Ricardo M. 

3.2 BIG WHEEL Algorithm Ricardo M. 
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As for the simulation of the algorithms in ns-2 and the scenarios used to 

analyze their behavior, Ricardo Moscoso was the one responsible for 

implementing their respective counterpart in C++ and OTcl; nevertheless, for 

each one of the study cases there were several actions to be followed and a 

person responsible for each one of them; reason why, this section was not 

included in the prior table but, it‟s included in the following: 

 

Thesis’ Report Content  Responsible (s) 

   Implementation in ns-2 Ricardo M. 

4.1 The network Simulator Ricardo M. 

4.2 HOPERAA Implementation in ns-2 Ricardo M. 

   Analysis and Evaluation - 

5.1 Study Case 1: Single Client/Server Scenario - 

5.2 Study Case 2: Variable Clock Drifts - 

5.3 Study Case 3: Variable Clock Drifts (2) - 

5.4 Study Case 4: Frameworks Overhead - 

5.5 Study Case 5: Defense Framework and the 

DDOS Problem 
- 

   Future Work Ricardo M. 

6.1 Thoroughly investigate the algorithms’ 

performance in different architectures  
Ricardo M. and Negin F. 

6.2 Extend the Defense Framework’s capabilities Ricardo M. 

   Conclusions Ricardo M. 

Section’s Name Scenario 

Design 

Testing Result’s 

Analysis 

   Analysis and Evaluation Ricardo M. Negin F. Ricardo M 

1.1 Study Case 1: Single 

Client/Server Scenario 
Ricardo M. Negin F. Ricardo M. 

1.2 Study Case 2: Variable Clock 

Drifts 
Ricardo M. Negin F. Ricardo M. 

1.3 Study Case 3: Variable Clock 

Drifts (2) 
Ricardo M. Negin F. Ricardo M. 

1.4 Study Case 4: Frameworks 

Overhead 
Negin F.  Negin F. Negin F. 

1.5 Study Case 5: Defense 

Framework and the DDOS 

Problem 

Ricardo M. Negin F. Ricardo M. 
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A.2 hoperaa.h 
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A.3 supportFunctions.h 
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A.4 hoperaa.cc 
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A.5 closedPort.cc 

 



 

110 .                                                              
                                                                                             | Chalmers University of Technology 

 

 

A.6 test1.tcl 
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A.7 test2.tcl  
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