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Abstract

This thesis presents a functional quantum programming language, funQ,
modeled after a typed quantum lambda calculus [1]. The language funQ
is implemented as an external domain-specific language in Haskell with a
complementing parser, type checker, and interpreter. The type checker is
defined with a linear type system – meaning that data cannot be copied –
to prevent the physically impossible event of duplication of quantum data.
The interpreter uses call-by-value semantics and is connected to a quantum
computation library developed to perform the quantum operations with a
built-in quantum computer simulator. The language is complemented with a
command line tool that can execute funQ programs interactively or run funQ
program files. The project successfully implemented a functional quantum
programming language with slight modifications in regards to the modeled
language.

Keywords — Functional programming, quantum computation, programming lan-
guage, linear types.





Sammanfattning

Detta arbete presenterar ett funktionellt kvantprogramsspr̊ak, funQ, som modeller-
ats efter en typad kvantlambdakalkyl [1]. Spr̊aket funQ är implementerat som ett
externt domänspecifikt spr̊ak i Haskell, med tillhörande tolk, typkontrollerare och
interpretator. Typkontrollen är definierad med ett linjärt typsystem – ett sys-
tem som inte till̊ater kopiering av data – för att förhindra den fysiskt omöjliga
händelsen av duplicerad kvantdata. Interpretatorn använder ’call-by-value’ som
evalueringsstrategi och är sammankopplad med ett kvantbibliotek som utvecklats
för att utföra kvantberäkningar, med en inbyggd kvantdatorsimulator. Spr̊aket har
kompletterats med ett program för att köra funQ i en kommandotolk, antingen
interaktivt i tolken eller genom att köra en funQ-programfil. Projektet resulterade
i en framg̊angsrik implementation av ett funktionellt kvantprogrammeringsspr̊ak
med n̊agra modifieringar av det modellerade spr̊aket.

Nyckelord — Funktionell programmering, kvantberäkning, programspr̊ak, linjära
typer.
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Introduction

Quantum computing takes advantage of quantum phenomena to compute and solve problems that
may take significantly more time to solve on classical computers. Quantum computers operate on
quantum bits (qubits) which in many ways differ from traditional bits. These differences must be taken
into consideration when designing a programming language for quantum computers. Many quantum
programming languages today either operate on low-level constructs such as quantum circuits or are
purely theoretical. Languages with higher abstraction levels and expressiveness exist, but there is
a need for more work in this area. Therefore, the goal of this project is to implement a high-level
functional programming language for quantum computation.

1.1 The Potential of Quantum Computers

In the second half of the 20th century, the concept of computers based on the principles of quantum
mechanics was beginning to form. The idea was to base computation on quantum-specific phenomena
such as superposition and entanglement. Some quantum mechanical models of Turing machines were
developed in the early 1980’s [2]. Around this time, Richard Feynman believed that simulating phys-
ical quantum systems would be infeasible on classical computers but could be possible on quantum
computers [3].

Later it was found that there is a substantial difference in time complexity between quantum and
classical computers for certain types of problems. One such instance is the subset of NP-problems
(non-deterministic polynomial time) that require exponential time to solve on classical computers but
are easily verifiable [4]. Factorization of integers is a famous example of this type of NP-problem that
no known classical deterministic algorithm can solve in polynomial time [5]. However, for quantum
computers, Peter Shor developed an algorithm that can factorize integers in polynomial time [6]. He
also found a set of other problems where quantum computers outperform classical computers in this
way – the class of BQP-problems (bounded-error quantum polynomial time) [7].

In 2019, a group of researchers at Google successfully demonstrated quantum supremacy for a particular
task in practice, solving a problem infeasible for a classical computer. They completed a task on a
quantum computer in 200 seconds, claimed to need up to 10,000 years on the most powerful modern
supercomputer [8]. This concrete example and the set of BQP problems Shor discovered highlight the
potential of quantum computers.

1.2 Quantum Programming Languages

Quantum programming languages can be used to write quantum programs by constructing quantum
circuits of qubits and quantum gates. Most of today’s quantum programming languages, such as QML
[9] and Silq [10], include some high-level features on top of the quantum constructs. High-level features,
such as loops, if and let statements, more closely resemble natural language than quantum circuits do.
High-level languages may therefore make it easier to write quantum programs.

In the paper ”A lambda calculus for quantum computation with classical control” [1], Peter Selinger
and Benôıt Valiron propose a high-level functional quantum programming language (hereafter referred
to as QLambda). QLambda combines higher-level language constructs such as if statements with
quantum operations. The language is based on the quantum random access machine (QRAM) model,
a proposed model of a quantum computer architecture that uses a classical computer connected to a
quantum device [11]. The classical computer sends instruction sequences to the quantum device that
performs quantum operations and then transfers the result back to the classical computer.
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A closely related language is the QML language [9] by Grattage. Like QLambda, it is a functional
quantum programming language but with a stricter type system than QLambda. Another difference
between QLambda and QML is that QML allows classical and quantum control, whereas QLambda
is defined for classical control exclusively. Additionally, QML is implemented in Haskell, whereas
QLambda is purely theoretical.

1.3 Purpose

This project aims to implement a user-friendly functional quantum programming language able to run
well-known quantum algorithms. The language – funQ – is modeled after the theoretical quantum
lambda calculus QLambda and intends to follow the syntax, type- and reduction rules of QLambda as
closely as possible.

Implementing a programming language based on a theoretical language involves finding sensible ways
to represent the defined types, terms, syntax, and semantics. Running programs in funQ can verify
that QLambda works in practice. Hopefully, funQ will provide insights for future work on quantum
programming languages.

1.4 Delimitations

Running a quantum program requires either a quantum computer or a simulator. In this project, a
simulator is implemented and used to run programs. To connect funQ to an actual quantum computer
is not part of this project.

The aim is to implement QLambda as it is, without any major extensions or modifications. However,
linear polymorphic type inference with subtyping of Curry-style lambdas is an open problem. Solving
this problem is out of the scope of this thesis, and is the reason Church-style lambdas are used as
opposed to the Curry-style lambdas in QLambda.

1.5 Outline

This thesis is outlined as follows; first, a presentation of the underlying theory of the project is given in
chapter 2. The method used for implementing funQ is described and motivated in chapter 3. Following
the method, chapter 4 gives a detailed description of the implementation of funQ, such as the syntax
and parsing, type checker, and interpreter. Chapter 5 includes quantum algorithms written in funQ,
test results, and sample usage of the command line tool. Finally, the implementation and methodology
are discussed in chapter 6, and conclusions are drawn about how well the result of the project meets
its purpose in chapter 7.
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2

Theory

This chapter covers the fundamental theory behind funQ, which is quantum computation, lambda
calculus, and programming language theory.

2.1 Fundamentals of Quantum Computation

In this section, a basic introduction to quantum computation is given. First, some of the properties of
qubits and quantum gates are described. These are the building blocks of quantum computers. This
is followed by a description of how quantum circuits can be created by combining these two elements.
Much of the theory in this section on quantum computation is from a set of lecture notes given by
John Preskill in 1998 at the California Institute of Technology [5].

2.1.1 Qubits

The smallest unit of information in classical computers is the bit; the quantum computing counterpart
is a quantum bit, or qubit. A classical bit has a discrete value 0 or 1, whereas a qubit does not have
a discrete value. Instead, it represents 0 or 1 with some probability. More formally, a qubit is in a
superposition of the states 0 and 1 simultaneously.

The qubit describes a state in the simplest possible quantum system. Two examples of such systems
in real quantum computers are the vertical and horizontal polarizations of light and the up and down
spin of electrons. For each case, the principle is the same: there are two levels to the system between
which the quantum state can be measured.

The state of a qubit can be mathematically represented by a vector in a two-dimensional Hilbert
space, denoted C2, where the superscript denotes the number of dimensions. The Hilbert space most
importantly provides the definition of orthogonality between vectors. The orthonormal basis for a
two-dimensional space may be denoted by the set {|0〉 , |1〉}. Any general qubit, |ψ〉, describes a state
in this space and is written as

|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]
(1)

where α and β are complex numbers and denote the qubit’s amplitudes, with the constraint |α|2+|β|2 =
1. The square of the absolute value of α and β correspond to the probability of a measurement outcome.
As can be seen in the constraint, these probabilities add up to one.

The two operations that can be performed on qubits are gate transformations and measurement.
Applying a gate to a qubit transforms the qubits’ state, changing the probabilities of the qubit to
collapse to either |0〉 or |1〉. The measurement operation is done by projecting the mathematical
representation of a qubit onto one of the basis vectors. The qubit, that is, the vector that describes
the quantum state, then collapses to its projection onto either of the basis vectors depending on its
associated probability. Measuring the qubit |ψ〉 of equation 1, the result will be |0〉 with probability
|α|2 and |1〉 with probability |β|2. When measuring the qubit, the result is a discrete binary value that
is mapped to a bit in a classical computer.

The measurement operation physically entails checking the value of some property of a quantum sys-
tem. Take the direction of a particle’s spin as an example. The quantum state is in a superposition
of the spin-up and spin-down states before measurement, each with some corresponding amplitude.
Upon measurement, the state collapses to either up or down-spin with the probability according to its
amplitudes.
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An important aspect of qubits is that they cannot be duplicated, giving rise to the no-cloning theorem.
This theorem states that there is no quantum gate acting on two arbitrary qubits such that the state
of the first qubit is copied onto the other, which in essence means that qubits cannot be duplicated.
For instance, the operation |ψ〉 |0〉 7→ |ψ〉 |ψ〉 is not possible [12].

A multiple-qubit system is represented by the tensor product between qubits. For example, a two-qubit
system is represented as the tensor product of the vector representations of the two individual qubits.
If they are both in C2, the result is a vector in C4. An instance of this is the tensor product between
the zero and one vector, calculated as in equation (2).

|01〉 = |0〉 ⊗ |1〉 =

[
1
0

]
⊗
[
0
1

]
=


1 · 0
1 · 1
0 · 0
0 · 1

 =


0
1
0
0

 (2)

In general, an n-qubit system will be represented as a vector of the form ⊗n−1
i=0 C2 = C2n .

Another important aspect of qubits is entanglement. Consider the two-qubit state given by ψAB =
[0, 1, 0, 0]ᵀ in equation (2). As can be seen from the example above, it is simple to separate (factor)
the two qubits into their corresponding one-qubit states [1, 0]ᵀ⊗ [0, 1]ᵀ. They are uncorrelated as each
qubit does not depend on the other. In other words, they are unentangled. Qubits in an entangled state
cannot be factored. They are correlated; thus, if one qubit of an entangled pair is affected somehow,
this also affects the other. An example of a simple entangled state is one of the Bell states, which is
|Φ+〉 = 1√

2
(|00〉+ |11〉). Here the state is in a superposition of |00〉 and |11〉, which tells us that both

the first and second qubits are either 0 or 1. Measuring either of the qubits will give information about
the state of the other qubit. If the first qubit is measured and collapses to |0〉, then the second qubit
also collapses to |0〉, and vice versa. The two qubits are thus connected in some way and cannot be
factored.

2.1.2 Quantum Gates

Quantum gates act on some number of qubits and can change the state of the qubits. Quantum gates
are analog to logical gates in classical computers, such as AND, XOR, and NOR. Quantum gates have
the additional property of unitarity, meaning they are reversible and preserve the norm of the quantum
state to one. For a quantum gate U and state |ψ〉, unitarity gives that ‖U |ψ〉 ‖ = ‖ |ψ〉 ‖ where ‖v‖
denotes the norm of a vector v. Reversibility means that each quantum gate can be reversed by an
inverse gate. Some gates, such as the Hadamard gate, are their own inverse. This means that applying
the Hadamard gate twice will output the same state as before. In contrast, classical gates such as AND
are not reversible. If the output of an AND gate is zero, it is impossible to know which of the input
bits was zero.

Unitary quantum gates are mathematically represented as matrices and act on qubits through matrix
multiplication. Two examples are given to make the idea of quantum gates clear. First, consider the
matrix representations of two common quantum gates displayed in figure 2.1.

[
0 1
1 0

]
(a) Pauli-X/NOT matrix.

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


(b) Hadamard matrix.

Figure 2.1: Matrix representations of two quantum gates acting on one respective
two qubits. The matrices’ sizes correspond to the number of qubits they act upon;
a gate acting on a quantum state of size n has a matrix size of 2n × 2n.
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The Pauli-X gate (also called NOT) corresponds to a state inversion operation. In a similar manner to
the familiar NOT gate of classical computers, it acts on a single qubit, inverts its state, and maps [α, β]ᵀ

to [β, α]ᵀ. The Hadamard matrix represents the Hadamard gate operating on two qubits. Applying
the Hadamard gate to the two qubits changes their state so that upon measurement of the qubits,
the result is one of the four possible combinations of two bits, i.e., 00, 01, 10, 11. The probabilities
of the outcomes correspond to the amplitudes of qubits before measurement. If the quantum state
before application of the Hadamard gate is ψ = [0, 0, 1, 0]ᵀ, applying the gate will change the state to
H⊗2ψ = [ 12 ,

1
2 ,−

1
2 ,−

1
2 ]ᵀ. Measuring the state gives ψ00 = |00〉, ψ01 = |01〉, ψ10 = |10〉 or ψ11 = |11〉,

each with probability 25%.

An essential type of quantum gate is the controlled gates. These take in two or more qubits where
some number of qubits are called control qubits, which control the operation of the gate. The state
of the control qubits decides whether an operation should be performed on the remaining qubits. For
example, the two-qubit controlled NOT gate (CNOT) performs a NOT operation on the second qubit
if the state of the control qubit is |1〉. It does nothing if the state of the control qubit is |0〉.

2.1.3 Quantum Circuits

Quantum circuits are constructed using a sequence of quantum gates to perform computation and are
one way of representing quantum programs. Two examples of quantum circuits are given in figure 2.2.

|0〉 H •

|0〉

(a) A circuit that creates an entan-
gled Bell state, which consists of
a Hadamard followed by a CNOT
gate.

|1〉 •

|0〉 Z

(b) A circuit that measures the first
qubit to a bit which is used as con-
trolled bit for the Pauli-Z Gate.

Figure 2.2: Two circuits that include the essentials of quantum circuits; that is,
inputs, gate operations, measurement, and outputs.

Circuit diagrams are read left to right. The leftmost part is the input to the circuit. The above
examples either have the zero-qubit |0〉 or the one-qubit |1〉 as input. The right end of the circuit
denotes the output. The horizontal lines are called the wires. These connect the operations performed
on a certain qubit. The boxes on the wires represent gates, where H stands for the Hadamard gate and
Z for the Pauli-Z gate. The circle containing a cross together with the little black dot represents the
CNOT gate. Controlled gates, such as CNOT, can be distinguished by the vertical line connecting the
gate to the control bit, represented as a black dot. As can be seen, controlled gates can be controlled
by either a qubit (figure 2.2a) or a bit (figure 2.2b). If the control bit is 1 or the qubit is in state |1〉,
the controlled operation is performed. Finally, the box in figure 2.2b represents a measurement. Since
measurement outputs classical bits, the wire after the measurement is represented by two parallel lines
to distinguish it from qubit wires.
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2.2 The Lambda Calculus

The lambda calculus is a language for expressing computation, which has the same computational
power as Turing Machines. The lambda calculus has very few constructs, reflected in its syntax. It
also has a few simple operations.

2.2.1 Syntax

The lambda calculus consists of three constructs: a variable, lambda abstraction, and application. The
syntax of the lambda calculus is shown in figure 2.3.

M,N ::= x | λx.M | (MN)

Figure 2.3: The syntax of the lambda calculus. The terms represent a variable,
lambda abstraction, and application.

The first term, x is a variable. The second term is an anonymous function called a lambda abstraction,
where x is the argument and M the function body. Lambda abstractions introduce and bind a variable
x in the term M . In this way, the term λx.M is similar to the mathematical expression f(x) = M ,
where x may or may not appear in M . If a lambda abstraction has introduced a variable in a term, the
variable is said to be bound. Otherwise, it is called free. For example, the variable x is bound in λx.x,
and free in λy.x. The set of free variables in a term M is denoted by FV (M). The last term describes
an application, that is, applying a function to its argument. Analogous to mathematical notation, the
term (λx.M)N is similar to f(N), where f(x) = M .

An extension of the lambda calculus is the typed lambda calculus, where all terms have a type. Lambda
abstractions where the argument is explicitly typed, such as (λx : τ .M), are called Church-style
lambdas, opposed to Curry-style lambdas (λx.M).

2.2.2 Operations

Lambda calculus includes three operations known as β-reduction, α-conversion, and η-reduction. The
process of replacing the lambda-bound variable in the body of a lambda abstraction with the argument
is β-reduction. The term (λx.M)N is β-reduced to M [x := N ], where N replaces all free variables
x in M. When performing β-reductions, α-conversion can be used to avoid name collisions. That is,
renaming the bound variables in a lambda abstraction. For instance, consider the term λx.(λy.λx.y)x
that is β-reduced to λx.(λx.x), where the variable x incorrectly gets bound to the inner lambda, when
it should be referring to the outer lambda. This situation is avoided using α-conversion. Performing
α-conversion on the term λx.(λy.λx.y)x in the example above, renaming the variable x in the inner
lambda to z, would lead to the term λx.(λy.λz.y)x which evaluates to λx.λz.x (known as the K-
combinator). The third operation, η-reduction, states that λx.Mx can be reduced to M if x is not a
free variable in M .

The need for α-conversion can be avoided by using De Bruijn indexing. A De Bruijn index corresponds
to how many abstractions away the variable’s binding abstraction is [13]. For instance, the constant
function is λ(λ1) where 1 refers to the outer lambda, as the lambda is one abstraction level away from
the variable. The example term from above would be converted to λ(λλ1)0, which evaluates to λ(λ1)
as intended. De Bruijn indices simplify both evaluation and type checking since no α-conversions is
needed.
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2.3 Programming Language Theory

The funQ language is built on fundamental concepts from programming language theory, including
syntax and parsing, type checking and type inference, and evaluation of programs.

2.3.1 Syntax, Grammars and Parsing

Programming languages are often defined by a formal grammar. The grammar describes the syntax of
a language and is a collection of production rules. Production rules describe how expressions can be
formed, similar to how sentences can be formed in natural languages. It is also possible to define how
expressions can be combined into larger constructs like programs in the grammar [14]. Often when
defining a new programming language, the grammar is expressed in Backus-Naur form (BNF) [14] [15].
For instance, consider figure 2.4, a small grammar written in BNF notation. This grammar can be
used to recursively derive expressions of integer addition or simply integers or digits.

〈Exp〉 ::= 〈Exp〉 ’+’ 〈Exp〉 | 〈Integer〉
〈Integer〉 ::= 〈digit〉 | 〈digit〉 〈Integer〉
〈Digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 2.4: A small grammar written in Backus-Naur form. Derivable expressions
from this grammar are expressions of integer additions, digits, and integers.

Between the angled brackets is the syntactic category, and after ”::=” comes the definition of this
category. To exemplify, the syntactic categories of the grammar in figure 2.4 are Exp, Integer, and
Digit. ”|” can be read as ”or”. For example, the production rule for digits in figure 2.4 semantically
means ”a digit is defined to be 0 or 1 or 2 or ... or 9”. A concrete example of a derivable expression
from this grammar would be ”2 + 2 + 5”.

With the syntax of a language described by a grammar, it is possible to parse a program to generate an
abstract syntax tree (AST) representation of the program. A program is parsed in two steps. First, the
lexer analyses the program string, character by character, and splits it into tokens, or ”words”. Then,
the parser analyses the tokens by mapping each token with the grammar, building up the AST. An
AST is a tree representation of a program where nodes and leaves denote syntactic constructs defined
in the grammar. For instance, an AST for the language described in figure 2.4 would represent integers
and the addition of expressions as nodes and single digits as leaves. The derivable expression ”2 + 2 +
5” could be represented by the AST in figure 2.5, depending on the associativity of the ”+” operator.

+

2 +

2 5

Figure 2.5: An abstract syntax tree representation of the expression ”2 + 2 + 5”
in the language described in figure 2.4.
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2.3.2 Type Checking

The AST can be checked and analyzed to make sure that the program is valid. The AST is often run
through a type checker, where the types of the program are statically checked to be valid according to
the type system. Common type checking procedures need two kinds of operations: type inference and
type checking. Type inference is performed by finding the type T of a given expression e [14]. Type
checking is performed by checking that a given expression e has a given type T .

The type system is commonly described by typing rules. Typing rules consists of judgments, and a
basic judgment has the form Γ ` x : τ which reads as ”in context Γ, x has type τ”. Γ denotes the
typing context, which is a map from variables to their types. As an example, the typing rule for the
equal operator in figure 2.6 can be described as ”in context Γ, x has type Int, and y has type Int, then
x == y has type Bool”.

Γ ` x : Int Γ ` y : Int

Γ ` x == y : Bool

Figure 2.6: A typing rule for the expression x == y.

2.3.3 Interpreting

After type checking, the AST is evaluated by the interpreter. The interpreter executes the program;
for example, the execution includes printing out print statements, evaluating arithmetic expressions,
etc. Similar to the typing rules for typing, the operational semantics is a rule system for interpreters
[14]. A basic judgment has the form γ ` e ⇓ 〈v, γ′〉 which reads as ”in environment γ, the expression e
evaluates to value v and the new environment γ′” and can be used to build up more complex evaluation
rules. The environment γ is a map from variables to their corresponding values. The environment is
updated by adding a new binding from variable x to value v by writing γ(x := v). If the binding
already exists, the value is updated. The updated environment is denoted γ′. An evaluation rule
states that a judgment holds, potentially under some condition, expressed as other judgments. In the
example shown in 2.7, the judgment for an if then else statement holds under the condition of the two
judgments above the horizontal line.

γ ` x ⇓ 〈1, γ′〉 γ′ ` y ⇓ 〈v, γ′′〉
γ ` if x then y else z ⇓ 〈v, γ′′〉

Figure 2.7: An evaluation rule for an if then else statement. If the condition is
evaluated to true, the whole expression is evaluated to the value generated from
the ’then’ branch. The environment is possibly updated, indicated by the γ′′. The
’else’ branch is left unevaluated.
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2.4 The Language funQ

Modeled after the theoretical quantum lambda calculus QLambda, funQ is an implemented quantum
language defined with classical control, call-by-value operational semantics, and a linear type system.
This section covers the syntax, typing rules, and reduction rules of funQ.

2.4.1 Syntax

The syntax of funQ is defined with regards to a lambda term, which is named Term and from which
expressions and programs can be derived. The syntax is described by the production rules in figure
2.8.

Term M,N,P ::= x | (MN) | λx : σ .M | 〈M,N〉 | let 〈x, y〉 = M in N

| if P then M else N | 0 | 1 | new |meas | ∗ |M $ N | U

Gate U ::= H | X | Y | Z | I | S | T | CNOT | TOF | SWP | FRDK

| QFTn | QFTIn | CRn | CRIn | CCRn | CCRIn

Figure 2.8: The syntax of funQ. M , N and P are terms. U is any gate. To specialize
a gate, integer n is used.

The first production rule of Term is x, which is a string representing a variable. The second and third
rule – function application and lambda abstraction – has the same meaning as in the regular lambda
calculus described previously in section 2.2, except that the lambda is Church-style. The next rule
defines the tuple, or product term, containing two terms. The following term, let, is used to split
product terms into their individual components. The if term represents regular conditional branching.
Terms 0 and 1 represents bit values, while new and meas are two predefined functions. The function
new creates a new qubit while meas represents the measurement operation. The star (*) is the unit
term which is the only value of the unit type >. The unit term is similar to the null or none values
in other programming languages. The dollar ($) is the precedence operator that binds an application
with right-associativity and is equivalent to the $ operator in Haskell.

The syntactic category denoted by Gate U is the set of all available unitary gates. Some gates take
an argument n that changes the behavior of the gate. For instance, the gates CRn and CRIn take an
angle that specifies the rotation to be performed. The full names of each gate are given in appendix A.

This definition of terms is mainly equivalent to the one given by Selinger and Valiron [1]. The differences
are the predefined set of gates, the $-operator, and that Curry-style lambdas have been replaced with
Church-style lambdas.

2.4.2 Types

Linear type theory is based on the linear logic proposed by Girard [16] and restricts the use of a value.
Fundamentally, a value with a linear type must be used exactly once – no values can be duplicated, or
discarded [17]. Linear types are therefore especially well-suited for quantum programming languages
due to the no-cloning theorem of qubits.

The type system of funQ is an affine type system as defined by Selinger and Valiron in [1]. Affine types
can be seen as a version of linear types with the difference that discarding values is allowed, and an
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affine value can be used at most once. Throughout the rest of this thesis, the use of the word linear
will practically mean affine. The types of funQ are defined as in figure 2.9 below.

Type σ, τ ::= bit | qbit | !σ | σ ( τ | > | σ ⊗ τ.

Figure 2.9: The definition of types in funQ. The type of bit, qubit, and > are the
base types while σ and τ is any type.

The base types are bit, qbit, and the unit type >. The function type is represented by σ ( τ and the
product type by σ ⊗ τ , both right-associative. The n-fold product type σ ⊗ σ ⊗ ...⊗ σ is also denoted
σn, for example bit2 = bit ⊗ bit. Furthermore, a type σ is assumed to be non-duplicable, that is, a
linear type. Prepending a ! , to a type σ, denotes the duplicable type !σ. A type with n repeated !
can be denoted ! nσ or ! ! .. !σ. n ≥ 1 gives a duplicable type and n = 0 gives a linear type. Repeated
! in a type is in practice equivalent to a single ! , since in both cases the type is duplicable.

2.4.3 Typing Rules

The type system for funQ is defined by the typing rules. Before showing the typing rules, the subtype
relation and specific terminology for type environments need to be defined. The subtyping and typing
rules are based on the definitions in [1] but are presented in a slightly different way.

Subtypes are used in the type system to make linear types more flexible. For example, a lambda
expecting a linear bit should also be callable with a duplicable bit since the duplicable bit can be
downgraded to a linear bit. The rules for subtyping are shown in figure 2.10. In comparison with
QLambda, the additional rule (!⊗) is added, which is needed in the implementation.

σ <: σ
(ax)

σ <: τ

!σ <: τ
(D)

!σ <: τ

!σ <: ! τ
( ! )

σ1 <: τ1 σ2 <: τ2

σ1 ⊗ σ2 <: τ1 ⊗ τ2
(⊗)

!σ1 <: τ1 !σ2 <: τ2

! (σ1 ⊗ σ2) <: τ1 ⊗ τ2
(!⊗)

τ1 <: σ1 σ2 <: τ2

σ1 ( σ2 <: τ1 ( τ2
(()

Figure 2.10: The rules for subtyping in funQ. The relation σ <: τ reads as ”σ is a
subtype of τ” or ”τ is a supertype of σ”.

The typing rules make use of a typing environment that maps all free and bound variables to their
types, denoted by Γ. The domain of the typing environment is denoted |Γ|, that is, the name of all
variables x ∈ Γ. In addition, !Γ denotes the environment of all non-linear variables and ¡Γ denotes the
linear environment, such that !Γ ∪ ¡Γ = Γ. Finally, |U | denotes the input size of a unitary gate U . If
the gate U operates on two qubits, then |U | = 2. The typing rules are displayed in figure 2.11.

The typing rules labeled with ax cover the basic terms, the built-in functions, and the unitary gates.
One thing to note is that they are all given the most general type. For example, a 0 or 1 is typed as
! bit since it is possible to restrict it to a linear bit if required while the opposite violates the subtyping
rules. The term new is inferred to the type ! (bit ( qbit) by (axn), where the outer ! means that the
whole function can be reused. The type of a unitary gate is a function from n qubits to n qubits. The
type depends on the size of the gate, that is, how many qubits the gate operates on.

Typing a variable x follows the (var) rule. If a variable exists and has a type σ in the typing environ-
ment, the variable’s type could be any supertype of σ.
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Γ ` ∗ : !>
(ax∗)

Γ ` 0 : ! bit
(ax0)

Γ ` 1 : ! bit
(ax1)

Γ ` new : ! (bit ( qbit)
(axn)

Γ ` meas : ! (qbit ( ! bit)
(axm)

x : σ ∈ Γ σ <: τ

Γ ` x : τ
(var)

|U | = n

Γ ` U : ! (qbitn ( qbitn)
(axU )

x : σ,Γ `M : τ

Γ ` (λx : σ .M) : σ ( τ
(λ1)

If FV (M) ∩ |¡Γ| = ∅ Γ, x : σ `M : τ

Γ ` (λx : σ .M) : ! (σ ( τ)
(λ2)

! Γ, ¡Γ1 `M : σ ( τ ! Γ, ¡Γ2 ` N : σ

! Γ, ¡Γ1, ¡Γ2 `MN : τ
(app)

! Γ, ¡Γ1 ` P : bit ! Γ, ¡Γ2 `M : σ ! Γ, ¡Γ2 ` N : σ

! Γ, ¡Γ1, ¡Γ2,` if P then M else N : σ
(if)

! Γ, ¡Γ1 `M : ! nσ ! Γ, ¡Γ2 ` N : ! nτ

! Γ, ¡Γ1, ¡Γ2 ` 〈M,N〉 : ! n(σ ⊗ τ)
(⊗)

! Γ, ¡Γ1 `M : ! n(σ ⊗ τ) ! Γ, ¡Γ2, x : ! nσ, y : ! nτ ` N : ψ

! Γ, ¡Γ1, ¡Γ2 ` let 〈x, y〉 = M in N : ψ
(let)

Figure 2.11: The typing rules for funQ which are similar to the typing rules given
in [1].

There are two rules for lambda abstractions to capture different cases. The first case, (λ1), is the trivial
case where the function type is linear. In the other case, (λ2), the function type is duplicable, assuming
the body does not use any free variables that exist in the linear environment.

The (app) rule says that the argument must match the function parameter in an application. The final
type of an application is the type of the function body.

The (if) rule treats the linear environments a bit differently than the other rules. The then and
else terms have the same linear environment, resulting in that linear variables could be used in both
branches. However, linear variables cannot be used in both the condition and one of the then/else
terms. The type of the condition must be a bit, and the resulting type is a common type of the
branches.

The product rule (⊗) explains how ! is treated for product types. All common ! between its components
are moved outside the product.

Finally, the (let) rule implies that all ! outside a product is appended to its constituent components
when deriving the type of the N term.
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2.4.4 Additional Relations for Typing

Three additional functions need to be defined to implement the typing rules. Two functions serve the
goal of finding the least common supertype of two types. The third function checks how many times
a variable is used.

When inferring the type of an if expression, functions are used to find the least common supertype,
called supremum, and the greatest common subtype, called infimum. The then and else branches of an
if expression may have different types and still be typeable, as long as they have a common supertype.
Hence, their least common supertype is the inferred type of an if expression. Supremum is denoted by
∨ and infimum by ∧, and the definition is given in figure 2.12.

σ ∧ σ = σ σ ∨ σ = σ

!σ∧ ! τ = ! (σ ∧ τ) !σ∨ ! τ = ! (σ ∨ τ)

!σ ∧ τ = ! (σ ∧ τ) !σ ∨ τ = σ ∨ τ
σ∧ ! τ = ! (σ ∧ τ) σ∨ ! τ = σ ∨ τ

(σ1 ⊗ τ1) ∧ (σ2 ⊗ τ2) = (σ1 ∧ σ2)⊗ (τ1 ∧ τ2) (σ1 ⊗ τ1) ∨ (σ2 ⊗ τ2) = (σ1 ∨ σ2)⊗ (τ1 ∨ τ2)
! (σ1 ⊗ τ1) ∧ (σ2 ⊗ τ2) = ( !σ1 ∧ σ2)⊗ ( ! τ1 ∧ τ2) ! (σ1 ⊗ τ1) ∨ (σ2 ⊗ τ2) = ( !σ1 ∨ σ2)⊗ ( ! τ1 ∨ τ2)
(σ1 ⊗ τ1)∧ ! (σ2 ⊗ τ2) = (σ1∧ !σ2)⊗ (τ1∧ ! τ2) (σ1 ⊗ τ1)∨ ! (σ2 ⊗ τ2) = (σ1∨ !σ2)⊗ (τ1∨ ! τ2)

(σ1 ( τ1) ∧ (σ2 ( τ2) = (σ1 ∨ σ2) ( (τ1 ∧ τ2) (σ1 ( τ1) ∨ (σ2 ( τ2) = (σ1 ∧ σ2) ( (τ1 ∨ τ2)

Figure 2.12: The definition of ∧ and ∨ for any type σ and τ .

To ensure linearity, counting how many times a variable is used in a term is needed every time a new
variable is bound. For example, the lambda argument x cannot have a linear type if it is used more
than once in the body. Ωx(M) is the number of occurrences of the free variable x in a term M and is
defined in figure 2.13.

Ωx(x) = 1

Ωx(y) = 0

Ωx(λy.M) = Ωx(M) where y 6= x

Ωx(MN) = Ωx(M) + Ωx(N)

Ωx(if P then M else N) = Ωx(P ) + max(Ωx(M), Ωx(N))

Ωx(〈M, N〉) = Ωx(M) + Ωx(N)

Ωx(let 〈a, b〉 = M in N) = Ωx(M) + Ωx(N) where a 6= x and b 6= x

Figure 2.13: The definition of the function Ωx(M) which counts the number of
occurrences of the free variable x in the term M .
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2.4.5 Evaluation Rules

The evaluation of a funQ term is defined by the evaluation rules. The notation and evaluation rules
defined in this section are specific for funQ and thus original work. However, with funQ being modeled
after QLambda, inspiration has been taken from the probabilistic call-by-value operational semantics
defined in [1]. Before introducing the rules, the notation and overall structure of the evaluation is
explained.

Evaluation is performed by evaluating a funQ term t to a value term v. The set of value terms is
defined in figure 2.14.

V alue v, w ::= q | λx.M | 0 | 1 | meas | new | U | ∗ | 〈v, w〉

Figure 2.14: The value term in funQ. A value term may be a qubit, lambda ab-
straction, bit of value 0 or 1, new or measurement operation, unitary gate, unit, or
tuple of values.

A program state is continuously updated throughout the evaluation. The state consists of the quantum
state Q and the environment γ and is denoted Q, γ. The contents of γ are three maps:

• values of bound variables, x1 := v1, ..., xm := vm

• function terms, f1 := t1, ..., fn := tn

• values of evaluated function terms, f1 := v1, ..., fk := vk.

Assignment and existence checks in γ are made in the appropriate map depending on the letters used.
For instance, γ(f := v) assigns a value v to function f , and f := t ∈ γ checks function f and its
associated term t exists.

The other part of the state, Q, is the quantum state. It is a normalized vector, ⊗n−1
i=0 C2 for some n > 0,

that describes the physical state of all qubits. A single qubit is referred to as q, which is an integer
pointer that links to the qubit in Q.

The evaluation of a term is probabilistic, which means that given the environment Q, γ, a term t
evaluates to a particular value v with the probability p. This is described by the judgment Q, γ ` t ⇓p
〈v,Q, γ〉. If the probability p = 1, the evaluation always yields the same result.
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Q, γ ` bit 0 ⇓1 〈0, Q, γ〉
(b0)

Q, γ ` bit 1 ⇓1 〈1, Q, γ〉
(b1)

Q, γ ` unit ∗ ⇓1 〈∗, Q, γ〉
(unit)

Q, γ ` new 0 ⇓1 〈q,Q⊗ |0〉, γ〉
(new0)

Q, γ ` new 1 ⇓1 〈q,Q⊗ |1〉, γ〉
(new1)

α |Q0〉+ β |Q1〉 , γ ` meas q ⇓|α|2 〈0, |Q0〉 , γ〉
(meas0)

α |Q0〉+ β |Q1〉 , γ ` meas q ⇓|β|2 〈1, |Q1〉 , γ〉
(meas1)

f := t ∈ γ f := v /∈ γ Q, γ ` t ⇓p 〈v,Q′, γ〉
Q, γ ` f ⇓p 〈v,Q′, γ(f := v)〉

(f1)
f := t ∈ γ f := v ∈ γ
Q, γ ` f ⇓1 〈v,Q, γ〉

(f2)

Q, γ ` U 〈q1, ..., qn〉 ⇓1 〈〈q1, ..., qn〉, Q′, γ〉
(Un)

Q, γ ` t ⇓p1 〈v,Q′, γ′〉 Q′, γ′(x := v) `M ⇓p2 〈w,Q′′, γ′′〉
Q, γ ` (λx.M) t ⇓p1p2 〈w,Q′′, γ′′〉

(app)

Q, γ ` t1 ⇓p1 〈v1, Q′, γ′〉 Q′, γ′ ` t2 ⇓p2 〈v2, Q′′, γ′′〉
Q, γ ` 〈t1, t2〉 ⇓p1p2 〈〈v1, v2〉, Q′′, γ′′〉

(tup)

Q, γ ` t1 ⇓p1 〈〈v1, v2〉, Q′, γ′〉
Q′, γ′(x1 := v1, x2 := v2) ` t2 ⇓p2 〈v,Q′′, γ′′〉
Q, γ ` let 〈x1, x2〉 = t1 in t2 ⇓p1p2 〈v,Q′′, γ′′〉

(let)

Q, γ ` t ⇓p1 〈1, Q′, γ′〉 Q′, γ′ ` t1 ⇓p2 〈v,Q′′, γ′′〉
Q, γ ` if t then t1 else t2 ⇓p1p2 〈v,Q′′, γ′′〉

(if1)

Q, γ ` t ⇓p1 〈0, Q′, γ′〉 Q′, γ′ ` t2 ⇓p2 〈v,Q′′, γ′′〉
γ ` if t then t1 else t2 ⇓p1p2 〈v,Q′′, γ′′〉

(if0)

Figure 2.15: The evaluation rules for funQ.
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The evaluation rules (b0) and (b1) in figure 2.15 show that a bit term evaluates to the corresponding
value term. The evaluation is deterministic; that is, bit 0 will always evaluate to 0, and bit 1 to 1,
leaving the state unchanged. Similarly, a unit term evaluates to the corresponding value term as shown
in rule (unit).

The evaluation of the new operation is deterministic and represented in rules (new0) and (new1).
Evaluation of new 0 yields an updated quantum state Q by appending a qubit |0〉 to it and a pointer
q to the qubit.

The measurement operation gives rise to the probabilistic elements in the evaluation scheme. The
measurement of a qubit evaluates to 0 with a probability of |α|2 and 1 with a probability of |β|2 ,
which is represented in the rules (meas0) and (meas1), respectively. Upon measurement, the qubit
collapses, which alters its amplitudes, and therefore the quantum state Q changes. Here, the quantum
state Q is represented as α|Q0〉 + β|Q1〉. |Q0〉 is the state with q collapsed to 0, and |Q1〉, the state
with q, collapsed to 1.

Evaluation of a function has two possible outcomes depending on whether the function has been
evaluated before or not. If there is no value term associated with f in the environment γ, as in rule
(f1), the term associated with the function is evaluated, and the resulting value term is returned. The
value is then added to γ; thus, reevaluating the function will follow the rule (f2), retrieving the value
from the environment instead of evaluating the function term. The rules (f1) and (f2) ensure that linear
functions are not incorrectly evaluated more than once. If the function term instead was evaluated
every time, linear functions could be incorrectly be called more than once through a non-linear one.

The rule (Un) shows the evaluation of gate application on n qubits with n ≥ 1. The evaluation is
deterministic and affects Q since a gate application entails a unitary transformation of the quantum
state. The state change of Q depends on the applied gate and is not described by the evaluation rules.

The application rule (app) shows the call-by-value semantics since the argument is first evaluated to v,
and then through β-reduction, the v is assigned to the variable x in γ. The updated state, γ′ and Q′,
are passed to evaluate M , which produces the final value w with updated states.

Tuples (tup) are evaluated left to right with the updated state passed on from t1 to t2. For (let), the
term t2 evaluates to v in an environment where the values v1 and v2 are assigned to x1 and x2 in γ’.

An if statement is evaluated under one of the two rules (if1) and (if0). The former applies when t
evaluates to 1, meaning that the if statement returns the value term obtained from evaluating t1. The
latter rule applies when t evaluates to 0, returning the value obtained from t2.

15



3

Method

This chapter describes the overarching design choices that were made to realize funQ. The primary
design choice was to create a stand-alone language with specified syntax, type checker, and inter-
preter with a separate library for quantum computation and simulation. The implementation of the
components needed for a stand-alone language is explained in detail in chapter 4.

3.1 To Implement a Domain-Specific Language

Since funQ is a language for the quantum computation domain, it is considered a domain-specific
language (DSL). As described by Fowler in [18], DSLs are built upon a general-purpose host language
and come in two forms: external and internal. An external DSL is a language with a syntax that is
parsed independently of the host language. An internal DSL is, on the other hand, represented within
the syntax of the host language and is, as Fowler explains, ”a stylized use of that [the host] language
for a domain-specific purpose” [18].

The two approaches differ primarily in difficulty for a user to learn the language and the design freedom.
Since an internal DSL is represented within the syntax of the host language, a user familiar with the host
language should, in general, find an internal DSL more approachable than an external [18]. Imitating
the syntactic conventions of a common programming language, such as the host language, can make
the DSL more accessible for users of the host language. The effort of building a DSL is, according to
Fowler, similar for external and internal once familiar with techniques for doing so. External DSLs
offer greater syntactic freedom than internal and also allows, for example, the evaluation strategy to
be manually configured.

An external DSL was chosen for funQ since it allowed the language to resemble QLambda more closely
than an internal DSL would. It allowed defining a custom syntax and building a type checker and
interpreter to follow the type and reduction rules of QLambda. For instance, linearity can be enforced
in the type checker, and call-by-value can be adopted in the interpreter. These benefits made the option
clear-cut to opt for an external DSL. An internal DSL would not allow for these custom behaviors due
to the limitations imposed by the host language.

A tool named BNFC (BNF Converter) [19] was used to generate a lexer, parser, and an AST from
a labeled BNF grammar (LBNF). This saved development time, and all effort could be put into the
grammar that defines funQ. This tool also provided other utilities such as pretty-printing.

3.2 Host Language

Haskell was chosen as a host language for the external DSL. A functional language was self-evident
since a functional quantum programming language was the intended goal of the project. Other than
being functional, there are several reasons why Haskell was selected: other quantum programming
languages studied were also implemented in Haskell (see section 1.2); Haskell is compatible with the
BNFC tool; and finally, the authors’ interest and knowledge about Haskell.
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3.3 Testing

Tests were written continuously during the implementation and consists of small functional tests, unit
tests, and property-based tests. The library and type checker were tested in isolation, while the
functional tests used for the interpreter tested the whole chain from parsing to evaluation. Testing
the code was done in parallel with the implementation, continuously ensuring that the codebase was
working.

The quantum library was tested for correct norms in vector states and unitarity in gates. Property-
based testing was utilized to ensure gate operations on qubits behaved correctly.

The type checker was tested with functional tests. The main focus was ensuring that linearity holds.
Top- and term-level linearity were tested separately as they work on separate mechanisms. The tests
use both well- and ill-typed programs to test that the type checker inferred the correct types and threw
the expected type errors. Additionally, mathematical properties of the subtyping relation, supremum,
and infimum operators were ensured through property tests.

The interpreter mainly used functional tests as well. A test suite of funQ programs was developed to
catch erroneous programs and check expected results. Since the interpreter tests used the entire chain,
this served as testing for all parts of the program.

Finally, the whole system was tested by implementing quantum algorithms and manually inspecting
the outcome.
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4

Implementation of funQ

This chapter describes the implementation of funQ in Haskell with concrete code examples along
with explanations and design justifications. First, the syntax of funQ is discussed: how it is parsed,
analyzed, type-checked and interpreted. Then the quantum library used to perform and simulate
quantum computations is described. Figure 4.1 gives an overview of the implementation.

Figure 4.1: A high-level diagram of the implementation of funQ. The input is
a source code string written in funQ. The output is the resulting value from the
interpreter. AST refers to the abstract syntax tree created by the parser, and IAST
refers to the intermediate abstract syntax tree.

4.1 Syntax and Grammar

The syntax of funQ is similar to Haskell’s and exemplified with the function in figure 4.2. Like Haskell,
there is a function signature above the function definition. The function definition is given by a name,
arguments, and followed by the body of the function. Other common constructs include let expressions
and tuples.

qmap : (QBit -o QBit) -o (QBit >< QBit) -o (QBit >< QBit)

qmap f a = let (x,y) = a in (f x, y)

Figure 4.2: The source code of a function in funQ.

The syntax of funQ is described by a formal grammar written in LBNF and is used to create a parser.
A language specification based on the grammar is given in appendix B. The LBNF grammar does not
capture the exact syntax of funQ, and is intentionally made less strict. As a consequence, some terms
with invalid funQ syntax are parsed successfully to enable more careful error handling. The additional
restrictions needed are instead enforced in the semantic analysis, described in section 4.2.

A program in funQ is defined as a list of functions. Functions consist of a declaration with a name
and a type signature, followed by a definition of the actual function (see figure 4.3). Therefore, all
functions in funQ must be given a static type, which is helpful when type checking a program. This
style is similar to how functions are declared in Haskell.

18



PDef. Program ::= [FunDec];

FDecl. FunDec ::= Var ":" Type Function;

FDef. Function ::= Var [Arg] "=" Term;

FArg. Arg ::= Var ;

Figure 4.3: The grammar for programs and function declarations in LBNF.

The label (the word before the dot) in the grammar becomes a constructor of the datatype and
constitutes a part of the AST. For instance, the rule PDef in the grammar is translated to the abstract
syntax data type data Program = PDef [FunDec] where PDef is the data constructor for a Program.

The definition of Term is shown in figure 4.4, and is semantically equivalent to the definition of terms
given previously in section 2.4.1 in the theory chapter.

TVar . Term3 ::= Var ;

TBit . Term3 ::= Integer ;

TGate . Term3 ::= Gate ;

TTup . Term3 ::= "(" Term "," [Term] ")" ;

TUnit . Term3 ::= "*" ;

TApp . Term2 ::= Term2 Term3 ;

TIfEl . Term1 ::= "if" Term "then" Term "else" Term ;

TLet . Term1 ::= "let" "(" Var "," [Var] ")" "=" Term "in" Term ;

TLamb . Term1 ::= Lambda Var ":" Type "." Term ;

TDolr . Term1 ::= Term2 "$" Term1 ;

Figure 4.4: The grammar for terms. The suffix of Term determines its precedence
when parsing. The second element of TTup is a list of terms to allow for tuples of
any size. This is similarly done for the let binding.

All capital tokens are parsed as gates, where the ones not matching a concrete rule are parsed as a
GateIdent with the GGate rule (see figure 4.5).

GH . Gate ::= "H" ;

GX . Gate ::= "X" ;

...

GCNOT . Gate ::= "CNOT" ;

GGate . Gate ::= GateIdent ;

Figure 4.5: An excerpt of the grammar for gates. The GGate rule parses all capital
tokens as gates if it does not match another production rule.

The grammar for the types in funQ is shown in figure 4.6. The first three types corresponds to the
constant types bit, qbit, and >. TypeDup is the abstract syntax for ! and TypeTens is the constructor
for the product type where ”><” is the syntax for the tensor product ⊗. Finally, TypeFunc is the
abstract syntax for function types, where ”-o” is the syntax for the function arrow (. Note that ⊗
and ( are right-associative.
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TypeBit . Type2 ::= "Bit" ;

TypeQbit . Type2 ::= "QBit" ;

TypeUnit . Type2 ::= "T" ;

TypeDup . Type2 ::= "!" Type2 ;

TypeTens . Type1 ::= Type2 "><" Type1 ;

TypeFunc . Type1 ::= Type2 "-o" Type1 ;

Figure 4.6: The grammar for types.

4.2 Semantic Analysis

The AST generated by the parser is further analyzed for correctness in the semantic analysis. The
semantic analysis checks that:

• function names are unique

• no duplicate function declaration exists

• function signatures and definitions have matching names

• the number of function arguments do not exceed the arguments in the signature

• integers can only be zero or one

• custom gates parsed as GGate are supported.

To show how semantic errors are handled, the checks of too many function arguments and supported
gates serve as good examples. Starting with the former, only function definitions with equally many
or fewer arguments than the signature are semantically correct. Fewer arguments are valid due to
η-reduction. Consider figure 4.7, where the function takes an argument where none are expected. The
error message describes the type of error and that the expected number of arguments is zero.

one : Bit

one a = 1

*** Exception, semantic error:

TooManyArguments: function one has 1 argument but it expects 0

Figure 4.7: The function one takes the argument a, but its function signature takes
no arguments, which produces the semantic error TooManyArguments.

Regarding the gates, the semantic analysis verifies that gates parsed as GGate are supported by the
language. If, for instance, a user tries to use an unsupported gate, ZZ, then the semantic error shown
in figure 4.8 is produced.

λ: ZZ (new 0) (new 0)

*** Exception, semantic error:

UnknownGate: Gate not recognized: ZZ

Figure 4.8: An application of the gate ’ZZ’ which is not supported by funQ, and
therefore produces the semantic error UnknownGate.

The purpose of the semantic analysis is twofold: to discover erroneous programs that would cause type
checking or evaluation to fail and provide the user with informative error messages.
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Having a semantic analyzer enables more informative error messages than parse errors, which is shown
by comparing figures 4.8 and 4.9. Both figures show the same program. However, the semantic error
in figure 4.8 gives more information about why the error occurred in contrast to the error in 4.9 that
only points out where the error occurred.

λ: ZZ (new 0) (new 0)

*** Exception, syntax error:

syntax error at line 1, column 17 before `ZZ'

Figure 4.9: An application of the unsupported gate ZZ and the error that the
parser would produce if not the more allowing grammar and semantic analysis was
implemented.

Another benefit of this approach of having an allowing parser followed by a semantic analysis is that
generic gates can be used. For instance, the controlled phase shift gate (CR) performs a phase shift
with θ radians. This gate can generically be used by writing CR followed by an integer to represent the
phase shift. Moreover, by appending an I to it, by writing CRI, the inverse operation can be performed.
Generic gates are handled in the conversion to the intermediate AST, covered in the next section.

4.3 Conversion to an Intermediate Abstract Syntax

An intermediate step was introduced before the type checker and interpreter to simplify those parts.
This step converts the BNFC-generated AST to an intermediate abstract syntax tree (IAST). The
conversion includes: converting all functions into lambda abstractions, converting AST terms into
IAST terms, and introducing De Bruijn indices for bound variables.

First, function terms are converted into lambda terms by replacing expressions of the form fx1x2...xn =
term into λx1 : τ1 .λx2 : τ2 ....λxn : τn .term. The type of each lambda is taken from the type signature.
For example, in figure 4.10, the type of the argument x of the function not is found to be a bit by
mapping the first argument x to the first type in the function signature. The outer ! is ignored as it
is irrelevant for the function’s argument types.

not : !(Bit -o !Bit)

not x = if x then 0 else 1

Figure 4.10: A function not, for which the type of the argument x can be derived
to Bit from the type signature.

The next step is to convert all AST terms into IAST terms. The intermediate abstract syntax for terms
is shown in figure 4.11.

data Term = Idx Integer | Fun String | Bit Bit | Gate Gate

| Tup Term Term | App Term Term | IfEl Term Term Term

| Let Term Term | Abs Type Term | New | Meas | Unit

Figure 4.11: The terms in the IAST. Var from the generated AST is replaced by
Meas, New, Idx, or Fun. The reduced number of parameters simplifies the structure
of Tup, Abs, and Let.

The definition of Types from the generated AST is changed solely in notation. The type constructor for
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product types, TypeTens, is replaced with the infix constructor :><, and the function type constructor,
TypeFunc, is similarly replaced by :=>.

The conversion to IAST terms is done recursively in the function
makeImTerm :: Env -> P.Term -> Term. Env, short for environment, is a map from variable names
to integers representing indices, used to keep track of the variables’ De Bruijn indices during the
conversion. This function makes the following conversions:

• The terms Bit, App, IfEl, and Unit are converted to their corresponding IAST terms.

• Custom gates are pattern matched and converted into terms.

• Tuple Term [Term] is converted into Tup Term Term, where the second term is converted into
another tuple if the list of terms from the AST includes more than one term.

• Var String terms where the variable name matches ”new”, ”meas” or ”measure” are converted
into the terms New and Meas respectively.

• For other Var terms, the variable name is looked up in the environment. If found, it is a bound
variable and converted to Idx i where i is the De Bruijn index found in the environment. Oth-
erwise, it is a free variable which, in practice, is a function call. Therefore, it is converted to the
term Fun String, which is the data type for function calls in the IAST.

• TDolr Term Term is converted into App Term Term.

• TLamb Lambda FunVar Type Term is converted to Abs Type Term. Lambda (”\”) is simply re-
moved. Type is converted to the corresponding IAST type. The lambda binds a variable that is
added to the environment with 0 as the De Bruijn index. All other indices in the environment are
incremented by one since they are now at one higher abstraction level. Finally, the body term is
converted through a recursive call of makeImTerm.

• The cumbersome let term from the AST TLet LetVar [LetVar] Term Term is simplified to
Let Term Term. A regular let expression written on the form ”let (a,b) = X in M” has two
bound variables, a and b, that are converted to De Bruijn indices 0 and 1 respectively and added
to the environment. All other indices are incremented by two. If the list of variables contains
more than one element, the let expression binds more than two variables, e.g., ”let (a, b, c) = X
in M”. Since let terms only contain two terms, the second term becomes a nested let term.

The data type representing a funQ program is also converted to the IAST representation. A program in
the AST is a list of function declarations (FunDec) that contains both the type signature and function
definition. A comparison of a program in the AST and IAST is shown in figure 4.12 where a program
is simplified to be a list of more easily used IAST functions.

data Program = PDef [FunDec]

data FunDec = FDecl FunVar Type Function

data Function = FDef Var [Arg] Term

type Program = [Function]

data Function = Func String Type Term

Figure 4.12: The program definition in the AST (left) and in the IAST (right). A
program given in the IAST version is simplified — the function type is included in
the function instead of the function signature, the arguments are given in the term
as De Bruijn indices, and the name duplication is removed (FunVar and Var).

The IAST is generally structured more conveniently than the generated AST, for example, by having
right nested tuples instead of a term and a list of terms. Also, unnecessary syntax information needed
in the parser is removed, such as the ”\” in the lambda term. Functions are converted to lambda
abstractions so that the lambda calculus can be used, which the typing rules and evaluation rules are
based upon. The introduction of De Bruijn indices allows removing the lambda variable name, this
avoiding name collisions. The conversion also enabled the simplified way of representing a program as
a list of functions.
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4.4 Type Checking

The type checker implements the typing rules from figure 2.11 explained in the theory section. It uses
a linear type system that allows subtyping. The type checker algorithm works by inferring types of all
program terms and check those against the type given in the function signature.

4.4.1 The Check Monad

All type checking occurs in the so-called Check monad, an except monad transformer consisting of a
reader monad, state monad, and an except monad. The Check monad is defined as
type Check = ExceptT TypeError (ReaderT TopEnv (State LinEnv)). The except monad is used
to throw exceptions when a type error is found (the complete list of type errors is found in appendix
C). The internal reader monad contains a map of top-level functions and their types. Finally, the state
monad contains a set of top-level linear functions that has been used thus far in the type checking
process, referred to as the linear environment.

4.4.2 Type Checking Algorithm

The type checking algorithm is implemented as follows:

• Create the top-level typing context.

• Infer the type of each top-level function recursively.

• Check that the inferred type of a function is a subtype of the signature type.

Type checking a program is done by inferring the type of each function following the typing rules
in section 2.4.3 (hereafter denoted by their names). The type of each function is inferred by re-
cursively inferring the type of the function term. The function with the following type signature
inferTerm :: [Type] -> Term -> Check Type is used to infer the type of a term given a typing
context (a list of types). The typing context is used to keep track of the types of all variables that are
bound by either lambda or let terms. The function operates within the Check monad to throw a type
error if found and have access to the global environments. Each term is inferred somewhat differently,
and the different cases in inferTerm are explained below and mapped to their corresponding typing
rules.

Base terms are mapped to their corresponding base types, shown in figure 4.13, following the typ-
ing rules prefixed with ax in figure 2.11. Gate types are handled in a special way since they de-
pend on the size of a gate. For instance, a gate operating on two qubits will return the type
! ((qbit⊗ qbit) ( qbit⊗ qbit).

inferTerm _ Unit = return $ TypeDup TypeUnit

inferTerm _ (Bit _) = return $ TypeDup TypeBit

inferTerm _ New = return $ TypeDup (TypeBit :=> TypeQBit)

inferTerm _ Meas = return $ TypeDup (TypeQBit :=> TypeDup TypeBit)

inferTerm _ (Gate g) = return $ inferGate g

Figure 4.13: Type inference for base cases for which the typing context is not
needed. Inferring gate types are separated into a function inferGate that takes the
size of the gate into account.

The type of bound variables is looked up in the typing context, corresponding to the type rule (var).
For example, the variable with De Bruijn index 0 has the type most recently added to the context;
hence the inferred type is the type on index 0 in the context (see figure 4.14).
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inferTerm ctx (Idx i) = return $ ctx !! fromIntegral i

Figure 4.14: Type inference of bound variables. The type is found by its index in
the typing context.

The type of a free variable, which is a function call in practice, is looked up in the top-level typing
context. Function calls also correspond to typing rule (var). If the function has a linear type, it is
added to the linear environment. If the function is already in the set, a linearity error is thrown (see
figure 4.15).

inferTerm _ (Fun fun) = do

top <- ask

lin <- gets linenv

case M.lookup fun top of

Nothing -> throwError $ NotInScope fun

Just t | isLinear t -> if S.member fun lin

then throwError $ NotLinearTop fun

else modify (\s -> s {linenv = S.insert fun lin})

>> return t

| otherwise -> return t

Figure 4.15: Type inference of a function call. The function name is looked up in
the top environment, and the type is checked for linearity. If the function is not
found or if it is a linear function that has already been used, a type error is thrown.
Otherwise, the type is returned.

When inferring the type of an if term, the condition term and the two branches must be considered
(see figure 4.16). The condition is checked to be a subtype of bit. The type of the then and else
branches is then inferred in parallel by the function parallelCheck to allow free linear variables to be
used in both branches since only one of the two will be evaluated. The type of the whole term is the
least common supertype between the types of the then and else branches, found with the supremum
function (∨). This corresponds with the typing rule (if).

inferTerm ctx (IfEl c t f) = do

tc <- inferTerm ctx c

(tt, tf) <- parallelCheck (inferTerm ctx t) (inferTerm ctx f)

if tc <: TypeBit

then supremum tt tf

else throwError $ Mismatch TypeBit t

Figure 4.16: Type inference of an if term. The parallellCheck assures that a linear
top-level function can be used in both the then and the else branch. A type error
is thrown if the condition is not a subtype (¡:) of bit.

The case for lambda terms is shown in figure 4.17. If the lambda argument has a linear type, it is
checked to be used at most once in the body using the function checkLinear. If the argument is linear
and used more than once, Ωx > 1, an error is thrown. If the body does not use any free linear variables,
boundLin and freeLin are false, and the function type is made duplicable according to the (λ2) rule.
Otherwise, the function is given a linear type by (λ1).
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inferTerm ctx (Abs t e) = do

top <- ask

checkLinear e t

et <- inferTerm (t:ctx) e

let boundLin = any (isLinear . (ctx !!) . fromIntegral) (freeVars (Abs t e))

freeLin = any isLinear $ mapMaybe (`M.lookup` top) (names e)

if boundLin || freeLin

then return (t :=> et)

else return $ TypeDup (t :=> et)

Figure 4.17: Type inference of a lambda term. The type of the argument is added
to the type context when inferring the body.

Inferring let terms is one of the more complex cases. For a let expression let (a,b) = x in M, x
corresponds with the eq term and M corresponds with the inn term in figure 4.18. The type of eq is
inferred first, and is expected to be a product type. All prepended ! outside the product type is moved
inside to the component types of the product type, according to the (let) rule. Similarly to lambdas,
the linear components are checked to be used at most once. The resulting type is the type of the inn
term.

inferTerm ctx (Let eq inn) = do

teq <- inferTerm ctx eq

let nBangs = numBangs teq

case debangg teq of

(a1 :>< a2) -> do

let a1t = addBangs nBangs a1

a2t = addBangs nBangs a2

checkLinear inn a2t

checkLinear (Abs a2t inn) a1t

inferTerm (a2t : a1t : ctx) inn

_ -> throwError $ NotProduct teq

Figure 4.18: Type inference of a let term. All bangs are moved into the product
components. The product types a2t and a1t are added to the context when inferring
the inn term. The term inn is nested in another lambda when checking that the
second variable is linear, so it counts usages of the correct variable.

The application case is shown in figure 4.19. The function term is checked to be a function type, and
the argument is checked to be a subtype of the function’s argument type. The result is the function’s
return type which follows from the (app) rule.

inferTerm ctx (App f arg) = do

tf <- inferTerm ctx f

argT <- inferTerm ctx arg

case debangg tf of

(fArg :=> fRet) | argT <: fArg -> return fRet

| otherwise -> throwError $ Mismatch fArg argT

_ -> throwError $ NotFunction tf

Figure 4.19: Type inference of function application. Any ! is removed before
pattern matching a function.
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The last case, type inference of tuples, can be seen in figure 4.20. The inferred type is the product
type of the inferred type of the left and right term, respectively, where any common ! is factored out,
as stated by the (⊗) rule.

inferTerm ctx (Tup l r) = do

lt <- inferTerm ctx l

rt <- inferTerm ctx r

return $ shiftBang (lt :>< rt)

Figure 4.20: Type inference of tuples. If both lt and rt are duplicable, the tuple
will be made duplicable by shiftBang.

4.5 Interpreting

Evaluation of a funQ program entails both classical and quantum operations. The interpreter primar-
ily handles the classical control, implements the call-by-value semantics, and holds the environment.
The interpreter delegates all quantum responsibilities to the quantum library. The library handles
the quantum state and the operations that modify it and is described in section 4.6. The interplay
between the interpreter and the quantum library is similar to the QRAM model with its classical com-
puter connected to a quantum device. The interpreter and the quantum library together implement
the evaluation rules for funQ, described in section 2.4.5. Recall the program state consisting of the
environment γ and the quantum state Q. The interpreter handles γ and any updates of it; the quantum
library does the same for Q.

The entry point for evaluation of any funQ program is the main function, which can call other methods
defined in the program. The interpreter takes a funQ program as input and, after having reduced the
main term into a value term, returns that value.

4.5.1 The Eval Monad

Interpreting is done within the Eval monad, defined as type Eval = StateT FunctionValues QM. To
allow connection to the quantum library, Eval contains the quantum monad QM, which is defined in the
quantum library and contains the quantum state. The quantum state in QM corresponds with quantum
state Q in the evaluation rules in section 2.4.5. Eval also contains a map called FunctionValues,
which is the values of evaluated function terms. This map constitutes one of the three parts of the
environment γ from section 2.4.5.

4.5.2 Environment

The environment contains the bound variables and function terms (see figure 4.21). The bound variables
are stored as a list, where the list indices map to the respective De Bruijn index that was introduced
in the IAST. This environment together with the FunctionValues constitutes the entire environment
of γ.

data Env = Env

{ values :: [Value]

, functions :: Map String Term

}

Figure 4.21: Definition of the environment. The environment holds a list of values
of bound De Bruijn variables and a map from function names to terms.
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4.5.3 Evaluation Algorithm

The evaluation algorithm is implemented by first adding all functions to the environment and then
evaluating the main function term using the function eval :: Env -> Term -> Eval Value. The
function takes an environment and a term as argument, the term is evaluated to a value and then
returned wrapped in the Eval monad. Case analysis is performed on the term since each term is
evaluated differently and the different cases are explained below. Since the interpreter implements the
call-by-value strategy, arguments are always evaluated through recursive calls of eval before the body
is evaluated. Evaluation of a term proceeds until a value term is returned.

The simplest cases of evaluation are shown in figure 4.22, where base terms evaluate to their corre-
sponding value terms. The first three cases correspond to evaluation rules (b0), (b1) and (unit). The
purpose of evaluation of unapplied new, measurement, and gate terms is to support η-reduction. The
term e in Abs may contain variables bound by previous lambda abstractions. The values from the en-
vironment are included in the value term VAbs to preserve the equality between the index of a value in
values and a De Bruijn index in e. Tuples are evaluated by first evaluating the two terms individually,
then wrapping the results in the value term VTup which corresponds to the evaluation rule (tup).

eval env (Bit BZero) = return $ VBit 0

eval env (Bit BOne) = return $ VBit 1

eval env (Unit) = return VUnit

eval env (Gate g) = return $ VGate g

eval env (New) = return VNew

eval env (Meas) = return VMeas

eval env (Abs t e) = return $ VAbs(values env) t e

eval env (Tup t1 t2) = do

v1 <- eval env t1

v2 <- eval env t2

return $ VTup v1 v2

Figure 4.22: Evaluation of the trivial cases. Terms are mapped to their correspond-
ing value term.

The evaluation for App, that is, the application of one term (t1) to another (t2) can be seen in figure
4.23. Depending on the kind of t1, the evaluation is performed differently. Therefore, it begins with a
case expression with cases for New, Meas, Gate, while any other term falls through to the last wildcard
case. The first two cases are evaluated similarly by first evaluating t2, obtaining a value term, and then
calling the appropriate quantum library function with that value term. The Gate case includes a case
expression with pattern matching on all defined gates. Due to limited space, figure 4.23 only shows
two cases, but all the gates that the language provides are evaluated similarly. The runGate function
handles application of a given gate to a single qubit and returns a VQBit wrapped in the Eval monad.
The interpreter includes similar functions for applying gates that operate on more than one qubit.

In the last case of evaluating App, both constituent terms are evaluated before pattern matching on
the value term of the first term. If v1 is a VAbs (a lambda value term), then the value term v2 and
the values from the VAbs term are added to the list of values in the environment. Adding the values in
front of the list gives them indices equal to their De Bruijn indices in the body, which will be evaluated
in the updated environment under the evaluation rule (app). The value terms VNew, VMeas and VGate

are evaluated similarly by adding v2 to the values in the environment, which gives v2 index 0 in the
list. With the updated environment, the evaluation proceeds with an application of the corresponding
term to Idx 0.
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eval env (App t1 t2) = case t1 of

New -> do

VBit b' <- eval env t2

lift $ VQBit <$> new b'

Meas -> do

VQBit q' <- eval env t2

lift $ VBit <$> measure q'

Gate g -> case g of

GH -> runGate hadamard t2 env

GX -> runGate pauliX t2 env

...

_ -> do

v2 <- eval env t2

v1 <- eval env t1

case v1 of

VAbs vs _ a -> eval env{ values = v2 : vs ++ values env } a

VNew -> eval env{ values = v2 : values env }

(App New (Idx 0))

VMeas -> eval env{ values = v2 : values env }

(App Meas (Idx 0))

(VGate g) -> eval env{ values = v2 : values env }

(App (Gate g) (Idx 0))

Figure 4.23: Evaluation of the application term. New, Meas, and Gate must be
handled separately and are cased out.

Evaluation of Idx is the β-reduction of lambda terms, where a De Bruijn index is substituted with the
corresponding value. As shown in figure 4.24, an index j evaluates to the value at index j in the list of
values in the environment.

eval env (Idx j) = return $ values env !! fromIntegral j

Figure 4.24: The evaluation of an index term, which is the β-reduction of lambda
terms.

Figure 4.25 shows that the evaluation of Fun, a function, depends on whether the function has been
called before or not. The first time a function is called, the Nothing case is executed and its corre-
sponding term is evaluated. The resulting value term is stored in FunctionValues and returned in
accordance with evaluation rule (f1). When evaluating a function that has been evaluated before, the
lookup is successful and the saved value term is returned, thus not re-evaluating the function term.
This corresponds to the rule (f2).
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eval env (Fun s) = do

let (Just t) = getTerm env s

fs <- get

case M.lookup s fs of

(Just v) -> return v

Nothing -> do

v <- eval env t

modify (M.insert s v)

return v

Figure 4.25: Evaluation of a function call. If the function is already evaluated, the
value is returned. Otherwise, the function term is evaluated and the environment
updated.

Evaluation of a let term is done in two steps and corresponds to evaluation rule (let). The tuple eq is
evaluated first and the resulting values are added to the list of values in the environment. Adding the
newly evaluated value terms in front of the list gives them indices equivalent to their De Bruijn indices
in the term inn. Then, the inn term is evaluated with the updated environment.

eval env (Let eq inn) = do

VTup v1 v2 <- eval env eq

eval env{ values = v2 : v1 :values env } inn

Figure 4.26: Evaluation of a let term. The value of the eq term is first evaluated
as a tuple and then added to the environment before evaluating the inn term.

If terms are evaluated by first evaluating the term t and then, based on the resulting bit value, evaluating
either t1 or t2. The evaluation corresponds to evaluation rules (if0) and (if1).

eval env (IfEl t t1 t2) = do

VBit b <- eval env t

eval env $ if b == 1 then t1 else t2

Figure 4.27: Evaluation of an if term. Depending on the value of b, either t1 or t2
is evaluated.
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4.6 Library for Quantum Computations

The library for quantum computations holds the quantum state and performs all quantum operations
which operate on that state. Thus, the library implements the evaluation rules for new, measurement,
and gate application, defined in section 2.4.5, and gives rise to the probabilistic element of the rules.
Documentation of the library can be found on the documentation page1.

4.6.1 The Quantum State

The quantum state is implemented as a complex vector, QState, that corresponds to Q in the evaluation
rules. It is accessed through the QM monad, in which all computations of the quantum library are
performed. See figure 4.28 for the definition of QM and QState. The IO monad is included in QM to
allow pseudo random number generation for the probabilistic measurement operation.

newtype QState = QState { state :: Vector C }

newtype QM a = QM { runQM :: QState -> IO (a, QState) }

Figure 4.28: The quantum state QState and the quantum monad (QM), which all
quantum operations are done within.

4.6.2 Qubits and Gates

Qubits are implemented by the QBit type that is a unique integer pointing to a qubit in the QState,
which is defined as newtype QBit = Ptr { link :: Int }. The QBit pointer allows access to single
qubits, which is needed to enable the application of gates and measurement of specific qubits.

The library includes functions for all gates, U, defined in the syntax for funQ in section 2.4.1. The
gate operations follows the (Un) rule in section 2.4.5 in the theory chapter. The rule is obeyed by
performing a deterministic operation that returns the same amount of qubits as its input.

The gates are represented by matrices and used as functions. All gate functions have in common that
they take one or more qubits as input, apply its gate transformation, and then return the updated
quantum state along with the input qubits. The gate matrix is deterministically applied through vector
multiplication to the specific qubit(s) it should act upon.

For example, consider the function hadamard representing the Hadamard gate in figure 4.29. The input
qubit is passed to the runGate function, which applies the Hadamard matrix to this specific qubit in
Q. This is done by combining identity matrices for all other qubits in the state that the gate should
not operate on and putting the Hadamard matrix in the correct position to exclusively apply the gate
to the desired qubit. In other words, the Hadamard gate is only applied to the input qubit and leaves
all other qubits unchanged. The other gates are implemented similarly.

hadamard :: QBit -> QM QBit

hadamard = runGate hmat

hmat :: Matrix C

hmat = scale (sqrt 0.5) $ (2 >< 2)

[ 1 , 1

, 1 , -1 ]

Figure 4.29: The library function hadamard. It uses the runGate helper function
that takes a qubit as input to apply the gate to a specific qubit. The function hmat
is the matrix representation of the Hadamard gate.

1Documentation of the library for quantum computation: https://qfunc.nicbot.

xyz/qfunc-0.1.0.0/FunQ.html
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4.6.3 New and Measure

The creation and measurement of qubits are implemented as two separate functions. The creation of
qubits is done with function new (see figure 4.30), which is involved in realizing the rules (new0) and
(new1). The function new maps a classical bit to a qubit and updates the quantum state. It works by
creating the bit’s corresponding |0〉 or |1〉 qubit vector and adding it to Q. The qubit is added to the
quantum state Q by taking the tensor product of Q and the new qubit vector, which produces a new
and extended state vector. The size of the state vector that represents the quantum state is doubled
each time new is invoked. Finally, it returns a pointer to the newly added qubit.

new :: Bit -> QM QBit

new x = do

(_,size) <- getState

modify $ appendState (newVector x)

return $ Ptr size

Figure 4.30: The library function new, which adds a qubit to the quantum state
and returns a pointer to that qubit.

The dual function, measure, is involved in realizing the rules (meas0) and (meas1). It collapses a qubit
to a bit, and can be seen in figure 4.31. The measure function works by first calculating the probability
of the qubit measuring to a 1, then using a pseudo random number generator to simulate whether it
collapses to 1 or 0, and finally updating the quantum state according to the observation and returning
the collapsed value. The probability of a qubit collapsing to 1 is the sum of the probabilities of all
outcomes where it collapses to 1, which would be half of the outcomes of measuring the whole system.
As measurement consumes the qubit being measured (and such its pointer to the quantum state), it
is impossible to re-measure that qubit. Therefore, the state is updated by setting all outcomes that
contradict the result to have a probability of zero. The quantum state vector is then normalized, the
sum of all probabilities in the vector is one.

measure :: QBit -> QM Bit

measure qbit = do

state <- get

let p1 = findQbitProb1 qbit state

bit <- io $ rngQbit p1

let newState = remImpossibleStates state qbit bit

put newState

return bit

Figure 4.31: The library function measure, which collapses the qubit and returns a
bit value.
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5

Results

This project has resulted in an implementation of a functional quantum programming language that
can be used to write quantum programs with the help of a quantum computer simulator. Some well-
known quantum algorithms have been implemented in funQ, which are presented in this section. Users
can interface with the language through the command line tool that reads and evaluates program files
or expressions written inside the terminal.

5.1 The funQ Language

A short overview of the functionality of funQ is given here, although most constituent parts of the
language have already been explained. Further details can be found on the project’s Github repository
with usage instructions 2. Which also contains information on how funQ can be installed and used.
The functionality of funQ includes:

• if expressions for conditional logic

• product types to group data and let expressions to pick apart product types

• linear types

• call-by-value evaluation

• new and measure functions to create and measure qubits

• built-in gates to operate on qubits

• comments

• named functions with type signatures

• recursion.

A feature of funQ not yet explained is recursion. The language allows users to define named functions
in a Haskell-like manner. Immediately storing these functions in a global environment (as explained in
chapter 4) enables function calls to be made recursively. An example of a funQ program using recursion
is shown in figure 5.1.

constZero : !(!Bit -o !Bit)

constZero x = if x then 0 else constZero (not x)

not : !(Bit -o !Bit)

not x = if x then 0 else 1

Figure 5.1: A recursive function constZero. The function calls itself recursively in
the else clause.

2The project repository https://github.com/NicklasBoto/funQ A short guide with
programming tasks is found at https://github.com/NicklasBoto/funQ-tasks
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5.2 Quantum Algorithms in funQ

Several quantum algorithms were written in funQ, as a way of evaluating both the correctness and
usability of the language. The corresponding quantum circuit is included for the coin flip, quantum
teleportation, and Deutsch-Jozsa algorithm to see how it compares to a funQ implementation.

5.2.1 Coin Flip

One of the simplest quantum programs implemented is the ”coin flip”, randomly generating a one or
zero with 50 % probability, similarly to a fair coin flip. A quantum circuit for this program is shown
in figure 5.2.

|0〉 H

Figure 5.2: The ”coin flip” circuit. A Hadamard gate is applied to a qubit represent-
ing one of the basis vectors, which changes the probability of the qubit collapsing
to zero or one equal upon measuring. The qubit is then measured, which will result
in a zero or one.

Writing this program in funQ is straightforward, as seen in figure 5.3.

coinFlip : Bit

coinFlip = measure (H (new 0))

Figure 5.3: The funQ implementation of a simulated fair coin flip. The function
measures a qubit that has been applied by the Hadamard gate.

First, new 0 creates the zero qubit, then the Hadamard gate and measurement operation is applied as
in the circuit. Running the coinFlip function many times in the funQ command line tool (explained
more in section 5.3) results in a distribution that approximately gives zero or one with a 50% probability
(see figure 5.4).

$ funq coinflip.fq --runs=1000

0: 49.6% 496

1: 50.4% 504

Figure 5.4: Output from running a coinFlip simulation repeatedly, resulting in an
approximately equal distribution between 0 and 1.

This example also serves as an indicator that the probability logic when measuring qubits works well.
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5.2.2 Quantum Teleportation

Another example of a quantum algorithm implemented in funQ is quantum teleportation. Quantum
teleportation is a way to use quantum entanglement and classical communication to teleport a qubit
between two locations [20]. It is possible to use entanglement to transfer one quantum state to another,
even when large distances separate the qubits. This is done using a quantum teleportation protocol,
represented by the quantum circuit in figure 5.5.

|ψ〉 • H •

a |0〉 H • •

b |0〉 X Z |ψ〉

Figure 5.5: The teleportation circuit. The following is needed to perform quantum
teleportation: three qubits, six gates, and two measurement operations.

The funQ code for quantum teleportation is shown in figure 5.6. Note that the qubits in the circuit
in figure 5.5 correspond to psi, a, and b in the code. The zero-qubits a and b become entangled and
forms a Bell state by the epr function. After that, the Bell measurement determines the Bell state of
the qubits. This measurement produces a pair of bits, which along with the qubit to be teleported, is
sent into the correction function that then outputs qubit b with ψ’s state teleported to it.

teleport : !(QBit -o QBit)

teleport psi = let (a,b) = epr * in correction b $ bellMeasure a psi

bellMeasure : !(QBit -o QBit -o (Bit >< Bit))

bellMeasure a b = let (x,y) = CNOT (a,b) in (measure (H x), measure y)

epr : !(T -o QBit >< QBit)

epr x = CNOT (H (new 0), new 0)

control : !((QBit -o QBit) -o Bit -o QBit -o QBit)

control g b = if b then g else I

correction : !(QBit -o (Bit >< Bit) -o QBit)

correction q bits = let (a,b) = bits in control Z a $ control X b q

Figure 5.6: The funQ implementation of the quantum teleportation algorithm. The
circuit operators (gates and measurement) do not have a one-to-one mapping with
the functions written in funQ.
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5.2.3 Deutsch-Jozsa Algorithm

Deutsch-Jozsa is another well-known quantum algorithm that can determine if a function, known as
the oracle, is balanced or constant. A balanced function will return 0 and 1 equally many times, while
a constant function returns the same output for all inputs. It is one of the earliest discovered examples
of a quantum algorithm that solves a problem exponentially faster than any deterministic classical
algorithm [21]. The algorithm determines whether a given function is balanced or constant in a single
call to the function, which would require at most 2n−1 + 1 calls in the classical solution. The quantum
circuit diagram of the algorithm is shown in figure 5.7.

|0〉 H
x

Uf
H

|1〉 H
y

Figure 5.7: The Deutsch-Jozsa circuit. Where Uf is the oracle containing f, mapping
|x〉 7→ |x〉 and |y〉 7→ |y ⊕ f(x)〉 where ⊕ is addition modulo 2.

The implementation is shown in figure 5.8, where the function deutsch will return a 0 if given a
constant oracle and a 1 if given a balanced one.

balanced : (QBit >< QBit) -o QBit

balanced qs = let (x,y) = qs in

let (x,y) = CNOT (X x, y)

in (X x)

deutsch : ((QBit >< QBit) -o QBit) -o !Bit

deutsch oracle = measure $ H $ oracle (H (new 0), H (new 1))

Figure 5.8: The funQ implementation of the Deutsch-Jozsa algorithm.
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5.2.4 Grover’s Algorithm

Grover’s algorithm is a quantum search algorithm that can find an element in an unsorted list of size
N in O(

√
N) steps [22]. The quantum circuit diagram of the algorithm is represented in figure 5.10.

Repeat O(
√
N) times

|0〉 /n H⊗n Uω 2 |+n〉 〈+n| − 1n /n
︷ ︸︸ ︷

Figure 5.9: The Grover circuit for n qubits. H⊗n is n parallel Hadamard gates and
2 |+n〉 〈+n| − 1n is the Grover diffusion operator [23].

To search a list of length N , n = dlog2Ne qubits are needed. To find the desired element at index ω
the oracle Uω is constructed according to equation 3.

Uω|x〉 =

{ |x〉 if x 6= ω

−|x〉 if x = ω
(3)

The three qubit implementation shown in figure 5.10 can be used to search a list, of maximum length
eight. The function oracle implements the action |abc〉 7→ |a〉 ⊗ CZ |bc〉 which is the oracle U3,7 [22].
As this oracle encodes more than one correct index, the program will return a uniform distribution of
the correct indices.

diffuser : !((QBit >< QBit >< QBit) -o QBit >< QBit >< QBit)

diffuser qs = map H $ CCR1 $ map Z $ map H qs

oracle : !((QBit >< QBit >< QBit) -o QBit >< QBit >< QBit)

oracle qs = let (a,bs) = qs in (a, CR1 bs)

grover : !(QBit -o QBit -o QBit -o QBit >< QBit >< QBit)

grover q0 q1 q2 = diffuser $ oracle $ map H (q0,q1,q2)

Figure 5.10: The funQ implementation of Grover’s algorithm. The function map
applies a gate to every element in a 3-tuple.

Running the program gives the results shown in figure 5.11.

$ funq grover.fq --runs=1024

011: 49.31% 505

111: 50.68% 519

Figure 5.11: Output from running Grover’s algorithm, resulting in 3 and 7.
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5.2.5 Shor’s Algorithm

Shor’s algorithm is a quantum algorithm for factorizing integers [5]. The general algorithm entails
converting the factoring problem into an order-finding problem. Here, the order denotes the smallest
number r such that ar ≡ 1 mod N , for a number to be factored N , and a factor guess a such that
gcd(N, a) = 1. If r is even, the above equivalence gives that (ar−1) = (ar/2−1)(ar/2 + 1) ≡ 0 mod N .
Thus, both (ar/2 − 1) and (ar/2 + 1) divide N . Then, gcd(N, ar/2 − 1) and gcd(N, ar/2 + 1) are
calculated classically and checked to see if they are factors of N . If they are factors of N , the algorithm
is complete, otherwise input a different a and start over.

Below, two different implementations of Shor’s algorithm are presented. First, a specialized imple-
mentation of Shor’s algorithm that can factor the number 15, then a more general version of the
order-finding part of Shor’s algorithm is shown.

init : !((QBit >< QBit >< QBit >< QBit >< QBit)

-o QBit >< QBit >< QBit >< QBit >< QBit)

init qs = let (a,b,c,d,e) = qs in

let (a,b,c) = QFT3 (a,b,c) in (a,b,c,d,e)

shor : !((QBit >< QBit >< QBit >< QBit >< QBit)

-o QBit >< QBit >< QBit >< QBit >< QBit)

shor qs = let (a,b,c,d,e) = init qs in

let (b,c,d) = (H b, CNOT (c,d)) in

let (c,e) = CNOT (c,e) in

let (b,a) = CR2 (b,a) in

let (a,b,c) = (H a, CR4 (b,c)) in

let (a,c) = CR2 (a,c) in (a,b,c,d,e)

Figure 5.12: The funQ implementation of Shor’s algorithm for N = 15 with an
initial guess of 11.

The program in figure 5.12 factors the number 15, with a guess of 11 [24]. Running the program
gives the resulting numbers 4 and 0, as shown in figure 5.13. They are called periods and period 0 is
discarded since it is trivial. Following [25] it can be derived from the period of 4 that the factors of 15
are 3 and 5, using efficient classical computations.

$ funq examples/shors.fq --runs=1024

00000: 47.94% 491

00100: 52.05% 533

Figure 5.13: Output from running Shor’s algorithm factoring 15, resulting in the
periods 0 and 4.

The order-finding part of Shor’s algorithm is given by the function QOF (Quantum Order Finding) in
figure 5.14. It makes use of the one-qubit control trick, described in [26]. The measured period is then
returned as a number of bits, which can be used to find the factors of the number to be factored. The
arguments of the function QOF are, going from left to right: the register used by the sub-components of
QOF; the factor guess; the number to be factored; multiplication control qubits. Finally, the output is
a tuple containing the input qubit arguments and the measured results of the order-finding algorithm.

QOF : !(qbit6 ( ! bit3 ( ! bit3 ( qbit3 ( qbit9⊗ ! bit6)

Figure 5.14: Type signature for the quantum order finding algorithm (QOF). The
full function definition is in appendix D
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5.3 Command Line Tool

A command line tool was developed to help reach the goal of funQ being easy to use. The command
line tool can be used to run funQ program files or, interactively, by writing expressions directly in a
read-eval-print loop (REPL). It is also possible to load funQ files into the interactive mode by the -i

flag or with the :load command while in interactive mode.

Consider the example below where the function coinFlip is created interactively:

funQ 0.9.1

:? for help

λ coinFlip = meas $ H $ new 0

Typing a single expression results in a call to evaluate this expression. What actually happens is that
a function main = coinFlip is created and added to the environment before the program is checked and
evaluated. The result from the evaluation is then printed together with the type of the expression:

λ coinFlip

1 : !Bit

In interactive mode, the environment (a set of functions) is updated for every new function typed by
the user. For example, a product of two qubits q is created:

λ q = (new 0, new 1)

It is then possible to view the type of the function with the :t command equivalent to the :t command
in the Haskell compiler GHCI, which prints the type of the function:

λ :t q

QBit ⊗ QBit
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5.4 Test Results

All tests for the quantum library, type checker, and interpreter passes. Although not certain, this
suggests that all aspects the tests-cases cover are correctly implemented. There are no known bugs.

A test coverage report has been generated, which can be seen below in table 5.1. Top level definitions,
alternatives, and expressions have code coverage of 59%, 60%, and 55%, respectively. The coverage for
each module is shown for each of these different categories.

Table 5.1: Test coverage from running the test programs with coverage. Top level
definitions, being all top level functions, has 59% coverage. Alternatives, being case
branches, has 60% coverage. Among all expressions in the project, 55% are tested.
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6

Discussion

This chapter covers a discussion on certain aspects of funQ including its ease of use and syntax as well
as an elaboration of the value of high-level language features. Further, the effects of deviating from
QLambda and the insights gained from doing so are discussed. Finally, suggestions for future work on
funQ is given.

6.1 Ease of Use

Ease of use was one of the purposes of this project and has permeated all aspects when implementing
funQ. The aim was to make the language’s syntax as easy as possible, provide good documentation,
feedback to the user, and an interactive command line tool to allow the user to explore the language.
The discussion about ease of use is extended to the practical use of high-level quantum languages.

6.1.1 Simple Syntax

The syntax of funQ was intended to follow QLambda and be as simple as possible. In cases where no
syntactic conventions from QLambda were available, the syntax was modeled after Haskell. One such
instance is for function declarations. The reason for imitating the syntactic conventions of a particular
programming language is to make the external DSL more accessible to those familiar with that language
(as described in section 3.1). The programs showed in the result section are a good indication of the
level of complexity and can give the reader an own impression of how easy or difficult it is. The syntax
is reasonably simple and should be easy to learn and understand, especially for Haskell programmers.

The Church-styled lambda term is the most significant syntactic difference between funQ and Haskell,
which complicates the syntax of funQ a little. In funQ program files, Church-style lambdas and their
complexity can be avoided using top-level functions instead of lambda terms. In the REPL, lambda
terms are the only way to introduce new functions (except constant functions), making the Church-style
more visible. However, this is primarily a change in notation and implementation of the type-checking
algorithm and does not tremendously affect the language’s syntax.

6.1.2 Abstraction, Reusability, and Extensibility

In funQ, complexity can be abstracted away in functions that allow code-reuse and often better read-
ability. Furthermore, funQ can be used to write modules that may be shared and reused by other
developers. The bellMeasure function in the teleport example of figure 5.6 exemplifies the increased
abstraction level and the possibility of code reuse. The function replaces the application of a single
CNOT gate, Hadamard gate, and two measurement operations. All these separate operations must
still be performed, but if the user wants to reuse bellMeasure, only one function needs to be applied
instead of four. Moreover, common operations like these could be packaged in standard modules, like
Prelude for Haskell, which would likely speed up development for quantum programmers by avoiding
re-creating utility functions.

The reuse of functions is constrained within a single file and not within an entire project. It is not
possible to import funQ files into another file, only in the interactive mode of the command line tool.
The inability to import files has not impacted this project since only programs in a single file have
been implemented. Extending the language with the ability to import files would allow for increased
code reuse. Moreover, improved separations of concerns would be possible by having multiple files,
each with functions performing a specific task, rather than including all functions of a project in one
file.
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Introducing new gates in funQ is not possible without modifying the source code in several places,
limiting the extensibility. With that said, it is unclear if such freedom to users is desirable since most
quantum computers nevertheless come with a set of predefined gates. Therefore, the set of predefined
gates in funQ should be sufficient, and restricting users to predefined gates may even be desirable.

6.1.3 Value of High-Level Language Features

The difference between funQ and some quantum languages is higher-level constructs, such as let and if .
Implementing established quantum algorithms in funQ assessed the usefulness of higher-level languages
for larger quantum programs.

The if expression in funQ is essential for classical control and allows replacing computationally ex-
pensive qubits with classical bits and control the program flow. For programs defined in higher-level
languages, the if construct can be quite helpful, as classical control may be used instead of gates, thus,
simplifying the code. In circuit-oriented languages, controlled gates are instead used for conditional
control flow. If these gates cannot be classically controlled by a control bit, expensive qubits must be
used instead. With this in mind, one could allow for classically controlled gates in a circuit-oriented
language, which would mimic some of the constructs available with the if expression. However, the
if expression in funQ is more powerful than those classically controlled gates would be. For instance,
the if expression allows a compact way to think about and represent paths in an execution. Rather
than something either happening or not, as in circuits, if expressions allow the programmer to execute
separate expressions depending on a condition.

Most papers found describe quantum algorithms in terms of circuits (notably Shor’s) and are not
implemented for higher-level languages [26]–[29]. However, the let construct made them somewhat
easier to translate into funQ but was quite cumbersome for larger algorithms. Using let statements for
each element of the circuit essentially simulates, quite inefficiently, an imperative language in funQ. A
more functionally oriented way of implementing quantum algorithms in a high-level language is possible
but would require more specialized constructs than funQ currently offers, primarily lists and custom
datatypes. Recursion combined with lists or recursive datatypes could also provide a concise way of
presenting sequenced or repetitive circuit elements, further strengthening the use cases of a higher-level
language. Perhaps in the future, there will be higher-level algorithmic descriptions of implementations
of quantum algorithms. These would be simpler to implement in funQ.

6.2 Implementing a Theoretical Language

The purpose of this project involved implementing funQ as closely as possible to the syntax, reduction-
and typing rules of QLambda. Naturally, when implementing a theoretical language, some deviations
will occur in the translation process. This section discusses the implications of the deviations from
QLambda and the insights gained from these deviations.

6.2.1 Effects of Deviations from QLambda

The translation process of the typing rules and operational semantics from QLambda to funQ resulted
in changes that can be seen as both a strength and a weakness. The evaluation rules were created
to reflect the probabilistic, call-by-value approach of QLambda’s reduction rules. These modifications
and additions is a strength in that it exactly defines how the funQ language is implemented. More
transparency is also achieved by specifying funQ since the differences to QLambda become visible,
allowing for nuanced discussions. However, the deviations could be seen as a weakness since more
changes naturally weaken the relation of funQ and QLambda, effectively decreasing the possibility to
extend claims and insights between funQ and QLambda. For example, consider the subtyping rule
(!⊗) defined in section 2.4.2. It is needed in the implementation to allow certain valid programs to
typecheck. The fact that this rule is not stated in QLambda but was needed in the implementation
may suggest a misinterpretation of QLambda or a fault in the implementation of the type checker.
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6.2.2 Insights from the Implementation

A deviation from QLambda regards the definition of a program, which in QLambda is a lambda term.
In funQ, however, a program is defined as a list of functions. The successful implementation of, for
example, quantum teleportation and Grover’s algorithms shows the benefits of including functions in
quantum programming languages. These benefits include increased readability, abstraction, and code
reuse. Only allowing the creation of a lambda term to define a whole program is limiting since it would
make the creation of larger programs complicated, which suggests that future functional quantum
programming languages should include the ability to define functions.

Another insight gained when implementing the interpreter for funQ was that separation of classical
control from quantum computation was suitable. The evaluation rules in section 2.15 reflect this
distinction in the program state, with its environment γ and quantum stateQ. However, the operational
semantics of QLambda make no such distinction. The separation simplified the implementation of
an interpreter and is recommended for a future implementation of a similar quantum programming
language with classical control.

6.3 Future Work

There is some future work that could improve funQ. This work includes connecting it to an exter-
nal quantum computer simulator or a real quantum computer, inferring linear types without type
annotations, and extending the syntax.

6.3.1 Improve the Computation Speed

The efficiency of a quantum computer simulator can vary, and the simulator used in funQ could be
improved in this regard. A simple improvement of the simulator could be to remove measured qubits
from the quantum state vector. Similar to QLambda, measured qubits remain in the quantum state
vector, though not affecting the state other than using up memory. Instead, collapsed qubits can
be factored out and removed from the state vector making the simulation more efficient. Another
improvement of the simulator could be to use matrix libraries from more fast-performing languages
such as C, which might also support running matrix operations on the GPU (graphics processing unit).

Another possibility to improve the performance of funQ is to connect it to a, possibly more efficient,
external quantum computer simulator. With an approved capacity and speed of running quantum
programs, more qubits can be used simultaneously.

Taking it one step further and connecting funQ with an actual quantum device would be interesting
to see if the language works in practice and what problems may arise. This could be done in the
interpreter by communicating with a quantum web service that supports quantum actions to be made
via an application programming interface but would require some work.
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6.3.2 Hindley-Milner Type Inference for Linear Types

As discussed, funQ uses Church-style lambdas while QLambda uses Curry-style lambdas. Curry-style
lambdas were originally preferred to keep the syntax of funQ more similar to QLambda. A sophisticated
type inference algorithm is needed to infer types of Curry-styled lambdas, such as the algorithm W
by Roger Hindley and Robin Milner [30] [31]. Quite some effort was put into extending algorithm W
that could handle type inference with linear types. However, after a promising but failed attempt to
implement this algorithm with linear types, it was discovered that the Hindley-Milner algorithm for
a type system with subtypes is still an open problem. Therefore, it was decided that this problem
was probably not going to be solved within the time frame of this thesis and instead could be possible
future work.

A successful implementation of the Hindley-Milner algorithm with linear types would allow funQ to:

• omit type signatures for functions

• have generic functions with type variables in the signature

• include Curry-style lambdas in the syntax.

6.3.3 Adding Language Features

Language features and syntax sugar that exist in many other languages could be added to funQ. This
includes custom data types, importing functions from other files, natural numbers, and enhanced error
messages with specific lines of the error. Also, by adding more recursive data types, such as natural
numbers, recursion might be more useful. Another helpful feature that could be added is a list data
type for a more flexible container type than tuples.
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7

Conclusion

The functional quantum programming language funQ has been successfully implemented and can be
seen as an implemented version of QLambda. Following the conventions of QLambda, it is implemented
with call-by-value semantics and a linear type system. Additionally, a command line interface was
created to make the language more accessible. Several well-known quantum algorithms have been
implemented in funQ with successful results, such as quantum teleportation, Deutsch-Jozsa, Grover’s,
and a specialized version of Shor’s algorithm. The implementation of these algorithms showed that it
is straightforward to write quantum programs in funQ.

The high-level features of the language increase the abstraction level of a quantum program from
quantum circuits and give more expressiveness to the programmer. For example, if expressions are
useful for conditional logic without using extra qubits needed in pure quantum circuits. Also, functions
allow abstraction of concrete operations and reuse common pieces of logic. However, implementing large
quantum algorithms, such as Shor’s, showed to be somewhat cumbersome. All available descriptions
of the algorithm were in terms of circuits, and the high-level features available in funQ were not
generally helpful when writing this algorithm. Adding more data types to funQ to make more use
of recursion should aid in constructing these larger circuits, perhaps making funQ more useful than
circuit languages.
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A

Quantum gates

Table A.1 shows the complete set of gates that are included in funQ. The left column shows the syntax
to invoke the gate, and the right the full name of the gate. Detailed descriptions of the gates can be
found in [32].

Table A.1: Gates included in set of gates in funQ.

H Hadamard

X Pauli-X

Y Pauli-Y

Z Pauli-Z

I Identity

S S gate

T T gate

CNOT CNOT

TOF Toffoli

SWP Swap

FRDK Fredkin

QFTn Quantum Fourier
transform

QFTIn Inverse quantum Fourier
transform

CRn Controlled rotation/phase
shift

CRIn Inverse controlled rotation

CRRn Controlled controlled
rotation

CRRIn Inverse controlled
controlled rotation

i





B

Grammar

This document was automatically generated by the BNF-Converter. It was generated together with
the lexer, the parser, and the abstract syntax module, which guarantees that the document matches
with the implementation of the language (provided no hand-hacking has taken place).

The lexical structure of Parser

Literals

Integer literals Integer are nonempty sequences of digits.

FunVar literals are recognized by the regular expression ‘lower ([”’ ”] | digit | letter)* ’ ’* ’:’‘

Var literals are recognized by the regular expression ‘lower ([”’ ”] | digit | letter)*‘

GateIdent literals are recognized by the regular expression ‘upper (digit | upper)*‘

Lambda literals are recognized by the regular expression ‘’\’‘

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar. Those reserved words that
consist of non-letter characters are called symbols, and they are treated in a different way from those
that are similar to identifiers. The lexer follows rules familiar from languages like Haskell, C, and Java,
including longest match and spacing conventions.

The reserved words used in Parser are the following:

Bit CNOT FREDKIN H

I QBit S SWAP

T TOFFOLI X Y

Z else if in

let then

The symbols used in Parser are the following:

* ( , )
= . $ !
>< -o

Comments

Single-line comments begin with –.Multiple-line comments are enclosed with {- and -}.

The syntactic structure of Parser

Non-terminals are enclosed between < and >. The symbols -> (production), | (union) and eps (empty
rule) belong to the BNF notation. All other symbols are terminals.

ii



Program -> [FunDec]
Term3 -> Var

| Bit
| Gate
| Tup
| *

| ( Term )

Term2 -> Term2 Term3
| Term3

Term1 -> if Term then Term else Term
| let ( LetVar , [LetVar] ) = Term in Term
| Lambda FunVar Type . Term
| Term2 $ Term1
| Term2

Term -> Term1
LetVar -> Var
[LetVar] -> LetVar

| LetVar , [LetVar]
Tup -> ( Term , [Term] )

[Term] -> Term
| Term , [Term]

Bit -> Integer
FunDec -> FunVar Type Function
[FunDec] -> eps

| FunDec [FunDec]
Function -> Var [Arg] = Term
Arg -> Var
[Arg] -> eps

| Arg [Arg]
Type2 -> Bit

| QBit

| T

| ! Type2
| ( Type )

Type1 -> Type2 >< Type1
| Type2 -o Type1
| Type2

Type -> Type1
Gate -> H

| X

| Y

| Z

| I

| S

| T

| CNOT

| TOFFOLI

| SWAP

| FREDKIN

| GateIdent

iii



C

Error types

The semantic errors that were used in the semantic analyzer.

data SemanticError

= FunNameMismatch String -- ^ Definition and function signature names must match

| DuplicateFunction String -- ^ Function declared more than once

| UnknownGate String -- ^ A gate that is not defined in the language was used

| InvalidBit String -- ^ Bit must be 0 or 1

| TooManyArguments String -- ^ Too many arguments in function definition

The type errors that were used in the type checker.

data ErrorTypes

= NotFunction Type -- ^ A type was expected to be a function but was not.

| Mismatch Type Type -- ^ Expected a type but found another type.

| NotProduct Type -- ^ A type was expected to be a product but was not.

| NotLinearTop String -- ^ A function that is linear used many times.

| NotLinearTerm Term Type -- ^ A term that breaks a linearity constraint

| NoCommonSuper Type Type -- ^ No common supertype was found

| NotInScope String -- ^ A function was not in scope.

deriving Eq

data TypeError = TError String ErrorTypes

deriving Eq

iv





D

Order-finding algorithm

The complete algorithm is available at https://github.com/NicklasBoto/funQ/blob/main/test/

interpreter-test-suite/qft-adder3.fq

orderfind : (QBit >< QBit >< QBit >< QBit >< QBit >< QBit)

-o !(Bit >< Bit >< Bit)

-o !(Bit >< Bit >< Bit)

-o (QBit >< QBit >< QBit)

-o (QBit >< QBit >< QBit >< QBit >< QBit >< QBit >< QBit >< QBit

>< !(Bit >< Bit >< Bit >< Bit >< Bit >< Bit >< Bit))

orderfind inA inB inN inX =

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa inA inB inN inX in

let (v,m0) = (v, meas (H c)) in

let (v,c) = (v, H (new 0)) in

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa (v,c,a3,a2,a1,a0) inB inN (x2,x1,x0) in

let (v,m1) = (v, meas (cR Z m0 c)) in

let (v,c) = (v, H (new 0)) in

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa (v,c,a3,a2,a1,a0) inB inN (x2,x1,x0) in

let (v,m2) = (v, meas (cR1 Z (m0,m1) c)) in

let (v,c) = (v, H (new 0)) in

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa (v,c,a3,a2,a1,a0) inB inN (x2,x1,x0) in

let (v,m3) = (v, meas (cR2 Z (m0,m1,m2) c)) in

let (v,c) = (v, H (new 0)) in

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa (v,c,a3,a2,a1,a0) inB inN (x2,x1,x0) in

let (v,m4) = (v, meas (cR3 Z (m0,m1,m2,m3) c)) in

let (v,c) = (v, H (new 0)) in

let (x2,x1,x0,v,c,a3,a2,a1,a0) = cUa (v,c,a3,a2,a1,a0) inB inN (x2,x1,x0) in

let (v,m5) = (v, meas (cR4 Z (m0,m1,m2,m3,m4) c)) in

let (v,c) = (v, new 0) in

(v,meas c, x2,x1,x0,a3,a2,a1,a0,m4,m5,m3,m2,m1,m0)

The cUa function is the periodic function that the order-finding part operates on. The classically
rotation gates are denoted cRi, where i = n+ 1 is the argument.
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