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Assessment of fermentability of spruce tips, needles and branches for bioethanol
applications

TOBIAS ASP
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract

The production of bioethanol from fermentation-based bioprocesses utilizing ligno-
celluosic feedstocks is an option for replacing fossil based fuels. By using genetically
modified yeasts that co-consume glucose and xylose, it is possible to ferment lingo-
cellulosic materials such as spruce for bioethanol production.

In this project the fermentability of spruce tips, needles and branches, pretreated
by acid-catalyzed steam explosion according to a design of experiments plan, was
evaluated in terms of ethanol titer, rate and yield as well as cell viability. In order
to ferment the spruce tips, needles and branches, sufficient cell concentrations are
needed. A preculture method was developed where enough cells were produced
and harvested in the same physiological state in different batches for simultaneous
saccharification and co-fermentation.

A anaerobic shake flask system was used to ferment the spruce tips, needles and
branches. Final ethanol titers of up to 10 g I'!, average volumetric ethanol production
rates of up to 0.35 g I h'! and final yields of ethanol on available glucose and
on available glucose together with xylose of up to 0.19 ggthanol EGIucose - and 0.16
ZEthanol gGlucoseJerbse‘l respectively were observed. The final cell concentrations,
colony forming units and growth rates observed were all fairly low values of up to
3.00 x 10° cells ml!, 1.19 x 10" CFU ml™* and 2.36 x 102 h™! respectively.

Even though there may be some indications on preferable pretreatment conditions in
terms of fermentability, more testing and experiments are required to make statisti-
cally significant recommendations.However, trends observed in this project points to
either high temperature and short time or low temperature and long time as prefer-
able pretreatment process conditions. Materials pretreated under these conditions
showed the highest final titers and yields.
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Introduction

Fossil fuels contribute to the emission of greenhouse gases, leading to global warm-
ing, rise in sea level, loss of biodiversity and urban pollution [1]. It has also been
estimated that fossil fuels will be exhausted within 40 to 50 years [2]. These are
reasons to move on from fossil fuels to reach a more sustainable society. Bioethanol
produced from fermentation is an alternative to fossil fuels. If the ethanol produc-
tion uses only renewable energy, no net CO, is added to the atmosphere [3]. This
makes bioethanol a potentially environmentally beneficial energy source.

Bioethanol has a octane number of 108. Thereby it prevents early ignition and engine
knocking in fuel combustion engines [4]. With its high oxygen content it combusts
cleaner compared to petroleum and thereby contributes to lower emissions [4]. These
traits enable bioethanol to currently be one of the most industrially produced fossil
substitutes with a market of 58 billion dollars annually [5]. Approximately 86000
kton bioethanol per year is produced [5].

Bioethanol can be produced via fermentation of different sugar-based, starchy or
lignocellulosic raw materials. Bioethanol production via fermentation of sugar- or
starch-based raw materials is referred to as first generation (1G) bioethanol. The
most common feedstocks for 1G bioethanol in the last few years are Brazilian sugar
cane and US corn [6]. A major drawback with 1G bioethanol is that the feedstock
used directly competes with the food and feed industry [6].

Bioethanol produced from lignocellulosic raw materials is a more sustainable option
as the feedstocks used are non-edible lignocellulosic whole plant biomass, non-edible
residues from food crop production or non-edible residues from forest management
[2]. Bioethanol produced from these feedstocks is called second generation (2G)
bioethanol. One lignocellulosic material is the softwood spruce [7]. Spruce occupies
18 million ha of forest land in northern Europe and has a total growing stock of
2700 million m® which makes it an available feedstock in northern Europe [7]. 2G
bioethanol is more sustainable compared to 1G bioethanol production in a direct
food versus feed perspective as well as in terms of land usage [8]. The plant biomass
used for 2G bioethanol processes can be bred specifically for bioethanol production
[8]. This can increase production per unit land area and result in a higher land used
efficiency.



1. Introduction

1.1 Aim

There are two aims of this project. The first aim is to experimentally determine the
fermentability of slurries of spruce tips, needles and branches that have previously
been pretreated in 13 different conditions and analyzed in terms of composition.
The fermentability is assessed in terms of ethanol yield, ethanol production rate
and cell viability. The second aim is to investigate whether it is possible to sta-
tistically connect fermentation characteristics with the conditions applied during
pretreatment.

1.2 Limitations

The project is limited to fermentations in shake flasks and not any larger scales.
The yeast preculture will however be propagated in bioreactors. Sampling will be
limited based the available analytic methods. The focus lies on ethanol yield, ethanol
production rate and cell viability.
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Theory

2.1 Lignocellulosic biomass

Lignocellulosic materials include feedstocks such as wood, forestry waste, agricul-
tural residues and municipal solids [9]. Lignocellulosic biomass consists of three
major components, cellulose, hemicellulose and lignin [10]. The lignocellulose com-
plex is a matrix of lignin and cellulose bound by hemicellulose chains [10]. Hemi-
cellulose are branched polysaccharides consisting of pentoses such as D-xylose and
D-arabinose as well as hexoses such as D-glucose, D-galactose and uronic acids [9].
Lignin is an aromatic polymer of phenolic compounds derived from phenylpropanoid
precursors [9]. Cellulose is a polymer of $-1,4-linked D-glucose units [9]. Softwoods
such as spruce typically consists of a higher fraction of glucose and mannose units
in the hemicellulose compared to hardwood [9]. This results in a higher glucose
content and lower xylose content in softwood hydrolysates compared to hardwood
hydrolysates.

A major challenge with lignocellulosic materials as feedstock for bioethanol pro-
duction are the amount of inhibitory compounds released in the process. There
are three major groups of inhibitors tied to lignocellulosic biomass [11]. Furan
derivates, which include furfural and 5-hydroxymethyl-2-furaldehyde (HMF), weak
acids, mainly acetic-, formic- and levulinic acid and phenolic compounds such as
vanillin.

Depending on the yeast strain and the concentration of furan derivates, HMF and
furfural can decrease the volumetric ethanol yield and productivity, inhibit growth
and cause a longer lag phase [12]. In vitro measurements of inhibitory mechanisms
of HMF and furfural have shown direct inhibition of alcohol dehydrogenase (ADH),
pyruvate dehydrogenase (PDH) and aldehyde dehydrogenease (ALDH) purified from
Saccharomyces cerevisiae [13]. Increased levels of acetaldehyde excretion has been
shown when furfural was added to the growth media [14]. This suggests that the
reduction of furans by yeast results in NAD(P)H depletion [14]. Metabolic flux
analysis has shown that furfural can affect the enegry metabolism in yeast by in-
teracting with glycolytic- and TCA fluxes [15]. Also, furfural can cause vacuole-,
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mitochondrial-, chromatin- and actin damage as well as the accumulation of reactive
oxygen species [12].

The weak acids acetic-, formic- and levulinic acid at too high concentrations inhibit
yeast fermentation by decreasing ethanol yield and biomass formation [16]. The
inhibitory mechanism of weak acids is anion accumulation and uncoupling [17].
Undissociated forms of weak acids can diffuse into the cell membrane and dissociate
due to increased intracellular pH which results in decreased cytosolic pH. [18-20].
Membrane-bound ATPase pumps protons out of the cell at the expense of ATP
hydrolysis due to the decreased intracellular pH [19]. As a result, less ATP is used
for biomass formation. Furthermore, weak acids have been shown to inhibit yeast
growth by decreasing the uptake of aromatic amino acids, possibly as a result of
strong inhibition of Tat2p amino acid permease [21]. However, low concentrations
of acetic-, formic-, and levulinic acid have been shown to increase ethanol yield [16,
22]. Low concentrations of these acids may stimulate production of ATP under
anaerobic ethanol production [16].

Phenolic compounds have been shown to decrease the biomass yield, growth rate,
ethanol productivity and ethanol yield [23]. Low molecular weight phenolic com-
pounds are generally more inhibitory than high molecular weight compounds [23].
A proposed mechanism is the action of weak acidic phenolic compounds on the
electrochemical gradient by transporting protons back through the mitochondrial
membrane [24].

2.2 Simultaneous saccharification and fermenta-
tion process overview

The overall process design of simultaneous saccarification and fermentation (SSF)
can generally be described in a three step process (Figure 2.1) [25]. The first part
of the process is the pretraetment. Here, the purpose is to maximize the yield of
monomeric sugars and rate of hydrolysis [10]. Most inhibitors are produced dur-
ing this process step. Prior to the pretreatment, the raw material goes through a
size reduction by methods such as chipping or milling to break down the woody
structure of the lignocellulosic biomass. The second part of the process is the enzy-
matic hydrolysis and fermentation. These steps can also be performed separately,
referred to as separate hydrolysis and fermentation (SHF) [25]. Finally, the ethanol
is separated from the lignin fraction, commonly by distillation [25].
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Figure 2.1: Overview of the SSF process steps [25]

2.3 Pretreatment methods

The purpose of the pretreatment is to increase the yield of monomeric sugars and the
rate of hydrolysis in the subsequent process steps [10]. The pretreatment can impact
other downstream processes of hydrolysis and fermentation in bioethanol production
[26]. Too severe pretreatment conditions can result in high sugar degradation in the
substrate. Too mild pretreatment conditions will not be effective in breaking down
the wood structure, resulting in inefficient hydrolysis. There are three main types of
pretreatments: physical, chemical and biological [10]. These types can be run inde-
pendently or in a combination. Physical pretreatment methods mechanically break
down the material by a combination of methods such as milling, grinding, chipping
and uncatalyzed steam pretreatment [10]. Physical pretreatment methods aim to
increase the digestibility of cellulose and the available surface area for enzymatic
hydrolysis [10].

Chemical pretreatment methods include organosolvation and the chemical break-
down of the lignocellulosic material by acidic or alkaline chemicals as well as ozone
and ionic liquids [27]. Alkaline pretreatment methods have been described to be
more efficient on agricultural residues compared to wood residues [27]. Alkaline
pretreatments are efficient for lignin solubilization, increase the cellulose digestibil-
ity and cause less glucose degradation compared to acid pretreatment methods [27].
Suitable chemicals for alkaline pretreatments are ammonium hydroxides, calcium,
sodium and potassium [27]. One drawback of alkaline pretreatments is the potential
loss of fermentable sugars as the hemicellulose fraction is dissolved within the lignin
fraction [27].
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The main reason for using acid pretreatment is its ability to solubilize the hemicel-
lulose fraction to increase the accessibility of cellulose for the enzymes [27]. Acids at
too high concentrations can cause increased operational costs due to acid recovery
and equipment corrosion [27]. Furthermore, high concentration acids in pretreat-
ment may cause the formation of compounds inhibitory to ethanol fermentation [27].
Dilute sulphuric acid is a commonly used acid while other acids such as hydrochloric
acid, phosphoric acid and nitric acid also have been studied [28].

Ionic liquids consist purely of ionic species and are often fluid at room temperature
[28]. They are generally composed of a salt where the cation has a low degree
of symmetry and one or both ions are large, resulting in a reduced melting point
[28]. Cellulosic materials recovered from ionic liquids have been found to be highly
accessible to enzymatic hydrolysis by cellulases due to its porous and amorphous
structure [28]. Processes that include ionic liquids have been shown to be less
energy demanding, more environmentally friendly and easier to operate compared to
alkaline and acid pretreatment processes [28]. However, ionic liquids are expensive.

Ozone is an oxidant that shows high delignification efficiency and avoids the for-
mation of inhibitory compounds [27]. Ozone pretreatment is usually performed at
room temperature and normal pressure [27]. However, ozonolysis is economically
unfavorable due to the high costs related to ozone [27]. The main advantage of
organosolvation as pretreatment is the recovery of very pure lignin as by-product
compared to other chemical pretreatments [27]. Another drawback of organosolva-
tion is the required separation prior to hydrolysis and fermentation as the solvent
can be inhibitory to enzymatic hydrolysis and fermentation [27].

Acid-catalyzed steam pretreatment is a physico-chemical pretreatment method that
combines physical and chemical pretreatments. Here, acids are added to the ligno-
cellulosic biomass which then is subjected to pressurized high-temperature steam
for a certain period, after which it is quickly depressurized [27]. The sudden pres-
sure reduction causes fibers to separate due to the explosive decompression and the
high temperature promotes autohydrolysis due to acetic acid formation from acetyl
groups found in the hemicellulose [27]. The major factors affecting the efficiency of
the acid-catalyzed steam pretreatment are temperature, residence time and particle
size. The combined effect of temperature and time can be described by the the so-
called severity factor [27]. The major advantages of this pretreatment method are
possibilities for significantly lower environmental impact, low capital investments,
less hazardous process chemicals and conditions, potential for high energy efficiency
and complete sugar recovery compared to other pretreatment methods [27]. This
method is one of the older and more effective pretreatments, however, a drawback
that has been observed when using woody substrates is a reduced delignification
which results in lower enzymatic hydrolysis of the cellulose [29].

Biological pretreatment methods utilize brown, white or soft rot fungi to degrade
lignocellulosic material [10]. Biological pretreatments are in general safe and energy
saving [10]. However, hydrolysis rates are lower compared to other pretreatments
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although being considered more environmentally friendly [10]. The approach does
not require expensive equipment, addition of chemical agents or additional energy to
remove the lignin [30]. Drawbacks are the slow processing of delignification and the
carbohydrate loss in the substrate as the microorganisms consume parts of cellulose
and hemicellulose during pretreatment, leaving less sugars and polysaccharides left
for enzymatic hydrolysis and fermentation [30].

2.4 Enzymatic hydrolysis

The hydrolysis of cellulose involves three major classes of cellulase enzymes, cel-
lobiohydrolases, endo-$-1,4-glucanases and B-glucosidases [31]. Cellobiohydrolases
act by cleaving the ends of the cellulose polymers, endo-3-1,4-glucanases act by in-
ternally cleaving the cellulose polymers and [-glucosidases hydrolyze short chain
glucooligosaccharides to glucose [32]. The xylose parts of hemicellulose can also be
hydrolyzed into xylose by xylanases [33]. Cellulose that are a part of lignin com-
plexes are more difficult to hydrolyze. Other than an effective pretreatment, lignin
degradation can be enzymatically assisted by lignin peroxidase, laccase enzymes and
manganase dependent peroxidase by acting on the phenolic parts of the lignin [33].
Lytic polysaccharide monooxygenases (LPMOs) are also able to cleave polysaccha-
ride links [34]. LPMOs can act on crystalline cellulose as well as on hemicellulose
by direct oxidative attack on the polymer chains via a flat active site that has a
centrally located copper ion [34].

2.5 Simultaneous saccharification and co-fermentation

After the raw material has been pretreated and hydrolyzed, it is fermented. One
operating option is to perform the enzymatic hydrolysis and fermentation together,
called SSF [25]. Separation and refinement of the ethanol from the fermented slurry
is one of the major energy consuming parts of the process, up to 80% in some cases
[35]. Economically beneficial and efficient bioethanol production thus requires high
ethanol yields and titers. It is possible to reduce the distillation cost by operating
at high water-insoluble solid (WIS) contents [36]. Operating at high WIS content
does present challenges, such as increased viscosity, resulting in a reduced efficiency
of heat and mass transfer as well as increased power consumption due to higher
demands on mixing [36]. Furthermore, higher substrate content will lead to in-
creased amounts of inhibitors which can have a negative effect on the final titer,
productivity and yield [36]. Increasing the enzyme dosage during high-WIS SSF
could reduce viscosity. However, the process economy and environmental impact is
considerably affected by enzyme usage [36, 37]. Operating in fed-batch mode can
help deal with these challenges by allowing high enzyme to substrate ratios through
the process by continuously feeding high WIS substrate, yeast and enzymes [38, 39].

7



2. Theory

Enzyme feeding has been shown to maintain low glucose concentration, favouring
higher xylose uptake in yeast [40]. Furthermore, substrate feeding has been shown
to reduce viscosity, increasing total amount of WIS that can be added in the process
[40]. It is also possible to increase the cell tolerance to lignocellulosic inhibitors
by pre-adapting yeast to the lignocellulosic media in propagation cultures [41, 42].
One advantage of SSF compared to SHF is reduced end-product inhibition of hy-
drolysis by cellobiose and glucose due to the rapid conversion of the sugars [25, 43].
Furthermore, the SSF allows no separation of glucose from the lignin fraction after
separate enzymatic hydrolysis. This bypasses a potential sugar loss [25]. Due to the
reduction of required vessels, capital investments are reduced [25]. Tied to the lower
equipment costs, the operation is easier since less equipment is needed [43]. The
main disadvantage of SSF is the different temperature optima for enzymatic hydrol-
ysis and fermentation [25, 43]. However, the utilization of thermophilic strains can
solve this drawback. In SHF processes, enzymatic hydrolysis and fermentation can
be optimized independently [25]. Further more, in SSF, yeast and enzymes cannot
be reused because their separation from the lignin after the fermentation is currently
too difficult [25].

The pretreatment and enzymatic hydrolysis of the lignocellulosic biomass typically
release not only hexose sugars such as glucose but also pentose sugars such as xylose
and arabinose together with inhibitors [44]. Simultaneous saccharification and co-
fermentation (SSCF) is a mode of operation that utilizes recombinant yeast strains
that can simultaneously ferment glucose and xylose [44].

2.6 Yeast xylose fermentation

The yeast S. cerevisiae has been used for production of food and beverages through-
out the ages. Over the last decades, it has been the most industrially utilized pro-
duction microorganism in biofuel production using fermentation of hexose sugars
for its robustness, high ethanol production and high ethanol tolerance [45]. How-
ever, wild-type yeast are unable to utilize xylose, which is a major component of
lignocellulosic biomass [46]. S. cerevisiae can utilize the same transport system for
xylose uptake as for glucose uptake. However, Ky values for the xylose transport
are reported to be at least 5-200 fold higher compared to glucose transport [47].
This means that glucose and xylose are only consumed simultaneously at glucose
limiting conditions [48].

There are two main different xylose utilizing pathways that have been implemented
into S. cerevisiae from other xylose utilizing microorganisms such as Scheffersomyces
stipitis [49]. One of the pathways is the xylose isomerase (XI) pathway, which cat-
alyzes the isomerisation of D-xylose to to D-xylulose [49]. This pathway is most
common in xylose utilizing bacteria [50]. This pathway has previously been inte-
grated into S. cerevisiae for ethanol production [51]. However, this pathway is not
commonly used for fungi. The other pathway is the xylose reductase (XR)/xylitol

8
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dehydrogenase (XDH) pathway, which catalyzes a two step reaction where D-xylose
is reduced to D-xylitol and D-xylitol is then oxidized to D-xylulose which is de-
pendent on the co-factors NAD(P)H and NAD™ respectively [49]. S. cerevisiae can
slowly metabolize xylulose, the ketoisomer of xylose [46]. It is then possible to enable
xylose consumption in S. cerevisiae by introducing a xylose isomerisation pathway
from another xylose utilizing microorganism [46].This pathway is most common in
most xylose utilizing fungi [50]. The S. cerevisiae strain KE6-12A, used in this
project, utilizes the XR/XDH pathway [52]. In either pathway, D-xylulose is then
phosphorylated into D-xylulose 5-phosphate by xylulokinase (XK), which is further
metabolized in the pentose phosphate pathway [50]. This reaction is dependent on
the phosphorylation potential and energy charge of the cell as it uses ATP. There
is an intracellular redox imbalance that occurs in most naturally xylose fermenting
yeasts due to the difference in co-enzyme specificities of XR and XDH [50]. XR
is primarily NADPH dependent while XDH is strictly NAD" dependent [50]. This
results in excretion of xylitol as by-product [50].
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Methods

3.1 Raw material

The pre-treated raw material was provided by the SP Biorefinery Demo Plant (Orn-
skoldsvik, Sweden). The spruce tips, needles and branches were pre-treated by
HySO4 (1% (w/v)) catalyzed steam treatment where the temperature and residence
time in the pretreatment reactor were varied into 13 different combinations according
to a design of experiments. These 13 different combinations are divided into 3 groups
for further reference. The star points (materials MAT.IB.100-102 and MAT.IB.112),
the center points (MAT.IB.106-109) and the edge points (MAT.IB.103-105 and
MAT.IB.110-111). The compositions and pretreatment conditions of all 13 materials
have previously been determined (Table A.1) [53].

3.2 Strain and media

The strain used in all experiments was the recombinant S. cerevisiae mutant KE6-
12A [54]. It was chosen for it’s ability to co-ferment glucose and xylose. The strain
was maintained as a frozen 30 % glycerol stock in -80 °C. The media used in all
shake flask preculture cultivations was YPD medium with yeast extract (10 g 1I'!),
bacto peptone (20 g 1'') and glucose (20 g I''). The media used in the bioreactor
preculture cultivations was YPD medium with yeast extract (10 g I'!), bacto peptone
(20 g 1Y), glucose (10 g I'') and the addition of xylose (5 g I'') to adapt the cells
for xylose consumption. The pH of the bioractor YPD medum was also initially
adjusted to pH 5.0 with HCI (1 M). YPD agar plates with yeast extract (10 g I'!),
bacto peptone (20 g 1), glucose (20 g I'') and agar (20 g 1'') were used to measure
colony forming units.

11
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3.3 Preculture fermentations

The yeast strain was propagated in pre-cultures prior to SSCF with the pre-treated
spruce tips, needles and branches. The yeast was first inculated into shake flasks
directly from glycerol stocks. As the cells reached stationary phase, they were
transferred to a bioreactor for further propagation. This was necessary to achieve the
high cell concentration needed for the fermentation in the lignocellulosic material.

3.3.1 First preculture: Shake flasks

Duplicate 500 ml shake flasks with a working volume of 100 ml, were inoculated
with 400 nl glycerol stock of the yeast strain. The shake flasks were incubated in a
shaking incubator (30 °C, 180 rpm). Cells from one of the duplicates were chosen
as inoculum for the bioreactor.

3.3.2 Second preculture: Bioreactors

Cell suspension from the first pre-culture shake flasks was inoculated in a 3.2 1
bioreactor (Labfors, Infors AG, Switzerland) with a working volume of 1 1. The
bioreactor was run at 600 rpm stirring speed, 1 vvm air flow rate and pH set point
of 5.0. KOH (4 M) was used as base titrant to perform one-sided pH control. As
the cells reached stationary phase, 2 h after the consumption of acids, indicated by
a sharp peak in pH and offgas COs, the cells were transferred to the SSCF shake
flask system. 10 min prior to cell harvest, the stir speed was reduced to 300 rpm to
adapt the cells to the lower oxygen concentrations of the SSCF shake flask system.
The harvested cells were washed with sodium citrate buffer (1 M) before transfer.
The cell suspension from the bioreactor was centrifuged (5 min, 5000 rpm, 4 °C).
The supernatant was discarded and the pellet was re-suspended in 40 ml sodium
citrate buffer (1 M). The new cell suspension was centrifuged again (5 min, 5000
rpm, 4 °C) and the supernatant was discarded. The wet cell weight (WCW) after
centrifugation was recorded and resuspended in the same volume in ml of sodium

citrate buffer (1 M) as the WCW recorded.

3.4 Simultaneous saccharification and co-fermentation

Each raw material was fermented in triplicate in a previously developed shake flask
system [53]. The SSCF shake flask system utilized 500 ml shake flasks with a total
working weight of 125 g, 10 mass % WIS, 9.5 filter paper units (FPU) (g WIS)!,
0.1 mg cells (g WIS)™? and 50 mmol kg! sodium citrate buffer. The enzymes used

12
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for the hydrolysis was the Cellic CTEC 2 mixture (LOT #: SLBS6227). The shake
flasks were incubated in a shaking incubator (31.5 °C, 180 rpm). The environment
inside the shake flasks was kept micro aerobic by nitrogen sparging. The nitrogen
gas was moisturized by with sterile MilliQ) water. The initial pH of the fermented
slurry was adjusted to 5.0 with NaOH (4 M). The fermentation was run for 72 h
and samples were taken at 0, 3, 6, 9, 24, 33, 48, 57 and 72 h. Samples were taken
by opening the shake flasks and transferring complete slurry to falcon tubes via
custom cut serologigal pipette tips. The liquid and solid fraction of the samples
were separated by centrifugation (5000 rpm, 12 min, 4 °C).

3.5 Analytical methods

Samples taken during SSCF experiments were analyzed in terms of cell viability,
contents of the liquid fraction and WIS.

3.5.1 Cell viability

Cell viability was evaluated using colony-forming unit (CFU) assays and cell enu-
meration using methylene blue staining in a hemocytomceter (Neubauer chamber).
Viable cells can be defined as alive, metabolically active and culturable cells.

Samples taken at 0, 24, 48, and 72 h were diluted to a 10* dilution and streaked
on YPD agar plates. For materials MAT.IB.100 to MAT.IB.102 as well as one of
the triplicates of MAT.IB.103, the samples were diluted to a 10! dilution before
streaking for all time points except 72 h. Each shake flask sample was streaked in
triplicate, generating triplicate plates per shake flask triplicate. The plates were
incubated at 30 °C for three days. The number of CFUs were then calculated.

The colony forming units (CFU, CFU ml!) where calculated by multiplying the
number of colonies counted (n) with the dilution factor (d) and divided by the
volume (V') used to inoculate the plates (0.1 ml) (Equation 3.1).

nd
CFU = — 3.1
i (3)

Samples taken at 0, 3, 6, 24, 33, 48, 57 and 72 h were serial diluted to a 10 dilution
and the number of cells was counted in a Neubauer chamber. 20 pl of methylene
blue was added per ml of sample to differentiate dead and alive cells. For materials
MAT.IB.100 to MAT.IB.102 as well as one of the triplicates of MAT.IB.103, the
samples were diluted to a 10 dilution before cell counting for all time points except

72 h.
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3. Methods

The cell concentration (X, cells ml'') was calculated by multiplying the number of
alive cells (V) with the volume of the square (V') divided by the dilution factor
(d) and the number of squares counted. Five squares were counted, the four edge
squares and the center square (Equation 3.2).

NV

X =" (3.2)

The specific growth rate (i, h'') was calculated as an average between consecutive
time points using the previously calculated cell concentration (X) (Equations 3.3-
3.7).

dX
=X .
o = H (3.3)
1
—dX = 4
Xd pdt (3.4)
o lx "
—dX = t 35
o X ", (3.5)
X
ln(y;) = p(ty —t2) (3.6)
In(£1)
— 2
— (3.7)

3.5.2 Fermentation products and sugars

Samples from all time points were centrifuged (5000 rpm, 12 min, 4 °C). The liquid
fraction was removed and filtered through nylon filters (0.2 pm). The liquid fraction
samples were then analyzed via high-performance liquid chromatography (HPLC)
[55]. A Jasco UV-RI HPLC system using a Phenomenex Rezex ROA-Organic Acid
H+ (8 %) 150 x 7.8 mm LC column. Both a RI-4030 RI and a UV-4075 UV /VIS
detector were used where the detection was made at 210 nm. The samples were run
for 45 min and eluted at 80 °C using HoSO, (5mM) as mobile phase at a flow rate
of 0.8 ml min™. Standards used were serial diluted into 1:1, 1:2, 1:4, 1:8, 1:32 and
1:64 times dilutions (Table B.1).

The overall ethanol yield on glucose was calculated by dividing the titer of ethanol
at a specific time point (Cgihanol(t)) with the titer of glucose at time 0 (Cgrucose(to))-
The total liquid volume (V') in the shake flasks was used to achieve a unit of gghanol
per gaucose- Lhe total working weight of the shake flask (m) in grams adjusted
for the fraction of WIS (W 1S) together with the fraction of cellulose (Fcelulose) and
the anhydrous correction factor for cellulose (0.90) was used to take the amount of
cellulose into account (Equation 3.8).

v _ C’Ethanol (t) VL
Ethanol/Glucose CGlucose (t(] ) VL + O.QOFCellulose Wlsmtot

(3.8)
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The overall ethanol yield on glucose and xylose was calculated similarly to Equation
3.8 but with the addition of xylose concentration at time 0 (Cxylose t,), the fraction
of xylan (Fxylan) and the anhydrous correction factor for xylan (0.88) (Equation
3.9)

Y Bthanol /Gt Xylose = CEthanol WV,
anol/Glucose+Xylose CGlucose (tO)VL+O‘9OFCelluloseWlsmt0t+CXylose (to)VL +0.88ny1an WISmyint

(3.9)

The volumetric ethanol production rate (rgeanci(t)) at a specific time point was
calculated by dividing the titer of ethanol of the two surrounding time points with
the time of the specific time point. The rate is also adjusted based on the uneven
distance between the time points (Equation 3.10).

— _tx=te1 CBthanol (1) =CBthanol (%) | fxt1=tx Cthanol () ~CEthanol (tx-1)

TEth t
Et anol( x) t 1—tx-1 tyr1—tx tx+1*tx—1 tx— ttx_1

3.5.3 Water insoluble solids

The solid fraction of the centrifuged samples were analyzed in terms of WIS con-
tent [56]. The solid fraction samples were centrifuged (20 min, 5000 rpm, 4 °C).
The glucose concentration was measured in the supernatant using colorimetric test
strips (MQuant). If the glucose concentration was greater than 50 mg I’ the su-
pernatant was discarded and the pellet was resuspended in 30 ml MilliQQ water. The
centrifugation and resuspending was repeated until the glucose concentration was
lower than 50 mg 1!,

Aluminum dishes were predried in a convection oven at 105 °C for 24 h and weighed.
1-3 g of wet solid fraction samples were placed on the pre-dried aluminum dishes
inside a convection oven at 105 °C for 24 h. The dried samples were then placed
inside a desiccator and let to cool down for 30 min and then weighed.

The WIS (WIS, g dry sample weight / g wet sample weight) in the samples was
calculated as a mass fraction using the wet- and dry weights of the solid fraction
samples. The wet samples were washed to reduce glucose concentration to below
50 mg I"" and taken into account in the calculations, (Mmgample weight after washing) and

(mSample weight before WaShing) (Equatjon 311)

MDry sample weight + Aluminum dish — MAluminum dish ""'Sample weight after washin
WIS = 100D semple veig ple welg -

MWet sample weight MSample weight before washing

(3.11)
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4

Results

4.1 Preculture fermentations

The CO4 and the dissolved oxygen (DO) in the offgas was used to predict the state of
the cells during the fermentation (Figure 4.1). There were 2 main peaks in the COy
offgas. The first peak was the end of the sugar consumption phase and the second
peak was the end of the ethanol consumption phase indicated by rapid consumption
of accumulated acetate [57]. Cells were harvested 10 min after the second CO; offgas
peak as it was assumed that the cells were in stationary phase at this point and thus
more robust [58].

25 —— Preculture batch 1 —— Preculture batch 1
. 100 .
- - - Preculture batch 2 - -~ Preculture batch 2
2 Preculture batch 3 5 Preculture batch 3
2 80 rec e batcl
-~ Preculture batch 4 Preculture batch 4
9 15 <60
5 s
= 1+ — a 40-
o
0.5 20
0 0
L L
0 L 10 15 20 2‘3 0 5 10 15 20 25
Time (h) Time (h)
() (b)

Figure 4.1: Offline CO, and DO analysis of the preculture batch fermentations.
(a) CO4 percentage in the offgas sensor. (b) DO percentage in the offgas sensor.

4.2 Fermentation products and sugars

Values below the limit of detection are presented as 0. These concentrations cor-
respond to a peak area lower than a 1:64 dilution of the standard used to identify
the peak. Ethanol was produced in titers up to about 12 gL' during the first 9 h
of SSCF (Figure 4.2, Table C.1). After the first 9 h, the ethanol production leveled

17



4. Results

out and decreased. This was true for all points in the design of experiments with
the exeption of material MAT.IB.102. The star points showed slightly higher titers
compared to the other points (Figure 4.2a).

20 ‘ ‘ ‘ 20 ‘ ‘ ‘
—& MAT.IB.100 —« MAT.IB.106
—+ MAT.IB.101 —+— MAT.IB.107
| MATIB.102 | 5] | MAT.IB.108
—— MAT.IB.112| = — MAT.IB.109
=
3 10}
|
= 50
80 0 80
Time (h) Time (h)
(a) (b)
20
‘ ‘ ‘ ——MAT.IB.103
—o MAT.IB.104
150 i MAT.IB.105
fp —e~ MAT.IB.110
= MAT.IB.111
3
=1
<
=
m
80
(c)

Figure 4.2: Ethanol concentration with standard deviation for all 13 materials.
(a) The star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The center
points (materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-105
and MAT.IB.110-111).

Glucose was initially released during the first 3 h after which it was rapidly consumed
for 6 h (Figure 4.3, Table C.1). After the first 9 h of SSCF the glucose concentra-
tion increased in all materials with the exceptions of MAT.IB.100, MAT.IB.102,
MAT.IB.103 and MAT.IB.110. Glucose was steadily released rather than consumed

in the centerpoints.

Hemicellulose concentrations, as the sum of xylose, mannose and galactose, were
mostly steady. The hemicellulose consumption that could be observed was slower
and occurred later in comparison to glucose (Figure 4.4, Table C.1). Materials
MAT.IB.100, MAT.IB.102 and MAT.IB.103 are the only materials where there was
noticeable hemicellulose consumption. This consumption started after 20 h of SSCF'.
The hydrolysis of these sugars was slower compared to the hydrolysis of glucose.

Xylitol was rapidly produced after 6 h of SSCF after which the titers leveled out
(Figure 4.5, Table C.1). The concentrations were fairly similar in all materials.
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Figure 4.3: Glucose concentration with standard deviation for all 13 materials.
(a) The star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The center
points (materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-105
and MAT.IB.110-111).
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Figure 4.4: Hemicellulose concentration with standard deviation for all 13 materi-
als. (a) The star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The cen-
ter points (materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-
105 and MAT.IB.110-111).
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Figure 4.5: Xylitol concentration with standard deviation for all 13 materials. (a)
The star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The center points

(materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-105 and
MAT.IB.110-111).
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Cellobiose was initially released during the first 6 h of SSCF after which it was
hydrolyzed until 24 h into the SSCF (Figure 4.6, Table C.1). After 24 h of SSCF,

there was a clear trend that cellobiose was released rather than hydrolyzed.
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Figure 4.6: Cellobiose concentration with standard deviation for all 13 materials.
(a) The star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The center
points (materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-105

and MAT.IB.110-111).

There was an unknown compound found in all samples during HPLC analysis. It
was not identified and increased in detector response during the first 24 h of SSCF
after which it leveled out (Figure 4.7, Table C.1). The unknown peak co-eluted with
cellobiose at 6 minutes and was detected by the UV detector.
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Figure 4.7: HPLC peak area with standard deviation for all 13 materials. (a) The
star points (materials MAT.IB.100-102 and MAT.IB.112). (b) The center points
(materials MAT.IB.106-109). (c) The edge points (materials MAT.IB.103-105 and
MAT.IB.110-111).
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4.3 Ethanol yields and rates

The final ethanol yields on both glucose and glucose together with hemicellulsoses
after 72 h of SSCF are expressed as grams of ethanol per grams of sugars (Figure
4.8, Table C.2). The highest yields were observed in materials MAT.IB.100 and

MAT.IB.102.
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Figure 4.8: The ethanol yield of ethanol on both glucose and glucose together with
hemicellulose with standard deviation after 72 h of SSCF.

The volumetric ethanol production rate fluctuated greatly over the fermentation
time (Figure 4.9, Table C.2). The rates generally increased in all materials during
the first 9 h of fermentation. The rates in all 13 materials, other than MAT.IB.100

and 102, were low 24 h of fermentation.
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Figure 4.9: Average ethanol production rate with standard deviation for all 13
materials at 3, 9 and 24 h. (a) The star points (materials MAT.IB.100-102 and
MAT.IB.112). (b) The center points (materials MAT.IB.106-109). (c¢) The edge
points (materials MAT.IB.103-105 and MAT.IB.110-111).
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4.4 Water insoluble solids

The WIS of all 13 materials did not show a clear trend but generally increased from
an average of 9.65 % to an average of 10.6 % during 72 h of SSCF. (Figure 4.10,
Table D.1).
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Figure 4.10: The WIS expressed as total percent of water insoluble solids for all
13 materials with standard deviation.

4.5 Cell viability

The cell viability was evaluated by counting cells in a Neubauer chamber as well as
calculating CFUs. The number of cells counted in the Neubauer chamber generally
decreased between 0 h and 3 h after which the cell count was overall stable (Figure
4.11, Table E.1). In the case of materials MAT.IB.100 to one of the triplicates of
MAT'.IB.103, the samples were diluted so much that there were no observable cells to
count. Materials MAT.IB.100 to one of the triplicates of MAT.IB.103 were serially
diluted to a 10 dilution while all other materials were diluted to a 10! dilution.
The standard deviation of each sample was quite high.

In general, the CFU of all materials decreased after 24 h after which stable low
values were reached (Figure 4.12, Table E.1). In some cases, such as MAT.IB.100
from zero to 48 h, there were too many colonies to count and it was assumed there
were 500 colonies or more. 500 colonies results in a CFU of 5 x 10" CFU ml™.
Materials MAT.IB.100 to one of the triplicates of MAT.IB.103 were diluted to a
107! dilution while all other materials were serially diluted to a 10 dilution.

The growth rate was calculated using Equation 3.7 and was overall low (Figure
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4.13, Table E.1). Materials MAT.IB.100, MAT.IB.101 and MAT.IB.102 showed the
highest growth rates between 0.2 and 0.4 h'! at 57 h of SSCF.
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Figure 4.13: Specific growth rate of the yeast with standard deviation during
SSCF in all 13 materials. (a) The star points (materials MAT.IB.100-102 and
MAT.IB.112). (b) The center points (materials MAT.IB.106-109). (c¢) The edge
points (materials MAT.IB.103-105 and MAT.IB.110-111).

29



4. Results

30



D

Discussion

5.1 Preculture fermentations

The preculture fermentations were mostly similar in terms of offgas CO, and DO,
with the exception of the first batch. This batch had a delayed and higher first offgas
COg peak, indicating that the yeast cells were in the initial sugar consumption phase
for longer compared to the subsequent batches (Figure 4.1a). One possible reason for
this could be that the preculture fermentation media was wrongly prepared, causing
the sugar concentration to be higher in this batch. The ethanol consumption phase
was also longer in the first preculture batch. Higher concentrations of sugars could
lead to more ethanol produced, assuming the sugar concentrations are not too high,
which would cause substrate inhibition.

Similarly to the offgas CO,, the offgas DO was also slightly delayed in the first
preculture batch (Figure 4.1b). As the ethanol consumption phase lasts longer the
cells are able to consume oxygen longer.

The harvested cells seemed to be in similar growth phases in all preculture batches
thanks to the experimental design. Cells were taken at the same amount of time
after the ethanol consumption phase had ended, indicated by the second COs offgas
peak.

5.2 Fermentation products and sugars

A maximum concentration of approximately 12.5 g I'! ethanol was produced dur-
ing SSCF with material MAT.IB.100 after 24 h of fermentation (Figure 4.2a). The
ethanol concentration leveled out and even decreased after 24 h of SSCF in all mate-
rials with the exception of MAT.IB.102 (Figure 4.2). This is an indication that the
ethanol evaporated into the nitrogen gas stream over time. Material MAT.IB.102
showed the highest final titer of approximately 10 g I'! ethanol. It is possible that
there were less ethanol evaporation in these shake flasks but it is also possible that
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the produced ethanol concentration were high enough to not be as affected by the
evaporation. Assuming the evaporation rate is different in each of the shake flask
triplicates there would be highly varying results and thus a large standard devia-
tion. The three materials that displayed the highest ethanol titers are materials
MAT.IB.100, MAT.IB.102 and material MAT.IB.103. There are quite large stan-
dard deviations within the MAT.IB.103 samples. 1 of the 3 shake flasks were run at
different times. It could be a possibility that the cells used were in different viabil-
ity levels since they come from different preculture batches. Material MAT.IB.100
was pretreated with low temperature and long time and materials MAT.IB.102
and MAT.IB.103 were pretreated with high temperature and short time. Mate-
rials MAT.IB.100 and MAT.IB.103 have fairly high severity factors (4.36 and 4.20)
while MAT.IB.102 has a fairly low severity factor (3.91). This makes it difficult
to connect the pretreatment strategy to ethanol titers. The remaining materials
display similar trends in ethanol titers where the titer reaches approximately 4 g 1"t
after 9 h of SSCF after which the ethanol concentration starts to level out and even
decrease, possibly due to ethanol evaporation.

The yeast were able to consume both glucose and hemicelluloses to the greatest
extent during SSCF with materials MAT.IB.100 and MAT.IB.102 (Figures 4.3a and
4.4a). These materials have some of the lower concentrations of glucose and mod-
erate to high concentrations of xylose (Table A.1). Too high glucose concentrations
will inhibit xylose consumption in yeast, this would mean that a lower glucose con-
centration is favorable for co-fermentation of glucose and xylose which was observed
in the SSCF experiments (Figures 4.2a, 4.3a and 4.4a). This could also be observed
during SSCF with material MAT.IB.110, which had a fairly high glucose consump-
tion but low hemicellulose consumption (Figure 4.3c and 4.4c). This material has
a higher initial glucose concentration compared with materials MAT.IB.100 and
MAT.IB.102. Since the hemicellulose consumption in material MAT.IB.110 is lower
compared to materials MAT.IB.100 and MAT.IB.102, there could be indications
that pretreatment processing methods with moderate temperature and and time
could be unfavorable for glucose and xylose co-consumption in SSCF. A way to
deal with the issue of too high glucose concentration could be the use of controlled
feeding of the substrate by operating in controlled fed-batch mode. This enables
high gravity, high WIS substrates to be used during the fermentation. The fact
that the hemicellulose was released slower than glucose, and in some cases stayed
constant, could be an indication that most of the hemicelluloses are released during
pretreatment and not hydrolyzed by the enzyme mixture.

Xylitol is a byproduct of xylose fermentation with yeasts that has the XR/XDH
pathway. Xylose is metabolized into xylitol, which is then further utilized in the
yeast metabolism via xylulose. Production of xylitol is then a sign of xylose con-
sumption, but with low xylitol conversion. This xylitol excretion is due to an intra-
cellular redox imbalance caused by the different co-enzyme specificities of XR and
XDH. Xylitol production could thus be a sign of xylose consumption where the cells
are unable to further metabolize xylitol. The xylitol titers are fairly similar in all
materials (Figure 4.5). Xylitol starts to be produced at 6 h into the SSCF. It is
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at around this time, 6 to 9 h, that the hemicellulose starts to be consumed in the
cases where it decreases. This could an indication of xylose consumption. However,
all materials show some xylitol production but not all materials show hemicellulose
consumption.

Cellobiose is initially released during the first 3 h of SSCF after which it decreases
and then released again after 24 h (Figure 4.6). The cellobiose increase after 24 h
could be a sign that the [-glucosidase in the enzyme mixture could not cope with
the inhibitor levels.

There was a significant unidentified peak observed during HPLC analysis (Figure
4.7). This could to be some kind of fermentation byproduct that was produced.
The highest peak areas was observed in materials MAT.IB.106, MAT.IB.107 and
MAT.IB.109. These materials also had some of the lower ethanol productions and
sugar consumptions. This could be an indication that the unknown compound was
some form byproduct that the cells excreted during stress from low sugar environ-
ments or environments where the sugars were unavailable to the yeast. The peak
areas for Materials MAT.IB.100 and MAT.IB.102 are some of the lower areas. Since
these materials have higher ethanol titers, it is also a possibility that the peak could
due to a detoxification process.

The highest ethanol yields were observed during SSCF with materials MAT.IB.100
and MAT.IB.102 (Figures 4.8). These materials were pretreated under different
conditions. MAT.IB.100 was pretreated under low temerature and long time while
MAT.IB.102 was pretreated under high temperature and short time. The severity
factor of material MAT.IB.100 (4.36) is also higher than material MAT.IB.102 (3.91).
Like in the case of ethanol titer, it is difficult to connect pretreatment strategies to
the ethanol yield or rate. The volumetric ethanol production rates does not seem to
correlate well with the overall ethanol yields (Figures 4.8 and 4.9). The rates during
the first 9 h of the experiments were not noticeably higher in materials MAT.IB.100
and 102, which had the higher yields. This could be due to longer fermentation
times. This is also observable in the CFU results, where the calculated CFU started
to decrease later in materials MAT.IB.100 and 102 compared to the other materials.

5.3 Water insoluble solids

The WIS of all materials stayed consistently at around 10 % with the exception of
MAT.IB.103, which increased by approximately 6.5 % (Figure 4.10). This material
has one of the lowest inherent WIS values (Table A.1). The WIS levels of approx-
imately 10 % shows that the media preparation was successful since the aiming
point was to have 10 % in all shake flasks. The slight increase in some cases could
be due to the consumption of some of the liquid fraction in the media since the solid
fraction is unavailable for the cells to ferment. It is possible it could be because of
yeast growth or possibly due to uneven sampling. Another reason could be that the
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increase in WIS was due to evaporation.

5.4 Cell viability

Cell counting in the Neubauer chamber indicated that the cells were able to, at
the very least, survive in the pre-treated spruce slurry (Figure 4.11, Table E.1).
However, the CFUs did decrease to low values during the first 24 h (Figure 4.12,
Table E.1). This indicates that cells able to survive after 24 h did not spend much,
if any, energy on growth. This could be due to the cells losing their ability to
grow in fresh YPD media when removed from the spruce slurry. At this point the
cells were viable but not culturable. Since the ethanol concentration and sugar
consumption rate had started to level out at this point, the cells likely spent most
energy on maintenance and survival or they had become inactivated. The materials
that do have CFUs greater than zero after 74 h are materials MAT.IB.100-103
and MAT.IB.110. These materials also has some of the higher sugar consumption
rates and/or ethanol production rates. Materials MAT.IB.100 and MAT.IB.102
had high CFUs for up to 48 h of SSCF. This is most likely due to the fact that
samples from these material were not diluted enough before 48 h and the amount
of colonies were then too numerous to count. It seems likely that if samples from
these materials would have been diluted more before 48 h of SSCF, the CFU would
have followed a similar trend as the other materials. The large standard deviation
associated with the cell concentration renders it difficult to observe any distinct
trends differentiating the materials. This may be due to the difficulty to accurately
count and differentiate cells from lignocellulosic media. The samples could have
been diluted further. However, this would cause too few cells to be counted in the
chamber. An example of this is samples from materials MAT.IB.100-102 which were
diluted more than the other samples from the other materials (Figure 4.11a). The
materials that do seem to yield slightly higher cell concentrations, MAT.IB.104-106,
have in general higher initial sugar concentrations, such as glucose and xylose (Table
A.1). These materials also have fairly high concentrations of most inhibitors found
in the media. This could be an indication that the robustness in the yeast cells
makes sugar concentration more important than inhibitor concentration in terms of
cell viability. Weak acids in lignocellulosic media have previously been shown to
reduce the amount of available ATP for biomass formation [19]. This among with
other various inhibitors found in the pretreated spruce tips, needles and branches
have been shown to inhibit growth overall. This can be observed in the reduced
CFUs in all materials.

The growth rates fluctuated between negative and positive values and were in general
low (Figure 4.13). This indicates that the yeast had a difficulties to grow in the
media. However, the yeast cells harvested from the preculture batches were already
in the stationary phase before transfer to the SSCF shake flask system. Since the
cells were in stationary phase the growth rate would then be low. The materials that
displayed the highest growth rates are materials MAT.IB.100-102. These materials
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also enable some of the higher sugar consumptions.

5.5 Pretreatment conditions

Materials MAT.IB.100 and 102 displayed the highest titers, rates and yields (TRY)
as well as cell viability. Material MAT.IB.100 were pretreated under low temperature
and long time while material MAT.IB.102 were pretreated under high temperature
and short time. The severity factor also differed between the two materials. Material
MAT.IB.100 had a higher severity factor (4.36) while material MAT.IB.102 had a
lower severity factor (3.91). This makes it difficult to make definitive statements
about preferable pretreamtment conditions. There are, however, indications that if
the pretreatment temperature is high, the process time needs to be low or vice versa
to reach higher TRY and cell viability. One reason for the higher TRY in materials
MAT.IB.100 and 102 could be due to lower inhibitory effects. This could possibly
be observed in the volumetric production rates and CFU counts as it is a possibility
that the fermentation times were longer in these materials (Figures 4.9 and 4.12).
Another possibility could be the higher release of available sugars in these materials
that the yeast were able to ferment. This is as these materials displayed some of the
more favorable sugar consumption trends (Figures 4.3 and 4.4).
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Conclusion

A reliable preculture propagation method was developed that generated enough cell
mass which was in a similar physiological state each batch, prior to cell harvest and
transfer to a SSCF shake flask system.

Acid-catalyzed steam pretreated spruce tips, needles and branches could be fer-
mented during SSCF in small lab scale experiments. The highest TRY were observed
in materials MAT.IB.100 and MAT.IB.102. The yeast were also able to consume the
most amount of sugars in these materials. These materials were, however, pretreated
under different process conditions. Material MAT.IB.100 were pretreated under low
temperature and long time while material MAT.IB.102 were pretreated under high
temperature and short time. Furthermore, the severity factor also differs between
the two materials. Material MAT.IB.100 has a higher severity factor (4.36) while
material MAT.IB.102 has a lower severity factor (3.91). Thsi may be an indication
thet thae severity factor puts too much weight in wither time or temperature. This
renders it difficult to draw a conclusion connecting pretreatment with fermentability.
Further statistical testing is required to make more certain conclusions and recom-
mendations. Some results also display high standard deviation within replicates.
This will also increase uncertainty of the results.

The ethanol yield is an important factor in determining the process economy of
bioethanol production using SSCF processes [35]. Based on the trends observed,
one indication seems to be that either high temperature and short process time or
low temperature and long process time could be the most beneficial pretreatment
process conditions in terms of final TRY using spruce tips, needles and branches.

One option to further evaluate the fermentability of the pretreated spruce tips,
needles and branches could be to perform the SSCF in larger lab scales operating
in fed-batch mode. By controlling the feed of substrate, enzymes and cells it is
possible to increase the gravity of the media without causing substrate inhibition in
the yeast. It is also possible to adapt the yeast cells to the fermentation media in
preculture propagations. Another option could be to perform further more rigorous
statistical testing that, unfortunately, was omitted due to time constraints in the
project.

37



6. Conclusion

38



10.

11.

12.

(

Bibliography

Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N. & Faruq, G. Bioethanol produc-
tion from renewable sources: Current perspectives and technological progress.
Renewable and Sustainable Energy Reviews T1, 475-501 (2017).

Vohra, M., Manwar, J., Manmode, R., Padgilwar, S. & Patil, S. Bioethanol pro-
duction: Feedstock and current technologies. Journal of Environmental Chem-
ical Engineering 2, 573-584 (2014).

Olsson, L. & Hahn-Héagerdal, B. Fermentation of lignocellulosic hydrolysates
for ethanol production. Enzyme and Microbial Technology 8, 312-331 (1996).
Aditiya, H. B., Mahlia, T. M., Chong, W. T., Nur, H. & Sebayang, A. H. Second
generation bioethanol production: A critical review. Renewable and Sustainable
Energy Reviews 66, 631-653 (2016).

Rastogi, M. & Shrivastava, S. Recent advances in second generation bioethanol
production: An insight to pretreatment, saccharification and fermentation pro-
cesses. Renewable and Sustainable Energy Reviews 80, 330-340 (2017).
Bertrand, E., Vandenberghe, L. P. S., Ricardo Soccol, C., Sigoillot, J.-C. &
Faulds, C. in Green Fuels Technology (eds Ricardo Soccol, C., Brar, S. K.,
Faulds, C. & Pereira Ramos, L.) 1st ed., 175-212 (Springer International Pub-
lishing, 2016).

Rytter, L., Johansson, K., Karlsson, B. & Stener, L.-G. in Forest BioEn-
ergy Production: Management, Carbon sequestration and Adaptation (eds Kel-
loméki, S., Kilpeldinen, A. & Alam, A.) 7-37 (Springer New York, New York,
NY, 2013).

Nigam, P. S. & Singh, A. Production of liquid biofuels from renewable re-
sources. Progress in Energy and Combustion Science 37 (2011).

Palmqvist, E. & Hahn-Hégerdal, B. Fermentation of lignocellulosic hydrolysates.
IT: Inhibitors and mechanisms of inhibition. Bioresource Technology 74, 25-33
(2000).

Gupta, A. & Verma, J. P. Sustainable bio-ethanol production from agro-residues:
A review. Renewable and Sustainable Energy Reviews 41, 550-567 (2015).
Jonsson, L. J., Alriksson, B. & Nilvebrant, N. O. Bioconversion of lignocellu-
lose: Inhibitors and detoxification. Biotechnology for Biofuels 6 (2013).
Almeida, J. R. M. et al. Increased tolerance and conversion of inhibitors in
lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical
Technology and Biotechnology 82 (2007).

39



7. Bibliography

13. Modig, T., Lidén, G. & Taherzadeh, M. J. Inhibition effects of furfural on
alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.
Biochemical Journal 363, 769-776 (2002).

14. Palmqvist, E., Almeida, J. S. & Hahn-Héagerdal, B. Influence of furfural on
anaerobic glycolytic kinetics of saccharomyces cerevisiae in batch culture. Biotech-
nology and Bioengineering 62 (1999).

15. Horvath, I. S., Franzén, C. J., Taherzadeh, M. J., Niklasson, C. & Lidén, G.
Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae
in Glucose-Limited Chemostats. Applied and Environmental Microbiology 69,
4076-4086 (2003).

16. Larsson, S. et al. The generation of fermentation inhibitors during dilute acid
hydrolysis of softwood. Enzyme and Microbial Technology 24, 151-159 (1999).

17. Russell, J. B. Another explanation for the toxicity of fermentation acids at low
pH: anion accumulation versus uncoupling. Journal of Applied Bacteriology 73,
363-370 (1992).

18.  Verduyn, C. in Quantitative Aspects of Growth and Metabolism of Microorgan-
isms (ed Stouthamer, A.) 325-353 (Springer, Dordrecht, 1992).

19. Verduyn, C., Postma, E., Alexander, W., And, S. & Van Dijken, J. P. Effect of
Benzoic Acid on Metabolic Fluxes in Yeasts: A Continuous-Culture Study on
the Regulation of Respiration and Alcoholic Fermentation. Yeast 8, 501-514
(1992).

20. Pampulha, M. E. & Loureiro-Dias, M. C. Combined effect of acetic acid, pH
and ethanol on intracellular pH of fermenting yeast. Applied Microbiology and
Biotechnology 31, 547-550 (1989).

21. Bauer, B. E. et al. Weak organic acid stress inhibits aromatic amino acid up-
take by yeast, causing a strong influence of amino acid auxotrophies on the
phenotypes of membrane transporter mutants. Furopean Journal of Biochem-
istry 270 (2003).

22. Palmgqvist, E., Grage, H., Meinander, N. Q., Rbel, B. & Gerdal, H.-H. Main and
Interaction Effects of Acetic Acid , Furfural , and p - Hydroxybenzoic Acid on
Growth and Ethanol Productivity of Yeasts. Biotechnology and Bioengineering
63, 46 (1999).

23. Klinke, H. B., Thomsen, A. B. & Ahring, B. K. Inhibition of ethanol-producing
yeast and bacteria by degradation products produced during pre-treatment of
biomass. Applied Microbiology and Biotechnology 66, 10-26 (2004).

24. Terada, H. Uncouplers of oxidative phosphorylation. Environmental Health
Perspectives 87, 213-218 (1990).

25.  Olofsson, K., Bertilsson, M. & Lidén, G. A short review on SSF - An inter-
esting process option for ethanol production from lignocellulosic feedstocks.
Biotechnology for Biofuels 1 (2008).

26. Ewanick, S. M., Bura, R. & Saddler, J. N. Acid-catalyzed steam pretreatment
of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to
ethanol. Biotechnology and Bioengineering 98, 737-746 (2007).

27. Alvira, P., Tomas-Pejo, E., Ballesteros, M. & Negro, M. J. Pretreatment tech-
nologies for an efficient bioethanol production process based on enzymatic hy-
drolysis: A review. Bioresource Technology (2010).

40



7. Bibliography

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Menon, V. & Rao, M. Trends in bioconversion of lignocellulose: Biofuels, plat-
form chemicals &amp; biorefinery concept. Progress in Energy and Combustion
Science 38 (2012).

Ravindran, R. & Jaiswal, A. K. A comprehensive review on pre-treatment
strategy for lignocellulosic food industry waste: Challenges and opportunities.
Bioresource Technology 199, 92-102 (2016).

Tian, X.-f., Fang, Z. & Guo, F. Impact and prospective of fungal pre-treatment
of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and
Biorefining 6, 335-350 (2012).

Viikari, L., Alapuranen, M., Puranen, T., Vehmaanpera, J. & Siika-aho, M.
in Advances in Biochemical Engineering/Biotechnology (ed Olsson, L.) 1st ed.,
121-145 (Springer-Verlag Berlin Heidelberg, 2007).

Bornscheuer, U., Buchholz, K. & Seibel, J. Enzymatic degradation of (ligno)cellulose.

Angewandte Chemie - International Edition 53, 1087610893 (2014).

Khare, S. K., Pandey, A. & Larroche, C. Current perspectives in enzymatic sac-
charification of lignocellulosic biomass. Biochemical Engineering Journal 102,
38-44 (2015).

Cragg, S. M. et al. Lignocellulose degradation mechanisms across the Tree of
Life. Current Opinion in Chemical Biology 29, 208-119 (2015).

Sassner, P., Galbe, M. & Zacchi, G. Techno-economic evaluation of bioethanol
production from three different lignocellulosic materials. Biomass and Bioen-
ergy 32, 422-430 (2008).

Wang, R., Unrean, P. & Franzén, C. J. Model-based optimization and scale-up
of multi-feed simultaneous saccharification and co-fermentation of steam pre-
treated lignocellulose enables high gravity ethanol production. Biotechnology
for Biofuels (2016).

Janssen, M., Tillman, A.-M., Canella, D. & Jgrgensen, H. Influence of high
gravity process conditions on the environmental impact of ethanol production
from wheat straw. Bioresource Technology 173, 148-158 (2014).

Wang, R., Koppram, R., Olsson, L. & Franzén, C. J. Kinetic modeling of multi-
feed simultaneous saccharification and co-fermentation of pretreated birch to
ethanol. Bioresource Technology (2014).

Koppram, R. & Olsson, L. Combined substrate, enzyme and yeast feed in si-
multaneous saccharification and fermentation allow bioethanol production from
pretreated spruce biomass at high solids loadings. Biotechnology for Biofuels 7
(2014).

Olofsson, K., Palmqvist, B. & Lidén, G. Improving simultaneous saccharifica-
tion and co-fermentation of pretreated wheat straw using both enzyme and
substrate feeding. Biotechnology for Biofuels 3 (2010).

Narayanan, V., Schelin, J., Gorwa-Grauslund, M., Van Niel, E. W. & Carlquist,
M. Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell
populations in early stationary phase. Biotechnology for Biofuels 10 (2017).
Tomas-Pejé, E. & Olsson, L. Influence of the propagation strategy for obtaining
robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and
glucose in lignocellulosic hydrolysates. Microbial Biotechnology 8, 999-1005
(2015).

41



7. Bibliography

43. Cardona, C. A. & Sanchez, O. J. Fuel ethanol production: Process design trends
and integration opportunities. Bioresource Technology 98, 2415-2457 (2007).

44. Koppram, R. et al. Simultaneous saccharification and co-fermentation for bioethanol
production using corncobs at lab, PDU and demo scales. Biotechnology for Bio-
fuels (2013).

45. Watanabe, S. et al. Ethanol production from xylose by recombinant Saccha-
romyces cerevisiae expressing protein-engineered NADH-preferring xylose re-
ductase from Pichia stipitis. Microbiology 153, 3044-3054 (2007).

46. Kotter, P. & Ciriacy, M. Xylose fermentation by Saccharomyces cerevisiae.
Applied Microbiology and Biotechnology 38, 776-783 (1993).

47. Pitkanen, J.-P., Aristidou, A., Salusjarvi, L., Ruohonen, L. & Penttild, M.
Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces
cerevisiae using continuous culture. Metabolic Engineering 5, 16-31 (2003).

48. Jeffries, T. W. & Jin, Y. S. Metabolic engineering for improved fermentation
of pentoses by yeasts. Applied Microbiology and Biotechnology 63, 495-509
(2004).

49. Sanchez Nogué, V. & Karhumaa, K. Xylose fermentation as a challenge for
commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters
37, 761-772 (2015).

50. Matsushika, A., Inoue, H., Kodaki, T. & Sawayama, S. Ethanol production
from xylose in engineered Saccharomyces cerevisiae strains: Current state and
perspectives. Applied Microbiology and Biotechnology 84, 37-53 (2009).

51. Van Maris, A. J. A. et al. in Biofuels. Advances in Biochemical Engineer-
ing/Biotechnology (ed Lisbeth Olsson) 179-204 (Springer, Berlin, Heidelberg,
2007).

52. Novy, V., Wang, R., Westman, J. O., Franzén, C. J. & Nidetzky, B. Saccha-
romyces cerevisiae strain comparison in glucose-xylose fermentations on defined
substrates and in high-gravity SSCF: Convergence in strain performance de-
spite differences in genetic and evolutionary engineering history. Biotechnology
for Biofuels 12 (2017).

53.  Sundberg, D. Influence of inhibitors on the hydrolysis of spruce residues (2018).

54. Tomas-Pejo, E., Bonander, N. & Olsson, L. Industrial yeasts strains for biorefin-
ery solutions: Constructing and selecting efficient barcoded xylose fermenting
strains for ethanol. Biofuels, Bioproducts and Biorefining 8, 626—634 (2014).

55. Sluiter, A. et al. Determination of Sugars, Byproducts, and Degradation Prod-
ucts in Liquid Fraction Process Samples: Laboratory Analytical Procedure
(LAP); Issue Date: 12/08/2006 (2008).

56. Sluiter, A. et al. Determination of Total Solids in Biomass and Total Dissolved
Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue
Date: 3/31,/2008 (2008).

57. Locher, G., Hahnemann, U., Sonnleitner, B. & Feichter, A. Automatic bio-
process control. 4. A prototype batch of Saccharomyces cerevisiae. Journal of
Biotechnology 29, 57-74 (1993).

58.  Werner-Washburne, M., Braun, E., Johnston, G. C. & Singer, R. A. Station-
ary Phase in the Yeast Saccharomyces cerevisiae. Microbiology and Molecular
Biology Reviews 57, 383-401 (1993).

42



A

Appendix 1

A.1 Raw material

The raw material was provided and pretreated by the SP Biorefinery Demo Plant
(Ornskoldsvik, Sweden) (Table A.1). The 13 different combinations are divided into
3 groups. The star points (materials MAT.IB.100-102 and MAT.IB.112), the center

points (MAT.IB.106-109) and the edge points (MAT.IB.103-105 and MAT.IB.110-
111).
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Appendix 2

B.1 High-performance liquid chromatography stan-
dards

The single standards and standard mixtures were serially diluted into 1:1, 1:2, 1:4,
1:8, 1:32 and 1:64 dilutions. (Table B.1)
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B. Appendix 2

Table B.1: Single standards and standard mixtures used to identify compounds in
the HPLC analysis.

HPLC standards
Substance name Concentration (g 1)
Single standards
Glucose 25
Galactose 25
Mannose 25
Xylose 25
Glycerol 5
HMF 10
Furfural 10
Dihydrated sodium citrate 15
Xylitol 10
Arabinose 25
Rhamnose 25
Fructose 25
Cellobiose 25
Ethanol 25
Levulinic acid 2.5
Sodium acetate 12.5
Formic acid 5
Ferulic acid 0.5
Sugar mix
Glucose 25
Galactose 25
Mannose 25
Xylose 25
Ethanol 25
Arabinose 25
Rhamnose 25
Xylitol 10
Cellobiose 25
Glycerol 5
Acid mix
Levulinic acid 2.5
Sodium acetate 12.5
Dihydrated sodium citrate 15
Formic acid 5
Lactic acid 5
Phenolics mix
HMF 10
Furfural 10
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Appendix 3

C.1 Fermentation products and sugars

The concentrations of the measured fermentation products and inhibitors was ob-
tained via HPLC measurements (C.1). Values below the limit of detection are listed
as 0. These concentrations correspond to a peak area lower than a 1:64 dilution of
the standard used to identify the peak.

The ethanol yields and rates were calculated using equations 3.8-3.10 (Table C.2).
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Appendix 4

D.1 Water insoluble solids

WIS was calculated as total percent of solids using Equation 3.11 (Table D.1).
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Appendix 5

E.1 Cell viability

The cell concentration were calculated using Equation 3.2 (Table E.1). Materials
MAT.IB.100 to MAT.IB.102 as well as one of the triplicates of MAT.IB.103, the
samples were diluted to a 10 dilution before cell counting for all time points except
72 h instead of a 107! dilution. The CFUs were calculated using Equation 3.1. Ma-
terials MAT.IB.100 to MAT.IB.102 as well as one of the triplicates of MAT.IB.103,
the samples were diluted to a 107 dilution before streaking for all time points ex-
cept 72 h instead of a 107 dilution. The growth rate was calculated using equations
3.3-3.7.
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