
Remote Operation and Connectivity for
ReLog

Master’s Thesis in Embedded Electronic System Design

ARMAN VASEI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Remote Operation and Connectivity for ReLog

ARMAN VASEI

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Remote Operation and Connectivity for ReLog

ARMAN VASEI

© ARMAN VASEI, 2021.

Supervisor: Per Larsson-Edefors, Department of Computer Science and Engineering
Advisor: Albin Anner, ReVibe Energy
Examiner: Lena Petersson, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Remote Operation and Connectivity for ReLog

ARMAN VASEI
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Vibration analysis is a process that monitors the magnitude and behavior of vibra-
tion signals within a component or structure, to detect potential harmful vibration
events and observe general condition of the system under test. ReVibe Energy has
developed the ReLog vibration data logger, a measurement tool used to record vi-
bration and temperature with very high precision. Few customers asked for time
synchronization feature on loggers since they need to keep track of time of impor-
tant events in different parts of a device. In this thesis we investigated possibility
of implementing time synchronization protocols on ReLog. We implemented a few
well-known protocols and achieved timing accuracy of 10 ms. We also implemented
a number of remote operation features for ReLog which makes it more simple to use
for remote applications in dangerous and inaccessible environments.

Keywords: Vibration Sensing, Time Synchronization, Data Streaming, Wireless.

v

Acknowledgements
I would like to express my special thanks of gratitude to Erik Godtman Kling and
Victor Börjesson who trusted me and gave me the opportunity to be part of the
ReVibe Energy. Secondly I’m extremely grateful to thank my superviors at ReVibe,
Albin Anner and Felix Eriksson, who guided and supported me through the project.
I would like to extend my sincere thanks to my academic supervisor, Per Larsson-
Edefors, who drew an outline for the thesis scope and gave precious comments on the
report. Finally I would like to thank my examiner, Lena Peterson, for her comments
and feedback on the report.

Arman Vasei, Gothenburg, June 2021

vii

Contents

Abbrevations xi

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Objectives . 2
1.2 Previous Works . 2
1.3 Limitations . 3
1.4 Thesis Outline . 3

2 Theory 4
2.1 ReLog Data Logger . 4
2.2 Clock Behaviour . 5
2.3 Network Layers and Protocols . 5
2.4 Time Synchronization Protocols . 6

2.4.1 Network Time Protocol . 7
2.4.2 Precision Time Protocol . 8
2.4.3 Reference Broadcast Synchronization 9
2.4.4 Other Time Synchronization Protocols 9

2.5 Data Streaming . 10
2.5.1 Transport Layer Protocols . 10
2.5.2 Message Queuing Telemetry Transport 10

3 Methodology and Tools 12
3.1 Hardware . 12

3.1.1 SAM D21 Xplained Pro . 12
3.1.2 ATWINC3400-XPRO . 13
3.1.3 NUCLEO-L4P5ZG . 13

3.2 Software Tools . 14
3.2.1 Microchip Studio . 14
3.2.2 STM32CubeIDE . 14

3.3 Implementation . 14
3.3.1 Time Synchronization System 15
3.3.2 Data Logger . 17

3.4 Triggers . 17

ix

Contents

4 Results 18
4.1 Clock Drift . 18
4.2 Time Synchronization . 19
4.3 Comparison of Protocols . 23
4.4 Time Synchronization for Data Logger 24
4.5 Data Streaming . 25
4.6 Triggers . 25

5 Discussion and Conclusion 27
5.1 Discussion . 27

5.1.1 Transport Layer Protocol . 27
5.1.2 PTP Experiment Results . 27
5.1.3 Offset . 27
5.1.4 Data Streaming Rate . 28
5.1.5 Integration into the Main Product 28
5.1.6 Triggers . 29

5.2 Conclusion . 29

Bibliography 30

x

Abbreviations

ADC Analog-to-Digital Converter
API Application Programming Interface
BLE Bluetooth Low Energy
FTSP Flooding Time Synchronization Protocol
HAL Hardware Abstraction Layer
MQTT Message Queuing Telemetry Transport
NTP Network Time Protocol
PPM Parts Per Million
PTP Precision Time Protocol
RBS Reference Broadcast Synchronization
RTC Real-Time Clock
SDIO Secure Digital Input-Output
SNTP Simple Network Time Protocol
SPI Serial Peripheral Interface
TC Timer/Counter
TCP Transmission Control Protocol
TPSN Time-sync Protocol for Sensor Networks
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
WSN Wireless Sensor Network

xi

List of Figures

2.1 ReLog data logger . 4
2.2 IEEE 802.11 WLAN relation to the network layers 6
2.3 NTP stratum levels . 7
2.4 NTP time synchronization . 8
2.5 PTP time synchronization . 8

3.1 SAM D21 Xplained Pro evaluation kit 12
3.2 ATWINC3400-XPRO . 13
3.3 NUCLEO-L4P5ZG development board 14
3.4 System block diagram . 15
3.5 Experimental system setup . 15

4.1 Clock drift and offset between server and client 18
4.2 Offset between server and client after applying SNTP 19
4.3 Distribution of offset between server and client after applying SNTP . 20
4.4 Offset between server and client after applying PTP 21
4.5 Distribution of offset between server and client after applying PTP . 21
4.6 Offset between server and client after applying RBS 22
4.7 Distribution of offset between server and client after applying RBS . . 22
4.8 Synchronized square waves with SNTP 23
4.9 Captured sine waves from two synchronized STM32 Nucleo boards . . 24
4.10 Cross correlation between captured signals 25
4.11 Vibration log without applied shock 26
4.12 Vibration log with applied shock . 26

xii

List of Tables

2.1 Comparison between time synchronization protocols 10

4.1 Comparison between time synchronization protocols 23

xiii

1
Introduction

The wireless sensor network (WSN) is one of the most important parts of internet
of things (IoT) systems. Sensors can communicate with various standards such as
WiFi, LTE, or Bluetooth low energy (BLE). One of the critical aspects within WSN
is time synchronization [1], which is important for many sensor network applications
that require very precise mapping of gathered sensor data with the time of the events.

Another important part of IoT systems are sensors. Sensors can measure various
information from temperature and humidity to position and motion [2]. One sig-
nificant application of sensors is vibration measurement. Vibration is movement or
oscillation of a device or component. The object can vibrate in two modes: free
vibration and forced vibration. Free vibrations are oscillations for which the total
energy and amplitude of vibration stays the same over time. Natural frequency
refers to the frequency at which a structure is going to oscillate after an impact.
Forced vibrations occur when the object is forced to vibrate at a specific frequency
by a periodic force. Forced vibration at or close to the natural frequency causes
resonance which means that over time the vibration can become quite large in am-
plitude. If a structure has natural frequencies that match normal environmental
vibration, then the structure vibrates more violently and probably collapses. That
explains why vibration measurement has great importance.

ReVibe has developed the "ReLog" vibration data logger [3], a measurement tool
which is able to record vibration and temperature with very high precision. The
ReLog data logger can sample data with rates between 125 Hz and 32 kHz. ReVibe
has recently been approached by a company in the oil industry. The company asked
if it is possible to implement time synchronization among several units of ReLog.
The reason for this request was that the company was going to install several units
of ReLog on different sides of a ship engine and it need to keep track of every
interesting event on all sides and compare the effect of each event on all sides, so
the loggers should capture data while they are synchronized in time. In the meeting
with ReVibe customer specified following requirements:

• Sample rates higher than 1 kHz will be seldomly used.
• Vibrations in the range of 0.3 -100 Hz are important.

So based on the given specification, a wireless communication between ReLogs
should be established and a time synchronization protocol has to be implemented
which must provide time accuracy of 1-5 ms.

1

1. Introduction

Several other customers asked ReVibe if it is possible to add some remote operation
features on ReLog. Some of the ReLog use cases are logging vibration inside mines
or engines. Since these environments are not easily accessible or sometimes even
they are dangerous, it is wiser to access data remotely. One merit of using WiFi
transmission is that it can be used for data streaming. Hence a WiFi connection
to another device or a cloud server could be a good solution. In general remote
operation is a necessary feature for data loggers. Another useful feature is ability
to log data on specific time and date or periodically. For this purpose an automatic
mechanism to start and stop data logging is required. Customers also asked for
acceleration triggers. Currently ReLog can save up till 128 GB of data. But that
may contain no important event. One of the solutions to solve this issue is to add
a shock detection mechanism to the logger. In this case ReLog start logging data
after receiving a significant shock.

1.1 Objectives
The main goals and objectives for this thesis are:

• Search and compare different wireless modules and choose the one with lower
cost and simpler available drivers and application programming interface (API).

• Implement various time synchronization protocols for accurate synchronization
of measurements and pick the best one in terms of timing accuracy.

• Combine the time synchronization system with ReLog to measure final achiev-
able time accuracy.

Our secondary goal is to investigate if the chosen module is suitable for data stream-
ing to another device or a cloud server. And our final goal is investigate if it is
possible to add time and acceleration triggers to the ReLog.

1.2 Previous Works
Currently customers buy ReLog for vibration measurements in mines or shipping
industry. Each ReLog will be installed in the desired location. After end of measure-
ment, ReLogs will be collected and connected to a host PC. Vibration data of each
ReLog can be plotted and investigated independently. Currently there is no support
for synchronization of two or more units of ReLog. To solve this issue we have to
find a suitable wireless transmission standard and implement a time synchronization
protocol between ReLogs.

Several time synchronization protocols have been proposed (e.g., network time pro-
tocol (NTP), reference broadcast synchronization (RBS), timing-sync protocol for
sensor networks (TPSN)) which are briefly described in [5]. These protocols differ in
terms of implementation and accuracy. Hilmersson and Gummesson [6] investigated
accuracy of existing protocols. They implemented the RBS protocol (method in
which receivers use broadcasts to compare clocks) on a network consisting of NINA-
B1[7] module, which only supports the BLE standard. They also investigated the

2

1. Introduction

impact of synchronization interval, network load, and number of sensors on accu-
racy. Other synchronization protocols were not implemented in this work and other
standards, such as WiFi, were not tested.

Sheng et al.[8] have implemented the RBS protocol over network of nRF24L01 by
Nordic Semiconductor [9] (which is now out-dated and replaced by newer products)
and achieved accuracy of 410 µs. But they have not mentioned which wireless trans-
mission standard they have used.

The limitation of previous works was they just implemented one specific time syn-
chronization protocol. They also did not give any details about their design decisions
and methodology. Our main goal is to implement well-known protocols as much as
possible to compare different protocols in terms of time accuracy. But similar to
the previous works we are going to limit ourselves to just one wireless transmission
standard which is WiFi.

1.3 Limitations
In this thesis we study the feasibility of implementing time synchronization for
ReLogs with aid of evaluation kits. But we do not integrate our solution into the
final product, since PCB design takes too long time and also the original firmware
of ReLog would have to be modified. Also the current package of ReLog is made of
metal which shields WiFi signals. So with current design, wireless module cannot
be integrated into ReLog.

1.4 Thesis Outline
The rest of this report is organized as follows:

• Chapter 2 starts with brief description of ReLog. It also presents the theory
behind time synchronization and describes well-known existing protocols.

• Chapter 3 introduces the hardware and software tools which we used in our
experiments. It also includes our methodology, proposed solutions and design
decisions.

• Chapter 4 contains the results of our experiments.
• Chapter 5 discusses interesting observations in results from chapter 4. It also

mentions some unexpected results and possible explanations for them. And
finally it ends with a conclusion.

3

2
Theory

In this chapter, the theory behind ReLog, clock drift, network layers, and also time
synchronization protocols will be presented.

2.1 ReLog Data Logger
ReLog is a data logger which is able to measure vibration and temperature. It
has two accerlerometers for measuring the vibration. The primary accelerometer
supports 4, 8, 16, and 32 kHz sampling rate. The secondary accelerometer is able
to sample data at rates 125, 250, 500, 1000, 2000, and 4000 Hz. Measurement of
temperature is optional. All these settings can be configured in the root folder of
ReLog before start of logging.

Figure 2.1: ReLog data logger

Each accelerometer samples data in three dimensions and each sample has two bytes.
All samples will be temporarily stored in a buffer and then they will be written into
an SD Card. Depending on size of the SD card (which can be 32, 64, or 128 GB)
and sampling rate, ReLog can record data up till 155 hours. The interface between
the accelerometers and ReLog processor is serial peripheral interface (SPI) and the

4

2. Theory

interface between processor and SD Card is secure digital input-output (SDIO).The
data logged by ReLog will be saved internally into .wav format which can be read
and plotted by VibInspect [4] software.

2.2 Clock Behaviour
The need for time synchronization comes from the behaviour of clocks in the com-
puter systems. According to [5], different nodes in a network can represent different
times due to three main reasons: The nodes have been started at different times, the
quartz crystals of each node might be running at slightly different frequencies which
cause divergence of the clock values from each other (clock skew), and the frequency
of the clock changes variably over time because of environmental conditions such as
temperature (clock drift).

In other words clock drift is an accumulated effect of a clock rate that differs from
reference time. If C(t) represents the clock time, for a perfect clock we have:

dC

dt
= 1 (2.1)

If this derivative is greater or less than 1, it means clock is faster or slower than
reference respectively. Also if the derivative is equal to 1 that does not mean the
clocks are synchronized, since they might have offset due to different initialization
times. The drift rate, which is measured as the offset between the clock and a precise
reference clock, is often expressed as a ratio in parts per million (PPM)[10].

2.3 Network Layers and Protocols
One of the most well-known models for networks is open systems interconnection
(OSI) [11] model which is depicted in Figure 2.2. This model partitions the flow of
data in a communication system into five abstraction layers:

• Physical Layer: This layer handles the transmission and reception of raw
bits over a physical medium.

• Data Link Layer: This layer defines the protocol to establish and terminate
a connection between two physically connected devices and also defines the
protocol for flow control between them.

• Network Layer: This layer provides the content of a message and the address
of the destination node and letting the network find the way to deliver the
message to the destination node.

• Transport Layer: This layer creates segments by dividing a long message
into smaller messages and provides a reliable connection.

• Application Layer: This layer interacts with user and software applications
that implement a communicating component. In many sources there are two
more layers between Transport Layer and Application Layer: Session Layer

5

2. Theory

and Presentation Layer. But sometimes these layers are considered within
Application Layer.

Several protocols and standards have been proposed to communicate between nodes
in the network. Different standards have different physical layer and data link layer
architecture but they do not affect higher layers. One of the well-known standards
is called IEEE 802.11 WLAN [12] which is commonly known by name of WiFi. The
802.11 standard define frame types for transmission of data as well as management
and control of wireless links. These frames are divided into three functions: man-
agement frames, control frames and data frames. Each frame consists of a media
access control (MAC) header, payload and frame check sequence (FCS).

Figure 2.2: IEEE 802.11 WLAN relation to the network layers

The time at which an event happens is called Timestamp. Precision of timestamp
can vary from a date to sub-nanoseconds[13]. Timestamping can be performed in
any layer of network. Hardware Based Timestamping occurs in Physical Layer or
Data Link Layer and it is the most precise way to capture time since it removes
the delay between application and lower layers. But this method requires hardware
support. Driver Based Timestamping is done within either Network or Transport
Layer. This method also needs support from drivers. The least accurate method,
which is Application Based Timestamping, captures the time from the running ap-
plication. This method does not require any support from hardware or driver but
in the other hand it is less accurate.

2.4 Time Synchronization Protocols
As we mentioned before, several time synchronization protocols exist. In this section
we will introduce the most well-known protocols.

6

2. Theory

2.4.1 Network Time Protocol

The network time protocol (NTP) [14] is one of the oldest standards for time syn-
chronization between devices in networks. In this protocol a number, called Stratum,
is assigned to each device on the network. Devices in Stratum 0 (which are generally
atomic or GPS clocks) have the most accurate clocks and act as time reference. But
ordinary devices in networks cannot be connected to the Stratum 0 time references,
so Stratum 0 devices are usually used as a reference clock and synchronisation source
for a Stratum 1 time servers. NTP Stratum levels are illustrated in Figure 2.3. NTP
can support up till 16 Stratum levels.

Figure 2.3: NTP stratum levels

In this protocol, the client sends a packet to server and timestamps the sending
time which we call it t0. The server timestamps the received packet at t1 and sends
a response packet at t2. The client will receive the response packet at t3. This
two-way message is depicted in Figure 2.4. NTP assumes a symmetric propagation
delay between server and client. The offset and propagation delay can be calculated
as:

7

2. Theory

Figure 2.4: NTP time synchronization

offset = (t1 − t0) + (t2 − t3)
2 (2.2)

delay = (t3 − t0) − (t2 − t1) (2.3)
After calculation of the offset, the client adjusts its own clock frequency to reduce
the offset gradually. In NTP protocol values of offset and delay are saved for further
statistical analysis. The simple network time protocol (SNTP) is a less complex
version of NTP which does not store offset and delay values over time and just
simply add or subtract the offset to the client’s time. Since SNTP is simpler and
more light-weight than NTP, it is a suitable option for embedded systems.

2.4.2 Precision Time Protocol
The precision time protocol (PTP) [15] is one of the most precise standards which
was originally designed for wired networks. In this protocol the master sends a Sync
message at time t1 and slave captures it at t2. Then the slave sends a Delay_Request
message to the master at time t3. the master captures the request at time t4 and
sends this timestamp in Delay_Response message. This procedure can be seen in
Figure 2.5.

Figure 2.5: PTP time synchronization

8

2. Theory

PTP distinguishes between master-to-slave (delayms) and slave-to-master (delaysm)
propagation delays. The offset and delays can be calculated as follow:

offset = (t2 − t1) − (t4 − t3)
2 (2.4)

delayms = t2 − t1 (2.5)

delaysm = t4 − t3 (2.6)

Then the slave should adjust its clock to reduce the offset with master.

2.4.3 Reference Broadcast Synchronization
The previous mentioned protocols are used to synchronize receiver with transmit-
ter. But the reference broadcast synchronization (RBS) [16] method synchronizes
receivers among each other. One transmitter broadcasts n reference packets to all
receivers. Receiver i timestamps packet k at time ti,k. After transmission of all ref-
erence packets, receivers share information between each other. Node i can calculate
its offset with node j by following equation:

offset(i, j) = 1
n

n∑
k=1

(tj,k − ti,k) (2.7)

One of the main benefits of RBS is good scalability within wireless sensor networks.
Since this method does not need a point-to-point connection for synchronization.
One central node broadcasts reference packets and every receiver can capture it. So
the number of receivers can be increased as many as needed.

2.4.4 Other Time Synchronization Protocols
Beside the three mentioned protocols, several other methods exist. The time-sync
protocol for sensor networks (TPSN) [17] is based on a hierarchical structure within
network. One node acts as root and assign level 1 to the neighboring nodes. Nodes
in level 1 perform similar procedure to their neighbors which leads to creation of
spanning tree. This procedure is called level discovery phase. After this stage, each
pair of nodes in two consecutive levels perform synchronization similar to the NTP.

Another protocol, called flooding time synchronization protocol (FTSP) exists which
is similar to TPSN. The only difference is that the network structure is mesh topol-
ogy instead of spanning tree. Also a few hybrid time synchronization approaches
have been introduced as can be seen in [18]. A comparison between various protocols
can be seen in Table 2.1:

9

2. Theory

Table 2.1: Comparison between time synchronization protocols

Protocol Accuracy Scalability
NTP 1 ms Good
PTP 1 µs Good
RBS 29.1 µs Good
TPSN 16.9 µs Poor
FTSP 1.48 µs Average

We should note that accuracy values in Table 2.1 are average values and they might
vary based on implementation. For example the 1 µs accuracy of PTP will be
achieved by hardware-supported timestamping. If such a support does not exist,
then the accuracy would be much lower.

NTP and PTP are quite easy to implement since all nodes just need to establish a
point-to-point connection with a reference. RBS also is simple to implement since
it is based on broadcasting. Simplicity of implementation makes all these three
protocols scalable. TPSN and FTSP create a topology within the network which
makes them more complex rather than other protocols. This feature reduce the
scalability of these protocols. Generally TPSN suffers from poor scalability since
all nodes should establish a tree topology among themselves. But FTSP is more
scalable since creating a mesh topology network is less complex than tree topology
network.

2.5 Data Streaming
In this section few protocols of transport layer for data streaming will be described.

2.5.1 Transport Layer Protocols
Two well-known transport layer protocols exist, transmission control protocol (TCP)
and user datagram protocol (UDP) [19]. TCP is connection-oriented which means
transmitter will wait for acknowledgment of transmitted packets from receiver. It
also supports re-transmission of lost packets and flow control. On the other hand
UDP is a connection-less protocol; transmitter does not wait for acknowledgment
from receiver so it will send data continuously. This feature made UDP suitable for
time-sensitive real time applications.

2.5.2 Message Queuing Telemetry Transport
One of the well-known lightweight protocols for transporting messages between de-
vices is message queuing telemetry transport (MQTT) [20]. An MQTT network
consists of a broker and number of clients. Clients publish their messages into the
corresponding topic. Then broker distributes this information to any other clients
which has subscribed to that topic. This simplicity made MQTT a suitable protocol
for IoT purposes. Also each connection to the broker can specify a quality of service

10

2. Theory

in any of following options:

• At Most Once: The message is sent only once without waiting for acknowl-
edgement of reception.

• At Least Once: The message will be sent periodically until the sender receive
acknowledge from receiver.

• Exactly Once: The sender and receiver will establish two-level handshake
and message will be sent just once.

11

3
Methodology and Tools

In this chapter the hardware and software tools which we have used will be intro-
duced. Also our methodology and design choices will be explained.

3.1 Hardware

3.1.1 SAM D21 Xplained Pro

Figure 3.1: SAM D21 Xplained Pro evaluation kit

Our codes were written in C language on "SAM D21 Xplained Pro" (Figure 3.1)
evaluation kit from Microchip. This board has ATSAMD21J18A microcontroller
[21] which consists of an ARM Cortex-M0+ processor which can operate up to
48 MHz frequency. Flash and SRAM memories are 256 kB and 32 kB respectively.
An on-board embedded debugger is also implemented within SAM D21 Xplained
Pro which was used to observe the messages from wireless module.

12

3. Methodology and Tools

3.1.2 ATWINC3400-XPRO

Figure 3.2: ATWINC3400-XPRO

For choosing wireless modules we had a few options from Texas Instruments (TI),
Esspresif Systems, and Microchip. The module used in this work is ATWINC3400-
XPRO (Figure 3.2) from Microchip since it is quite small and cheap. This board
is an evaluation kit for ATWINC3400-MR210CA [22] which can support WiFi and
BLE standards. Communication between ATWINC3400-XPRO and SAM D21 is
via SPI. Drivers and API are available for this module. These drives let us to set
modules as access point or station and implement the communication with socket
programming.

3.1.3 NUCLEO-L4P5ZG
NUCLEO-L4P5ZG development board [23] (Figure 3.3) from ST has a microcon-
troller consisted of an ARMCortex-M4F processor which can operates up to 120 MHz
frequency. Flash and SRAM memories are 1024 kB and 320 kB respectively. This
board was used to act as a ReLog and get the time from SAMD21 with SPI inter-
face. An on-board embedded debugger is also implemented within the board which
allowed us to run the codes in debug mode to observe the data transferred from
SAM D21.

13

3. Methodology and Tools

Figure 3.3: NUCLEO-L4P5ZG development board

3.2 Software Tools
In this section the software development tools which were used in our work, will be
described.

3.2.1 Microchip Studio
Microchip studio [24] is a software development solution for programming Microchip
processors. It also has an advanced software framework (ASF) extension which in-
cludes all peripherals and extension modules driver libraries such as ATWINC3400
drivers. It also has a driver for embedded debugger which can connect the host PC
to the processor with universal asynchronous receiver/transmitter (UART) inter-
face. The data transmitted over UART can be captured and read by any terminal
application such as CoolTerm.

3.2.2 STM32CubeIDE
STM32CubeIDE [25] is an advanced C/C++ development platform with peripheral
configuration, code generation, code compilation, and debug features for STM32 mi-
crocontrollers and microprocessors. This tool allows user to initialize and configure
peripherals and middlewares. A handy hardware abstraction layer (HAL) library is
also provided which simplifies usage of peripherals.

3.3 Implementation
The embedded core of ReVibe ReLog is similar to STM32L4P5ZGT6U. Unfortu-
nately ST does not produce WiFi modules anymore, hence we had to find a module
from another vendor. For this purpose we implemented the time synchronization
process within SAM D21 and ATWINC3400 module. Communication between NU-

14

3. Methodology and Tools

CLEO and SAM D21 would be handled with SPI interface. The block diagram and
prototype of proposed system can be seen in Figures 3.4 and 3.5 respectively:

Figure 3.4: System block diagram

Figure 3.5: Experimental system setup

3.3.1 Time Synchronization System
Timestamping

Since all of the time synchronization protocols require timestamping, a timer should
be implemented within processor to keep track of time. SAM D21 comes with dif-
ferent timer peripherals such as real-time clock (RTC), system timer (SysTick), and

15

3. Methodology and Tools

timer/counter (TC). Real-time clock is a good option for applications in which a
central server needs to know exact dates, hours or minutes. Since in our work we
did not require to keep track of time, RTC was not chosen for timestamping. Also
RTC does not support sub-second accuracy. System timer works with raising an
interrupt. In contrast, timer/counter is a register which is incremented by an user-
defined clock. Hence it was a suitable option for timestamping.

SAM D21 supports 8-bit, 16-bit, and 32-bit counters. In our design a 32-Bit counter
were used with 32 kHz custom generated clock which means it takes around 37.28 h
for the counter to wrap around.

Transport Layer Protocol

Generally UDP is a better option for embedded applications since it has small over-
head. Also our application is time-sensitive and real-time. If transmitter tries to
send a timestamp packet several times, then timing would be meaningless. In case of
missing a packet, the client still synchronize itself with server by next synchroniza-
tion iteration. Moreover using TCP puts extra pressure on ATWINC3400 buffers.
Based on these reasons, we decided to use UDP protocol. The messages which are
going to be sent by UDP, will contain the timestamps.

Error and Offset Measurement

For calculating the error and offset of time synchronization protocols, we used printf
functions for transferring the timestamps to the host PC. These functions send
the data over UART interface. We used MATLAB to analyse data and plot the
offset errors. To observe the impact of synchronization, both server and client were
configured to generate a 1 Hz square wave to see the offset between two waves. In
this experiment all printf functions were deleted from source codes to reduce delays
in code execution as much as possible.

Limitations

Generally time synchronization protocols gradually modify the clock frequency to
mitigate the difference between various clocks. But in the SAMD21 board, the clock
frequency can be configured before initialization but it cannot be changed afterward.
So in our work after calculating the time offset between server and client, this value
was added to timer of the client to reduce the offset. In our work we implemented
SNTP, PTP, and RBS. We did not test TPSN and FTSP since they required more
than two nodes in network. Also in these protocols a node can communicate with
several other nodes in the same time which was not possible for us to implement,
since WINC3400 can establish a connection with just one other module.

16

3. Methodology and Tools

3.3.2 Data Logger
On the data logger side of system, the logger asks for current time from SAM D21
once per each time synchronization interval. During this time the logger continu-
ously samples data from analog-to-digital converter (ADC). In original ReLog the
sampler the sampled data comes from two accelerometers but in our tests we did
not use any accelerometer, since it was quite tricky to make a connection between
them and the processor on breadboard. Instead we used the built-in ADC of STM32
Nucleo. The SPI interface has been used to communicate between STM32 Nucleo
and SAM D21.

3.4 Triggers
STM32 has two RTC alarms. One of them was used as start time trigger and the
other as the stop time. RTC alarms can be configured in a way which allows them
to interrupt the processor minutely, hourly, daily, or at specific date and time. It
should be noted that the priority of alarm’s interrupt should be lower than real-time
operating system (RTOS) interrupts. If this condition is not met, it would lead to
the malfunction of RTOS tasks. The start/stop date and time were defined inside
the settings file of the ReLog. Also an extra mode variable is added to settings which
user can choose between periodic logging or logging on specific date and time.

For the implementation of the acceleration triggers, all the stored values inside the
buffers were compared to the shock level. When the shock detected, now the values
inside the buffer are allowed to be written into the SD card. Also the tasks are
designed in way even if no shock is detected during run-time, the remaining values
in buffer will be written into the SD card at the termination of logging. We did not
change this behaviour since it is a nice way to check if ReLog really worked even
when it has not triggered by any shock.

17

4
Results

In this chapter our experiments and results will be presented. First sections will
depict the results of implementation of time synchronization protocols. The rest of
the sections will be dedicated to the remote operation features.

4.1 Clock Drift
In the first step we synchronized the client with server just once after initialization
to cancel the initialization time difference between them. Then 10,000 time request
packets were sent from client. The time interval between each two packets was set
to 100 ms. Then response packets from server captured and offset were counted.
The results are depicted in Figure 4.1. The slope of offset can be seen clearly in
this figure which indicates the clock drift. By extracting the start and end point of
slope, the clock drift calculated as 5.475 ppm.

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

-2

0

2

4

6

8

10

12

14

16

18

20

O
ff
s
e
t
[m

s
]

Figure 4.1: Clock drift and offset between server and client

We limited the y-axis to 20 ms to eliminate some of the extreme spikes to see the

18

4. Results

slope better. The reason for these spikes in the plot might be because of the random
delays of sending packets. Also the reason why the offset is negative in the beginning
of experiment is that the client initialized earlier than the server.

4.2 Time Synchronization

After applying the SNTP synchronization, the offset decreased and impact of the
clock drift was eliminated as can be seen in Figure 4.2. In this experiment average
and maximum offsets were measured 223.025 µs and 7.36 ms respectively. Distribu-
tion of offset error is also depicted in Figure 4.3. Based on this results standard
deviation of offset was calculated as 850 µs. We should not that for calculating the
standard deviation, first ten set of calculated offsets has been ignored since they are
relatively large due to initialization time difference.

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

-10

-8

-6

-4

-2

0

2

4

6

8

10

O
ff

s
e

t
[m

s
]

Figure 4.2: Offset between server and client after applying SNTP

19

4. Results

Figure 4.3: Distribution of offset between server and client after applying SNTP

In an experiment with PTP, the client send a dummy packet to the server to ask for
synchronization. Then after receiving sync response from server, the client sends the
delay request to the server. The time interval between sending dummy packet and
delay request is set to 100 ms. So each PTP synchronization takes 200 ms in total.
The results can be seen in Figure 4.4. In this experiment average and maximum
offset were measured 223.625 µs and 57.075 ms respectively. Distribution of offset
error is also depicted in Figure 4.5 and standard deviation of offset was calculated
as 5.1 ms. We should note that this figure just focused on the offset values around
0. Data corresponding to the spikes in Figure 4.4 were not shown in histogram since
the probability of spike occurrence is too low (around 0.006). If we also remove
spikes from offset, then we get standard deviation of 975 µs.

For implementing RBS, we set the server to send four reference packets with 100 ms
time interval between each reference. In total server sent 10,000 packets to the client
which led to 2,500 sets of data for synchronization. The results can be seen in Fig-
ure 4.6. In this experiment average and maximum offsets were measured 224.9 µs
and 10.52 ms respectively. Distribution of offset error is depicted in Figure 4.7 and
standard deviation of offset was calculated as 922 µs.

Although the synchronization intervals of each of implemented protocols are different
(100 ms for SNTP, 200 ms for PTP, and 400 ms for RBS), we did not try to set an
equal interval for all of them. This is because we wanted to find the best and shortest
possible interval for each of these protocols to achieve highest timing accuracy. Also
in all experiments, still some random long delays exist during transmission. Hence
several spikes in Figures 4.2, 4.4, 4.6 can be seen.

20

4. Results

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

-80

-60

-40

-20

0

20

40

60

80

O
ff

s
e

t
[m

s
]

Figure 4.4: Offset between server and client after applying PTP

Figure 4.5: Distribution of offset between server and client after applying PTP

21

4. Results

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

-20

-15

-10

-5

0

5

10

15

20

O
ff

s
e

t
[m

s
]

Figure 4.6: Offset between server and client after applying RBS

Figure 4.7: Distribution of offset between server and client after applying RBS

22

4. Results

4.3 Comparison of Protocols

The comparison between these implemented protocols can be seen in Table 4.1.
SNTP and PTP have same average error around 223 µs but PTP suffers from max-
imum error of 57 ms which is 8 times larger than maximum error of SNTP. When
it comes to RBS, it has a bit larger average error and maximum error is also higher
than SNTP. Moreover in terms of error standard deviation, SNTP has lowest value.
So all these reasons led us to choose SNTP as most time-accurate protocol and use
it for further steps.

Table 4.1: Comparison between time synchronization protocols

Protocol Average Error (µs) Maximum Error (ms) Standard Deviation (ms)
SNTP 223.025 7.36 0.85
PTP 223.625 57.075 5.1
RBS 224.9 10.52 0.92

We also have tested SNTP for 1 Hz square wave generation to observe the synchro-
nization on waveform generation. The waveforms of server (Pink) and client (Blue)
can be seen in Figure 4.8. The offset between the two square waves was mostly
below 1 ms in each period of signals but occasionally it increased up till 3 ms. This
behaviour was expected since there were some spikes in offset calculations as can be
seen in Figure 4.2.

Figure 4.8: Synchronized square waves with SNTP

23

4. Results

4.4 Time Synchronization for Data Logger
In this experiment we generated a 1 Hz sine wave from the oscilloscope with 1.3 V
amplitude and 1.2 V offset. This signal was fed into 8-bit ADCs of two STM32
Nucleo board each of which was connected to a SAM D21. STM32 asks for the
timestamp from SAM D21 and then captures ten samples from ADC with 10 ms
interval. The captured data and also timestamps were transferred from STM32 to
host PC with UART interface. Since for each ten samples one timestamp has been
stored, the timestamp was used as capturing time of first data and for remaining 9
samples 10 ms were added to previous captured time. The sampled wave from client
and server can be seen in Figure 4.9.

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409

Time (s)

0

0.5

1

1.5

2

2.5

3

V
o

lt
a

g
e

 (
V

)

Client

Server

Figure 4.9: Captured sine waves from two synchronized STM32 Nucleo boards

As can be seen in Figure 4.9, the x-axis of the plot is time which has been obtained
by converting timestamps to real time values. The waveforms are synchronized and
perfectly matched. A pre-defined function from MATLAB central file exchange[28]
has been used to fit a sine curve into captured data. For each sampled wave we had:

sinclient = 1.1476 + 1.2558 sin(2π × 1.114 + 3.7987) (4.1)

sinserver = 1.1376 + 1.2528 sin(2π × 1.1106 + 3.7124) (4.2)

As can be seen in 4.1 and 4.2, the sine curves are almost accurate and the phase shift
between two waves is 0.0863 rad which is equal to 14 ms. Also we used the cross
correlation between two signals to obtain the similarity between two waveforms.
The peak in the cross-correlated occurred in point 1 as it is depicted in Figure 4.10.

24

4. Results

Since the time interval between each data point in both signals is 10 ms, then the
offset between signals is 10 ms.

-1.5 -1 -0.5 0 0.5 1 1.5

10
4

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000
X 1

Y 15200

Figure 4.10: Cross correlation between captured signals

4.5 Data Streaming
In the first step, we tried to connect one wireless module to a custom access point
in the office to be able to connect to a cloud service. We used PubNub [26] cloud
in this experiment. But the problem with sending data to this cloud service was,
PubNub just supports JavaScript object notation (JSON) [27] format. JSON stores
and transmit data objects in format of attribute–value pairs. Hence it reduces the
amount of data which can be sent in a single packet.

In the next experiment we used another ATWINC3400 module as a receiver. We
were able to send 1200 bytes of data each 5 ms. That means data transfer rate is
240 kB s−1 which is enough to download a 1 GB from the SD card in 70 minutes.
Although the TCP protocol is safer solution for data streaming, but it puts extra
pressure on the transmitter-receiver buffer of wireless module. Hence we used UDP
for data streaming although chance of loss of some data packets exists.

4.6 Triggers
The time triggers worked perfectly and ReLog can start/stop logging at specific
date and time or periodically. When it comes to acceleration triggers, ReLog could
detect the shocks and start writing data into the SD card. Since after detection of
shock the whole values of buffer will be transferred to the SD card, data during few
moments before shock would also be written into SD card.

25

4. Results

We put ReLog in running state for one minute. In the first experiment no shock
was applied on ReLog. As can be seen in Figure 4.11 only around one second of
run-time has been written into the SD card which is the remaining data inside buffer
after termination of running. In the second experiment again we logged data for
one minute but we shook ReLog strongly in the last seconds. The results can be
seen in Figure 4.12 around 5 seconds before shock detection has been captured due
to buffers behaviour.

Figure 4.11: Vibration log without applied shock

Figure 4.12: Vibration log with applied shock

26

5
Discussion and Conclusion

5.1 Discussion

5.1.1 Transport Layer Protocol
As we mentioned before, we used UDP which is a connection-less protocol. That
means it does not wait for acknowledgment from the receiver. In our various experi-
ments, in which we sent 10,000 packets, we received between 9,960 to 9,990 packets.
That means 0.1 - 0.4 % of packets were lost during transmission. Even if some
packets get lots, devices could still synchronize themselves in upcoming periods.

5.1.2 PTP Experiment Results
As can be seen in Figure 4.4 there were some spikes in offset error in contrast
with results from SNTP experiment. The reason might be the difference between
transmitting and receiving speed. In the SNTP experiment, the client sends one
timestamp and receives two timestamps within one transmission from the server.
But in the PTP experiment, the client sends two messages (one dummy message
and one timestamp) and receives two timestamps in two separate transmission from
the server. So PTP requires more data transfers between the client and the server.
In general, receiving packets puts more pressure on transmission buffers and takes
more time than sending. Hence, this suffers more from delays. These delays would
affect protocols which require more data transfers.

As we mentioned before, PTP is one of the most accurate synchronization protocols
since it relies on hardware-based timestamping. But since ATWINC3400 drivers do
not support any access to data link and physical layers, we could not take advantage
of hardware timestamps. That is the reason we did not achieve the highest accuracy
with PTP.

5.1.3 Offset
In the square wave generation and logging sine wave experiments, the client was
always 100 ms behind the server. The reason most likely is because of timer/counter
behaviour in SAM D21. As we mentioned in previous chapters, we set the syn-
chronization interval to 100 ms since in shorter intervals the buffer of WiFi module
was getting full which led to data loss. For implementing the waiting time we used
delay function. This function puts CPU and timers into sleep mode. So for 100 ms

27

5. Discussion and Conclusion

timer value would be frozen which causes a constant offset between the client and
the server.

As we saw in section 4.3, we achieved accuracy below 1 ms with SNTP. But when
we added the logger ADC, the accuracy we got was 10 ms. The reason might be due
to behaviour of SPI interface between logger and time synchronizer. We set timeout
duration of 10 ms for the SPI receive function. Shorter intervals led to corruption
of data after a while. But with 10 ms timeout no data corruption happened. So
it seems that the SPI interface between logger and time synchronizer is not fast
enough. So it will kill the accuracy which we got in section 4.3.

5.1.4 Data Streaming Rate
The data transfer rate we achieved was 240 kB/s. This rate was obtained by sending
1200 bytes in 5 ms intervals. But as we experienced in time synchronization exper-
iment, any syncing interval below 100 ms causes the buffer to get full. The reason
that we could send data in shorter intervals in data streaming experiment, was we
were just sending packets to the server and not receiving any packet from it. But in
synchronization experiments we expected data from the server which increased the
pressure on the buffer.

5.1.5 Integration into the Main Product
All works we did in this thesis was trying to build a prototype for integrating time
synchronization into ReLog. But this feature cannot be implemented into the main
product currently. One of the main problems is that the current case of ReLog is
made of aluminium which shields the wireless signals. So the first step for integrat-
ing wireless module into ReLog is to design a new case with an alternative material.

Another issue with the proposed system is that the ReLog’s processor and wireless
module are not produced by a same vendor. Hence we had to use another proces-
sor from Microchip to be able to establish communication between them. So this
prototype has an extra processor which does nothing except timestamping and send
timestamps to the wireless modules and ReLog. That would cost as area overhead
in final PCB of product.

The best solution to avoid using an extra processor would be to find another wireless
module from ST. Unfortunately ST does not produce WiFi solutions anymore, but
it provides several BLE modules. For time synchronization purpose BLE would be
efficient since data transmission between units is just limited to the timestamps. But
for other purposes such as data streaming, BLE would not be an efficient solution.
Another benefit of using a module from ST is that the timer can be implemented
within the STM32 processor and there is no need to transfer timestamps over SPI
which decreases the timing accuracy.

For data streaming, although we achieved high data transfer rate, the communica-

28

5. Discussion and Conclusion

tion is still between two wireless modules. That would limit the use case in a small
area. The suitable solution is to connect the wireless module to a random access
point in area and then send the data to a cloud server. One of the possible cloud
servers for this purpose could be Amazon web service (AWS) since it can support
sending up to 128 kB in one MQTT message. AWS has provided APIs for some
hardware platforms which are widely used such as ESP32 but ATWINC3400 was
not in list of supported kits. Hence for future implementation of data streaming into
ReLog another module (e.g. ESP32) might be used which has support from AWS.

Another scenario for the future is that the data streaming function might be imple-
mented into an stand-alone module which can communicate with ReLog by universal
serial bus (USB) interface. In this case there is no need for re-designing the case and
PCB of ReLog and stand-alone module can be directly connected to the ReLog.

5.1.6 Triggers
The time triggers were tested and they are going to be implemented into the firmware
of the main product which is for sale. But acceleration trigger is still not complete
enough to be part of the commercial firmware. Sometimes some wave files cannot
be read by VinInspect since it cannot reshape the data array into three columns for
each axis. In these cases one or two redundant data sample can be added to the end
of wave file. Then these files will become readable for VibInspect. But it is better
to fix this issue inside the microprocessor’s code rather than in VibInspect.

5.2 Conclusion
Remote operation and connectivity is one of the most beneficial features of IoT sys-
tems. Some of these useful futures are time synchronization, data streaming and
triggers. In this work we tried to add these functionalities to the ReLog data logger.

As we mentioned in previous chapters, several time synchronization protocols exist
for WSNs. In this work we just focused on synchronization of two units and imple-
mented SNTP, PTP and RBS protocols. The highest timing accuracy was achieved
with SNTP and it was 10 ms which is enough for sampling rates up to 50 Hz. We
also investigated the possibility of data streaming over WiFi connection. But all
these features were implemented on the prototypes. Finally we implemented time
and acceleration triggers into the ReLog’s firmware.

29

Bibliography

[1] F. Tirado-Andrés, A. Rozas, A. Araujo, "A Methodology for Choosing Time
Synchronization Strategies for Wireless IoT Networks", Sensors, vol. 19, 2019.

[2] X. Liu et al., "Overview of Spintronic Sensors With Internet of Things for Smart
Living," IEEE Transactions on Magnetics, vol. 55, no. 11, pp. 1-22, Nov. 2019.

[3] ReLog vibration data logger. Rev. 002. ReVibe Energy. 2020
[4] VibInspect. (2020). ReVibe Energy. Available:

https://revibeenergy.com/vibinspect-analysing-software/
[5] R. Prakash, K. Nygard, "Time Synchronization in Wireless Sensor Networks:

A Survey", International Journal of UbiComp, 2010.
[6] K. Hilmersson, F. Gummesson, "Time Synchronization in Short Range Wire-

less Networks", Department of Electrical and Information Technology, Lund
University, 2016.

[7] NINA-B1 series. UBX-15019243. Rev. 14. u-blox. October 2019
[8] T. Sheng, K. Jing, L. Zunzun, D. Pengfei, "Design and Implementation of Time

Synchronization Experimental System for Wireless Sensor Networks", Interna-
tional Journal of Online Engineering (iJOE), vol. 14, p. 212, 2018.

[9] nRF24L01 Single Chip 2.4GHz Transceiver. Rev. 2.0. Nordic Semiconductor.
July 2007

[10] M. Hicham, M. Dagenais, "Internal Clock Drift Estimation in Computer Clus-
ters", Journal of Computer Systems, Networks, and Communications, 2008.

[11] Y. Li, D. Li, W. Cui and R. Zhang, "Research based on OSI model," IEEE 3rd
International Conference on Communication Software and Networks, Xi’an,
China, pp. 554-557, 2011.

[12] V.K. Garg, "IEEE 802.11 WLAN" in Wireless Communications and Network-
ing, Elsevier, 2011.

[13] O. Seijo, J. López-Fernández, H. Bernhard, I. Val, "Enhanced Timestamping
Method for Sub-Nanosecond Time Synchronization in IEEE 802.11 over WLAN
Standard Conditions", IEEE Transactions on Industrial Informatics, 2020.

[14] P. Rybaczyk, Expert Network Time Protocol: An Experience in Time with NTP,
1st ed. Apress, 2005

[15] A. Garg, A. Yadav, A. Sikora and A. S. Sairam, "Wireless Precision Time
Protocol," in IEEE Communications Letters, vol. 22, no. 4, pp. 812-815, April
2018

[16] K. Tarnay, G. Adamis, T. Dulai, "Reference Broadcast Synchronization Proto-
col" in Advanced Communication Protocol Technologies - Solutions, Methods,
and Applications, IGI Global, 2013

30

Bibliography

[17] J. Cui, Y. Liu, K. Wei, H. Cao, "Research on Clock Source Correction Method
based on Wireless Sensor Network and TPSN Network Protocol", Journal of
Physics: Conference Series, 2020.

[18] Y. Hlaing and N. A. Maung Maung, "Hybrid Time Synchronization for ZigBee
Networks: An Empirical Approach," 2020 17th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Infor-
mation Technology (ECTI-CON), Phuket, Thailand, pp. 376-379, 2020.

[19] M. T. Naing, T. T. Khaing and A. H. Maw, "Evaluation of TCP and UDP
Traffic over Software-Defined Networking," 2019 International Conference on
Advanced Information Technologies (ICAIT), 2019, pp. 7-12

[20] S. Quincozes, T. Emilio and J. Kazienko, "MQTT Protocol: Fundamentals,
Tools and Future Directions," in IEEE Latin America Transactions, vol. 17,
no. 09, pp. 1439-1448, September 2019

[21] SAM D21/DA1 Family. DS40001882F. Rev. F. Microchip Technology Inc.
March 2020

[22] ATWINC3400-MR210xA. Microchip Technology Inc. December 2020
[23] STM32 Nucleo-144 boards (MB1312). UM2179. Rev. 9. STMicroelectronics.

November 2019
[24] Microchip Studio User Guide. DS50002718C. Rev. D. Microchip Technology

Inc. December 2020
[25] Integrated development environment for STM32 products. DB3871. Rev. 4.

STMicroelectronics. November 2020
[26] "PubNub: Real-Time In-App Chat and Communication Platform".

https://www.pubnub.com/
[27] A. A. Abd El-Aziz and A. Kannan, "JSON encryption," 2014 International

Conference on Computer Communication and Informatics, 2014, pp. 1-6
[28] P. Seibold (2021). Sine fitting, MATLAB Central File Exchange. Retrieved

March 19, 2021.

31

	Abbrevations
	List of Figures
	List of Tables
	Introduction
	Objectives
	Previous Works
	Limitations
	Thesis Outline

	Theory
	ReLog Data Logger
	Clock Behaviour
	Network Layers and Protocols
	Time Synchronization Protocols
	Network Time Protocol
	Precision Time Protocol
	Reference Broadcast Synchronization
	Other Time Synchronization Protocols

	Data Streaming
	Transport Layer Protocols
	Message Queuing Telemetry Transport

	Methodology and Tools
	Hardware
	SAM D21 Xplained Pro
	ATWINC3400-XPRO
	NUCLEO-L4P5ZG

	Software Tools
	Microchip Studio
	STM32CubeIDE

	Implementation
	Time Synchronization System
	Data Logger

	Triggers

	Results
	Clock Drift
	Time Synchronization
	Comparison of Protocols
	Time Synchronization for Data Logger
	Data Streaming
	Triggers

	Discussion and Conclusion
	Discussion
	Transport Layer Protocol
	PTP Experiment Results
	Offset
	Data Streaming Rate
	Integration into the Main Product
	Triggers

	Conclusion

	Bibliography

