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Abstract

Phase noise estimation is a significant issue in coherent fiber-optic communication
systems. In this project we develop a symbol-by-symbol phase noise estimation
algorithm for 16-QAM which is evaluated for coherent Polarization Multiplexing
(POLMUX).

Two polarizations X and Y are affected by common phase noise, and each one has it
own estimates of the common phase noise. On the other hand, the combination of
these two estimates is also derived. It is demonstrated that the information fusion
enhances performance of the fiber-optic communication system with respect to two
criteria: probability of cycle slips and estimation error variance.

Through the Monte Carlo simulations, it is verified that the proposed phase noise
estimator can cope with laser linewidths of up to 2.0 MHz in high SNR regimes, at
100 Gb/s.

Keywords: fiber-optic communication system, symbol-by-symbol phase noise es-
timation, POLMUX 16QAM.
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1 INTRODUCTION

16-QAM POLMUX transmission has the potential to double throughput compared
to QPSK-POLMUX, but is more sensitive to impairments in the transmission link.
In particular, phase noise caused by the non-zero linewidth of lasers is an impair-
ment that needs to be compensated for prior to data detection. Phase noise is
characterized by the product ∆fT , where ∆f is the sum linewidth of the signal and
local oscillator lasers, and 1/T is the baud rate.

Traditional technique to estimate the phase noise is feedback phase noise estimation
using a phase-locked loop (PLL), however, it can only cope with small ∆fT , due to
the large delay that PLL exhibits, while feed-forward (FF) phase noise estimation
is promising for larger ∆fT (Ip and Kahn 2007, Pfau et al. 2009). A demonstrated
comparison between FF carrier recovery and PLL shows that FF carrier recovery
can tolerate 1.5 to 2 times higher laser linewidth than PLL, even using an optimistic
assumption for the performance of the PLL (Kahn and Ip 2009). Conventional FF
estimation is based on block processing, considering the phase to be approximately
constant over the duration of a block. As the block size decreases, faster adaptation
is possible but with degraded tracking performance(Seimetz 2008). For QPSK, val-
ues of ∆fT ≈ 10−3 can be tolerated with negligible loss under FF estimation(Pfau et
al. 2009). For 16-QAM, the reduced angular separation and the presence of multiple
amplitude levels reduces the phase noise tolerance. Symbol-by-symbol phase esti-
mators (SBSPE) are a potential way to cope with larger values of ∆fT . They can be
seen as a special case of block-based estimators (Seimetz 2008, Fatadin et al. 2010),
and have also received considerable interest on their own (Louchet et al. 2008).

In this thesis, we (i) provide the first explicit derivation of SBSPE; (ii) analyze the
error probability of the ring detector (Seimetz 2008, Fatadin et al. 2010, Louchet et
al. 2008); (iii) discuss the SNR and ∆fT regime in which SBSPE can operate reliably,
confirming previous experimental findings (Louchet et al. 2008); (iv) develop a novel
algorithm to combine estimates from both polarizations. Through Monte Carlo
simulations, we demonstrate the superior performance of the SBSPE, compared to
state-of-the-art block-based estimators (Louchet et al. 2008).

The remainder of this document is structured as follows. In Chapter 2 we will
describe the system model, algorithms of implementing the system and performance
measures; in Chpater 3 we will introduce the implementation of system model, the
proposed phase noise estimator, and the performance measures; in Chapter 4 we
will further discuss regarding some specific issues in the implementation; in Chapter
5 we will conclude the whole thesis project.
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2 MODELING AND ALGORITHM DERIVA-

TION

In this chapter, we will introduce the description of the problem, including the
background of the problem, the observation model and the algorithms of several
issues to be solved in this project.

2.1 Background

Considering optical detection, there are usually three methods: non-coherent de-
tection, differentially coherent detection and coherent detection. The focus of this
thesis is on the third method, coherent detection. An optical coherent detection
scheme detects not only the signal’s amplitude but also phase and polarization,
which increases the detection capacity and spectral efficiency.

The analytical model of coherent detection is shown in Fig.(2.1) (Kahn and Ip 2009).
In this model, we have:

y(t) = h(t) ∗ x(t) + n(t),

taking the Fourier transform on both side, we get:

Y(ω) = H(ω)X(ω) + N(ω),

so the channel frequency response is:

H(ω) = e−j 1
2
β2Lω2

RT
1 D(ω)R2,

where the component e−j 1
2
β2Lω2

is the chromatic dispersion, RT
1 D(ω)R2 is the po-

larization mode dispersion, and R1 and R2 are two rotation matrices.

In this thesis, we are mainly interested in the Wiener phase noise, rather than other
impairments, such as chromatic dispersion and polarization mode dispersion, so we
only research on the model that these impairments have been compensated. The
observation model of this thesis will be introduced in the next section.

2.2 Observation Model

We try to exploit POLMUX in coherent fiber optic communication systems to in-
crease the data rate and perform better phase noise estimation. Specifically speak-
ing, we use two polarizations, say X and Y, to transmit information symbols in the
same channel, so the phase noises imposed on them are equal to each other.

3



4 Chapter 2 Modeling and algorithm derivation

Figure 2.1. Analytical model of coherent system

The observation model is described as follows. We assume that other impairments
have been compensated for by the receiver, including chromatic dispersion and po-
larization mode dispersion, then the received symbols at time k can be expressed as
(Ip and Kahn 2007)

rk =

[

a
(X)
k ejφ+jθk

a
(Y)
k ejθk

]

+ nk, (2.1)

where a
(i)
k is the kth 16-QAM symbol on polarization i ∈ {X, Y}, nk is modeled as

i.i.d. zero-mean complex Gaussian noise with variance σ2 per real dimension, φ is
a constant phase offset between polarization X and Y, and θk is the phase noise at
time k. In optical communications, phase noise can be modeled as a Wiener process
(Ip and Kahn 2007)

θk =

k
∑

m=−∞

νm, (2.2)

where νm is previous phase noise and i.i.d with variance σ2
θ = 2π∆fT . The SNR

is defined as Es/(2σ2), where Es is the average energy per 16-QAM symbol per
polarization.

From the observation model, we can easily find that these two polarizations have
an identical phase except for a constant phase offset φ, which can be easily ignored
after it has been accurately estimated.

2.3 Algorithms

This section is mainly concerned the algorithms of phase noise estimation, and our
focus is on blind algorithms, which assume no a priori knowledge of the transmitted
symbols. In this section, the project is divided into several parts and the algorithms
of each part are described in detail. These parts are:

• Phase offset estimation

• Symbol-by-symbol phase noise estimation

– Ring discrimination
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– Phase estimation

– Phase unwrapping

• Polarization combination

• Phase noise filtering

According to the observation model, in the channel there are two independent po-
larizations with an identical phase noise and a phase offset. The phase offset is
constant, and it can be accurately estimated by a long block of observations, which
will be explained in detail in Section 2.3.1. So after the compensation for the con-
stant phase offset, polarizations X and Y have an identical phase.

Then, a symbol-by-symbol phase noise estimation can be done on each polarization,
with the procedures introduced in Section 2.3.2, including three steps described
in corresponding subsections. Combining the estimates from two independent po-
larizations is one of the most important part in this project, which directly and
significantly affects the performance of the whole project, and is demonstrated in
Section 2.3.3.

To evaluate the performance of our algorithms, we need to detect and quantify the
statistics of cycle slips and evaluate the variance of phase noise estimation, and the
particular methods are described in Section 2.4.1 and Section 2.4.2.

2.3.1 Phase offset estimation

Before estimating the phase noise, we need to estimate the phase offset between
polarizations X and Y. Since the 16-QAM constellation has a rotational symmetry
of pi/2, we can only estimate the phase up to an ambiguity of k × π/2, so we limit
the phase offset φ in the range [0, π/2], actually it can be in the range [0, 2π). This
ambiguity can be resolved in subsequent processing by considering training symbols
or through differential detection.

The phase offset estimator operates as follows. First, the observation r
(X)
k and r

(Y)
k

are broken into blocks of length N , with the phase offset estimate in the nth block
given by:

φ̂n =
1

4
∡

(

sn+N−1
∑

l=sn

r
(X)4
l −

sn+N−1
∑

l=sn

r
(Y)4
l

)

, (2.3)

where ∡(·) denotes the phase and sn denotes the index of the first symbol in the
nth block. Second, the phase offset estimates in all blocks are averaged:

φ̂ =
1

K

K
∑

m=1

φ̂n, (2.4)

where K is the number of blocks. Note that the result may have up to π/2 ambiguity,
because the function ∡(·) always returns a value in the range [0, π/2].
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2.3.2 Symbol-by-symbol phase noise estimation

In this section we will introduce the algorithm of symbol-by-symbol phase esti-
mation. First of all, we introduce a conventional FF estimator which operates as
follows. First, the observation r is broken into blocks of length M , with the phase
estimate in the mth block given by the Viterbi &Viterbi estimator:

θ̂r
m =

1

4
∡

(

sm+M−1
∑

l=sm

r4
l

)

, (2.5)

where sm is the index of the first symbol in the mth block, note that we focus on
a single polarization and omit the superscripts X and Y. Since the phase estimates
will be limited in the range [0, π/2], they need to be unwrapped and low-pass filtered.

In this project, the method we choose, SBSPE, is a special case of (2.5), when M = 1.
Our algorithm includes three steps: the first one is to discriminate on which circle the
symbol lies because the amplitude of a symbol is useful information for estimating
its phase in 16-QAM constellation; the second step is phase estimation based on the
ring information we have obtained; and the third one is phase unwrapping, which is
used to make the phase noise estimate sequence continuous.

Ring discrimination

In a 16-QAM constellation, symbols can be divided into three groups on the basis of
their amplitudes, say outer ring, middle ring and inner ring, as shown in Fig. (2.2).
The first step in the algorithm of symbol-by-symbol phase noise estimation is ring
discrimination.

The model is shown as follows. Introducing ρk = |rk|2, for medium-to-high SNR, we
can model ρk ∼ N (µR,σ2 , VR,σ2), where R is the radius of the circle on which the kth
transmitted symbol lies, σ2 is the variance per real dimension of the channel noise,
and µR,σ2 and VR,σ2 are mean and variance of ρk, respectively.

We find that
µR,σ2 = R2 + 2σ2, (2.6)

VR,σ2 = 4σ4 + 4R2σ2. (2.7)

To verify this conclusion, we find out 25128 symbols on the inner ring, 49993 on the
middle ring and 24879 on the outer ring in total 100000 samples and plot histograms
for each rings in Fig. (2.3) as the first three figures. Among them, the common point
is that all of these figures can be considered as Gaussian distribution. Looking at
them one by one, we observe that the mean values of them are approximately 0.2, 1.0
and 1.8, respectively, the same as the values of R2

i , R2
m and R2

o (we have normalized
the average energy of symbols to 1, which means 1/4R2

i + 1/2R2
m + 1/4R2

o = 1),
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Figure 2.2. Ring division of 16-QAM constellation

which demonstrates the validity of (2.6). If we make the range of the axis the same
for each ring and plot them in one figure, as shown in the forth figure in Fig. (2.3),
we can see that the variance increases with the radius growing up, which accords to
the conclusion we obtain in (2.7).

How (2.6) follows is shown. ρk = |rk|2 = rk · r∗k = |ak|2 + |nk|2 + 2Re{ak · ejθk · n∗

k},
where nk is the noise of one polarization at time k,

µR,σ2 = E[ρk
2]

= E[|ak|2] + E[|nk|2] + E[2Re{ak · ejθk · n∗

k}]
= R2 + 2σ2 + 2E[Re{ak · ejθk · n∗

k}]
= R2 + 2σ2 + 2Re{E[ak · n∗

k]}
= R2 + 2σ2 + 2Re{E[ak] · E[n∗

k] · E[ejθk ]}
= R2 + 2σ2, (2.8)

thus µR,σ2 = R2 + 2σ2.

The second equation in (2.7) follows because:

VR,σ2 = E[(ρ − µR,σ2)2]

= E[ρ2] − µ2
R,σ2

= E[|ak|4 + |nk|4 + 4Re2{ak · ejθk · n∗

k} + 2|ak|2|nk|2

+ 4|ak|2Re{ak · ejθk · n∗

k} + 4|nk|2Re{ak · ejθk · n∗

k}] − µ2
R,σ2

= R4 + 8σ4 + 4R2σ2 + 4R2σ2 + 0 + 0 − (R2 + 2σ2)2

= 4σ4 + 4R2σ2, (2.9)
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Figure 2.3. Histogram of different rings in received sequence



2.3 Algorithms 9

Figure 2.4. Probability distribution of three rings

thus VR,σ2 = 4σ4 + 4R2σ2.

The optimal, maximum a posteriori (MAP) estimate of the ring, given the observa-
tion ρk, is then

R̂k = arg max
r







p(R = r)√
2πVR,σ2

e
−

(ρk−µ
R,σ2)

2

2V
R,σ2







, (2.10)

It is easier to solve this equation if taking logarithm function, and then the optimal
estimate of the ring is:

R̂k = arg max
r

{

log
p(R = r)

VR,σ2

− (ρk − µR,σ2)2

2VR,σ2

}

, (2.11)

where r and R̂k take their values in the set {Ri, Rm, Ro}, which are the radiuses of
the inner, middle, and outer ring, respectively. We write p(R = r) as p(r) for short,
so the probability mass function of R is p(Ri) = 1/4, p(Ro) = 1/4, and p(Rm) = 1/2.

From (2.7) it is observed that the outer ring, middle ring and inner ring have de-
scending variances of ρk given σ, so we can predict that most of the error of ring
discrimination would be located between the outer ring and the middle ring, as
shown in Fig. (2.4). This will be discussed in the following chapters.

Phase estimation

Once the ring has been determined, our object becomes to estimate θ̂k from rk, given
R̂k and θ̂k−1. A block diagram of the phase noise estimator is shown in Fig. (2.5)
(Ip and Kahn 2007).

According to the block diagram, the phase noise estimator is:

θ̂k =
1

4
∡r4

k. (2.12)

In the following we explain the principles of this phase noise estimator. For 16-QAM,
the whole constellation can be considered as a superposition of four components, two
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Figure 2.5. Phase Estimator

QPSK constellations (the outer and inner ring) and two rotated QPSK constellations
(the middle ring), as shown in Fig. (2.6). Therefore, each symbol on the 16-QAM
constellation can be represented as

am = Aej(mπ/2+ϕ), m = 0, 1, 2, 3 (2.13)

where A is the amplitude of the symbol taking the value in the set {
√

0.2, 1,
√

1.8},
corresponding to the inner, middle and outer ring. ϕ is the rotation angle of a
QPSK or rotated QPSK constellation, consider, for the inner and outer ring ϕ = π/4
(denoted as ϕi,o), and for the middle ring, ϕ has two potential values arctan (1/3) and
arctan (3) because the middle ring is composed of two rotated QPSK constellations,
and we denote these two values as ϕm,1 and ϕm,2, respectively. Now the received
symbol becomes rk = Aej(mπ/2+ϕ)ejθk + nk. Raising the received signal to its 4th
power (Ip and Kahn 2007), we get

r4
k = (Aej(mπ/2+ϕ)ejθk + nk)

4

= A4ej4ϕej4θk + n
′

k, (2.14)

where a4
k = A4ej4ϕej4θk is the desired term depending on phase noise θk, and

n
′

k =
∑4

p=1

(

4
p

)

(ake
j4ϕej4θk)4−pnp

k is the sum of the unwanted cross terms between
the transmitted symbols and channel noise.

When we measure the phase of r4
k, we get

∡
(

r4
k

)

≈ 4ϕ + 4θk + m
′

k, (2.15)

where m
′

k is the noise generated by the unwanted cross terms n
′

k. When SNR is
high, m

′

k can be demonstrated approximately as i.i.d zero-mean Gaussian process
(Ip and Kahn 2007), so we can consider (2.15) as an unbiased estimate of 4ϕ + 4θk.

As we have discussed, ϕ has three possible values:

ϕi,o =
π

4
,

ϕm,1 = arctan (1/3),

ϕm,2 = arctan (3), (2.16)

depending on which ring the symbol lies on, and has been determined in (2.11).
Although the ring has been determined, there are still two cases to consider: (i)
symbols on the outer or the inner ring; (ii) symbols on the middle ring. In case
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Figure 2.6. Decomposition of 16-QAM constellation

(i), it is very easy because there is only one potential value of ϕ, so we can simply
estimate the phase noise as:

θ̂k =
1

4

(

∡
(

r4
k

)

− 4ϕi,o

)

. (2.17)

In case (ii), we obtain two possible phase noise estimates:

θ̂k,1 =
1

4

(

∡
(

r4
k

)

− 4ϕm,1

)

θ̂k,2 =
1

4

(

∡
(

r4
k

)

− 4ϕm,2

)

, (2.18)

and we should decide between them by unwrapping them based on θ̂k−1, and choos-
ing the most likely value.

Assuming that small phase noise steps are more likely than large ones, we need to
unwrap θ̂k,1 and θ̂k,2 with θ̂k−1 by using the function U(·). This function means
unwrapping the first argument by referencing the second one, and it will be specif-
ically described in the next section. Now introducing αk = U(θ̂k,1, θ̂k−1) and βk =

U(θ̂k,2, θ̂k−1), we find that the phase noise estimate is:

θ̂k = arg min
αk,βk

(

|αk − θ̂k−1|, |βk − θ̂k−1|
)

. (2.19)

Phase unwrapping

The objective of phase unwrapping is to remove ’discontinuity’ in the raw estimated
phase noise sequence (the results we obtain in (2.17) and (2.19)). In order to distin-
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Figure 2.7. Description of Unwrapping function.

guish the raw and unwrapped phase noise estimates, we use the superscripts ·r and
·u to refer them, respectively.

The reason of this ’discontinuity’ existing is that in practice the function ∡(·) always
returns a value between 0 and 2π, and in programming we limit the results of (2.15),
(2.17) and (2.18) in the range of [0, π/2].

Assuming that small phase noise step is more likely than large one, we need to find
a value nearest to the previous phase noise estimate θ̂u

k−1 among θ̂r
k +m ·π/2, where

m is an integer ranging from −∞ to ∞, and take this value as the unwrapped phase
noise estimate. For example, if we get the results as θ̂u

k−1 = π/10 and θ̂r
k = 9π/10,

we unwrap θ̂r
k to −π/10 instead of keeping it 9π/10, because the phase noise step

−π/5 is more reasonable than 4π/5. In general, the unwrapped phase noise estimate
is:

θ̂u
k = U(θ̂r

k, θ̂
u
k−1)

= arg min
θ̂r
k
+m·

π
2

(

|θ̂u
k−1 − (θ̂r

k + m · π

2
)|
)

, m = −∞, ...,∞. (2.20)

An intuitive description of the function is shown in Fig. (2.7), where the red point
(θ̂u

k−1) serves as the reference, and the blue point (θ̂r
k) is dragged down by π/2 to

the black point (θ̂u
k ) because d1 (phase noise step) is greater than d2. We apply this

algorithm to the whole raw phase noise estimates.

Phase noise filtering

After phase unwrapping, the phase noise estimates can be further improved by low-
pass filtering (Ip and Kahn 2007), such as Wiener filter or Kalman filter. However,
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Phase filtering was beyond the scope of this thesis project.

2.3.3 Polarization combination

On each polarization, we get an independent estimate of the common phase noise θk

(denoted as θ̂
(X)
k and θ̂

(Y)
k , and the superscripts ·r and ·u are ignored in this case). The

quality of the estimate depends on the ring on which the transmitted symbol lies:
on the outer or the inner ring, symbols have at least π/2 angular separation, while
in the middle ring this value is reduced much smaller, so obviously the symbols on
the outer or the inner ring are less likely to give rise to ’bad’ estimates. To evaluate
the quality of the estimates, the variance of the estimate is one of the criteria of
performance, which is demonstrated in the next paragraph.

In the observation model, rk = ake
jθk + nk, and according to (2.13), using R, the

radius of the symbol instead of A we get:

r4
k = (Rej(mπ/2+ϕ)ejθk + nk)

4

= R4ej4ϕej4θk

(

1 +
nk

Rej(mπ/2+ϕ)ejθk

)4

= R4ej4ϕej4θk(1 + wk)
4 (let wk =

nk

Rej(mπ/2+ϕ)ejθk
)

≈ R4ej4ϕej4θk(1 + 4wk) (2.21)

The last approximate equation follows because for medium-to-high SNR, wk is small
and we can neglect the higher order terms. Since nk is complex normal distributed
with zero-mean and variance σ2 per real dimension, wk is complex normal distributed
with zero-mean and variance σ2/R2 per real dimension. Then ∡(r4

k) = 4ϕ + 4θk +
∡(1 + 4wk), since 4ϕ and 4θk are constant, the variance of ∡(r4

k) is equal to the
variance of ∡(1 + 4wk), which is 16σ2/R2 per real dimension. Finally, according
to (2.20), the variance of θ̂k is σ2/R2. Now the estimates of symbols on the outer,
middle and inner ring have variances σ2/R2

o, σ2/R2
m and σ2/R2

i , respectively, with
ascending values. Although the estimate variance of symbols on the middle ring has
smaller value than that of inner ring, we still consider the estimates on the inner ring
are more reliable than those on the middle ring because the inner ring has larger
angular separation.

Now we can consider the model of phase estimation as:

θ̂
(X)
k = θk + nx, nx ∼ N (0, σ2/(R̂

(X)
k )2)

θ̂
(Y)
k = θk + ny, ny ∼ N (0, σ2/(R̂

(Y)
k )2), (2.22)

Note that we do not use the superscripts ·r and ·u in this model, neither consider
the initial difference between the raw/unwrapped phase noise estimates and the
true phase noise θk, since our focus is on deducing the mathematical method of
combination. Phase unwrapping will be taken into account in the discussion of each
case of phase combination that will be explained later.
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Given that the two observations are affected by two independent Gaussian noises
nx and ny, the maximum log-likelihood function of θk is:

Λ(θk) = ln p(θ̂
(X)
k , θ̂

(Y )
k |θk)

=
1

2
ln p(θ̂

(X)
k |θk) +

1

2
ln p(θ̂

(Y)
k |θk)

=
1

2







ln
1

√

2πσ2/(R̂
(X)
k )2

− (θ̂
(X)
k − θk)

2

2σ2/(R̂
(X)
k )2







+
1

2







ln
1

√

2πσ2/(R̂
(Y)
k )2

− (θ̂
(Y)
k − θk)

2

2σ2/(R̂
(Y)
k )2







= − ln
√

2π − ln σ +
1

2
ln R̂

(X)
k +

1

2
ln R̂

(Y)
k

− (R̂
(X)
k )2

4σ2
(θ̂

(X)
k − θk)

2 − (R̂
(Y)
k )2

4σ2
(θ̂

(Y)
k − θk)

2. (2.23)

Taking the derivative of Λ(θk) with respect to θk, we get:

∂Λ(θk)

∂θk
= −

(

(R̂
(X)
k )2

2σ2
+

(R̂
(Y)
k )2

2σ2

)

θ +
(R̂

(X)
k )2

2σ2
θ̂k

(X)
+

(R̂
(Y)
k )2

2σ2
θ̂k

(Y)
, (2.24)

set this formula to zero, we obtain the maximum likelihood estimator:

θ̂k,mle =
(R̂

(X)
k )2θ̂

(X)
k + (R̂

(Y)
k )2θ̂

(Y)
k

(R̂
(X)
k )2 + (R̂

(Y)
k )2

. (2.25)

We can also look at this problem at different angle and solve it in another way.
Our objective is to minimize the estimate variance by linearly combing these two
observations, so the combination can be written as:

θ̂k,com = λθ̂
(X)
k + (1 − λ)θ̂

(Y)
k , 0 ≤ λ ≤ 1, (2.26)

so the variance of θ̂k,com (denoted as Vk,com) is:

Vk,com = λ2σ2/(R̂
(X)
k )2 + (1 − λ)2σ2/(R̂

(Y)
k )2, (2.27)

taking derivative of (2.27) with respect to λ and setting it to zero, we get λ =
(R̂

(X)
k

)2

(R̂
(X)
k

)2+(R̂
(Y)
k

)2
, so the optimal combinator is:

θ̂k,com =
(R̂

(X)
k )2θ̂

(X)
k + (R̂

(Y)
k )2θ̂

(Y)
k

(R̂
(X)
k )2 + (R̂

(Y)
k )2

, (2.28)

which is identical to θ̂k,mle in (2.25).

There are four possible cases of polarization combination:



2.4 Performance measures 15

(i) R̂
(X)
k = R̂

(Y)
k ∈ {Ri, Ro};

(ii) R̂
(X)
k = Ri and R̂

(Y)
k = Ro (or vice versa);

(iii) R̂
(X)
k ∈ {Ri, Ro} and R̂

(Y)
k = Rm (or vice versa);

(iv) R̂
(X)
k = R̂

(Y)
k = Rm.

Observe that now we add the superscripts ·r and ·u to differentiate the raw and
unwrapped phase noise estimates.

In cases (i)-(ii), both estimates are considered as reliable, so we can combine them

through proper weighting allocation (2.28) and as follows. Letting γk = U(θ̂
r,(X)
k , θ̂

r,(Y)
k ),

we can find a joint estimate of θk as

θ̂r
k,com =

(R̂
(X)
k )2γk + (R̂

(Y)
k )2θ̂

r,(Y)
k

(R̂
(X)
k )2 + (R̂

(Y)
k )2

. (2.29)

In case (iii), θ̂
r,(X)
k is reliable while θ̂

r,(Y)
k is not, so θ̂

r,(X)
k is a more appropriate reference

than θ̂u
k−1 for the polarization Y, so we utilize (2.19) to re-calculate θ̂

r,(Y)
k . In this

case, we calculate αk = U(θ̂
(Y)
k,1 , θ̂

r,(X)
k ) and βk = U(θ̂

(Y)
k,2 , θ̂

r,(X)
k ), and the raw phase

noise estimate in polarization Y is:

θ̂
r,(Y)
k = arg min

αk ,βk

(

|αk − θ̂
r,(X)
k |, |βk − θ̂

r,(X)
k |

)

. (2.30)

Then we apply (2.29) with appropriate weighting to θ̂
r,(X)
k and θ̂

r,(Y)
k .

In case (iv), both estimates are on the middle ring and are not reliable, but we
can not find another reference more appropriate than θ̂u

k−1, so we do not need to
re-calculate any of them, and apply (2.29) with weights 1/2 to both estimates, and
γk has the same meaning with cases (i) and (ii).

The combined phase noise estimates need to be unwrapped as well, with the same
algorithm introduced in the last section.

2.4 Performance measures

In this section we will describe the methods of measuring the performance of our
phase noise estimator. According to the criteria we utilize in performance measures,
this section will be partitioned into the following two parts:

• Cycle slip detection

• Estimation error variance

Each of them will be particularly explained later in this section.
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2.4.1 Cycle slip detection

Cycle slip is a common phenomenon in fiber-optic communication system, it is a
change in the operating point that occurs during a measurement. Fig (2.8) illus-
trates the cycle slips occurring in both polarizations, with channel noise variance
σ2 = 0.002 and phase noise variance σ2

θ = 10−5. During normal operation, the dif-

ference between the true and estimated phase noise θk − θ̂u
k exhibits small variations

around a stable operating point (De Jonghe and Moeneclaey 1994), as shown in

Fig (2.8) the initial difference θk − θ̂
u,(X)
k = θk − θ̂

u,(Y)
k = 3π/2. However, due to

noise disturbances, a sudden π/2 error may happen during phase unwrapping, and
the following estimates will ’lock’ on this wrong unwrapped estimate, therefore, the
phase noise difference θk − θ̂u

k may slip from the initial stable operating point (3π/2)
to an adjacent stable operating point, say 2π in case of positive slip, or π in case of
negative slip (De Jonghe and Moeneclaey 1994). Since the system has an ambiguity
up to π/2, the operating point always slip π/2 or −π/2 in phase noise difference, as
in Fig (2.8) we can see that the first cycle slip occurs at around the 12000th symbol
in polarization X, and there are 6 cycle slips in polarization X (the green curve),
and 5 cycle slips in polarization Y (the red curve) in total, and each cycle slip leads
to a catastrophic π/2 or −π/2 phase shift to the estimates. Therefore, to detect
cycle slips and quantify their statistics are parts of the tasks in this project.

The probability of cycle slip is an important criterion to evaluate the performance
of the SBSPE, so it is required to detect cycle slips accurately when we measure
the performance, however, please note that the practical receiver can not detect the
cycle slips. Our method is to detect π/2 or −π/2 jumps in the sequence of phase
noise difference θk − θ̂u

k , denoted as d (we drop the superscripts ·(X) and ·(Y) for
notational convenience). The particular procedures follow.

We generate a sequence diff, whose nth element is the difference between the nth
and the (n + L)th elements of d, i.e.

diff(n) = d(n + L) − d(n), (2.31)

where L is a constant to be decided. There is a trade-off between reliability and
performance in deciding the value of L: if L is too small the jump value may not
reach π/2 or −π/2 in the period of L symbols, so we fail to detect some cycle slips; if
the value is too large, we can not determine the occurring positions of the cycle slips
accurately, which will affect the performance of following functions, so the decision
of L is an important issue in this section. In the simulation we found that one ’jump’
(a cycle slip) is always completed during the period of 4 to 5 symbols; after several
tests we have found that L = 10 is an appropriate choice.

According to the property of sequence d, the elements are valued around 0 in case
of no cycle slip; oppositely, the values grow up to around π/2 or −π/2 when cycle
slips occur, so when we detect ’impulse’ absolutely valued π/2, we treat it as a
cycle slip and record the index of this symbol, then we have a sequence (if there
are any cycle slips) index cs. However, we detect one cycle slip for several times
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Figure 2.8. Cycle slips in polarization X and Y with σ2 = 0.002 and σ2
θ = 10−5.

because one ’jump’ is not completed in one, but 4 to 5 symbols; therefore, to remove
these repetitions, we scan the sequence index cs and search for consecutive numbers;
finally we only record the first one of each string of consecutive numbers and remove
the followings. For example, if a cycle slip occurs at the 12000th symbol, we may
find impulses absolutely valued around π/2 at the 12000th, 12001th, 12002th and
12003th symbol in diff and record all of them in index cs, but we should only record
the first one, 12000, as the index of the cycle slip and remove the others. Now the
sequence index cs contains the occurring position of each cycle slip, and the length
of this sequence is the times that cycle slip occurs.

16-QAM POLMUX technique from Section 2.3.3 helps reduce the probability of
cycle slip in the system, and the outcome will be elaborated in the next chapter.

2.4.2 Estimation error variance

The variance of phase noise estimation error is another criterion of performance. To
calculate the estimation error variance we do not take cycle slips into consideration.
Instead we calculate the variance of estimation error for the periods between each
two contiguous cycle slips separately.

Since in the previous section we have determined the positions of each cycle slip, we
can divide the sequence diff into several blocks, and measure the variance for each
block; finally we average them and obtain the estimation variance.
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Similar to cycle slip, 16-QAM POLMUX is also of great assistance to reduce the
estimation error variance, and the outcome is to be presented in the next chapter.



3 IMPLEMENTATION

In the last chapter the background, observation model and algorithms of the system
were discussed, and in this chapter, the descriptions of simulation will be introduced
step by step based on the theoretical solutions given in Section 2.3.

3.1 Algorithms

3.1.1 Transmission channel

The transmission channel in the simulation is assumed to be an Additive White
Gaussian Noise (AWGN) channel according to the observation model (2.1). The
transmitted symbols on polarizations X and Y are generated as follows:

aX = 2*(floor(rand(1,Ns)*M)-(M-1)/2);

aY = 2*(floor(rand(1,Ns)*M)-(M-1)/2);

x = aX+j*aY; // transmitted symbols on polarization X

bX = 2*(floor(rand(1,Ns)*M)-(M-1)/2);

bY = 2*(floor(rand(1,Ns)*M)-(M-1)/2);

y = bX+j*bY; // transmitted symbols on polarization Y

x_stats = unique(x(1,:));

E2 = mean(abs(x_stats).^2);

x = x/sqrt(E2); // normalization

y = y/sqrt(E2);

x_stats = unique(x(1,:));

where Ns is the length of transmitted symbol sequence, and M = 4 for 16-QAM. For
calculational convenience we normalize the symbols to make sure that the average
energy of symbols in the constellation equals 1. The channel noise is simulated as
i.i.d zero-mean complex Gaussian noise with variance σ2 per real dimension by:

nx = randn(1,Ns)*sqrt(sigma2)+j*randn(1,Ns)*sqrt(sigma2);

ny = randn(1,Ns)*sqrt(sigma2)+j*randn(1,Ns)*sqrt(sigma2);

and the phase noise sequence is generated according to (2.2):

theta(1)=rand(1)*2*pi;

for k=2:Ns

theta(k)=2*pi*deltaf+theta(k-1)+randn(1)*sqrt(sigma2_theta);

end;

19
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where sigma2 theta is the variance of phase noise.

Sent over the AWGN channel, the received symbols are simulated as shown in model
(2.1), where the initial phase offset is generated as a random number between 0 and
π/2:

phi = rand(1)*pi/2; // phase offset

rX = x.*exp(j*(theta+phi))+nx;

rY = y.*exp(j*theta)+ny;

3.1.2 Initial phase offset

Estimating the initial phase offset is a significant issue for decoding the received
sequence, and the method has been explained in Section 2.3.1. In our simulation,
this algorithm is applied with the block size as 50, and the outcome is satisfactory.
The code is shown as follows:

Ms=50; // block size

a=reshape(rX,Ms,Ns/Ms);

b=reshape(rY,Ms,Ns/Ms);

pd=mod(0.25*phase(sum(a.^4))-0.25*phase(sum(b.^4)),pi/2);

D=zeros(2,3);

for n=2:length(pd) // unwrapping

D(1,:)=ones(1,3)*pd(1);

D(2,:)=[pd(n),pd(n)+pi/2,pd(n)-pi/2];

d=abs(D(1,:)-D(2,:));

[dum,index]=min(d);

pd(n)=D(2,index);

end

phi_hat=mean(pd); // phase offset estimate

After being estimated, the initial phase offset can be compensated as: r̂
(X)
k = r

(X)
k e−jφ̂

using:

rX = rX*exp(-j*phi_hat);

3.1.3 Raw estimation

Raw estimation is the most important part in SBSPE, and is implemented by func-
tion estimatePhaseSymbolBySymbol(r, x stat, sigma2) in the simulation, where
the argument r is the received symbol sequence, x stat is a 1×16 vector composed
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of the coordinates of the symbols in the 16-QAM constellation (origin as the cen-
troid), and sigma2 is the AWGN noise variance. This function calls another two
functions: determineRotations and estimatePhase.

Function determineRotations(x stats, rho, sigma2) is designed to obtain the mean
value as variable m, the variance as s2 of each ring by using (2.6) and (2.7), and the
three angles in (2.16) as theta corrA, theta corrC1 and theta corrC2, respec-
tively.

for k=1:3

index=find(abs(x_stats).^2==rho(k)); // index of each ring

m(k)=2*sigma2+rho(k); // mean

s2(k)=4*sigma2*sigma2+4*sigma2*rho(k); // variance

phase(x_stats(index).^4);

if (k==1 || k==3)

// rotation angle of the inner ring and outter ring

theta_corrA=phase(x_stats(index(1)).^4);

else

// rotation angles of the middle ring

z=phase(x_stats(index).^4);

zz=unique(z);

theta_corrC1=zz(1);

theta_corrC2=zz(2);

end;

end;

Observe that the variables theta corrA, theta corrC1 and theta corrC2 are 4
times of each rotation angle in (2.16). The argument rho is an 1×3 vector containing
the square of amplitudes of the symbols in the 16-QAM constellation.

estimatePhase(r, theta corrA, theta corrC1, theta corrC2, theta prev, m, s2) is
a function serving to estimate the phase noise for each symbol, where the arguments
m and s2 have the same meanings with those in determineRotations. Equation
(2.11) is taken as a likelihood estimator to determine on which ring the symbol is
transmitted:

Prior=[0.25 0.5 0.25]; // probability distribution of three rings

for l=1:3

// likelihood function

L(l)=-1/(2*s2(l))*(abs(r)^2-m(l))^2-0.5*log(s2(l))+log(Prior(l));

end;

[dum,index]=max(L); // ring index in {1,2,3}

After on which ring has been determined, we apply (2.17), (2.18) and (2.19) to
estimate the phase noise:
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// case 1: inner ring or outer ring

if (index==1 || index==3)

theta_hat=mod(0.25*(phase(r^4)-theta_corrA),pi/2);

else

// case 2: middle ring, we need to distinguish between two

// sub-constellations

try1=mod(0.25*(phase(r^4)-theta_corrC1),pi/2);

try2=mod(0.25*(phase(r^4)-theta_corrC2),pi/2);

// to find estimate closest to theta_hat(k-1)

D=zeros(1,6);

D(1)=abs(try1-theta_prev);

D(2)=abs(try2-theta_prev);

D(3)=abs(try1-theta_prev-pi/2);

D(4)=abs(try2-theta_prev-pi/2);

D(5)=abs(try1-theta_prev+pi/2);

D(6)=abs(try2-theta_prev+pi/2);

[dum,index2]=min(D);

if (mod(index2,2)==1)

theta_hat=try1;

else

theta_hat=try2;

end;

end;

The comparisons between true phase noise and raw estimates on both polarizations
are shown in Fig. (3.1), from which we can tell that the raw estimates do not
follow the true phase noise, rather, they jump around in the whole plane, so the raw
estimates can not be used directly.

3.1.4 Phase unwrapping

The significance of phase unwrapping has been elaborated in previous parts, and
the algorithm has been illustrated in Fig. (2.7), so this section is mainly about the
simulation of phase unwrapping. Take polarization X as example:

theta_unwrap_x=zeros(1,Ns);

theta_unwrap_x(1)=theta_hat_x(1);

for k=2:Ns

aa=(theta_unwrap_x(k-1)-theta_hat_x(k))/(pi/2);

m1=floor(aa);

m2=ceil(aa);

t1=theta_hat_x(k)+m1*pi/2;

t2=theta_hat_x(k)+m2*pi/2;

// find the one nearest to the previous one
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Figure 3.1. Phase noise and raw estimates

if (abs(t1-theta_unwrap_x(k-1))<abs(t2-theta_unwrap_x(k-1)))

theta_unwrap_x(k)=t1;

else

theta_unwrap_x(k)=t2;

end;

end;

After being unwrapped, the estimates are shown in Fig. (3.2). In this figure, the
estimates basically follow the phase noise, except for several cycle slips and the
initial phase difference, which is inevitable in estimation and could be compensated
by further functions.

3.1.5 Phase combination

Applying SBSPE to both polarizations, we have two independent estimates for the
common phase noise, and we can combine them to obtain a better estimate. The
procedures of phase combination were described in Section 2.3.3, while we realize
it in the function estimatePhaseSymbolBySymbolCombination in our simulation.
The function has six arguments: rX and rY are the received symbols on polar-
ization X and Y, respectively; x stats and sigma2 have the same meaning with
those in the previous functions; theta hat x and theta hat y are raw estimates
on X and Y, also the results we obtain in Section 3.1.3. Similar to the function
estimatePhaseSymbolBySymbol, this function also calls for another two functions:
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Figure 3.2. Cycle slips in polarization X and Y with σ2 = 0.002 and σ2
θ = 10−5.

determineRotations and estimatePhaseCombination. The first one has been in-
troduced in Section 3.1.3, and latter one is the focus of this section.

The function estimatePhaseCombination has nine arguments: rX, rY, m, s2, rho,
theta corrC1, theta corrC2, theta hat x, theta hat y. The weights of two esti-
mates are determined by:

// index=1,2,3 indicating inner, middle and outer ring

weight_x=rho(index_x)/(rho(index_x)+rho(index_y));

weight_y=rho(index_y)/(rho(index_x)+rho(index_y));

According to the four cases in Section 2.3.3, if both are or neither is on the middle
ring, we simply combine the two independent estimates by using another function
called PhaseCombination:

function theta_com=PhaseCombination(theta1,theta2,weight1,weight2)

d=zeros(1,3);

// unwrapping theta1 to theta2

d(1)=abs(theta1-theta2);

d(2)=abs(theta1-theta2-pi/2);

d(3)=abs(theta1-theta2+pi/2);

[dmin,index_min]=min(d);

if index_min==1

theta_com=mod(weight1*theta1+weight2*theta2,pi/2);
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elseif index_min==2

theta_com=mod(weight1*theta1+weight2*(theta2+pi/2),pi/2);

else

theta_com=mod(weight1*theta1+weight2*(theta2-pi/2),pi/2);

end;

If only one of the two estimates is on the middle ring, we have to re-estimate the
symbol which is previously measured to be on the middle ring by taking the other
estimate as reference instead of the previous estimate.

elseif (index_x~=2 && index_y==2)

try_y1=mod(0.25*(phase(rY^4)-theta_corrC1),pi/2);

try_y2=mod(0.25*(phase(rY^4)-theta_corrC2),pi/2);

// find the estimation of y closest to x

T=zeros(2,6);

T(1,:)=ones(1,6)*theta_hat_x;

T(2,:)=[try_y1,try_y1-pi/2,try_y1+pi/2,try_y2,try_y2-pi/2,try_y2+pi/2];

D=zeros(1,6);

D=abs(T(1,:)-T(2,:));

[dum,index2]=min(D);

theta_hat_com=mod(weight_x*T(1,index2)+weight_y*T(2,index2),pi/2);

elseif (index_x==2 && index_y~=2)

try_x1=mod(0.25*(phase(rX^4)-theta_corrC1),pi/2);

try_x2=mod(0.25*(phase(rX^4)-theta_corrC2),pi/2);

// find the estimation of x closest to y

T=zeros(2,6);

T(1,:)=[try_x1,try_x1-pi/2,try_x1+pi/2,try_x2,try_x2-pi/2,try_x2+pi/2];

T(2,:)=ones(1,6)*theta_hat_y;

D=zeros(1,6);

D=abs(T(1,:)-T(2,:));

[dum,index2]=min(D);

theta_hat_com=mod((weight_x*T(1,index2)+weight_y*T(2,index2)),pi/2);

The outcome of phase combination (after being unwrapped) is shown in Fig. (3.3).
Drastic reduction in the number of cycle slips can be seen in the combined phase
noise estimates (only 1 cycle slip) compared to single polarization (6 in polarization
X and 5 in Y); moreover, the estimation variance also decreases to a lower level
compared to those of single polarization. Although we do not have the exact values
of the estimation variances in this phase, we still hold an intuitive judgment that
the curve of the combination has small varying range than the other two, because
the curve is ’narrower’ than the others.
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Figure 3.3. True and estimated phase noise

3.2 Performance measures

3.2.1 Cycle slip detection

Cycle slip is a significant issue in coherent optic communication, so the function
findCycleSlip(theta, theta unwrap, L) is designed to detect cycle slips. It has
three arguments: theta, theta unwrap and L, and returns two variables: integer
cnt, the number of cycle slips in theta unwrap, and vector index cs, containing
the occurring position of each cycle slip.

d=theta-theta_unwrap;

diff=zeros(1,length(d)-L);

for p=1:length(diff)

diff(p)=d(L+p)-d(p);

end

index=find(abs(diff)>(pi/2-pi/8));

index_cs=[];

cnt=1-isempty(index);

if isempty(index)==0

index_cs=[index(1)];

for q=1:length(index)-1

if index(q)+1<index(q+1)

cnt=cnt+1;

index_cs=[index_cs index(q+1)];
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else

end

end

end

When we run the code:

L=6; // detection step

[cnt_x,index_cs_x]=findCycleSlip(theta,theta_unwrap_x,L);

[cnt_y,index_cs_y]=findCycleSlip(theta,theta_unwrap_y,L);

[cnt_com,index_cs_com]=findCycleSlip(theta,theta_unwrap_com,L);

we get the results in the command window as:

cnt_x = 6

index_cs_x = [11246 16487 46578 57316 76639 82252 ]

cnt_y = 5

index_cs_y = [17934 40286 67048 70706 94025]

cnt_com = 1

index_cs_com = 57314

The numerical results accord to those in Fig. (3.3), which means that the function
detects all the cycle slips, and exactly positions the occurring index of each one,
paving a way for further actions and functions in this project.

3.2.2 Estimation error variance

Estimation error variance is a criterion to evaluate the quality of an estimate. An
intuitive judgment is the linewidths of the curves in Fig. (3.3), where we can reach
the decision that the black curve (combination) has less estimation error variance
than the green and red ones (one polarization), however, using a numerical value is
a more direct and convincing way to represent the estimation error variance, and
provide an uniform standard for it.

To calculate the exact value of estimation error variance, it is unfair to take cycle
slips into account, because a cycle slip leads to a π/2 or −π/2 jump and will make the
variance very large, so we divide the sequence difflevel = theta − theta unwrap

into the number of cnt + 1 blocks by cutting it at the points whose indices are in
the vector index cs, and measure the variance of each block, then take the average
value of them as the estimation error variance. Taking polarization X as example:
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// case1: no cycle slip

if cnt_x==0

EstimateVar_x(z)=var(difflevel_x);

// case2: non-zero cycle slips

else

var_x=zeros(1,cnt_x+1);

var_x(1)=var(difflevel_x(1:index_cs_x(1)));

for m=1:cnt_x-1

// kicking off the unstable period

if index_cs_x(m)+L<index_cs_x(m+1)

var_x(m+1)=var(difflevel_x(index_cs_x(m)+L:index_cs_x(m+1)));

else

var_x(m+1)=var(difflevel_x(index_cs_x(m):index_cs_x(m+1)));

end;

end;

var_x(cnt_x+1)=var(difflevel_x(index_cs_x(cnt_x)+L:end));

// averaging

EstimateVar_x(z)=mean(var_x);

end

Running this piece of code, we can get the results in the command window:

EstimateVar_x = 0.0039

EstimateVar_y = 0.0039

EstimateVar_com = 7.4822e-004

which accord to the intuitive observation in Fig. (3.3): the two polarizations have
the values in the same order, while the combination has a value reduced by a factor
of 5.



4 DISCUSSION

In the previous two chapters, we gave a description of the models and algorithms, and
represented the simulation results; in this chapter we will further discuss regarding
ring discrimination, cycle slip, estimation error variance and symbol error rate of
this system.

4.1 Ring error probability

Ring discrimination is a critical issue that directly determines whether the estimate
is correct or not, so ring error probability is an important indicator for evaluating
the quality of estimates.

Referring to Fig. 2.4, ring error mainly occurs between the outer and the middle
ring, so we approximately consider the ring error probability as the probability of
mistaking the outer and middle ring. In this section we use p(Ro|Rm) to indicate
the probability that a symbol locating on the middle ring is estimated on the outer
ring, and vice-versa.

The Maximum a posteriori estimator of the ring is given in (2.10), where the distri-
bution of R is currently altered to p(Rm) = 2/3, p(Ro) = 1/3 in our approximation.
Hence, the solution ρ = ζ to the equation

1

3

1√
2πVRo,σ2

e
−

(ρ−µ
Ro,σ2)2

2V
Ro,σ2 =

2

3

1√
2πVRm,σ2

e
−

(ρ−µ
Rm,σ2)2

2V
Rm,σ2 (4.1)

is the threshold value to distinguish Rm and Ro, which means that the decision will
be Ro if ρ is greater than ζ , while the decision will be Rm if ρ is less than ζ .

Now the ring error probability can be calculated as:

pe,ring = p(Rm) · p(Ro|Rm) + p(Ro) · p(Rm|Ro)

= 2/3p(Ro|Rm) + 1/3p(Rm|Ro)

= 2/3Q

(

ζ − µRm,σ2

√

VRm,σ2

)

+ 1/3Q

(

−ζ − µRo,σ2

√

VRo,σ2

)

(4.2)

We calculate the solution to (4.1) and (4.2) numerically by using Monte Carlo sim-
ulation method, and get the result plotted in Fig. 4.1 In this simulation we can
conclude that the ring error probability goes down along with the increment of
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Figure 4.1. Error probability of the ring detector from (2.11).

SNR. Furthermore, relatively large SNR is required to keep the ring error proba-
bility low, for instance, it is over 10−2 around 19dB that is required for a BER of
10−3. For the parameters we used in the simulation in the previous chapters, SNR
approximately equals to 24dB, and the corresponding ring error probability equals
to 6 × 10−5.

4.2 Cycle slip statistics

We also do a Monte Carlo simulation of considering the probability of cycle slips as
a function of σ2

θ in the system, while the results is illustrated in Fig. 4.2. In this
figure we can conclude that the higher the SNR, the lower the probability of cycle
slips, and cycle slips occur more often for σ2

θ > 10−3. For 100Gb/s communication, in
each polarization the baud rate is 12.5Gbaud/s, so the corresponding laser linewidth
∆f = σ2

θ/2π/T = 2MHz, where 1/T is the baud rate. Moreover, the probability
of cycle slips is reduced by approximately an order of magnitude by combining the
information from both polarizations.

4.3 Estimation error variance statistics

In this section, we consider the estimation error variance as a function of σ2
θ for

separately and jointly estimation, whose results have been plotted in Fig. 4.3, where
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Figure 4.2. Probability of cycle slips, using one and two polarizations.

we can observe that the estimation error variance of the combined polarizations is
always lower than that of a single polarization; furthermore, the estimation error
variance is almost independent of σ2

θ up to σ2
θ > 10−3, above which the value increases

rapidly.

4.4 Comparison with existing algorithms

Besides the SBSPE estimator, we realized two other types of estimators as well,
and plotted all the performance in Fig. 4.4, they are estimator 2.5 for M = 64,
and the estimator from (Seimetz 2008) with M = 64. These two estimators give a
performance of Vss > 10−1, a relatively large value, for σ2

θ > 1.5 × 10−3, thus we
truncate the curve at Vss = 10−1 and σ2

θ = 10−2. In this figure, the estimator fusing
information from both polarizations gives a performance as fairly independent of σ2

θ

up to 10−2 and can tolerate orders of magnitude more laser linewidth than other
estimators.

4.5 Symbol error rate

Upon the completion of phase noise estimation, we can de-rotate the received sym-
bols and compensate for the phase noise: the original transmitted symbols can be
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Figure 4.3. Steady-state error variance for different laser linewidths, using one
and two polarizations.
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Figure 4.5. Symbol error rate, decoded by one and two polarizations

recovered as:

â
′

k =

[

e−jφ̂−jθ̂k 0

0 e−jθ̂k

]

· rk, (4.3)

now we have rough estimates of transmitted symbols in â
′

k.

Since the complex numbers in â
′

k are not necessarily the points in the 16-QAM
constellation, we have to pass â

′

k through a decision circuit to finally recover the

original transmitted symbols. After the decision, we get âk =
[

â
(X)
k â

(Y )
k

]T

.

Comparing âk to ak, the symbol error rate of the system is obtained. We considered
the SER as a function of σ2

θ , and plotted the result of this Monte Carlo simulation
in Fig. 4.5. In this figure, the SER of using the phase noise estimates from one
polarization grows up to a relatively large value, say around 10−2 for σ2

θ = 10−2,
while it keeps 3 × 10−3 for that from both polarizations at the same level of σ2

θ .





5 CONCLUSION

5.1 Completed work

We have considered feed-forward phase noise estimation for 16-QAM in coherent
fiber-optic communication in this project, and a novel symbol-by-symbol phase noise
estimation algorithm is introduced and analyzed. A brief description of the algo-
rithm is listed as follows:

1. Phase offset estimation - to estimate the constant phase offset between two
polarizations X and Y.

2. Symbol-by-symbol phase noise estimation - the primary part of the whole al-
gorithm, to estimate the phase noise symbol-by-symbol, including three steps:

(a) Ring discrimination - to determine on which ring of the 16-QAM constel-
lation the symbol is being transmitted;

(b) Phase estimation - to estimate the phase noise based on the information
from ring discrimination;

(c) Phase unwrapping - to remove the ’discontinuity’ component in the raw
estimates.

3. Polarization combination - to fuse the information collected from both polar-
izations and achieve better performance.

To analyze the performance of the proposed algorithm, we have considered the
following performance measures:

1. Cycle slip detection - to detect and quantify the statistics of cycle slips which
lead to catastrophic π/2 phase shift in estimates.

2. Estimation error variance - to estimate the steady-state variance in between
cycle slips to characterize the performance of the SBSPE algorithm.

In addition, some further issues are discussed as well:

1. Ring error probability - to analyze the the probability of mistaking on which
ring the symbol is transmitted, which is a critical reason for wrong phase
estimates.

2. Symbol error rate - to quantify the symbol error rate of this algorithm.
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3. Cycle slip statistics - to analyze the probability of cycle slips as a function of
the variance of phase noise.

4. Estimation error variance statistics - to analyze the estimation error variance
as a function of the variance of phase noise.

5. Comparison with existing references - to compare the steady-state error vari-
ance for different laser linewidths of the SBSPE (with one and two polariza-
tions) with other two estimators.

5.2 Findings

Based on the performance of the SBSPE algorithm and the results of comparison
with other estimators, it is corroborated that (i) information fusion enhances the
performance of the system in two characteristics, the probability of cycle slips and
the estimation error variance; (ii) the SBSPE can tolerate orders of magnitude more
laser linewidth than the other two estimators from (2.5) and (Seimetz 2008).

5.3 Future work

The algorithms have been implemented in this project, nevertheless, there are still
improvements can be done. After the raw phase noise estimates have been un-
wrapped, filters - Kalman filter or Wiener filter can be used to low-pass filter the
estimates, on the purpose of reducing the variance of estimation error.
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