

Comprehending How Merge Conflicts
Developed in an Open Source Software
Project
Master’s Thesis in Software Engineering

MOSES MSAFIRI CHAGAMA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Comprehending How Merge Conflicts Developed
in an Open Source Software Project

MOSES MSAFIRI CHAGAMA

Department of Computer Science and Engineering
Division of Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2018

Comprehending How Merge Conflicts Developed in an Open Source Software Project

MOSES MSAFIRI CHAGAMA

© MOSES MSAFIRI CHAGAMA, 2018.

Supervisors: Regina Hebig, Computer Science and Engineering Department
Thorsten Berger, Computer Science and Engineering Department

Examiner: Eric Knauss, Computer Science and Engineering Department

Master’s Thesis 2018
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Comprehending How Merge Conflicts Developed in an Open Source Software Project
MOSES MSAFIRI CHAGAMA
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
Studies show that merge conflicts are common in collaborative development, as
developers work in a same part of a project code base using a version control system.
The merge conflicts occurred when the developers merge their changes from their
individual branch into a mainline branch or vice versa. Often, the developers are
required to resolve the conflicts manually when merge tools are unable to resolve
them automatically. However, the developers face a challenge of deciding which
changes they should keep during conflicts resolution. This situation occurs when
they do not understand the changes done by others to resolve the conflicts without
worrying that their changes will introduce faults. The purpose of the study is to
explore merge conflicts and changes that lead to their occurrence in the project
code base. To achieve this purpose, we conducted an in-depth manual analysis of
conflicting changes in a sample of 40 merge conflicts from an open source software
project. The merge conflicts were categorized for comprehension and analyzed for
changes that led to their occurrence in the project code base. Six categories of the
merge conflicts and eight categories of changes that led to the merge conflicts in the
project code base were identified. We observed that most of the merge conflicts are
due to changes in method call or object creation statements and most of the changes
in the project code base that led to the merge conflicts are related to introduction of
new features and refactoring tasks.

Keywords: open source software, merge conflicts, collaborative development.

v

Acknowledgements
I would like to thank my supervisors Regina Hebig and Thorsten Berger for their
guidance and support throughout the thesis work. Also, I would like to thank Wanzi
Gu and Okorie Chidiebere Anthony for taking their time to review this thesis. Lastly,
I would like to thank Chalmers University of Technology for financial support which
made possible for me to pursue my studies including the thesis work.

MOSES MSAFIRI CHAGAMA, Gothenburg, January 2018

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Background 3
2.1 Open Source Software and Development 3
2.2 Collaborative Development Models 4

2.2.1 Pull-Based Model . 4
2.2.2 Branching Model . 6

2.3 Merge Conflicts . 7
2.4 Related Work . 9

3 Prestudy 11
3.1 Method . 11

3.1.1 Data Collection . 13
3.1.2 Data Analysis . 16

3.2 Result - Feature Integration Challenges 16
3.2.1 Understanding implementation of the features 16
3.2.2 Missing core classes which features depend on 17
3.2.3 Merge conflicts . 17

3.3 Discussion and Conclusion . 17
3.3.1 Example of the Merge Conflict Analysis 18
3.3.2 Conclusion . 19

4 Methodology 21
4.1 Extraction of Merges with Conflicts 22
4.2 Extraction of Conflicting Versions in Merge Conflict 23
4.3 Analysis of the Conflicting Versions 25

4.3.1 Selection of Sample Conflicting Versions 25
4.3.2 Categorizing Merge Conflicts 26
4.3.3 Analysis of Project Level Changes that Led to the Merge Conflicts 26

5 Results 29
5.1 Categories of Merge Conflicts . 29

5.1.1 Change of Method Call or Object Creation (MC_OC) 29

ix

Contents

5.1.2 Change of an Assert Statement Expression (AS_EXP) 32
5.1.3 Addition of Statements in the Same Area (ADD_STMT) . . . 32
5.1.4 Modification and Removal of Statements (MOD/RMV_ STMT) 34
5.1.5 Changes in Different Statements in the Same Area (D_STMT) 35
5.1.6 Change of IF Statement condition (IF_C) 35

5.2 Changes that led to the Merge Conflict 36
5.2.1 Feature Introduction . 36
5.2.2 Refactoring . 37
5.2.3 Feature Enhancement . 37
5.2.4 Test Improvement . 38
5.2.5 Bug Fix . 38
5.2.6 Framework Removal . 39
5.2.7 Breaking Change Fix . 39
5.2.8 Library Removal . 39

6 Discussion 43
6.1 Categorizing Merge Conflicts . 43
6.2 Changes that lead to the merge conflicts 45
6.3 Threats to Validity . 45

6.3.1 Construct Validity . 46
6.3.2 Internal Validity . 46
6.3.3 External Validity . 46
6.3.4 Reliability . 47

7 Conclusion and Future Work 49
7.1 Summary . 49
7.2 Contributions and Limitation of the Study 50
7.3 Future Work . 51

Bibliography 53

Appendices 57

Appendix A Descriptions of the Features Studied in the Prestudy I

Appendix B Dataset of changes that led to the Merge Conflicts V
B.1 Extracted commits and files associated with the merge conflicts in the

dataset . V
B.2 Changes that led to Merge Conflicts VII

x

1
Introduction

In collaborative development, version control systems allow developers to use branches
and to work individually in a part of software project [1]. The developers can im-
plement and experiment with changes independent of a main development branch
or repository. The changes may include bug fixes, introduction of new features or
enhancement of existing features, and refactoring. When the developers are done,
the changes are then reviewed and integrated (or merged) into the main development
branch. However, the changes are integrated into the main development branch if
they are deemed sufficient.

The practice of branching is common in both closed source software projects [1] and
open source software projects [2]. In open source software projects, contributors who
have permissions to make changes to project repository can create new branches
while those who do not have permissions submit patches or pull requests [3]. Both
approaches in the end integrate changes into the main development branch.

Despite use of branches helping developers to work without interruptions [2] and
less development time [4], conflicts are common when integrating changes into main
development branch [5, 6, 7]. Kasi and Sarma [7] found occurrence of merge conflicts
on average 23% in their study. Similarly, Brun et al. [5] found that developers
experienced textual merge conflicts in 16% of changes integration. Often, merge tools
resolve those conflicts automatically; however, the developers may be required to
resolve the conflicts manually if the merge tools were unable to resolve automatically.
During the resolution of the merge conflicts, a developer may use one of a version
involved in the merge conflict completely, that is, either his or her version or the
other conflicting version, or incorporating both versions. To decide which version to
use, the developers must understand changes in both versions, especially, the other
version so that to make the right decision. In this situation, a challenge arises if the
developer does not understand clearly what and why the other changes were made.
This challenge was reported in a prestudy that preceded a main study in the thesis
work. In the prestudy, it was found that understanding implementation of features
during feature integration into the main development branch was a challenge when
there are merge conflicts, which required manual resolution. Similar challenge was
found in a study by McKee et al. [8] which was published after the prestudy. McKee
et al. [8] results show that developers perceive the merge conflicts to be difficulty if
they lack knowledge or expertise in the area of the conflicting code. Therefore, given
that merge conflicts are prevalent when developers integrate changes into the main
development branch or incorporate changes into their individual branches and there

1

1. Introduction

is a challenge of understanding the conflicting changes during conflicts resolution,
understanding the merge conflicts and changes that lead to their occurrence is crucial
towards aiding developers during conflicts resolution.

The purpose of the study is to understand merge conflicts and to explore changes
that lead to merge conflicts when merging changes from a branch such as feature
branch into main development branch and vice versa in an open source software
project. To achieve the purpose of the study, we qualitatively conduct an in-depth
analysis of changes that led to merge conflicts and categorize the merge conflicts
using a sample of conflicting changes in the merge conflicts. The following questions
guided the work in this thesis:

• RQ1. How can the merge conflicts be categorized in terms of code level
changes?

• RQ2. What are the project level changes that led to the merge conflicts in an
open source software project?

This thesis makes the following main contributions:
• Two datasets of conflicting changes in merge conflicts in an open source software

project. One dataset is for conflicting changes in the merge conflicts and another
is for description of changes led to the merge conflicts in a sample of conflicting
changes in the merge conflicts.

• Methodology used to extract and analyze the changes that led to the merge
conflicts.

The remainder of the thesis is organized as follows: Chapter 2 contains background
on open source software and development, collaborative development models, merge
conflicts, and related work. Chapter 3 reports on the prestudy prior to the main
study. Chapter 4 describes the methodology used to find and analyze merge conflicts.
Then, Chapter 5 presents the results of the study. Chapter 6 discusses the outcome
of the study and threat to validity. Finally, Chapter 7 draws conclusion and offers
possible further research.

2

2
Background

This chapter presents background on open source software and its development. It
describes collaborative development models used in open source projects. Background
on merge conflicts and related work are provided.

2.1 Open Source Software and Development
According to Open Source Initiative (OSI) 1, open source software is software that
anyone can use it freely, obtain its source code, modify the source code, and share
original or modified source code without paying or asking permission to original
developers. Most open source projects share two characteristics: adherence to Open
Source Definition (OSD) [9] provided by OSI and often developers are users of the
software [10]. The OSI outline 10 criteria that any open source software should
follow. The criteria can be summarized into three main aspects: right to modify
the software, ability to distribute the software freely, and availability of the source
code [10]. Many of the criteria in OSD are based on provision of licenses that do not
restrict on redistribution and modification of the software, discrimination against
anyone or specialization, and discrimination against other software.

One advantage of open source software is that most developers (contributors) are
also users of the software [10, 11, 12]. This help to make the software stable and
usable. The contributors help to debug the software and report defects to main
project repository or project core developers. This can speed up development process
in which core contributors or developers focus on development of new features while
other contributors help to test developed features. Also, contributors can fix reported
defects. Moreover, as users, contributors in turn help to improve quality of the
software they use. Furthermore, contributors can request new features and help to
develop them as they may have specific requirements which may also be important
to other users. Therefore, contributing those features will eventually benefit the
project.

In most cases, open source software is developed by a developer or community of
developers who are volunteers. The developers are motivated by several factors to
participate as most of them are not paid for their work. First, developers regard
contribution to an open source development as a hobby that they are enjoying doing
it [13, 14]. The developers feel satisfied, fulfilling, and competent when writing

1https://opensource.org/

3

 https://opensource.org/

2. Background

programs [13]. Second, developers contribute to open source projects to improve
their career profiles, for example, improving programming skills [13, 14] and gaining
reputation [13, 14]. Therefore, through their contribution, developers are invest-
ing in their career development. Third, developers feel obligated to give back to
community after they had received help [14]. Fourth, developers are driven by de-
sire to make open source the software they developed as a result of personal needs [13].

Furthermore, developers are driven by need to choose a software which they can
change the code to meet their needs [14]. Unlike commercial software, open source
software allows users such as organizations to obtain source code which they can
changes to fit their needs. Most users feel compelled to share the changes back to
the community so that others can benefit with added features [14].

Open source software contributors usually are in different geographical location
[11, 15]. This pose some challenges on coordinating development activities, in
particular source code management. Nevertheless, version control system in open
source software projects allow to keep track of changes from various contributors.
However, with distributed nature of open source development, conflicts arise related
to source code control [16]. Contribution from two or more developers who make
parallel changes on same part of source code can results to conflicts when merging
changes to the main project repository.

2.2 Collaborative Development Models

Distributed version control system (DVCS) such as Git2 allows developers to share
code without using a main repository [17]. Unlike centralized version control systems
(CVCS) where there is a master central repository and developers share their code
through it [18], the DVCS offers flexibility of reviewing and fixing changes before
submitting to the main repository. The following development models are used in
open source software projects.

2.2.1 Pull-Based Model
Pull-based model is a form of collaborative development in which developers work on
a copy (clone) of shared repository, and send changes to a main repository once they
are done. The pull-based model is overall gaining popularity in distributed software
development, in particular open source software projects, helped by distributed
nature of version control systems such as Git [4].

With use of code hosting sites such GitHub3 which offer pull request feature, anyone
who wants to contribute can submit contribution to the main project repository
after forking the project, that is, obtaining the copy of the project. The pull request
feature allows contributors to submit their contribution and receive feedback for

2https://git-scm.com/
3https://github.com/

4

https://git-scm.com/
https://github.com/

2. Background

further improvement. However, it should be noted that the pull request feature can
also be used in a branching model for code review process before changes are merged
into main development branch. Therefore, in this thesis, the pull request process is
limited to integrating changes in the main development branch from forks.

The pull-based model is effective in contributing to the open source software projects
through use of pull requests compared to traditional patch submission [4]. It takes
less time for the pull request to be accepted after submission. Most pull requests
are merged within 4 days [4]. Moreover, the pull-based model allows easy inspection
process of changes made by contributors.

However, the pull-based model has notable key challenges to both contributors and
core team who integrate the contribution in main repository. For contributors, the
challenges include: understanding project code base [3], use of collaboration tools
such as Git [3, 19] and timely feedback from core team [3]. On the other hand,
for integrators of the contribution, the challenges include: maintaining quality of
the code and providing feedback to contributors without discouraging them [20].
Nevertheless, tutorials on version control tools such as Git, a good documentation of
the source code and project contribution guidelines can reduce most of the challenges
for new contributors.

Figure 2.1: The pull request process [4]

5

2. Background

A typical pull-based model has two roles [4] namely: core team and contributor.
However, during the inspection process, the pull-based model can have three roles
[21] namely: a core member who judge the pull request, commenter who comment on
the changes in the pull request and contributor. As shown in Figure 2.1, the process
of contributing to an open source software project for most contributors starts with
forking the main repository.

However, the practice of code forking is not limited only for a purpose of contributing
to open source software projects. Other reasons include: discontinuation of main
project and experimental purpose when introducing major changes into the project
[22, 23]. Most forks have shorter active period apart from those started from the
discontinuation of the original project and do not synchronize with a main project
after needs were met [24]. Nevertheless, for contributions in open source software
projects, forking is the first step to obtain a copy of the main repository.

After forking a project, the contributor implements necessary changes and then
creates a pull request, that is a request to merge the changes into main repository,
after satisfied with the changes. The contributor can provide information about what
the changes accomplish so that to ease inspection process. The core team inspect
and comment on the pull request. Depending on the review process and guidelines,
further information might be needed. The contributor can then add more changes as
part of the review process. Then the pull request is merged into main repository if
the core team accept the changes.

However, not all pull requests can be accepted. The pull requests can be rejected
because of similar changes in other branches, uninterested changes, quality of the
changes, and implementation error [4]. The core team can then close the pull request
if the changes are accepted or rejected which is a last step of the pull-based model.

2.2.2 Branching Model
Version control systems offer branching feature which allow developers to work si-
multaneous in a same part of a system by tracking multiple changes made on the
source code [25]. The developers create branches, that is, diverging from a mainline
development [26], to implement necessary changes in the project. Most branches
are used for release purpose and feature implementation [25]. The mainline branch
is used as a central repository same way as in a centralized version control system
(CVCS) [18].

Figure 2.2 shows a simple time-line example of a branching model in Git version
control system. A first step in the branching model is to create a branch from a
mainline branch, which is a main repository (or development) branch. In this thesis,
the new branch is referred to as a topic branch which may be created to implement
new feature, enhancing new feature, fixing issue or refactoring part of the code.
The new branch points to a commit which is a base between mainline and topic
branch. The base commit is referred to as common ancestor. The next step after

6

2. Background

implementing changes is to merge the changes into the mainline branch. When
merging topic branch changes into mainline branch a commit is created. The commit
is referred to as merge commit. The merge commit has more than one parent, that
is, it points to more than one commit. However, in Git, integration of changes can
also be done using rebase [26] where changes from one branch are reapplied onto
another branch. In this thesis, merging refers to the basic merge which creates the
merge commit.

Time

Mainline
Branch

Topic
Branch

Common
Ancestor

Merge
Commit

Figure 2.2: A simple example of a branching model

One advantage of the branching model is that it allows support for simultaneous
releases [27]. One branch can be created to fix minor issues before a release while in
other branches new features for next releases are developed. The releases branches
are labeled to reflect features included in a version.

However, contribution in an open source software project using the branching model
has a drawback. Contributors need to have permission to make changes in a main
repository [4]. This is a challenge for new contributors since they need to build trust
with a core team before they are granted permission.

2.3 Merge Conflicts
Merge conflicts are one of the challenges in collaborative development [5, 6, 7].
Developers work on separate branches or local copy of main repository and merge (or
integrate) their changes into a project mainline branch in a version control system
(VCS) such as Git. Often merging of changes into the mainline branch is done
automatic. However, the merging process is done manually when there are conflicts
[28]. The merge conflicts occur when there are parallel changes on the same part
of the code. In the event of a merge conflict, the version control system indicates
conflicting file and part of the code. However, it depends on the version control
system on use. In Git, conflicting versions are enclosed in markers. Figure 2.3 shows
an example of a merge conflict in Git.

7

2. Background

public int add(int x, int y) {
return x + y;

}

public int sum(int x, int y) {
return x + y;

}

<<<<<<< HEAD
public int add(int x, int y, int z) {

return x + y + z;
=======
public int sum(int x, int y) {

return x + y;
>>>>>>> merge-example
}

public int add(int x, int y, int z) {
return x + y + z;

}

Common Ancestor

Topic branch versionMainline branch version

Merged Version

Figure 2.3: An example of a merge conflict in Git

With existences of several merge techniques based on software artifacts [29], merge
conflicts can be divided into three kinds of conflicts: textual, syntactic, and semantic
conflicts.

Textual conflicts: These conflicts arise in line-based merging [29]. Textual merge
tools compare parallel lines of text files for modification, deletion, insertion, and
arrangement of text. However, textual merging techniques cannot combine parallel
modification on same line [29]. Usually, the textual merge tools report conflicts such
as space changes and code comment modification which might not be important
when merging changes into mainline branch.

Syntactic conflicts: Unlike textual merging, syntactic merging consider syntax
of the source code file during merge [29]. Syntactic merge tools report conflicts
when merged changes are not syntactically correct, therefore conflicts such as space
changes can be ignored. However, the syntactic merge tools cannot detect changes
which result to semantic problems [29] despite are syntactic correct.

Semantic conflicts: These conflicts raise errors such as undeclared variables when
merged changes are compiled. The conflicts are referred as static semantic con-
flicts. They can be detected by graph-based merge approaches [29] which there is a
link between declaration or definition and invocation of variables and methods (or

8

2. Background

functions).

2.4 Related Work
Most studies of merge conflicts in a collaborative development focus on aiding devel-
opers by providing awareness to minimize merge conflicts and its impact. However,
to the best our knowledge, there exist few studies that focused on understanding
the structure of the conflicting changes in the merge conflicts. Accioly et al. [30]
conducted a study of merge conflict characteristics to understand the existing pat-
terns of the merge conflicts and determine the requirements and recommendations to
improve available tools used for the merge conflict resolution and detection. In their
study, they analyzed the merge conflicts in a sample of 123 open source Java projects
by replaying merge scenarios using a semistructured merge tool called SSMerge
[31]. The semistructured merge tool takes advantages of both unstructured and
structured merges. Accioly et al. [30] found nine conflict patterns based on types
of the merge conflicts detected by the semistructured merge tool that might occur
when merging conflicting changes from two developers. Their study had similar
purpose with the work in this thesis to understand the changes that lead to the merge
conflicts. However, Accioly et al. [30] used a tool to analyze the changes and focused
on general structural changes, while in this thesis we focus on all changes that led to
the merge conflicts including inside method bodies. Furthermore, de Menezes [32]
investigated the structure of the conflicting changes by analyzing language constructs
such as method declaration and if statement. He conducted manual analysis on 5
Java projects and found most merge conflicts involve 4 language constructs. Also,
de Menezes [32] found that there are 7 language constructs which occur frequently
in conflicting changes in the merge conflicts. His work focused on the language
constructs to categorize the merge conflicts.

Another study of merge conflicts focused on software practitioners’ perspective on
approach and resolution of the merge conflicts. McKee et al. [8] conducted interviews
and a survey to understand factors that influence difficulty when resolving merge
conflicts and how software practitioners approach merge conflicts. Their results show
that complexity of the merge conflicts and experience in the project determine how
software practitioners approach the merge conflicts. The software practitioners asses
the merge conflicts and decide if they can resolve or revert the merge and merge later
or pass to their colleagues. Moreover, their results show that lack of knowledge on
the domain of conflicting code influence difficulty during merge conflicts resolution.
This result is similar with our finding in the prestudy where developers reported that
they had difficulty understanding conflicting changes during the resolution of the
merge conflicts.

Studies of merge conflicts awareness focused on development of tools and strategies
to avoid and reduce the occurrence of the merge conflicts. Guimarães and Silva [33]
presented a tool WeCode which detects conflicts by continuously merging changes in a
background system and notify developers without much disruption. The background
system combines all changes (commited and uncommited) on developers’ clone of a

9

2. Background

project repository and from a master repository, while the developers are making
changes. Similarly, Brun et al. [5] presented a tool called Crystal to help developers
in conflict identification, management, and prevention. Their tool merges changes
done (or committed) by developers on their working clones to a master repository in
the background and reports status of the working copy. The developers can then
decide to take right actions. Furthermore, Kasi and Sarma [7] presented a tool to
proactive reduce conflicts by restricting concurrent changes on shared common files
through task (planned change) orders. Their tool determines the tasks that would
result to the merge conflicts and restricts developers from performing them so that
to minimize the occurrence of merge conflicts.

Another study of merge conflict awareness by Sarma et al. [6] focused on awareness of
changes in workspace artifacts, that is, files in a software configuration management
system. They presented a tool that extends software configuration management
systems to monitor changes on the artifacts. The information on the artifact changes
are then shared to developers so that are aware of the modification which are
currently done by others in the same artifact and, therefore, minimize conflicting
changes. The implication of the results in this thesis focuses on designing a tool
which provide information on conflicting changes to aid developers with the merge
conflicts resolution.

10

3
Prestudy

This chapter reports on method, results, and discussion of the prestudy. The purpose
of the prestudy was to explore challenges encountered by developers and how they
resolved those challenges when integrating features into mainline branch from feature
branches. The outcome of the prestudy led to further investigation of merge conflicts
in the main study in order to understand what are changes led to their occurrence.
In the prestudy, we observed that merge conflicts were the most reported challenge.
We then further investigated the merge conflicts by replaying the integration of the
features into the mainline branch so that to gain a deeper understanding. Also, related
to the challenge of the merge conflicts, the developers reported that understanding
implementation of the features in particular when resolving the merge conflicts was
a challenge.

3.1 Method
An exploratory case study research method was adopted in the prestudy. The
exploratory case study helps to find out what is happening, seeking new insights
and generate ideas and hypothesis for new research [34]. The case study method is
appropriate since the prestudy had an exploratory purpose as it aimed to explore
challenges of integrating feature branches to mainline development project. Moreover,
the case study method provides an approach which there is no precise boundary
between phenomenon and study setting in comparison with experimentation [34].

In the prestudy, we explored Elasticsearch1 project as a case, which is an open source
full-text search and analytic engine that allows to store, search, and analyze big
volumes of data quickly and in near real time [35]. The Elasticsearch project was
chosen since it was used in a software evolution project in a masters program course
and data were available. During the course from September to December 2016, 5
groups of 7 students integrated features from forks into a fork which was used as a
mainline project.

A total of 16 features from 14 forks were integrated successfully during the course.
Table 3.1 shows features and their forks used in the course. Table 3.2 shows size
of the features before and after integration of the features. Also, it shows fork and
mainline versions used by the groups during the feature integration.

1https://github.com/elastic/elasticsearch

11

https://github.com/elastic/elasticsearch

3. Prestudy

Table 3.1: Features and their forks studied in prestudy

Feature Fork

CancelableSearchAction imotov/elasticsearch
CustomizableShardWeights ywelsch/elasticsearch
FunctionScoreQueryFunctions brwe/elasticsearch
GeoHeatMapAggregator o19s/elasticsearch
GeoHeatMapGridAggregator sstults/elasticsearch
GeoMeansAggregator colings86/elasticsearch
SearchIngestProcessor dadoonet/elasticsearch
NodesUsageAPI-REST colings86/elasticsearch
ScrollPersistence javanna/elasticsearch
StandardNumberAnalysis (Plugin) jprante/elasticsearch-analysis-standardnumber
StringFieldsAnalyzerProcessor imotov/elasticsearch
SynonymsGraph mattweber/elasticsearch
TermsWithoutGlobalOrdinals jpountz/elasticsearch
TopHitsAggregationSorting martijnvg/elasticsearch
UnifiedHighlighter jimczi/elasticsearch
xmlFormat jprante/elasticsearch

Table 3.2: Features integrated by each group

Group Feature Feature size (LOC) Version

Before
Integration

After
Integration Fork Mainline

A GeoMeansAggregator 1011 1012 5.0.0-alpha6 5.0.0-alpha6
NodesUsageAPI-REST 1592 1592 5.0.0-alpha6 5.0.0-alpha6
xmlFormat 1138 1206 1.0.0.Beta1 5.0.0-alpha6
StandardNumberAnalysis 10906 10257 2.3.3 5.0.0-alpha6

B TopHitsAggregationSorting 42 42 5.0.0-alpha4 5.0.0-rc1
GeoHeatMapAggregator 1204 1201 6.0.0-alpha1 5.0.0-rc1

C GeoHeatMapAggregator 1204 1201 6.0.0-alpha1 5.0.0-alpha6
SynonymsGraph 3045 3081 6.0.0-alpha1 5.0.0-alpha6
UnifiedHighlighter 1145 1435 6.0.0-alpha1 6.0.0-alpha1

D FunctionScoreQueryFunctions 501 625 5.0.0-alpha3 6.0.0-alpha1
CustomizableShardWeights 186 183 5.0.0-alpha4 6.0.0-alpha1
GeoHeatMapGridAggregator 1363 1363 6.0.0-alpha1 6.0.0-alpha1
NodesUsageAPI-REST 1592 1592 5.0.0-alpha6 5.0.0-alpha6
TermsWithoutGlobalOrdinals 314 315 2.0.0 6.0.0-alpha1
TopHitsAggregationSorting 42 46 5.0.0-alpha4 6.0.0-alpha1

E CancelableSearchAction 959 951 6.0.0-alpha1 5.0.0-alpha6
StringFieldsAnalyzerProcessor 960 952 5.0.0-alpha6 5.0.0-alpha6
ScrollPersistence 614 872 5.0.0-alpha6 5.0.0-alpha6
SearchIngestProcessor 837 963 5.0.0-alpha6 5.0.0-alpha6

12

3. Prestudy

3.1.1 Data Collection
In the prestudy, both qualitative and quantitative data were collected. A mixture of
qualitative and quantitative data provides more useful result compared to using only
one of them [36]. The prestudy used two data collection methods. The methods are
archival data and semi-structured interviews.

Archival Data

Archival data used in the prestudy included source code repositories and documen-
tation. The source code of the groups projects were hosted in Github2 private
repositories. Access to the groups repositories was granted by a teacher responsi-
ble for the course. For each feature, the commits that integrated the feature into
the mainline project were identified manually using information obtained from the
reports, branches used to integrate the features and through repository’s commit
messages. After the feature commits were identified, size of the features before and
after integration were extracted. To extract the feature sizes before and after inte-
gration, Git command git-cherry-pick3, which applies changes from one commit
or branch into another commit or branch, was used to apply the feature commits
into new feature branches.

Feature Integration
Replay

Extraction
of Feature Size After

Integration

Extraction
of Feature Size Before

Integration

Feature
Size Before
Integration

Feature
Size After
Integration

Merge
Conflicts

Observation

Figure 3.1: Extraction of data from source code repositories

Figure 3.1 shows overview of data extraction from source code repositories. In the
extraction of the feature size, from any branch that contain feature code, a new

2https://github.com/
3https://git-scm.com/docs/git-cherry-pick

13

https://github.com/
https://git-scm.com/docs/git-cherry-pick

3. Prestudy

branch was created using a commit before the feature was integrated. This branch
was used as a base before the integration. Another branch was then created that
contains feature commits. Afterwards, branches before and after feature integration
were compared using git-diff4 command, which is used to show changes between
two commits or branches. In order to easily compare the branches and obtain metrics
such as Lines of Code (LOC) added for each features (see Table 3.3), we wrote a
script and excluded documentation files.

Another data extraction process is replaying feature integration to find out what
conflicts the groups had encountered. To achieve this, first, the merge commits hash
were found and then they were used to determine the merge parents commits using
the following Git command.

git log --pretty =%P -n 1 <merge commit hash >

Then, after merge parents hash were found, the following Git commands were used
to replay the integration scenarios.

1 git checkout <parent1 hash >
2 git merge --no - commit --no -ff <parent2 hash >
3 git mergetool # if there is a conflict and need to visualize it
4 git merge --abort
5 git checkout <any branch >

The First step was to checkout or switching to the first merge commit parent, then
followed with merging of the second commit parent without committing changes.
Then, Git will determine whether there is a conflict or not by issuing a status message.
If there is a conflict then any merge tool can be launched for conflict analysis and
resolution. The next step was to abort the merge without saving the changes as the
aim was only analysis of the merge without affecting the repository history. Then a
last step was to checkout to any branch after replaying the merge. The source code
provided both quantitative data on the size of the features before and after integration
and qualitative data on the merge conflicts encountered while integrating the features.

Another source of the archival data is documentation. Documentation data in
the prestudy referred to groups reports. The reports were written as part of the
assessment of the course and provided qualitative data about the features and their
forks and what challenges were encountered while integrating the features. Moreover,
the reports provided qualitative data on how they successful integrate the features
despite of the challenges.

Interviews

Interviews are important source of data in a case study since nearly all case studies
involve human subjects [37]. In the prestudy, semi-structured interviews were con-
ducted. The semi-structured interviews allow to plan questions but not asking in the

4https://git-scm.com/docs/git-diff

14

https://git-scm.com/docs/git-diff

3. Prestudy

Table 3.3: Feature Integration metrics

Group Feature LOC File

Added Deleted Added Deleted Modified

A GeoMeansAggregator 1012 0 7 0 1
NodesUsageAPI-REST 1592 14 18 0 13
xmlFormat 1206 0 6 0 5
StandardNumberAnalysis 10257 1 37 0 2

B TopHitsAggregationSorting 42 37 0 0 3
GeoHeatMapAggregator 1201 0 9 0 2

C GeoHeatMapAggregator 1201 0 9 0 2
SynonymsGraph 3081 1 8 0 3
UnifiedHighlighter 1435 435 6 0 12

D FunctionScoreQueryFunctions 625 173 3 1 10
CustomizableShardWeights 184 50 0 0 4
GeoHeatMapGridAggregator 1363 0 9 0 1
NodesUsageAPI-REST 1592 14 18 0 13
TermsWithoutGlobalOrdinals 315 0 1 0 1
TopHitsAggregationSorting 46 39 0 0 5

E CancelableSearchAction 951 78 6 0 35
StringFieldsAnalyzerProcessor 952 235 5 4 13
ScrollPersistence 872 108 8 1 19
SearchIngestProcessor 963 0 8 0 1

15

3. Prestudy

order they were written and the questions depend on development of the conversation
[34]. The list of the planned questions is used to make sure all the questions are asked.
The semi-structured interviews were appropriate since we aimed to explore additional
information based on the response of the questions while at the same time hav-
ing planned questions necessary to answer the research questions guided the prestudy.

Given that the prestudy started after the course had finished, we aimed at having an
interview with at least a representative of each group. We selected 5 representatives
for 4 groups excluding one group which the author of this thesis was part of it
based on accessibility. Then, requests for scheduling an interview were sent. Further
invitations were sent to other members of the groups after there was only one response.
However, due to different circumstances, only 2 interviews were conducted. The
interviews were conducted with the representatives of group B and D. One interview
was face-to-face and another through a video call. The interviews took 30 to 45
minutes and were recorded with permission. The following questions were planned
for the interviews.

– Did you integrate feature(s) during the project?
– How did you integrate features during the project?
– What challenges or complexities did you encounter while integrating the fea-
tures?

– How did you resolve those challenges?
– How long did it take to successful integrate the features?

3.1.2 Data Analysis
The interviews were analyzed together with the groups reports. The interview record-
ings were reviewed for additional information, that is, clarification of information
provided in the reports. Then, after the review of the interview recordings, a sum-
mary of the challenges and how the groups resolved the challenges was written. The
summary included analysis of the groups reports.

The groups reports were analyzed for the most reported challenges and how groups
resolve those challenges for each integrated feature. The analysis of the challenges
encountered by groups were then combined with the interviews summary.

3.2 Result - Feature Integration Challenges
In the following, challenges encountered by groups during integration of the features
are presented.

3.2.1 Understanding implementation of the features
Two groups reported that they had to understand how the features work in order for
them to successful perform the integrations especially when there are merge conflicts.
For example, during integration of CustomizableShardWeights feature, group D had
to understand the implementation of this feature so that to know how to resolve

16

3. Prestudy

issues such as deprecated methods, added parameters to methods, and moved classes
as they reported: “Some understanding of the surroundings was needed to resolved
these issues successfully. For example, commit 27a760f ‘replaces the explicit boolean
flag that is passed around everywhere to denote changes to the routing table’.”. To
resolve this issue, the group reported that: “the code had to be changed a bit to
not accommodate the boolean flag and instead make use of the auto-tracking feature
implemented”.

3.2.2 Missing core classes which features depend on
Another challenge reported is missing of some of the core classes which the features
depend on due to some changes done such as refactoring of an API. This was reported
by group A. For example during integration of xmlFormat, group A had to look
at lower version before major architectural changes were made as they reported:
“. . . we had to go through the source code of older versions of Elasticsearch (up
till version 2.1 while current is in version 5.x) in order to understand the logic
behind the functionality of the feature. What we discovered was that since version
2.x Elasticsearch changed several of it components resulting in missing classes.”.
In order to successful integrate the feature, the group had to add missing methods
which the integrated feature depend on as they reported that: “we decided to carefully
implement some of the missing methods in the classes we added, wherever this was
possible. In order to integrate this feature we had to add a total of 6 classes.”

3.2.3 Merge conflicts
This challenge was reported by three groups. Group D had encountered merge
conflicts in integration of four features. For example in integration of Customiz-
ableShardWeights feature they reported that: “Upon merging, there were about 10
conflicts that could not be automatically resolved” and further stated during interview
with a group member: “We had merge conflicts. Also, we encountered errors when
we tried to build after integrating one feature.”.
In most of the merge conflicts, the groups reported that they resolve with minor
effort. However, a few merge conflicts required more work. For example in integration
of NodesUsageAPI-REST feature, group D reported that: “This feature ... was
submitted as pull request ... However, it was not completely accepted because there
were merge conflicts in the files Node.java and RestIndicesActionTests.java.... Indeed
we came across merge conflicts in the files mentioned above, which were fixed with
some effort.”

3.3 Discussion and Conclusion
The challenge of merge conflicts was reported by most groups. However, the groups
reported that they did not had to put much effort on resolving the merge conflicts.
To learn more about merge conflicts challenge, we further analyzed the integration
scenarios to understand what was the conflicting part in the merge conflicts and
what changes led to their occurrence. Furthermore, we analyzed the integration

17

3. Prestudy

scenarios to understand how they resolved the merge conflicts. In the following, an
example of an analysis of the changes that led to the merge conflict is presented.

3.3.1 Example of the Merge Conflict Analysis
The analysis was done in a merge conflict encountered during replaying of the Cus-
tomizableShardWeights feature integrated by group D. The merge conflict occurred
as a result of 2 changes made in mainline version and 2 changes made in fork version.
In the mainline, a method named relocate changed to relocateShard. The change
was made to reduced RoutingNodes public interfaces methods which update routing
entries. The methods which manipulate routing nodes were reduced to four which
are initializeShard, startShard, relocateShard and failShard. After a shard
had been started, the relocateShard method starts its relocation to another node.
Also, it initialize a target shard and assigning it.

Another change in the mainline version is added allocation.changes() parameter
in getShardSize method. The change was added in order to include shard routing
changes along with allocation changes so that to efficiently update allocation ids by
looking to changed shards. In the fork version, a shardWeight variable was assigned
to a number of remaining shards after shard removal from a source node. Then, the
shardWeight was passed to addShard method so that to increase total shard weight
when a shard is added to a current node. The added parameter does not affect other
files as the addShard method is defined in static class ModelNode in the same file
which has the conflict.

The Listing below show changes made in the mainline version and the fork version
compared to a common ancestor.

Mainline:
// core / s r c /main/ java / org / e l a s t i c s e a r c h / c l u s t e r / rout ing / a l l o c a t i o n / a l l o c a t o r /

↪→ BalancedShardsAl locator . java

sourceNode . removeShard (shardRouting) ;
Tuple<ShardRouting , ShardRouting> re l o ca t i ngSha rd s = routingNodes . relocateShard (

↪→ shardRouting , t a r g e t . nodeId () , a l l o c a t i o n . c l u s t e r I n f o () . getShardS ize (
↪→ shardRouting , ShardRouting .UNAVAILABLE_EXPECTED_SHARD_SIZE)
↪→ , allocation.changes()) ;

currentNode . addShard (r e l o ca t i ngSha rd s . v2 ()) ;

Common Ancestor:
sourceNode . removeShard (shardRouting) ;
Tuple<ShardRouting , ShardRouting> re l o ca t i ngSha rd s = routingNodes . r e l o c a t e (

↪→ shardRouting , t a r g e t . nodeId () , a l l o c a t i o n . c l u s t e r I n f o () . getShardS ize (
↪→ shardRouting , ShardRouting .UNAVAILABLE_EXPECTED_SHARD_SIZE)) ;

currentNode . addShard (r e l o ca t i ngSha rd s . v2 ()) ;

Fork:

18

3. Prestudy

int shardWeight = sourceNode . removeShard (shardRouting) ;
Tuple<ShardRouting , ShardRouting> re l o ca t i ngSha rd s = routingNodes . r e l o c a t e (

↪→ shardRouting , t a r g e t . nodeId () , a l l o c a t i o n . c l u s t e r I n f o () . getShardS ize (
↪→ shardRouting , ShardRouting .UNAVAILABLE_EXPECTED_SHARD_SIZE)) ;

currentNode . addShard (r e l o ca t i ngSha rd s . v2 () , shardWeight) ;

Resolution of the Merge Conflict:

To resolve this conflict, the group included both changes from mainline and fork.
They decided to include both versions since the mainline version is latest compared
to the fork version. It would require them to make a lot of changes which are not
part of the integrated feature if they would use only fork version. The code below
show the changes made as part of the resolution.

int shardWeight = sourceNode . removeShard (shardRouting) ;
Tuple<ShardRouting , ShardRouting> re l o ca t i ngSha rd s = routingNodes . relocateShard (

↪→ shardRouting , t a r g e t . nodeId () , a l l o c a t i o n . c l u s t e r I n f o () . getShardS ize (
↪→ shardRouting , ShardRouting .UNAVAILABLE_EXPECTED_SHARD_SIZE)
↪→ , allocation.changes()) ;

currentNode . addShard (r e l o ca t i ngSha rd s . v2 () , shardWeight) ;

3.3.2 Conclusion
In the prestudy, merge conflicts was the most reported challenge during feature
integration. Furthermore, another challenge was understanding the implementation
of the features during merge conflicts resolution. Therefore, there is a need to explore
further the merge conflicts by analyzing the changes which were made prior to the
merge conflict. The analysis of the changes should help in the future to build a tool
which assist developers when incorporating changes from the mainline project and
integrators of the changes into the mainline project. The main study will adopt
similar approach used to collect and analyze merge conflicts in the prestudy.

19

4
Methodology

This chapter describes an approach used to extract and analyze the merge conflicts
and changes that led to their occurrence. The chapter starts with a description of
an extraction process of merge commits which had conflict and then followed with
an extraction and analysis of conflicting versions in the merge conflicts.

Figure 4.1 depicts a process followed in collecting and analyzing the merge conflicts.
The process starts with obtaining a local clone of a project under study, followed
with the extraction of merge commits with conflicts. Then conflicting versions
are extracted from the merge commits with conflicts, followed with analysis of the
conflicting versions. Lastly, merge conflicts categories and changes that led to the
merge conflicts are reported.

To study the merge conflicts in an open source project, we chose ElasticSearch1
project. It is among most popular Java projects in terms of number of people starred
in Github2. The Elasticsearch project was cloned locally on 5th of September 2017
from a master branch which targeted version 7.0.0-alpha1 and has 5,455 Java files
with total of 682,240 lines of code.

Extraction
Of Merges

with Conflicts

Extraction
of Conflicting

Versions

Analysis of Conflicting
Versions

Report

Figure 4.1: Overview of the Methodology

1https://github.com/elastic/elasticsearch
2https://github.com/

21

https://github.com/elastic/elasticsearch
https://github.com/

4. Methodology

4.1 Extraction of Merges with Conflicts
To understand the merge conflicts and changes that led to their occurrence, we
identified merge commits that had conflicting changes. However, we first identified
merge commits in the project repository. A merge commit is the commit pointing
to more than two commits as pointed out in Section 2.2.2. Therefore, the merge
commits can be easily identified from other commits in a Git project.

Figure 4.2 shows an example of a Git commits history. In the example, the merge
commit C7 points to commits C4 and C6. Git uses three-way merge, which is a
merge of two branches, that is, a mainline and topic branch, using a recent common
ancestor version if the mainline branch has changes after the topic branch has been
created, otherwise it uses fast forward [26] which update a last commit in the mainline
branch to point to a last commit of the topic branch.

C7

C4

C6C5

C3C2

C1C0

Figure 4.2: An example of a Git commits history. C0 stand for initial commit. C1
stand for common ancestor commit. C5 and C6 stand for mainline branch commits
which are added after topic branch had been created. C2, C3, and C4 stand for
topic branch commits. C7 stand for merge commit which points to tips (or last
commits) of the mainline and topic branches.

In identifying merge commits with conflicting changes, we wrote a script which
finds all merge commits in the project repository. We extracted the merge commits
from both mainline and topic branches to capture merge conflicts which developers
encountered while incorporating changes from the mainline branch. Also, in our
initial analysis of feature integrations in the Elasticsearch repository, we observed
that developers (contributors and members) mostly use git rebase which reapplies
changes added in the topic branch into the mainline branch. Therefore, we included
topic branches to have a larger sample of merge commits. Also, the git rebase
command does not create a commit which points to two or more commits. More-
over, with rebase, when the changes are reapplied onto another branch, the merge
conflicts encountered are resolved or a commit with the conflict is skipped, and
resulted to a change in repository history. Therefore, replaying merges that used
rebase to observe the merge conflicts occurred would be impossible or complex process.

22

4. Methodology

While extracting the merge commits, we replayed merge scenarios using parent
commits of the merge commits (see Git commands used to replay merge scenarios in
Section 3.1.1). In the thesis work, we retrieved only merge commits with two parents,
that is, a merge of two branches. However, though, in the project under study all
the merges had only two parents. We used an option --no-commit with git merge
command which tells Git not to create a merge commit. With this feature, which we
used to discard merge commits without conflicts, Git allows to test a merge scenario
without creating the merge commit. Therefore, we were able to test for each merge
commit if there is a conflict without making changes in the project history.

4.2 Extraction of Conflicting Versions in Merge
Conflict

In this phase, we used the dataset of the merge commits with conflicts retrieved
from a previous phase. In the previous phase, we retrieved 260 merge commits with
conflicts out of 2965 merge commits extracted from the Elasticsearch project. For
each merge, we retrieved a merge commit hash, two parents commit hashes, and a
merge date. Before extracting conflicting versions in the merge conflicts, we first
conducted an initial analysis of the conflicting versions in a merge conflict. The
aim of the initial analysis was to understand what is a conflicting part in the merge
conflict and how the conflicting versions can be extracted using a script. The initial
analysis was done using a sample of first 20 merge commits with conflicts dated from
November 2016 to May 2017.

To visualize the merge conflicts in the initial analysis, we replayed the sample merge
scenarios of the merge commits with conflicts. We improved the script used in the
previous phase to automate the replaying of the sample merge scenarios. However,
automation of previous and this phase can use one script, but we split into two scripts
to simplify the process of extraction. We then configured a merge tool, which for each
merge scenario was launched using a Git command git mergetool. We used Meld3
merge tool which provides a three-way visualization when merging two versions of a
file. With the three-way visualization, which shows a comparison of three versions,
that is, the common ancestor, the mainline version, and the topic branch version,
we were able to visualize the conflicting versions in the merge conflict. The Meld
tool as a Git merge tool uses LOCAL, BASE, REMOTE, and MERGED versions to refer
to a file with local changes, a file which is common to both branches, a file with
remote changes, and a file which shows merge results respectively. Therefore, we
used mainline branch, common ancestor, and topic branch versions to refer to LOCAL,
BASE, and REMOTE changes respectively during a merge.

Figure 4.3 shows visualization of the merge conflict with three columns for the LOCAL,
MERGED and REMOTE file respectively. Moreover, Figure 4.4 shows another tab
configured to show LOCAL, BASE and REMOTE files so that to compare a difference
between the conflicting versions.

3http://meldmerge.org/

23

http://meldmerge.org/

4. Methodology

Figure 4.3: Merge conflict visualization using Meld. The blue frame shows
MERGED version

Figure 4.4: Conflicting changes visualization using Meld. The red frame shows
LOCAL version, blue frame shows BASE version, and black frame shows REMOTE
version

After initial analysis of conflicting versions, we extracted conflicting versions in all
merge conflicts. However, in the initial analysis, we observed that there were merge
conflicts due to whitespace and comment changes. Furthermore, there were merge
conflicts due to ordering of elements such as methods in a source code file which is
referred to as ordering conflicts [31]. Therefore, in order to minimize uninteresting

24

4. Methodology

merge conflicts observed in the initial analysis, we configured a jFSTMerge4 tool with
Git. The tool adapts semistructured merge [31] which is a merge process that combine
advantages of unstructured and structured merges when resolving merge conflicts.
The unstructured merge does not take into account a structure of a program, which
is an advantage, and therefore, leads to a problem of ordering conflicts. On the
other hand, the structured merge take into account a programming language of a
program, which provides more information that help to resolve most of the merge
conflicts such as the ordering conflicts automatically which would otherwise required
manual resolution. Therefore, with the configuration of jFSTMerge, we were able
to eliminate most merge conflicts due to comment changes and ordering conflicts.
However, the tool merges only Java files. Nevertheless, we were interested only with
merge conflicts in Java files.

To retrieve conflicting versions, we adopted the script used in the initial analysis of
conflicting versions. With the script, we collected 534 conflicting versions from the
dataset of 260 merge commits with conflicts dated from beginning of June in 2015
to middle of April in 2017 in core_module of the Elasticsearch project. The script
takes one conflict if there are similar conflicts (conflicts with same change) in a same
file.

For the next phase, the following data were collected for each conflicting version:
merge commit hash, merge parent commits hashes, merge date, conflict file, mainline
branch version, and topic branch version.

4.3 Analysis of the Conflicting Versions
After extraction of conflicting versions in the merge conflicts, we analyzed the changes
that led to the conflicts and categorized the merge conflicts. To perform an in-depth
analysis of the changes and categorize the merge conflicts, we selected a sample
of the conflict versions. Then, we analyzed the changes in project and code level
perspectives, and categorized the merge conflicts based on the syntactic structure of
the conflicting versions. The following sections describe the sample selection, merge
conflict categorization and analysis of the changes that led to the merge conflicts.

4.3.1 Selection of Sample Conflicting Versions
To identify the sample for the in-depth analysis of the changes that led to merge
conflicts and the merge conflict categorization, we randomly selected 40 conflicting
versions from the dataset of the conflicting versions obtained in the previous phase.
The following are procedures followed to determine the sample:

1. Assign unique numbers to 534 conflicting versions obtained in the previous
step.

4https://goo.gl/RKe1jo

25

https://goo.gl/RKe1jo

4. Methodology

2. Use sample method with sample size 40 in LibreOffice Calc to randomly select
the conflicting versions.

3. Identify the selected conflicting versions for the analysis of changes led to the
merge conflict.

4.3.2 Categorizing Merge Conflicts
To categorize the merge conflicts, we first compared the conflicting versions, that
is, the mainline and topic branch versions, with the common ancestor version. We
then identified structural changes of the conflicting lines. Based on the observed
structural changes, we derived initial merge conflict categories. For example, if in
the mainline version a method is renamed and in the topic branch a parameter is
added in the same method, then a category would be method rename and parameter
addition. Therefore, it is a two-tuple (change in the mainline branch version, change
in the topic branch version) or (change in the topic branch version, change in
the mainline branch version). After we determined the initial categories, we then
combined similar categories and refined the categories to remove duplicate. For
example, method rename and parameter addition, and method parameter addition
and method rename were combined into method rename and parameter addition.
Furthermore, similar categories were grouped into shared structural characteristics
such as method declaration.

4.3.3 Analysis of Project Level Changes that Led to the
Merge Conflicts

To obtain the changes which were made in the conflicting lines, we used git diff
command which shows changes between two branches. For example, from Figure
4.2, to obtain changes in a file which had a merge conflict in the mainline branch,
a command git diff C1:<conflict_file> C6:<conflict_file> is used. On the
other hand, the command git diff C1:< conflict_file> C4:<conflict_file> is
used to obtain changes in the topic branch. The commit C1 is the common ancestor
of the two branches. After the changes in the conflict file were obtained, the changes
that led to the merge conflicts were determined as the conflict file might have other
changes not related to the merge conflict. These changes are referred to as code level
changes.

After the changes in the source code were determined, we analyzed particular commit
that made a change. To find the commit, here is referred to as change commit, we
first searched the file which had the merge conflict in Github project repository using
the merge parent commits. This means, for the changes in the topic and mainline
branch we used a first merge parent and second merge parent respectively. This way
we get the versions of the file before a merge. Then we used Github features history
and blame to view the history and which commit made a change in the conflicting
line. However, one can also use git blame command to view commits that made the
change in a line in any file, but with Github it is easy to view and browse the change
commit. Figure 4.5 shows an example of how the commits that made changes in the

26

4. Methodology

conflicting lines was retrieved.

Figure 4.5: An example of retrieving a commit that made the change which led to
the conflict. On the left side there are commits that modified the lines on the right
side. By finding the line or lines that were involved in the merge conflict, a commit
that made the change can be retrieved and a description of the change or changes
will be analyzed.

After the change commit was retrieved, commit message and pull request associated
with the change commit were analyzed for a change description. Then together with
an investigation of the code level changes, we wrote the change description which are
referred to as project level perspective change. Then a change category was derived
based on a goal of the change. For example, if the goal of the change was to introduce
a new feature, then the change will be categorized as feature introduction even if
the refactoring task was done before the feature introduction. The commit and
pull request messages helped to determine the change category by looking keywords
such as refactor, improve, add, introduce, fix, remove, cleanup, problem, feature,
separating, and test.

27

5
Results

This chapter presents the results of the analysis of conflicting versions in the merge
conflicts. The chapter starts with the results of the merge conflict categorization
and then followed by the results of the analysis of the changes that led to the merge
conflicts. 40 sample merge conflicts were analyzed and changes that led to their
occurrence were described. Appendix B.2 provides description of the changes that
led to each merge conflict in the sample dataset. Table 5.1 shows an overview of the
merge conflicts categories and changes that led to the merge conflicts identified for
each merge conflict in the sample dataset.

5.1 Categories of Merge Conflicts
This section presents the results of the merge conflicts categorization. 6 categories
were identified from the sample dataset. The merge conflicts were categorized based
on characteristic of changes in both mainline and topic branch versions. For each
identified category, a description and an example are provided. Table 5.2 shows a
summary of the number of conflicts for each of the merge conflict category identified
in the sample dataset.

5.1.1 Change of Method Call or Object Creation (MC_OC)

This category contains 5 subcategories. The subcategories are addition and/or
removal of parameter values, addition or removal of parameter values and change of
parameter value types, addition or removal and modification of parameter values,
change of parameter values, and change of reference variable declaration. The
subcategories are described below.

Addition and/or Removal of Parameter Values

There are three scenarios in this subcategory. First, a parameter value(s) is added
in one version and removed in the other version. Second, the parameter value(s) is
added in both versions. Third, the parameter value(s) is removed in both version.
The change of the parameter value list is a result of changes in the parameter list
where parameters are added or/and removed in the method or constructor declaration.

Example: In the mainline version, two parameter values are added, while in the
topic branch version, one parameter value is added. This means two parameters
were added in the mainline version and one parameter in the topic branch version to

29

5. Results

the constructor parameter list.

Common ancestor version:
c r e a t e = new Engine . Index (newUid (" 1 ") , doc , c r e a t e . v e r s i on () , c r e a t e . vers ionType

↪→ () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0) ;

Mainline version:
c r e a t e = new Engine . Index (newUid (" 1 ") , doc , c r e a t e . v e r s i on () , c r e a t e . vers ionType

↪→ () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , -1, false) ;

Topic branch version:

c r e a t e = new Engine . Index (newUid (" 1 ") , doc , create.seqNo(), c r e a t e . v e r s i on () , c r e a t e
↪→ . vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0) ;

Addition or Removal of Parameter Values and Change of Parameter
Value Types

One or more parameter values are added or removed in one version, while in the
other version, one or more parameter values are changed due to changes of parameter
types.
Example: In the listings below, a parameter value changed from index.version()
to indexResult.getVersion() due to parameter type change in the mainline version.
In the topic branch version, a parameter value is added which implies a parameter
was added in the parameter list.

Common ancestor version:
index = new Engine . Index (newUid (" 1 ") , doc , index . v e r s i on () , index . vers ionType () .

↪→ vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1, fa l se) ;

Mainline version:

index = new Engine . Index (newUid (" 1 ") , doc , indexResult.getVersion() , index . vers ionType
↪→ () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1, fa l se) ;

Topic branch version:

index = new Engine . Index (newUid (" 1 ") , doc , index.seqNo() , index . v e r s i on () , index .
↪→ vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1,
↪→ fa l se) ;

Addition or Removal and Modification of Parameter Values

A parameter value(s) is added or removed in one version and changed in the other
version without changing the parameter type.

30

5. Results

Example: In the mainline version, a parameter value "test" changed to indexMeta-
Data.getIndex(), which returns an index name, and a boolean parameter value
changed from false to true. In the topic branch version, a parameter value is added
and a boolean parameter value changed from false to true.

Common ancestor version:
ShardRouting test_3 = ShardRouting . newUnassigned (" t e s t " , 3 , null , false , new

↪→ Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

Mainline version:

ShardRouting test_3 = ShardRouting . newUnassigned (indexMetaData.getIndex() , 3 , null ,
↪→ true , new Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

Topic branch version:

ShardRouting test_3 = ShardRouting . newUnassigned (" t e s t " , 3 , null , 1, true , new
↪→ Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

Change of Parameter Values

Change made on parameter values in both versions without changing parameter
types. The change might be due to refactoring of the parameter values for readability
purpose or other changes such as change of passed method call due to changes in the
method declaration.
Example: In the mainline version, a parameter value of a method call was replaced
with another method call which has different signature. In the topic branch version,
two parameter values are improved to pass different kind of values.

Common ancestor version:
return new InternalMin (name , randomDouble () , randomFrom(DocValueFormat .BOOLEAN,

↪→ DocValueFormat .GEOHASH, DocValueFormat . IP , DocValueFormat .RAW) ,
↪→ p ipe l ineAggrega to r s , metaData) ;

Mainline version:

return new InternalMin (name , randomDouble () , randomNumericDocValueFormat() ,
↪→ p ipe l ineAggrega to r s , metaData) ;

Topic branch version:

double value = f r equen t l y () ? randomDouble () : randomFrom(new Double [] { Double .
↪→ NEGATIVE_INFINITY, Double .POSITIVE_INFINITY }) ;

DocValueFormat formatter = randomFrom(new DocValueFormat . Decimal ("###.##") ,
↪→ DocValueFormat .BOOLEAN, DocValueFormat .RAW) ;

return new InternalMin (name , value , formatter , p ipe l i neAggregato r s , metaData) ;

31

5. Results

Change of Reference Variable Declaration

Change of type and renaming of the reference variable. The reference variable may
be renamed in one version and the type is changed in the other version, and vice
versa. Also, in both versions, the variable type or name may be changed. The change
of the reference variable may lead to change of method call.
Example: In the mainline version, a generic type is changed from IndexShardInjec-
torPair to IndexShard, while in the topic branch version, the variable name changed
from tmpShardsMap to newShards.

Common ancestor version:
HashMap<Integer , IndexShardIn jectorPa i r> tmpShardsMap = new HashMap<>(shards) ;

Mainline version:

HashMap<Integer, IndexShard> tmpShardsMap = new HashMap<>(shards) ;

Topic branch version:

HashMap<Integer, IndexShardInjectorPair> newShards = new HashMap<>(shards) ;

5.1.2 Change of an Assert Statement Expression (AS_EXP)

Change made on assert statement as a result of other changes such as refactoring of
the class or method name, and changes on the strings which are passed in the assert
expression.
Example: In the listings below, a parameter value passed in a method call which is
the assert expression is changed in both the mainline and topic branch version.

Common ancestor version:
assertThat (e . getRootCause () , ins tanceOf (QueryParsingException . class)) ;

Mainline version:

assertThat (e . getRootCause () , instanceOf(ParsingException.class)) ;

Topic branch version:

assertThat (e . getRootCause () , instanceOf(QueryShardException.class)) ;

5.1.3 Addition of Statements in the Same Area (ADD_STMT)

One or more statements are added in the same area of the code in both the mainline
and topic branch version. The statements can be added in a control flow statement,
method call or in object creation. The statements include: method calls, control flow

32

5. Results

statements, object creation statements, assignment statements, assert statements,
and increment statements.

Example: In the listings below, in both the mainline and topic branch version, a
method call and for statement are added. In the mainline, the for statement has a
nested for statement.

Common ancestor version:
for (IndexMetaData indexMetaData : metaData ()) {

bu i l d e r . s t a r tOb j e c t (indexMetaData . getIndex () , XContentBuilder .
↪→ Fie ldCaseConvers ion .NONE) ;

. . .
bu i l d e r . endArray () ;

bu i l d e r . endObject () ;
}

Mainline version:
for (IndexMetaData indexMetaData : metaData ()) {

bu i l d e r . s t a r tOb j e c t (indexMetaData . getIndex () , XContentBuilder .
↪→ Fie ldCaseConvers ion .NONE) ;

. . .
bu i l d e r . endArray () ;

builder.startObject(IndexMetaData.KEY_ACTIVE_ALLOCATIONS);

for (IntObjectCursor<Set<String» cursor : indexMetaData.getActiveAllocationIds()) {

builder.startArray(String.valueOf(cursor.key));

for (String allocationId : cursor.value) {

builder.value(allocationId);

}

builder.endArray();

}

bu i l d e r . endObject () ;
}

Topic branch version:

for (IndexMetaData indexMetaData : metaData ()) {
bu i l d e r . s t a r tOb j e c t (indexMetaData . getIndex () , XContentBuilder .

↪→ Fie ldCaseConvers ion .NONE) ;
. . .
bu i l d e r . endArray () ;

builder.startObject("primary_terms");

for (int shard = 0; shard < indexMetaData.getNumberOfShards(); shard++) {

builder.field(Integer.toString(shard), indexMetaData.primaryTerm(shard));

}
bu i l d e r . endObject () ;

}

33

5. Results

5.1.4 Modification and Removal of Statements (MOD/RMV_
STMT)

The statements are modified in one version and removed in the other version. The
modification of the statements include addition and removal of statements inside
control statements, that is, branching statements, decision-making statements, and
looping statements. It also include exception handler blocks, that is, try, catch, and
finally blocks. Therefore, modification in this category means any changes that
are made in a statement while that statement is removed in the other version. The
changes may be due to refactoring such as splitting the logic of the implementation
inside method which leads to removal of statements, and additional of new logic due
to a new added feature, which adds or modifies statements.
Example: In the listings below, an object creation statement is added inside the
try block in the topic branch version, while in the mainline version, the try block is
replaced with if statement which has switch statement.

Common ancestor version:
public <T extends Throwable> T readThrowable () throws IOException {

try {
ObjectInputStream oin = new ObjectInputStream (this) ;
return (T) o in . readObject () ;

} catch (ClassNotFoundException e) {
throw new IOException (" f a i l e d to d e s e r i a l i z e except ion " , e) ;

}
}

Mainline version:
public <T extends Throwable> T readThrowable () throws IOException {

if (readBoolean()) {

int key = readVInt();

switch (key) {
case 0:
...
case 17:
return (T) readStackTrace(new LockObtainFailedException(readOptionalString(),

↪→ readThrowable()), this);

default:
assert false : "no such exception for id: " + key;

}

}

return null;
}

Topic branch version:

public <T extends Throwable> T readThrowable () throws IOException {
try {

ObjectInputStream oin = new ObjectInputStream (this) ;
@SuppressWarnings (" unchecked ")

34

5. Results

T object = (T) oin.readObject();
return ob j e c t ;

} catch (ClassNotFoundException e) {
throw new IOException (" f a i l e d to d e s e r i a l i z e except ion " , e) ;

}
}

5.1.5 Changes in Different Statements in the Same Area
(D_STMT)

Changes that are made in different statements which are located next to each other.
Example: In the listings below, in the mainline version, a condition in the if
statement is changed while in the topic branch, a parameter value of a method call
is changed. The if statement and method call statement are next to each other.

Common ancestor version:
public void doXContent (XContentBuilder bu i lde r , Params params) throws IOException

↪→ {
bu i l d e r . s t a r tOb j e c t (Pre f ixQueryParser .NAME) ;
i f (boost == −1 && rewr i t e == null && queryName != null) {

bu i l d e r . f i e l d (name , p r e f i x) ;
}
. . .

}

Mainline version:
public void doXContent (XContentBuilder bu i lde r , Params params) throws IOException

↪→ {
bu i l d e r . s t a r tOb j e c t (Pre f ixQueryParser .NAME) ;
i f (boost == −1 && rewr i t e == null && queryName == null) {

bu i l d e r . f i e l d (name , p r e f i x) ;
}
. . .

}

Topic branch version:

public void doXContent (XContentBuilder bu i lde r , Params params) throws IOException
↪→ {
bu i l d e r . s t a r tOb j e c t (NAME) ;
i f (boost == −1 && rewr i t e == null && queryName != null) {

bu i l d e r . f i e l d (name , p r e f i x) ;
}
. . .

}

5.1.6 Change of IF Statement condition (IF_C)

Changes made in the if statement condition(s) in both conflicting versions. The
changes may be due to changes in the method call used as the condition which also
may be changed due changes in the method declaration.
Example: In the mainline version, a condition is changed due to changes in the
method call as a result of method renaming, while in the topic branch version, the

35

5. Results

conditions are replaced with shorter condition as the result of the logic implementa-
tion refactoring.

Common ancestor version:
i f (nodeSpe c i f i cC lu s t e rS t a t e . v e r s i on () < cur r en tS ta t e . v e r s i on () && Objects . equal (

↪→ nodeSpe c i f i cC lu s t e rS t a t e . nodes () . masterNodeId () , cu r r en tS ta t e . nodes () .
↪→ masterNodeId ())) {
return cu r r en tS ta t e ;

}

Mainline version:

i f (nodeSpe c i f i cC lu s t e rS t a t e . v e r s i on () < cur r en tS ta t e . v e r s i on () && Objects.equals(

↪→ nodeSpecificClusterState.nodes().masterNodeId(), currentState.nodes().masterNodeId())) {
return cu r r en tS ta t e ;

}

Topic branch version:

i f (currentState.supersedes(nodeSpecificClusterState)) {
return cu r r en tS ta t e ;

}

5.2 Changes that led to the Merge Conflict
This section presents the results of the analysis of project level changes that led to
the merge conflicts. In the analysis, for each conflicting change in mainline and topic
branch, a category was identified based on the description of the conflicting changes.
From the understanding of the changes, 8 change categories were identified from
the sample dataset. Table 5.3 shows a summary of the number of changes for each
category in both the mainline and topic branch.

5.2.1 Feature Introduction
A change which introduces or is part of introducing a new feature. The change may
include tests added for the feature and necessary refactoring.
Example: During introduction of a WriteOperationsSequenceNumbers feature,
which track how many times a replica shard was promoted to a primary shard from
existing replica shards after existing primary shard has failed, a counter was added
to the write operations such as indexing. The counter is used for identification of
the operations from the failed primary shard so that they cannot be executed. The
listing below shows added method call for counting number of the write operations on
the primary shard. The counter delete.seqNo() for the delete operation is passed
to the sequence number of the primary shard. Also, the counter is passed with the
response of the delete operation.
+ reques t . seqNo (d e l e t e . seqNo ()) ;

36

5. Results

− DeleteResponse re sponse = new DeleteResponse (indexShard . shardId () , r eque s t .
↪→ type () , r eque s t . id () , d e l e t e . v e r s i on () , d e l e t e . found ()) ;

+ DeleteResponse re sponse = new DeleteResponse (indexShard . shardId () , r eque s t .
↪→ type () , r eque s t . id () , d e l e t e . seqNo () , d e l e t e . v e r s i on () , d e l e t e . found ()) ;

5.2.2 Refactoring
A change which is not part of a particular feature introduction or enhancement, but
as part of the maintenance. The change includes redesigning of an API, extraction
of a method or class, replacing control flow statements, and renaming variable, class
or method.
Example: A logic for creating a REST response such as xContent from a response
of the write operation such as delete, which is shared by the write operations, was
extracted to a class. Listing below shows changes as part of extracting shared
logic. The logic passed when building the xContent response for the response of the
update operation using xContent builder was replaced with an object of the class
RestStatusToXContentListener which returns the xContent response.
− c l i e n t . update (updateRequest , new RestBu i lde rL i s t ene r<UpdateResponse>(channel)

↪→ {
− @Override
− public RestResponse bui ldResponse (UpdateResponse response , XContentBuilder

↪→ bu i l d e r) throws Exception {
− bu i l d e r . s t a r tOb j e c t () ;
− ActionWriteResponse . ShardInfo shard In fo = response . getShardIn fo () ;
− bu i l d e r . f i e l d (F i e l d s ._INDEX, response . getIndex ())
− . f i e l d (F i e l d s ._TYPE, response . getType ())
− . f i e l d (F i e l d s ._ID, re sponse . ge t Id ())
− . f i e l d (F i e l d s ._VERSION, response . getVers ion ()) ;
−
− shard In fo . toXContent (bu i lde r , r eque s t) ;
− i f (re sponse . getGetResult () != null) {
− bu i l d e r . s t a r tOb j e c t (F i e l d s .GET) ;
− re sponse . getGetResult () . toXContentEmbedded (bu i lde r , r eque s t) ;
− bu i l d e r . endObject () ;
− }
−
− bu i l d e r . endObject () ;
− RestStatus s t a tu s = shardIn fo . s t a tu s () ;
− i f (re sponse . i sCreated ()) {
− s t a tu s = CREATED;
− }
− return new BytesRestResponse (s tatus , bu i l d e r) ;
− }
− }) ;
+ c l i e n t . update (updateRequest , new RestStatusToXContentListener<>(channel)) ;

5.2.3 Feature Enhancement
A change which is added or part of addition to the existing feature. The change may
improve the quality of the feature or extend the ability of the feature.
Example: The ShardAllocationIDs feature, which generates IDs when the shards
are allocated to a cluster and are used for the shards recovery when the cluster
is restarted, was enhanced so that the allocation IDs are carried on to the Index
metadata, which is the metadata of the Index retrieved from the cluster state
information. The allocation IDs are then used during selection of a new primary

37

5. Results

shard. Listing below shows changes added so that the allocation IDs can be carried
on to index metadata in the cluster state.
+ bu i l d e r . s t a r tOb j e c t (IndexMetaData .KEY_ACTIVE_ALLOCATIONS) ;
+ for (IntObjectCursor<Set<Str ing>> cur so r : indexMetaData .

↪→ ge tAc t i v eA l l o c a t i on Id s ()) {
+ bu i l d e r . s ta r tArray (S t r ing . valueOf (cur so r . key)) ;
+ for (S t r ing a l l o c a t i o n I d : cu r so r . va lue) {
+ bu i l d e r . va lue (a l l o c a t i o n I d) ;
+ }
+ bu i l d e r . endArray () ;
+ }

5.2.4 Test Improvement
A change that improves or corrects one or more tests. This do not add new tests
as they are part of feature introduction or feature enhancement. The change may
correct or add new test infrastructure.
Example: The aggregations tests were modified so that not to test metrics aggre-
gations such as Min aggregation that expect a numeric value from the document
field datatypes such as IP address which are not numeric. The improvement was
made as the tests were returning wrong aggregations. Listing below shows the
improvement on the creation of the Min aggregation test instance. The method
call which returns random selected document field datatype was replaced with the
method which returns random selected numeric datatype.
− return new InternalMin (name , randomDouble () ,
− randomFrom(DocValueFormat .BOOLEAN, DocValueFormat .GEOHASH,

↪→ DocValueFormat . IP , DocValueFormat .RAW) , p ipe l ineAggrega to r s , metaData) ;
+ return new InternalMin (name , randomDouble () , randomNumericDocValueFormat () ,

↪→ p ipe l ineAggrega to r s , metaData) ;

5.2.5 Bug Fix
A change that corrects wrong requirement, implementation of the requirement, and
logic such as sequencing of the statements.
Example: The logic implemented in a Java API builder resulted to missing field
when the queries are serialized in Json format in Index queries. An Index query has
fields such as _name which may be used to provide a name for the query. Listing
below shows a change that was made in the builder which fix the logic for building
a query field using the builder name if a query name is empty. Before the change,
the query field is created if the query name was empty which resulted to other fields
such as prefix to not be created.
− i f (boost == −1 && rewr i t e == null && queryName != null) {
+ i f (boost == −1 && rewr i t e == null && queryName == null) {

bu i l d e r . f i e l d (name , p r e f i x) ;
} else {

bu i l d e r . s t a r tOb j e c t (name) ;
bu i l d e r . f i e l d (" p r e f i x " , p r e f i x) ;
i f (boost != −1) {

bu i l d e r . f i e l d (" boost " , boost) ;
}
i f (r ewr i t e != null) {

bu i l d e r . f i e l d (" r ewr i t e " , r ew r i t e) ;
}

38

5. Results

i f (queryName != null) {
bu i l d e r . f i e l d ("_name" , queryName) ;

}
bu i l d e r . endObject () ;

}

5.2.6 Framework Removal
A change that removes a framework or frameworks from the project code base. The
change may include the refactoring of the API after the framework has been removed.
Example: A framework Guice1 which is used for dependency injection in Java
version 6 and above was removed from the Elasticsearch project code base. As part of
the Guice framework removal, the Shard query and request cache modules were moved
to Indices service which is used for managing and monitoring of Indices. Listing below
shows a change which was part of removing the Guice framework. After the framework
has been removed, a parameter value indicesService.getIndicesQueryCache()
which pass the Indices query cache when creating a new object for the statistics that
are common for all Shards in the Node.
− sha rdsSta t s . add (new ShardStats (indexShard . rout ingEntry () , indexShard . shardPath

↪→ () , new CommonStats (indexShard , SHARD_STATS_FLAGS) , indexShard . commitStats
↪→ ())) ;

+ shardsSta t s . add (new ShardStats (indexShard . rout ingEntry () , indexShard . shardPath
↪→ () , new CommonStats (i n d i c e s S e r v i c e . getIndicesQueryCache () , indexShard ,
↪→ SHARD_STATS_FLAGS) , indexShard . commitStats ())) ;

5.2.7 Breaking Change Fix
A change that corrects the changes which break the usage of the API. The breaking
change may affect backward compatibility and may require actions such upgrading
the version of the software.
Example: A metric in the Cluster statistics which is used to show available memory
that can be used by all Nodes in the Cluster was removed as it remained when a
change to remove statistics that are specific for a certain Operating system was made.
Listing below shows part of the change to remove the available memory metric to fix
the breaking change that removed specific operating system statistics.
− availableMemory = in . readLong () ;

5.2.8 Library Removal
A change that removes a library or libraries from the project code base. The change
may be followed with required refactoring.
Example: A library Guava2 which contains the Java core libraries was removed
from the Elasticsearch code base. As part of the Guava removal, listing below shows
part of the change to remove the Immutable map which is part of the Guava library
collection. After the change, the Immutable map uses Java Collections class.

1https://github.com/google/guice
2https://github.com/google/guava

39

https://github.com/google/guice
https://github.com/google/guava

5. Results

− shards = ImmutableMap . copyOf (tmpShardsMap) ;
+ shards = unmodifiableMap (newShards) ;

40

5. Results

Table 5.1: Overview of merge conflicts and categories of changes led to the merge
conflicts in the dataset

Conflict
Conflict Category Change Category

Mainline Branch

1 MC_OC Test improvement Feature introduction
2† MC_OC, ADD_STMT Refactoring Feature introduction
3 ADD_STMT Refactoring Feature introduction
4 MC_OC Framework removal Feature introduction
5 MC_OC Refactoring Feature introduction
6 MC_OC Refactoring Feature introduction
7 MC_OC Feature enhancement Feature introduction
8 AS_EXP Feature enhancement Feature introduction
9 MOD/RMV_STMT Bug fix Feature introduction
10 ADD_STMT Refactoring Feature introduction
11 MOD/RMV_STMT Refactoring Refactoring
12 MC_OC Refactoring Feature introduction
13 MC_OC Breaking change fix Feature enhancement
14 MC_OC Refactoring Feature enhancement
15 MC_OC Feature enhancement Test improvement
16 MC_OC Feature enhancement Refactoring
17 ADD_STMT Feature enhancement Feature enhancement
18 MC_OC Framework removal Feature introduction
19 MC_OC Feature enhancement Feature introduction
20 MC_OC Feature enhancement Feature introduction
21 MC_OC Feature enhancement Feature introduction
22 MC_OC Bug fix Refactoring
23 MC_OC Feature enhancement Feature introduction
24 MC_OC Test improvement Feature enhancement
25 ADD_STMT Bug fix Bug fix
26 ADD_STMT Refactoring Refactoring
27 MC_OC Refactoring Feature introduction
28 MC_OC Refactoring Feature introduction
29 MC_OC Refactoring Feature introduction
30 ADD_STMT Feature enhancement Feature introduction
31 ADD_STMT Feature enhancement Feature introduction
32 MC_OC Feature enhancement Feature introduction
33 MC_OC Refactoring Library removal
34 AS_EXP Refactoring Refactoring
35 ADD_STMT Refactoring Refactoring
36 MC_OC Refactoring Refactoring
37 IF_C Library removal Refactoring
38 MC_OC Refactoring Test improvement
39 MOD/RMV_STMT Refactoring Refactoring
40 D_STMT Bug fix Refactoring

† conflict has two categories

41

5. Results

Table 5.2: Merge conflict categories identified in the sample dataset

Conflict Category # of Conflict
MC_OC 25
AS_EXP 2
ADD_STMT 9
MOD/RMV_STMT 3
D_STMT 1
IF_C 1

Table 5.3: Changes that led to the merge conflicts identified in the sample dataset

Change category # of Changes
Mainline Topic Branch

Feature Introduction 0 22
Refactoring 18 10
Feature Enhancement 12 4
Test Improvement 2 2
Bug Fix 4 1
Framework Removal 2 0
Breaking Change Fix 1 0
Library Removal 1 1

42

6
Discussion

This chapter discusses the results of the analysis of changes led to the merge conflicts
and categorization of the merge conflicts. Furthermore, it discusses the threat to
validity of the study. The chapter begins with the discussion of the categorization of
the merge conflicts and followed with the changes led to the merge conflicts. Then it
ends with the discussion of the threats to validity.

6.1 Categorizing Merge Conflicts
Most merge conflicts (25 out of 40) in the sample dataset were categorized as method
call or object creation (MC_OC). The method call and object creation were grouped
as one category since conflicting changes are related to parameter values and variables
that are assigned to method calls or objects creation. Accioly et al. [30] found that
most merge conflicts (85%) are due to changes that are made in method bodies. Their
finding relates to our results in that all merge conflicts in the sample dataset occurred
in the method bodies. However, in our results, we cannot generalize that most
changes which led to merge conflicts were made inside method bodies. Nevertheless,
our results may shed light on a suggestion by Accioly et al. [30] to investigate what
changes led to the merge conflicts in the method bodies. Furthermore, de Menezes
[32] found that method invocation is a most language construct involved in merge
conflicts. His finding relates with our finding in that most conflicting changes are in
MC_OC category which includes changes in method calls.

Whereas most merge conflicts are due to changes in method calls or objects creation,
we would have expected to see merge conflicts in method or constructor signatures
alongside the merge conflicts that occurred in their method call or object creation
statements. The reason is that, for example, if developers made changes such as
adding or removing parameter values it means they have added or removed parame-
ters in a method signature. Therefore, we would like to research this in more projects
to study if there is a merge conflict in a method call or object creation statement
due to added or removed parameter values then there should also be a merge conflict
in the method or constructor signatures and vice versa.

Our results of merge conflict categories relate to two merge conflict patterns found
by Accioly et al. [30]. First, Accioly et al. [30] found a pattern of methods or
constructors added with the same signature and different bodies. This pattern is

43

6. Discussion

similar to MC_OC category since it involves changes inside methods. However,
in our sample dataset there are no merge conflicts due to changes in method or
constructor declaration. Second, they found a pattern of different edits to the same or
consecutive lines of the same method or constructor. This pattern relates to MC_OC,
AS_EXP, and D_STMT categories as they are based on changes performed on same
or adjacent statements. Other patterns found by Accioly et al. [30] are different edits
to the same class field declaration; class fields declarations added with the same
identifier and different types or modifiers; different edits to the modifier list of the
same type declaration (class, interface, annotation or enum types); different edits to
the same implements declaration; different edits to the same extends declaration;
different edits to the same enum constant declaration; and different edits to the same
annotation method default value declaration. In our sample dataset there are no
merge conflicts that involve changes to declaration of class, class fields, interface,
enum, annotation, enum constant, and extends.

Furthermore, de Menezes [32] found most conflicting changes that led to merge
conflicts involve the following language constructs: method invocation, method
declaration, method signature, variable, import, if statement, and commentary. How-
ever, classification of merge conflicts by de Menezes [32] involve combination of all
unique language constructs in conflicting changes. Using the language constructs,
de Menezes [32] found the following most kind of conflicts: method invocation; import;
method invocation, variable; method declaration; variable; if statement; method
signature; and if statement, method invocation, variable. The method invocation
and variable kind of conflicts may relate to MC_OC category. Also, if statement
kind of conflict may relate to ADD_STMT, MOD/RMV_STMT, D_STMT, and
IF_C categories. However, in our sample there are no merge conflicts involve import,
method declaration, and method signature language constructs. Also, merge conflicts
that involved only comments were ignored in this study.

Most merge conflicts were due to minor changes in terms of their size such as addition
of parameter values. This may be due to developers in the project under study
were working on updated copy, which means they often incorporate changes from a
mainline branch into their individual branches. However, some merge conflicts were
regarded as complex since they involved more than one line. These merge conflicts
were categorized as Addition of Statements in the Same Area (ADD_STMT) and
Addition and Removal of Statements (MOD/RMV_STMT), and they account for 12
out of 40 analyzed merge conflicts. Despite of the merge conflicts being regarded as
minor in terms of the size, they may have led to more changes during their resolution.
Therefore, all the merge conflicts were important in the analysis of changes that led
to their occurrence.

Moreover, merge conflicts in D_STMT and ADD_STMT categories may be resolved
automatically by structured merge tools such as JDIME [38] since there are no
conflicting changes on a same statement.

44

6. Discussion

6.2 Changes that lead to the merge conflicts

Most changes that led to the merge conflicts in the mainline branch were due to
refactoring (18 out of 40) and in the topic branch were due to feature introduction (22
out of 40). We found no change that led to the merge conflict in the mainline branch
which is due to feature introduction. This may be because of the retrieved merge
conflicts occurred in the feature branches and there were no conflicting changes added
in the mainline branch as part of the feature introduction. Second most changes that
led to the merge conflicts in the mainline branch were due to feature enhancement
(12 out of 40) and in the topic branch were due to refactoring (10 out of 40). In total,
the refactoring changes accounted for most changes led to merge conflicts. This may
indicate that the refactoring task accounted for most of the merge conflicts.

As seen in Table 5.1, there are 6 pairs of refactoring changes. This means merge
conflicts occurred due to changes made as part of refactoring in both the mainline
and topic branches. Other pairs include feature enhancement and bug fix which
are both one pair each. For the bug fix change, it is surprising that different bugs
are fixed by changing same part or line of the code. Further investigation may be
conducted to understand whether the bugs are related or not.

Most of the change categories are related or depend on one another. The changes
that led to the merge conflict can be categorized into 3 change types which are
feature introduction, bug fix, and refactoring similar to the categories used by [39].
However, we chose to use feature enhancement, library removal, framework removal,
test improvement, and breaking change fix categories which are subtype of feature
introduction, refactoring, and bug fix to understand merge conflicts which are due to
the subtypes of the change types as they may be rare in the project. The feature
enhancement category can be part of feature introduction and breaking change can
be part of bug fix. Moreover, the test improvement, framework removal, and library
removal categories can be part of refactoring. These changes may be part of the
code base maintenance. Furthermore, the categorization of the changes was based
on the goal of the change, for example, the goal of a change may be to introduce
a new feature, but it may have required to refactor some methods by extracting
common logic which the new feature shares with existing feature(s) and, therefore,
the introduction of the feature would be proceeded with refactoring. Similarly, the
test improvement change may be done after introduction of the feature or as part of
the refactoring. Also, the refactoring task may be performed during bug fixing.

6.3 Threats to Validity

There is no study without any threat to its validity. This section discusses the
following possible threat to validity of the study: construct validity, internal validity
external validity, and reliability as presented by Runeson and Höst [34].

45

6. Discussion

6.3.1 Construct Validity
This validity threat concerns the connection between research questions and what is
observed by the researcher [34]. A possible threat to construct is the categorization
of the merge conflicts based on the changes that led to the merge conflict. There
is a risk the conflicts might be categorized different based on understanding of the
changes. To address this threat, we first created a pair of changes, that is, in the
mainline and topic branch. Then we identified similar characteristics based on the
language syntax. However, still, there might be a risk that the merge conflicts are
placed in wrong categories.

6.3.2 Internal Validity
This validity threat concerns the factors that the researcher may not be aware how
much they affect the factors under investigation [34]. There is a risk of the scripts
written to extract merges that had conflicts and conflicting versions in those merges
and the jFSTMerge tool, which was configured with Git to reduce merge conflicts
related to whitespace and comment changes, to contain defects or bugs. Therefore,
it might lead to false merge conflicts which might affect the in-depth analysis of the
conflicting changes. However, to reduce this threat, we tested the scripts several
times to make sure the right merge conflicts are extracted and manually reviewed the
merge conflicts before the analysis phase to remove the false positive merge conflicts.

Another possible threat to internal validity is collection of the changes in the project
code base that led to the conflicts. There might be errors when analyzing the changes
and led to wrong result. However, to reduce this threat, a thorough analysis was
conducted using more than one source to understand the changes. The commit and
pull request messages together with source code were used to obtain the understanding
of the changes.

6.3.3 External Validity
This validity threat concerns the generalization of the findings to other cases [34]. An
in-depth analysis of the changes that led to the merge conflicts and categorization of
the merge conflicts were done using a sample of 40 merge conflicts. There is a threat
that the selected sample of conflicting changes may not represent the conflicting
changes extracted from the merge commits which had conflicts. Therefore, the results
of the in-depth analysis might not be generalized to the subject system under study.
However, to mitigate or reduce this threat, we randomly reviewed the conflicting
changes that were not selected for the in-depth analysis to observe whether there are
cases that were not represented especially for merge conflict categorization.

Furthermore, the analysis of the merge conflicts was based on one project. Therefore,
we cannot generalize the results of the study to other projects. Also, since the studied
project is Java project and the results of the merge conflicts categorization was based
on Java syntax, therefore, the results of the merge conflicts categorization would
be different in other programming languages. Moreover, the studied project was an

46

6. Discussion

open source project, thus the results might not be generalized to a closed source
project. Furthermore, there might be a bias when choosing a subject system for
this study. Therefore, we might have had different results if we would have chosen
a different project. However, we believed the Elasticsearch project was interesting
project given its popularity in Github and its size.

6.3.4 Reliability
This threat concerns the replication of the study by other researchers to obtain same
results [34]. To mitigate this threat, we described the methodology used in this study
with replication in mind and made available the scripts used to extract the merge
conflicts and the conflicting versions in the merge conflicts. Also, we made available
the dataset of the merge which had conflicts and the conflicting versions so that the
researchers can compare their results and ours. However, there is a risk that the
steps we followed to extract and analyze the merge conflicts might not be clear to
some researchers when replicating our study.

47

7
Conclusion and Future Work

This chapter presents the conclusion of the study and discusses the proposed future
work. In the conclusion, a summary of the answers to the research questions is
provided. Then followed with discussion of the contributions and limitation of the
study. Finally, the chapter ends with the proposal for future work.

7.1 Summary
The purpose of the study was to explore the merge conflicts in an open source project
by analyzing the conflicting changes that led to their occurrence and categorizing
them. To achieve the purpose of the study, the following questions were answered
by analyzing a sample of 40 conflicting changes extracted from the Elasticsearch
project:

RQ1. How can the merge conflicts be categorized in terms of code level
changes?
As describe in Section 4.3.2 and presented in Section 5.1, the merge conflicts were
categorized based on the syntactic structure of the conflicting changes. In the sample
dataset, six categories of the merge conflicts were identified. The categories are:

• Change of Method call or object creation (MC_OC)
• Change of an assert statement Expression (AS_EXP)
• Addition of statements in the Same area (ADD_STMT)
• Modification and removal of statements (MOD/RMV_STMT)
• Changes in Different statements in the same area (D_STMT)
• Change of IF statement condition (IF_C)

RQ2. What are the project level changes that led to the merge conflicts
in an open source software project?
To understand the changes that led to the merge conflicts in the project code base, an
in-depth analysis was performed in the sample. For each conflicting change, a change
in the mainline branch and topic branch was analyzed by reviewing the message
of the commit and its associated pull request that made the change. Eight change
categories were identified from the analysis of the conflicting changes. The change
categories are:

• Feature introduction
• Refactoring
• Feature enhancement

49

7. Conclusion and Future Work

• Test improvement
• Bug fix
• Framework removal
• Breaking change fix
• Library removal

7.2 Contributions and Limitation of the Study

This thesis contributes two datasets of conflicting changes in the merge conflicts
extracted from the Elasticsearch project. A first dataset contains 534 conflicting
changes in all extracted merge conflicts and a second dataset contains descriptions
of a sample of 40 conflicting changes. The first dataset can be used to replicate the
analysis of the changes that led to the merge conflicts and categorization of the merge
conflicts by selecting a sample or studying all conflicting changes. Also, can be used
to validate if same data will be extracted when replicating the methodology adapted
in this study. The second dataset can be used to validate the categories of the changes
that led to the merge conflicts. Moreover, it may be expanded and used to answer
research questions such as how many merge conflicts are due to refactoring in a
project or projects, and to study relationship of changes that led to the merge conflicts.

Another contribution is the methodology that was used to analyze the conflicting
changes. Researchers may adopt the methodology and improve to suit their studies
which may have similar purpose with the work in this thesis. Also, since to the best
of our knowledge there may be no prior work similar to this thesis work that studied
merge conflicts by analyzing code base changes in the mainline branch and topic
branch, which is an individual developer branch, therefore, the methodology in this
thesis may provide motivation for a methodology in similar studies. Furthermore,
together with the methodology, this thesis contributes the scripts used to extract
the merge conflicts and conflicting changes in those merge conflicts. The datasets
and scripts can be accessed online 1.

The main limitation of the study is size of the sample selected for the in-depth
analysis of the conflicting changes in the merge conflicts and categorization of the
merge conflicts. The size of the sample was selected due to limited time. The
analysis of changes in one merge conflict on average took one day. This is because
the knowledge of the subject system was required to analyze the changes in the
source code and to describe those changes. Therefore, for a larger sample it would
have taken longer time to analyze all conflicting changes. However, we selected the
sample that is enough to represent the conflicting changes in the project under study
and can be analyzed within reasonable time.

1https://github.com/msafirim/merge-conflicts-study

50

https://github.com/msafirim/merge-conflicts-study

7. Conclusion and Future Work

7.3 Future Work
The long-term goal of this study is to support developers when they are resolving
merge conflicts by providing them with information that might reduce the perceived
complexity of the merge conflicts resolution. Therefore, this study is the first step
towards that goal. However, before developing a tool to help the developers, further
studies are required to understand if the results in this study might hold to other
projects. We would first like to conduct an in-depth analysis of the merge conflicts
in more open source projects as the development history is publicly available. This
will enable to acquire understanding of the merge conflicts in different development
cultures and programming languages. Therefore, it will ensure good understanding
of conflicting changes in the merge conflicts and may led to development of a better
tool for the merge conflict resolution.

Furthermore, we would like to evaluate existing merge conflict tools to understand
how they support developers when there are merge conflicts and how they prevent or
reduce occurrence of the merge conflicts. The evaluation should help to understand
the benefits and challenges of the existing tools and propose improvement. Also,
it will allow to understand missing features in the existing tools. Moreover, the
evaluation may provide insight about how a tool that support the developers during
resolution of the merge conflicts can be developed.

Lastly, we propose a tool to aid the developers during the merge conflict resolution
that will use information about the changes in conflicting code from version control
systems. The developers may be presented with a contextual information of the
changes. Similarly, this requirement was also identified by McKee et al. [8] from
interviews which they conducted with developers and was ranked in the top in a
survey which they asked developers to rate identified needs during conflicts resolution.
Therefore, this indicate there is a need to have a tool that make use of the data
from the version control systems, in particular commit messages, in a way that
developers will easily view and understand what were the changes made in the other
branch when they retrieve changes into their branches. Also, the tool may not be
limited to providing information about the changes from other branches, it can
describes the changes that were done in branches that the developers are working
with. This would help in a case where a developer branch took longer time and
another developer continue with it. The tool may be implemented as a plugin in
an integrated development environment such as Eclipse so that developers would
not switch tools when they are resolving the merge conflict. However, a decision
of how to implement the tool may depend on the findings from the evaluation of
merge conflict tools, which may determine how easily a merge conflict tool can be
implemented. Also, the evaluation may determine possibility of extending one of the
existing merge conflict tool. Then the implementation of the tool may be followed
with an evaluation study. The evaluation study may be done in an experiment or a
case study.

51

Bibliography

[1] C. Bird and T. Zimmermann, “Assessing the value of branches with what-if
analysis,” in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New York, NY,
USA: ACM, 2012, pp. 45:1–45:11.

[2] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and P. Devanbu,
Cohesive and Isolated Development with Branches. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 316–331.

[3] G. Gousios, M. A. Storey, and A. Bacchelli, “Work practices and challenges in
pull-based development: The contributor’s perspective,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), May 2016, pp.
285–296.

[4] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-
based software development model,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 345–355.

[5] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive Detection of
Collaboration Conflicts,” in Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 168–178.

[6] A. Sarma, D. F. Redmiles, and A. van der Hoek, “Palantı´r: Early detection of
development conflicts arising from parallel code changes,” IEEE Transactions
on Software Engineering, vol. 38, no. 4, pp. 889–908, July 2012.

[7] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization through
optimized task scheduling,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 732–741.

[8] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner perspectives
on merge conflicts and resolutions,” in 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Sept 2017, pp. 467–478.

[9] O. S. Initiative, “The open source definition,” https://opensource.org/docs/
definition.html, 2017, [Accessed Sep. 15, 2017].

53

 https://opensource.org/docs/definition.html
 https://opensource.org/docs/definition.html

Bibliography

[10] C. Gacek and B. Arief, “The many meanings of open source,” IEEE Software,
vol. 21, no. 1, pp. 34–40, Jan 2004.

[11] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source soft-
ware development: the apache server,” in Proceedings of the 2000 International
Conference on Software Engineering. ICSE 2000 the New Millennium, June
2000, pp. 263–272.

[12] M. J. Karels, “Commercializing open source software,” Queue, vol. 1, no. 5,
pp. 40:46–40:55, Jul. 2003.

[13] A. Hars and S. Ou, “Working for free? motivations for participating in open-
source projects,” Int. J. Electron. Commerce, vol. 6, no. 3, pp. 25–39, Apr.
2002.

[14] S. K. Shah, “Motivation, governance, and the viability of hybrid forms in
open source software development,” Management Science, vol. 52, no. 7, pp.
1000–1014, 2006.

[15] D. C. Gumm, “Distribution dimensions in software development projects: A
taxonomy,” IEEE Software, vol. 23, no. 5, pp. 45–51, Sept 2006.

[16] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and improvements in
distributed software development: A systematic review,” Adv. Soft. Eng., vol.
2009, pp. 3:1–3:16, Jan. 2009.

[17] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. De-
vanbu, “The promises and perils of mining git,” in 2009 6th IEEE International
Working Conference on Mining Software Repositories, May 2009, pp. 1–10.

[18] B. de Alwis and J. Sillito, “Why are software projects moving from centralized
to decentralized version control systems?” in Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on Software Engineering, ser.
CHASE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 36–39.

[19] Y. Saito, K. Fujiwara, H. Igaki, N. Yoshida, and H. Iida, “How do github users
feel with pull-based development?” in 2016 7th International Workshop on
Empirical Software Engineering in Practice (IWESEP), March 2016, pp. 7–11.

[20] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work practices
and challenges in pull-based development: The integrator’s perspective,” in
Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 358–368.

[21] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who should comment on
this pull request? analyzing attributes for more accurate commenter recom-
mendation in pull-based development,” Information and Software Technology,
vol. 84, no. Supplement C, pp. 48 – 62, 2017.

[22] G. Robles and J. M. González-Barahona, A Comprehensive Study of Software
Forks: Dates, Reasons and Outcomes. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 1–14.

54

Bibliography

[23] L. Nyman and T. Mikkonen, To Fork or Not to Fork: Fork Motivations in
SourceForge Projects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 259–268.

[24] Ş. Stănciulescu, S. Schulze, and A. Wąsowski, “Forked and integrated variants
in an open-source firmware project,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Sept 2015, pp. 151–160.

[25] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An investigation
into current version control practices,” in Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering, ser.
CHASE ’11. New York, NY, USA: ACM, 2011, pp. 9–15.

[26] S. Chacon, Pro Git, 1st ed. Apress, 2009.

[27] C. Walrad and D. Strom, “The importance of branching models in scm,”
Computer, vol. 35, no. 9, pp. 31–38, Sep 2002.

[28] A. Nieminen, “Real-time collaborative resolving of merge conflicts,” in 8th In-
ternational Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom), Oct. 2012, pp. 540–543.

[29] T. Mens, “A state-of-the-art survey on software merging,” IEEE Transactions
on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002.

[30] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical Software
Engineering, Dec 2017.

[31] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistructured
merge: Rethinking merge in revision control systems,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 190–200.

[32] G. G. L. de Menezes, “On the nature of software merge conflicts,” Ph.D.
dissertation, Federal Fluminense University, Dec 2016, [Accessed Jan. 09,
2017].

[33] M. L. Guimarães and A. R. Silva, “Improving early detection of software merge
conflicts,” in 2012 34th International Conference on Software Engineering
(ICSE), Jun. 2012, pp. 342–352.

[34] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering, vol. 14,
no. 2, pp. 131–164, 2009.

[35] Elastic, “Getting started,” https://www.elastic.co/guide/en/elasticsearch/
reference/current/getting-started.html, 2017, [Accessed Aug. 16, 2017].

[36] C. B. Seaman, “Qualitative methods in empirical studies of software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572,
Jul 1999.

55

https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html

Bibliography

[37] R. K. Yin, Case study research: Design and methods, 5th ed. Sage publications,
2014.

[38] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-tuning:
Balancing precision and performance,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE 2012.
New York, NY, USA: ACM, 2012, pp. 120–129.

[39] A. E. Hassan, “Predicting faults using the complexity of code changes,” in
2009 IEEE 31st International Conference on Software Engineering, May 2009,
pp. 78–88.

56

Appendices

57

A
Descriptions of the Features
Studied in the Prestudy

CancelableSearchAction
Cancels long running searches using standard task cancellation mechanism. For
example:
$ curl -XPOST ’localhost :9200/ _tasks / task_id :1/ _cancel ? pretty ’

CustomizableShardWeights
Enables balancing of shard weights by distributing the load evenly in the cluster.
It allows individual shards in a cluster that are often queried to be more evenly
distributed across nodes. The shards are supposed to have a high weight manually
assigned to them, so that Elasticsearch can distribute them accordingly, providing
better load balancing by spreading high-load shards more than low-load ones.

FunctionScoreQueryFunctions
Provides the option to use several scores of queries with mathematical functions and
allows to wrap them in one query. It aggregates filter and sort results in a search.

GeoHeatMapAggregator
Visualize data based on geographical location as heat map by dividing the map into
grids, and grouping points into buckets. It allows a user to take points (x and y
coordinates) from a map or a graph and get a “heat map” of where most points were
found.

GeoHeatMapGridAggregator
This feature extends GeoHeatMapAggregator feature by setting the maximum allow-
able error specified as fraction of the shape size when determining where an indexed
shape is relative to the heatmap cells.

GeoMeansAggregator
Performs k-means clustering on a GeoPoint field.

I

A. Descriptions of the Features Studied in the Prestudy

SearchIngestProcessor
Returns the most relevant hit by running a search query against an Elasticsearch
cluster. The Elasticsearch cluster can be internal or external. It uses REST layer to
communicate. The search request is sent with size 1 in order to get only data from
the more relevant hit.

NodesUsageAPI-REST
Provides statistics of node usage based on user actions. It allows to see how many
times each rest action has been called on a node.

ScrollPersistence
Makes scroll to persist across clusters since the scroll is lost when the node where is
stored shut down or moved. This means the order of the results can change when
another page in a result set will be requested.

StandardNumberAnalysis (Plugin)
Finds standard numbers and index them in canonical form with their valid variants.
The canonical form must be deduced from an input so that standard numbers can
be compared for equivalence since they may appear in some literal variants.

StringFieldsAnalyzerProcessor
Tokenize search strings to yield more relevant searches and results.

SynonymsGraph
Provides search result that extends further than words in the search query by also
including words with similar meaning. It extends a synonym feature to also include
multiword queries and results.

TermsWithoutGlobalOrdinals
Helps to optimize the performance when running terms aggregation by leveraging
map ordinals. Since there is no option for rebuilding global ordinals, this feature
provides alternative for users who have issues with global ordinals building.

TopHitsAggregationSorting
Sorts terms bucket by using score assigned by a previous query in the same search
request.

II

A. Descriptions of the Features Studied in the Prestudy

UnifiedHighlighter
Combines multiple highlighting modes. It includes plain mode that analyzes the
plain text directly, postings mode that uses the postings offsets to perform the
highlight, and fast vector highlighter mode that uses the term vectors to perform
the highlighting. It allows more advanced highlighting in regard to a specific task
that a user wants to perform.

xmlFormat
Allows users to request results in XML instead of JSON format

III

B
Dataset of changes that led to the

Merge Conflicts

Appendix B.1. Extracted commits and files associated with
the merge conflicts in the dataset

Table B.1 shows the commits and file path associated with each merge conflict in
the dataset. The commits include merge commit and its associated parent commits,
common ancestor commit used when the changes were merged, and change commit
in which the change that led to the merge conflict was made.

V

B. Dataset of changes that led to the Merge Conflicts

T
able

B
.1:

C
om

m
its

and
files

associated
w
ith

the
m
erge

conflicts

C
onfl

ict
#

M
erge

C
om

m
it

C
om

m
on

A
ncestor

C
om

m
it

F
irst

M
erge

P
arent

Second
M
erge

P
arent

F
ile

P
ath

C
hange

C
om

m
it

M
ainline

B
ranch

1
5717ac3c

f217eb8a
210e101f

8758c541
core/src/test/java/org/elasticsearch/search/aggregations/m

etrics/m
in/InternalM

inT
ests.java

e71b26f4
75fdc944

2
d3417fb0

615928e8
9ceb0f2c

179dd885
core/src/m

ain/java/org/elasticsearch/action/delete/T
ransp

ortD
eleteA

ction.java
63c07282

5fb0f9a8
3

d3417fb0
615928e8

9ceb0f2c
179dd885

core/src/m
ain/java/org/elasticsearch/index/engine/InternalE

ngine.java
fa3ee6b9

3106948a
4

d3417fb0
615928e8

9ceb0f2c
179dd885

core/src/test/java/org/elasticsearch/index/IndexM
oduleT

ests.java
6418f89f

48443259
5

d3417fb0
615928e8

9ceb0f2c
179dd885

core/src/test/java/org/elasticsearch/index/engine/InternalE
ngineT

ests.java
1587a77f

5fb0f9a8
6

d3417fb0
615928e8

9ceb0f2c
179dd885

core/src/test/java/org/elasticsearch/index/engine/InternalE
ngineT

ests.java
1587a77f

5fb0f9a8
7

25fd9e26
74af0e36

c809671e
85402d52

core/src/m
ain/java/org/elasticsearch/index/shard/T

ranslogR
ecoveryP

erform
er.java

a0b
ecd26

5fb0f9a8
8

25fd9e26
74af0e36

c809671e
85402d52

core/src/test/java/org/elasticsearch/index/translog/T
ranslogT

ests.java
a0b

ecd26
5fb0f9a8

9
d0765d07

9a322710
9884b7dc

74af0e36
core/src/m

ain/java/org/elasticsearch/action/supp
ort/replication/T

ransp
ortR

eplicationA
ction.java

b4064ce4
48443259

10
112669da

b
e168f52

275ea683
0cae9ad3

core/src/m
ain/java/org/elasticsearch/index/engine/InternalE

ngine.java
4f49a261

3106948a
11

bb
d5f26d

0eb1a816
6380560d

d55f719f
core/src/m

ain/java/org/elasticsearch/com
m
on/settings/Settings.java

ba14aca2
3adaf096

12
15d3d744

6c15e782
dcd2642d

d3d57da8
core/src/test/java/org/elasticsearch/index/engine/Shadow

E
ngineT

ests.java
5d8f6843

5fb0f9a8
13

27d4994a
4bfef1fd

2c6e78e1
5e8656af

core/src/m
ain/java/org/elasticsearch/action/adm

in/cluster/stats/C
lusterStatsN

odes.java
ce86fc56

2c6e78e1
14

bf390a93
675d940f

da199224
4ac4f3c8

core/src/m
ain/java/org/elasticsearch/cluster/node/D

iscoveryN
odeService.java

cd12241e
eb941d80

15
b
d96075f

22ee910f
ce6ec511

e4b
ed0c9

core/src/m
ain/java/org/elasticsearch/action/adm

in/cluster/node/stats/N
odeStats.java

31740e27
121e7c8c

16
69c83b34

c9e1ccf6
e7cff

a5e
b4db26ea

core/src/m
ain/java/org/elasticsearch/search/suggest/SuggestP

arseE
lem

ent.java
e72dac91

9e0f6e3f
17

c11cf3bf
82567f1b

e4031932
29e34439

core/src/m
ain/java/org/elasticsearch/com

m
on/settings/Setting.java

52acf0e6
31b5e088

18
4bb5b410

77dbfb
c9

4d0feff
2

b5aee207
core/src/m

ain/java/org/elasticsearch/action/adm
in/cluster/stats/T

ransp
ortC

lusterStatsA
ction.java

7835525f
3106948a

19
4bb5b410

77dbfb
c9

4d0feff
2

b5aee207
core/src/test/java/org/elasticsearch/action/supp

ort/broadcast/node/T
ransp

ortB
roadcastB

yN
odeA

ctionT
ests.java

2a137b55
b364cf54

20
4bb5b410

77dbfb
c9

4d0feff
2

b5aee207
core/src/test/java/org/elasticsearch/cluster/routing/allocation/decider/D

iskT
hresholdD

eciderT
ests.java

4937531a
b364cf54

21
4bb5b410

77dbfb
c9

4d0feff
2

b5aee207
core/src/test/java/org/elasticsearch/cluster/routing/allocation/decider/D

iskT
hresholdD

eciderU
nitT

ests.java
2a137b55

b364cf54
22

cd8320b1
3d98756e

e6f9cb
ce

ec31feca
core/src/m

ain/java/org/elasticsearch/search/aggregations/bucket/fi
lters/F

iltersA
ggregator.java

cc41e6e7
6df27fe0

23
83a5fe96

7a469538
31afc8a9

d0a10b33
core/src/test/java/org/elasticsearch/gatew

ay/R
eplicaShardA

llocatorT
ests.java

3a442db9
b364cf54

24
27d8509f

5d001d15
99e328c9

7b
ca97bb

core/src/m
ain/java/org/elasticsearch/index/shard/IndexShard.java

1bff
08b2

6ae8ca9a
25

27d8509f
5d001d15

99e328c9
7b

ca97bb
core/src/test/java/org/elasticsearch/indices/m

em
ory/IndexingM

em
oryC

ontrollerT
ests.java

5341404f
f27c0adb

26
503a166b

b4e0c876
a8382de0

afcaa593
core/src/m

ain/java/org/elasticsearch/action/delete/D
eleteR

esp
onse.java

fafeb3ab
a2cda4e3

27
68f1a87c

54022774
95e8a39b

fafeb3ab
core/src/m

ain/java/org/elasticsearch/action/supp
ort/replication/T

ransp
ortR

eplicationA
ction.java

025e9818
5fb0f9a8

28
68f1a87c

54022774
95e8a39b

fafeb3ab
core/src/m

ain/java/org/elasticsearch/action/up
date/U

p
dateH

elp
er.java

fafeb3ab
5fb0f9a8

29
68f1a87c

54022774
95e8a39b

fafeb3ab
core/src/m

ain/java/org/elasticsearch/rest/action/up
date/R

estU
p
dateA

ction.java
fafeb3ab

5fb0f9a8
30

95e8a39b
c512cc52

bff
d55dd

54022774
core/src/m

ain/java/org/elasticsearch/cluster/C
lusterState.java

fef043a5
b364cf54

31
95e8a39b

c512cc52
bff

d55dd
54022774

core/src/m
ain/java/org/elasticsearch/cluster/m

etadata/IndexM
etaD

ata.java
fef043a5

b364cf54
32

d68b8101
18a75fb3

1e5af7b6
6a2fa73f

core/src/test/java/org/elasticsearch/cluster/routing/allocation/P
rim

aryE
lectionR

outingT
ests.java

e31d66d1
b364cf54

33
ba68a8df

7b74f0dd
672a54b3

3ab39385
core/src/m

ain/java/org/elasticsearch/index/IndexService.java
c0eca94a

46d10f1b
34

1228a9fe
542cf66c

197313c1
c8d1f7aa

core/src/test/java/org/elasticsearch/p
ercolator/P

ercolatorB
ackw

ardsC
om

patibilityIT
.java

eff
aaf05

904cbf53
35

73f7df51
c10f116a

d49a744b
2c618a11

core/src/m
ain/java/org/elasticsearch/index/query/H

asP
arentQ

ueryB
uilder.java

ab0847e0
18b

ec264
36

73f7df51
c10f116a

d49a744b
2c618a11

core/src/test/java/org/elasticsearch/search/child/C
hildQ

uerySearchIT
.java

ab0847e0
18b

ec264
37

1b8047e5
35f9ee7a

80b59e0d
5ae00a61

core/src/m
ain/java/org/elasticsearch/discovery/local/L

ocalD
iscovery.java

14e48824
80b59e0d

38
f3d63095

dcf3f467
b
e638fb6

4010e7e9
core/src/test/java/org/elasticsearch/index/analysis/synonym

s/Synonym
sA

nalysisT
est.java

6dcfda99
b
e638fb6

39
654dc208

ed561cd4
10f80167

bbaf4710
core/src/m

ain/java/org/elasticsearch/com
m
on/io/stream

/Stream
Input.java

e7eb9cf4
ff
9041dc

40
9171ff

09
cdd13253

33668a8d
f4a143d1

core/src/m
ain/java/org/elasticsearch/index/query/P

refi
xQ

ueryB
uilder.java

0a526b
e3

283fe90e

VI

B. Dataset of changes that led to the Merge Conflicts

Appendix B.2. Changes that led to Merge Conflicts

B.2.1 Conflict 1
Category: Change of Method call or object creation

Mainline Change

Category: Test improvement

Project level perspective. Some aggregations tests were changed to use correct
document field datatypes. The change was made to not test metrics aggregations
(such as min or max) that expect a numeric value with a document field datatype
such as IP (IPv4 and IPv6 addresses). The aggregations tests were modified so that
not to return wrong aggregations which are also used in other tests.

Code level perspective. Listing below shows an example of a change in aggrega-
tions tests to use correct document field datatypes. In the example, a parameter that
return random selected DocValueFormat (document field datatype) was replaced
with a method randomNumericDocValueFormat that return random selected format
from a list of datatype formats. The list of datatype formats contains Raw, Geohash,
and IP datatypes.

protected InternalMin c r ea t eTe s t In s tance (S t r ing name , Lis t<Pipe l ineAggregator
↪→ > pipe l ineAggregato r s , Map<Str ing , Object> metaData) {

− return new InternalMin (name , randomDouble () ,
− randomFrom(DocValueFormat .BOOLEAN, DocValueFormat .GEOHASH,

↪→ DocValueFormat . IP , DocValueFormat .RAW) , p ipe l ineAggrega to r s ,
− metaData) ;
+ return new InternalMin (name , randomDouble () , randomNumericDocValueFormat

↪→ () , p ipe l i neAggregato r s , metaData) ;
}

Branch Change

Category: Feature introduction

Project level perspective. Parsing from xContent, which is an abstraction on top
of content such as Json, was added to some of the aggregations. The aggregations
are max, min, avg, sum and value count. The change was part of high level REST
client aggregations parsing feature implementation.

Code level perspective. Listing below shows a change due to addition of xContent
parsing to metrics aggregations. In the listing, test parameters for document’s field
value and format were modified. The document’s field value was improved to
randomly select infinity values. On the other hand, the document’s field format was
updated to remove geohash format and replace with decimal format.

protected InternalMin c r ea t eTe s t In s tance (S t r ing name , Lis t<Pipe l ineAggregator
↪→ > pipe l ineAggregato r s , Map<Str ing , Object> metaData) {

− return new InternalMin (name , randomDouble () ,
− randomFrom(DocValueFormat .BOOLEAN, DocValueFormat .GEOHASH,

↪→ DocValueFormat . IP , DocValueFormat .RAW) , p ipe l ineAggrega to r s ,

VII

B. Dataset of changes that led to the Merge Conflicts

− metaData) ;
+ double value = f r equen t l y () ? randomDouble () : randomFrom(new Double [] {

↪→ Double .NEGATIVE_INFINITY, Double .POSITIVE_INFINITY }) ;
+ DocValueFormat fo rmatte r = randomFrom(new DocValueFormat . Decimal ("###.##"

↪→) , DocValueFormat .BOOLEAN, DocValueFormat .RAW) ;
+ return new InternalMin (name , value , formatter , p ipe l i neAggregato r s ,

↪→ metaData) ;
}

B.2.2 Conflict 2
Category: Change of Method call or object creation, Addition of statements in the
Same area

Mainline Change

Category: Refactoring

Project level perspective. There are two changes from a common ancestor version
that led to the merge conflict. In the first change, handling of write operation such
as delete was simplified in transport actions that modify data in shards. With this
change, failures occurred before executing engine’s write operations are conveyed
through a failure operation type. The failure operation type can be request failure
such as document version conflict, transient operation failure such as when initializing
shard, and environment failure such as when there is out of disk error. This change
was part of an enhancement to handle failure types appropriately since there was no
distinction between environment and request failures for the write operation.
In the second change, responsibilities to update document’s version and version type
in a shard bulk request to shard replicas after delete operation on primary shards
were moved to a caller of the operation. Before this change, update of the request
version and version type on the shard replicas was done after execution of delete
operation on the primary shard. This change was made to ensure an execution of
write operation, that is, deletion of shards does not have side effects.

Code level perspective. In order to handle the failures occurred before execut-
ing engine’s write operations appropriately, the return type of method execut-
eDeleteRequestOnPrimary was changed from WriteResult<DeleteResponse> to
Engine.DeleteResult so that to distinguish failures occurred due to delete operation
with engine level. In the second change, to ensure the execution of write operation
does not have side effects, a delete variable which holds preparation result of delete
operation on primary shard was made final and response of the delete operation was
returned to the operation caller. Furthermore, the request update responsibility was
moved to the operation caller.
− public stat ic WriteResult<DeleteResponse> executeDeleteRequestOnPrimary (

↪→ DeleteRequest request , IndexShard indexShard) {
− Engine . De lete d e l e t e = indexShard . prepareDeleteOnPrimary (r eque s t . type () ,

↪→ r eque s t . id () , r eque s t . v e r s i on () , r eque s t . vers ionType ()) ;
− indexShard . d e l e t e (d e l e t e) ;
− // update the r eque s t with the ve r s i on so i t w i l l go to the r e p l i c a s
− r eque s t . vers ionType (d e l e t e . vers ionType () .

↪→ vers ionTypeForRepl icat ionAndRecovery ()) ;

VIII

B. Dataset of changes that led to the Merge Conflicts

− r eque s t . v e r s i on (d e l e t e . v e r s i on ()) ;
−
− a s s e r t r eque s t . vers ionType () . va l idateVers ionForWri te s (r eque s t . v e r s i on ()) ;
− DeleteResponse re sponse = new DeleteResponse (indexShard . shardId () ,

↪→ r eque s t . type () , r eque s t . id () , d e l e t e . v e r s i on () , d e l e t e . found ()) ;
− return new WriteResult<>(response , d e l e t e . getTrans logLocat ion ()) ;
+ public stat ic Engine . De l e teResu l t executeDeleteRequestOnPrimary (DeleteRequest

↪→ request , IndexShard primary) {
+ f i n a l Engine . De lete d e l e t e = primary . prepareDeleteOnPrimary (r eque s t . type

↪→ () , r eque s t . id () , r eque s t . v e r s i on () , r eque s t . vers ionType ()) ;
+ return primary . d e l e t e (d e l e t e) ;

}

Branch Change

Category: Feature introduction

Project level perspective. A counter was added to each write operation (such as
indexing) on a shard to enforce semantics of primary terms. The primary terms track
number of times when a new primary shard is selected among existing replica shards
after an old primary shard failed. The primary terms help to identify operations from
the old failed primary shard. With this change, the counter was added to identify the
write operations from the failed primary shard so that other shards should not execute
the operations received from the failed primary shard. This is an enhancement to
support implementation of write operations sequence numbers feature. The feature
orders operations on shards against each other. Before the implementation of the
feature, the ordering of operations was done on a per document basis and replicated
to replica shards after write operations were applied on the primary shard. The
ordering of operations on a per shard basis enable implementations of high level
features such as changes API which allow to follow changes made to documents in
the shard and index.

Code level perspective. To enforce semantics of the primary terms, a counter
delete.seqNo() for delete operation on a primary shard was added. Then, the
counter was passed to the sequence number assigned to delete request on the primary
shard. Furthermore, the delete.seqNo() counter was passed to the response of
delete action.

public stat ic WriteResult<DeleteResponse> executeDeleteRequestOnPrimary (
↪→ DeleteRequest request , IndexShard indexShard) {
Engine . De lete d e l e t e = indexShard . prepareDeleteOnPrimary (r eque s t . type () ,

↪→ r eque s t . id () , r eque s t . v e r s i on () , r eque s t . vers ionType ()) ;
indexShard . d e l e t e (d e l e t e) ;

// update the r eque s t with the ve r s i on so i t w i l l go to the r e p l i c a s
r eque s t . vers ionType (d e l e t e . vers ionType () .

↪→ vers ionTypeForRepl icat ionAndRecovery ()) ;
r eque s t . v e r s i on (d e l e t e . v e r s i on ()) ;

+ reques t . seqNo (d e l e t e . seqNo ()) ;

a s s e r t r eque s t . vers ionType () . va l idateVers ionForWri te s (r eque s t . v e r s i on ()) ;
− DeleteResponse re sponse = new DeleteResponse (indexShard . shardId () ,

↪→ r eque s t . type () , r eque s t . id () , d e l e t e . v e r s i on () , d e l e t e . found ()) ;
+ DeleteResponse re sponse = new DeleteResponse (indexShard . shardId () ,

↪→ r eque s t . type () , r eque s t . id () , d e l e t e . seqNo () , d e l e t e . v e r s i on () , d e l e t e .
↪→ found ()) ;

return new WriteResult<>(response , d e l e t e . getTrans logLocat ion ()) ;
}

IX

B. Dataset of changes that led to the Merge Conflicts

B.2.3 Conflict 3
Category: Addition of statements in the Same area

Mainline Change

Category: Refactoring

Project level perspective. Same as first change in B.2.2, which simplified han-
dling of write operations failure.

Code level perspective. To handle failure in case there is document’s version
conflict while recovering from delete operation, the execution of the delete op-
eration is skipped and result of the operation deleteResult is updated to the
delete.version() version after the delete operation.
− private void i nne rDe l e t e (De lete d e l e t e) throws IOException {
+ private Dele teResu l t i nne rDe l e t e (De lete d e l e t e) throws IOException {

. . .
f i n a l long expectedVers ion = de l e t e . v e r s i on () ;

− i f (checkVer s i onCon f l i c t (de l e t e , currentVers ion , expectedVers ion ,
↪→ de l e t ed)) return ;

− f i n a l long updatedVersion = updateVers ion (de l e t e , currentVers ion ,
↪→ expectedVers ion) ;

− f i n a l boolean found = de le te I fFound (de l e t e , currentVers ion , de le ted ,
↪→ vers ionValue) ;

− de l e t e . updateVers ion (updatedVersion , found) ;
− maybeAddToTranslog (de l e t e , updatedVersion , Translog . De lete : :new,

↪→ DeleteVers ionValue : :new) ;
+ f i n a l Dele teResu l t d e l e t eRe su l t ;
+ i f (checkVer s i onCon f l i c t (de l e t e , currentVers ion , expectedVers ion ,

↪→ de l e t ed)) {
+ // sk ip execut ing d e l e t e because o f v e r s i on c o n f l i c t on recovery
+ de l e t eRe su l t = new Dele teResu l t (expectedVers ion , true) ;
+ } else {
+ updatedVersion = de l e t e . vers ionType () . updateVers ion (

↪→ currentVers ion , expectedVers ion) ;
+ found = de le te I fFound (d e l e t e . uid () , currentVers ion , de le ted ,

↪→ vers ionValue) ;
+ de l e t eRe su l t = new Dele teResu l t (updatedVersion , found) ;
+ l o c a t i o n = de l e t e . o r i g i n () != Operation . Or ig in .

↪→ LOCAL_TRANSLOG_RECOVERY
+ ? t r an s l o g . add (new Translog . De lete (de l e t e , d e l e t eRe su l t))
+ : null ;
+ versionMap . putUnderLock (d e l e t e . uid () . bytes () ,
+ new DeleteVers ionValue (updatedVersion , eng ineConf ig .

↪→ getThreadPool () . e s t imatedTimeInMi l l i s ())) ;
+ de l e t eRe su l t . s e tTrans logLocat ion (l o c a t i o n) ;
+ }
+ de l e t eRe su l t . setTook (System . nanoTime () − de l e t e . startTime ()) ;
+ de l e t eRe su l t . f r e e z e () ;
+ return de l e t eRe su l t ;

}
}

Branch Change

Category: Feature introduction

Project level perspective. Local checkpoints were introduced on a shard level. A
local checkpoint is a last sequence number after all previous operations were processed.

X

B. Dataset of changes that led to the Merge Conflicts

The sequence numbers are incremented for each operation on the shard. Therefore, af-
ter previous operations were completed which have lower sequence numbers, the local
checkpoint will have highest sequence number. The checkpoints were introduced to
support implementation of write operations sequence numbers feature (see also B.2.2).

Code level perspective. As part of introduction of local checkpoints (highest
sequence numbers on shard level), a delete.seqNo() sequence number for delete
operation is passed to markSeqNoAsCompleted method which marks the sequence
number as completed. The sequence number delete.seqNo() needs to be assigned
to a shard before marked as completed.

private void i nne rDe l e t e (De lete d e l e t e) throws IOException {
. . .

f i n a l long expectedVers ion = de l e t e . v e r s i on () ;
i f (checkVer s i onCon f l i c t (de l e t e , currentVers ion , expectedVers ion ,

↪→ de l e t ed)) return ;

+ maybeUpdateSequenceNumber (d e l e t e) ;
f i n a l long updatedVersion = updateVers ion (de l e t e , currentVers ion ,

↪→ expectedVers ion) ;
−

f i n a l boolean found = de le te I fFound (de l e t e , currentVers ion , de le ted ,
↪→ vers ionValue) ;

−
de l e t e . updateVers ion (updatedVersion , found) ;

maybeAddToTranslog (de l e t e , updatedVersion , Translog . De lete : :new,
↪→ DeleteVers ionValue : :new) ;

+ } f i n a l l y {
+ i f (d e l e t e . seqNo () != SequenceNumbersService .UNASSIGNED_SEQ_NO) {
+ seqNoServ ice . markSeqNoAsCompleted (d e l e t e . seqNo ()) ;
+ }

}
}

B.2.4 Conflict 4
Category: Change of Method call or object creation

Mainline Change

Category: Framework removal

Project level perspective. Provider of node services that hold index and node
level services used by a shard was removed. The change was part of removing Guice1
dependency injection framework in the index level. After the change, the node
services are provided were they are needed.

Code level perspective. As part of node services provider removal in the index
level, tests on index module were modified. The nodeServicesProvider parameter
was removed in the newIndexService method which create new index service with
custom implementations.

public void testWrapperIsBound () throws IOException {

1https://github.com/google/guice

XI

https://github.com/google/guice

B. Dataset of changes that led to the Merge Conflicts

IndexModule module = new IndexModule (indexSet t ings , null , new
↪→ Ana ly s i sReg i s t ry (environment , emptyMap () , emptyMap () , emptyMap () ,
↪→ emptyMap ())) ;

module . setSearcherWrapper ((s) −> new Wrapper ()) ;
module . eng ineFactory . s e t (new MockEngineFactory (Asse r t ingDirec toryReader .

↪→ class)) ;
− IndexServ i c e indexSe rv i c e = module . newIndexService (nodeEnvironment ,

↪→ de l e t e r , nodeServ icesProv ider , indicesQueryCache , mapperRegistry , new
↪→ IndicesFie ldDataCache (s e t t i n g s , l i s t e n e r)) ;

+ IndexServ i ce indexSe rv i c e = newIndexService (module) ;
a s se r tTrue (indexSe rv i c e . getSearcherWrapper () instanceof Wrapper) ;
assertSame (indexSe rv i c e . getEngineFactory () , module . eng ineFactory . get ()) ;
i ndexSe rv i c e . c l o s e (" simon says " , fa l se) ;

}

Branch Change

Category: Feature introduction

Project level perspective. Global checkpoints were introduced to represent com-
mon part of a history across shard replicas at a given time. The global checkpoints are
updated by a primary shard. Similar to local checkpoints B.2.3, a global checkpoint
is a last sequence number after all previous operations were processed across shard
replicas.

Code level perspective. Listing below shows a change in index module tests as
part of global checkpoints introduction. A parameter shardId -> {} was added
when customizing index level services. The parameter injects shard ID to shard level
components.

public void testWrapperIsBound () throws IOException {
IndexModule module = new IndexModule (indexSet t ings , null , new

↪→ Ana ly s i sReg i s t ry (environment , emptyMap () , emptyMap () , emptyMap () ,
↪→ emptyMap ())) ;

module . setSearcherWrapper ((s) −> new Wrapper ()) ;
module . eng ineFactory . s e t (new MockEngineFactory (Asse r t ingDirec toryReader .

↪→ class)) ;
− IndexServ i c e indexSe rv i c e = module . newIndexService (nodeEnvironment ,

↪→ de l e t e r , nodeServ icesProv ider , indicesQueryCache , mapperRegistry , new
↪→ IndicesFie ldDataCache (s e t t i n g s , l i s t e n e r)) ;

+ IndexServ i ce indexSe rv i c e = module . newIndexService (nodeEnvironment ,
↪→ de l e t e r , nodeServ icesProv ider , indicesQueryCache ,

+ mapperRegistry , shardId −> {} ,new IndicesFie ldDataCache (s e t t i n g s ,
↪→ l i s t e n e r)) ;

a s se r tTrue (indexSe rv i c e . getSearcherWrapper () instanceof Wrapper) ;
assertSame (indexSe rv i c e . getEngineFactory () , module . eng ineFactory . get ()) ;
i ndexSe rv i c e . c l o s e (" simon says " , fa l se) ;

}

B.2.5 Conflict 5
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

XII

B. Dataset of changes that led to the Merge Conflicts

Project level perspective. Index operation on shard level was made immutable.
To make the index operation immutable, a result of the index operation is logged
before returning response. The result contains the following data; transaction log
location, index version, index status, index time, and index estimated size. This
change was part of simplifying handling of write operations failure (see B.2.2).

Code level perspective. Listing below shows changes as part of making index
operation immutable. A test on versioning new index compares primary index and
its replica. As part of making index operation immutable, a variable indexResult
is assigned to result of indexing index.

public void testVers ioningNewIndex () {
ParsedDocument doc = testParsedDocument (" 1 " , " 1 " , " t e s t " , null , −1, −1,

↪→ testDocument () , B_1, null) ;
Engine . Index index = new Engine . Index (newUid (" 1 ") , doc) ;

− eng ine . index (index) ;
− assertThat (index . v e r s i on () , equalTo (1L)) ;
+ Engine . IndexResult indexResu l t = engine . index (index) ;
+ assertThat (indexResu l t . ge tVers ion () , equalTo (1L)) ;

− index = new Engine . Index (newUid (" 1 ") , doc , index . v e r s i on () , index .
↪→ vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1, fa l se
↪→) ;

− r ep l i c aEng ine . index (index) ;
− assertThat (index . v e r s i on () , equalTo (1L)) ;
+ index = new Engine . Index (newUid (" 1 ") , doc , indexResu l t . ge tVers ion () ,

↪→ index . vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1,
↪→ fa l se) ;

+ indexResu l t = rep l i c aEng ine . index (index) ;
+ assertThat (indexResu l t . ge tVers ion () , equalTo (1L)) ;

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2.

Code level perspective. Listing below shows a change to enforce semantics of the
primary terms. A counter index.seqNo() for index operation on a primary shard
was passed as a parameter when adding an index replica index.

public void testVers ioningNewIndex () {
ParsedDocument doc = testParsedDocument (" 1 " , " 1 " , " t e s t " , null , −1, −1,

↪→ testDocument () , B_1, null) ;
Engine . Index index = new Engine . Index (newUid (" 1 ") , doc) ;
eng ine . index (index) ;
asser tThat (index . v e r s i on () , equalTo (1L)) ;

− index = new Engine . Index (newUid (" 1 ") , doc , index . v e r s i on () , index .
↪→ vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 , −1, fa l se
↪→) ;

+ index = new Engine . Index (newUid (" 1 ") , doc , index . seqNo () , index . v e r s i on ()
↪→ , index . vers ionType () . vers ionTypeForRepl icat ionAndRecovery () , REPLICA, 0 ,
↪→ −1, fa l se) ;

r ep l i c aEng ine . index (index) ;
asser tThat (index . v e r s i on () , equalTo (1L)) ;

}

XIII

B. Dataset of changes that led to the Merge Conflicts

B.2.6 Conflict 6
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. Same as B.2.5.

Code level perspective. Listing below shows a test to replay transaction log after
index operation failure. To make index operation immutable, result of indexing
indexing operation is assigned to a variable indexResult.

public void testTrans logReplayWithFai lure () throws IOException {
f i n a l int numDocs = randomIntBetween (1 , 10) ;
for (int i = 0 ; i < numDocs ; i++) {

ParsedDocument doc = testParsedDocument (In t eg e r . t oS t r i ng (i) , I n t e g e r .
↪→ t oS t r i ng (i) , " t e s t " , null , −1, −1, testDocument () , new
↪→ BytesArray (" {} ") , null) ;

Engine . Index f i r s t I ndexReque s t = new Engine . Index (newUid (In t eg e r .
↪→ t oS t r i ng (i)) , doc , Vers ions .MATCH_DELETED, VersionType .
↪→ INTERNAL, PRIMARY, System . nanoTime () , −1, fa l se) ;

− eng ine . index (f i r s t I ndexReque s t) ;
− assertThat (f i r s t I ndexReque s t . v e r s i on () , equalTo (1L)) ;
+ Engine . IndexResult indexResu l t = engine . index (f i r s t I ndexReque s t) ;
+ assertThat (indexResu l t . ge tVers ion () , equalTo (1L)) ;

}
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2.

Code level perspective. In the listing below, a counter SequenceNumbersSer-
vice.UNASSIGNED_SEQ_NO, which track unassigned primary terms due to failure, was
passed as parameter when creating an index. The code tests replaying transaction
log after index operation failure.

public void testTrans logReplayWithFai lure () throws IOException {
f i n a l int numDocs = randomIntBetween (1 , 10) ;
for (int i = 0 ; i < numDocs ; i++) {

ParsedDocument doc = testParsedDocument (In t eg e r . t oS t r i ng (i) , I n t e g e r .
↪→ t oS t r i ng (i) , " t e s t " , null , −1, −1, testDocument () , new
↪→ BytesArray (" {} ") , null) ;

− Engine . Index f i r s t I ndexReque s t = new Engine . Index (newUid (In t eg e r .
↪→ t oS t r i ng (i)) , doc , Vers ions .MATCH_DELETED, VersionType .INTERNAL, PRIMARY,
↪→ System . nanoTime () , −1, fa l se) ;

+ Engine . Index f i r s t I ndexReque s t = new Engine . Index (newUid (In t eg e r .
↪→ t oS t r i ng (i)) , doc , SequenceNumbersService .UNASSIGNED_SEQ_NO, Vers ions .
↪→ MATCH_DELETED, VersionType .INTERNAL, PRIMARY, System . nanoTime () , −1, fa l se)
↪→ ;

eng ine . index (f i r s t I ndexReque s t) ;
asser tThat (f i r s t I ndexReque s t . v e r s i on () , equalTo (1L)) ;

}
. . .

}

XIV

B. Dataset of changes that led to the Merge Conflicts

B.2.7 Conflict 7
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. Adding documents with autogenerated IDs (IDs gener-
ated automatically by Elasticsearch during data indexing) to the index was optimized
for append-only use case to improve performance. One of the append-only use case
is when indexing operation is not completed and a request is sent again since a
sending node did not receive response whether the operation was successful or not.
This can lead to duplicate requests in the receiving node (node with primary shard).
To optimize the request in this case, a timestamp was added for each request to
allow identification of failed requests. The timestamp allows to compare the retried
request’s timestamp with engine timestamp and if the engine timestamp is lower than
request timestamp, it means there is no retried request with the same timestamp
that has been run before. Therefore, it is safe for engine to execute the request which
is optimized for performance.

Code level perspective. Listing below shows a change which is part of optimizing
documents indexing with the autogenerated ID for append only case. A parameter
index.getAutoGeneratedIdTimestamp() was added in a method prepareIndex
which prepare document for indexing.

private void performRecoveryOperation (Engine engine , Translog . Operation
↪→ operat ion , boolean allowMappingUpdates , Engine . Operation . Or ig in o r i g i n
↪→) {

+
try {

switch (opera t i on . opType ()) {
case INDEX:

. . .
Engine . Index engineIndex = IndexShard . prepareIndex (docMapper (

↪→ index . type ()) , source (shardId . getIndexName () , index .
↪→ type () , index . id () , index . source ())

. r out ing (index . rout ing ()) . parent (index . parent ()) .
↪→ timestamp (index . timestamp ()) . t t l (index . t t l ()) ,

− index . v e r s i on () , index . vers ionType () .
↪→ vers ionTypeForRepl icat ionAndRecovery () , o r i g i n) ;

+ index . v e r s i on () , index . vers ionType () .
↪→ vers ionTypeForRepl icat ionAndRecovery () , o r i g i n , index .
↪→ getAutoGeneratedIdTimestamp () , true) ;

maybeAddMappingUpdate (engineIndex . type () , eng ineIndex .
↪→ parsedDoc () . dynamicMappingsUpdate () , eng ineIndex . id () ,
↪→ allowMappingUpdates) ;

. . .
}

. . .
}

Branch Change

Category: Feature introduction

XV

B. Dataset of changes that led to the Merge Conflicts

Project level perspective. Same as B.2.2.

Code level perspective. Listing below shows a change to enforce semantic of pri-
mary terms. A counter index.seqNo() for index operation was added as parameter
in method prepareIndex, which prepares index for indexing.

private void performRecoveryOperation (Engine engine , Translog . Operation
↪→ operat ion , boolean allowMappingUpdates , Engine . Operation . Or ig in o r i g i n
↪→) {
try {

switch (opera t i on . opType ()) {
case INDEX:

Translog . Index index = (Translog . Index) opera t i on ;
Engine . Index engineIndex = IndexShard . prepareIndex (docMapper (

↪→ index . type ()) , source (shardId . getIndexName () , index .
↪→ type () , index . id () , index . source ())

− . r out ing (index . rout ing ()) . parent (index . parent ()) .
↪→ timestamp (index . timestamp ()) . t t l (index . t t l ()) ,

+ . rout ing (index . rout ing ()) . parent (index . parent ()) .
↪→ timestamp (index . timestamp ()) . t t l (index . t t l ()) , index . seqNo () ,

index . v e r s i on () , index . vers ionType () .
↪→ vers ionTypeForRepl icat ionAndRecovery () , o r i g i n) ;

maybeAddMappingUpdate (engineIndex . type () , eng ineIndex .
↪→ parsedDoc () . dynamicMappingsUpdate () , eng ineIndex . id () ,
↪→ allowMappingUpdates) ;

i f (l o gg e r . i sTraceEnabled ()) {
. . .

}
. . .

}

B.2.8 Conflict 8
Category: Change of an assert statement Expression

Mainline Change

Category: Feature enhancement

Project level perspective. Same as B.2.7.

Code level perspective. Listing below shows a change as part of optimizing
documents indexing with the autogenerated ID for append only case. In the listing,
an exception message ex.getMessage() was updated to reflect optimization of the
documents indexing.

public void testRecoveryUncommittedCorruptedCheckpoint () throws IOException {
. . .
try (Translog t r an s l o g = new Translog (con f i g , t rans logGenerat i on)) {

f a i l (" corrupted ") ;
} catch (I l l e g a l S t a t eEx c ep t i o n ex) {

− a s s e r tEqua l s (ex . getMessage () , " Checkpoint f i l e t rans l og −2. ckp a l ready
↪→ e x i s t s but has corrupted content expected : Checkpoint { o f f s e t =2683 , numOps
↪→ =55, t r an s l ogF i l eGene ra t i on= 2} but got : Checkpoint { o f f s e t =0, numOps=0,
↪→ t r an s l ogF i l eGene ra t i on= 0} ") ;

+ as s e r tEqua l s (ex . getMessage () , " Checkpoint f i l e t rans l og −2. ckp a l ready
↪→ e x i s t s but has corrupted content expected : Checkpoint { o f f s e t =3123 , numOps
↪→ =55, t r an s l ogF i l eGene ra t i on= 2} but got : Checkpoint { o f f s e t =0, numOps=0,
↪→ t r an s l ogF i l eGene ra t i on= 0} ") ;

}

XVI

B. Dataset of changes that led to the Merge Conflicts

Checkpoint . wr i t e (Fi leChannel : : open , c on f i g . getTranslogPath () . r e s o l v e (
↪→ Translog . getCommitCheckpointFileName (read . gene ra t i on)) , read ,
↪→ StandardOpenOption .WRITE, StandardOpenOption .TRUNCATE_EXISTING) ;

try (Translog t r an s l o g = new Translog (con f i g , t rans logGenerat i on)) {
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2.

Code level perspective. As part of a change to enforce semantics of primary
terms, an exception message ex.getMessage() was updated when testing recovery
of corrupted translogs that were not committed due to some cases such as user error.
In the message, an offset is updated to reflect changes added to enforce semantics of
the primary terms.

public void testRecoveryUncommittedCorruptedCheckpoint () throws IOException {
. . .
try (Translog t r an s l o g = new Translog (con f i g , t rans logGenerat i on)) {

f a i l (" corrupted ") ;
} catch (I l l e g a l S t a t eEx c ep t i o n ex) {

− a s s e r tEqua l s (ex . getMessage () , " Checkpoint f i l e t rans l og −2. ckp a l ready
↪→ e x i s t s but has corrupted content expected : Checkpoint { o f f s e t =2683 , numOps
↪→ =55, t r an s l ogF i l eGene ra t i on= 2} but got : Checkpoint { o f f s e t =0, numOps=0,
↪→ t r an s l ogF i l eGene ra t i on= 0} ") ;

+ as s e r tEqua l s (ex . getMessage () , " Checkpoint f i l e t rans l og −2. ckp a l ready
↪→ e x i s t s but has corrupted content expected : Checkpoint { o f f s e t =2738 , numOps
↪→ =55, t r an s l ogF i l eGene ra t i on= 2} but got : Checkpoint { o f f s e t =0, numOps=0,
↪→ t r an s l ogF i l eGene ra t i on= 0} ") ;

}
Checkpoint . wr i t e (Fi leChannel : : open , c on f i g . getTranslogPath () . r e s o l v e (

↪→ Translog . getCommitCheckpointFileName (read . gene ra t i on)) , read ,
↪→ StandardOpenOption .WRITE, StandardOpenOption .TRUNCATE_EXISTING) ;

try (Translog t r an s l o g = new Translog (con f i g , t rans logGenerat i on)) {
. . .

}

B.2.9 Conflict 9
Category: Modification and removal of statements

Mainline Change

Category: Bug fix

Project level perspective. The blocking of indexing operations during primary
shard relocation was modified to put operations which cannot be executed during the
relocation phase on a queue. The operations on the queue will be executed once the
primary shard relocation is completed. This change was made to fix a situation that
can lead to a deadlock when the primary shard relocation and indexing operations
on the primary shard occurs concurrently.

XVII

B. Dataset of changes that led to the Merge Conflicts

Code level perspective. Listing below shows changes which are part of fixing
the deadlock situation during primary shard relocation. The replication of indexed
result to the replica shard was removed during the primary shard relocation.

protected void doRun () throws Exception {
setPhase (task , " r e p l i c a ") ;
a s s e r t r eque s t . shardId () != null : " r eque s t shardId must be s e t " ;

− Repl i caResu l t r e s u l t ;
− try (Re l ea sab l e ignored = acqui reRepl i caOperat ionLock (r eque s t . shardId

↪→ () , r eque s t . primaryTerm ())) {
− r e s u l t = shardOperationOnReplica (r eque s t) ;
− }
− r e s u l t . respond (new ResponseLi s tener ()) ;
+ acqui reRepl i caOperat ionLock (r eque s t . shardId () , r eque s t . primaryTerm () ,

↪→ this) ;
}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.4 which introduced global checkpoints
that identify common history across replica shards at a given time.

Code level perspective. The listing below shows changes which capture the
response of the replication of indexed result to replica shards. The response
contains local checkpoints of the replica shards. Then the response is passed to the
replication response.

protected void doRun () throws Exception {
setPhase (task , " r e p l i c a ") ;

+ f i n a l Repl icaResponse re sponse ;
a s s e r t r eque s t . shardId () != null : " r eque s t shardId must be s e t " ;
Rep l i caResu l t r e s u l t ;

− try (Re l ea sab l e ignored = acqui reRepl i caOperat ionLock (r eque s t . shardId
↪→ () , r eque s t . primaryTerm ())) {

+ try (ShardReference r e p l i c a = getRep l i caShardReference (r eque s t .
↪→ shardId () , r eque s t . primaryTerm ())) {

r e s u l t = shardOperationOnReplica (r eque s t) ;
+ response = new Repl icaResponse (r e p l i c a . rout ingEntry () .

↪→ a l l o c a t i o n I d () . ge t Id () , r e p l i c a . getLocalCheckpoint ()) ;
}

− r e s u l t . respond (new ResponseLi s tener ()) ;
+ r e s u l t . respond (new ResponseLi s tener (re sponse)) ;

}

B.2.10 Conflict 10
Category: Addition of statements in the Same area

Mainline Change

Category: Refactoring

Project level perspective. Internal engine’s inner index and delete methods were
refactored to extract common logic into single method. The refactoring was done
to shrink the bytecode size of the inner index method so that the method can be

XVIII

B. Dataset of changes that led to the Merge Conflicts

inlined, that is, optimization of method call done by just-in-time (JIT) compiler.

Code level perspective. The listing below shows changes which are part of com-
mon logic extraction from the internal engine’s inner index and delete methods.
The listing shows the extraction of the common logic for checking version conflicts
from the inner delete method. In the listing, the condition delete.versionType()
.isVersionConflictForWrites(currentVersion, expectedVersion, deleted)
which check if there is version conflict for delete operation was extracted to a
shared method checkVersionConflict that returns a boolean if there is conflict
for the delete and index operations. For example, the condition checkVersionCon-
flict(delete, currentVersion, expectedVersion, deleted) returns a boolean
for the delete operation.

private void i nne rDe l e t e (De lete d e l e t e) throws IOException {
try (Re l ea sab l e ignored = acquireLock (d e l e t e . uid ())) {

. . .
− long updatedVersion ;
− long expectedVers ion = de l e t e . v e r s i on () ;
− i f (d e l e t e . vers ionType () . i sVe r s i onCon f l i c tFo rWr i t e s (currentVers ion ,

↪→ expectedVers ion , de l e t ed)) {
− i f (d e l e t e . o r i g i n () . i sRecovery ()) {
− return ;
− } else {
− throw new Vers ionConf l i c tEng ineExcept ion (shardId , d e l e t e . type

↪→ () , d e l e t e . id () ,
− de l e t e . vers ionType () . exp la inCon f l i c tForWr i t e s (

↪→ currentVers ion , expectedVers ion , de l e t ed)) ;
− }
− }
− updatedVersion = de l e t e . vers ionType () . updateVers ion (currentVers ion ,

↪→ expectedVers ion) ;
− f i n a l boolean found ;
− i f (cur rentVer s i on == Vers ions .NOT_FOUND) {
− // doc does not e x i s t and no p r i o r d e l e t e s
− found = fa l se ;
− } else i f (ver s ionValue != null && vers ionValue . d e l e t e ()) {
− // a " d e l e t e on d e l e t e " , in t h i s case , we s t i l l increment the

↪→ vers ion , l og i t , and return that ve r s i on
− found = fa l se ;
− } else {
− // we de l e t ed a cu r r en t l y e x i s t i n g document
− indexWriter . deleteDocuments (d e l e t e . uid ()) ;
− found = true ;
− }
+ f i n a l long expectedVers ion = de l e t e . v e r s i on () ;
+ i f (checkVer s i onCon f l i c t (de l e t e , currentVers ion , expectedVers ion ,

↪→ de l e t ed)) return ;
+
+ f i n a l long updatedVersion = updateVers ion (de l e t e , currentVers ion ,

↪→ expectedVers ion) ;
+
+ f i n a l boolean found = de le te I fFound (de l e t e , currentVers ion , de le ted ,

↪→ vers ionValue) ;

d e l e t e . updateVers ion (updatedVersion , found) ;

− i f (d e l e t e . o r i g i n () != Operation . Or ig in .LOCAL_TRANSLOG_RECOVERY) {
− f i n a l Translog . Locat ion t ran s l ogLoca t i on = t r an s l o g . add (new

↪→ Translog . De lete (d e l e t e)) ;
− de l e t e . s e tTrans logLocat ion (t r ans l ogLoca t i on) ;
− versionMap . putUnderLock (d e l e t e . uid () . bytes () , new

↪→ DeleteVers ionValue (updatedVersion , eng ineConf ig . getThreadPool () .
↪→ es t imatedTimeInMi l l i s () , d e l e t e . getTrans logLocat ion ())) ;

− } else {
− // we do not rep lay in to the t rans l og , so the re i s no

XIX

B. Dataset of changes that led to the Merge Conflicts

− // t r an s l o g l o c a t i o n ; that i s okay because r ea l−time
− // ge t s are not p o s s i b l e during recovery and we w i l l
− // f l u s h when the recovery i s complete
− versionMap . putUnderLock (d e l e t e . uid () . bytes () , new

↪→ DeleteVers ionValue (updatedVersion , eng ineConf ig . getThreadPool () .
↪→ es t imatedTimeInMi l l i s () , null)) ;

− }
+ maybeAddToTranslog (de l e t e , updatedVersion , Translog . De lete : :new,

↪→ DeleteVers ionValue : :new) ;
+ }
+ }

Branch Change

Category: Feature introduction

Project level perspective. Same as first change in B.2.3 which introduced local
checkpoints.

Code level perspective. In the listing below, the condition delete.origin() ==
Operation.Origin.PRIMARY was introduced when updating the sequence number
for the delete operation to check if the origin of the delete operation is the primary
shard. The sequence number (see B.2.2) is the counter which is added to each write
operation run on the shard to identify operations that are coming from the old
failed primary shard. The last sequence number is used as the local checkpoint
in the replica shards and then sent to the primary shards which update its global
checkpoints (see B.2.4).

private void i nne rDe l e t e (De lete d e l e t e) throws IOException {
try (Re l ea sab l e ignored = acquireLock (d e l e t e . uid ())) {

. . .

long updatedVersion ;
long expectedVers ion = de l e t e . v e r s i on () ;
i f (d e l e t e . vers ionType () . i sVe r s i onCon f l i c tFo rWr i t e s (currentVers ion ,

↪→ expectedVers ion , de l e t ed)) {
i f (d e l e t e . o r i g i n () . i sRecovery ()) {

return ;
} else {

throw new Vers ionConf l i c tEng ineExcept ion (shardId , d e l e t e . type
↪→ () , d e l e t e . id () ,

− de l e t e . vers ionType () . exp la inCon f l i c tForWr i t e s (
↪→ currentVers ion , expectedVers ion , de l e t ed)) ;

+ de l e t e . vers ionType () . exp la inCon f l i c tForWr i t e s (
↪→ currentVers ion , expectedVers ion , de l e t ed)) ;

}
}
updatedVersion = de l e t e . vers ionType () . updateVers ion (currentVers ion ,

↪→ expectedVers ion) ;
+
+ i f (d e l e t e . o r i g i n () == Operation . Or ig in .PRIMARY) {
+ de l e t e . updateSeqNo (seqNoServ ice . generateSeqNo ()) ;
+ }
+

f i n a l boolean found ;
. . .

}
}

XX

B. Dataset of changes that led to the Merge Conflicts

B.2.11 Conflict 11
Category: Modification and removal of statements

Mainline Change

Category: Test improvement

Project level perspective. Use of environment variables in replacing property
placeholders (settings set when building xContent) was refactored so that tests can
mock the behavior they need by obtaining environment variables without depending
on external environment variables.

Code level perspective. Listing below shows a change to make environment
variables visible to tests. A method replacePropertyPlaceholders was split to
implement visibility of the environment variables to tests without depending on
external environment variables. One method was made public and it delegates
environment variables to the other method visible in the package. Tests can mock
required behavior using the method visible in the package. In this way, tests do not
rely on external environment variables.
+ public Bui lder r ep l a c ePrope r tyP lac eho lde r s () {
+ return r ep l a c ePrope r tyP la c eho lde r s (System : : getenv) ;

}
. . .

− public Bui lder r ep l a c ePrope r tyP lac eho lde r s () {
+ // v i s i b l e f o r t e s t i n g
+ Bui lder r ep l a c ePrope r tyP lac eho lde r s (Function<Str ing , Str ing> getenv) {

PropertyPlaceho lder proper tyP laceho lde r = new PropertyPlaceho lder (" ${
↪→ " , " } " , fa l se) ;

PropertyPlaceho lder . P laceho lde rReso lve r p l a c eho lde rRe so l v e r = new
↪→ PropertyPlaceho lder . P laceho lde rReso lve r () {

− @Override
− public St r ing r e s o l v eP l a c eho l d e r (S t r ing placeholderName) {
− i f (placeholderName . startsWith (" env . ")) {
− // e x p l i c i t env var p r e f i x
− return System . getenv (placeholderName . sub s t r i ng (" env . "

↪→ . l ength ())) ;
− }
− St r ing value = System . getProperty (placeholderName) ;
− i f (va lue != null) {
− return value ;
− }
− value = System . getenv (placeholderName) ;
− i f (va lue != null) {
− return value ;
− }
− return map . get (placeholderName) ;
+ @Override
+ public St r ing r e s o l v eP l a c eho l d e r (S t r ing placeholderName) {
+ f i n a l St r ing value = getenv . apply (placeholderName) ;
+ i f (va lue != null) {
+ return value ;

}
+ return map . get (placeholderName) ;
+ }

. . .
}

XXI

B. Dataset of changes that led to the Merge Conflicts

Branch Change

Category: Refactoring

Project level perspective. Property placeholder (placeholder for property such
as system property or environment variable) was moved to setting. The change was
made so that the property placeholder can only be accessible through setting.

Code level perspective. Listing below shows changes which are part of moving
property placeholder to setting package. The listing shows a method for replacing a
property placeholder. The iterator variable entryItr holds all the settings for the
xContent builder. Then for each element in the settings is replaced with specific
setting set for the builder.

public Bui lder r ep l a c ePrope r tyP lac eho lde r s () {
PropertyPlaceho lder proper tyP laceho lde r = new PropertyPlaceho lder (" ${ "

↪→ , " } " , fa l se) ;
PropertyPlaceho lder . P laceho lde rReso lve r p l a c eho lde rRe so l v e r = new

↪→ PropertyPlaceho lder . P laceho lde rReso lve r () {
@Override
public St r ing r e s o l v eP l a c eho l d e r (S t r ing placeholderName) {

i f (placeholderName . startsWith (" env . ")) {
// e x p l i c i t env var p r e f i x
return System . getenv (placeholderName . sub s t r i ng (" env . " .

↪→ l ength ())) ;
}

. . .
return true ;

}
} ;

− for (Map. Entry<Str ing , Str ing> entry : new HashMap<>(map) . entrySet ())
↪→ {

− St r ing value = proper tyP laceho lde r . r ep l a c eP l a c eho l d e r s (entry .
↪→ getKey () , entry . getValue () , p l a c eho lde rRe so l v e r) ;

+ I t e r a t o r <Map. Entry<Str ing , Str ing>> en t r y I t r = map . entrySet () .
↪→ i t e r a t o r () ;

+ while (e n t r y I t r . hasNext ()) {
+ Map. Entry<Str ing , Str ing> entry = en t r y I t r . next () ;
+ i f (entry . getValue () == null) {
+ // a nu l l va lue obv ious ly can ’ t be r ep laced
+ continue ;
+ }
+ St r ing value = proper tyP laceho lde r . r ep l a c eP l a c eho l d e r s (entry .

↪→ getValue () , p l a c eho lde rRe so l v e r) ;
// i f the va lue s e x i s t and has length , we should maintain i t in

↪→ the map
// otherwise , the r ep l a c e p roce s s r e s o l v ed in to removing i t
i f (S t r i ng s . hasLength (va lue)) {

− map . put (entry . getKey () , va lue) ;
+ entry . setValue (va lue) ;

} else {
− map . remove (entry . getKey ()) ;
+ en t r y I t r . remove () ;

}
}
return this ;

}

B.2.12 Conflict 12
Category: Change of Method call or object creation

XXII

B. Dataset of changes that led to the Merge Conflicts

Mainline Change

Category: Refactoring

Project level perspective. Document mapping (defining how document and its
fields are indexed and stored) was refactored to remove duplicate or dead implementa-
tion of mapping meta-fields. The meta-fields of the document include _index (index
which document belongs), _id (document ID), _uid (comprise document ID and
mapping type), and _type (document’s mapping type specified by user, for example
product catalog might be stored in catalog type, which divide document into logical
groups). Also, in this change, the _index field was made not configurable by the user.

Code level perspective. Listing below shows a change which is part of refactoring
implementation of document’s meta-fields in document mapping. A parameter
uidField which is a document field that holds document ID and document’s mapping
type was removed in a method which parse document for indexing.

private ParsedDocument testParsedDocument (S t r ing uid , S t r ing id , S t r ing type ,
↪→ St r ing rout ing , long timestamp , long t t l , ParseContext . Document
↪→ document , BytesReference source , Mapping mappingsUpdate) {
F i e ld u idF i e ld = new Fie ld ("_uid " , uid , UidFieldMapper . De fau l t s .FIELD_TYPE

↪→) ;
F i e ld v e r s i onF i e l d = new NumericDocValuesField (" _vers ion " , 0) ;
document . add (u idF i e ld) ;
document . add (v e r s i onF i e l d) ;

− return new ParsedDocument (u idFie ld , v e r s i onF i e ld , id , type , rout ing ,
↪→ timestamp , t t l , Arrays . a sL i s t (document) , source , mappingsUpdate) ;

. . .
+ return new ParsedDocument (ve r s i onF i e ld , id , type , rout ing , timestamp , t t l ,

↪→ Arrays . a sL i s t (document) , source , mappingsUpdate) ;
}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2.

Code level perspective. In the listing below, a parameter seqNoField for docu-
ment field which holds a counter to enforce semantic of primary terms. The counter
(a sequence number) is passed when parsing a document during indexing.

private ParsedDocument testParsedDocument (S t r ing uid , S t r ing id , S t r ing type ,
↪→ St r ing rout ing , long timestamp , long t t l , ParseContext . Document
↪→ document , BytesReference source , Mapping mappingsUpdate) {
F i e ld u idF i e ld = new Fie ld ("_uid " , uid , UidFieldMapper . De fau l t s .

↪→ FIELD_TYPE) ;
F i e ld v e r s i onF i e l d = new NumericDocValuesField (" _vers ion " , 0) ;

+ Fie ld seqNoField = new NumericDocValuesField ("_seq_no " , 0) ;
document . add (u idF i e ld) ;
document . add (v e r s i onF i e l d) ;

− return new ParsedDocument (u idFie ld , v e r s i onF i e ld , id , type , rout ing ,
↪→ timestamp , t t l , Arrays . a sL i s t (document) , source , mappingsUpdate) ;

+ return new ParsedDocument (u idFie ld , v e r s i onF i e ld , seqNoField , id , type ,
↪→ rout ing , timestamp , t t l , Arrays . a sL i s t (document) , source , mappingsUpdate) ;
}

XXIII

B. Dataset of changes that led to the Merge Conflicts

B.2.13 Conflict 13
Category: Change of Method call or object creation

Mainline Change

Category: Breaking change fix

Project level perspective. Metric for available memory for all nodes in the cluster
was removed in the cluster statistics. The metric was removed since it remained
when statistics for specific operating system (OS) were removed and it has no use as
it provides total available memory used in all nodes through the cluster. Therefore,
statistics of available memory in all nodes in the cluster can be obtained from the
individual node statistics.

Code level perspective. The listing below shows a change which was made
to remove metric for available memory in all nodes in the cluster. The metric
availableMemory was removed in the method readFrom which read stream in
transferred to xContent.

public stat ic class OsStats implements ToXContent , Streamable {
. . .
public void readFrom (StreamInput in) throws IOException {

ava i l a b l eP r o c e s s o r s = in . readVInt () ;
a l l o c a t e dP r o c e s s o r s = in . readVInt () ;

− availableMemory = in . readLong () ;
int s i z e = in . readVInt () ;
names . c l e a r () ;
for (int i = 0 ; i < s i z e ; i++) {

names . addTo(in . r eadSt r ing () , in . readVInt ()) ;
}

}
}

Branch Change

Category: Feature enhancement

Project level perspective. Node setting which was used to instantiate a node
based client was removed. The setting allows to set the node which is used as a client
and route the client operations to other nodes that the operations need to execute
on. The setting was removed as there are settings for making a node as a master
node which among other responsibilities it tracks other nodes in the same cluster
and assign shards to nodes, ingest node which processes documents before they are
indexed, and data node which holds the indexed documents indexed in the shards.
Therefore, the settings for the master and data nodes can replace the setting for the
client.

Code level perspective. The listing below shows changes that were part of
removing the setting which make the node based client. The class for cluster nodes
statistics was changed to implement a Writeable instead of Streamable. Therefore,

XXIV

B. Dataset of changes that led to the Merge Conflicts

with this change, the method readFrom which reads from the stream was changed
to return an instance of operating system statistics.

public stat ic class OsStats implements ToXContent , Streamable {
. . .

− public void readFrom (StreamInput in) throws IOException {
− ava i l a b l eP r o c e s s o r s = in . readVInt () ;
− a l l o c a t e dP r o c e s s o r s = in . readVInt () ;
− availableMemory = in . readLong () ;
− int s i z e = in . readVInt () ;
− names . c l e a r () ;
− for (int i = 0 ; i < s i z e ; i++) {
− names . addTo(in . r eadSt r ing () , in . readVInt ()) ;
− }
+ public OsStats readFrom (StreamInput in) throws IOException {
+ return new OsStats (in) ;

}
}

B.2.14 Conflict 14
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. A new module for node connection management was
introduced to separate cluster module which manages cluster state and transport
module which is used for the nodes communication within the cluster. The node
connection management module connects and disconnects nodes connection to the
cluster when they are added and removed from the cluster respectively. The change
was made to remove the dependency between the cluster and transport modules.

Code level perspective. Listing below shows changes that led to the merge
conflict which are part of separating the dependency between cluster and transport
modules. The method buildAttributes that builds attributes for node discovering
and master node selection in the cluster was changed to buildLocalNode which
returns an instance of the node in the cluster when the node transport address is
passed.
− public Map<Str ing , Str ing> bu i l dAt t r i bu t e s () {
+ public DiscoveryNode bui ldLocalNode (TransportAddress publ i shAddress) {

Map<Str ing , Str ing> a t t r i b u t e s = new HashMap<>(s e t t i n g s . getByPre f ix (" node
↪→ . ") . getAsMap ()) ;

a t t r i b u t e s . remove ("name") ; // name i s ex t rac t ed in other p l a c e s
i f (a t t r i b u t e s . containsKey (" c l i e n t ")) {

. . .
}
i f (a t t r i b u t e s . containsKey (" data ")) {

. . .
}

for (CustomAttr ibutesProvider prov ide r : customAttr ibutesProv iders) {
. . .

}

− return a t t r i b u t e s ;

XXV

B. Dataset of changes that led to the Merge Conflicts

+ f i n a l St r ing nodeId = generateNodeId (s e t t i n g s) ;
+ return new DiscoveryNode (s e t t i n g s . get (" node . name") , nodeId ,

↪→ publ ishAddress , a t t r i bu t e s , v e r s i on) ;
}

Branch Change

Category: Feature enhancement

Project level perspective. Same as B.2.13 which removed the setting used to set
the node as a client. The client node was used to route operations to other nodes
required to execute the operations. However, the data and master nodes can execute
the operations that they are responsible with. Therefore, the role of the client node
was unnecessary. Another change that was also part of removing the client node
setting is introduction of concept of node roles when discovering nodes in the cluster.

Code level perspective. Listing below shows changes which removed client node
setting and introduced the concept of roles into node discovery in the cluster.
An exception IllegalArgumentException is thrown if the setting node.client
for setting the node as the client node is passed when the nodes are configured.
Furthermore, the node role DATA was added when building attributes for discovering
the nodes in the cluster.

public Map<Str ing , Str ing> bu i l dAt t r i bu t e s () {
− Map<Str ing , Str ing> a t t r i b u t e s = new HashMap<>(s e t t i n g s . getByPre f ix (" node

↪→ . ") . getAsMap ()) ;
+ Map<Str ing , Str ing> a t t r i b u t e s = new HashMap<>(Node .NODE_ATTRIBUTES. get (

↪→ this . s e t t i n g s) . getAsMap ()) ;
a t t r i b u t e s . remove ("name") ; // name i s ex t rac t ed in other p l a c e s
i f (a t t r i b u t e s . containsKey (" c l i e n t ")) {

− i f (a t t r i b u t e s . get (" c l i e n t ") . equa l s (" f a l s e ")) {
− a t t r i b u t e s . remove (" c l i e n t ") ; // t h i s i s the d e f au l t
− } else {
− // i f we are c l i e n t node , don ’ t s t o r e data . . .
− a t t r i b u t e s . put (" data " , " f a l s e ") ;
− }
+ throw new I l l ega lArgumentExcept ion (" node . c l i e n t s e t t i n g i s no l onge r

↪→ supported , use " + Node .NODE_MASTER_SETTING. getKey ()
+ + " , " + Node .NODE_DATA_SETTING. getKey () + " and " + Node .

↪→ NODE_INGEST_SETTING. getKey () + " e x p l i c i t l y in s t ead ") ;
}

− i f (a t t r i b u t e s . containsKey (" data ")) {
− i f (a t t r i b u t e s . get (" data ") . equa l s (" t rue ")) {
− a t t r i b u t e s . remove (" data ") ;
+ //nocommit why don ’ t we remove master as we l l i f i t ’ s t rue ? and i n g e s t ?
+ i f (a t t r i b u t e s . containsKey (DiscoveryNode . Role .DATA. getRoleName ())) {
+ i f (a t t r i b u t e s . get (DiscoveryNode . Role .DATA. getRoleName ()) . equa l s ("

↪→ t rue ")) {
+ a t t r i b u t e s . remove (DiscoveryNode . Role .DATA. getRoleName ()) ;

}
}
for (CustomAttr ibutesProvider prov ide r : customAttr ibutesProv iders) {

. . .
}

return a t t r i b u t e s ;
}

XXVI

B. Dataset of changes that led to the Merge Conflicts

B.2.15 Conflict 15
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. Resolution of the index name to index instances was
modified so that to be performed early when there is possibility of cluster state
changes. Before the change, the resolution was performed when there is a need for it.
This was deemed as a problem specifically when there is a request to the index is
carried out and at the same time there are index changes due mapping update sent
by a node to the master node. When sending the mapping update to the master
node, the index name is used to identify the index in the cluster. Therefore, with
this change, to solve the problem, the mapping update uses a concrete index which
is a tuple that containing index name and UUID (see also B.2.16). Therefore, the
mapping update will be performed if the index matches the tuple.

Code level perspective. The listing below shows a change which was part of
resolving index name to index instance early. The method readFrom from Ingest-
Stats class, which build statistics for document preprocessing before indexing, was
referenced when reading a stream for ingest statistics in the node statistics.

public void readFrom (StreamInput in) throws IOException {
. . .
breaker = Al lC i r cu i tBr eake rS ta t s . r eadOpt i ona lA l lC i r cu i tBreake rS ta t s (in) ;
s c r i p t S t a t s = in . readOptionalStreamable (S c r i p t S t a t s : :new) ;
d i s c ov e ryS ta t s = in . readOptionalStreamable (() −> new DiscoveryStat s (null)

↪→) ;
− i n g e s t S t a t s = in . readOptionalWritable (I ng e s tS t a t s .PROTO) ;
+ i n g e s t S t a t s = in . readOptionalWritable (I ng e s tS t a t s .PROTO: : readFrom) ;

}

Branch Change

Category: Test improvement

Project level perspective. An infrastructure was added to run REST tests on a
cluster with multiple nodes that use two different Elasticsearch minor versions. The
infrastructure can be used for backward compatibility tests.

Code level perspective. The listing below shows a change which was part of
adding the infrastructure for running REST tests on the cluster with nodes that
have two different minor versions. The value passed when reading a stream for the
ingest statistics in the node statistics was changes from static member PROTO which
is an ingest prototype to constructor reference of the class IngestStats which is
used for the document preprocessing statistics.

public void readFrom (StreamInput in) throws IOException {
. . .
breaker = Al lC i r cu i tBr eake rS ta t s . r eadOpt i ona lA l lC i r cu i tBreake rS ta t s (in) ;

XXVII

B. Dataset of changes that led to the Merge Conflicts

s c r i p t S t a t s = in . readOptionalStreamable (S c r i p t S t a t s : :new) ;
d i s c ov e ryS ta t s = in . readOptionalStreamable (() −> new DiscoveryStat s (null)

↪→) ;
− i n g e s t S t a t s = in . readOptionalWritable (I ng e s tS t a t s .PROTO) ;
+ i n g e s t S t a t s = in . readOptionalWritable (I ng e s tS t a t s : :new) ;

}

B.2.16 Conflict 16
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. An index lookup in indices module, which provide ser-
vices such as the index and mapping management, used in search and other requests
was modified to use index UUID (Universally Unique Identifier) instead of index
name. The change was made to look up for the index UUID in the index instance,
which is a tuple containing UUID and name. This change prevents a situation of mod-
ifying a wrong index in case there are two indices with same name but different UUID.

Code level perspective. In the listing below, a parameter context.shardTarget()
.index() which pass index name when parsing search request content for search
suggestions was removed. The index name was passed so that the search suggester
can access the index it operates on. Therefore, this change aims to prevent modi-
fication of wrong index by not passing the index name when the search content is
parsed for suggestions.

public void parse (XContentParser parser , SearchContext context) throws
↪→ Exception {
Suggest ionSearchContext suggest ionSearchContext = pa r s e I n t e r na l (parser ,

↪→ context . mapperService () , context . f i e l dData () ,
− context . shardTarget () . index () , context . shardTarget () . shardId ()) ;
+ context . shardTarget () . shardId ()) ;

context . sugges t (suggest ionSearchContext) ;
}

Branch Change

Category: Refactoring

Project level perspective. Suggestion context builder, which build context for
suggestion when searching documents in an index, was added to phrase suggestion
builder, which build correct phrases using word tokens for search suggestion. Also,
search suggestion context builder was added to the top-level suggestion builder. The
changes were made to add context builders for search suggestion in the top level.
This change was part of refactoring suggest feature which suggests terms that are
looking similar by using a suggester based on a text that is provided.

XXVIII

B. Dataset of changes that led to the Merge Conflicts

Code level perspective. In the listing below, the parameters context .shard-
Target() .index() and context.shardTarget() .shardId(), which pass index
name and shard ID respectively when parsing search content for search suggestion,
were removed and replaced with the parameter context.getQueryShardContext()
that get shard context from a context object which is used to create queries on shard
level.

public void parse (XContentParser parser , SearchContext context) throws
↪→ Exception {

− Suggest ionSearchContext suggest ionSearchContext = pa r s e I n t e r na l (parser ,
↪→ context . mapperService () , context . f i e l dData () ,

− context . shardTarget () . index () , context . shardTarget () . shardId ()) ;
+ Suggest ionSearchContext suggest ionSearchContext = pa r s e I n t e r na l (parser ,

↪→ context . getQueryShardContext ()) ;
context . sugges t (suggest ionSearchContext) ;

}

B.2.17 Conflict 17
Category: Addition of statements in the Same area

Mainline Change

Category: Feature enhancement

Project level perspective. The logic for parsing Azure storage settings was sim-
plified. The change was made to take advantage of the new implemented settings
infrastructure which made Elasticsearch module settings to be resettable and trans-
actionally updateable. Therefore, if there is an error, the settings will not be updated.

Code level perspective. In the listing below, a setting field key, which before the
change it was an instance variable of type String, was converted to string since it is
the instance variable of type Key which sets a key for a setting.

public f i n a l XContentBuilder toXContent (XContentBuilder bu i lde r , Params
↪→ params) throws IOException {
bu i l d e r . s t a r tOb j e c t () ;

− bu i l d e r . f i e l d (" key " , key) ;
+ bu i l d e r . f i e l d (" key " , key . t oS t r i ng ()) ;

bu i l d e r . f i e l d (" type " , scope . name ()) ;
bu i l d e r . f i e l d (" dynamic " , dynamic) ;
bu i l d e r . f i e l d (" i s_group_sett ing " , i sGroupSett ing ()) ;
. . .

}

Branch Change

Category: Feature enhancement

Project level perspective. Support for filtering settings that might contain in-
formation which are sensitive such as cloud platform keys was defined to allow to
filter automatically the information when creating a setting module. Similar to the
mainline change, this change was made after the new infrastructure of setting module

XXIX

B. Dataset of changes that led to the Merge Conflicts

was implemented.

Code level perspective. The listing below shows changes which were made to
support filtering of settings automatically. The setting type and dynamic fields,
which specifies type of the setting based on the scope and if the setting can be
updated while a cluster is running respectively, were removed and replaced with
setting properties which specifies dynamism and scope of the setting. The list of
the properties that can be set are filtered, dynamic, cluster scope, node scope, and
index scope which specifies whether the setting can be filtered or not, if the setting
can be updated while the cluster is running, if the setting is applicable to cluster
level, if the setting is applicable to node level, and if the setting is applicable when
indexing.

public f i n a l XContentBuilder toXContent (XContentBuilder bu i lde r , Params
↪→ params) throws IOException {
bu i l d e r . s t a r tOb j e c t () ;
bu i l d e r . f i e l d (" key " , key) ;

− bu i l d e r . f i e l d (" type " , scope . name ()) ;
− bu i l d e r . f i e l d (" dynamic " , dynamic) ;
+ bu i l d e r . f i e l d (" p r op e r t i e s " , p r op e r t i e s) ;

bu i l d e r . f i e l d (" i s_group_sett ing " , i sGroupSett ing ()) ;
bu i l d e r . f i e l d (" d e f au l t " , de fau l tVa lue . apply (S e t t i n g s .EMPTY)) ;
bu i l d e r . endObject () ;
. . .

}

B.2.18 Conflict 18
Category: Change of Method call or object creation

Mainline Change

Category: Framework removal

Project level perspective. Request and query caches for indices were moved to
indices service provider which provides service for the operations on the indices such
as removing an index and providing node statistics. The change was made to remove
Guice from the caches.

Code level perspective. The listing is part of moving request and query caches
to indices service after removing dependency to Guice framework. The parameter
indicesService.getIndicesQueryCache() was added to get query cache for the
common shards statistics in the node.

protected ClusterStatsNodeResponse nodeOperation (ClusterStatsNodeRequest
↪→ nodeRequest) {
. . .
L i s t<ShardStats> shardsSta t s = new ArrayList <>() ;
for (IndexServ i c e indexSe rv i c e : i n d i c e s S e r v i c e) {

for (IndexShard indexShard : i ndexSe rv i c e) {
i f (indexShard . rout ingEntry () != null && indexShard . rout ingEntry

↪→ () . a c t i v e ()) {
// only r epor t on f u l l y s t a r t ed shards

− sha rdsSta t s . add (new ShardStats (indexShard . rout ingEntry () ,
↪→ indexShard . shardPath () , new CommonStats (indexShard , SHARD_STATS_FLAGS) ,
↪→ indexShard . commitStats ())) ;

XXX

B. Dataset of changes that led to the Merge Conflicts

+ shardsSta t s . add (new ShardStats (indexShard . rout ingEntry () ,
↪→ indexShard . shardPath () , new CommonStats (i n d i c e s S e r v i c e . getIndicesQueryCache
↪→ () , indexShard , SHARD_STATS_FLAGS) , indexShard . commitStats ())) ;

}
}

}
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.3 which introduced local checkpoints.

Code level perspective. The listing below shows changes that led to the merge
conflict when the local checkpoints were introduced. The parameter indexShard
.seqNoStats() was added to get statistics of the sequence numbers when indexing
the shard. The sequence numbers for individual shard are used as checkpoints which
provide history across all shards in the node.

protected ClusterStatsNodeResponse nodeOperation (ClusterStatsNodeRequest
↪→ nodeRequest) {
. . .
L i s t<ShardStats> shardsSta t s = new ArrayList <>() ;
for (IndexServ i c e indexSe rv i c e : i n d i c e s S e r v i c e) {

for (IndexShard indexShard : i ndexSe rv i c e) {
i f (indexShard . rout ingEntry () != null && indexShard . rout ingEntry

↪→ () . a c t i v e ()) {
// only r epor t on f u l l y s t a r t ed shards

− sha rdsSta t s . add (new ShardStats (indexShard . rout ingEntry () ,
↪→ indexShard . shardPath () , new CommonStats (indexShard , SHARD_STATS_FLAGS) ,
↪→ indexShard . commitStats ())) ;

+ shardsSta t s . add (new ShardStats (indexShard . rout ingEntry () ,
↪→ indexShard . shardPath () ,

+ new CommonStats (indexShard , SHARD_STATS_FLAGS) ,
↪→ indexShard . commitStats () , indexShard . seqNoStats ())) ;

}
}

}
. . .

}

B.2.19 Conflict 19
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. There are two changes from the common ancestor
version that led to this conflict. In the first change, the UUID were made available in
index properties, shard level components, and shard routing information. This change
relates to B.2.16, whereUUID were used for the index lookup in indices services
instead of index name. This change was a first step to use UUIDs instead of name

XXXI

B. Dataset of changes that led to the Merge Conflicts

when comparing index, for example when looking up the index for modification. In
the second change, version information that is stored in the shard state was removed
in shard routing information. Instead of the version information, the allocation IDs
(IDs generated when shard is allocated to a cluster) are used to allocate a primary
shard, for example when a cluster is restarted. The change was made since there is
no use case for the version information.

Code level perspective. Listing below shows two changes that led to the merge
conflict. In the first change, a parameter, that is "_na_", was passed to shard level
components (ShardId) when setting a cluster state for testing. On the other hand,
in the second change, a parameter that pass version information when creating a
new shard routing information was removed. In the code, version 1 passed in the
method newShardRouting was removed.

void s e tC lu s t e r S t a t e (Te s tC lu s t e rSe rv i c e c l u s t e r S e r v i c e , S t r ing index) {
. . .

for (int j = 0 ; j < numberOfShards ; j++) {
− f i n a l ShardId shardId = new ShardId (index , ++shardIndex) ;
− ShardRouting shard = TestShardRouting . newShardRouting (index ,

↪→ shardId . ge t Id () , node . id () , true , ShardRoutingState .STARTED, 1) ;
+ f i n a l ShardId shardId = new ShardId (index , "_na_" , ++shardIndex) ;
+ ShardRouting shard = TestShardRouting . newShardRouting (index ,

↪→ shardId . ge t Id () , node . id () , true , ShardRoutingState .STARTED) ;
IndexShardRoutingTable . Bu i lder indexShard = new

↪→ IndexShardRoutingTable . Bu i lder (shardId) ;
indexShard . addShard (shard) ;
indexRoutingTable . addIndexShard (indexShard . bu i ld ()) ;

}
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Primary terms were introduced to track how many
times a primary shard is selected among replica shards after a previous primary
shard failed. The primary terms were introduced to identify operations that come
from the failed primary shard. This change relates to B.2.2 and it is a first step of
sequence numbers introduction.

Code level perspective. Listing below shows changes made which introduce
primary terms in a method which set cluster state for testing. A new parameter was
added to a method newShardRouting which create new shard routing information.
In the test, a primary term primaryTerm is passed to the shard routing information.

void s e tC lu s t e r S t a t e (Te s tC lu s t e rSe rv i c e c l u s t e r S e r v i c e , S t r ing index) {
int numberOfNodes = randomIntBetween (3 , 5) ;
DiscoveryNodes . Bu i lder d i s c oBu i l d e r = DiscoveryNodes . bu i l d e r () ;
IndexRoutingTable . Bu i lder indexRoutingTable = IndexRoutingTable . bu i l d e r (

↪→ index) ;
. . .

for (int j = 0 ; j < numberOfShards ; j++) {
f i n a l ShardId shardId = new ShardId (index , ++shardIndex) ;

− ShardRouting shard = TestShardRouting . newShardRouting (index ,
↪→ shardId . ge t Id () , node . id () , true , ShardRoutingState .STARTED, 1) ;

XXXII

B. Dataset of changes that led to the Merge Conflicts

+ f i n a l int primaryTerm = randomInt (200) ;
+ ShardRouting shard = TestShardRouting . newShardRouting (index ,

↪→ shardId . ge t Id () , node . id () , primaryTerm , true , ShardRoutingState .STARTED,
↪→ 1) ;

IndexShardRoutingTable . Bu i lder indexShard = new
↪→ IndexShardRoutingTable . Bu i lder (shardId) ;

indexShard . addShard (shard) ;
indexRoutingTable . addIndexShard (indexShard . bu i ld ()) ;

. . .
}

B.2.20 Conflict 20
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. Same as the second change in B.2.19.

Code level perspective. Listing below shows changes to remove version informa-
tion in shard routing information. Same as in B.2.19, the parameter that pass the
version information to the method which create new shard routing information was
removed. In the code, a test version texttt1 was removed from a test shard routing
information textttTestShardRouting.

public void testCanRemainWithShardRelocatingAway () {
. . .

− ShardRouting f i r s tRou t i n g = TestShardRouting . newShardRouting (" t e s t " , 0 , "
↪→ node1 " , null , null , true , ShardRoutingState .STARTED, 1) ;

− ShardRouting secondRouting = TestShardRouting . newShardRouting (" t e s t " , 1 ,
↪→ " node1 " , null , null , true , ShardRoutingState .STARTED, 1) ;

+ ShardRouting f i r s tRou t i n g = TestShardRouting . newShardRouting (" t e s t " , 0 , "
↪→ node1 " , null , null , true , ShardRoutingState .STARTED) ;

+ ShardRouting secondRouting = TestShardRouting . newShardRouting (" t e s t " , 1 ,
↪→ " node1 " , null , null , true , ShardRoutingState .STARTED) ;

RoutingNode f i r s tRout ingNode = new RoutingNode (" node1 " , discoveryNode1 ,
↪→ Arrays . a sL i s t (f i r s tRout ing , secondRouting)) ;

RoutingTable . Bu i lder bu i l d e r = RoutingTable . bu i l d e r () . add (
. . .

) ;
C lu s t e rS ta t e c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (ba seC lus t e rS ta t e) .

↪→ rout ingTable (bu i l d e r . bu i ld ()) . bu i ld () ;
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.19.

Code level perspective. Same as B.2.19, a new parameter was added to method
newShardRouting to pass primary terms when a new shard routing information is

XXXIII

B. Dataset of changes that led to the Merge Conflicts

created. In the listing, null primary term was passed when testing shard routing
information were created.

public void testCanRemainWithShardRelocatingAway () {
. . .

− ShardRouting f i r s tRou t i n g = TestShardRouting . newShardRouting (" t e s t " , 0 , "
↪→ node1 " , null , null , true , ShardRoutingState .STARTED, 1) ;

− ShardRouting secondRouting = TestShardRouting . newShardRouting (" t e s t " , 1 ,
↪→ " node1 " , null , null , true , ShardRoutingState .STARTED, 1) ;

+ ShardRouting f i r s tRou t i n g = TestShardRouting . newShardRouting (" t e s t " , 0 , "
↪→ node1 " , null , null , 1 , true , ShardRoutingState .STARTED, 1) ;

+ ShardRouting secondRouting = TestShardRouting . newShardRouting (" t e s t " , 1 ,
↪→ " node1 " , null , null , 1 , true , ShardRoutingState .STARTED, 1) ;

RoutingNode f i r s tRout ingNode = new RoutingNode (" node1 " , discoveryNode1 ,
↪→ Arrays . a sL i s t (f i r s tRout ing , secondRouting)) ;

RoutingTable . Bu i lder bu i l d e r = RoutingTable . bu i l d e r () . add (
IndexRoutingTable . bu i l d e r (" t e s t ")

. addIndexShard (new IndexShardRoutingTable . Bu i lder (new
↪→ ShardId (" t e s t " , 0))

. addShard (f i r s tRou t i n g)

. bu i ld ()
)
. addIndexShard (new IndexShardRoutingTable . Bu i lder (new

↪→ ShardId (" t e s t " , 1))
. addShard (secondRouting)
. bu i ld ()

)
) ;

. . .
}

B.2.21 Conflict 21
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. Same as the first change in B.2.19 which added
UUID stored in index setting available to shard level components, index properties,
and shard routing information.

Code level perspective. Listing below shows a change which was part of
making index UUID available to shard routing information, shard components, and
index properties. The value for shard ID passed on method newUnwasassigned,
which create new unassigned shard during shard routing, changed from "test" to
indexMetaData.getIndex() which retrieve shard ID from the index metadata.

public void testCanRemainUsesLeastAvai lableSpace () {
. . .
shardRoutingMap . put (test_2 , " /node1/most ") ;

− ShardRouting test_3 = ShardRouting . newUnassigned (" t e s t " , 3 , null , true ,
↪→ new Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

+ ShardRouting test_3 = ShardRouting . newUnassigned (indexMetaData . getIndex ()
↪→ , 3 , null , true , new Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, "
↪→ f oo ")) ;

ShardRoutingHelper . i n i t i a l i z e (test_3 , node_1 . get Id ()) ;
ShardRoutingHelper . moveToStarted (test_3) ;
. . .

XXXIV

B. Dataset of changes that led to the Merge Conflicts

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.19 which introduced primary terms that
track number of promotion of replica shard to primary shard.

Code level perspective. Listing belows shows a change which introduce primary
terms. A parameter was added to a method newUnwasassigned that pass primary
term. In the change, the priary term 1 was passes for testing creating new
unassigned shard during shard routing.

public void testCanRemainUsesLeastAvai lableSpace () {
. . .
a s s e r tEqua l s (0 l , DiskThresholdDecider . s i z eOfRe loca t ingShards (node , in fo ,

↪→ true , " /dev/some/ other /dev ")) ;

− ShardRouting test_3 = ShardRouting . newUnassigned (" t e s t " , 3 , null , false ,
↪→ new Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

+ ShardRouting test_3 = ShardRouting . newUnassigned (" t e s t " , 3 , null , 1 ,
↪→ false , new Unass ignedInfo (Unass ignedInfo . Reason .INDEX_CREATED, " foo ")) ;

ShardRoutingHelper . i n i t i a l i z e (test_3 , " node1 ") ;
. . .

}

B.2.22 Conflict 22
Category: Change of Method call or object creation

Mainline Change

Category: Bug fix

Project level perspective. A performance bug in filter or filters aggregation
was fixed. The filter aggregation is calculation of metrics using document fields
by grouping documents into single bucket using a specified criterion based on the
aggregation type. On the other hand, the filters aggregation groups the documents
into multiple buckets and each bucket is associated to documents that match a
filter (the criteria which was specified). The bug was due to creation of query
weights each time when filter aggregation is below terms aggregation (metrics
calculated based of a multi-bucket value source) with cardinality (number of term
occurrence in documents) of 1000. For example, when searching documents using
exact term specified in the inverted index (Lucene index), the term will be searched
in every segment (sub-index). To fix this bug, a query weight is created once and
iterators are used to look through in all segments.

Code level perspective. Listing below shows changes which are part of fixing
the performance bug in the filters aggregation. The iterator was added to collect
filters filters if the searcher, which search provided index, is not equal to the

XXXV

B. Dataset of changes that led to the Merge Conflicts

context of index search contextSearcher. Then, the filters are passed to filter
aggregators FiltersAggregator, which group the documents that match the filters
for aggregration.

public Aggregator c r e a t e I n t e r n a l (AggregationContext context , Aggregator
↪→ parent , boolean co l l ec t sFromSing leBucket ,

L i s t<Pipe l ineAggregator> p ipe l ineAggrega to r s , Map<Str ing , Object>
↪→ metaData) throws IOException {

− return new Fi l t e r sAgg r ega to r (name , f a c t o r i e s , f i l t e r s , keyed ,
↪→ otherBucketKey , context , parent , p ipe l ineAggregato r s , metaData) ;

+ IndexSearcher contextSearcher = context . searchContext () . s e a r che r () ;
+ i f (s ea r che r != contextSearcher) {
+ sea r che r = contextSearcher ;
+ weights = new Weight [f i l t e r s . s i z e ()] ;
+ for (int i = 0 ; i < f i l t e r s . s i z e () ; ++i) {
+ KeyedFi l ter k eyedF i l t e r = f i l t e r s . get (i) ;
+ this . we ights [i] = contextSearcher . createNormalizedWeight (

↪→ keyedF i l t e r . f i l t e r , fa l se) ;
+ }
+ }
+ return new Fi l t e r sAgg r ega to r (name , f a c t o r i e s , keys , weights , keyed ,

↪→ otherBucketKey , context , parent , p ipe l ineAggregato r s , metaData) ;
}

}

Branch Change

Category: Refactoring

Project level perspective. Filters Aggregation were refactored to allow them to
be passed to the coordinating node and serialized to the shards. The coordinating
node receives a request such as search request from a client, forwards the request
to the nodes that hold the data, receives results from the data node, and creates a
set of results which is returned to the client.

Code level perspective. As part of serializing filters aggregation, a parameter
otherBucketKey was replaced with otherBucket ? otherBucketKey : null to
check if an option to include other bucket which contains document that do not
match the given filters was set. The parameter otherBucket is used in case a
client wants to include aggregation of other buckets in a search response.

public Aggregator c r e a t e I n t e r n a l (AggregationContext context , Aggregator
↪→ parent , boolean co l l ec t sFromSing leBucket ,

L i s t<Pipe l ineAggregator> p ipe l ineAggrega to r s , Map<Str ing , Object>
↪→ metaData) throws IOException {

− return new Fi l t e r sAgg r ega to r (name , f a c t o r i e s , f i l t e r s , keyed ,
↪→ otherBucketKey , context , parent , p ipe l ineAggregato r s , metaData) ;

+ return new Fi l t e r sAgg r ega to r (name , f a c t o r i e s , f i l t e r s , keyed ,
↪→ otherBucket ? otherBucketKey : null , context , parent ,

+ p ipe l ineAggrega to r s , metaData) ;
+ }

B.2.23 Conflict 23
Category: Change of Method call or object creation

XXXVI

B. Dataset of changes that led to the Merge Conflicts

Mainline Change

Category: Feature enhancement

Project level perspective. The allocation IDs which are used when selecting a
primary shard and generated when shard is allocated to a cluster were added to
transport action which fetches the shards version in the nodes during the primary
shard allocation. The allocation IDs were added to the transport action to be used
when allocating the primary shard during cluster or node restart. When the node
or cluster restarted, the transport action is used to identify which shards were
primary shard and hold recent shard versions. Therefore, the allocation IDS were
added to recover the right active shards.

Code level perspective. The listing below shows change which were part of
adding the allocation IDs to the transport action. An expression TestShardRout-
ing.newShardRouting(shardId.getIndex(), shardId.getId(), node1.id(),
true, ShardRoutingState.STARTED, 10) which pass a primary shard when build-
ing routing table information was extracted to a variable primaryShard. Fur-
thermore, a method putActiveAllocationIds was added to add active shard
allocation IDs when building a metadata metaData during the node recovery.

private Rout ingAl locat ion onePrimaryOnNode1And1ReplicaRecovering (
↪→ Al l o ca t i onDec id e r s d e c i d e r s) {

+ ShardRouting primaryShard = TestShardRouting . newShardRouting (shardId .
↪→ getIndex () , shardId . ge t Id () , node1 . id () , true , ShardRoutingState .STARTED,
↪→ 10) ;

MetaData metaData = MetaData . bu i l d e r ()
− . put (IndexMetaData . bu i l d e r (shardId . getIndex ()) . s e t t i n g s (s e t t i n g s (

↪→ Vers ion .CURRENT)) . numberOfShards (1) . numberOfReplicas (0))
+ . put (IndexMetaData . bu i l d e r (shardId . getIndex ()) . s e t t i n g s (s e t t i n g s (

↪→ Vers ion .CURRENT))
+ . numberOfShards (1) . numberOfReplicas (1)
+ . putAct i veA l l o ca t i on Id s (0 , new HashSet<>(Arrays . a sL i s t (

↪→ primaryShard . a l l o c a t i o n I d () . ge t Id ()))))
. bu i ld () ;

RoutingTable rout ingTable = RoutingTable . bu i l d e r ()
. add (IndexRoutingTable . bu i l d e r (shardId . getIndex ())

. addIndexShard (new IndexShardRoutingTable . Bu i lder
↪→ (shardId)

− . addShard (TestShardRouting .
↪→ newShardRouting (shardId . getIndex () , shardId . ge t Id () , node1 . id () , true ,
↪→ ShardRoutingState .STARTED, 10))

+ . addShard (primaryShard)
. addShard (TestShardRouting .

↪→ newShardRouting (shardId . getIndex ()
↪→ , shardId . ge t Id () , node2 . id () ,
↪→ null , null , false ,
↪→ ShardRoutingState . INITIALIZING ,
↪→ 10 , new Unass ignedInfo (
↪→ Unass ignedInfo . Reason .
↪→ CLUSTER_RECOVERED, null)))

. bu i ld ())
)
. bu i ld () ;

. . .
}

XXXVII

B. Dataset of changes that led to the Merge Conflicts

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.19. The change introduced primary
terms that track promotion of the replica shards to primary shards.

Code level perspective. Listing belows shows changes which introduce primary
terms in a test of recovering a node with one primary shard and one replica shard.
A parameter was added in method newShardRouting and newUnassigned to pass
primary terms. In the listing, the primary term 1 was passed when creating new
shard routing information and new unassigned shard.

private Rout ingAl locat ion onePrimaryOnNode1And1ReplicaRecovering (
↪→ Al l o ca t i onDec id e r s d e c i d e r s) {
. . .
RoutingTable rout ingTable = RoutingTable . bu i l d e r ()

. add (IndexRoutingTable . bu i l d e r (shardId . getIndex ())
. addIndexShard (new IndexShardRoutingTable . Bu i lder

↪→ (shardId)
− . addShard (TestShardRouting .

↪→ newShardRouting (shardId . getIndex () , shardId . ge t Id () , node1 . id () , true ,
↪→ ShardRoutingState .STARTED, 10))

− . addShard (ShardRouting . newUnassigned (
↪→ shardId . getIndex () , shardId . ge t Id () , null , false , new Unass ignedInfo (reason
↪→ , null)))

+ . addShard (TestShardRouting .
↪→ newShardRouting (shardId . getIndex () , shardId . ge t Id () , node1 . id () , 1 , true ,
↪→ ShardRoutingState .STARTED, 10))

+ . addShard (ShardRouting . newUnassigned (
↪→ shardId . getIndex () , shardId . ge t Id () , null , 1 , false , new Unass ignedInfo (
↪→ reason , null)))

. bu i ld ())
)
. bu i ld () ;

. . .
}

B.2.24 Conflict 24
Category: Change of Method call or object creation

Mainline Change

Category: Test improvement

Project level perspective. Test for shard inactiveness was improved so that
not to fail when a document is being indexed while the time set for the shard
inactiveness elapsed. The API that check if the shard is active was separated to
have another that is used only for testing so that the test should not fail if the
shard inactiveness time elapsed.

Code level perspective. Listing below shows changes made to separate a method
checkIdle which check if the shard is idle when indexing a document. The method
for testing purpose was made private and a parameter which pass inactive time set
is passed.

XXXVIII

B. Dataset of changes that led to the Merge Conflicts

− public boolean check Id l e (long inactiveTimeNS) {
− i f (System . nanoTime () − lastWriteNS >= inactiveTimeNS) {

. . .
+ public boolean check Id l e () {
+ return check Id l e (inact iveTime . nanos ()) ;
+ }
+
+ f i n a l boolean check Id l e (long inactiveTimeNS) { // pkg p r i va t e f o r t e s t i n g
+ Engine engineOrNul l = getEngineOrNull () ;
+ i f (engineOrNul l != null && System . nanoTime () − engineOrNul l .

↪→ getLastWriteNanos () >= inactiveTimeNS) {
boolean wasActive = ac t i v e . getAndSet (fa l se) ;
i f (wasActive) {

updateBuf f e rS i ze (IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_INDEXING_BUFFER, IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_TRANSLOG_BUFFER) ;

− l o gg e r . debug (" shard i s now i n a c t i v e ") ;
− i n d i c e s L i f e c y c l e . onShardInact ive (this) ;
+ l ogg e r . debug ("marking shard as i n a c t i v e (inact ive_t ime =[{}])

↪→ index ing wise " , inact iveTime) ;
+ indexEventLi s tener . onShardInact ive (this) ;

}
}

return a c t i v e . get () == fa l se ;
}

Branch Change

Category: Feature enhancement

Project level perspective. Indexing buffer size for shards that have heavy in-
dexing was optimized. The size of the buffer in the indexing process is controlled
by the indexing buffer. The change was made to improve optimization of RAM
usage for indexing since a default index buffer size of 10% of node heap is divided
up and assigned equally to all shards that are active. The assignment of the node
heap to the active shards does not consider shard usage. With this change, each
shard is assigned unlimited indexing buffer and the most shard or shards that
consuming most of the heap are asked to clear up the heap if total bytes used
across all shards exceed the node heap.

Code level perspective. As part of implementing the logic for optimizing the
indexing buffer, a method checkIdle which check if the shard is idle was made
void and not to update buffer size if it is active.
− public boolean check Id l e (long inactiveTimeNS) {

. . .
+ public void check Id l e (long inactiveTimeNS) {

i f (System . nanoTime () − lastWriteNS >= inactiveTimeNS) {
boolean wasActive = ac t i v e . getAndSet (fa l se) ;
i f (wasActive) {

− updateBuf f e rS i ze (IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_INDEXING_BUFFER, IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_TRANSLOG_BUFFER) ;

l o gg e r . debug (" shard i s now i n a c t i v e ") ;
i n d i c e s L i f e c y c l e . onShardInact ive (this) ;

}
}

−
− return a c t i v e . get () == fa l se ;

XXXIX

B. Dataset of changes that led to the Merge Conflicts

}

B.2.25 Conflict 25
Category: Addition of statements in the Same area

Mainline Change

Category: Bug fix

Project level perspective. An indexing memory controller which track indexing
status of shards was modified to not maintain individual status of each shard.
With this change, the indexing memory controller checks status of all shards and
resizes the indexing buffers based on shard status, that is, if the shard is idle or
not. The change was made to fix a performance regression caused by scenario
which version maps of two shards are never resized to defaults when an index is
deleted and created and therefore the new shard is not detected by the controller
since it has a same shard ID as the deleted shard. The scenario results to increase
number of the index merges which affect the performance.

Code level perspective. Listing below shows changes made in controller test
which are part of fixing performance regression issue. The shard status is obtained
when indexing a shard instead of tracking individual shard. Therefore, a parameter
of type IndexShard, which track indexing of the shard, is passed instead of
ShardId, which injects shard ID to shard level components.
− public void s imulate Index ing (ShardId shardId) {
− lastIndexTimeNanos . put (shardId , currentTimeInNanos ()) ;
− i f (i ndex ingBu f f e r s . containsKey (shardId) == fa l se) {
+ public void s imulate Index ing (IndexShard shard) {
+ lastIndexTimeNanos . put (shard , currentTimeInNanos ()) ;
+ i f (i ndex ingBu f f e r s . containsKey (shard) == fa l se) {

// F i r s t time we are s e e i ng t h i s shard ; s t a r t i t o f f with
↪→ i n a c t i v e bu f f e r s as IndexShard does :

− i ndex ingBu f f e r s . put (shardId , IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_INDEXING_BUFFER) ;

− t r an s l o gBu f f e r s . put (shardId , IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_TRANSLOG_BUFFER) ;

+ index ingBu f f e r s . put (shard , IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_INDEXING_BUFFER) ;

+ t r an s l o gBu f f e r s . put (shard , IndexingMemoryControl ler .
↪→ INACTIVE_SHARD_TRANSLOG_BUFFER) ;

}
− act iveShards . add (shardId) ;
+ act iveShards . add (shard) ;

forceCheck () ;
}

}

Branch Change

Category: Bug fix

XL

B. Dataset of changes that led to the Merge Conflicts

Project level perspective. An indexing buffer size for inactive shard was in-
creased once they become active again. If the shard become active, it took up to
30 seconds for the indexing memory controller, which track indexing status of the
shards, to increase the buffer size from the idle size to the one assigned along with
other active shards. This delay could cause many index segments not written. To
fix this issue, the indexing buffer is divided up to all active shards immediately
once the inactive shard becomes active.

Code level perspective. Listing below shows changes which are part of fixing
assignment of indexing buffer once the inactive shard becomes active. In the
test simulateIndexing which simulate tracking of shard status when indexing, a
variable bytes track buffer size of the shard during indexing. The tracking time
lastIndexTimeNanos for shard indexing was removed since shard buffer size is
re-assigned once the shard become active again.

public void s imulate Index ing (ShardId shardId) {
− lastIndexTimeNanos . put (shardId , currentTimeInNanos ()) ;
− i f (i ndex ingBu f f e r s . containsKey (shardId) == fa l se) {
− // F i r s t time we are s e e i ng t h i s shard ; s t a r t i t o f f with

↪→ i n a c t i v e bu f f e r s as IndexShard does :
− i ndex ingBu f f e r s . put (shardId , IndexingMemoryControl ler .

↪→ INACTIVE_SHARD_INDEXING_BUFFER) ;
− t r an s l o gBu f f e r s . put (shardId , IndexingMemoryControl ler .

↪→ INACTIVE_SHARD_TRANSLOG_BUFFER) ;
+ Long bytes = indexBufferRAMBytesUsed . get (shardId) ;
+ i f (bytes == null) {
+ bytes = 0L ;

}
− act iveShards . add (shardId) ;
+ // Each doc we index takes up a megabyte !
+ bytes += 1024∗1024;
+ indexBufferRAMBytesUsed . put (shardId , bytes) ;

forceCheck () ;
}

}

B.2.26 Conflict 26
Category: Addition of statements in the Same area

Mainline Change

Category: Refactoring

Project level perspective. The shared logic such as creating xContent response
of a write operation (index, update and delete) response on a single document
was consolidated to have a base logic. The write operation response is used to get
back information about the execution of the operation and then contents such as
xContent is created from the operation response. With this change, the responses
are retrieved using shard IDs which the operations are executed on.

Code level perspective. Listing below shows added changes which were part
of consolidating the shared logic for creating response from the write operation

XLI

B. Dataset of changes that led to the Merge Conflicts

response on the single document. A method status was added which returns a
REST status of the delete operation.
+ public RestStatus s t a tu s () {
+ i f (found == fa l se) {
+ return RestStatus .NOT_FOUND;
+ }
+ return super . s t a tu s () ;
+ }

Branch Change

Category: Refactoring

Project level perspective. The responses from put and delete pipeline APIs,
which are used for adding or updating and deleting preprocessors that preprocess
documents before indexing, were made consistent with the delete and index APIs,
which are used for deleting and adding or updating documents in a specific index
respectively.

Code level perspective. Listing below shows changes added to make the put
and delete pipeline APIs responses consistent with the delete and index APIs
responses. A method status which returns status of the delete operation was
added.
+ public RestStatus s t a tu s () {
+ RestStatus s t a tu s = getShardIn fo () . s t a tu s () ;
+ i f (isFound () == fa l se) {
+ s ta tu s = NOT_FOUND;
+ }
+ return s t a tu s ;
+ }

B.2.27 Conflict 27
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. The operation logic for requests that are executed
first on the primary shard and followed on the replica shards was separated to
have logic for routing and retrying failed operations, and logic for the delegation
of the replication operations. The operation logic was refactored when performing
replication of the operations from the primary shard to the replica shards.

Code level perspective. The listing below shows changes which are part of
separating the operation logic when performing replication action. The shard
ID (or shard version) passed on getIndexShardOperationsCounter was changed
from request.internalShardId to request.shardId() which returns the shard
ID where the operations should be run.

XLII

B. Dataset of changes that led to the Merge Conflicts

private f i n a l class AsyncRepl icaAction extends AbstractRunnable {
protected void doRun () throws Exception {

− try (Re l ea sab l e shardReference = getIndexShardOperat ionsCounter (
↪→ r eque s t . i n t e rna lShard Id)) {

− shardOperationOnReplica (r eque s t . in te rna lShardId , r eque s t) ;
+ a s s e r t r eque s t . shardId () != null : " r eque s t shardId must be s e t " ;
+ try (Re l ea sab l e ignored = getIndexShardOperat ionsCounter (r eque s t .

↪→ shardId ())) {
+ shardOperationOnReplica (r eque s t) ;
+ i f (l o gg e r . i sTraceEnabled ()) {
+ logg e r . t r a c e (" ac t i on [{ }] completed on shard [{ }] f o r r eque s t

↪→ [{ }] " , t ranspor tRep l i caAct ion , r eque s t . shardId () , r eque s t) ;
+ }

}
channel . sendResponse (TransportResponse . Empty .INSTANCE) ;

}
}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2 which added the counter to identify
write operations from the failed primary shard and enforced the primary terms
logic (see B.2.19).

Code level perspective. The listing below shows a change which enforced the pri-
mary terms logic. A parameter which pass the primary term, request.primaryTerm,
was added to the method getIndexShardOperationsCounter that gets number of
operations during shard indexing.

private f i n a l class AsyncRepl icaAction extends AbstractRunnable {
protected void doRun () throws Exception {

− try (Re l ea sab l e shardReference = getIndexShardOperat ionsCounter (
↪→ r eque s t . i n t e rna lShard Id)) {

+ try (Re l ea sab l e shardReference = getIndexShardOperat ionsCounter (
↪→ r eque s t . in te rna lShardId , r eque s t . primaryTerm)) {

shardOperationOnReplica (r eque s t . in te rna lShardId , r eque s t) ;
}
channel . sendResponse (TransportResponse . Empty .INSTANCE) ;

}
}

B.2.28 Conflict 28
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. Same as B.2.26 which refactored shared logic such
as an xContent response of write operations on the single document.

XLIII

B. Dataset of changes that led to the Merge Conflicts

Code level perspective. The listing below shows two same changes which are part
of the consolidation of the shared logic of write operations. The changes were made
to pass shard ID shardId instead of the document index getResult.getIndex()
when creating new response for an operation on the document that did not
interpreted as the write operation, that is, the operation did not update the
document.

protected Result prepare (UpdateRequest request , f i n a l GetResult ge tResu l t) {
. . .
i f (opera t i on == null | | " index " . equa l s (opera t i on)) {

. . .
} else i f (" d e l e t e " . equa l s (opera t i on)) {

. . .
return new Result (de leteRequest , Operation .DELETE, updatedSourceAsMap

↪→ , updateSourceContentType) ;
} else i f (" none " . equa l s (opera t i on)) {

− UpdateResponse update = new UpdateResponse (ge tResu l t . getIndex () ,
↪→ getResu l t . getType () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;

+ UpdateResponse update = new UpdateResponse (shardId , ge tResu l t . getType
↪→ () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;

update . se tGetResu l t (ext ractGetResu l t (request , r eque s t . index () ,
↪→ getResu l t . ge tVers ion () , updatedSourceAsMap ,
↪→ updateSourceContentType , ge tResu l t . i n t e rna lSour c eRe f ())) ;

return new Result (update , Operation .NONE, updatedSourceAsMap ,
↪→ updateSourceContentType) ;

} else {
l ogg e r . warn ("Used update opera t i on [{ }] f o r s c r i p t [{ }] , doing

↪→ nothing . . . " , operat ion , r eque s t . s c r i p t . g e tS c r i p t ()) ;
− UpdateResponse update = new UpdateResponse (ge tResu l t . getIndex () ,

↪→ getResu l t . getType () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;
+ UpdateResponse update = new UpdateResponse (shardId , ge tResu l t . getType

↪→ () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;
return new Result (update , Operation .NONE, updatedSourceAsMap ,

↪→ updateSourceContentType) ;
}

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2 which added the counter to identify
write operations from the failed primary shard. Also, it is similar to the mainline
change, however, it was combined in broad change of adding the counters.

Code level perspective. The listing below shows changes which were made as
part of introducing the counter for identifying operations from the failed primary
shard. A parameter new ShardId(getResult.getIndex(), request.shardId())
which pass a new information on a shard that the operation is executed on is
passed when creating a new document update response, which for this case is the
update response for a non-write operation.

protected Result prepare (UpdateRequest request , f i n a l GetResult ge tResu l t) {
. . .
i f (opera t i on == null | | " index " . equa l s (opera t i on)) {

. . .
} else i f (" d e l e t e " . equa l s (opera t i on)) {

. . .
return new Result (de leteRequest , Operation .DELETE, updatedSourceAsMap

↪→ , updateSourceContentType) ;

XLIV

B. Dataset of changes that led to the Merge Conflicts

} else i f (" none " . equa l s (opera t i on)) {
− UpdateResponse update = new UpdateResponse (ge tResu l t . getIndex () ,

↪→ getResu l t . getType () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;
+ UpdateResponse update = new UpdateResponse (new ShardId (ge tResu l t .

↪→ getIndex () , r eque s t . shardId ()) , ge tResu l t . getType () , ge tResu l t . ge t Id () ,
↪→ getResu l t . ge tVers ion () , fa l se) ;

update . se tGetResu l t (ext ractGetResu l t (request , r eque s t . index () ,
↪→ getResu l t . ge tVers ion () , updatedSourceAsMap ,
↪→ updateSourceContentType , ge tResu l t . i n t e rna lSour c eRe f ())) ;

return new Result (update , Operation .NONE, updatedSourceAsMap ,
↪→ updateSourceContentType) ;

} else {
l ogg e r . warn ("Used update opera t i on [{ }] f o r s c r i p t [{ }] , doing

↪→ nothing . . . " , operat ion , r eque s t . s c r i p t . g e tS c r i p t ()) ;
− UpdateResponse update = new UpdateResponse (ge tResu l t . getIndex () ,

↪→ getResu l t . getType () , ge tResu l t . ge t Id () , ge tResu l t . ge tVers ion () , fa l se) ;
+ UpdateResponse update = new UpdateResponse (new ShardId (ge tResu l t .

↪→ getIndex () , r eque s t . shardId ()) , ge tResu l t . getType () , ge tResu l t . ge t Id () ,
↪→ getResu l t . ge tVers ion () , fa l se) ;

return new Result (update , Operation .NONE, updatedSourceAsMap ,
↪→ updateSourceContentType) ;

}
}

B.2.29 Conflict 29
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. Same as B.2.26 which refactored shared logic such
as an xContent response of write operations on the single document.

Code level perspective. The listing below shows changes made to unify the
xContent response logic of the write operations. The changes were made so that
the document update by a client client alerts RestStatusToXContentListener,
which builds the xContent response, instead of RestBuilderListener, which builds
a response based on the xContent builder.

public void handleRequest (f i n a l RestRequest request , f i n a l RestChannel
↪→ channel , f i n a l Cl i en t c l i e n t) throws Exception {

− c l i e n t . update (updateRequest , new RestBu i lde rL i s t ene r<UpdateResponse>(
↪→ channel) {

− @Override
− public RestResponse bui ldResponse (UpdateResponse response ,

↪→ XContentBuilder bu i l d e r) throws Exception {
− bu i l d e r . s t a r tOb j e c t () ;
− ActionWriteResponse . ShardInfo shard In fo = response . getShardIn fo ()

↪→ ;
− bu i l d e r . f i e l d (F i e l d s ._INDEX, response . getIndex ())
− . f i e l d (F i e l d s ._TYPE, response . getType ())
− . f i e l d (F i e l d s ._ID, re sponse . ge t Id ())
− . f i e l d (F i e l d s ._VERSION, response . getVers ion ()) ;
−
− shard In fo . toXContent (bu i lde r , r eque s t) ;
− i f (re sponse . getGetResult () != null) {
− bu i l d e r . s t a r tOb j e c t (F i e l d s .GET) ;
− re sponse . getGetResult () . toXContentEmbedded (bu i lde r , r eque s t) ;
− bu i l d e r . endObject () ;

XLV

B. Dataset of changes that led to the Merge Conflicts

− }
−
− bu i l d e r . endObject () ;
− RestStatus s t a tu s = shardIn fo . s t a tu s () ;
− i f (re sponse . i sCreated ()) {
− s t a tu s = CREATED;
− }
− return new BytesRestResponse (s tatus , bu i l d e r) ;
− }
− }) ;
− }
−
− stat ic f i n a l class F i e l d s {
− stat ic f i n a l XContentBui lderStr ing _INDEX = new XContentBui lderStr ing ("

↪→ _index ") ;
− stat ic f i n a l XContentBui lderStr ing _TYPE = new XContentBui lderStr ing ("

↪→ _type ") ;
− stat ic f i n a l XContentBui lderStr ing _ID = new XContentBui lderStr ing ("_id ")

↪→ ;
− stat ic f i n a l XContentBui lderStr ing _VERSION = new XContentBui lderStr ing ("

↪→ _vers ion ") ;
− stat ic f i n a l XContentBui lderStr ing GET = new XContentBui lderStr ing (" get ")

↪→ ;
+ c l i e n t . update (updateRequest , new RestStatusToXContentListener<>(channel))

↪→ ;
}

}

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.2.

Code level perspective. The listing below shows changes as part of adding the
counter to identify the write operations from old primary shard. The changes were
made to use a method toXContent from a new response base class DocWriteRe-
sponse created from the extracted shared logic of write operations on a single
document and receive REST status status from the shard information in the
operation response.

public void handleRequest (f i n a l RestRequest request , f i n a l RestChannel
↪→ channel , f i n a l Cl i en t c l i e n t) throws Exception {
c l i e n t . update (updateRequest , new RestBu i lde rL i s t ene r<UpdateResponse>(

↪→ channel) {
@Override
public RestResponse bui ldResponse (UpdateResponse response ,

↪→ XContentBuilder bu i l d e r) throws Exception {
bu i l d e r . s t a r tOb j e c t () ;

− ActionWriteResponse . ShardInfo shard In fo = response . getShardIn fo ()
↪→ ;

− bu i l d e r . f i e l d (F i e l d s ._INDEX, response . getIndex ())
− . f i e l d (F i e l d s ._TYPE, response . getType ())
− . f i e l d (F i e l d s ._ID, re sponse . ge t Id ())
− . f i e l d (F i e l d s ._VERSION, response . getVers ion ()) ;
−
− shard In fo . toXContent (bu i lde r , r eque s t) ;
− i f (re sponse . getGetResult () != null) {
− bu i l d e r . s t a r tOb j e c t (F i e l d s .GET) ;
− re sponse . getGetResult () . toXContentEmbedded (bu i lde r , r eque s t) ;
− bu i l d e r . endObject () ;
− }
−

XLVI

B. Dataset of changes that led to the Merge Conflicts

+ response . toXContent (bu i lde r , r eque s t) ;
bu i l d e r . endObject () ;

− RestStatus s t a tu s = shardIn fo . s t a tu s () ;
+ RestStatus s t a tu s = response . getShardIn fo () . s t a tu s () ;

i f (re sponse . i sCreated ()) {
s t a tu s = CREATED;

}
return new BytesRestResponse (s tatus , bu i l d e r) ;

}
}) ;

}

B.2.30 Conflict 30
Category: Addition of statements in the Same area

Mainline Change

Category: Feature enhancement

Project level perspective. The allocation IDs, which are generated during shard
allocation to a cluster, were persisted to index metadata so that to be used when
choosing a next primary shard. This change is part of an enhancement to allocate
a primary shard based on the allocation IDs of active shards in a current cluster
state, which provide state information of the cluster, when the cluster is restarted.

Code level perspective. The listing below shows changes added to persist the
allocations IDs allocationId in the cluster state. The cluster state information can
be filtered using five metrics which are; version, master_node, nodes, routing_table,
metadata and blocks. The changes were added for the metadata metric which
returns only the metadata of the response.

public XContentBuilder toXContent (XContentBuilder bu i lde r , Params params)
↪→ throws IOException {
EnumSet<Metric> metr i c s = Metric . pa r s eS t r i ng (params . param(" metr ic " , " _al l

↪→ ") , true) ;
. . .
i f (met r i c s . conta in s (Metric .METADATA)) {

. . .
for (IndexMetaData indexMetaData : metaData ()) {

. . .
+ bu i l d e r . s t a r tOb j e c t (IndexMetaData .KEY_ACTIVE_ALLOCATIONS) ;
+ for (IntObjectCursor<Set<Str ing>> cur so r : indexMetaData .

↪→ ge tAc t i v eA l l o c a t i on Id s ()) {
+ bu i l d e r . s ta r tArray (S t r ing . valueOf (cur so r . key)) ;
+ for (S t r ing a l l o c a t i o n I d : cu r so r . va lue) {
+ bu i l d e r . va lue (a l l o c a t i o n I d) ;
+ }
+ bu i l d e r . endArray () ;
+ }
+ bu i l d e r . endObject () ;
+

bu i l d e r . endObject () ;
}
bu i l d e r . endObject () ;
. . .

}
. . .
return bu i l d e r ;

}

XLVII

B. Dataset of changes that led to the Merge Conflicts

Branch Change

Category: Feature introduction

Project level perspective. Same as B.2.19 which introduced primary terms to
track how many times a replica shard is promoted to a primary shard when an
older primary shard failed so that to identify if there are operations are coming
from the old primary shard.

Code level perspective. Listing belows shows changes which introduce primary
terms when building response for the cluster state request. The changes were
added when the request is filtered using metadata metric which returns only the
metadata of the cluster state.

public XContentBuilder toXContent (XContentBuilder bu i lde r , Params params)
↪→ throws IOException {
EnumSet<Metric> metr i c s = Metric . pa r s eS t r i ng (params . param(" metr ic " , " _al l

↪→ ") , true) ;
. . .
i f (met r i c s . conta in s (Metric .METADATA)) {

. . .
for (IndexMetaData indexMetaData : metaData ()) {

. . .
+ bu i l d e r . s t a r tOb j e c t (" primary_terms ") ;
+ for (int shard = 0 ; shard < indexMetaData . getNumberOfShards () ;

↪→ shard++) {
+ bu i l d e r . f i e l d (In t eg e r . t oS t r i ng (shard) , indexMetaData .

↪→ primaryTerm (shard)) ;
+ }
+ bu i l d e r . endObject () ;
+

bu i l d e r . endObject () ;
}
bu i l d e r . endObject () ;
. . .

}
. . .
return bu i l d e r ;

}

B.2.31 Conflict 31
Category: Addition of statements in the Same area

Mainline Change

Category: Feature enhancement

Project level perspective. Same as B.2.30.

Code level perspective. Listing below shows changes which are part of persisting
allocation IDs to enhance allocation of primary during cluster restart. A variable
activeAllocationIds was added to persist allocation IDs during creation of a
new cluster’s state diff. Furthermore, a new parameter was added to method diff,
which create a diff of two immutable maps, in DiffableUtils. Therefore, the
value for variables mappings, aliases, and customs were modified to pass the value

XLVIII

B. Dataset of changes that led to the Merge Conflicts

DiffableUtils.getStringKeySerializer() for the new parameter which returns
serializer for the strings keys.

public IndexMetaDataDiff (IndexMetaData be fore , IndexMetaData a f t e r) {
. . .
s e t t i n g s = a f t e r . s e t t i n g s ;

− mappings = D i f f a b l eU t i l s . d i f f (b e f o r e . mappings , a f t e r . mappings) ;
− a l i a s e s = D i f f a b l eU t i l s . d i f f (b e f o r e . a l i a s e s , a f t e r . a l i a s e s) ;
− customs = D i f f a b l eU t i l s . d i f f (b e f o r e . customs , a f t e r . customs) ;
+ mappings = D i f f a b l eU t i l s . d i f f (b e f o r e . mappings , a f t e r . mappings ,

↪→ D i f f a b l eU t i l s . g e t S t r i n gKeyS e r i a l i z e r ()) ;
+ a l i a s e s = D i f f a b l eU t i l s . d i f f (b e f o r e . a l i a s e s , a f t e r . a l i a s e s ,

↪→ D i f f a b l eU t i l s . g e t S t r i n gKeyS e r i a l i z e r ()) ;
+ customs = D i f f a b l eU t i l s . d i f f (b e f o r e . customs , a f t e r . customs ,

↪→ D i f f a b l eU t i l s . g e t S t r i n gKeyS e r i a l i z e r ()) ;
+ a c t i v eA l l o c a t i o n I d s = D i f f a b l eU t i l s . d i f f (b e f o r e . a c t i v eA l l o c a t i on Id s ,

↪→ a f t e r . a c t i v eA l l o c a t i on Id s ,
+ D i f f a b l eU t i l s . g e tVIn tKeySe r i a l i z e r () , D i f f a b l eU t i l s .

↪→ S t r i n gS e tVa l u eS e r i a l i z e r . g e t In s tance ()) ;
}

Branch Change

Category: Feature introduction

Project level perspective. Same as in change B.2.19.

Code level perspective. In the listing below, a variable primaryTerms was
added to identify operations that are coming from a failed primary shard when
creating new diff for a cluster state.

public IndexMetaDataDiff (IndexMetaData be fore , IndexMetaData a f t e r) {
. . .
v e r s i on = a f t e r . v e r s i on ;
s t a t e = a f t e r . s t a t e ;
s e t t i n g s = a f t e r . s e t t i n g s ;

+ primaryTerms = a f t e r . primaryTerms ;
mappings = D i f f a b l eU t i l s . d i f f (b e f o r e . mappings , a f t e r . mappings) ;
a l i a s e s = D i f f a b l eU t i l s . d i f f (b e f o r e . a l i a s e s , a f t e r . a l i a s e s) ;
customs = D i f f a b l eU t i l s . d i f f (b e f o r e . customs , a f t e r . customs) ;

}

B.2.32 Conflict 32
Category: Change of Method call or object creation

Mainline Change

Category: Feature enhancement

Project level perspective. The cluster health status change, from red to green
or yellow, from green to yellow or red, from yellow to red or green, and vice
versa, was logged for tracing or debugging purpose. The cluster health changes are
logged on info level. The log messages can be logged in six levels depending on the
severity of a situation or action. The log levels are debug, error, info, fatal, trace
and warn. The info level is used to log messages that are generally important for

XLIX

B. Dataset of changes that led to the Merge Conflicts

normal operation of an application or system.

Code level perspective. Listing below shows a change which is part of logging
the cluster health status change. A parameter which provide a reason for the
change was added to a method reroute which reroutes a routing table, that
provide mapping between nodes and its shards and indexes they host, using live
nodes as a criterion. In the test, the parameter value "reroute" is passed as the
reason for the cluster health change when rerouting the routing table.

public void
↪→ testBackupElectionToPrimaryWhenPrimaryCanBeAllocatedToAnotherNode () {
. . .
l o gg e r . i n f o ("Adding th i rd node and re rou t e and k i l l f i r s t node ") ;
c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (c l u s t e r S t a t e) . nodes (DiscoveryNodes .

↪→ bu i l d e r (c l u s t e r S t a t e . nodes ()) . put (newNode(" node3 ")) . remove (" node1 "
↪→)) . bu i ld () ;

prevRoutingTable = rout ingTable ;
− rout ingTable = s t r a t e gy . r e r ou t e (c l u s t e r S t a t e) . rout ingTable () ;
+ rout ingTable = s t r a t e gy . r e r ou t e (c l u s t e rS t a t e , " r e r ou t e ") . rout ingTable () ;

c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (c l u s t e r S t a t e) . rout ingTable (
↪→ rout ingTable) . bu i ld () ;

routingNodes = c l u s t e r S t a t e . getRoutingNodes () ;
. . .

}

Branch Change

Category: Feature introduction

Project level perspective. Same as change B.2.19 which introduced the primary
terms to track number of replica shard promotion to primary shard.

Code level perspective. The listing below shows changes which were made as
part of introducing primary terms. The listing shows test on retaining a primary
shard when the primary can be allocated to another node during rerouting. In the
listing, a current routing table routingTable is compared with a previous routing
table prevRoutingTable routing table.

public void
↪→ testBackupElectionToPrimaryWhenPrimaryCanBeAllocatedToAnotherNode () {
. . .
l o gg e r . i n f o ("Adding th i rd node and re rou t e and k i l l f i r s t node ") ;
c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (c l u s t e r S t a t e) . nodes (DiscoveryNodes .

↪→ bu i l d e r (c l u s t e r S t a t e . nodes ()) . put (newNode(" node3 ")) . remove (" node1 "
↪→)) . bu i ld () ;

− prevRoutingTable = rout ingTable ;
− rout ingTable = s t r a t e gy . r e r ou t e (c l u s t e r S t a t e) . rout ingTable () ;
− c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (c l u s t e r S t a t e) . rout ingTable (

↪→ rout ingTable) . bu i ld () ;
+ RoutingTable prevRoutingTable = c l u s t e r S t a t e . rout ingTable () ;
+ r e s u l t = s t r a t e gy . r e r ou t e (c l u s t e r S t a t e) ;
+ c l u s t e r S t a t e = Clus t e rS ta t e . bu i l d e r (c l u s t e r S t a t e) . r out ingResu l t (r e s u l t) .

↪→ bu i ld () ;
routingNodes = c l u s t e r S t a t e . getRoutingNodes () ;

+ rout ingTable = c l u s t e r S t a t e . rout ingTable () ;

asser tThat (prevRoutingTable != routingTable , equalTo (true)) ;
. . .

}

L

B. Dataset of changes that led to the Merge Conflicts

B.2.33 Conflict 33
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. Dependency injector on the shard level was removed
and replaced with constructor calls.

Code level perspective. The listing below shows changes which are part of
replacing injector with constructor calls on the shard level. The HashMap of
type IndexShardInjectorPair was changed to IndexShard and a variable in-
dexShardInjectorPair which holds shard indexing instance and its injector was
removed. Furthermore, the shard injector shardInjector passed to the method
closeShard, which closes shard so that not to allow operations on it when the
changes on the engine are rolled back, was changed to indexShard which is an
instance variable of shard indexing.

public synchronized void removeShard (int shardId , S t r ing reason) {
. . .
l o gg e r . debug (" [{ }] c l o s i n g . . . (reason : [{ }]) " , shardId , reason) ;

− HashMap<Integer , IndexShardIn jectorPa i r> tmpShardsMap = new HashMap<>(
↪→ shards) ;

− IndexShardIn j ec to rPa i r indexShard In j e c to rPa i r = tmpShardsMap . remove (
↪→ shardId) ;

− indexShard = indexShard In j e c to rPa i r . getIndexShard () ;
− s ha rd In j e c t o r = indexShard In j e c to rPa i r . g e t I n j e c t o r () ;
+ HashMap<Integer , IndexShard> tmpShardsMap = new HashMap<>(shards) ;
+ indexShard = tmpShardsMap . remove (shardId) ;

shards = ImmutableMap . copyOf (tmpShardsMap) ;
− c l o s eSha rd In j e c t o r (reason , sId , sha rd In j e c to r , indexShard) ;
+ c lo seShard (reason , sId , indexShard , indexShard . s t o r e ()) ;

l o gg e r . debug (" [{ }] c l o s ed (reason : [{ }]) " , shardId , reason) ;
}

Branch Change

Category: Library removal

Project level perspective. An immutable map, which maps values from keys
and cannot be changed, was removed in the Elasticsearch project codebase. The
change was part of removing Guava2, which is a collection of Java core libraries.
The immutable map was part of the collection.

Code level perspective. The changes in the listing below are part of removing
immutable map. The immutable map shards was modified to use method unmod-
ifiableMap from Java collections class as ImmutableMap class was removed from
the project. Furthermore, the variable tmpShardsMap was renamed to newShards.

public synchronized void removeShard (int shardId , S t r ing reason) {

2https://github.com/google/guava

LI

https://github.com/google/guava

B. Dataset of changes that led to the Merge Conflicts

. . .
l o gg e r . debug (" [{ }] c l o s i n g . . . (reason : [{ }]) " , shardId , reason) ;

− HashMap<Integer , IndexShardIn jectorPa i r> tmpShardsMap = new HashMap<>(
↪→ shards) ;

− IndexShardIn j ec to rPa i r indexShard In j e c to rPa i r = tmpShardsMap . remove (
↪→ shardId) ;

+ HashMap<Integer , IndexShardIn jectorPa i r> newShards = new HashMap<>(shards
↪→) ;

+ IndexShardIn j ec to rPa i r indexShard In j e c to rPa i r = newShards . remove (shardId)
↪→ ;

indexShard = indexShard In j e c to rPa i r . getIndexShard () ;
s ha rd In j e c t o r = indexShard In j e c to rPa i r . g e t I n j e c t o r () ;

− shards = ImmutableMap . copyOf (tmpShardsMap) ;
+ shards = unmodifiableMap (newShards) ;

c l o s eSha rd In j e c t o r (reason , sId , sha rd In j e c to r , indexShard) ;
l o gg e r . debug (" [{ }] c l o s ed (reason : [{ }]) " , shardId , reason) ;

}

B.2.34 Conflict 34
Category: Change of an assert statement Expression

Mainline Change

Category: Refactoring

Project level perspective. Query parsing exception was renamed to parsing
exception which is more generic so that it can be reused rather than creating
subclasses.

Code level perspective. Listing below shows a change which was part of renam-
ing query parsing exception to parsing exception. The class QueryParsingExcep-
tion was renamed to ParsingException.

public void t e s tPerco la to rUpgrad ing () throws Exception {
. . .
try {

c l i e n t () . prepareIndex (" t e s t 2 " , P e r c o l a t o rS e r v i c e .TYPE_NAME)
. se tSource (j s onBu i l d e r () . s t a r tOb j e c t () . f i e l d (" query " ,

↪→ termQuery (" f i e l d 1 " , " va lue ")) . endObject ()) . get () ;
f a i l () ;

} catch (Perco la torExcept ion e) {
e . pr intStackTrace () ;

− assertThat (e . getRootCause () , ins tanceOf (QueryParsingException . class))
↪→ ;

+ assertThat (e . getRootCause () , ins tanceOf (Pars ingExcept ion . class)) ;
}

}

Branch Change

Category: Refactoring

Project level perspective. Context for query parsing was separated to have two
different steps for query parsing and shard querying. The change was made as it
might be required to run the steps in separate phases such as on shards and master
node. The query parsing context is used to parse xContent from the request and

LII

B. Dataset of changes that led to the Merge Conflicts

shard querying context is used when creating Lucene query on the shard level.

Code level perspective. The listing below shows part of a change to separate
the query parsing context. The class QueryParsingException which is used
when parsing queries from the given query parsing context was renamed to
QueryShardException.

public void t e s tPerco la to rUpgrad ing () throws Exception {
. . .
try {

c l i e n t () . prepareIndex (" t e s t 2 " , P e r c o l a t o rS e r v i c e .TYPE_NAME)
. se tSource (j s onBu i l d e r () . s t a r tOb j e c t () . f i e l d (" query " ,

↪→ termQuery (" f i e l d 1 " , " va lue ")) . endObject ()) . get () ;
f a i l () ;

} catch (Perco la torExcept ion e) {
e . pr intStackTrace () ;

− assertThat (e . getRootCause () , ins tanceOf (QueryParsingException . class))
↪→ ;

+ assertThat (e . getRootCause () , ins tanceOf (QueryShardException . class)) ;
}

}

B.2.35 Conflict 35
Category: Addition of statements in the Same area

Mainline Change

Category: Refactoring

Project level perspective. The score type field which was used in has child
and has parent joining queries when querying child and parent documents respec-
tively in a query Project level specific language (DSL) to specify a query score type
(max, min, avg, sum or none), was replaced with the score mode field. The score
mode field exist in Lucene, therefore it was favored instead of the score type field.
Furthermore, in this change, the score type (score mode) sum was replaced with
total which also exist in the Lucene.

Code level perspective. In the listing below, a method scoreType was renamed
to scoreMode.

protected void doXContent (XContentBuilder bu i lde r , Params params) throws
↪→ IOException {
bu i l d e r . s t a r tOb j e c t (HasParentQueryParser .NAME) ;
bu i l d e r . f i e l d (" query ") ;
queryBui lder . toXContent (bu i lde r , params) ;
bu i l d e r . f i e l d (" parent_type " , parentType) ;

− i f (scoreType != null) {
− bu i l d e r . f i e l d (" score_type " , scoreType) ;
+ i f (scoreMode != null) {
+ bu i l d e r . f i e l d (" score_mode " , scoreMode) ;

}
i f (boost != 1 .0 f) {

bu i l d e r . f i e l d (" boost " , boost) ;
}
. . .

}

LIII

B. Dataset of changes that led to the Merge Conflicts

Branch Change

Category: Refactoring

Project level perspective. Parsing of an index search query for has child
query, which query child documents, was refactored to separate its parsing in the
Elasticsearch and Lucene query creation. First, the query is parsed to create an
xContent object which can be streamed. Then, the object is converted to the
Lucene query. This change allows among other things to easily test the creation of
the xContent parsing since the parsing is in one place.

Code level perspective. The listing below shows a change which refactored has
child query parsing. As part of separating parsing of the index search query for
the has child query, the method doXContent was refactored to remove parsing for
the Lucene query creation. A new method doToQuery was added forr the removed
parsing for creating the Lucene query.
− protected void doXContent (XContentBuilder bu i lde r , Params params) throws

↪→ IOException {
− bu i l d e r . s t a r tOb j e c t (HasParentQueryParser .NAME) ;
− bu i l d e r . f i e l d (" query ") ;
− queryBui lder . toXContent (bu i lde r , params) ;
− bu i l d e r . f i e l d (" parent_type " , parentType) ;
− i f (scoreType != null) {
− bu i l d e r . f i e l d (" score_type " , scoreType) ;
+ protected Query doToQuery (QueryShardContext context) throws IOException {
+ Query innerQuery = query . toQuery (context) ;
+ i f (innerQuery == null) {
+ return null ;

}
− i f (boost != 1 .0 f) {
− bu i l d e r . f i e l d (" boost " , boost) ;
+ innerQuery . setBoost (boost) ;
+ DocumentMapper parentDocMapper = context . mapperService () . documentMapper (

↪→ type) ;
+ i f (parentDocMapper == null) {
+ throw new QueryParsingException (context . parseContext () , " [has_parent]

↪→ query con f i gu r ed ’ parent_type ’ [" + type
+ + "] i s not a va l i d type ") ;

}
− i f (queryName != null) {
− bu i l d e r . f i e l d ("_name" , queryName) ;

. . .
+ }
+
+ @Override
+ protected void doXContent (XContentBuilder bu i lde r , Params params) throws

↪→ IOException {
+ bu i l d e r . s t a r tOb j e c t (NAME) ;
+ bu i l d e r . f i e l d (" query ") ;
+ query . toXContent (bu i lde r , params) ;
+ bu i l d e r . f i e l d (" parent_type " , type) ;
+ bu i l d e r . f i e l d (" s co r e " , s c o r e) ;
+ printBoostAndQueryName (bu i l d e r) ;

i f (innerHi t != null) {
− bu i l d e r . s t a r tOb j e c t (" inner_h i t s ") ;
− bu i l d e r . va lue (innerHi t) ;
− bu i l d e r . endObject () ;
+ innerHi t . toXContent (bu i lde r , params) ;

}
bu i l d e r . endObject () ;

}

LIV

B. Dataset of changes that led to the Merge Conflicts

B.2.36 Conflict 36
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. Same as B.2.35 which replaced score type field with
score mode in joining queries when querying a document.

Code level perspective. The listing below shows a change which replaced a
score mode sum with total in a has child joining query search test.

public void testMinMaxChildren () throws Exception {
. . .
a s ser tThat (re sponse . g e tH i t s () . h i t s () [2] . id () , equalTo (" 2 ")) ;
asser tThat (re sponse . g e tH i t s () . h i t s () [2] . s c o r e () , equalTo (1 f)) ;

− re sponse = minMaxQuery("sum" , 0 , 3) ;
+ response = minMaxQuery(" t o t a l " , 0 , 3) ;

asser tThat (re sponse . g e tH i t s () . t o t a lH i t s () , equalTo (3 l)) ;
asser tThat (re sponse . g e tH i t s () . h i t s () [0] . id () , equalTo (" 4 ")) ;
. . .

}

Branch Change

Category: Refactoring

Project level perspective. Same as B.2.35 which refactored parsing of an index
search query.

Code level perspective. Listing below shows a change which was part of the
has child query parsing refactoring. A score type SUM was fetched from a class
ScoreType which defines mapping of the child documents into a parent document.

public void testMinMaxChildren () throws Exception {
. . .
a s ser tThat (re sponse . g e tH i t s () . h i t s () [2] . id () , equalTo (" 2 ")) ;
asser tThat (re sponse . g e tH i t s () . h i t s () [2] . s c o r e () , equalTo (1 f)) ;

− re sponse = minMaxQuery("sum" , 0 , 3) ;
+ response = minMaxQuery(ScoreType .SUM, 0 , 3) ;

asser tThat (re sponse . g e tH i t s () . t o t a lH i t s () , equalTo (3 l)) ;
asser tThat (re sponse . g e tH i t s () . h i t s () [0] . id () , equalTo (" 4 ")) ;
. . .

}

B.2.37 Conflict 37
Category: Change of IF statement condition

LV

B. Dataset of changes that led to the Merge Conflicts

Mainline Change

Category: Library removal

Project level perspective. Objects library for Java which is a helper functions
used on any object was removed from the Elasticsearch project codebase. The
library is part of Google’s Guava core libraries for Java. Similar to B.2.33, this
change was part removing the Guava library from the Elasticsearch codebase.

Code level perspective. Listing below shows a change which was part of
removing Google’s Guava Objects library. A method equal from the Guava
Objects library was changed to equals which is a common method for Java object.

private void pub l i sh (Loca lDiscovery [] members , ClusterChangedEvent
↪→ clusterChangedEvent , f i n a l Block ingClusterStatePubl i shResponseHandler
↪→ publ ishResponseHandler) {
. . .
try {

for (f i n a l Loca lDiscovery d i s cove ry : members) {
i f (nodeSpe c i f i cC lu s t e rS t a t e . nodes () . loca lNode () != null) {

. . .
d i s cove ry . c l u s t e r S e r v i c e . submitStateUpdateTask (" l o c a l−disco−

↪→ r e c e i v e (from master) " , new
↪→ ProcessedClusterStateNonMasterUpdateTask () {
@Override
public Clus t e rS ta t e execute (C lu s t e rS ta t e cu r r en tS ta t e) {

− i f (nodeSpe c i f i cC lu s t e rS t a t e . v e r s i on () < cur r en tS ta t e
↪→ . v e r s i on () && Objects . equal (nodeSpe c i f i cC lu s t e rS t a t e . nodes () . masterNodeId ()
↪→ , cu r r en tS ta t e . nodes () . masterNodeId ())) {

+ i f (nodeSpe c i f i cC lu s t e rS t a t e . v e r s i on () < cur r en tS ta t e
↪→ . v e r s i on () && Objects . equa l s (nodeSpe c i f i cC lu s t e rS t a t e . nodes () . masterNodeId
↪→ () , cu r r en tS ta t e . nodes () . masterNodeId ())) {

return cu r r en tS ta t e ;
}

. . .
}) ;

} else {
publ ishResponseHandler . onResponse (d i s cove ry . loca lNode) ;

}
}
. . .

} catch (Exception e) {
// f a i l u r e to marshal or un−marshal
throw new I l l e g a l S t a t eEx c ep t i o n (" C lus te r s t a t e f a i l e d to s e r i a l i z e " , e

↪→) ;
}

}

Branch Change

Category: Refactoring

Project level perspective. Cluster state queue from Zen discovery module which
is used for unicast discovery of nodes and selection of a master node in the cluster
was refactored so that to provide a buffer for processed cluster states which are
not committed yet. The buffer are used to holds the cluster state, then are sent to
the Zen discovery module after they are committed. The buffer allows the clus-
ter state to be committed even there is a new cluster state that has been processed.

LVI

B. Dataset of changes that led to the Merge Conflicts

Code level perspective. The listing below shows a change which was part of refac-
toring cluster state queue in the Zen discovery module. The conditions nodeSpeci-
ficClusterState.version() < currentState.version() and Objects.equal(
nodeSpecificClusterState.nodes().masterNodeId(), currentState.nodes()
.masterNodeId()), which check if a current cluster state’s version is greater than a
cluster state’s version for specific node and compare if an object of the cluster state
for the specific node is equal to an object of the current cluster state respectively,
were replaced with currentState.supersedes(nodeSpecificClusterState), which
check if the current cluster state replaces the cluster state’s for the specific node.

private void pub l i sh (Loca lDiscovery [] members , ClusterChangedEvent
↪→ clusterChangedEvent , f i n a l Block ingClusterStatePubl i shResponseHandler
↪→ publ ishResponseHandler) {
. . .
try {

for (f i n a l Loca lDiscovery d i s cove ry : members) {
i f (nodeSpe c i f i cC lu s t e rS t a t e . nodes () . loca lNode () != null) {

. . .
d i s cove ry . c l u s t e r S e r v i c e . submitStateUpdateTask (" l o c a l−disco−

↪→ r e c e i v e (from master) " , new
↪→ ProcessedClusterStateNonMasterUpdateTask () {
@Override
public Clus t e rS ta t e execute (C lu s t e rS ta t e cu r r en tS ta t e) {

− i f (nodeSpe c i f i cC lu s t e rS t a t e . v e r s i on () < cur r en tS ta t e
↪→ . v e r s i on () && Objects . equal (nodeSpe c i f i cC lu s t e rS t a t e . nodes () . masterNodeId ()
↪→ , cu r r en tS ta t e . nodes () . masterNodeId ())) {

+ i f (cu r r en tS ta t e . super s ede s (nodeSpe c i f i cC lu s t e rS t a t e)
↪→) {

return cu r r en tS ta t e ;
}

. . .
}) ;

} else {
publ ishResponseHandler . onResponse (d i s cove ry . loca lNode) ;

}
}
. . .

} catch (Exception e) {
// f a i l u r e to marshal or un−marshal
throw new I l l e g a l S t a t eEx c ep t i o n (" C lus te r s t a t e f a i l e d to s e r i a l i z e " , e

↪→) ;
}

}

B.2.38 Conflict 38
Category: Change of Method call or object creation

Mainline Change

Category: Refactoring

Project level perspective. The class loader in the common settings which is
used to load resources or classes was removed. The common settings implement
creation of the xContent. The change was made to prevent errors as the common
settings can be accessed by any plugin or internal API. With this change, the
resources or classes are now loaded using normal Java methods such as get-
Class().getResource().

LVII

B. Dataset of changes that led to the Merge Conflicts

Code level perspective. The listing below shows changes made as part of
removing the class loader in the common settings. The method loadFromStream
is used to load a file instead of loadFromClasspath.

public void testSynonymsAnalys is () throws IOException {
+ St r ing j son = " / org / e l a s t i c s e a r c h / index / ana l y s i s /synonyms/synonyms . j son " ;

S e t t i n g s s e t t i n g s = s e t t i n g sBu i l d e r () .
− loadFromClasspath (" org / e l a s t i c s e a r c h / index / ana l y s i s /synonyms/

↪→ synonyms . j son ")
+ loadFromStream (json , ge tC la s s () . getResourceAsStream (j son))

. put (" path . home" , createTempDir () . t oS t r i ng ())

. put (IndexMetaData .SETTING_VERSION_CREATED, Vers ion .CURRENT) .
↪→ bu i ld () ;

. . .
}

Branch Change

Category: Test improvement

Project level perspective. The method which resolve configuration files path
was removed. The method resolves the configuration files by looking into class path,
configuration directory and then prefixes configuration directory in the class path.
The change corrects the setup of the fake home directories for test configuration
files.

Code level perspective. The listing below shows changes which fix setting up
fake home directories for test configuration files. The home directory path home
is created using temporary directory by method createTempDir. Then the home
directory is resolved to configuration path config. Thereafter, the configuration
files are added to the config path.

public void testSynonymsAnalys is () throws IOException {
+ InputStream synonyms = getC la s s () . getResourceAsStream (" synonyms . txt ") ;
+ InputStream synonymsWordnet = getC la s s () . getResourceAsStream ("

↪→ synonyms_wordnet . txt ") ;
+ Path home = createTempDir () ;
+ Path con f i g = home . r e s o l v e (" c on f i g ") ;
+ F i l e s . c r e a t eD i r e c t o ry (c on f i g) ;
+ F i l e s . copy (synonyms , c on f i g . r e s o l v e (" synonyms . txt ")) ;
+ F i l e s . copy (synonymsWordnet , c on f i g . r e s o l v e (" synonyms_wordnet . txt ")) ;
+

Se t t i n g s s e t t i n g s = s e t t i n g sBu i l d e r () .
loadFromClasspath (" org / e l a s t i c s e a r c h / index / ana l y s i s /synonyms/

↪→ synonyms . j son ")
− . put (" path . home" , createTempDir () . t oS t r i ng ())
+ . put (" path . home" , home)

. put (IndexMetaData .SETTING_VERSION_CREATED, Vers ion .CURRENT) .
↪→ bu i ld () ;

Index index = new Index (" t e s t ") ;
. . .

}

B.2.39 Conflict 39
Category: Modification and removal of statements

LVIII

B. Dataset of changes that led to the Merge Conflicts

Mainline Change

Category: Refactoring

Project level perspective. The dependency on Java serialization which was
used to serialize exceptions was removed to prevent problems encountered when
upgrading Java Virtual Machines (JVM). The change removed the usage of Ob-
jectInputStream and ObjectOutputStream to serialize objects and added custom
serialization of exceptions.

Code level perspective. Listing below shows changes which add custom seri-
alization of Elasticsearch exceptions. If there is a byte in the stream, a key is
assigned to the integer stored in the variable-length format. Then for each key,
appropriate exception is returned.

public <T extends Throwable> T readThrowable () throws IOException {
− try {
− ObjectInputStream oin = new ObjectInputStream (this) ;
− return (T) o in . readObject () ;
− } catch (ClassNotFoundException e) {
− throw new IOException (" f a i l e d to d e s e r i a l i z e except ion " , e) ;
+ i f (readBoolean ()) {
+ int key = readVInt () ;
+ switch (key) {
+ case 0 :
+ f i n a l St r ing name = readSt r ing () ;
+ return (T) readException (this , name) ;
+ case 1 :
+ // t h i s sucks i t would be n i c e to have a be t t e r way to

↪→ cons t ruc t those ?
+ St r ing msg = readOpt iona lSt r ing () ;
+ f i n a l int idx = msg . indexOf (" (r e s ou r c e=") ;
+ f i n a l St r ing r e sou r c e = msg . sub s t r i ng (idx + " (r e s ou r c e=" .

↪→ l ength () , msg . l ength ()−1) ;
+ msg = msg . sub s t r i ng (0 , idx) ;
+ return (T) readStackTrace (new CorruptIndexException (msg ,

↪→ re source , readThrowable ()) , this) ; // Lucene 5 .3 w i l l have g e t t e r s f o r a l l
↪→ the se

+ case 2 :
+ return (T) readStackTrace (new IndexFormatTooNewException (

↪→ r eadOpt iona lSt r ing () , −1, −1, −1) , this) ; // Lucene 5 .3 w i l l have g e t t e r s
↪→ f o r a l l the se

+ case 3 :
+ return (T) readStackTrace (new IndexFormatTooOldException (

↪→ r eadOpt iona lSt r ing () , −1, −1, −1) , this) ; // Lucene 5 .3 w i l l have g e t t e r s
↪→ f o r a l l the se

+ case 4 :
+ return (T) readStackTrace (new Nul lPo interExcept ion (

↪→ r eadOpt iona lSt r ing ()) , this) ;
+ case 5 :
+ return (T) readStackTrace (new NumberFormatException (

↪→ r eadOpt iona lSt r ing ()) , this) ;
+ case 6 :
+ return (T) readStackTrace (new I l l ega lArgumentExcept ion (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ case 7 :
+ return (T) readStackTrace (new I l l e g a l S t a t eEx c ep t i o n (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ case 8 :
+ return (T) readStackTrace (new EOFException (readOpt iona lSt r ing

↪→ ()) , this) ;
+ case 9 :
+ return (T) readStackTrace (new Secur i tyExcept ion (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ case 10 :

LIX

B. Dataset of changes that led to the Merge Conflicts

+ return (T) readStackTrace (new StringIndexOutOfBoundsException
↪→ (r eadOpt iona lSt r ing ()) , this) ;

+ case 11 :
+ return (T) readStackTrace (new ArrayIndexOutOfBoundsException (

↪→ r eadOpt iona lSt r ing ()) , this) ;
+ case 12 :
+ return (T) readStackTrace (new Asse r t i onErro r (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ case 13 :
+ return (T) readStackTrace (new FileNotFoundException (

↪→ r eadOpt iona lSt r ing ()) , this) ;
+ case 14 :
+ f i n a l St r ing f i l e = readOpt iona lSt r ing () ;
+ f i n a l St r ing other = readOpt iona lSt r ing () ;
+ f i n a l St r ing reason = readOpt iona lSt r ing () ;
+ readOpt iona lSt r ing () ; // sk ip the msg − i t ’ s composed from

↪→ f i l e , o ther and reason
+ return (T) readStackTrace (new NoSuchFileException (f i l e , other

↪→ , reason) , this) ;
+ case 15 :
+ return (T) readStackTrace (new OutOfMemoryError (

↪→ r eadOpt iona lSt r ing ()) , this) ;
+ case 16 :
+ return (T) readStackTrace (new AlreadyClosedException (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ case 17 :
+ return (T) readStackTrace (new LockObtainFai ledException (

↪→ r eadOpt iona lSt r ing () , readThrowable ()) , this) ;
+ default :
+ a s s e r t fa l se : " no such except ion f o r id : " + key ;
+ }

}
+ return null ;

}

Branch Change

Category: Refactoring

Project level perspective. A new abstraction was introduced to serialize queries
by writing the current object into the output stream rather than their Json, and
deserialize queries by using their names. This change, similar to B.2.35, was part
of the index query refactoring to separate its parsing in the Elasticsearch and
query creation in the Lucene.

Code level perspective. The listing below shows changes which were part of
abstracting serialization of the index queries. The returned deserialization (T)
oin.readObject() was refactored to an object, then the object was returned.

public <T extends Throwable> T readThrowable () throws IOException {
try {

ObjectInputStream oin = new ObjectInputStream (this) ;
− return (T) o in . readObject () ;
+ @SuppressWarnings (" unchecked ")
+ T ob j e c t = (T) o in . readObject () ;
+ return ob j e c t ;

} catch (ClassNotFoundException e) {
throw new IOException (" f a i l e d to d e s e r i a l i z e except ion " , e) ;

}
}

LX

B. Dataset of changes that led to the Merge Conflicts

B.2.40 Conflict 40
Category: Changes in Different statements in the same area

Mainline Change

Category: Bug fix

Project level perspective. Support for missing fields in index queries when
serializing the queries in Json format was fixed. The wrong logic implemented in
some Java API builders resulted to missing fields such as _name which is used to
assign or tag a name to the query.

Code level perspective. The listing below shows a change which fixes the wrong
logic to support the assingment of names to the index queries. The condition
queryName != null was changed to queryName == null. The change allows the
the xContent builder to buid _name field.

public void doXContent (XContentBuilder bu i lde r , Params params) throws
↪→ IOException {
bu i l d e r . s t a r tOb j e c t (Pre f ixQueryParser .NAME) ;

− i f (boost == −1 && rewr i t e == null && queryName != null) {
+ i f (boost == −1 && rewr i t e == null && queryName == null) {

bu i l d e r . f i e l d (name , p r e f i x) ;
} else {

bu i l d e r . s t a r tOb j e c t (name) ;
bu i l d e r . f i e l d (" p r e f i x " , p r e f i x) ;
i f (boost != −1) {

bu i l d e r . f i e l d (" boost " , boost) ;
}
i f (r ewr i t e != null) {

bu i l d e r . f i e l d (" r ewr i t e " , r ew r i t e) ;
}
i f (queryName != null) {

bu i l d e r . f i e l d ("_name" , queryName) ;
}
bu i l d e r . endObject () ;

}
bu i l d e r . endObject () ;

}

Branch Change

Category: Refactoring

Project level perspective. The index query parser name which identify the
parsers to its corresponding query builder was moved from the parsers to the
builders. The change was made to link parser and builder implementations without
necessary converting queries to the xContent builders and to ensure the index
query parser names are unique.

Code level perspective. The listing below shows a change which was part of
moving the index parser name to the query builder. The query parser name
PrefixQueryParser.NAME was changed to NAME which was set in the builder.

LXI

B. Dataset of changes that led to the Merge Conflicts

public void doXContent (XContentBuilder bu i lde r , Params params) throws
↪→ IOException {

− bu i l d e r . s t a r tOb j e c t (Pre f ixQueryParser .NAME) ;
+ bu i l d e r . s t a r tOb j e c t (NAME) ;

i f (boost == −1 && rewr i t e == null && queryName != null) {
bu i l d e r . f i e l d (name , p r e f i x) ;

} else {
bu i l d e r . s t a r tOb j e c t (name) ;
bu i l d e r . f i e l d (" p r e f i x " , p r e f i x) ;
i f (boost != −1) {

bu i l d e r . f i e l d (" boost " , boost) ;
}
i f (r ewr i t e != null) {

bu i l d e r . f i e l d (" r ewr i t e " , r ew r i t e) ;
}
i f (queryName != null) {

bu i l d e r . f i e l d ("_name" , queryName) ;
}
bu i l d e r . endObject () ;

}
bu i l d e r . endObject () ;

}

LXII

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	2.1 Open Source Software and Development
	2.2 Collaborative Development Models
	2.2.1 Pull-Based Model
	2.2.2 Branching Model

	2.3 Merge Conflicts
	2.4 Related Work

	3 Prestudy
	3.1 Method
	3.1.1 Data Collection
	3.1.2 Data Analysis

	3.2 Result - Feature Integration Challenges
	3.2.1 Understanding implementation of the features
	3.2.2 Missing core classes which features depend on
	3.2.3 Merge conflicts

	3.3 Discussion and Conclusion
	3.3.1 Example of the Merge Conflict Analysis
	3.3.2 Conclusion

	4 Methodology
	4.1 Extraction of Merges with Conflicts
	4.2 Extraction of Conflicting Versions in Merge Conflict
	4.3 Analysis of the Conflicting Versions
	4.3.1 Selection of Sample Conflicting Versions
	4.3.2 Categorizing Merge Conflicts
	4.3.3 Analysis of Project Level Changes that Led to the Merge Conflicts

	5 Results
	5.1 Categories of Merge Conflicts
	5.1.1 Change of Method Call or Object Creation (MC_OC)
	5.1.2 Change of an Assert Statement Expression (AS_EXP)
	5.1.3 Addition of Statements in the Same Area (ADD_STMT)
	5.1.4 Modification and Removal of Statements (MOD/RMV_ STMT)
	5.1.5 Changes in Different Statements in the Same Area (D_STMT)
	5.1.6 Change of IF Statement condition (IF_C)

	5.2 Changes that led to the Merge Conflict
	5.2.1 Feature Introduction
	5.2.2 Refactoring
	5.2.3 Feature Enhancement
	5.2.4 Test Improvement
	5.2.5 Bug Fix
	5.2.6 Framework Removal
	5.2.7 Breaking Change Fix
	5.2.8 Library Removal

	6 Discussion
	6.1 Categorizing Merge Conflicts
	6.2 Changes that lead to the merge conflicts
	6.3 Threats to Validity
	6.3.1 Construct Validity
	6.3.2 Internal Validity
	6.3.3 External Validity
	6.3.4 Reliability

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Contributions and Limitation of the Study
	7.3 Future Work

	Bibliography
	Appendices
	Appendix A Descriptions of the Features Studied in the Prestudy
	Appendix B Dataset of changes that led to the Merge Conflicts
	B.1 Extracted commits and files associated with the merge conflicts in the dataset
	B.2 Changes that led to Merge Conflicts
	B.2.1 Conflict 1
	B.2.2 Conflict 2
	B.2.3 Conflict 3
	B.2.4 Conflict 4
	B.2.5 Conflict 5
	B.2.6 Conflict 6
	B.2.7 Conflict 7
	B.2.8 Conflict 8
	B.2.9 Conflict 9
	B.2.10 Conflict 10
	B.2.11 Conflict 11
	B.2.12 Conflict 12
	B.2.13 Conflict 13
	B.2.14 Conflict 14
	B.2.15 Conflict 15
	B.2.16 Conflict 16
	B.2.17 Conflict 17
	B.2.18 Conflict 18
	B.2.19 Conflict 19
	B.2.20 Conflict 20
	B.2.21 Conflict 21
	B.2.22 Conflict 22
	B.2.23 Conflict 23
	B.2.24 Conflict 24
	B.2.25 Conflict 25
	B.2.26 Conflict 26
	B.2.27 Conflict 27
	B.2.28 Conflict 28
	B.2.29 Conflict 29
	B.2.30 Conflict 30
	B.2.31 Conflict 31
	B.2.32 Conflict 32
	B.2.33 Conflict 33
	B.2.34 Conflict 34
	B.2.35 Conflict 35
	B.2.36 Conflict 36
	B.2.37 Conflict 37
	B.2.38 Conflict 38
	B.2.39 Conflict 39
	B.2.40 Conflict 40

