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Abstract
This thesis project explores and tests different combinations of fault tolerant tech-
niques in order to counteract radiation-induced faults in static random access mem-
ory (SRAM)-based field-programmable gate array (FPGA). The use of FPGAs has
become very popular for critical airborne systems and space applications during the
last decade due to their outstanding performance, high flexibility, low non-recurring
engineering (NRE) cost and fast time to market (TTM) compared to other cus-
tomized approaches.

Radiation-induced faults, such as single event upsets (SEUs) and single event
transients (SETs), do not permanently damage transistors or circuits but can still
cause severe system failures. These faults can be experienced at both sea level and
higher altitudes. However, these type of faults are more common at higher altitudes
due to higher radiation levels. This poses a substantial threat to mission-critical
FPGA-based applications used in airborne systems.

Many researches conducted over the years have presented mitigation techniques
such as triple modular redundancy (TMR) to be successful for reducing the chances
of failures in SRAM-based FPGAs due to radiation-induced faults. However TMR
comes with an increased area cost since three identical modules are actively running
the same design. The purpose of this thesis project is to individually test other
fault mitigation techniques as well as combinations of different techniques in order
to achieve high reliability while minimizing the overhead area and overall system
cost.

The hardware adopted for this thesis project consists of a Kintex-7 FPGA
board from Xilinx. The simulated radiation-induced faults are injected into relevant
parts of the hardware in order to test the reliability of the proposed fault mitigation
techniques.

The simulations show great results and the obtained reliability during tests
follow the expected theoretically calculated values. The results also show the impact
that the techniques has on design area and overall power consumption. Furthermore,
the trade-offs between the different mitigation techniques studied in this thesis are
presented.

Keywords: Fault Tolerance, SRAM-based FPGA, Fault Mitigation Techniques, Sin-
gle Event Effect (SEE), Single Event Upset (SEU), Single Event Transient (SET),
Triple modular redundancy (TMR), Error Correcting Code (ECC), Time-redundancy
(TR), Active Partial Reconfiguration (APR)
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1
Introduction

This chapter presents an introduction and background as well as information about
the company supervising the execution of this thesis project.

1.1 Background

As process geometries continue to shrink, embedded digital systems such as field-
programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs)
become increasingly vulnerable to state changes or temporal voltage pulses due to
radiation such as particle radiation and electromagnetic radiation. These changes,
known as single event effects (SEEs), have the potential to cause internal states and
registers to switch from a logical zero to logical one or vice versa and ultimately
even damage the transistors or circuits. These effects become increasingly problem-
atic for applications used in space and airborne systems due to the higher radiation
levels at higher altitudes.

SEEs are random and they can have a serious impact on mission-critical appli-
cations as they can result in data corruption, data loss and severe system failures.
For software processes operating on susceptible components in environments with
high radiation levels, it is important to ensure that FPGA and ASIC applications
are designed in a manner to reduce the likelihood of radiation-induced system fail-
ures. Faults that do not permanently damage transistors or circuits can still have
serious impact on the function of the application.

In low-quantity integrated circuit (IC) designs it is often favorable to use FP-
GAs before ASICs because of the low non-recurring engineering (NRE) cost and
short time to market (TTM). For space applications it is also favorable that the
design may be updated after launching the device to space. Therefore, an FPGA
is more advantageous for some applications since it can be reprogrammed while an
ASIC is customized to the design and cannot be changed. For these reasons, FP-
GAs have become widely used in applications for airborne and space systems. A
major drawback with FPGAs is that because they are reprogrammable, the design
configuration is stored in a memory known as the configuration memory which can
be very sensitive to SEEs. Consequently, an FPGA has a lower reliability than an
ASIC when exposed to ionizing radiation.

1



1. Introduction

1.2 SAAB
For companies like SAAB, creating products used at higher altitudes and in en-
vironments where a repair is undesired, SEEs could become a big problem. It is
therefore favorable to have a design process where the decreased reliability caused
by SEE is analyzed. If the decreased reliability is a problem, a mitigation technique
should be implemented with minimal effect on characteristics such as area and power
consumption of a product.

SAAB surveillance develops both airborne products as well as products used at
sea level. Different products have different reliability demands and for these reasons
they wanted to implement a design process that analyzes the effects of SEEs for a
wide range of products and environments. The mitigation techniques studied in this
report were also chosen with SAAB’s products in mind.

1.3 Single Event Effects
When a particle or wave with high energy hits the silicon in an IC the energy will
be transferred to the silicon and can cause a fault in the system. These faults
can either be of a non-destructive och destructive nature and are called SEEs. A
non-destructive fault means that the hardware is not permanently damaged from
the event and is either an single event upset (SEU) or an single event transient
(SET). Destructive effects will permanently damage the hardware; where single
event burnout (SEB) and single event latchup (SEL) are examples of such effects
[2].

1.4 Purpose and Objective
The products developed at SAAB Surveillance may be used in critical situations
where reliable systems are of great importance. Some products are also critical to
human safety and can be used in situations where an unexpected error can have a
very dangerous outcome. Evaluating the fault tolerance and sensitivity of different
designs as well as testing different mitigation techniques when needed, will help
SAAB develop even more reliable systems.

The main purpose of this thesis is to design and implement two different test
platforms in a Xilinx FPGA in order to run representative test processes. These
test platforms are then used to evaluate different design methods and to counter-
act system failures caused by SEEs focusing on system reliability, overhead area,
performance, power consumption and overall system cost.

The aim is to study both data and configuration upsets as well as transient
errors and give recommendations to improve the design process by studying new
coding styles, fault-tolerant techniques, verification techniques, etc. These goals
will be achieved by individually evaluating different fault mitigation methods as
well as combinations of them with the help of different test platforms. Some of
the methods studied are error correction encoding, redundancy techniques and ad-
vanced mitigation techniques based on the tools provided by the hardware vendor.

2



1. Introduction

Generally, the major goal was to develop, test and study different designs to reduce
the risk of failures and improve the overhead area, performance, power efficiency
and overall system cost.

1.5 Similar studies
Many researchers and students have studied the effects of SEEs and how to use
different mitigation techniques to decrease a design’s sensitivity against SEEs [3, 4,
5]. Most of these studies focus on a specific kind of mitigation technique or a specific
kind of SEE. This project is about creating a test process that SAAB can use to
easily check their designs and if needed suggest mitigation techniques depending
on their restrictions in size, performance, power consumption and system cost. In
contrast to other previous studies performed, this thesis is about developing test
platforms in a generic way in order to evaluate many types of FPGA-based designs
as well as to study several kinds of SEEs and mitigation techniques.

1.6 Scope and Limitations
The project studies SEEs only in form of SEUs and SETs. Permanent destructive
faults such as SEL and SEB are not considered.

This thesis focuses on testing and evaluating designs implemented on commer-
cial static random access memory (SRAM)-based FPGA devices from Xilinx, more
specifically on the Xilinx Kintex-7 board chosen by SAAB. The use of Flash and
Antifuse FPGAs is not studied in this work.

Techniques such as triple modular redundancy (TMR), error correcting code
(ECC), active partial reconfiguration (APR) and other types of technique combi-
nations are tested for mitigating soft SEEs. There are also other SEE mitigation
techniques at different design levels such as SEU hardening techniques for digital
CMOS designs. Since these hardening techniques are done at a logic cell design
level, these techniques are considered to be outside the project scope.

Reference parameters for fault injection simulations are based on radiation
induced faults that occur anywhere between sea level and maximum flight altitude.
However, testing and evaluating space applications can be performed in the same
manner just by applying corresponding fault injection parameter values.

Multi-cell upsets (MCUs) in form of multi-word upsets (MWUs) are not simu-
lated because they do not have any functional difference for the mitigation techniques
chosen. Since MWUs are not simulated, the results obtained are considered to be
somewhat optimistic and better than the ones expected in reality.

3
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2
Background Theory

This chapter describes the theoretical background needed to understand this project.

2.1 Radiation

Radiation comes in many forms and is defined as "The process in which energy is
emitted as particles or waves" [6]. It can be divided into ionizing or non-ionizing
radiation which depends on the amount of energy it carries. Ionizing radiation
will carry energy higher than 10 eV and has the possibility of ionizing atoms and
molecules as well as breaking chemical bounds. Ionizing radiation occurs either
as a particle, for example alpha and beta radiation, or as a wave, electromagnetic
radiation [7].

An alpha radiation particle is an atomic nuclei consisting of two protons and
two neutrons. These particles collide with other forms of matter very easily due to
their big size and relatively low speed. When this collision happens, these particles
tend to lose their energy very quickly. Alpha radiation has therefore a very low
penetrating power and can be stopped by just a sheet of paper. In the case of a
human body the first layers of skin will stop the particle if the source is outside the
body [8].

Figure 2.1: Penetrating power of alpha, beta and gamma radiation.

5



2. Background Theory

In beta radiation, the particles are electrons ejected from a nuclei moving at
a very high speed. Their penetrating power is higher than for alpha particles and
can penetrate about 1-2 cm of water. However, the penetration can be stopped by
using just a couple of mm thick aluminum [8]. A beta particle can penetrate human
skin to the layer where new cells are produced which can result in skin injury.

Electromagnetic radiation is the energy emitted in the form of waves with dif-
ferent wavelengths. Heat and radio waves are examples of electromagnetic radiation
with a long wavelength while X-rays and gamma-rays are examples of electromag-
netic radiation with a short wavelength [7]. Visible light is also categorized as elec-
tromagnetic radiation with wavelengths between 400 nm and 700 nm [9] compared
to less than 1 pm for gamma-rays. The difference between x-rays and gamma-rays
is that x-rays are produced artificially while gamma-rays occur naturally [8].

Gamma-ray has great penetrating power and compared to alpha and beta,
which can be stopped by a sheet of paper and aluminum, gamma-rays can only be
stopped by denser materials such as lead or concrete, see Fig. 2.1 [8].

2.1.1 Radiation at different altitudes
Earth’s atmosphere and magnetic field protect Earth against cosmic radiation re-
sulting in higher radiation levels at the poles and at higher altitudes. The radiation
is not constant, instead the variations can be large during for example solar flares
and can even be lethal for spacecraft crew during larger solar flares. Some radiation
is deflected by Earth’s atmosphere and magnetic field, while some is absorbed by
the atmosphere causing secondary radiation [10, 11]. A common way to measure
radiation at higher altitudes is by measuring the neutron radiation such as the rate
of flow of neutrons known as neutron flux. In Fig. 2.2, it can be seen how neutron
flux varies with altitude. The values from the plot represent New York City where
the relative radiation level at the surface is 1. It can be seen how the neutron flux
levels exponentially increase with altitude.

2.2 Field-Programmable Gate Array Architecture
FPGAs are ICs based on semiconductor devices that can be programmed and repro-
grammed to specific application designs by the use of hardware description language
(HDL). The most common type of building blocks in FPGAs are configurable logic
blocks (CLBs) that typically consist of look-up tables (LUTs), Full Adders and D-
type flip-flops as shown in Fig. 2.3. CLBs along with a network of programmable
interconnects and I/O Blocks enable the development of complex yet flexible digital
circuits.

FPGAs are programmed using configuration bitstreams that hold configuration
data. The configuration memory stores configuration data of an FPGA, with SRAM-
based configuration memory being the most common technology used for commercial
FPGA devices [13]. However, other methods for configuration storage, such as flash-
and antifuse-based FPGAs, are also used.

Usually, the configuration memory of Xilinx FPGAs is organized as an array of
frames. The entire array of frames is protected by a cyclic redundancy check (CRC)

6



2. Background Theory

Figure 2.2: Relative neutron flux depending on altitude. [12]

and each frame is protected by ECC. However, the entire array of frames in the
configuration memory is not used for a design loaded into a Xilinx FPGA, meaning
that only a fraction of the bits in the memory is essential. These bits, known as
essential bits, are associated with the circuitry of the design. Yet, only a fraction
of the essential bits are considered to be critical bits, meaning that the design will
develop a functional failure if any of these bits are altered [14].

2.2.1 SRAM-based FPGA

The technology that is most commonly used for storing configuration bitstreams
in commercial FPGAs is a type of semiconductor memory known as SRAM. The
SRAM architecture is organized as an array of memory cells consisting of flip-flop
latches built with field-effect transistors (FETs) as shown in Fig. 2.4.

SRAMs are considered to be volatile memories since they require a power
source in order to preserve data, which means that once the memory cells are pow-
ered off, the configuration bitstream will be lost. Therefore, SRAM-based FPGAs
have to be programmed after every start-up. Another downside with this technology
is that even though there are some radiation hardened SRAM-based FPGAs avail-
able, they are considerably more sensitive to radiation induced faults than other
radiation hardened technologies [15]. However, the performance, flexibility and cost
of SRAM-based FPGAs are much better than for other technologies. Characteristics
such as high performance and high flexibility combined with low overall costs are
considered to be of great benefit for airborne and space applications.
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Figure 2.3: Example of a CLB cell

Figure 2.4: SRAM memory cell

2.2.2 Flash-based FPGA
In contrast to SRAM-based FPGAs, flash-based FPGAs are built of an array of
non-volatile memory cells, which means that the configuration bitstream is not lost
after a power-off. Flash-based FPGAs can be reprogrammed but there is no need
to do so at every power-on.

The advantage of flash-based FPGAs for airborne and space applications is
that their power consumption is relatively low and the radiation tolerance is higher
than that of SRAM-based FPGAs. However, even though the permanent radiation
induced faults are reduced in flash-based solutions, transient faults are still a concern
[16].

The major drawbacks are that the performance of flash memory is lower than
for SRAM-based solutions and that the production cost is much higher.

2.2.3 Antifuse-based FPGA
Antifuse-based FPGAs are different than previously mentioned technologies in the
way that they can be programmed only once and cannot be reprogrammed after-
wards. This type of technology is beneficial in airborne and space applications due
to the low power consumption, high reliability and high design security.
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Antifuse-based FPGAs are still vulnerable to faults when running in high
radiation environments. However, there are ways to increase the availability of
antifuse-based FPGAs for permanent faults. Furthermore, transient faults have
also a significant impact on the reliability of antifused-based FPGAs in high radia-
tion environments [17] and new methods for mitigating transient faults have to be
studied.

As well as for flash-based solutions, antifuse-based FPGAs have lower perfor-
mance and higher production costs than do commercial SRAM-based FPGAs.

2.3 Single Event Effects
SEEs can be divided into destructive and non-destructive effects caused by high
levels of radiation. Destructive effects are considered to be faults experienced due
to permanent damage to transistors or circuits. Non-destructive effects, also known
as soft errors, are considered to be faults caused by internal state changes or temporal
voltage pulses. Some examples of destructive effects are SELs and SEBs. However,
the effects considered in this thesis are non-destructive effects such as SEUs and
SETs.

2.3.1 Single Event Upset
If an energized particle or wave hits a flip-flop, memory cell or register cell, it
can cause the value to flip from logical zero to a one or vice versa. This error is
categorized as an SEU and will cause that value to be permanently switched, which
results in an error that can cause a failure [18]. A memory cell can also be part of a
LUT, controlling how the logic is routed on the FPGA. If a value is changed inside
a LUT, this means that the logic has changed and will not work as designed [19].

2.3.2 Multi-Cell and Multi-Bit Upset
In addition to SEUs, there is a risk of obtaining MCUs and multi-bit upsets (MBUs)
due to radiation. MCUs are upsets where a particle affects multiple cells at the same
time. The affected cells can either be bits of the same word or bits in different words.
The probability of an MCU ranges from approximately 1 % when the Effective linear
energy transfer (LET) is 1 MeV− cm2/mg to approximately 35 % when the Effective
LET is 50 MeV− cm2/mg. The majority of these upsets, up to 22.5 % in the Effective
LET range mentioned above, are affecting two cells. Upsets affecting three cells or
four cells are less probable but each can still happen up to 7.5 % of the time [20].

MBUs are MCUs where the affected cells are part of the same word, meaning
that MBUs are a subset of all MCUs. The probability of an MBU occuring is
a lite lower than for MCU and goes from approximately 1 % when the Effective
LET is 1.2 MeV− cm2/mg and goes to approximately 28 % for an Effective LET of
50 MeV− cm2/mg [20].

These MCU and MBU probability estimates vary with FPGA technology. The
estimates presented in this section are based on the 28-nm technology used in a
Kintex 7 FPGA.
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2.3.3 Single Event Transient
An SET is when a energized particle or wave hits a logical path, causing a voltage
spike on the location and sometimes the area around it. The voltage spike can cause
a logical zero to be interpreted as a logical one and propagate to a flip-flop. If the
flip-flop is active when the wrong value reaches it and the wrong value becomes
stored in the flip-flop, this fault is then classified as an SEU [18, 2].

Technology scaling is about making transistors smaller and that has made ICs
more susceptible to SETs. The decreased capacitance has allowed a particle, or
wave, with lower energy to increase the voltage enough for it to cause an error.
Lower supply voltage has made the margins, for a logical zero or one, smaller and
therefore caused the same problem as the decreased capacitance [21].

2.3.4 Single Event Burnout
If a high-energy neutron hits a reverse-biased power diode or a transistor, the trans-
ferred energy can cause electron-hole pairs to be created in an avalanche fashion.
This effect can e.g. cause the transistor to be short-circuited and a large current
will permanent destroy the transistor [22].

2.3.5 Single Event Latchup
A latchup is when a power-surge causes a low-impedance path between the supply
voltage and ground inside the complementary metal oxide semiconductor (CMOS)
circuit. When a latchup is caused by a single event it is classified as an SEL. The
problem with a latchup is that the low impedance path will remain even after the
power-surge has dissipated. An excessive amount of current can go through the path
and cause destructive failure of the IC. The only way of clearing a latchup after it
has occurred is by removing the supply power from the circuit [23, 24].
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3
Evaluation Context

This chapter presents the hardware and mitigation techniques adopted for this
project together with a discussion of why these design decisions were made.

3.1 FPGA
Xilinx produces several different FPGAs developed specifically for aerospace and
defense applications with built-in functionality for handling SEEs [25]. They also
support separate IP cores to add more functionality handling SEEs. These FPGAs
are radiation-tested using neutron beam and all results are published on their website
[26].

The hardware chosen by SAAB for this project was a Kintex-7 KC705 eval-
uation board from Xilinx that uses the XC7K325T FPGA. The XC7K325T is a
commercially available FPGA that is built on a common 28-nm architecture used
in the Kintex-7 family.

The XC7K325T has a low power consumption as well as a medium density for
both logic and memory. The specifications can be seen Table I. This FPGA model
also has a built-in configuration scrubbing technique with support for Configuration
Readback and Self-Repair.

Table I: Product specification for the XC7K325T FPGA

Specification XC7K325T
Slices 50,950
Logic Cells 326,080
CLB Flip-Flops 407,600
Maximum Distributed RAM (Kbits) 4,000
Block RAM (36Kbits each) 445
Total Block RAM (Kbits) 16,020
DSP48E1 Slices 840
Configuration AES / HMAC Blocks 1
Configuration Memory (Mbits) 87,3

The programmable elements in an FPGA are known as CLBs. In the Kintex-7
KC705 evaluation board the Kintex-7 KC705 FPGA, each CLB consists of several
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slices and each slice consists of different logic cells. In the Kintex-7 KC705 each
slice consists of four LUTs and eight flip-flops. For digital signal processing (DSP)
functions, there are also specific DSP slices in the Kintex-7 KC705 FPGA that
consists of a pre-adder, a 25 x 18 multiplier, an adder, and an accumulator.

The LUTs in an FPGA are usually used to perform logic functions but they
can also be used as storage elements and that is known as the distributed random
access memory (RAM) or look-Up table RAM (LUTRAM). On the other hand, the
common blocks used as storage elements in an FPGA are the block random access
memorys (BRAMs).

3.2 Selection of mitigation techniques
This section will discuss why and how the different mitigation techniques were se-
lected for testing. The selection method is divided between general techniques, which
are the techniques selected from the literature review, and the improved techniques,
which are general techniques selected together with SAAB for further improvement.

3.2.1 General techniques
The techniques were selected from the literature review as the most used techniques
and some of those supplied by the vendor. The different techniques have their
advantages and disadvantages, e.g. some techniques will only protect from a certain
kind of error while others give a higher protection. The techniques that were chosen
are the following:

• Triple modular redundancy
• Error correcting code

– Hamming code
• Active partial reconfiguration
• Time redundancy
• Combinations of these techniques

A short summary for why each technique was chosen can be seen below.

Triple modular redundancy

This technique was chosen because it can handle faults in the configuration memory,
block memory as well as SETs. It is widely used for these reasons and if it is combined
with scrubbing it is possible to correct errors without the need for pausing the design.
The advantage with this method is that it increases the reliability during a finite
time-period. However, the disadvantage is that 200 % extra resources are required.

Error correcting code

Using an ECC to protect data from errors goes outside FPGAs and simple variants
will give protection for most faults without using large amount of resources.
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Hamming Code: This ECC is a simple method that is able to correct single-
bit errors caused by SEUs in memories such as BRAM and distributed memory.
However, the disadvantage is that it is not able to correct multi-bit errors caused
by MBUs.

Active Partial Reconfiguration

This technique is focused on protecting the configuration memory from SEUs and
is a good way of correcting errors in the configuration memory. However, the dis-
advantage is that both the error detection and error correction have a substantial
delay which can affect the functionality of an application.

Time redundancy

This technique is focused on protecting the design from SETs without the overhead
TMR uses. This technique is able to mask SETs by using redundant registers instead
of using e.g. TMR on the whole design. However, the disadvantage is that a delay is
required between the clocks used by the redundant registers. In some applications
this delay may be difficult and even impossible to implement without lowering the
clock frequency of the design.

3.3 Multi-word and Multi-bit Upsets
In the case of an SEU there is a possibility that the radiation will affect more
than one bit and also more than one word in the memory. This probability differs
from architecture to architecture and also depending on the radiation levels. Multi-
word upsets are harder to simulate and will increase the amount of logic needed
for simulating upsets. For the chosen mitigation techniques it will not impact the
functionality of the techniques and the comparison between them. Multi-word upsets
will for these reasons not be simulated.

Multi-bit upsets have a bigger impact on the functionality of the mitigation
techniques where the chosen ECC can repair a single bit error but not a multi-bit
error. The probability for a multi-bit upset differs, as mentioned before, and for the
FPGA used, the probability differs from approximately 1.5 %-28 %, as mentioned
before. A value of 10 % will occur when the radiation is around 20 MeV− cm2/mg-
40 MeV− cm2/mg [20] and is the value chosen for the simulations in BRAM and
distributed memory. Because the ECC used can only repair single-bit errors, only
single-bit and double-bit errors are simulated.
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4
Mitigation Techniques for FPGAs

FPGAs have become a strong candidate on the market for electronics in both avion-
ics and aerospace for its flexibility and short TTM. The problem is that FPGA in-
cludes more electronics susceptible for SEUs and SETs. Many studies have therefore
been done on how to mitigate the chances of such errors. Some of these techniques
will be presented below.

The circuit in Fig. 4.1 will be used as a reference circuit to describe the func-
tionality behind the mitigation techniques that can protect against SETs. The
signals A and B goes into an AND gate and if both A and B are ’1’ the output, Y,
will be ’1’ , otherwise it will be ’0’. Signal Y will then go into a register, saving the
value and outputting it every time Clk goes to ’1’.

&

A

B

Y

Clk

Figure 4.1: Refence circuit with an AND gate and a register where a wire is getting
hit by a particle causing an SET

Now assume that the circuit in Fig. 4.1 is hit by a particle with enough energy
to flip the value of B, see Fig. 4.2. This fault may happen just before the rising
edge of Clk which would result in the wrong value becoming saved in the register,
see Fig. 4.2.

Particle Hit

A

B

Y

Clk

Figure 4.2: Timing-table for circuit in Fig. 4.1

An SET is a temporary error while an SEU, in for example a LUT, is a per-
manent error and will change the functionality of the design. In Table IIa the LUT
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for the AND gate in Fig. 4.3 is shown. If the particle hits the LUT instead of a
wire, it might result in an erroneous LUT as shown in Table IIb. This effect would
change the behavior and result in the timing-table seen in Fig. 4.4.

&

A

B

Y

Clk

Figure 4.3: Reference circuit with an AND gate and a register where the LUT is
getting hit by a particle causing an SEU

Table II: Possible effects on a LUT when hit by a particle.

(a) LUT for AND gate in
Fig. 4.3 before particle hit

A B Y
0 0 0
0 1 0
1 1 1
1 0 0

(b) LUT for AND gate in
Fig. 4.3 after particle hit

A B Y
0 0 0
0 1 0
1 1 1
1 0 1

Particle Hit

A

B

Y

Clk

Figure 4.4: Timing-table for circuit in Fig. 4.3

The results from the simulations will be compared to a basic fault tolerant
model where the reliability for the reference design that doesn’t use any mitigation
technique is calculated using:

Rreference(t) = e−λ·t

λ = Failure rate

t = time

The configuration memory, the BRAM and the distributed memory have dif-
ferent failure rates and are presented as λconfig, λBRAM and λLUTRAM respectively
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when they need to be distinguished from each other. The results will also include
the mean time to failure (MTTF) which can be calculated from the model using:

MTTF =
∞∫

0

R(t) dt

which for the reference-design becomes:

MTTFreference =
∞∫

0

e−λ·t dt =
[ 1
−λ

e−λ·t
]∞

0
= 0− 1

−λ
= 1
λ

4.1 Triple modular redundancy

The most used and studied technique is TMR where the logic is implemented in three
copies, executed concurrently, with a majority-voter at the output. This technique
can cover both SEUs and SETs occurring in one of the copies at any moment or a
permanent error in the logic of one copy [27]. If a permanent fault occurs in one of
the copies, the design is not be able to support a temporary SET or an SEU in any
of the copies still functioning.

&

A

B

Y1

&

A

B

Y2

&

A

B

Y3
Clk

Voter

Z

Figure 4.5: Circuit with an AND gate and a register using TMR where a wire is
getting hit by a particle, causing an SET
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Particle Hit

A

B

Y1

Y2

Y3

Z

Clk

Figure 4.6: Timing-table for circuit in Fig. 4.5

Fig. 4.5 shows a design using TMR getting hit by a particle in one of its wires
causing an SET, resulting in the behavior seen in Fig. 4.6. In Fig. 4.7 the same
design is shown but where the particle hits the LUT for the AND gate instead of
the wire, causing the error seen in Table II. The resulting behavior can be seen in
Fig. 4.8.

&

A

B

Y1

&

A

B

Y2

&

A

B

Y3
Clk

Voter

Z

Figure 4.7: Circuit with an AND gate and a register using TMR where a LUT is
getting hit by a particle, causing an SEU
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Particle Hit

A

B

Y1

Y2

Y3

Z

Clk

Figure 4.8: Timing-table for circuit in Fig. 4.7 with particle hitting the LUT for
the AND gate

Several different versions of TMR are used for mitigation errors where the
simplest one takes the whole logic and implements three copies of it together with a
single voter at the output [2], as for example the design in Fig. 4.5. More advanced
versions use several voters at the end to ensure that a faulty voter can not affect
the result. Both a single voter and multiple voters use more than 200 % extra area
compared to the original design and are not always possible. When using partial
TMR, the whole logic is not triplicated, instead only critical parts of the design are
implemented with redundancy. However, this simplification has a lower overhead
area at the cost of decreased reliability and relies on a design analysis to find the
critical parts of the design.

The reliability-model for TMR is calculated below and doesn’t take into ac-
count the failure rate for the voter.

Pn(t) = Probability of system being in state n at time t
Q = Transition matrix

The TMR technique has three states, P2 where all three copies work, P1 where
two copies work and the voter can mask the behavior from the third copy and P0
where two or more copies are not working resulting in system failure. To find the
reliability R(t) the equation below should be solved for P2 and P1 which added
together gives R(t).

P′(t) = P(t) ·Q
P′(t) = [P ′2(t) P ′1(t) P ′0(t)]
P(t) = [P2(t) P1(t) P0(t)]

Q =

−3λ 3λ 0
0 −2λ 2λ
0 0 0
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P ′2(t) = −3λ · P2(t)
P ′1(t) = 3λ · P2(t)− 2λ · P1(t)
P ′0(t) = 2λ · P1(t)

Laplace transform

f ′(t) ∝ sf̃(s)− f(0)→ s · P̃(s)−P(0) = P̃(s) ·Q
where

P(0) = [P2(0) P1(0) P0(0)] = [1 0 0]

s · P̃2(s)− 1 = −3λ · P̃2(s)
s · P̃1(s)− 0 = 2λ · P̃2(s)− 2λ · P̃1(s)
s · P̃0(s)− 0 = 2λ · P̃1(s)

P̃2(s) = 1
s+ 3λ → P2(t) = e−3λ·t

P̃1(s) = 3λ · P̃2(s)
s+ 2λ = 3λ

(s+ 2λ)(s+ 3λ) = 3
s+ 2λ −

3
s+ 3λ

→ P1(t) = 3e−2λ·t − 3e−3λ·t

RTMR(t) = P2(t) + P1(t) = 3e−2λ·t − 2e−3λ·t

In Fig. 4.9 the reliability is plotted over time and shows that TMR-based design
should have better reliability than the reference design during a finite time-period.
After this finite time-period, the reliability is much lower for the TMR-based design
than for the reference design.

Figure 4.9: The reliability of reference design and TMR design without voter
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The MTTF for TMR is calculated as follows:

MTTFTMR =
∞∫

0

3e−2λ·t − 2e−3λ·t =
[ 3
−2λe

−2λ·t − 2
−3λe

−3λ·t
]∞

0

= 0−
( 3
−2λ −

2
−3λ

)
= 3

2λ −
2

3λ = 5
6λ

These results show that MTTFTMR ≈ 0.83 ·MTTFreference.

4.2 Error-correcting code
ECC is a method for protecting data by adding redundant data or parity bits.
Different methods have different overhead and can handle different amounts of faults.
An example of parity bits is adding one more bit to the word, being ’1’ if the amount
of ones in the word is even, otherwise ’0’. This method makes it possible to detect
if one of the bits has flipped value. The limitation of this method is the fact that
an even number of bit-flips cannot be able to be detected. The method will not be
able to correct the bit either because there is no way of knowing which bit has the
wrong value.

This project has used one specific kind of ECC which is called Hamming code
and is described below.

4.2.1 Hamming code
Hamming code is a form of error-correction code capable of detecting 2-bit errors
and correct a single-bit error. It uses parity bits and for n parity bits it will be able
to protect the data

Data bits : d = 2n − n− 1 (4.1)

giving a total block length of

Block length : b = 2n − 1 (4.2)

To be able to detect 2-bit errors it will need an additional parity bit and the technique
for that will not be described in this project. The structure of a 7-bit block with three
parity bits together with the coverage of each parity bit can be seen in Table III[2,
28].

Table III: Structure and parity coverage for a 7-bit hamming-code with three parity
bits

Bit 7 6 5 4 3 2 1
Block data d4 d3 d2 p3 d1 p2 p1
p1 X X X X
p2 X X X X
p3 X X X X
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From Table III it can be seen which data-bit is covered by which parity bit and the
data-coverage will look like in Table IV

Table IV: Data coverage for each parity bit

d4 d3 d2 d1
p1 X X X
p2 X X X
p3 X X X

If the data x = ”1011” should be converted it would get the form y = ”101p31p2p1”
and the parity bits are calculated using Table IV. Each parity bit takes the data-bits
it covers and counts how many of them are ’1’. If the amount is even the parity
becomes a ’0’ and if it is odd the parity becomes a ’1’.

p1 : d1 =′ 1′, d2 =′ 1′ and d4 =′ 1′ → 3→ p1 =′ 1′

p2 : d1 =′ 1′, d3 =′ 0′ and d4 =′ 1′ → 2→ p2 =′ 0′

p3 : d2 =′ 1′, d3 =′ 0′ and d4 =′ 1′ → 2→ p3 =′ 0′

The resulting block becomes y = ”1010101” and when it is decoded the placements
for all ’1’ is taken and then counted and converted as when encoded.

1 : 0001
3 : 0011
5 : 0101
7 : 0111

Sum : 0224
Result : 0000

If there is an error the result will point to the position of the error. If for example
”1010101” gets an error and becomes ”1000101” the result will be

1 : 0001
3 : 0011
7 : 0111

Sum : 0123
Result : 0101

pointing at position 5 where the error occurred. This means that this bit should be
flipped in order to obtain the original value [29].

This process can also be done using matrix-calculation and creating the code
generator matrix G and the parity-check matrix H can be done from the process
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above. Checking if the amount is even and odd can be done using mod-function.

(
(
x1 x2 · · · xd

)

g1,1 g1,2 · · · g1,b
g2,1 g2,2 · · · g2,b
... ... . . . ...
gd,1 gd,2 · · · gd,b

) mod 2 =
(
y1 y2 · · · yb

)

(
(
y1 y2 · · · yb

)

h1,1 h1,2 · · · h1,n
h2,1 h2,2 · · · h2,n
... ... . . . ...
hb,1 hb,2 · · · hb,n

) mod 2 =
(
r1 r2 · · · rn

)

Start with the generator matrix for the same size as the example above

(
(
d4 d3 d2 d1

)
g1,1 g1,2 g1,3 g1,4 g1,5 g1,6 g1,7
g2,1 g2,2 g2,3 g2,4 g2,5 g2,6 g2,7
g3,1 g3,2 g3,3 g3,4 g3,5 g3,6 g3,7
g4,1 g4,2 g4,3 g4,4 g4,5 g4,6 g4,7

) mod 2

=
(
d4 d3 d2 p3 d1 p2 p1

)
The first column in the G matrix should only let d4 through, second should let d3
through, third should let d2 through and fifth should let d1 through.

(
(
d4 d3 d2 d1

)
1 0 0 g1,4 0 g1,6 g1,7
0 1 0 g2,4 0 g2,6 g2,7
0 0 1 g3,4 0 g3,6 g3,7
0 0 0 g4,4 1 g4,6 g4,7

) mod 2

=
(
d4 d3 d2 p3 d1 p2 p1

)
The columns that are left can be found from Table IV where p1 uses d1, d2 and d4,
p2 uses d1, d3 and d4 and p3 uses d2, d3 and d4.

(
(
d4 d3 d2 d1

)
1 0 0 1 0 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1

) mod 2

=
(
d4 d3 d2 p3 d1 p2 p1

)
The parity-check matrix is actually Table III rotated 90°

(
(
d4 d3 d2 p3 d1 p2 p1

)


1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1


) mod 2 =

(
r1 r2 r3

)
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The Hamming code can correct single-bit errors and will therefore be able to
correct 90 % of all injected errors in BRAM and distributed memory. This is true
as long as a second error is not injected to the same address before the first one has
been repaired. This possibility is minor and if ignored the reliability-model for the
BRAM will become:

RECC−BRAM(t) = e−0.1λBRAM t

with a MTTF of

MTTFECC−BRAM =
∞∫

0

e−0.1λBRAM ·t dt =
[ 1
−0.1λBRAM

e−0.1λBRAM ·t
]∞

0

= 0− 1
−0.1λBRAM

= 10
λBRAM

The same model can be applied to the distributed memory by changing λBRAM
to λLUTRAM .

4.3 Active partial reconfiguration

Some Xilinx devices support perform partial reconfiguration, which is the repro-
gramming of a portion of the configuration memory in an FPGA without changing
the whole configuration memory. However, the possibility of performing a full re-
configuration of the configuration memory is also available.

Usually, when the configuration memory of an FPGA is configured, the device
is held in reset while a design is loaded by an external controller. However, when
performing active partial reconfiguration or APR, the FPGA doesn’t have to enter a
reset mode since only a portion of the configuration memory is reconfigured without
affecting the rest of the FPGA. This means that part of the FPGA can still be up and
running while the selected portion of the configuration memory is reprogrammed.

The APR technique can be used to remove errors with the soft error mitigation
(SEM) intellectual property (IP) core provided by Xilinx. The configuration memory
uses a CRC-based error detection method and if e.g. a 1-bit error is detected, the
error can be repaired based on an ECC algorithm using APR. However, a delay may
be experienced when the error detection as well as the repair processes are used.
This means that the configured application may result in disruption or degradation
of service until the FPGA configuration memory is repaired.

The Xilinx SEM IP core also provides the ability to detect and correct multiple-
bit errors by using the CRC-based enhanced repair method together with APR.

In Fig. 4.10 it can be seen how the LUT from Table IIb has been repaired after
a certain delay.
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delay

Particle Hit Repaired

A

B

Y

Clk

Figure 4.10: Timing-table for circuit in Fig. 4.3 when APR is active

4.4 Scrubbing

Scrubbing is an error-mitigation technique that runs error detection on the memory
either continuously or periodically. When an error is detected, the data is restored
to a previously known error-free condition by the use of redundancy. This means
that the redundant data has to be stored in an external memory. This approach
is useful in FPGAs for detecting and correcting SEUs in the configuration memory
[30].

Modern FPGAs perform scrubbing in the configuration memory by using in-
circuit configuration interfaces such as the internal configuration access port (ICAP)
interface used in Xilinx devices. When a designer chooses to use the Xilinx scrubbing
technique for the configuration memory of an FPGA, the repair process can be
achieved without interrupting the functionality of the design [31]. However, the
time it will take for an error to be repaired depends on the number of sensitive
configuration frames which is proportional to the total percentage of essential bits.

4.5 Time-redundancy

Time-redundancy uses the transient properties of an SET to mitigate possible errors.
A voltage-peak caused by an energized particle or wave will dissipate and by using
several registers, triggering at different moments in the clock-cycle, an error can be
masked. The difference between the clocks must be longer than the SET, otherwise
it will affect more than one register and the voter will give the wrong value [2].

If the circuit in Fig. 4.1 uses timing-redundancy the circuit can look as Fig. 4.11
instead.
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Figure 4.11: Circuit with an AND gate and three registers implementing time
redundency

The timing-table will then look like in Table V where it can be seen that only
register 2 will receive the wrong value. This error can then by masked by the voter
using majority decision.

Table V: Timing-table for circuit in Fig. 4.11

Particle Hit

A

B

Y

Clk 1

Clk 2

Clk 3

V1

V2

V3

Z

Clk
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5
Evaluation Method

This chapter describes how the project was performed. First, the test designs are
described as well as the different methods used for error injection. Furthermore, the
testing-protocol is described and the process of method selection is mentioned.

5.1 Error injection

SEUs can occur in all forms of memory, including BRAM, distributed memory
and configuration memory. The main forms of memories that were injected with
errors are BRAM, distributed memory and configuration memory. The errors in the
configuration memory were injected using Xilinx SEM IP core which includes an
error injection function. On the other hand, BRAM and distributed memory were
injected using specific test-platforms developed during the project.

5.1.1 BRAM

Error were injected in BRAM by creating a component that wraps around the
BRAM memory. The component needs a BRAM memory in form of a simple dual-
port memory and will inject an error when its injecterror pin goes high. It will then
inject an error at the address specified on the "read address" port by flipping one or
several bits in the word and then writing the word back to the memory. A random
generator decides which bit or bits in the word are flipped.

5.1.2 Distributed memory

To inject errors in the distributed memory, a specific error injection block was de-
signed. This block works as an interface between the application and the distributed
memory and is able to inject errors simultaneously with the regular read and write
performed by the application. This error injection block is generic and not design
specific, which means that it can also be used for injecting errors in BRAM.

The reason for using a different type of error injection block for the distributed
memory was to test the functionality of injecting errors simultaneously with regular
read and write, which enables the possibility of injecting errors in randomly selected
addresses.
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5.1.3 Configuration memory
To inject errors in the configuration memory, an SEM IP core from Xilinx was used.
It used a 40-bit address together with a strobe to change states or inject errors.
This SEM IP core also offers the possibility of using APR to repair errors in the
configuration memory.

The SEM IP core was controlled by a state machine, with the purpose of
injecting errors at random addresses in the design and monitoring the status-signals
from the SEM IP core. The state-machine kept the SEM IP core in observation
state at all times except for when an error was injected. Depending on the settings
selected for the SEM IP core, the status-signals differed and if no error-classification
is activated all errors are classified as uncorrectable and essential, causing the SEM
IP core to stop. When this happens, the SEM IP core is restarted and the error
injection continues until the tested design signals an error in the system.

5.1.4 Single Event Transient
To inject pulses in the designs simulating SETs a block that creates pulses from the
clock was implemented. The block then uses a random-generator to decide which
port out from the block that should receive the pulse. The different ports are then
wired to different parts of the design where an OR gate is implemented, simulating
the result from a SET.

5.2 Test designs
The designs that were used to test the different mitigation techniques were similar
in nature, but helped verify that the results were accurate. In general, each design
included three simulated sensors, one with saved values and two using arithmetic
functions, and each sensor was connected to a block with a PID controller and a
transfer function. The whole design with all three sensors, three PID controllers
and three transfer functions was then duplicated with comparators connected to the
outputs. The designs use some form of memory to store values for the input of the
sensors. This was developed in order to test the vulnerability of the different types
of memories used in FPGAs.

For both test design 1 and test design 2, linear-feedback shift register (LFSR)
modules were developed to randomize the error injection address and bit in the
memories. This includes both configuration memory as well as application memory
such as BRAM and distributed memory.

5.2.1 Test design 1
This design uses BRAM to store all values for one of the sensors, 16384 36-bit words.
Each of these words is used to create a sine wave and a single error will result in
a sample with wrong value is getting sent to the output within one period of the
sine wave. A single error will result in a complete system failure because the two
parts of the design will output different values. These errors are monitored by 6
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voters where each transfer function output, and its duplicated version, is compared
by 2 voters to decrease the possibility of a voter-error causing a system failure not
to show.

The error injection function works, as mentioned above, by implementing a
simple dual-port memory and injecting an error at the word being read at the
moment the injection-pin goes high.

5.2.2 Test design 2
Test design 2 was developed in order to test the vulnerability of the distributed
memory available in FPGAs. The values stored in the distributed memory are
critical for the proper function of the application. In case an error occurs in a
critical address of the memory such as an SEU, the whole system will result in a
failure.

The distributed memory was divided in 4 KB blocks where each block consists
of 210 addresses with 32 bit data. The reference design uses 2 memory blocks, where
only ≈ 10% of the addresses in each block are critical for the design.

Another important aspect of test design 2 is that the error injection in the
memory is performed simultaneously with the regular read and write performed by
the application. Compared to test design 1, this method enables the opportunity of
injecting errors in randomly selected addresses instead of design specific addresses.
However, in order to achieve this functionality, an extra clock is needed. In this case,
the extra clock should be at least 4 times faster than the clock used for regular read
and write. For this specific design, the extra clock used for error injection in the
distributed memory was set to 100 MHz. The regular clock used by the application
was set to 17 MHz.

A specific module was designed for the error injection functionality in the
distributed memory. The module is easy to implement and works as an interface
between application and the memory. This error injection module is not design
specific and can also be used for injecting errors in BRAM.

5.3 Testing
The different mitigation techniques were tested by error injection performed in
BRAM, distributed memory and configuration memory. Time redundancy (TR)
was also tested using SET error injection but because of lack of information for
pulse length and probability this form of error injection was not used on the other
mitigation techniques.

5.3.1 BRAM, distributed memory and configuration mem-
ory

Firstly, the two designs were tested without any mitigation technique to obtain
reference data and then each of the designs went through three different tests. Error
injection was performed in BRAM, distributed memory and configuration memory
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separately. Each of the tests for BRAM and distributed memory was made by
injecting 5000 errors. The tests for configuration memory was done in the same
fashion except that 10 000 errors was injected. The amount of observed failures as
well as the MTTF were logged for each test.

After obtaining the reference results, the different mitigation techniques were
tested separately as well as combined with other mitigation techniques. This was
done because a technique that only protects e.g. the BRAM is not able to perform
better than the failure rate for the configuration memory in a real-life setting. All of
the injected errors were done using random-generators, with a uniform distribution,
to achieve as realistic results as possible. Unfortunately, there are certain factors that
limit the obtained results in contrast to realistic results for the hardware used. For
example, it is hard to simulate the probability that a single event affects several bits
in close proximity. The statistics for this probability varies with FPGA architecture
techniques, radiation characteristics and how close the memory bits are placed next
to each other.

5.3.2 Single event transient pulses
Some studies have looked at the length of SET pulses but these results are based on
other architectures and cannot be used as a reference for the Kintex 7 FPGA. These
studies show test-results with pulse lengths in the span of 100 ps-1400 ps [21, 32].
The logic needed to create the pulse did however not allow for shorter pulse lengths
than 3 ns. The tests where therefore instead made to check the behavior of TR when
the pulse lengths are around the same size as the delay between the register-clocks.
The tests are made under the premise that the design runs in a clock-frequency
lower that what is possible and therefore the delay between the register-clocks can
be changed without affecting the system-clock. The pulses from the earlier described
injection-block was wired to 32 different points in the design while trying to vary
the distance to the next register. The different pulse lengths used in the tests are
integer multiplication from the shortest pulse length possible, resulting in 3 ns, 6 ns
and 9 ns. It is most interesting to see the behavior when the pulse length is just
longer than the delay why the clock-delays were chosen to 2 ns, 5 ns and 8 ns.
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Results

First, this chapter presents the results of each mitigation technique that can protect
against SEUs as well as combinations of these techniques. The results include failure
rates for error injection in BRAM, distributed memory and configuration memory.
The resource utilization and maximum clock-frequency for each technique and test
design are presented. Furthermore, a comparison among all SEU mitigation tech-
niques is presented in terms of reliability, performance, overhead area, power con-
sumption and overall system cost. Finally, the results from the SET simulations are
presented for both the reference design and TR-based design with different delays
between the clocks.

The MTTF is presented for all techniques. The mean number of SEUs per
failure was obtained by the simulations and the MTTF was then calculated in years
based on the data obtained from the Xilinx failures in time (FIT) rate calculator.
The data from the FIT rate calculator was based on a neutron flux of 4361 N/cm2/h
which is the nominal value for latitude and longitude coordinates of Chalmers Uni-
versity of Technology at an altitude of 34 000 feet with moderate solar activity.

6.1 Reference Design
Reference tests were performed on both test designs by injecting errors into the
configuration memory for design 1 and 2, into the BRAM for design 1 and into
the distributed memory for design 2. The results from these tests were used as
reference for the comparison of the different mitigation techniques. Table VI shows
the maximum clock frequency and the total on-chip power for the two test designs.

Table VI: Maximum clock frequency and total on-chip power of reference test
designs 1 and 2

Test Design Clock Frequency [MHz] Total on-chip Power [W]
Design 1 76.823 0.596
Design 2 17 0.821

In addition to the maximum clock frequencies presented in Table VI, design 1
uses an extra clock of 100 MHz for injecting errors in the configuration memory. De-
sign 2 also uses an extra clock of 100 MHz for injecting errors into the configuration
memory as well as the distributed RAM.
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Table VII shows the utilization of the FPGA resources available for design 1
and 2. The major difference between the two test designs can be observed in the
utilization percentage of BRAM and LUTRAM. Design 1 uses the BRAM resources
to store values that are critical for the proper function of the application. This is
reflected in the utilization percentage of BRAM for design 1. On the other hand,
design 2 uses the distributed memory resources to store values that are critical for
the proper function of the application. This is reflected in the utilization percentage
of LUTRAM for design 2.

Table VII: Utilization percent of reference test designs 1 and 2

Resource Design 1 utilization [%] Design 2 utilization [%]
LUT 2.77 5.16
LUTRAM 0.00 2.20
FF 0.75 0.46
BRAM 8.09 0.00
DSP48 17.14 7.62
I/O 1.60 2.80
BUFG 6.25 15.62
MMCM 10.00 10.00

Table VIII shows the results of the error injections. A test of 10 000 errors
injections was performed in the configuration memory for each test design. Further-
more, a test of 5000 error injections was performed in the BRAM for test design 1
and in the distributed memory for test design 2. The results are presented as the
total number of observed failures and the calculated MTTF.

The observed failures of test design 1 are 413 failures per 5000 injected errors
for the BRAM test and 68 failures per 10 000 injected errors for the configuration
memory test. The mean number of SEUs was ≈ 12 SEUs for the BRAM test and
≈ 147 SEUs for the configuration memory test which was calculated to 2.818 and
8.578 years respectively.

The observed failures of test design 2 are 154 failures per 5000 injected errors
for the distributed memory test and 74 failures per 10 000 injected errors for the
configuration memory test. The mean number of SEUs was ≈ 32 SEUs for the
distributed memory test and ≈ 135 SEUs for the configuration memory test, which
were calculated to 1.883 and 7.866 years respectively.
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Table VIII: Total number of injections, observed failures and MTTF of reference
test designs 1 and 2

Design 1 Design 2
Total BRAM injections 5000 0
Observed failures in BRAM 413 N/A
BRAM MTTF [Years] 2.818 N/A
Total distributed memory injections 0 5000
Observed failures in distributed memory N/A 154
Distributed memory MTTF [Years] N/A 1.883
Total configuration memory injections 10 000 10 000
Observed failures in configuration memory 68 74
Configuration memory MTTF [Years] 8.578 7.866

Figs. 6.1 and 6.2 show the plots for the expected and obtained reliability over
time for the BRAM and configuration memory of test design 1. The expected
reliability was calculated based on R(t) = e−λt where λ is the failure rate obtained
from λ = 1/MTTF .

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.1: Reliability results for the BRAM test of reference design 1
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(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.2: Reliability results for the configuration memory test of reference de-
sign 1

Figs. 6.3 and 6.4 show the plots for the expected and obtained reliability over
time for the distributed memory and configuration memory of test design 2.

As shown in the plots, the obtained reliability results for both reference designs
are within the expected range. However, small deviations from the expected values
can be observed.

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.3: Reliability results for the distributed memory test of reference design 2
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(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.4: Reliability results for the configuration memory test of reference de-
sign 2

6.2 Triple modular redundancy

TMR was implemented on both test designs and tests were performed in the same
manner as for the reference designs. The results from these tests were used to
compare this specific mitigation technique with theoretical calculations as well as to
compare it with other mitigation techniques. Table IX shows the maximum clock
frequency and the total on-chip power for both test designs.

Table IX: Maximum clock frequency and total on-chip power of TMR-based test
designs 1 and 2

Test Design Clock Frequency [MHz] Total on-chip Power [W]
Design 1 76.823 1.231
Design 2 17 1.912

The maximum clock frequencies are shown in Table IX. However, as presented
in the reference design, both TMR test designs also use an extra clock of 100 MHz
for error injection.

Table X shows the utilization of the FPGA resources available for both test
designs when implementing TMR. When comparing to the reference design, some
resources such as LUTs, LUTRAMs and flip-flops (FFs) are, as expected, 3 times
larger when implementing TMR.
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Table X: Utilization percent of TMR-based test designs 1 and 2

Resource Design 1 utilization [%] Design 2 utilization [%]
LUT 8.29 15.36
LUTRAM 0.00 6.60
FF 2.24 1.31
BRAM 24.27 0.00
DSP48 51.43 23.86
I/O 1.60 2.80
BUFG 6.25 28.12
MMCM 10.00 10.00

Table XI shows the results of the error injections. As for the reference, a test
of 10 000 error injections was performed in the configuration memory for each test
design. Furthermore, a test of 5000 error injections was performed in the BRAM
for test design 1 and in the distributed memory for test design 2. The results are
presented as the total number of observed failures and the calculated MTTF.

The observed failures of test design 1 are 484 failures per 5000 injected errors
for the distributed memory test and 78 failures per 10 000 injected errors for the
configuration memory test. The mean number of SEUs was ≈ 10 SEUs for the
BRAM test and ≈ 128 SEUs for the configuration memory test which was calculated
to 2.411 and 7.479 years respectively.

Table XI: Total number of injections, observed failures and MTTF of TMR-based
test designs 1 and 2

Design 1 Design 2
Total BRAM injections 5000 0
Observed failures in BRAM 484 N/A
BRAM MTTF [Years] 2.411 N/A
Total distributed memory injections 0 5000
Observed failures in distributed memory N/A 184
Distributed memory MTTF [Years] N/A 1.581
Total configuration memory injections 10 000 10 000
Observed failures in configuration memory 78 89
Configuration memory MTTF [Years] 7.479 6.529

The observed failures of test design 2 are 185 failures per 5000 injected errors
for the distributed memory test and 90 failures per 10 000 injected errors for the
configuration memory test. The mean number of SEUs was ≈ 27 SEUs for the
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distributed memory test and ≈ 112 SEUs for the configuration memory test which
was calculated to 1.581 and 6.529 years respectively.

As shown in Table XI, the number of observed failures is higher than for the
reference design. This result is obtained because the TMR design has a higher
reliability than the reference during a specific amount of time and after that the
reliability is much lower compared to the reference.

Figs. 6.5 and 6.6 show the plots for the expected and obtained reliability over
time for the BRAM and configuration memory of test design 1. The expected
reliability was calculated based on R(t) = 3e−2λt − 2e−3λt for a TMR design where
λ is the failure rate obtained from the reference simulations.

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.5: Reliability results for the BRAM memory test of TMR design 1

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.6: Reliability results for the configuration memory test of TMR design 1
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Figs. 6.7 and 6.8 show the plots for the expected and obtained reliability over
time for the distributed memory and configuration memory of test design 2.

The obtained reliability results for both TMR designs are within the expected
range. However, small deviations from the expected values can be observed because
of a low accuracy that depends on the small number of injected errors.

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.7: Reliability results for the distributed memory test of TMR design 2

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.8: Reliability results for the configuration memory test of TMR design 2
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6.3 Error-Correcting Code
A Hamming-based ECC was implemented on both test designs and tests were per-
formed in the same manner as for the reference designs. The results from these
tests were used to compare this specific mitigation technique with theoretical calcu-
lations as well as to compare it with other mitigation techniques. Table XII shows
the maximum clock frequency and the total on-chip power for both test designs.

Table XII: Maximum clock frequency and total on-chip power of ECC-based test
designs 1 and 2

Test Design Clock Frequency [MHz] Total on-chip Power [W]
Design 1 76.823 0.658
Design 2 17 0.824

The maximum clock frequencies are shown in Table XII. However, as presented
in the reference and TMR-based designs, both ECC-based test designs also use an
extra clock of 100 MHz for error injection.

Table XIII shows the utilization of the FPGA resources available for both test
designs when implementing an ECC. When comparing to the reference design, some
resources such as LUTs, LUTRAMs and FFs are larger due to the extra area needed
for implementing the Hamming-based ECC.

Table XIII: Utilization percent of ECC-based test designs 1 and 2

Resource Design 1 utilization [%] Design 2 utilization [%]
LUT 2.91 5.40
LUTRAM 0.00 2.60
FF 0.81 0.48
BRAM 9.44 0.00
DSP48 17.14 7.62
I/O 1.60 2.80
BUFG 6.25 15.62
MMCM 10.00 10.00
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Table XIV shows the results of the error injections. As for the reference, a test
of 10 000 error injections was performed in the configuration memory for each test
design. Furthermore, a test of 5000 error injections was performed in the BRAM
for test design 1 and in the distributed memory for test design 2. The results are
presented as the total number of observed failures and the calculated MTTF.

The observed failures of test design 1 are 40 failures per 5000 injected errors
for the distributed memory test and 60 failures per 10 000 injected errors for the
configuration memory test. The mean number of SEUs was ≈ 125 SEUs for the
BRAM test and ≈167 SEUs for the configuration memory test which was calculated
to 29.167 and 9.722 years respectively.

Table XIV: Total number of injections, observed failures and MTTF of ECC-based
test designs 1 and 2

Design 1 Design 2
Total BRAM injections 5000 0
Observed failures in BRAM 40 N/A
BRAM MTTF [Years] 29.167 N/A
Total distributed memory injections 0 5000
Observed failures in distributed memory N/A 15
Distributed memory MTTF [Years] N/A 18.764
Total configuration memory injections 10 000 10 000
Observed failures in configuration memory 60 76
Configuration memory MTTF [Years] 9.722 7.641

The observed failures of test design 2 are 15 failures per 5000 injected errors
for the distributed memory test and 76 failures per 10 000 injected errors for the
configuration memory test. The mean number of SEUs was ≈322 SEUs for the
distributed memory test and ≈131 SEUs for the configuration memory test which
was calculated to 18.764 and 7.641 years respectively.

As shown in Table XIV, the number of observed failures is much lower for the
BRAM and the distributed memory when using the Hamming-based ECC than for
the reference design. The only observed failures in the BRAM and the distributed
memory are due to multi-bit errors which constitute about 10 % of all injected errors.
This is because a Hamming-based ECC is able to detect, but not correct, multi-bit
errors.

Figs. 6.9 and 6.10 show the plots for the obtained reliability over time for the
distributed memory and configuration memory of test design 1.
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(a) The Reliability from test plot-
ted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.9: Reliability results for the BRAM memory test of design 1 with ECC
in BRAM

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.10: Reliability results for the configuration memory test of design 1 with
ECC in BRAM

Figs. 6.11 and 6.12 show the plots for the obtained reliability over time for
the distributed memory and configuration memory of test design 2. As shown in
Fig. 6.7, the reliability is much higher over time for the ECC-based test design 2,
whereas the reliability over time for the configuration memory should be close to
the obtained reference values. As previously mentioned, the low accuracy of the
reliability plots depend on the small number of injected errors.
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(a) The Reliability from test plot-
ted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.11: Reliability results for the distributed memory test of design 2 with
ECC in the distributed memory

(a) Reliability obtained from test
plotted together with expected value
from model

(b) The difference between results ob-
served at test and expected value
from model

Figure 6.12: Reliability results for the configuration memory test of design 2 with
ECC in the distributed memory
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6.4 Active partial reconfiguration
The use of Xilinx’s APR technique for the configuration memory was implemented
on both test designs and tests were performed in the same manner as for the reference
designs. Table XV shows the maximum clock frequency and the total on-chip power
of the two test designs with APR.

Table XV: Maximum clock frequency and total on-chip power of APR-based test
designs 1 and 2

Test Design Clock Frequency [MHz] Total on-chip Power [W]
Design 1 76.823 0.611
Design 2 17 0.828

However, both APR-based test designs also use an extra clock of 100 MHz for
error injection and error detection and correction of the configuration memory.

Table XVI shows the utilization of the FPGA resources available for both
test designs when implementing APR. When comparing to the reference design,
some resources such as LUTs, LUTRAMs, FFs and BRAMs are larger due to the
extra area needed for implementing the Xilinx SEM IP core with the APR function
enabled.

Table XVI: Utilization percent of APR-based test designs 1 and 2

Resource Design 1 utilization [%] Design 2 utilization [%]
LUT 2.99 5.54
LUTRAM 0.07 2.25
FF 0.86 0.58
BRAM 8.43 0.34
DSP48 17.14 7.62
I/O 1.60 2.80
BUFG 9.38 15.62
MMCM 10.00 10.00

Table XVII shows the results of the error injections. As for the reference, a
test of 10 000 error injections was performed in the configuration memory for each
test design. No tests were performed for the BRAM and distributed memory in
this case since the results are considered to be the same as the ones obtained for
the reference test design. The results are presented as the total number of observed
failures and the calculated MTTF.

The observed failures of test design 1 are 66 failures per 10 000 injected errors
for the configuration memory test. The mean number of SEUs was ≈152 SEUs
which was calculated to 8.838 years based on the neutron flux data.
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Table XVII: Total number of injections, observed failures and MTTF of APR-
based test designs 1 and 2

Design 1 Design 2
Total configuration memory injections 10 000 10 000
Observed failures in configuration memory 66 70
Configuration memory MTTF [Years] 8.838 8.283

The observed failures of test design 2 are 70 failures per 10 000 injected errors
for the configuration memory test. The mean number of SEUs was ≈142 SEUs
which was calculated to 8.283 years based on the neutron flux data.

As shown in Table XVII, the number of observed failures is lower than for the
reference design. However, no major change in the reliability was observed since the
values are quite close to the ones obtained for the reference test designs.

Fig. 6.13 shows the plot for the obtained reliability over time for the config-
uration memory of test design 1. The obtained reliability result for test design 1
with APR is very close to the reference design. However, small deviations from the
expected values can be observed because of a low accuracy that depends on the
small number of injected errors.

(a) Reliability obtained from test
plotted together with expected value
from reference

(b) The difference between results ob-
served at test and expected value
from reference

Figure 6.13: Reliability results for the configuration memory test when using APR
in design 1

Fig. 6.14 shows the plot for the obtained reliability over time for the configu-
ration memory of test design 2. As for test design 1, the obtained reliability result
for test design 2 with APR is very close to the reference design.
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(a) Reliability obtained from test
plotted together with expected value
from reference

(b) The difference between results ob-
served at test and expected value
from reference

Figure 6.14: Reliability results for the configuration memory test when using APR
in design 2

6.5 TMR combined with APR

TMR was combined with the use of Xilinx APR technique for the configuration
memory on both test designs. All tests were performed in the same manner as for
the reference designs. Table XVIII shows the maximum clock frequency and the
total on-chip power respectively for the two TMR test designs with APR.

Table XVIII: Maximum clock frequency and total on-chip power of TMR-based
test designs 1 and 2 with APR

Test Design Clock Frequency [MHz] Total on-chip Power [W]
Design 1 76.823 1.247
Design 2 17 1.947

However, both TMR test designs with APR also use an extra clock of 100 MHz
for error injection and error detection and correction of the configuration memory.
This clock is directly connected to the Xilinx SEM IP core.

Table XIX shows the utilization of the FPGA resources available for both
test designs when implementing TMR with APR. When comparing to the reference
design, some resources such as LUTs, LUTRAMs, FFs and BRAMs are larger due
to the extra area needed for implementing the Xilinx SEM IP core with the APR
function enabled.

45



6. Results

Table XIX: Utilization percent of TMR-based test designs 1 and 2 with APR

Resource Design 1 utilization [%] Design 2 utilization [%]
LUT 8.50 15.74
LUTRAM 0.06 6.65
FF 2.34 1.43
BRAM 24.61 0.34
DSP48 51.43 22.86
I/O 1.60 2.80
BUFG 12.50 28.12
MMCM 10.00 10.00

Table XX shows the results of the error injections. As for the reference, a test
of 10 000 error injections was performed in the configuration memory for each test
design. No tests were performed for the BRAM and distributed memory in this case
since the results are considered to be the same as the ones obtained for the test
design with TMR alone. The results are presented as the total number of observed
failures and the calculated MTTF.

The observed failures of test design 1 are 77 failures per 10 000 injected errors
for the configuration memory test. The mean number of SEUs was ≈ 130 SEUs
which was calculated to 7.5758 years based on the neutron flux data.

Table XX: Total number of injections, observed failures and MTTF of reference
test designs 1 and 2

Design 1 Design 2
Total configuration memory injections 10 000 10 000
Observed failures in configuration memory 77 84
Configuration memory MTTF [Years] 7.576 6.940

The observed failures of test design 2 are 84 failures per 10 000 injected errors
for the configuration memory test. The mean number of SEUs was ≈119 SEUs
which was calculated to 6.940 years based on the neutron flux data.

As shown in Table XX, the number of observed failures is lower than for the
test designs with TMR alone. As shown for the previous designs with APR, no
major change in the reliability was observed since the values are quite close to the
ones obtained for the test designs with TMR alone.

Fig. 6.15 shows the plot for the obtained reliability over time for the configu-
ration memory of test design 2.
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(a) Reliability obtained from test
plotted together with expected value
from reference

(b) The difference between results ob-
served at test and expected value
from reference

Figure 6.15: Reliability results for the configuration memory when using TMR
combined with APR in design 1

Fig. 6.16 shows the plot for the obtained reliability over time for the configu-
ration memory of test design 2.

(a) Reliability obtained from test
plotted together with expected value
from reference

(b) The difference between results ob-
served at test and expected value
from reference

Figure 6.16: Reliability results for the configuration memory when using TMR
combined with APR in design 2

6.6 Comparison
In this section, a comparison between the different techniques is presented. All
values are an average of the results from the two test designs. These graphs visually
show how the techniques differ in reliability and effectiveness.
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6.6.1 Performance, utilization and power
As show in previous sections, the performance of the designs didn’t change while
performing the different tests. The clock frequencies for both design were constant
for all tests. However, when using the APR functionality from the SEM IP core, an
extra clock of 100 MHz was required.

As shown in Fig. 6.17 the total average utilization when implementing TMR
is three times higher than for the reference design. The utilization is also higher
when implementing ECC in the BRAM and distributed memory compared to the
reference designs. However the difference in utilization for the ECC in BRAM and
distributed memory compared to the reference designs is very limited since just a
small percentage is added to the whole design. This extra utilization percentage is
obtained when the Hamming code is implemented. Finally, the utilization is also
higher when using the APR, both with and without a combination of TMR. The
extra utilization percentage obtained when using APR is due to the implementation
of the SEM IP core.

(a) Total average utilization for differ-
ent techniques

(b) Total average power-usage for dif-
ferent techniques

Figure 6.17: Negative effects for different techniques.

The power consumption varies among the different mitigation techniques where
TMR is the technique consuming most power due to the use of three redundant
systems.

6.6.2 Reliability
The investigated mitigation techniques have different levels of reliability with the
ECC in BRAM and distributed memory being the most reliable mitigation technique
in terms of injections per failure. Fig. 6.18 shows the failure rate of the different
mitigation techniques where application memory is the average result obtained from
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BRAM and distributed memory. The average value of BRAM and distributed mem-
ory is presented since both memories are used for the same purpose in the design.
However, it is important to notice that even though TMR shows a low injection per
failure rate, as seen in Fig. 6.18, it does not necessarily mean that the system is less
reliable when using TMR.

Figure 6.18: Average failure rate comparison among all tested techniques

The TMR technique is still the most reliable method during a finite time-
period as shown in Fig. 6.19. Generally, it takes about 5.3 years for both TMR
designs to reach the same probability of failure as for the reference designs. Until
that point in time, the TMR designs have a remarkably higher reliability than does
the reference.

Figure 6.19: Average failure rate comparison between the reference and TMR

6.6.3 Overall system cost
Parameters such as performance, utilization and power will affect the overall system
cost. The reference design is considered to be the system having the lowest cost
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compared to the design implementing the different techniques used. When using
TMR, due to the large utilization and power consumption, the system is considered
to have a much higher cost than when using only ECC in BRAM and distributed
memory. However, the use of APR is considered to be device specific since it only
applies to some Xilinx FPGAs and a Xilinx license is required in order to use the
SEM IP core which holds the APR functionality. Therefore, it is important to
consider the Xilinx license cost when analyzing the different trade-offs.

6.7 Single Event Transient
The SET simulations were performed by injecting 500 pulses in each design. Three
different pulse length were used and tested separately in order to study how different
delays between clocks affected the sensitivity. Table XXI shows the number of
failures that were observed when injecting the design with these 500 pulses.

Table XXI: Failures observed with 500 injected SETs pulses

Pulse length
Design 3 ns 6 ns 9 ns
Reference 26 52 73
TR with 2 ns delay between each clock 15 49 67
TR with 5 ns delay between each clock 0 10 73
TR with 8 ns delay between each clock 0 0 20

Three different pulse lengths of 3 ns, 6 ns and 9 ns were used to simulate SETs.
First, the SET test was performed on a reference design. Afterwards, the SET test
was performed on three designs using the TR technique on several critical parts
of the application. The three TR-based designs had delays of 3 ns, 6 ns and 9 ns
between the clocks of the redundant registers.

As seen in Table XXI, the application tested is more sensitive to SETs when
the clock frequency is increased and the delay between the redundant registers is
decreased.

50



7
Discussion

This chapter provides a discussion of the different test designs and the results ob-
tained. Firstly, the advantages and drawbacks of the test designs are discussed.
Furthermore, the results are analyzed, discussed and compared to the expected val-
ues. Finally, the performance of the project is discussed and some recommendations
on future work are presented.

7.1 Limitations of test designs and error injection
methods

Both test designs developed have the same functionality that is based on PID con-
trollers. The reason for basing the test designs on PID controllers was because they
can be used for many flight control applications. For example, PID controllers can
be used for stabilizing the flight altitude and speed in unmanned aerial vehicles
(UAVs). If a failure occurs due to, e.g., SEUs or SETs in the functionality of the
PID controller that is used for stabilizing the altitude or speed of a UAV, then the
UAV will lose its stability and that can have serious consequences.

The major difference between the two test designs developed during this project
is that they use different types of memories to store values that are critical for the
proper function of the application. However, the functionality of these memories
is the same. Test design 1 uses BRAMs to store data and test design 2 uses the
distributed memory available in the FPGA. The use of distributed memory has the
advantage that it has a better performance and it is faster than BRAM. However,
distributed memory is only a good choice for a small amount of data. If an applica-
tion needs to store a large amount of data in memory then BRAM is the best choice.
The resources available for distributed memory in an FPGA are low compared to
the 445 BRAMs available. Furthermore, based on Xilinx data the distributed mem-
ory has lower reliability than the BRAM since the occurrence of an SEU in the
distributed memory is about four times higher than for BRAM. Apart from the
fact that the two test designs use different types of memories to store values that
are critical for the proper function of the application, the error injection methods
are also different. Even though the results from injecting errors in different types
of memories are going to be the same, the two different error injection methods
were developed to cover a broad application spectrum since the methods can be ap-
plied for different application specific tests. Both error injection methods have some
advantages and drawbacks. Therefore, in order to select the right error injection
method when testing the memory, the trade-offs of each method should be carefully
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considered.
The first error injection method developed in this project was used for testing

test design 1. The advantage with this method is that it only uses one clock, which
is the same clock used for the regular read and write. The major drawback with this
method is that for some applications where the read and write is continuous, the
error injection can only take place in application specific addresses. This means that
if an application is designed in a way where a memory read or write occurs every
clock cycle, then it is impossible to inject errors in a randomly selected address.
The addresses used for the error injection will be the same as the one used by the
application. Another drawback with this method is that the error injection can
experience a delay since the errors are not injected in the memory simultaneously
with the regular read and write. However, this delay may not necessarily affect the
failure outcome.

The second error injection method was developed for testing test design 2. The
advantage with this method is that the error injection is performed simultaneously
with the regular read and write performed by the application. In contrast to the
first injection method, the second method can be used for applications where the
read and write is continuous. This facilitates the possibility of injecting errors in
addresses that are not application specific, such as completely random addresses.
The drawback with this method is that an extra clock is needed in order to inject
errors into the memory. The frequency of this extra clock has to be at least three
times higher than of the clock frequency used by the application for regular read
and write. This method will not be feasible for some applications that operate on
high frequencies since adding an extra clock that has a three times higher frequency
may be impossible to implement.

LFSR modules are used in all error injection methods to decide the error
injection address and bit for the configuration memory as well as the application
memories such as BRAM and distributed memory. The LFSRs were used to simulate
a more realistic situation where a particle can hit anywhere on the FPGA. The
problem with LFSRs is that they have a sequence and will not give a fully random
output. For a specific bit-width it will always follow that specific sequence and that
can have an effect on the simulation results. A way of increasing sequences that
follow a specific number is by increasing the number of bits the LFSR uses and then
only output some of the bits. An example is a 3-bit LFSR where the three values
after a 5 will always be [3, 7, 6]. If a 5-bit LFSR is used instead, where the three
least significant bits are extracted, the three values that follow a 5 could either be
[3, 6, 4], [3, 7, 6], [2, 5, 2] or [2, 4, 0]. This method gives a result that is more
realistic having the value 0 as part of the sequence as well.

If the error injection is started simultaneously as the tested application, the
major problem with using the LFSR is that the errors would always be injected
at the same addresses and bits. This is an issue since an LFSR has the same
sequence of values. To overcome this problem the error injection will not start until
a button on the board is pressed. This solution makes the start value of the LFSR
sequence to be randomly selected. However, the simulation results will be based
on random values as long as the button is pushed with equal possibility anywhere
in the sequence. However, when the sequence becomes large, the time it takes for
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LFSR to do one loop also becomes long. For a 29 bit LFSR, the period is 536 870 911
which at 100 MHz will take over 5 s. It will then be hard for the tester to push the
button at a random point in the sequence. Increasing the LFSR with one bit will
approximately double this time span.

It is harder to simulate SETs than SEUs because a SET pulse should be able
to hit anywhere at the board with equal probability. To achieve these more realistic
results, the block creating the pulses and the paths used to inject SETs at all possible
points in the design have to be created manually. Since this method is not feasible,
the way the SETs were simulated in this project is by choosing 32 random points in
the design where the pulse could hit. Due to logical paths, is a hard task to place
these points with different distances from the registers as well as at points where
the pulse would have different probabilities of reaching the registers. Therefore, the
simulation results differ from realistic results even if the pulse lengths would have
been more realistic.

7.2 Evaluation of test results
The discussion about the test results is divided in the same sections as the com-
parison in Section 6.6. First, a discussion about the negative effects is presented
followed by a discussion regarding the reliability as well as a discussion about future
work.

7.2.1 Performance, utilization and power
In terms of performance, each test design had a constant clock frequency for all tests.
However, the difference in clock frequencies between the two designs are because the
applications perform the same task but were developed in different ways. In the case
with the techniques affecting the clock frequency it will depend on what is the critical
path in the design. In the test designs, the critical path would be the path from
after the sensor, through the PID controller and transfer function where it then
would meet a register on the feedback path. This means that for example the ECC,
which affects the speed of the application memory, could affect the maximum clock
frequency if it is part of the critical path. There is also a risk that TMR will affect
the maximum clock frequency since adding one or several voters at the output of the
design will increasing the pathway. There is also a risk that because of the increased
utilization, the tools would not be able to optimize the design in the same manner
and in that way affect the maximum possible clock frequency.

The performance requirements for the test platform used in design 2 are higher
than for the test platform used in design 1. Therefore, the test platform used for
design 2 may be limited to some applications in order to meet all time requirements.

In terms of utilization, the design with the lowest utilization is the reference
design. The utilization when implementing TMR was, as expected, three times
higher than the reference. In theory it should be more than three times higher
because the design is multiplied by three together with one or several voters at the
end. The reason why a bigger difference is not obtained in the results is because that
certain parts of the design are not multiplied, for example the clock generator. The

53



7. Discussion

utilization of the ECC and APR-based designs is higher than that of the reference
design but the difference is not significantly big. Therefore, the extra utilization
needed for the implementation of the ECC functionality for BRAM and distributed
memory is beneficial when looking at the obtained reliability boost.

The power consumption is a little more than twice for the TMR-based designs
than that of the reference. The power consumption was expected to be three times
higher, but the reason why this result was not obtained is probably due to a high
default FPGA power usage. This extra power usage can be a problem where low
power is of great importance, for example in battery powered systems. The power
consumption for the ECC and APR-based designs is also higher due to the extra
functionality needed but, as for the utilization, the difference is not significantly
large.

7.2.2 Reliability
One important aspect when studying the reliability results is that the tests were
based on a neutron flux obtained for an altitude of 34 000 feet with moderate solar
activity and coordinates for Chalmers University of Technology. This means that
these tests consider only the reliability for an application executed on this constant
altitude and coordinates. These parameters were just used as an example and may
be changed for future tests. For example, an application that is used in an airplane
is not going to be constantly at the same coordinates and altitude. Therefore, the
relevant average altitude, coordinates and flight hours for an application used in an
airborne system should be selected in order to obtain a realistic MTTF.

The results of techniques such as TMR were as expected, following the theory
model. However, there was still a significant difference between the obtained and
expected values for some tests. The accuracy of the test can be increased by increas-
ing the number of total injected errors. Furthermore, it is important to notice that
even though the number of injected errors per failure is lower for the TMR-based
designs comparing to the reference, the reliability is still higher for the TMR design
than for the reference design the first 5.3 years.

The reliability of the designs was expected to be higher when the repair-based
APR method was used. The reason for a high failure rate was that the test de-
signs were built in such a way that a temporary error and disruption due to the
repair process were automatically considered as failures even though the configura-
tion memory was repaired. In cases where the design is not sensitive to temporary
errors or disruptions, this technique would probably bring better results. For ex-
ample, a signal processing unit using some form of feedback will give inaccurate
results during some time and then continue with the expected functionality. For
example, when a particle hits the digital circuit of a surveillance camera the error
may result in blurry frames before a self-repair is conducted. A self-repair is much
more effective than having a technician repairing the fault.

One of the biggest reliability difference obtained in relation to the reference
was for the Hamming-based ECC design used for application specific memories such
as BRAM and distributed memory. With this technique, the only uncorrectable
errors experienced in the application memories were multi-bit errors, which were
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considered to be about 10 % of all events based on Xilinx data. This is because a
Hamming-based ECC is only able to correct single-bit errors.

The results from the SET testing is, as mentioned earlier, not based on realistic
pulse lengths but could still hint of the behavior of TR. The simulations showed that
if the pulse length is shorter than the delay, between the register, the SET would
be completely masked. If the pulse length is a bit longer, percentage-wise, than the
delay the probability of a SET getting latched was decreased. When this method is
used in more real-life settings the delay would be decreased to much smaller value
because of the real SET pulse lengths. Something to take in consideration then is
that clock-skew as well as the hold times for the registers will have a larger impact
on the behavior. This means that clock delays created in the design would have to
be a bit larger than needed to counter these effects.

7.3 Future Work
There is still a lot of work to be done in order to have more accurate results when
determining the reliability of a system. For example, the number of injected errors
in this project was limited to 10000 error injections for the configuration memory
and 5000 error injections for BRAM and distributed memory. These injection limits
were set due to the limited time of the project. To obtain more accurate results, the
number of injected errors should be radically increased in future projects.

Furthermore, the operating clock frequencies of the test designs can be lowered
to the point where the chance of obtaining a failure in the configuration memory
when using APR is low. Since the repair-based APR method has a detection and a
correction delay, the maximum clock frequency of a design should be selected based
on this delay.

There are also many other mitigation techniques, as well as combination of
techniques, that can be tested in the future. The test platforms developed in this
project should work with other mitigation techniques and help evaluating these
techniques.

SETs are hard to simulate in an FPGA and the development of a better test
platform for simulating the effects of SETs would be preferred. It is desirable that
future test platforms studying SETs are able to create simulated pulses with more
realistic pulse lengths as well as a simple way of routing these pulses to different
points in the design.

It is always good to test the hardware in a real-life high-radiation environment
in order to study the accuracy of the simulations. Therefore, it is really recom-
mended to test the FPGA in a radiation chamber if the time, place and budget of
the project permits it.
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It is known that when ICs such as FPGAs are exposed to high levels of radiation, for
example particle radiation and electromagnetic radiation, unexpected state changes
and temporal voltage pulses can occur which can lead to errors and system fail-
ures. These changes, known as SEEs, can cause an FPGA-based application to
malfunction and in some cases even pose a threat to human safety. Therefore, the
main purpose of this thesis was to develop test platforms to evaluate different design
methods in order counteract system failures caused by radiation induced faults.

There are several types of mitigation techniques used for increasing the reli-
ability of FPGAs, such as TMR, ECC, APR, scrubbing, TR, etc. Some of these
techniques are studied in this thesis by using the two different test platforms de-
veloped. The two test platforms use different types of error injection methods in
memories such as BRAMs and distributed memory in order to cover a wide range
of designs to test.

The simulation results showed great results for both designs implementing
TMR as well as ECC. The circumstances for where these techniques would give
the highest improvement do however differ. TMR showed a lower MTTF than
the reference design but a higher reliability during the first part of its lifespan.
ECC could however protect the application memory from 90 % of all upsets due
to the ability of correcting single-bit upsets. The technique that did not show a
substantial improvement for the test designs was APR. The reason for this small
improvement was probably due to the delay of detection and repair which meant
that the designs would be classified as failed before the upset was repaired. Further
test of this technique, in applications where temporary incorrect result is allowed, is
recommended because of its possibilities to increase the reliability and availability.

SET simulations showed that TR has the possibility of completely masking
these erroneous pulses that propagate through the design. The simulations were,
however, made using unrealistic long pulse lengths due to limitation in the pulse
generation. Further tests with more accurate conditions are recommended to study
how clock-skew and hold times for registers would affect the results.
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