
�

��

��

�

��

��

��

�

Latency and Throughput in
Center versus Edge Stream Processing
A Case Study in the Transportation Domain

Master’s thesis in Computer Science: Algorithms, Languages and Logic

Gregor Ulm

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016

Latency and Throughput in
Center versus Edge Stream Processing

A Case Study in the Transportation Domain

GREGOR ULM

Department of Computer Science and Engineering
Networks and Systems Division

Distributed Computing and Systems Research Group
Chalmers University of Technology

Gothenburg, Sweden 2016

Latency and Throughput in
Center versus Edge Stream Processing
A Case Study in the Transportation Domain
GREGOR ULM

© GREGOR ULM, 2016.

Supervisor: Vincenzo Massimiliano Gulisano, Computer Science and Engineering
Examiner: Philippas Tsigas, Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Networks and Systems Division
Distributed Computing and Systems Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The cover image is a graphical representation of the concrete topology that
was executed in order to measure the performance of our implementation of a pro-
gram that solves the accident notification problem. Operators are represented as
nodes. In particular, this graph highlights the parallelization of the operators σ
and π, which have two and three instances, respectively.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Latency and Throughput in
Center versus Edge Stream Processing
A Case Study in the Transportation Domain
GREGOR ULM
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The emerging Internet of Things (IoT) enables novel solutions. In this thesis report,
we turn our attention to the problem of providing targeted accident notifications
in near real-time. We use traffic data generated by Linear Road, a popular bench-
mark for stream processing engines, and simulate a possible real-world scenario in
which connected cars continuously send position updates. We analyze this stream
of position updates with the goal of identifying accidents, so that targeted accident
notifications can be issued. This means that only cars within a certain distance of
a known accident site will be notified.
In a real-world scenario, the required data analysis could be performed in different
ways. We consider two possibilities. First, position reports are aggregated by road
side units (RSUs) and forwarded to a central server. Afterwards, the results are
sent back to the cars, again involving RSUs for transmission. We refer to this as
center stream processing. Second, all data analysis is performed on RSUs. An RSU
is less powerful than a server. However, RSUs are located much closer to the cars
than a central server. We refer to this case as edge stream processing. Performing
computations directly on RSUs has the benefit that the cost of the roundtrip time
for data transmission from RSUs to the server and back will be avoided. We use
a contemporary stream processing engine for data analysis, and compare latency
and throughput of an implementation of our solution to the accident notification
problem in both cases.

Keywords: big data, data analysis, data mining, distributed systems, edge comput-
ing, fog computing, Internet of Things, parallel-distributed systems, stream process-
ing, real-time analytics.

v

Acknowledgements
First and foremost I would like to thank Philippas Tsigas, Marina Papatriantafilou,
and Vincenzo Gulisano of the Distributed Systems and Computing research group
for their encouragement and support. They organized the supervision of Master’s
thesis projects in a highly efficient manner. In particular, I enjoyed the collaborative
environment they fostered among their students. As the supervisor of this thesis
project, Vincenzo provided helpful and timely feedback as well as guidance when
needed. I also benefited from feedback by Philippas and Marina.
Drafts of this thesis report were read by Oskar Abrahamsson, Martin Helmersson,
Barnabas Sapan, Lucas Wiman, and Niklas Logren.

Gregor Ulm, Gothenburg, August 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3
1.3 Solution Overview . 4
1.4 Evaluation . 5
1.5 Thesis Organization . 5

2 Background 7
2.1 Streams . 7
2.2 The Linear Road Benchmark . 8
2.3 Stream Processing Engines . 9
2.4 Vehicular Networks . 9

3 Detailed Problem Description 11
3.1 Accident Detection in a Future IoT Setting 11
3.2 Modeling Accident Detection Experimentally 12

4 Related Work 15
4.1 Linear Road . 15
4.2 Stream Processing . 16

5 Case Study: Accident Notifications 17
5.1 Overview . 17
5.2 The Abstract Topology . 17
5.3 Extending the Abstract Topology . 19
5.4 Implementation Details . 19
5.5 The Deployed Topology . 26

6 Evaluation 29
6.1 Evaluation Setup . 29
6.2 Measurements . 30
6.3 Comparing the Server with Edge Devices 30

ix

Contents

7 Conclusion and Outlook 33

Bibliography 35

A Preliminaries I
A.1 Running the Linear Road Data Generator on Linux I
A.2 Python Script for Identifying Accidents III

B Accident Notification Source Code V
B.1 Topology . V
B.2 Spout . VII
B.3 Bolts . X

C Listing of Measurements XIX
C.1 Server . XIX
C.2 Edge Devices . XX

x

List of Figures

1.1 Data transfer from car to server and back 4

5.1 Simplified abstract accident detection topology 18
5.2 Extended abstract accident detection topology 19
5.3 Data source . 20
5.4 Splitting the data stream . 22
5.5 Identifying stopped cars in position reports 23
5.6 Accident notification . 24
5.7 Logging . 26
5.8 Deployed topology . 27
5.9 Accident notifications across segment intervals 27

6.1 Total latency in center stream processing 31
6.2 Total latency in edge stream processing 31

xi

List of Figures

xii

List of Tables

C.1 Measurements on an AMD Opteron 2374 HE XIX
C.2 Measurements on a single Odroid-XU4 XX

xiii

List of Tables

xiv

1
Introduction

This thesis project is concerned with latency and throughput in stream processing.
Concretely, the focus is on the problem of providing near real-time accident notifi-
cations. In this introductory chapter we present the motivation behind our thesis
project, highlighting its theoretical and practical relevance. This is followed by a
problem description, which is presented in general terms. After providing an outline
of our solution to the accident notification problem and a brief description of the
evaluation, we conclude with an overview of the subsequent chapters of this thesis
report.

1.1 Motivation

Big Data and the Emergence of the Internet of Things
Big Data is a hot topic both in computing research and industry. Indeed, the
amount of data generated and processed has become substantial. Businesses and
governments alike are increasingly pressured to make better use of the plethora of
data at their disposal [5]. In a recent McKinsey study [20], for instance, it was
estimated that efficient use of big data could lead to cost savings of $200 billion a
year in the US healthcare sector, or e100 billion a year "in operational efficiency
improvements" in European bureaucracies. As questionable as the predilection of
management consultants for big round numbers may be, there is little doubt that
there is value in data. That value may manifest itself after asking the right questions
— Nate Silver’s [27] highly accurate predictions of the outcome of the 2008 US pres-
idential elections come to mind — or in processing uniform data quickly, with the
goal of getting results sooner. The latter is particularly related to the current emer-
gence of the Internet of Things (IoT), which consists of devices that are connected
to the Internet. According to a 2015 OECD study covering the top 25 industrialized
countries, there are around 300 million IoT devices. South Korea currently leads
this development with close to 40 IoT devices per 100 inhabitants [22]. Yet, this is
only the beginning.
Heterogeneous computing is common in the Internet of Things, considering that
devices of vastly different computational power are in use. An IoT device possesses
only a small fraction of the computational power of a dedicated server. Furthermore,
parallel and distributed computing is becoming ever more important, for a variety
of reasons. This relates to the power wall [18]. Even though we are able to build
larger CPUs with greater numbers of transistors, there are physical limitations with

1

1. Introduction

regards to clock frequency, which makes it very difficult to efficiently cool chips that
are running at high clock speeds. In addition, we are currently witnessing the end
of Moore’s law, which originally, in 1965, postulated that chip performance would
double every year. Moore revised this prediction in 1975 in order to state that
the number of transistors on a chip would double every two years [25]. In 2015,
though, Intel stated that progress has been slowing to a doubling every two and a
half years [6]. Thus, current engineering challenges are the effective utilization of
multi-core CPUs and heterogeneous computing architectures. This is a problem in
the small, for instance in ARM’s big.LITTLE architecture [14], which pairs tiny,
slow and low-powered CPU cores with larger, faster, and much less energy-efficient
ones, utilizing whichever is more appropriate for the task at hand. It is also a
problem in the large, for instance in distributed systems at web scale.

Benefits of the Internet of Things
The proliferation of IoT data sources has the potential to increase quality of life.
There were early proposals of an arguably frivolous nature, though. For instance,
recall the concept of the intelligent fridge, which is able to figure out that your
milk has likely gone sour. While consumers considered innovation of such nature
merely "moderately useful" [23], there have been other advances. One example is
advanced metering via the smart grid [33], which promises to provide deeper insights
in, for instance, electricity consumption patterns of households. Arguably, there
are IoT applications that would increase human welfare to an even greater extent,
such as modifying driver behavior in an attempt to benefit the environment, limit
traffic congestion, and reduce the risk of accidents. In the last two decades, several
jurisdictions [11, 9, 34, 24] have experimented with variable tolling, also referred to
as congestion pricing, as a means of modifying the behavior of vehicle drivers, based
on economic principles. Through variable pricing, drivers face positive or negative
incentives, e. g. in order to resolve traffic congestions at certain hours, the transport
authority could deliberately increase tolls for expressways.

Challenges
Devices that are connected to the Internet are capable of producing large amounts
of data ad infinitum. In order to process these data efficiently, we need suitable ap-
proaches. Google’s MapReduce programming paradigm [8] has proven highly suit-
able for distributed processing of batch data. Yet, in a connected world where hun-
dreds of millions, and soon billions, of devices continuously produce data, MapRe-
duce is not applicable, as it is restricted to processing finite batches of data. Instead,
we need to be able to handle data that may not be transmitted as fixed-sized batches
but instead in a continuous manner as streams, which are potentially unbounded
sequences of data. This entails that data may come in variable loads, with peaks
and droughts. Consequently, there is a need for being able to process such data
efficiently, so that we are able to get continuous results, achieve high throughput,
and low latency. Stream processing engines were designed to solve this problem.
The challenges surrounding big data in an IoT setting go beyond merely using the

2

1. Introduction

right tools. It is also important to use one’s tools well. This means that throughput
and latency are affected by the chosen deployment strategy. Considering that data
is generated by many edge devices, and potentially processed by a central server,
there are several possibilities. One approach consists of sending all data to a central
server, processing the data, and sending the results back to where they are needed.
Alternatively, one could try to utilize all available resources and perform computa-
tions on edge devices as well as a central server. Lastly, one could perform all data
analysis on edge devices, omitting a server altogether. This concept is commonly
referred to as edge computing, or fog computing.
Parallel-distributed stream processing is particularly relevant in an IoT setting,
where hardware of vastly different capabilities may be in use. There could be one
single server farm with multiple many-core CPUs, housed at a remote location, in
addition to several smaller multi-core servers in several larger cities, and millions
of devices, spread all over the world, with a less powerful CPU. This leads to an
interesting engineering challenge: if one wanted to analyze data that is generated
by IoT devices, then sending all data to a central server farm would be a relatively
expensive operation. On the other hand, processing data closer to their source might
be a more promising approach as this eliminates the cost of transferring data to the
server for processing, and results back to the point of origin, if this is where the
results of the data analysis are needed. Thus, depending on the time it takes to
transfer data, moving computations to the periphery and processing them on de-
vices with much less computational power than a central server may be a worthwhile
tradeoff.

A Concrete Example: Timely Accident Notifications
Assume a great number of connected cars that emit position reports in fixed intervals.
Given a certain interpretation of these data, which we will discuss later, we are able
to determine the position of accident sites. After detecting an accident, the goal is
to notify cars in the vicinity of an accident site. It would be in the interest of the
drivers of the affected cars to be quickly informed about the fact that an accident
happened nearby, either in order to put the driver on high alert, or to prompt him
to change his route. Conceptually, assume the car transfers a position report to
a nearby monitoring station, a so-called road side unit, which eventually sends an
accident notification to the car, irrespective of where data analysis was performed.
Latency, i.e. the time it takes between issuing a position report and receiving an
accident notification, should be as low as possible. On the other hand, throughput
needs to be high enough to ensure that position reports are processed in a timely
manner.

1.2 Problem Description

The focus of our study is latency and throughput of processing streaming data in two
IoT scenarios, using synthetic traffic data. First, we perform all computations on a
central server. This entails greater costs for data transmission, but the hardware is

3

1. Introduction

more powerful. Second, we move all computations from the server to computation-
ally bound edge devices. By running computations on such edge devices, which are
located closer to data sources, we avoid the cost of transferring data to the server
and back. A disadvantage, though, is that the hardware used for data analysis is
comparatively less powerful.
Let us clarify the tradeoffs related to the computational power of a server and
the limited computational power of edge devices, and the effect of their respective
location. Data is generated close to edge devices. If we want to transfer it to a
server, we incur a cost for data transmission, which may be substantial, depending
on the distance between an edge device and the server. Figure 1.1 illustrates this.
The issue is the distance between server and edge devices.

cars edge devices server

Figure 1.1: Data transfer from car to server and back

Available network technology, including protocols used, and the current network
status all affect the duration of the transmission. The distance between the onboard
unit of a connected car and a road side unit is assumed to be much shorter than the
distance between a road side unit an a central server. Consequently, by using edge
devices for computations, with the goal of processing data closer to their point of
origin, we avoid the cost of transferring data from edge devices to the server, and
the results back from the server to edge devices. If data is processed closer to their
source, then the cost for transferring data to and from the server can be eliminated
entirely. Thus, we are interested in using a concrete case study, namely timely
notifying drivers of accidents, in order to determine how latency and throughput
are affected in the aforementioned two scenarios.

1.3 Solution Overview
Using synthetic traffic data, we process a data stream in order to detect accidents.
This entails the necessity of low latency and high throughput because drivers of ve-
hicles need to know about accidents as soon as possible. Based on position reports
that are provided by cars in regular intervals, our system detects accidents, mon-
itors their status — accidents are not permanent, after all — and issues accident
notifications for cars in the vicinity of accident sites. Every car that moves towards
the site of an accident needs to receive a warning from the system.
A state-of-the-art stream processing engine is used for data analysis. The first task
is to reliably detect accidents. Afterwards, information on accidents, while they are
occurring and have not been resolved, needs to be maintained. With every position
update a car sends, we need to check whether there is an accident site nearby,

4

1. Introduction

and issue a response accordingly. We model two possible IoT scenarios. First, we
perform data analysis on a monolithic server (center stream processing). Second, we
perform all computations on a small number of computationally bound edge devices
(edge stream processing).

1.4 Evaluation
Since the goal of our work is to measure the effect on latency and throughput in two
scenarios, we need to find suitable measurements for them. Latency is measured
as the time between emitting a position report and recording the result of a status
request that notifies the driver of the presence or absence of an accident site nearby.
Throughput is measured by keeping track of how many position reports per second
the system is able to process, while maintaining a certain target for latency. Thus,
we need to find the saturation point at which latency no longer meets our target,
as the throughput is too high for the system to handle. At this saturation point we
will have reached maximum throughput, given a particular value for latency.

1.5 Thesis Organization
The rest of this thesis report is organized as follows. Chapter 2 provides the neces-
sary background for our work, covering streams, the Linear Road benchmark, stream
processing engines, and vehicular networks. Building on this foundation, we present
the problem description in much greater detail in Chapter 3. Chapter 4 discusses
related work on Linear Road and stream processing in general. Chapter 5 presents
the main part of our work: a discussion of the accident notification problem, cover-
ing theoretical as well as practical aspects of our solution. In Chapter 6 we present
our results, i.e. measurements of latency and throughput of both center and edge
stream processing, when performing data analysis required for accident notifications
based on synthetic Linear Road traffic data. Chapter 7 contains a brief conclusion
and an outlook towards potential future work.
Several appendices provide relevant supplementary information and material, so that
our work can be more easily evaluated, but also replicated. Appendix A includes
information on how to run the Linear Road data generator on a modern Linux
installation. Appendix B provides the entire source code related to our data analysis
with Apache Storm. Lastly, Appendix C lists our empirical measurements of latency
and throughput values.

5

1. Introduction

6

2
Background

This chapter provides relevant background information. We start with a presenta-
tion of streams and common operators. After introducing the Linear Road bench-
mark, which was the first benchmark for stream processing engines, we turn to
stream processing engines in general. Lastly, we connect the simulations performed
by the Linear Road data generator with current engineering efforts towards vehicular
networks. Those may eventually make it possible to move beyond mere simulations
and enable the implementation of targeted near real-time accident detections in the
real world.

2.1 Streams
In data streaming, a stream is defined as an unbounded sequence of data. More
concretely, streams are commonly understood as infinite sequences of uniform tuples,
where a tuple is a fixed-length sequence of data. While tuples are expected to be
uniform, they can nonetheless hold different data types. For instance, a tuple may
contain the surname, first name, age, and marital status of a person, which combines
two strings, an integer, and a boolean value in one tuple, e.g. (Doe, Joe, 50, true).
There are two categories of operators on streams: they can either be stateless or
stateful. Stateless operators do not need to maintain state related to the tuples
they process. Commonly used stateless operators are map, filter, and union. The
operator map applies a function to each incoming tuple, so that a value x is turned
into f(x). The filter operator discards tuples that do not satisfy a given predicate,
and keeps all those that do. Lastly, the union operator takes n streams as its input,
and produces one stream as its output. Stateless operators are easily parallelizable,
because the computations they perform are atomic. Thus, due to the absence of
interdependencies, the data they operate on can be processed in an arbitrary order.
On the other hand, stateful operators can be more complicated. Examples are
window aggregations, where state consists of a predefined time window, or data
classification tasks via machine learning, where state consists of the current edge
weights of a neural network. For the sake of simplicity, though, let us ignore machine
learning and instead illustrate window aggregation instead. For instance, if a website
owner wanted to keep track of the most popular pages of his site, one approach would
be to create a stream consisting of one tuple for each incoming HTTP request as
well as a time stamp. Using a suitable granularity for the measured time, the state
would keep track of the number of request per page in the given interval. The
sliding window purges old records, though. For instance, a choice of 60 minutes

7

2. Background

as the size of the sliding window, and a granularity of one minute, entails that
every minute the records of the current first minute in this interval are dropped.
Sliding windows are also relevant in an IoT setting. One example is the k nearest
neighbors problem [40], where the k nearest neighbors may constantly change. Note
that stateful operators can be difficult to parallelize because the order in which they
are applied to data may matter. In fact, the parallelization of stateful operators
is a subject of ongoing research. This field is of particular relevance since stateful
operators are often bottlenecks in data analysis [38].

2.2 The Linear Road Benchmark
Linear Road [3] is an established benchmark for stream processing engines (SPEs).
It originally appeared in 2004. Despite its age, it is still relevant, not in the least due
to stream processing engines having gained a foothold in industry in recent years.
The core idea behind this synthetic benchmark is the simulation of vehicular traffic
in a virtual city. Concretely, it models a complex toll system that adjusts pricing
based on constantly changing traffic conditions. This is referred to as variable tolling
or congestion pricing, which has become an important tool in public policy [4].
In addition, Linear Road measures performance of historical queries, which plays
towards the strengths of traditional relational databases as opposed to SPEs. Thus,
they are not of any interest to us. Our focus is exclusively on a central part of
variable tolling, namely accident detection and notification. In Linear Road, the
presence of an accident is intended to trigger an increase in toll fees, with the goal
of minimizing or rerouting traffic.
In the following, we present the specification and requirements of Linear Road, as
stated by Arasu et al. [3], in condensed form. For precise values as well as an exact
specification, we urge the reader to refer to their paper, as our focus is on a high-level
description, which would be insufficient for guiding an implementation. Linear Road
uses data generated by the traffic simulator MITSIM [39], which ensures semantic
validity of data. This means that all data is internally consistent so that the location
of all cars is plausible at all times. Traffic takes place on a simplified road layout
consisting of parallel expressways with a length of 100 miles. Each expressway is
subdivided into 100 one-mile segments, and consists of six one-directional lanes, of
which one half are westbound and the other half eastbound. Of those three lanes
each, one is for traveling, one is the entrance lane, and the remaining one is the exit
lane.
The Linear Road benchmark uses a stream consisting of four kinds of tuples: position
reports, and three different historical query requests, which we ignore. Position
reports are issued in an interval of 30 seconds by every vehicle on an expressway.
A position report is represented as a tuple consisting of the following values: Type,
Time, VID, Spd, XWay, Lane, Dir, Seg, and Pos. A Type of value 0 indicates that
the tuple is a position report, while Time is a timestamp of the traffic simulation
that specifies when a position report was sent. VID is short for vehicle identifier,
and Spd reflects the speed of the vehicle in miles per hour. XWay is the expressway
the vehicle is on, while Lane specifies the particular lane of a particular expressway.
The encoding of Lane differentiates between entry, exit, and travel lanes. Dir is

8

2. Background

the direction of the vehicle, which is either eastbound or westbound. Seg is the
segment of the expressway the vehicle is on. Lastly, Pos is the horizontal position
of the vehicle. Note that encoding the vertical position would be redundant, since
expressways are horizontally aligned.

2.3 Stream Processing Engines
Stream Processing Engines (SPEs) emerged as a response to the shortcomings of
traditional database management systems (DBMSs) with regards to querying data
streams. This was highlighted in the original Linear Road paper [3], which showed
that Aurora [1], one of the first SPEs, greatly outperformed a state-of-the-art com-
mercial database system, anonymized as "System X". It was pointed out that Sys-
tem X struggles with the latency requirements of Linear Road, with results that are
up to several orders of magnitude worse than the performance of Aurora. By design,
a DBMS first stores data and only afterwards processes it. Stonebraker et al. [29]
succinctly summarize this by stating that "DBMSs do not keep the data moving".
In contrast, SPEs are designed for continuous queries, i.e. real-time processing of
data. Thus, data is analyzed on-the-fly by an SPE, without necessarily storing it.
However, an SPE could of course be supplemented by a traditional DBMS. Part of
the Linear Road benchmark, for instance, measures performance when processing
historical data.
For our research project, we rely on Apache Storm [32], an SPE that was originally
developed by Nathan Marz at BackType in 2010. After Twitter acquired Back-
Type in 2011, Storm was released as an open-source project, and quickly adopted
in industry. In 2013, Storm was accepted to Apache Incubator, and eventually pro-
moted to an Apache top-level project in 2014. Conceptually, an Apache Storm job
is modeled as a topology, which is a directed acyclic graph (DAG). Nodes are either
spouts or bolts. The former are source nodes that emit tuples for further processing.
The latter are operators that process tuples. In a Storm topology, streams of tuples
are visualized as edges that connect operators. In its entirety, a topology is a data
transformation pipeline of arbitrary complexity.

2.4 Vehicular Networks
Vehicular networks, while having been hypothesized about in academia for some
time, for instance in an early paper by El Zarki et al. [41] in 2002, are slowly
becoming a reality. With the advent of the connected car [12], i.e. cars with access
to the Internet and wireless connectivity, vehicular networks are indeed becoming
feasible. In fact, standardization has already begun. The IEEE standard 802.11 is
the basis for products marketed with the WiFi logo. An extension to this standard
is IEEE 802.11p [17], published in 2008, which covers wireless access in vehicular
environments (WAVE). This enables the real-world scenario we model in our research
project. IEEE 802.11p relies on the existence of onboard units (OBUs) in cars,
as well as roadside units (RSUs) that are placed close to streets and highways.
RSUs have the primary goal of increasing the coverage of a vehicular network, and

9

2. Background

are understood to be more powerful than OBUs. RSUs are normally understood
to be separate entities, even though a proposal in which cars serve as RSUs has
been made [31]. With connected cars increasingly being demanded by consumers, a
scenario like the one modeled in our case study may become reality in the foreseeable
future.

10

3
Detailed Problem Description

In this chapter we present a detailed problem description which assumes that the
reader is familiar with the preceding chapter on background information. Our goal
is to analyze how latency and throughput are affected by moving computations from
a central server to computationally bound edge devices. In order to highlight the
relevance of this problem, we first describe the real-world problem we base our case
study on. This is followed by a description of our model, which approximates that
real-world scenario.

3.1 Accident Detection in a Future IoT Setting
The real-world problem that provides the motivation for our project is an antic-
ipation of a future IoT scenario. Consider a vehicular network, in which many
connected cars continuously send data via on-board units (OBUs), such as position
updates. Devices embedded in such cars are computationally bound. The same is
true of Road Side Units (RSUs) that monitor vehicle traffic. RSUs are placed along
a road, covering its entire length. A central location houses powerful servers. In the
resulting hardware scenario cars communicate with RSUs that themselves commu-
nicate with central servers. Those servers perform analysis of the data they receive,
and afterwards send their results back to RSUs. In turn, RSUs transmit information
to cars. The roundtrip cost for transmitting data to the server and back may be
negligible when RSUs are closely located to a server, but when the server is located
far away from the RSUs it receives data from, the time penalty may be substantial.
We intend to model two scenarios: center stream processing and edge stream pro-
cessing. In the first scenario, RSUs send position reports to a central server. After
detecting an accident, based on data analysis, the server sends data to RSUs. In
turn, those RSUs send accident notifications to cars if they come near an accident
site. In the second scenario, all of the data analysis is performed on RSUs, which
avoids the overhead associated with data transmission to a central server and back.
An empirical question is whether there are benefits of not transferring data to the
server and back. The trade-off is that there is no cost for data transmission between
RSUs and the central server, since it is omitted. On the other hand, an RSU is a
much less powerful device than a server, which may affect the amount of data that
can be processed without jeopardizing meeting certain latency goals.
One possible benefit of connected cars sending position data, and being able to
receive data via the network, are targeted near real-time accident notifications.
Nowadays, untargeted accident notifications are transmitted via radio. This has

11

3. Detailed Problem Description

the potential downside that such information reaches drivers who have no need for
it, since their route is not even remotely close to the accident site. In a pathological
case there may not be a single car near the site of an accident, yet an accident
notification is sent out to all cars within a certain radius. In the case of connected
cars, such information could be sent only to cars whose drivers it is relevant to. Fur-
thermore, one may assume that automated accident notifications are much faster
than the contemporary radio broadcast method, considering that the detection of
accidents is automated, and the middle man, i.e. the radio station, is cut out.

3.2 Modeling Accident Detection Experimentally
Since we do not have access to a real vehicular network, we use synthetic data. Our
data source is traffic data generated by Linear Road. This data contains traffic
information for idealized expressways. Our data is for one expressway consisting of
100 one-mile segments. The data itself consists of position reports, which every single
car emits in 30-second intervals. The Linear Road data generator ensures that the
data itself is consistent, meaning that position reports mirror realistic traffic flow.
Using this data, we model accident detection and notification. The data stream
consisting of position reports is processed by the stream processing engine Apache
Storm. Accidents are identified based on position reports, requiring two cars to be
stopped at the same location for four consecutive position reports. Whenever an
accident is detected in highway segment s, an accident notification is sent to all cars
that issue a position report in segments s, s− 1, s− 2, and s− 3.
The data itself consists of a stream of tuples. We measure throughput by the number
of position reports per second we are able to process, with the goal of identifying
the saturation point at which Apache Storm reaches its limit, given the hardware it
is used on. Latency is measured as the difference of the time between a car sending
a position report, and the system recording a notification that there has been an
accident, or a notification that there has been none. The comparison of latencies,
though, has to take the chosen scenario, edge or center stream processing, into
account, as the measured latency only refers to the internal latency of the hardware
the computations are performed on.
In one of the real world scenarios we consider, data is emitted by cars and sent to
servers via RSUs. In the other, the server is omitted and all data is processed on
RSUs. In Apache Storm we model a similar scenario. However, due to limitations
in terms of equipment, we cannot model a scenario in which dozens or even hun-
dreds of connected RSUs perform the data analysis. The first scenario is modeled by
performing all computations on a server, on which we process a stream of position
reports. For the second scenario we perform the entire data analysis on a computa-
tionally bound edge device, which we understand to approximate the computational
power of an RSU, and extrapolate our results to using a greater number of RSUs.
We measure latency and throughput in both scenarios, which may provide insights
into how the location of computations affects those two metrics. In a real-world sce-
nario, the number of RSUs to cover a highway of the length that formed the basis of
our simulator data is rather high. Recall that in Linear Road, an expressway is 100
miles long, which roughly equals 160 kilometers. However, in real-life an RSU may

12

3. Detailed Problem Description

not be able to cover more than just a few hundred meters. For instance, in a 2010
paper, Lee et al. [19] describe a placement scheme for RSUs in Jeju City in South
Korea. They achieved 72.5% connectivity with 1000 RSUs that have a transmission
range of 300 meters each. With such a limited range, around 530 edge devices would
be needed to cover one Linear Road highway.

13

3. Detailed Problem Description

14

4
Related Work

The main part of our research project is an analysis of the effect on latency and
throughput in the context of stream processing when moving computations from a
server to computationally-bound edge devices. As a case study, we use part of the
Linear Road benchmark for stream processing engines. In the following, we therefore
briefly discuss work related to the Linear Road stream processing benchmark as well
as relevant research on stream processing itself.

4.1 Linear Road
An experiment quite similar to our own was part of a study undertaken by Costache
et al. [7] who likewise model a vehicular network with connected computationally
bound edge devices, and execute a custom implementation of Linear Road on it.
The main difference is that they use Apache Flink and Apache Spark as opposed to
Apache Storm.
In a study on "massive scale-out of expensive continuous queries," Zeitler et al. [42]
introduce operators that split data streams into parallel substreams. Their approach
led to a improvement of the rate of processed streams, adhering to the full Linear
Road specification, of an order of a magnitude. The idea of splitting data streams
into parallel substreams has been used in our work as well. In our case, this allowed
us to increase throughput by distributing some computations on multiple instances
of particular operators. This increased capacity limits. Instead of splitting streams
into parallel substreams, Viel et al. [35] present a partitioning strategy, which they
demonstrate via using Linear Road. The key point of their work is the identification
of temporal approximate dependencies, which can be used to minimize communica-
tion costs.
Sheykh Esmaili et al. [26] use parts of the Linear Road benchmark for studying
modifications of continuous queries. Concretely, they focus on accident notifications,
analyzing the effect of query modification when strict latency requirements need to
be maintained. We similarly focus on accident notifications, with the difference that
we increase throughput in fixed intervals in order to determine the saturation point
at which latency starts to deteriorate.
Surdu et al. [30] introduce window sizes for continuous queries, with the goal of
reducing resource strain, both in terms of processing cost and memory consumption.
In their paper they describe how to compute optimal window sizes, using Linear
Road traffic data as input. A different approach to a related problem was presented
by Gedik [13] who worked on adaptive compression of data streams, subject to

15

4. Related Work

available CPU resources, with the goal of reducing the amount of bandwidth used.
In our work, we limit processing cost by using an efficient data structure that allows
amortized access time of O(1), though. We furthermore limit memory consumption
not by using window sizes but by pruning stored entries when it is appropriate. As
a consequence, the total amount of memory we consume is bounded.

4.2 Stream Processing
In Digital Signal Processing (DSP), input data are streams as well. However, in
DSP data is processed in chunks, which are fixed-size sequences of bits. Srivas-
tava et al. [28] present heuristics as well as algorithms for designing workflows that
minimize latency and maximize throughput. Their reasoning is done on a much
lower level, involving bit-level operators. Their work influenced operator placement
in our research project, which was possible since high-level data analysis tasks are
conceptually related to low-level optimization in their DSP setting.
Vydyanathan et al. [36, 37] studied how latency and throughput in application work-
flows on clusters can be optimized. They develop heuristics for mapping, which is
a stateless and therefore fully parallelizable operation, as well as scheduling. They
achieve high throughput through parallelism. Identified key causes for low latency
are task parallelism in addition to reducing communication between processes. We
were able to confirm these general insights with the results of our experiments.
Work on operator migration is related to our research project as well. Ottenwälder
et al. [21] study the effect of operator placement on efficient stream processing. They
present an algorithm that considers both program state and streaming size in order
to determine an optimal sequence of migrations, with the goal of maximizing network
utilization. While their work is of a more general nature, Aniello et al. [2] focussed
on a similar task using Apache Storm, describing two schedulers for deploying a
Storm topology to available hardware, one that analyzes a given Storm topology
before deployment, and another that monitors a topology that is being executed,
with the goal of changing operator assignment in order to improve performance.
While we have been focussing on an application of stream processing in the trans-
portation domain, there are other promising applications of this paradigm in Internet
of Things settings. One prominent example is work related to advanced metering
infrastructure, often referred to as the smart grid. The key idea behind smart me-
tering is that connected devices communicate with an utility company such as an
energy provider. Gulisano et al. [15] were arguably the first to use stream process-
ing in the context of advanced metering. They measure latency and throughput of
various batch sizes when performing data validation tasks, and show that stream
processing, using a powerful server, is suitable for this domain. In a related later
study, Gulisano et al. [16] explore issues of differential privacy [10] as, for instance,
highly detailed energy consumption reports make it possible to profile users. For
their evaluation, they use computationally bound edge devices. Their results are not
directly comparable to ours, though, as we specifically measure the number of pro-
cessed traffic reports instead of the total number of tuples processed in a topology.
The latter is potentially a large multiple of the former since one tuple traversing n
edges is processed n+ 1 times.

16

5
Case Study: Accident

Notifications

5.1 Overview
Our study focuses on targeted accident notifications, which is a problem within the
transportation domain. To briefly summarize it: our data consists of position reports
of a large number of vehicles. Whenever a vehicle issues such a position report, we
want to send a timely response, tailored to that particular vehicle, indicating whether
there is an accident ahead or not.
The accident detection problem can be divided into several separate parts, and
modeled as network flow in a directed acyclic graph (DAG) or as a topology, to use
Apache Storm terminology. As a first step, we detect whether a vehicle has stopped.
The convention is that a vehicle is interpreted as having stopped if it occupies the
exact same position for four consecutive position reports. Since position reports
are issued every 30 seconds, this timespan amounts to two minutes. Of course, a
single stopped car does not constitute an accident. Once the data shows that two
cars have stopped at the same time in the same location, we interpret this as an
accident. This information is relevant for cars that come near that accident site.
Accident notifications have to be provided in a timely manner in order to be effective.
After all, the driver of a vehicle needs to receive an accident warning well before
reaching the site of an accident in order to be able to react appropriately. Thus,
throughput can only be increased up to a certain level. Concretely, latency needs
to be kept below a certain threshold as otherwise an accident notification may, in
an extreme case, be issued after a car that issues position reports has reached an
accident site.

5.2 The Abstract Topology
To start with, we present a simplification of our topology, which omits some details.
It also does not exhibit any kind of operator parallelism. This means that there is
exactly one instance of each node. This simplified topology could be executed as
it is. However, it may not exhibit optimal performance in the presence of multiple
CPU cores as it assigns only one executor (thread) to each node. Nonetheless, this
simplified abstract topology can be used to illustrate the various computations and
how they relate to each other. The topology that was deployed on hardware is
presented later on.

17

5. Case Study: Accident Notifications

Three main tasks need to be performed: identifying stopped cars, identifying ac-
cidents, and providing accident notifications as a response to position reports sent
by cars. An accident notification is a boolean value that states whether there is
an accident ahead, relative to the position of a car that has sent a position report.
Figure 5.1 presents a high-level view on how data is processed in order to perform
the tasks just mentioned. Recall figure 1.1 in this context.

source split
positions

accidents

Figure 5.1: Simplified abstract accident detection topology

We stated above that a topology is modeled as a DAG. Indeed, the graph in figure 5.1
contains no cycles, and all its edges are directed. Using terminology from graph
theory, source is the source of the network flow, while accidents is the sink. The
source emits a potentially infinite stream of tuples. The simplified abstract topology
consists of the four operators source, split, positions, and accidents. They are
described below.
source The source node source ingests data generated by Linear Road

and outputs tuples that represent a position report.
split The operator split takes a position report and transmits it to

the operators positions and accidents. It transforms one input
tuple into two different output tuples, which are then passed on
to different nodes in the graph.

positions The operator positions receives position reports. Its purpose is
to identify stopped cars in the data it receives. It also detects
when a previously stopped car is no longer stopped.

accidents Using tuples that indicate stopped cars as inputs, as well as up-
dates when a formerly stopped car is moving again, the operator
accidents maintains information on every currently stopped car
in its state. Once two stopped cars are detected that share the
same location, this information is interpreted as an accident. Fur-
thermore, incoming position report from a car are interpreted as
status requests regarding accident sites, and processed.

After discussing the operators of the topology in figure 5.1 in detail, we will now
describe how they interoperate. Position reports are emitted from source. Each
position report constitutes one tuple. The recipient of this tuple is the operator
split, which sends tuples to the operators positions and accidents. The operator
positions analyzes incoming tuples. When it detects a stopped car, it sends a

18

5. Case Study: Accident Notifications

notification regarding that car to the operator accidents. Once that car is no
longer stopped, another notification is sent to the operator accidents, prompting
it to update the information it keeps on stopped cars. The operator accidents
performs two actions. First, based on tuples sent from positions, its internal state
records where cars have stopped. If there is a location with two stopped cars, this
is interpreted as an accident. The internal state of this operator is also updated
whenever a car is no longer stopped. Furthermore, whenever a position report from
a vehicle, via split, reaches accidents, the latter determines whether there is an
accident on the road ahead for that vehicle.

5.3 Extending the Abstract Topology
While the topology described in the previous section solves the accident detection
problem in the context of Linear Road, one further addition is needed for bookkeep-
ing, namely logging, in order to measure latency and throughput. The extended
abstract topology is shown in figure 5.2.

source split
positions

accidents logger

Figure 5.2: Extended abstract accident detection topology

Latency is the total time between emitting a position report as a tuple in source
and recording the result of an accident notification request by the operator logger,
which is the sink node of the extended abstract topology. The sole purpose of logger
is to record statistics. In addition to determining the internal latency of processing
position reports, it also determines throughput. Tuples sent from accidents con-
stitute the input. All tuples pass through this operator, i.e. each position report
triggers an accident notification request. Thus, a response indicating whether there
is an accident site ahead is associated with each fully processed position report.

5.4 Implementation Details
In this section, we describe the implementation of the most relevant computations
performed by the operators of the abstract topology we just discussed. The source
code of our entire implementation in the Java programming language is provided in
appendix B. In the following, we modify the terminology and refer to the operators
by using terms associated with Apache Storm. A data source is a spout, while all
other operators are bolts. Edges in the abstract topology represent streams, which
consist of uniform tuples.

19

5. Case Study: Accident Notifications

Creating a Stream from Finite Data
Considering that input/output operations are costly, we work with in-memory data.
As part of the initialization of the spout source, a file of roughly 90 megabyte,
consisting of one hour’s worth of Linear Road position reports, is stored in an array.
This array is used as a circular buffer of which each entry contains an unprocessed
string representing a Linear Road position report. A global counter variable keeps
track of the number of traversals through the buffer. The spout with its context is
shown in figure 5.3.

source splitRawData

Figure 5.3: Data source

In our Apache Storm topology, tuples are not emitted as fast as possible but instead
need to be requested by subsequent operators in the topology. When this happens,
the value residing in the next slot in the circular buffer is retrieved. This string is
subsequently turned into a tuple with relevant values. Part of the tuple is the field
time, which stores, as an integer, the time in seconds at which the position report
was issued. In order to ensure consistency of the tuples in the stream, this value
is incremented by 3600, i.e. the number of seconds in an hour, for each complete
traversal of the buffer. Thus, finite data for one hour of traffic is transformed into
an unbounded stream. A theoretical objection to this approach is integer overflow
of the time value. This is no cause for concern as the duration of our experiments
is just a few minutes, which only results in processing data for a few hours’ worth
of position reports.1

Linear Road Tuple Format
Linear Road generates position reports as comma-separated values. For instance,
the very first position report in the input data is the following:

0,0,109,32,0,0,0,38,201154,-1,-1,-1,-1,-1,-1.

The first value is the tuple type Type. Position reports, the only kind of data we
are interested in, are of Type value 0. Entries with a different Type value are for
historical requests, which are related to an aspect of Linear Road that does not
concern us. A total of seven of the next eight values are directly relevant for our

1Integer overflow is not even a theoretical problem because it could be easily solved by reseting
time to 0 after each traversal of the buffer. Accident durations are confined within hour intervals,
meaning that the start and end time of an accident lie within the interval [0n, ..., 3600n), where
n ∈ N+, i.e. the set of natural numbers without 0.

20

5. Case Study: Accident Notifications

implementation. In order, they are, as outlined int the original paper on Linear
Road [3]:

Time Simulation time of position report, one of [0..3599].
VID Vehicle identity number ∈ [0...max], where max is the maximum

integer value on the system. Linear Road is a 32-bit application,
thus max = 232 − 1.

Spd Speed of the vehicle. This value is not relevant for us.
XWay Number of the expressway. In our implementation this value is

taken into account in order to provide a more general solution.
However, it is redundant in practice, as we only process data for
XWay = 0.

Lane Number of the lane of XWay ∈ [0..4].
Dir Direction of the vehicle; 0 for eastbound, 1 for westbound.
Seg Segment of XWay the vehicle is on ∈ [0..99]. Each segment is one

mile long.
Pos Horizontal position of VID ∈ [0..527999].2

Note that Seg is redundant as this value could be computed based on the Pos
value. However a separate Seg value makes the implementation more straightfor-
ward. Some computations rely on the segment, and others on the position, in which
case both values can be directly accessed without the need to convert a Pos value
into a Seg value.

Limiting the Number of Tuples per Second

One of the goals of our experiments is to determine the saturation point at which
latency starts to deteriorate. Considering that Apache Storm is pull-based, the
topology would request as many tuples as possible, until capacity is reached and
even exceeded. In order to enable more precise measurements, we limit the number
of tuples emitted from the spout by keeping track of the number of tuples emitted
in the current minute. Whenever the predefined limit is reached, the request of a
bolt for another tuple is simply ignored.

Tuple format: RawData Stream

The stream RawData runs between the bolts source and split. The values Time,
VID, XWay, Lane, Dir, Seg, and Pos are being extracted from the provided Linear
Road data. The output of source contains the additional field EmitTime, which is
the system time of the emission of the current tuple.

2Linear Road uses idealized roads, and idealized driving behavior. Thus, the vertical position
of vehicles does not change since they all move in a perfectly straight line on perfectly straight
roads.

21

5. Case Study: Accident Notifications

Splitting and Modifying the RawData Stream
The bolt split, illustrated in figure 5.4, emits two streams.

source splitRawData
positionPositions

accidents
Requests

Figure 5.4: Splitting the data stream

The stream Positions connects to the bolt positions. It retains the following
values of tuples coming in via the stream RawData: Time, VID, XWay, Lane, Dir, Seg,
and Pos. The stream Requests connects to the bolt accidents. Since accidents
are recorded by Seg, the value Pos is dropped. Furthermore, there is no need to
submit the value VID since accidents are tied to locations. Of course, this entails
that a car that is involved in an accident will continuously receive confirmation of
the fact that it is involved in an accident. Tuples in this stream contain the values
Delta, EmitTime, Time, XWay, Lane, Dir, and Seg.
An alternative approach would have been to let source emit the two streams
Positions and Requests. However, this would have placed a limitation on the
flexibility of our parallelisation strategy. By defining an additional bolt split, we
retain the flexibility to instantiate different numbers of source spouts and split
bolts. For instance, in the deployed topology, we use one source spout but more
than one split bolt. Had there been no separation between processing input tuples
and splitting the stream RawData into two separate streams PositionReports and
AccidentNotifications, this approach would not have been possible.

Identifying Stopped Cars
The bolt positions, cf. figure 5.5, determines whether there are any vehicles that
have stopped. Recall that a vehicle is interpreted as having stopped if it has is-
sued four consecutive position reports from the exact same location, i.e. the same
expressway (XWay), lane (Lane), direction (Dir), segment (Seg), and position (Pos).

Data Structures

The bolt positions makes use of hash maps and hash sets. In order to identify
stopped cars, a global hash map allPos is maintained. This hash map contains a
key for each encountered position. The corresponding values for this key are the
hash maps carsAtPos that record the cars that have been encountered at this posi-
tion. The keys of the hash map carsAtPos are vehicle identifiers (VID). The values

22

5. Case Study: Accident Notifications

split positionPositions accidentsStoppedCars

Figure 5.5: Identifying stopped cars in position reports

corresponding to those keys are pairs containing the time of the last position report
(Time) that was issued by the vehicle, and a counter starting at 1. This counter
increases by 1 every time a position report for VID is processed that was issued 30
seconds after the last one. This counter is initialized to 1 when encountering a new
position report, and when encountering a position report that was issued more than
30 seconds later than the last one from the same location. This ensures that there
is a strict upper bound on the amount of memory this hash map consumes, as old
entries are constantly pruned and the set of VID values is bounded. Using a hash
map allows us to determine in constant time whether a vehicle has stopped.
Determining whether a vehicle has stopped is straightforward, as we only need to
check whether the associated counter has reached a value of 4 or more. If this
is the case, the bolt positions emits four tuples into the stream StoppedCars.
Once a vehicle has been identified as having stopped, it is added to the hash set
stoppedCars, which uses the vehicle identifier (VID) as keys, and the time of the last
position report, (Time), as values. Afterwards, irrespective of whether the current
position report led to identifying a vehicle as having stopped, the entire hash set
stoppedCars is processed in order to determine whether all vehicles that are con-
tained in this hash set are still stopped. This is determined by the difference of the
time of the current position report and the recorded time of the last position report
of each car in stoppedCars. If this difference is greater than some fixed value — we
chose 90 seconds as a threshold — the vehicle is marked for later removal. Java, the
chosen implementation language, does not allow modifying a set while traversing its
elements, which is why we cannot remove those keys immediately.
The chosen threshold value of 90 seconds may warrant an explanation. First, we
need to routinely prune the data we collect as we are dealing with streams. A
constantly growing data structure would eventually cause us to run out of memory.
Second, Linear Road data is internally consistent, meaning that each car emits a
position report every 30 seconds. Thus, there may be a delay of up to 29 seconds
in Linear Road data between an accident having been resolved, because one of the
involved cars has started moving again, and this fact being visible in the data.3 The
chosen value of 90 provides a generous upper bound.

3Assume car c is involved in an accident at time t = 0; at t = 1 it starts moving again. Yet,
only at t = 30, which is 29 seconds after resolving the accident situation, the data reflects that
there is no longer an accident. Note that in Linear Road, an accident always involves exactly two
cars, meaning that the accident is resolved once one of the involved cars changes its position on
the expressway.

23

5. Case Study: Accident Notifications

Notifications

The bolts positions and accidents are connected via the stream StoppedCars,
which consists of tuples with the values Time, XWay, Lane, Dir, Seg, VID, and
Stopped. The value Stopped is a boolean that indicates whether the vehicle iden-
tified by VID has stopped. Of course, this is tied to the specified values for location
and the current time.
One requirement of Linear Road is to send positive accident notifications for 4 seg-
ments, the segment in which the accident occurred, and the three previous segments.
There are no notifications after a vehicle has passed an accident site. In order to
take this requirement into account, the bolt positions sends a total of four tuples
per stopped car to the bolt accidents. Those tuples differ only in their value of the
segment Seg. One tuple each is sent for the four segments that indicate the interval
for accident notifications. Let the value of Seg be x. The segments a notification is
sent for are thus x, x− 1, x− 2, and x− 3. Identifying a stopped car sets the value
for Stopped to true.
Marking a VID for removal from the set stoppedCars triggers sending four tuples
to the bolt accidents. This time, though, the value for Stopped is false, which
indicates that a car that was previously recorded as having stopped is no longer in
that state. Note that only one vehicle is removed per iteration. Considering that this
check is performed for every processed position report, this is a feasible approach.
After all, the number of stopped cars in the Linear Road data is minuscule compared
to the number of position reports per time stamp.

Accident Detection and Notification
The bolt accidents, shown in figure 5.6, subscribes to two different streams. The
stream StoppedCars is sent from the bolt positions. It is used for updating infor-
mation on stopped cars. Furthermore, the stream Requests is sent from the bolt
split.

position

accidents

StoppedCars

loggerResponses

split
Requests

Figure 5.6: Accident notification

Identifying Accidents

In the synthetic traffic data generated by Linear Road, accidents need to be de-
tected based on position reports of vehicles. When a vehicle has remained in the

24

5. Case Study: Accident Notifications

same location, i.e. a particular VID reports the same expressway, lane, direction and
position for four consecutive timestamps, it is interpreted as having stopped. When
two cars have stopped in the same expressway, lane, direction and position, the data
is interpreted as an accident. Linear Road does not generate accidents that involve
more than two cars. Accidents are identified by the bolt accidents as it processes
the stream StoppedCars.
A global hash map named status is used for keeping track of VID values of stopped
cars in each location. If a tuple is received from the bolt positions, indicating
that a car with a given VID has stopped, then the hash map status is updated by
adding that VID as a value to the key specified by the location, which is a string
that concatenates the values for XWay, Lane, Dir, and Seg. On the other hand, if
such a tuple indicates that the car is no longer stopped, the corresponding value is
removed from the hash map status. This ensures, due to the fact that there is a
finite number of locations, that the hash map status does not grow infinitely large.
Tuples indicating that a car is no longer stopped are only ever sent at some indefinite
time after a tuple was sent that indicated that a particular car has stopped. It is
not possible that the bolt accidents receives a notification that a particular car
is no longer stopped without also having received, at some earlier point in time, a
notification that this car has stopped.

Accident Notifications

When the bolt accidents receives a tuple from the stream Positions via the oper-
ator split, the hash map status is queried, using the location of the car that has
issued a position report as a key. If two cars are recorded in the hash map status
as having stopped in the provided location, an affirmative accident notification is
triggered. Otherwise, the output tuple contains a value indicating that there is no
accident in the provided location. An accident is indicated if there is more than one
car in status for the given location. Due to the bolt positions sending four tu-
ples whenever a car has stopped, accident notifications can be handled via a simple
lookup. Accidents are not permanent occurrences, though. Thus, with each new
position report there needs to be a check that the accidents are still ongoing.
After determining whether or not there is an accident site nearby, the bolt accidents
emits a tuple, which is sent to the bolt logger. This tuple contains the values
EmitTime, Time, Location, and Accident. The first value is used for computing
the internal latency of the request, which highlighted further below. The value
Location is a concatenation of the input values XWay, Lane, Dir, and Seg. Lastly,
Accident is a boolean indicating the result of querying the hash map status. It is
true if there is an accident in the current segment, or any of the upcoming three
segments, and false otherwise.

Measuring Latency and Throughput
A separate bolt, logger, cf. figure 5.7, keeps track of the total number of tuples
received in a predefined interval, which is detailed in Chapter 6. Whenever a tuple
is received within that interval, a global counter variable count is incremented by 1.
This variable eventually contains the total throughput in the defined interval.

25

5. Case Study: Accident Notifications

accidents loggerResponses

Figure 5.7: Logging

Latency is recorded similarly, using a global counter variable sum. Recall that every
emitted position report comes with a time stamp, which is retained as the tuple
passes through the bolts split and accidents. Every time a tuple finally reaches
the bolt logger, the difference between the current time and the time of original
emission is calculated.4 The average latency is computed at the end and is simply
the sum of latencies divided by the number of tuples received. The bolt logger
eventually writes those statistics to a text file. This happens once per test run, and
only after relevant statistical data have been taken, in order to avoid distortions
that may result from writing to disk.

5.5 The Deployed Topology
The deployed topology is depicted by figure 5.8 below. In order to better exploit
multiple CPU cores, it makes selective use of parallelism. Concretely, the bolts
split and positions have multiple instances. The source and sink nodes, source
and logger, are labelled as s and t, respectively. The other bolts are indicated by
Greek letters: split by σ, position by π, and accidents by α. Parallelizing the
bolt positions does not pose a problem. If there are multiple instances of this bolt,
then position reports for a given location are always sent to the same bolt, which
ensures that stopped cars can be reliably detected.
The deployed topology is the same for the central sever and the edge device scenario.
A single server has to process all position reports. On the other hand, using multiple
edge devices may require a different approach. Of course, there is the corner case
that only one edge device is present, which would need to process all position reports
as well. On the other hand, as the number of edge devices grows, they are assigned
different data. This approach is realistic, considering that RSUs only have a limited
reach. Also, accident notifications are only of rather confined local interest as they
are restricted to a total of four one-mile segments: the segment in which an accident
has occurred, and the three preceding segments.
In order to adequately divide the given input data, which covers a 100-mile highway,
over n edge devices, it is not fully sufficient to designate n non-overlapping intervals
of length 100/n and assign one to each device. Figure 5.9 below illustrates why
this is potentially problematic. The segments are called a, b, c, d, e, and f . The
first interval ends with segment c, while the second interval starts with segment d.

4Both time stamps for this calculation are taken on the same machine. This entails that the
implementation is not affected by the clock synchronization problem.

26

5. Case Study: Accident Notifications

�

��

��

�

��

��

��

�

Figure 5.8: Deployed topology

Assume an accident occurs in segment f . As a consequence, vehicles in segments
f, e, d, and c need to be notified. However, the edge device processing the first
interval would not be aware of the accident and therefore could not notify any cars
in segment c.

a b c d e f

Figure 5.9: Accident notifications across segment intervals

Even worse would be the case of an accident in segment d. The device processing the
second interval would issue correct accident warnings to cars entering that segment.
However, there would be no advance warnings for vehicles in segments a, b, and c,
thus leaving drivers in those segments in the dark until they enter segment d, in
which the accident occurred.
In order to avoid such issues, the first n − 1 edge devices would have to process
position reports of vehicles in the first three segments of the next interval. Of
course, this does not apply to edge device n since the last segment in the interval
it processes is the last segment overall, and roads are assumed to be non-circular.
Another limitation is that an edge device would need to be able to process at least
four segments in real time. The last three segments of any interval i covered by the

27

5. Case Study: Accident Notifications

first n−1 devices would have to processed by the device covering interval i+1 as well.
When processing less than four intervals, an edge device cannot notify all affected
cars if there is an accident in the rightmost segment. If it does not also process the
three first segments that are covered by the next interval, the problem illustrated
by figure 5.9 will occur whenever there is an accident in those three segments.

28

6
Evaluation

The previous chapter concluded with a discussion of the topology that was used for
solving the accident notification problem. In this chapter, we present the results of
executing that topology on a server as well as an edge device. We will show that
under certain circumstances, edge devices can replace a server, while maintaining
near real-time characteristics of accident notifications. A particular focus is a pro-
posal for comparing the total latency of the server and edge device scenario, which
addresses the issue that the measured latency values in both experiments are not di-
rectly comparable. The first section describes the experimental setup, which details
the used hardware, software, and data. The second section presents the results of
our measurements, i.e. latency and throughput. Lastly, the third section discusses
latency and throughput in the center and edge steam processing scenarios.

6.1 Evaluation Setup

The topology described in the last chapter was deployed on a server as well as a
computationally-bound edge device.

Server
The server uses a 2009 quad-core AMD Opteron 2374 HE CPU with a variable
clock speed of 800 MHz to 2200 MHz and 16 GB RAM. It runs Red Hat Enterprise
Linux 6 (Santiago), compiled for the amd64 instruction set. The Linux kernel
version was 2.6.32. The installed software versions were Apache Storm 0.9.2, Apache
Zookeeper 3.4.8, Java 1.6, and Maven 3.0.4.

Edge Device
As an edge device, the Odroid-XU4 by Hardkernel co., Ltd. was used. This device
is equipped with a Samsung Exynos5422, which holds a quad-core Cortex-A15 CPU
with 2000 MHz as well as a Cortex-A7 octa-core CPUs with a maximum frequency
of 1400 MHz. This setup follows the ARM big.LITTLE architecture, where a rela-
tively powerful CPU (Cortex-A15) is paired with a much weaker one (Cortex-A7).
The Odroid-XU4 has 2 GB RAM. It ran Ubuntu Linux 15.04 for the arm instruc-
tion set, using kernel version 3.10.82. The installed software versions were Apache
Storm 0.9.2, Apache Zookeeper 3.4.8, Java 1.8, and Maven 3.0.5.

29

6. Evaluation

Experimental Setup
We were using synthetic traffic data, which was generated by Linear Road. It was
provided as a single text file with a size of about 90 megabyte, containing a total of
1838000 entries, of which 1819503 were position reports. The rest were requests for
historical data, which are only relevant for Linear Road in general, but not for our
experimen.
Measurements were taken after a warmup period of one minute for the server and
three minutes for the edge device. The assumption was that the performance would
be consistent after the warmup period. Since the edge device is considerably slower,
we chose a longer warmup period in order to avoid distortions in the measurements.
We measured latency and throughput over a five-minute period. The reported re-
sults are the averages of four executions each for different maximum rates of tuples
per seconds. Relevant for our research is the saturation point at which the system
reaches its maximum throughput. Apache Storm was used with exactly-once se-
mantics, which implies a pull-based system, i.e. the spout only emits a tuple when
requested. As a consequence, latency was constant in all our measurements.1

6.2 Measurements
All measurements are replicated in appendix C. By taking the average of four execu-
tions at the saturation point, the results are as follows. The server is able to process
245039 position reports in five minutes, which amounts to a throughput of 816.8
position reports per second. The latency was 2.8 milliseconds on average. With
one edge device, we measured a throughput of 7992 position reports in five minutes,
which amounts to a throughput of 26.6 position reports per second. The measured
internal latency amounted to 74.8 milliseconds.
The input data contains one hour of position reports, amounting to 1819503 position
reports in total, which leads to an average of 505 position reports per second. Thus,
the server is able to process 161.6% of the number of position reports that are needed
for real-time processing. On the other hand, a single edge device processes 5.3% of
the position reports.

6.3 Comparing the Server with Edge Devices

Latency
The internal latency measures between the deployment on a server and on edge
devices are not directly comparable as they model different real world scenarios.
For an illustration, refer to the server scenario in 6.1, which illustrates that position
reports are transmitted from OBUs via RSUs to a central server, and back. The
deployed topology, though, relates only to the server. Consequently, the measured

1An alternative approach would have been to steadily emit tuples from the spout. The problem
with this approach was that it lead to uneven performance. Either approach would arguably have
been viable, as long as the execution was similar on both kinds of hardware.

30

6. Evaluation

latency refers to the internal latency on the server. In addition, there are latencies
∆O and ∆R, of which the former refers to the latency between OBUs and RSUs,
and the latter to the latency between RSUs and the central server.

��� ���
��

��

���	��
��

��

Figure 6.1: Total latency in center stream processing

On the other hand, the edge scenario models computations on RSUs. As figure 6.2
illustrates, there is only the additional latency ∆O from OBUs to RSUs to consider.
Since ∆O is unknown in both scenarios, it can be omitted for the purpose of compar-
ison, under the plausible assumption that it would be identical in both cases. Thus,
the resulting comparison is between the measured latency in the edge scenario (LE)
and the measured latency in the center scenario (LC) in addition to ∆R. We make
the assumption that each latency ∆i is identical, irrespective of their direction.

��� ���
��

��

Figure 6.2: Total latency in edge stream processing

Thus, if one wanted to decide between center and edge stream processing, while
merely considering latency, edge stream processing would be preferable only if LE <
(LC + 2∆R). Using our measurements, and assuming that enough edge devices are
deployed in order to make real-time processing feasible, the total latency of the edge
scenario amounts to 2∆O + 74.8ms, while the total latency of the server scenario is
2∆O +2∆R +2.8ms. Thus, the edge scenario is preferable if 2∆R +2.8ms > 74.8ms.

Throughput
Comparing throughput is more straightforward. Considering that one edge device is
able to process 5% of the position reports in real-time, the computational power of
20 edge devices would be needed to process all of them. Of course, this assumes that
the same amount of position reports occurs for either each assigned interval, or for
each segment. Thus, one edge device processes position reports for five segments,
which amounts to five miles of the expressway. Note that, as was discussed in
section 3.2, this would be unfeasible with current hardware, as RSUs do not even
remotely have such a reach. This is partly an issue of the chosen data, though. After
all, the expressway Linear Road simulates is not particularly busy. For simplicity,
let us assume that traffic is evenly distributed among all 100 one-mile segments of
an expressway. There are around 500 position reports per second, and vehicles emit
a position report every 30 seconds. Thus, there are, on average, 500/100∗ 30 = 150
vehicles per mile on the expressway, which amounts to one car roughly every 11.7
yards or 10.7 meters. Most drivers, though, are familiar with roads with a much
higher density. Thus, there are many real-world situations where the same amount

31

6. Evaluation

of traffic that is modeled in Linear Road is reached on roads that are significantly
shorter than 100 miles.
Note that our approach deliberately does not address the issue of overlapping in-
tervals, which was discussed in section 5.5. The discussion in this chapter shows
how using multiple edge devices scales, as they all process an interval of segments
in isolation. However, as one edge device is only able to process five segments,
some vehicles may receive accident notifications a few segments too late. Using
our simplified model for scaling, the Linear Road requirement of issuing accident
notifications for four segments thus cannot be fully met in all cases. This could
be remedied by deploying a greater number of edge devices. With one overlapping
segment, 100/(5 − 1) = 25 edge devices would be needed, which all process four
segments as well as the first segment of the next interval of the expressway. Thus,
in the worst case, an accident notification may not be received in only the first two
of the four affected segments. This happens if there is an accident in the second
segment of the next interval. With two overlapping segments, d100/(5 − 2)e = 34
devices would be needed, which implies that an accident in the third segment of the
next interval would not be correctly reported in the current interval. Finally, with
three overlapping segments per interval, 100/(5− 3) = 50 devices would be needed,
which would lead to accident notifications in all segments.

32

7
Conclusion and Outlook

In this thesis report we have presented a comparison of the performance of edge
devices and servers for solving the accident notification problem. Our formalization
presents a solution to the general case. In addition, we used concrete measurements
that show when a server may be replaceable by edge devices.
Our results show that a modest number of edge devices could replace a central server.
While this is only theoretically true for the roads Linear Road models, considering
the currently limited reach of RSUs, the potential for regular streets is much higher.
In fact, given the rather low traffic density of Linear Road, it is arguably easy to find
roads with a length that only amounts to a fraction of a Linear Road expressway,
but which carry just as much traffic, if not more. In that case, the limited reach of
RSUs would be much less of an issue. They would adequately cover much shorter
roads, while their computational power would suffice to process position reports
in real-time. Considering that RSUs need to be deployed anyway in a vehicular
network, it seems that a good argument could be made that they should be used
for performing computations instead of merely passing data along.
It would be interesting to work with real traffic data in future work, so that a realistic
accident notification system could be modeled. Note that there is an important
implication: given the still rapid advance of embedded systems, the next generations
of edge devices can be expected to be significantly faster. Yet, roads have physical
constraints, meaning that there is a limit with regards to how much traffic they can
carry. Thus, while there is not yet an end in sight with regards to the increase of
computational power of CPUs in embedded devices, there is a relatively fixed upper
bound with regards to the number of vehicles that can travel on any given road.
This implies that traffic data analysis on RSUs will only get easier, and may one
day be the norm.

33

7. Conclusion and Outlook

34

Bibliography

[1] Abadi, Daniel J., Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
"Aurora: a new model and architecture for data stream management." The
VLDB Journal — The International Journal on Very Large Data Bases 12, no.
2 (2003): 120-139.

[2] Aniello, Leonardo, Roberto Baldoni, and Leonardo Querzoni. "Adaptive online
scheduling in storm." In Proceedings of the 7th ACM international conference
on Distributed event-based systems, pp. 207-218. ACM, 2013.

[3] Arasu, Arvind, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. "Linear
road: a stream data management benchmark." In Proceedings of the Thirti-
eth international conference on Very large data bases-Volume 30, pp. 480-491.
VLDB Endowment, 2004.

[4] Button, Kenneth, and Erik Verhoef. Road pricing, traffic congestion and the
environment. Edward Elgar, 1998.

[5] Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. "Business Intelligence
and Analytics: From Big Data to Big Impact." MIS quarterly 36, no. 4 (2012):
1165-1188.

[6] Clark, Don. "Intel Rechisels the Tablet on Moore’s Law". WSJ.com.
http://blogs.wsj.com/digits/2015/07/16/intel-rechisels-the-tablet-on-moores-
law/ (accessed February 15, 2016).

[7] Costache, Stefania, Vincenzo Gulisano, and Marina Papatriantafilou. "Under-
standing the data-processing challenges in Intelligent Vehicular Systems." In
2016 IEEE Intelligent Vehicles Symposium (IV), pp. 611-618. IEEE, 2016.

[8] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing
on large clusters." Communications of the ACM 51, no. 1 (2008): 107-113.

[9] Dittmar, Hank, Karen Frick, and David Tannehill. Institutional and political
challenges in implementing congestion pricing: case study of the San Francisco
Bay Area. No. 242. 1994.

[10] Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. "Calibrat-
ing noise to sensitivity in private data analysis." In Theory of Cryptography
Conference, pp. 265-284. Springer Berlin Heidelberg, 2006.

[11] Eliasson, Jonas, and Lars-Göran Mattsson. "Equity effects of congestion pric-
ing: quantitative methodology and a case study for Stockholm." Transportation
Research Part A: Policy and Practice 40, no. 7 (2006): 602-620.

[12] Evans-Pughe, Chris. "The connected car." IEE Review 51, no. 1 (2005): 42-46.

35

Bibliography

[13] Gedik, Bugra. "Discriminative Fine-Grained Mixing for Adaptive Compression
of Data Streams." Computers, IEEE Transactions on 63, no. 9 (2014): 2228-
2244.

[14] Greenhalgh, Peter. "Big. little processing with arm cortex-a15 & cortex-a7."
ARM White paper (2011): 1-8.

[15] Gulisano, Vincenzo, Magnus Almgren, and Marina Papatriantafilou. "Online
and scalable data validation in advanced metering infrastructures." In IEEE
PES Innovative Smart Grid Technologies, Europe, pp. 1-6. IEEE, 2014.

[16] Gulisano, Vincenzo, Valentin Tudor, Magnus Almgren, and Marina Papatri-
antafilou. "BES: Differentially Private and Distributed Event Aggregation in
Advanced Metering Infrastructures." In Proceedings of the 2nd ACM Interna-
tional Workshop on Cyber-Physical System Security, pp. 59-69. ACM, 2016.

[17] Jiang, Daniel, and Luca Delgrossi. "IEEE 802.11 p: Towards an international
standard for wireless access in vehicular environments." In Vehicular Technology
Conference, 2008. VTC Spring 2008. IEEE, pp. 2036-2040. IEEE, 2008.

[18] Kuroda, Tadahiro. "CMOS design challenges to power wall." In Microprocesses
and Nanotechnology Conference, 2001 International, pp. 6-7. IEEE, 2001.

[19] Lee, Junghoon, and Cheol Min Kim. "A roadside unit placement scheme for ve-
hicular telematics networks." In Advances in computer science and information
technology, pp. 196-202. Springer Berlin Heidelberg, 2010.

[20] Manyika, James, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela H. Byers. "Big data: The next frontier for in-
novation, competition, and productivity." (2011).

[21] Ottenwälder, Beate, Boris Koldehofe, Kurt Rothermel, and Umakishore Ra-
machandran. "MigCEP: operator migration for mobility driven distributed com-
plex event processing." In Proceedings of the 7th ACM international conference
on Distributed event-based systems, pp. 183-194. ACM, 2013.

[22] Peña-López, Ismael. "OECD Digital Economy Outlook 2015." (2015).
[23] Rothensee, Matthias. "User acceptance of the intelligent fridge: empirical re-

sults from a simulation." In The Internet of Things, pp. 123-139. Springer Berlin
Heidelberg, 2008.

[24] Rouhani, Omid M., and Debbie Niemeier. "Flat versus spatially variable tolling:
A case study in Fresno, California." Journal of Transport Geography 37 (2014):
10-18.

[25] Schaller, Robert R. "Moore’s law: past, present and future." Spectrum, IEEE
34, no. 6 (1997): 52-59.

[26] Sheykh Esmaili, Kyumars, Tahmineh Sanamrad, Peter M. Fischer, and Nesime
Tatbul. "Changing flights in mid-air: a model for safely modifying continuous
queries." In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, pp. 613-624. ACM, 2011.

[27] Silver, Nate. The signal and the noise: Why so many predictions fail-but some
don’t. Penguin, 2012.

[28] Srivastava, Mani B., and Miodrag Potkonjak. "Transforming linear systems
for joint latency and throughput optimization." In European Design and Test
Conference, 1994. EDAC, The European Conference on Design Automation.

36

Bibliography

ETC European Test Conference. EUROASIC, The European Event in ASIC
Design, Proceedings., pp. 267-271. IEEE, 1994.

[29] Stonebraker, Michael, Uğur Çetintemel, and Stan Zdonik. "The 8 requirements
of real-time stream processing." ACM SIGMOD Record 34, no. 4 (2005): 42-47.

[30] Surdu, Sabina, and Vasile-Marian Scuturici. "Addressing resource usage in
stream processing systems: sizing window effect." In Proceedings of the 15th
Symposium on International Database Engineering & Applications, pp. 247-
248. ACM, 2011.

[31] Tonguz, Ozan, and Wantanee Viriyasitavat. "Cars as roadside units: a self-
organizing network solution." Communications Magazine, IEEE 51, no. 12
(2013): 112-120.

[32] Toshniwal, Ankit, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh
M. Patel, Sanjeev Kulkarni, Jason Jackson et al. "Storm@ twitter." In Proceed-
ings of the 2014 ACM SIGMOD international conference on Management of
data, pp. 147-156. ACM, 2014.

[33] United States Congress, "Energy Independence and Security Act of 2007." Pub-
lic law 110, no. 140 (2007): 19.

[34] Verhoef, Erik T., Peter Nijkamp, and Piet Rietveld. "The social feasibility of
road pricing: a case study for the Randstad area." Journal of Transport Eco-
nomics and Policy (1997): 255-276.

[35] Viel, Emeric, and Hiroshi Ueda. "Data stream partitioning re-optimization
based on runtime dependency mining." In Data Engineering Workshops
(ICDEW), 2014 IEEE 30th International Conference on, pp. 199-206. IEEE,
2014.

[36] Vydyanathan, Nagavijayalakshmi, Umit Catalyurek, Tahsin Kurc, Pon-
nuswamy Sadayappan, and Joel Saltz. "Toward optimizing latency under
throughput constraints for application workflows on clusters." Euro-Par 2007
Parallel Processing (2007): 173-183.

[37] Vydyanathan, Nagavijayalakshmi, Umit Catalyurek, Tahsin Kurc, Pon-
nuswamy Sadayappan, and Joel Saltz. "Optimizing latency and throughput
of application workflows on clusters." Parallel Computing 37, no. 10 (2011):
694-712.

[38] Wu, Sai, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi. "Parallelizing
stateful operators in a distributed stream processing system: how, should you
and how much?." In Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, pp. 278-289. ACM, 2012.

[39] Yang, Qi, and Haris N. Koutsopoulos. "A microscopic traffic simulator for eval-
uation of dynamic traffic management systems." Transportation Research Part
C: Emerging Technologies 4, no. 3 (1996): 113-129.

[40] Yu, Xiaohui, Ken Q. Pu, and Nick Koudas. "Monitoring k-nearest neighbor
queries over moving objects." In Data Engineering, 2005. ICDE 2005. Proceed-
ings. 21st International Conference on, pp. 631-642. IEEE, 2005.

[41] El Zarki, Magda, Sharad Mehrotra, Gene Tsudik, and Nalini Venkatasubrama-
nian. "Security issues in a future vehicular network." In European Wireless, vol.
2. 2002.

37

Bibliography

[42] Zeitler, Erik, and Tore Risch. "Massive scale-out of expensive continuous
queries." VLDB Endowment 4, no. 11 (2011).

38

A
Preliminaries

A.1 Running the Linear Road Data Generator on
Linux

Considering that Linear Road is, at the time of writing, about 12 years old, it is of
little surprise that there are several pitfalls when trying to install this benchmark
on a modern Linux installation. As this was quite an ordeal, this appendix records
how to execute the Linear Road data generator on Linux. The bulk of our work was
carried out on an Apple MacBook Pro running on OS X. For the Linear Road data
generator, we set up a virtual machine with Xubuntu 15.10 on VirtualBox. This is
a long-term release, which will be supported until October 2018.
This section describes how to set up VirtualBox, Perl, and Postgres. Afterwards,
we describe how to set up the Linear Road data generator.

VirtualBox
The first pitfall is that Linear Road comes with precompiled 32-bit binaries, which
cannot be executed on 64-bit Linux versions without jumping through additional
hoops. Thus, we used the 32-bit version of Xubuntu 15.10, and installed it on
VirtualBox. An 8 GB virtual hard drive was sufficiently large as generated data can
be written to a shared directory of the host operating system. In order to enable
automatic resizing of the desktop and activate shared folders between the virtual
machine and the host machine, the VirtualBox guest additions are required. These
can be installed via the command line:
sudo apt -get update
sudo apt -get install virtualbox -guest -dkms

After setting up a shared folder, a restart is required. After rebooting, it is necessary
to add permissions for accessing the shared folder. For instance, in order to enable
user foo to access the shared folder, type sudo adduser foo vboxsf.

Perl
Perl is preinstalled in Xubuntu 15.10. However, some modules that are required for
Linear Road are missing. In order to proceed, type cpan at the command line, and
select the option sudo. This leads to an automatic setup. Afterwards, the following
commands need to be executed in cpan:

I

A. Preliminaries

install DBI
install DBD::PgPP
install Math:: Random
exit

Postgres
Postgres is not preinstalled on Xubuntu 15.10. In the following, we are assuming
that a user foo exists on the system. In a terminal window, type:
sudo apt -get install postgresql
sudo -i -u postgres
psql

In the psql console, type:
CREATE USER foo;
CREATE DATABASE linear;
ALTER USER "foo" WITH PASSWORD ’foo ’;
ALTER USER "foo" WITH SUPERUSER;
\q

Ubuntu and most if not all its derivative distributions switched to the init system
systemd in version 15.10. Thus, the following commands are required to start a
Postgres server:
su - foo
sudo systemctl start postgresql
sudo systemctl status postgresql

The last command is used for checking that the Postgres server is active.

Linear Road Data Generator
Download and unzip the data generator from the Linear Road home page. In the ter-
minal, navigate to the directory the file was unpacked into. Type chmod -R 777 .,
including the period, in order to set the correct permissions. Open mitsim.config,
and enter the required data for path, database name (linear), user name (foo) and
password (foo). Afterwards, a symbolic link between the location of the Postgres
database and the location Linear Road expects needs to be created. In the terminal,
type the following to find out the path of the Postgres database:
sudo -u postgresql psql -c "SHOW unix_socket_directories ;"
sudo -u postgresql psql -c "SHOW port;"

On our machine, the required symlink was created by:
sudo ln -s /var/run/postgresql /.s.PGSQL .5432 /tmp/.s.PGSQL .5432

After navigating to the binary file mitsim in the terminal and typeing ldd mitsim,
the reader may notice that a required object file is missing. To solve this issue, the file
libstdc++2.10-glibc2.2_2.95.4-27_i386.deb needs to be retrieved online. It is
part of a rather old and still available Debian distribution. The two object files in the
folder /lib need to be extracted, and moved to /usr/lib/gcc-compat. Afterwards,
the library path needs to be exported. Type the following in the terminal: export
LD_LIBRARY_PATH=/usr/local/lib/gcc-compat. At long last, it is now possible
to execute the Linear Road data generator by typing ./run mitsim.config.

II

A. Preliminaries

A.2 Python Script for Identifying Accidents
In order to verify that accidents were correctly identified, a Python script was used
for computing location, duration, and involved vehicles of each accident that is
recorded in the provided traffic data. The solution below is not in full generality, as
it takes peculiarities of the data into account. For instance, there is not a single case
in which a car stops for two or more minutes without being involved in an accident.
The script works as follows: First, all position reports are extracted from the input
file. Recall that position reports are of Type = 0. All valid position reports are added
to a hash map, where the key is a tuple of identifiers for expressway, lane, direction
and position. Those four identifiers uniquely identify each possible location that is
described by the traffic data. The value corresponding to the key just mentioned
consists of VID and Time.
For convenience, we afterwards filter entries and exclude all keys from consideration
where the corresponding value has less than 8 elements. This is due to the fact that
the lowest possible number of reports that constitute an accident is given by four
consecutive position reports by two different cars for the same location. Lastly, the
remaining entries are narrowed down and reduced to a list of tuples that give a VID
and the time interval, with start and end points, during which it was stopped.
Before providing the code, we give an example of slightly reformatted output of
this script, which illustrates how accidents are identified per location. The example
below was extracted from traffic data for one hour. The number of traffic accidents is
small enough to verify them manually. The key specifies the accident location, while
the value identifies cars by VID and the interval during which they were stopped.
An accident occurs when two cars are stopped in the same location. For instance,
cars with VID 71 and 88 are in an accident in the interval [333, 930], according to
the data.
{(0, 1, 0, 485759): [(71, (333, 933)) , (88, (330, 930))] ,
(0, 1, 1, 438240): [(5844 , (1521, 2151)) , (11181 , (1500 , 2130))] ,
(0, 3, 0, 249159): [(19461 , (2725, 3565)) , (30297 , (2700 , 3570))]}

This is the Python 2.7 script:
posReports = dict ()
candidates = dict ()
stoppedCars = dict ()

def readFile ():
with open("cardatapoints_1.out0") as f:

for line in f:
tmp = line.strip (). split(",")

reportType = int(tmp [0])

if not reportType == 0:
continue

else:
time = int(tmp [1])
vid = int(tmp [2])
xway = int(tmp [4])
lane = int(tmp [5])
direction = int(tmp [6])
pos = int(tmp [8])

III

A. Preliminaries

key = (xway , lane , direction , pos)
if key not in posReports:

posReports[key] = [(vid , time)]
else:

val = posReports[key]
val.append ((vid , time))
posReports[key] = val

def getCandidates ():
need to sort by vid !
for (key , val) in posReports.iteritems ():

if len(val) >= 8:
val.sort()
candidates[key] = val
print key , val

def reduceCandidates ():
for (key , val) in candidates.iteritems ():

val = getTimespan(val)
candidates[key] = val

def getStoppedCars ():
for (key , val) in candidates.iteritems ():

stopped = []
for (vid , (from_time , to_time)) in val:

if to_time - from_time >= 120:
stopped.append ((vid , (from_time , to_time)))

if not stopped == []:
stoppedCars[key] = stopped

def getTimespan(lst):
assert not len(lst) == 0

(vid , time) = lst[0]
tmp = (vid , (time , time))
return getTimespanAux(lst[1:], tmp , [])

def getTimespanAux(lst , tmp , acc):
if lst == []:

acc.append(tmp)
return acc

else:
(vid , time) = lst[0]
(tmp_vid , (from_time , to_time)) = tmp
if not vid == tmp_vid:

acc.append(tmp)
return getTimespanAux(

lst[1:], (vid , (time , time)), acc)
else:

assert time - to_time == 30
return getTimespanAux(

lst[1:], (vid , (from_time , time)), acc)

readFile ()
getCandidates ()
reduceCandidates ()
getStoppedCars ()

print stoppedCars

IV

B
Accident Notification Source Code

B.1 Topology

LinearRoadMain.java

package storm.starter;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;

import storm.starter.lr_spout.Source;
import storm.starter.lr_bolts.Split;
import storm.starter.lr_bolts.Position;
import storm.starter.lr_bolts.Accidents;
import storm.starter.lr_bolts.Logger;

public class LinearRoadMain {

public static void main(String [] args) throws Exception {

TopologyBuilder builder = new TopologyBuilder ();

builder.setSpout(
"spout",
new Source(), 1)

.setMaxSpoutPending (4);
// avoids congestion and also ensures that there are
// enough tuples in flight

builder.setBolt(
"split",
new Split(), 2)

.shuffleGrouping(
"spout",
"RawData");

builder.setBolt(
"position",
new Position(), 3)

.fieldsGrouping(
"split",
"Positions",
new Fields("XWay", "Lane"));

builder.setBolt(
"accidents",
new Accidents(), 1)

.shuffleGrouping(
"position",
"StoppedCars")

V

B. Accident Notification Source Code

.shuffleGrouping(
"split",
"Requests");

builder.setBolt(
"logger",
new Logger(), 1)

.shuffleGrouping(
"accidents",
"Responses");

Config conf = new Config ();
conf.setDebug(true);

if (args != null && args.length > 0) {
conf.setNumWorkers (2);
StormSubmitter.submitTopologyWithProgressBar(

args[0], conf , builder.createTopology ());

} else { // run locally for testing
conf.setMaxTaskParallelism (1);

LocalCluster cluster = new LocalCluster ();
cluster.submitTopology("linear -road", conf , builder.createTopology ());

// run topology for 7 minutes
Thread.sleep (420000);

cluster.shutdown ();
}

System.out.println("Done.\n");
}

}

VI

B. Accident Notification Source Code

B.2 Spout

Source.java

package storm.starter.lr_spout;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.File;
import java.io.IOException;
import java.io.FileNotFoundException;

import java.util.ArrayList;
import java.util.Map;

public class Source extends BaseRichSpout {

SpoutOutputCollector collector;

final int LIMIT = 500;

String lr_file = "cardatapoints_1.out0";
int tupleID = 0;
int bufferPos = 0;
int iteration = 0;

String [] buffer;

long thisSec;
long nextSec;
int emittedInCurrentSec;

@Override
public void open(Map conf ,

TopologyContext context ,
SpoutOutputCollector collector) {

thisSec = System.currentTimeMillis ();
nextSec = thisSec + 1000;
emittedInCurrentSec = 0;
this.collector = collector;

try {

BufferedWriter out = new BufferedWriter
(new FileWriter("start.txt", true));
out.write(System.currentTimeMillis () + "\n");
out.write("OK.\n");
out.close ();

FileReader fileReader = new FileReader(lr_file);
BufferedReader reader = new BufferedReader(fileReader);
int count = 0;
String entry = null;
ArrayList <String > tmp = new ArrayList <String >();

while ((entry = reader.readLine ()) != null){
tmp.add(entry);

VII

B. Accident Notification Source Code

count ++;
}

buffer = new String[count];

for (int i = 0; i < tmp.size (); i++) {
buffer[i] = tmp.get(i);

}
}

catch (FileNotFoundException e) {
System.out.println("File␣not␣found.");
String cwd = System.getProperty("user.dir");
System.out.println("cwd:␣" + cwd);

} catch(Exception e){
throw new RuntimeException("Error␣reading␣tuple.", e);

} finally {}

}

@Override
public void nextTuple () {

long val = System.currentTimeMillis ();

if (val >= nextSec) {
emittedInCurrentSec = 0;
long tmp = nextSec;
thisSec = tmp;
nextSec = thisSec + 1000;

}

if (val < nextSec && emittedInCurrentSec > LIMIT) {
return;

}

if (bufferPos >= buffer.length) {
// process buffer anew
iteration ++;
bufferPos = 0;

}

String entry = buffer[bufferPos];
String [] allValues = entry.split(",");
int[] vals = new int[allValues.length];

for(int i = 0; i < vals.length; i++) {
vals[i] = Integer.parseInt(allValues[i]);

}

int type = vals [0];
int time = vals [1];
int vid = vals [2];
// int spd = vals [3];
int xway = vals [4];
int lane = vals [5];
int dir = vals [6];
int seg = vals [7];
int pos = vals [8];

// add one hour (3600 sec) for each iteration
time += iteration * 3600;

long emitTime = System.nanoTime ();

// only consider position reports

VIII

B. Accident Notification Source Code

if (type == 0) {
collector.emit(

"RawData",
new Values(

emitTime ,
time , vid , xway , lane , dir , seg , pos), tupleID ++);

}

emittedInCurrentSec ++;
bufferPos ++;

}

@Override
public void ack(Object id) {
}

@Override
public void fail(Object id) {
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declareStream(
"RawData",

new Fields(
"EmitTime", "Time",
"VID", "XWay", "Lane", "Dir", "Seg", "Pos"));

}

}

IX

B. Accident Notification Source Code

B.3 Bolts

Split.java

package storm.starter.lr_bolts;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;

import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

public class Split extends BaseBasicBolt {

@Override
public void execute(Tuple input , BasicOutputCollector collector) {

int time = input.getIntegerByField("Time");
int vid = input.getIntegerByField("VID");
int xway = input.getIntegerByField("XWay");
int lane = input.getIntegerByField("Lane");
int dir = input.getIntegerByField("Dir");
int seg = input.getIntegerByField("Seg");
int pos = input.getIntegerByField("Pos");
long emitTime = input.getLongByField("EmitTime");

collector.emit(
"Positions",
new Values(time , vid , xway , lane , dir , seg , pos));

collector.emit(
"Requests",
new Values(emitTime ,

time , xway , lane , dir , seg));

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declareStream(
"Positions",
new Fields("Time", "VID", "XWay", "Lane", "Dir", "Seg", "Pos"));

declarer.declareStream(
"Requests",
new Fields("EmitTime",

"Time", "XWay", "Lane", "Dir", "Seg"));

}

}

X

B. Accident Notification Source Code

Position.java

package storm.starter.lr_bolts;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

import java.util.HashMap;
import java.util.Map;
import java.util.HashSet;

public class Position extends BaseBasicBolt {

// all stopped cars
// key: VID , value : time of last position report
Map <Integer , Integer > stoppedCars = new HashMap <Integer , Integer >();

// key: location , val : car status
Map <String , Map <Integer , Pair <Integer , Integer >>> allPos =

new HashMap <String , Map <Integer , Pair <Integer , Integer >>>();

@Override
public void execute(Tuple input , BasicOutputCollector collector) {

if (input.getSourceStreamId (). equals("Positions")) {

int time = input.getIntegerByField("Time");
int vid = input.getIntegerByField("VID");
int xway = input.getIntegerByField("XWay");
int lane = input.getIntegerByField("Lane");
int dir = input.getIntegerByField("Dir");
int seg = input.getIntegerByField("Seg");
int pos = input.getIntegerByField("Pos");
String location = xway + "." + lane + "." + dir + "." + seg + "." + pos;

Map <Integer , Pair <Integer , Integer >> carsAtPos = allPos.get(location);

// is there an entry for the current position ?
if (allPos.get(location) == null) {

carsAtPos = new HashMap <Integer , Pair <Integer , Integer >>();
allPos.put(location , carsAtPos);

}

// has the current vid been encountered at the current location ?
if (allPos.get(location).get(vid) == null) {

Pair <Integer , Integer > initStats = new Pair <Integer , Integer >(time , 1);
carsAtPos = allPos.get(location);
carsAtPos.put(vid , initStats);
allPos.put(location , carsAtPos);

}

// car has been seen (take into account " send at least once semantics ")
Pair <Integer , Integer > carStatus = allPos.get(location).get(vid);
int vidTime = carStatus.getKey ();
int vidCount = carStatus.getValue ();

if (vidTime != time) { // values are identical if tuple was resent
carsAtPos = allPos.get(location);
Pair <Integer , Integer > stats;

if ((time - vidTime) <= 30) { // reset
vidCount += 1;
stats = new Pair <Integer , Integer >(time , vidCount);

} else {

XI

B. Accident Notification Source Code

stats = new Pair <Integer , Integer >(time , 1);
}
carsAtPos.put(vid , stats);
allPos.put(location , carsAtPos);

}

// now we can use the count of the car status to determine whether
// a car has been stopped , i.e. count >= 4
carStatus = allPos.get(location).get(vid);

if (carStatus.getValue () >= 4) {
// if vid already in stoppedCars , then only update value :
// otherwise , insert , and emit tuples
if (stoppedCars.get(vid) == null) {

boolean stopped = true;
// emit values for current seg and last three segments ;
// car stopped
for (int i = 0; i < 4; i++) {

collector.emit(
"StoppedCars",
new Values(time , xway , lane , dir , seg - i, vid , stopped));

}
}
stoppedCars.put(vid , time);

}

// determine whether all cars in stoppedCars are still stopped
// if not , send new tuple to next bolt
int remove = -1;

for (int key : stoppedCars.keySet ()) { // key is vid
int last_time = stoppedCars.get(key);
if (time - last_time > 90) { //
boolean stopped = false;
remove = key;

// emit values for current seg and last three segments ;
// car no longer stopped
for (int i = 0; i < 4; i++) {

collector.emit(
"StoppedCars",
new Values(time , xway , lane , dir , seg - i, key , stopped));

}

break;
}

}
/*

we break out of the for loop to avoid concurrent modification errors ;
this is not problematic due to the very small number of stopped cars ,
the fact that cars stop and restart at different times , and the large
number of position reports (this check is performed for every position
report !)

*/
if (remove != -1) {

stoppedCars.remove(remove);
}

}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declareStream(
"StoppedCars",
new Fields("Time", "XWay", "Lane", "Dir", "Seg", "VID", "Stopped"));

}

XII

B. Accident Notification Source Code

}

XIII

B. Accident Notification Source Code

Accidents.java

package storm.starter.lr_bolts;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

import java.util.HashMap;
import java.util.Map;
import java.util.HashSet;

public class Accidents extends BaseBasicBolt {

// key: unique identifier for location , val : car status
Map <String , HashSet <Integer >> status =

new HashMap <String , HashSet <Integer >>();

@Override
public void execute(Tuple input , BasicOutputCollector collector) {

int xway = input.getIntegerByField("XWay");
int lane = input.getIntegerByField("Lane");
int dir = input.getIntegerByField("Dir");
int seg = input.getIntegerByField("Seg");
String location = xway + "." + lane + "." + dir + "." + seg;

if (input.getSourceStreamId (). equals("StoppedCars")) {

int time = input.getIntegerByField("Time");
int vid = input.getIntegerByField("VID");
boolean stopped = input.getBooleanByField("Stopped");

// update car status
HashSet <Integer > cars = status.get(location);

if (stopped) {
if (cars == null) {

cars = new HashSet <Integer >();
}
cars.add(vid);

}

// remove car if it was counted as stopped
if (! stopped) {

if (cars != null) {
cars.remove(vid);

}
}

status.put(location , cars);

}

if (input.getSourceStreamId (). equals("Requests")) {

HashSet <Integer > cars = status.get(location);

long emitTime = input.getLongByField("EmitTime");
int time = input.getIntegerByField("Time");
boolean accident = true;

if (cars == null || cars.size() < 2) {

XIV

B. Accident Notification Source Code

accident = false;
}

collector.emit(
"Responses",
new Values(emitTime , time , location , accident));

}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {

declarer.declareStream(
"Responses",
new Fields("EmitTime", "Time", "Location", "Accident"));

}

}

XV

B. Accident Notification Source Code

Logger.java

package storm.starter.lr_bolts;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.File;
import java.io.IOException;

public class Logger extends BaseBasicBolt {

final long nanoSecMin = 60000000000L;

double sum = 0;
long count = 0;
boolean written = false;
boolean flag = false;

long startTime;
long intervalFrom;
long intervalTo;

@Override
public void execute(Tuple input , BasicOutputCollector collector) {

// set boundaries of measurement interval
if (!flag) {

startTime = System.nanoTime ();
intervalFrom = startTime + nanoSecMin;
intervalTo = startTime + nanoSecMin * 6;
flag = true;

}

long emitTime = input.getLongByField("EmitTime");
int time = input.getIntegerByField("Time");
String location = input.getStringByField("Location");
boolean accident = input.getBooleanByField("Accident");

long timeNow = System.nanoTime ();
long latency = timeNow - emitTime;

boolean inInterval =
timeNow >= intervalFrom && timeNow < intervalTo;

if (inInterval) {
count ++;
sum += (double) latency / 1000000; // latency in ms

}

if (timeNow >= intervalTo && !written) {

try {
BufferedWriter out =

new BufferedWriter(new FileWriter("results.txt", true));
double latency_ms = (double) (sum / count);
out.write("500," + count + "," + latency_ms + "\n");
out.close ();

}
catch (IOException e) {}
finally { written = true ;}

XVI

B. Accident Notification Source Code

}

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

}

XVII

B. Accident Notification Source Code

XVIII

C
Listing of Measurements

The columns in the two tables below indicate the maximum number of issued posi-
tion reports per second, the total number of position reports that were processed in
five minutes, and the average internal latency of the executed topology in millisec-
onds.

C.1 Server

500 148773 2.73
500 148743 2.76
500 148805 2.75
500 148886 2.77
500 148677 2.80
1000 245280 2.78
1000 245251 2.77
1000 242611 2.82
1000 244170 2.78
1500 244680 2.79
1500 244568 2.78
1500 245167 2.77
1500 245740 2.76

Table C.1: Measurements on an AMD Opteron 2374 HE

XIX

C. Listing of Measurements

C.2 Edge Devices

500 7960 75.23
500 8021 74.52
500 8008 74.70
500 7991 74.91
1000 8029 74.53
1000 8040 74.66
1000 7941 75.06
1000 7958 75.16

Table C.2: Measurements on a single Odroid-XU4

XX

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Description
	Solution Overview
	Evaluation
	Thesis Organization

	Background
	Streams
	The Linear Road Benchmark
	Stream Processing Engines
	Vehicular Networks

	Detailed Problem Description
	Accident Detection in a Future IoT Setting
	Modeling Accident Detection Experimentally

	Related Work
	Linear Road
	Stream Processing

	Case Study: Accident Notifications
	Overview
	The Abstract Topology
	Extending the Abstract Topology
	Implementation Details
	The Deployed Topology

	Evaluation
	Evaluation Setup
	Measurements
	Comparing the Server with Edge Devices

	Conclusion and Outlook
	Bibliography
	Preliminaries
	Running the Linear Road Data Generator on Linux
	Python Script for Identifying Accidents

	Accident Notification Source Code
	Topology
	Spout
	Bolts

	Listing of Measurements
	Server
	Edge Devices

