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Abstract

The ecotypes of Littorina saxatalis are believed to be intermediate steps in
an ongoing speciation process. L. saxatalis is therefore of scientific interest
as a model organism for speciation by local adaptation. In order to under-
stand the genetic patterns that arise from the local adaptation, temporal
and spatial adaptation dynamics in a model with two partly isolated sub-
populations are analysed. The model is implemented by means of individual-
based stochastic simulations and deterministic approximations. We obtain
qualitative understanding of the mechanisms underlying local adaptation by
investigating how a mutant allele (beneficial in one sub-population) is ac-
cepted in a system already containing two alleles (each adapted to opposite
sub-populations) with frequencies in steady state. The sizes of the original
alleles describe the level of local adaptation before the mutation event. We
find the parameter regions where the mutant allele replaces one original allele
and investigate the dynamics further within this region. We investigate the
replacement probability of the mutant allele. We show that the replacement
probability increases with increasing mutation effect size, decreases with in-
creasing degree of local adaptation and decreases with increasing value of
the migration rate. We investigate the improvement in average phenotype
that results from a replacement of one of the original alleles by the mu-
tant allele, and we investigate the amount of deleterious alleles within each
sub-population (the gene flow). We find that the gene flow between the
sub populations decrease with increased level of adaptation. By allowing for
recombination between two loci, we derive results that implies that a concen-
trated genetic architecture is preferred by the system in certain parameter
regions.





Contents
1 Introduction 6

Evolution and speciation . . . . . . . . . . . . . . . . . . . . . . . . 6
The Littorina saxatalis-system . . . . . . . . . . . . . . . . . . . . . 6
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Explanation of and connection to work by Yeaman and Otto (2011)

and Yeaman and Whitlock (2011) . . . . . . . . . . . . . . . 8

2 A Model for local adaptation 10
2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Delimitations and other models . . . . . . . . . . . . . . . . . . . . 13

3 Method 14
3.1 Individual-based simulations of the local adaptation model . . . . . 14
3.2 Approximation of the local adaptation model . . . . . . . . . . . . . 16
3.3 Observables (pr, I∗, γ) . . . . . . . . . . . . . . . . . . . . . . . . . 19

Explanation of replacement probability pr . . . . . . . . . . . . . . 19
Explanation of the improvement I∗ . . . . . . . . . . . . . . . . . . 19
Explanation of the amount of deleterious alleles γ . . . . . . . . . . 19

4 Results and discussion 20
4.1 Regions of deterministic advantage of the mutant allele . . . . . . . 20
4.2 Replacement probability when r = 0 (one locus) . . . . . . . . . . . 22
4.3 Improvement when r = 0 (one locus) . . . . . . . . . . . . . . . . . 24
4.4 Improvement depending on the placement of a mutation (r 6= 0) . . 28

5 Conclusions and future outlook 30

6 Glossary 32

References 34

A Approximation of pr for m = 0 37

B Deterministic approximations 40

C Additional plots 47



1 Introduction
Understanding evolution is critical for understanding genetic variation
within and between species. Evolution refers to the changes of genotype
frequencies over time. The requirements for such changes are genetic
variation and the existence of a driving force.

sources of genetic
variation:
mutations
recombination
immigrants

Genetic variation is created by mutations, recombination and migra-
tion. Mutations are occasional mistakes during the creation of sperm
and eggs that give rise to new genes and hence new genotypes. Recom-
bination does not give rise to new genes, but it regulates which genes
are inherited together and thus creates new genotypes. Sometimes, mi-
gration is also accounted for as a source of genetic variation. For an
almost isolated population, immigrants bring in new genotypes.

evolutionary
driving forces:
selection
genetic drift

Whether the genetic variants established by mutations, recombina-
tion and migration are maintained in the population or not depends
on the driving forces of evolution, namely selection and random genetic
drift. Selection means that fitter genotypes have a higher survival prob-
ability compared to less fit genotypes. The effect of selection was first
described by Charles Darwin (1859). The other driving force is random
genetic drift which is a stochastic effect that arises due to finite popu-
lation size. As a consequence of the driving forces acting on the genetic
variation new species arise.

speciation is a result
of evolution

ongoing speciation
Littorina saxatalis

observed ecotypes:
intermediate step

Speciation is the evolutionary process by which new species are
formed. It may occur provided that sub-populations are isolated for
long enough and especially if the inhabitants are selected for different
phenotypes (Johannesson, 2007). In the field it is desirable to study
speciation when it is ongoing.

The sea-snail Littorina saxatalis is believed to be undergoing a spe-
ciation process. Today it forms ecotypes as a consequence of local adap-
tation to specific shore microhabitats and these are believed to be inter-
mediate steps to a full speciation (Johannesson et al., 2010). L. saxatalis
can therefore be viewed as a model organism for speciation and this is
one of the reasons for the scientific interest in studying it.

the crab and wave
ecotypes

In Sweden, Spain and in the UK contrasting L. saxatalis ecotypes are
present in either crab-rich or wave-swept habitats, see Figure 1. The eco-
types in the crab-rich habitats face strong predation from crabs. They
are therefore relatively larger and thick-shelled because the smaller in-
dividuals are more likely to be eaten. The ecotypes on the cliffs exposed
to heavy waves are instead smaller and have a large foot hole to prevent
them from being flushed away by waves (Johannesson et al., 2010).

The speciation process can be intuitively understood by considering
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Figure 1: The ecotype-forming snail Littorina saxatalis is a model organism
for ongoing speciation. The snails live in different habitats where they are either
under predation of crabs and therefore selected to be large and thick shelled,
or on wave exposed cliffs where they are selected to be small and have a large
foot-hole (Johannesson et al., 2010).

the different habitats as two isolated sub-populations where the inhabi-
tants are selected for opposite phenotypes, such as large and small shell
size. However, the sub-populations are not isolated in real life. In the
field it is observed that the snails migrate between the habitats (in re-
ality there are also intermediate habitats, so called ”hybrid zones”), and
that some immigrants mate and produce viable offspring. When immi-
grants mate and produce viable offspring, there is gene flow between the
sub-populations.

the mixing effect of
gene flow prevents
speciation

developing barriers to
gene flow

Gene flow between the habitats creates a so called mixing effect that
may prevent speciation. Yet it is believed, as previously mentioned,
that the ecotypes of L. saxatalis are currently undergoing speciation.
The selective pressure described earlier however disfavours hybrids and
hence creates a barrier to gene flow for the loci that are under selection.
There are also reasons to believe that additional barriers to gene flow
may further develop (Johannesson et al., 2010). An additional barrier
to gene-flow could be genetically encoded such as a mating or habitat
preference. But, before inserting such a feature in a model it is necessary
to understand the genetic patterns that arise from the ecotype formation
with selection-migration balance alone. This is the objective of this
study.

objective:
qualitative
understanding of
genetic patterns
arising from local
adaptation

The objective of this study is to qualitatively understand how the
joint effect of selection-migration balance, recombination and mutations
affect the expected genetic patterns arising from local adaptation by
means of stochastic individual-based modelling and mathematical anal-
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ysis. The hope is that the insights may be used to interpret empiric
sequence data from experiments with L. saxatalis such as for example
RAD-sequencing and genomic Fst-patterns comparing the different eco-
types, see glossary for explanation.

Similar questions have been targeted by model studies and computer
simulations carried out by for example Yeaman and Whitlock (2011) and
Yeaman and Otto (2011). In these models each individual is assigned
a genotype, and the genotype is composed of loci (positions on chro-
mosomes) comprised by different alleles that are characterized by their
different allelic effect sizes (numbers at the positions). The phenotype
is a function of the genotype and the fitness is a function of the phe-
notype of an individual and of an optimal phenotype specific for the
environment the individual is in.

Yeaman and Otto
(2011)

Yeaman and Otto (2011) investigated a model that explored the dy-
namics of one locus and two alleles, see Figure 2. They found that
mutant adaptive alleles of larger allelic effect size had a higher probabil-
ity to remain in the system than alleles of smaller effect size. In addition,
mutant alleles had a much higher probability to remain in the system
when selection was stronger. In all cases the probability for mutant al-
leles to remain in the system decreased with increased migration rate,
because the rare allele spent an increasing amount of time in the patch
where it was disfavoured. Assuming symmetrical migration between the
demes and infinite population size Yeaman and Otto (2011) found that
the steady state with coexistence of two allelic types was stable for all
migration rates.

For a local adaptation to be successful the conditions described by
Yeaman and Otto (2011) must be met since polymorphism needs to
be maintained in the system. The polymorphic system with two dif-
ferent alleles favoured in two different habitats can be thought of as a
partly locally adapted system. In this study we investigate how the lo-
cal adaptation proceeds by investigating the conditions under which an
additional mutant allele is accepted into a system with an already es-
tablished stable dimorphic state. The method and results are explained
in this report.

Yeaman and Whitlock
(2011)

Yeaman and Whitlock (2011) extended the single locus model of Yea-
man and Otto (2011) to a multi locus model in order to make qualitative
predictions about the evolution of genetic architecture. The genetic ar-
chitecture is the relationship of allelic sizes between many loci and can
thus not be studied in a one locus model. Yeaman and Whitlock (2011)
predict that multi-locus traits evolving with migration are more tightly
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Figure 2: A one locus, two-alleles model as used by Yeaman and Otto
(2011). The two sub-populations are connected through migration and
are initially inhabitated with only one allelic type (X in the figure). Yea-
man and Otto investigated the conditions under which polymorphism
(coexistence of X and -X) is likely to be maintained.

linked than if there were no migration. The results were observed in
experiments performed by means of individual-based simulations.

We have derived results that agree with those by Yeaman and Whit-
lock (2011) but with a method and a simplified model that allows us
to understand the mechanisms of the bias towards large alleles in more
detail.

report structureThe remainder of this report is structured as follows. Section 2
contains a presentation of the model (Subsection 2.1) and delimitations
of the model (Subsection 2.2). Section 3 gives information about the
numerical simulations of the model (Subsection 3.1), and an explanation
of an approximation of the model (Subsection 3.2). The results are
presented and discussed in Section 4. Conclusions and future outlooks
are given in Section 5.
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2 A Model for local adaptation

2.1 Description

Our model describes the dynamics of two-locus diploid genotypes in
two sub-populations connected by migration. Each sub-population is
assumed to be well mixed and there is no distinction between males and
females. The generations are assumed to be discrete and non overlap-
ping.

reproduction
selection

The individuals reproduce by random mating locally within the sub-
populations. Due to viability selection, only a fraction of juveniles sur-
vive to maturity. In our model, the number of juveniles surviving to
maturity is assumed to be constant in time, and we denote it by N .

migrationWe denote the migration rate per generation per individual per sub-
population by m. We assume that only adult virgin individuals migrate,
which means migration occurs after viability selection but before mating.
The life cycle of individuals in our model is schematically illustrated in
Fig. 4.

Figure 3: Life cycle of individuals in our model. Adults mate and repro-
duce locally within their sub-popoulation. The juveniles undergo viability
selection so that only N juveniles survives to maturity. Adults then mi-
grate to the other sub-population with probability m.
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Each individual is associated with a two-locus diploid genotype (note
that this reduces to one locus when recombination rate r = 0, in which
case it is referred to as a one-locus model). Each locus contains an
allele with an allelic effect size. Throughout this report the term allelic
effect size is used to refer to the value stored at a specific locus. The
ecological phenotype zi of an individual i is assumed to be determined
by the genotype and is given by the sum over all allelic effect sizes in an
individual divided the number of loci nl.

zi =

2nl∑
j=1

aij
nl

(1)

diploid genotype

phenotype

The number of alleles considered for each individual is the number of
loci duplicated, because of diploidity.

the fitness functionThe fitness wi of an individual is assumed to depend on the ecological
phenotype and an optimal phenotype θ that is constant in time.

wi = e−
(zi−θ)

2

2σ2 (2)

Note that the fitness function places the difference between z and θ on
a Gaussian function so that the larger the difference, the smaller the
fitness. When zi = θ the fitness of the individual i is 1. The parameter
σ determines the selection strength by scaling the width of the Gaussian
function (the smaller the σ the stronger the selection).

the two
sub-populations have
different optimal
phenotypes

The optimal phenotype is different in the two sub-populations. For
simplicity, θ is positive in one sub-population and negative in the other,
and the two are symmetric around zero. We assume random mating
locally within each sub-population. We assume that the survival proba-
bility for a given juvenile is equal to its fitness divided by the total fitness
within the same sub-population. An illustration of the relationship be-
tween alleles, genotype, phenotype, fitness and survival probability can
be seen in Figure 4.

recombinationDuring reproduction, the two loci recombine with the recombination
probability r per locus per generation. However, in all cases except for
when it is explicitly needed in order to study the impact of recombina-
tion, r is set to zero and thus the model reduces to a one locus model.

mutationsMutations are assumed to occur with the mutation probability µ per
locus per individual per generation. When a mutation occurs, a muta-
tion of effect size ε is drawn from a normal distribution with standard
deviation σµ and added to the allelic value at the locus. Each muta-
tion event thus gives rise to a new allele. However, in many simulations
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Figure 4: Relation between genotype, phenotype, fitness and survival
probability for one individual (with inserted dummy-numbers).

we let µ = 0 and approximate the model by repeated initializations as
described in Section 3.
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2.2 Delimitations and other models

spatial structure:
two linked
sub-populations

The simplest model is a well-mixed model without any spatial distinc-
tions. The spatial structure of our model system is two coupled sub-
populations, which is the simplest model which allows for migration
between sub-populations. When the probability for an individual to mi-
grate is 0.5 between two sub-populations our model reduces to one well
mixed population. The dynamics in well mixed models have been ex-
tensively studied (Felsenstein, 1981; Barton and de Cara, 2008; Wang,
2013), as well as systems of more complicated spatial structures (Sadedin
et al., 2009; Bierne et al., 2013).

mutations drawn
from continuous
distribution

Another distinction between models is whether they allow for a finite
(Yeaman and Otto, 2011; Bierne et al., 2013) or for an infinite (Yeaman
and Whitlock, 2011; Sadedin et al., 2009) set of alleles per locus. A
small finite set of alleles has the advantage of easy derivation of deter-
ministic approximations of the population dynamics in the limit of large
population sizes. An infinite set is needed when using the standard way
of inferring mutations with effect sizes from a continuous normal func-
tion. We have considered an infinite set of possible alleles for our model
system, then we approximate the results in the limits where we can use
a small finite set of alleles.

number of loci
considered:
two, which reduces to
one when r = 0

When deciding upon how many loci to consider in the model, there
are clear distinction between assuming a single locus model (Yeaman
and Otto, 2011), or a multi locus model (Yeaman and Whitlock, 2011;
Griswold, 2006; Bierne et al., 2013). The difference is how many posi-
tions containing alleles each individuals phenotype is associated with.
Often it is assumed that the phenotype of an individual is proportional
to the sum over all allelic effect sizes in the individual that corresponds
to a given trait. Under this assumption and if recombination between
the loci is negligible, the phenotypic changes of adaption will be the same
for a multi locus and a single locus model. But when recombination is
taken into account in the multi-locus model the genetic architecture,
which describes the relation between different allelic effect sizes on a
chromosome, differs. The important difference between a single locus
and a multi loci model difference is thus the effect of recombination in
the multi loci case.

There are different ways of modelling selection, but it is usually done
with a fitness function. The fitness function given by Eq. (2) was also
used in Sadedin et al. (2009) (but where additional selection pressures
were applied) and in Wang (2013). It is also a special case of the fitness
function used by Griswold (2006) and Yeaman and Whitlock (2011).
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3 Method

3.1 Individual-based simulations of the local adap-
tation model

The individual-based simulations were carried out as follows:

1. The individuals were initialised so that each individual was asso-
ciated with a diploid genotype. The individuals were assigned to
one of the two sub-populations randomly, and so that each sub-
population consisted of N individuals.

2. Individuals migrated to the other deme with probability m.

3. Within each deme the local genotype pool consisted of all geno-
types within the deme. The phenotype and fitness of each geno-
type was computed, as well as the local average fitness.

4. The survival probability of each genotype was computed.

5. Within each sub-population, 2N ”successful parents” were chosen
with replacement from the local genotype pool based on their sur-
vival probabilities, thus constructing the parental genotypes pool.

6. Recombination was executed in the parental genotype pool with
probability r per generation per genotype. When a recombina-
tion event occurred, the alleles on the same locus changed place
between the two sister haplotypes in a genotype.

7. Within each deme, each parental genotype contributed with one
haplotype (half the diploid genotype) to form the new generation.

8. A mutation of effect size ε was added to each locus with probability
µ per locus per generation.1

9. Steps 2-8 were repeated in each generation. For a space-time plot
of one realisation, see Figure 5. For more realisations and different
parameter settings, see Appendix C.

1The observant reader will note that this implies that the mutations are added
on already viability selected adults as in Griswold (2006).
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Figure 5: Space-time plot of an adaptation showing the frequencies of
colour coded phenotypes sub-populations in separate panels. All individ-
uals were initialised with the allelic effect sizes 0. The phenotype frequen-
cies are colour coded so that blue means that all (or almost all) share the
same phenotype, and dark red that only a few have the same phenotype.
The blue ”lines” in the plots show the well adapted homozygotes of the
population. The individuals that have phenotypes around zero are the
heterozygote offspring of well-adapted homozygotes in one sub-population
and deleterious immigrants from the other sub population. The rather
thin red ”line” of maladapted individuals of low frequencies in both popu-
lations are homozygote offspring of immigrants. A dashed line marks the
optimal phenotype in the local population. Note that this trajectory is
from one single run. θ = ±2 , σ = 2, µ = 2 · 10−5, σµ = 0.1, m = 0.1,
N = 200.
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3.2 Approximation of the local adaptation model

dimorphic system with
allelic types
X and −X

In order to analyse the dynamics in realisations such as in Figure 5
simplifications are required. We note that the local adaptation proceeds
stepwise, and approximately symmetrically in the sub-populations. In
the limit where mutation rate µ is small, the system will always reach a
monomorphic or dimorphic state (only one or two allelic types present)
before a new mutation appears, similar to the the polymorphic state
described by Yeaman and Otto (2011) that were discussed in Section 1,
see Figure 2.

allelic effect size X a
measure of divergence

We assume that a dimorphic state consists of alleles of sizeX and−X
(when X = 0, the system is in a monomorphic state). From comparison
to Figure 5 we understand that in a given time the allelic effect size
X can be seen as a parameter describing how far adapted the sub-
population are.

mutation ε hits a
dimorphic system with
frequencies in steady
state

We aim to explain the dynamics in our model by analysing what
happens when a mutation of size ε hits a system with frequencies of
alleles of effect size X and −X already in steady state. By increasing
the value ofX from 0 we approximate the dynamics of a local adaptation
when mutations appear rarely (µ small).

region of deterministic
advantage for the
mutant allele

The steady states for a system with allelic types X + ε, X and −X
were derived by iteration of deterministic approximations in the limit
where N → ∞ (for equations see Appendix B). The regions in param-
eter space where the adaptive mutant allele of effect size X + ε deter-
ministically ”wins” over the allele of effect size X was found (frequency
of X → 0). This region is referred to as the region of deterministic
advantage for the mutant allele, this is the region that is investigated in
this study.

two possibilities for
mutant allele:
extinction
replacement

If a system is in the steady state with only alleles of sizes X and −X
and a mutation of effect size ε hits and creates one copy of a mutant allele
of effect size X + ε, then a population of finite size will inevitably reach
the state with the mutant allele extinct or having replaces the original
one (see Figure 6). Extinction will happen due to stochastic effects as
a consequence of finite population sizes. The mutant allele only exists
with a frequency of 1

2N
the first time step and is therefor vulnerable

to stochastic fluctuations especially in the beginning. Replacement will
happen when the mutant allele takes over as a consequence of its selec-
tive advantage. We investigate the probability of a replacement as well
as the change in average phenotype in the system when a replacement
occurs.

In order to understand the mechanisms causing a preference for
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Figure 6: Two sub-populations connected by migration. The pie-charts
show the steady state frequencies of alleles with different effect size. The
two only possible outcomes after a mutation event where mutant allele
of effect size X + ε is created are extinction or replacement. The three
observables (described in Subsection 3.3) are pr probably of replacement,
I∗ is the improvement which is the decrease in distance to optimal pheno-
type for the local average phenotype, and γ is the fraction of −X in the
sub-population with positive optimal phenotype or one minus the fraction
of −X sub-population with negative optimal phenotype.

tightly linked loci under selection in the genetic architectures as ob-
served by Yeaman and Whitlock (2011) it is necessary to consider more
than one locus (r 6= 0). In the case where recombination r 6= 0 the sys-
tem becomes more complicated. Rater than initialising with only two
alleles the system is initialised with only two alleles per locus. Namely
with allelic effect sizes Y and −Y for one locus, and Y +α and −(Y +α)
for the other where α > 0 is a parameter which allows us to analyse the
effect of alleles of larger versus smaller effect sizes at different loci.

two loci
r 6= 0

one ”large” and one
”small” locus

more haplotypes when
r 6= 0

Because of recombination more halplotypes will be created even
though the system like before are initialised with haplotype effect sizes2
X and −X where X = 2Y + α, see Figure 7. A mutation of effect size
ε can then either hit the ”large locus” containing allele Y + α or the

2For a one-locus genotype, the haplotype effect size is the same as the allelic effect
size. When more than one locus is considered a distinction is needed.
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”small locus” containing allele Y . In either case the phenotype of an
individual which obtains the mutation is zi = 4Y+ε

2
. We investigate how

the average phenotype of the system is affectd by the placement of the
mutation.

Figure 7: Steady state system where r 6= 0. The top steady state system
is similar to the top system in Figure 6, with the difference that recom-
binations can create more possible haplotypes. The effect sizes in the
original haplotypes are constructed so that one locus has larger values
than the other. In the case of a replacement the system ends up in one
of the bottom two states, depending on the placement of the mutation.
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3.3 Observables (pr, I∗, γ)

the replacement
probability pr

The replacement probability is the probability that a mutant allele does
not become extinct but replaces the original allele it hit, and we denote
this by pr. We investigate this by stochastic individual-based simulations
(as described in Subsection 3.1, with r = 0 and µ = 0). We initialise
system of two sub-populations connected with migration with only two
possible alleles of effect size X and −X, and the system is allowed to
relax into the steady state. Then a mutation is added to one allele
with allelic effect size X in the deme with positive optimal phenotype
to create a single copy of a mutant allele of effect size X + ε. The
simulation is then allowed to run until either extinction or replacement
occurs. We estimate the replacement probability pr by the ratio of
replacement events relative to the total number of independent trials.

the improvement I∗A replacement event results in a new steady state with the two allelic
effect sizes X + ε and −X. The average phenotype in this steady state
will be closer to (or possibly further from) the optimal phenotype in a
sub-population, compared to the original X and −X steady state. This
difference in distance of the average phenotype to the optimum is called
improvement (so that a positive value means closer to the optimum)
and denote it with I∗. We compute the improvement by comparing
the average phenotype for a system in the steady state with alleles of
effect sizes X and −X, with the average phenotype of a system in the
steady state with allelic effect sizes X+ε and −X. The steady states are
obtained iteratively from deterministic approximations (see equations in
Appendix B).

the amount of
deleterious alleles γ

In order to understand the improvement we define γ as the amount of
deleterious alleles (alleles reducing fitness) within the sub-populations.
If f(−X) is the frequency of allele −X in a sub-population, then γ =
f(−X) in the sub-population with positive optimal phenotype and γ =
1 − f(−X) in the sub-population with negative optimal phenotype. γ
is also an estimate of the gene flow between the sub-populations.

19



4 Results and discussion

4.1 Regions of deterministic advantage of the mu-
tant allele

Because of the migration, a mutant allele that is beneficial in one sub-
population is deleterious in the other sub-population and is thus not
necessarily beneficial to the whole population. The region where the
adaptive mutant allele of effect size X + ε deterministically ”wins” over
the allele of effect size X (frequency of X → 0) is referred to as the
region of deterministic advantage of the mutant allele, see Figure 8 and
9.

critical migration rateThe mutant allele has a deterministic advantage for small migration
rates. There is a critical migration rate above which the mutant allele
is not beneficial to the whole system. This can be seen in the region
between the region of deterministic advantage and disadvantage of the
mutant allele in Figure 8.

depenence on σ and XThe critical migration rate decreases with increasing X (Figure 8).
The reason is that for a given migration rate, the selective disadvantage
of the mutant allele in the opposite sub-population increases with in-
creasing X. When the selective strength is stronger (σ smaller) the
critical migration rate becomes larger, see Figure 9. For very strong
selection the mutant allele has a deterministic advantage for any value
of the migration rate.

Outside the region of deterministic advantage of the mutant allele a
mutation is expected to have a very low probability of maintaining in the
system. Not only does the mutant allele have a selective disadvantage,
but the initial single copy of the mutant allele also have to withstand
the stochastic effects (for finite population sizes).

in this study we
investigate the
dynamics within the
region

For small values of m most values of X are within the region of de-
terministic advantage of the mutant allele. Because estimated values of
the migration rate between the habitats of Littorina saxatalis are small
(Johannesson et al., 2010), we argue that the region of deterministic
advantage of the mutant allele is biologically relevant. In this study
we only investigated the dynamics within the region of deterministic
advantage of the mutant allele.
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Figure 8: A phase plot showing the regions of deterministic advantage for the
mutant allele. A datapoint is orange whenever the steady state frequencies of
X in both sub-populations were < 10−5. A datapoint is yellow whenever the
steady state frequencies of X + ε were < 10−5. The condition for steady state
was that all frequencies should be the same with a precision of 3 decimals for
1000 time-steps. The simulation was run 106 time-steps at most. θ = ±2,
σ = 2.5, ε = 0.05.
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Figure 9: Same as in Figure 8, but for σ = 1.73.
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4.2 Replacement probability when r = 0 (one locus)

The replacement probability is the probability that a mutated allele of
effect size X+ε replaces the original allele of size X in a coupled system
with alleles X and −X in the steady state, see Figures 10 and 11. We
have only investigated the replacement probability pr for values ofX and
ε such that the phenotypes of the individuals never exceed the positive
optimal phenotype.

theoretical
approximation of pr
(m = 0)

In the case when the sub-populations are isolated from each other
(migration rate m = 0) and selection is weak, the replacement prob-
ability can be approximated by the fixation probability as derived by
Kimura (1957) (for more details see Appendix A). As Figures 10 and
11 show, the approximation agrees well with the data points even for
relatively strong selective strength.

selective advantage
decreases as the
sub-population
approaches the
optimal phenotype

As a consequence of the fitness func-
tion (Eq. (2), Section 2) the selective advantage of the adaptive mutant
allele decreases as the distance of the average phenotype to the optimum
decreases.

pr decreases with
increasing migration
probability

The replacement probability decreases with increasing migration as
Figures 10 and 11 show. The reason for lower replacement probabilities
with increasing migration is the increased amount of time spent in the
”wrong” sub-population when migration is frequent, which causes the
mutant allele to go extinct more often. This result is in qualitative
agreement with the results of Yeaman and Otto (2011) but was not
explicitly shown for the conditions of a mutation arriving in already
locally adapted populations.

initial curvature
connected to I∗

We observe a curvature in the pr curves that is stronger for higher
migration rates, see Figures 10 and 11. We argue that the curvature
can be connected to the improvement that the sub-populations gain by
X + ε replacing X (measured by the quantity I∗). This is discussed in
Subsection 4.3.

preference for
mutations of large
effect sizes

We have not observed any qualitative difference in replacement prob-
ability as a consequence of different mutation effect sizes (compare Fig-
ure 10 and 11). However, the replacement probability is quantitatively
lower for smaller mutation effect sizes. The reason is again the difference
in selective advantage which is larger for mutations of larger effect size.
This can be expressed as a preference for mutations of large effect sizes
in the system. This preference is more potent in the beginning of adap-
tation and decreases the closer to the optimum the average phenotype
becomes, because the selective advantage decreases. Large beneficial
mutations are, however, a lot rarer than beneficial mutations of small
effect size.
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Figure 10: Replacement probability, pr, for different migration rates. σ = 1.73,
N = 200, θ = ±2, ε = 0.05.
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Figure 11: Same as in Figure 10, but for ε = 0.1.
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4.3 Improvement when r = 0 (one locus)

selection shuts down
gene flow more
efficiently towards the
end of adaptation

Selection reduces gene-flow more efficiently the more well adapted the
two sub-populations become, which can be observed in the general trend
that γ decreases with increasing X, see Figures 12a and 13a. This is
expected because the better adapted the individuals are to their own
sub-population the more mal-adapted they are to the other, and thus
their offspring die easier after migration.

In the sub-population with positive optimal phenotype the values
of I∗ are always positive, see Figure 12. This is expected as that sub-
population experiences the replacement of an adaptive mutant allele
(X + ε). I∗ increases with increasing X (or saturates for high X), be-
cause, as explained above, the amount γ of deleterious alleles in the
sub-population decreases with X.

a cost in the beginning
of adaptation relates
to pr

However, accepting a mutation that is beneficial in one sub-population
(I∗ is positive in Figure 14) comes with a cost in the sub-population with
negative optimal phenotype in the beginning of adaptation (seen as the
negative values for low values ofX in Figure 13 b). The cost of accepting
a mutation in the beginning is a plausible explanation to the curvature
with lower pr values in the beginning of adaptation when m 6= 0, as
discussed in Subsection 4.2. The system overcomes the cost of accept-
ing the mutant allele in in the vicinity of the maximum replacement
probability (in respect to the parameter X). This suggests that the
replacement probability is qualitatively influenced by I∗.

For larger values of X there are improvement of the average pheno-
type even in the sub-population with negative optimal phenotype (Fig-
ure 13 b). The improvement is again explained by the decrease in γ
(Figure 13 a). That is, even though X + ε is more deleterious than X
the sub-population with negative optimal phenotype, the average pheno-
type still becomes closer to the optimum because of the reduced amount
of deleterious alleles in the sub-population.

Notably, the total improvement (the sum of the improvements ob-
served in individual sub-populations) is positive for all values of X (Fig-
ure 14).
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Figure 12: γ and I∗ as a function of X in the sub-population with positive θ.
σ = 1.73, m = 0.1, θ = ±2.
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Figure 13: Same as in Figure 12 but in the sub-population with negative θ.

26



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

 

 

ε = 0.05

ε = 0.10

Level of divergence (X)

Im
p
ro
ve
m
en
t
(I
∗ )

Figure 14: Same as in Figure 12b and 13b, but for the total population (both
sub-populations).
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4.4 Improvement depending on the placement of a
mutation (r 6= 0)

In order to investigate the effect of the placement of a mutation in a multi
locus case, I∗ was measured when a mutation was placed on the large and
when a mutation was placed on the small locus (as explained in Section
3.2). larger improvement

for mutation on large
locus → preference for
”stacking”?

In analogy to the qualitative understanding of the replacement
probability in terms of improvement (in the one-locus case, see Section
4.3), we expect that the system has a preference for ”stacking” mutations
on top of each other when the improvement is larger for a mutation
placed on the large locus compared to on the small.Results are shown
in Figures 15 and 16.

When selection is relatively weak (σ = 2.5, Figure 15) the system
seems to have a preference for ”stacking” mutations throughout the lo-
cal adaptation. For stronger selection however, (σ = 1.73, Figure 16)
there is a transition such that for X larger than ≈ 0.6 the improvement
becomes slightly larger when a mutation is placed on the small locus.
This transition is not further investigated in this study.
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Figure 15: I∗ in both sub-populations when av mutation is placed on the large
versus the small locus. ε = 0.05, α = 0.3, r = 0.1, m = 0.1, θ = ±2, σ = 2.5.
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Figure 16: Same as in Figure 15, but for σ = 1.73.
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5 Conclusions and future outlook
We studied local adaptation in a model with two partly isolated sub-
populations with different optimal phenotypes, in order to understand
the mechanisms underlying local adaptation. objective:

qualitative
understanding of
genetic patterns
arising from local
adaptation

The objective of this
study was to qualitatively understand how the joint effect of selection-
migration balance and recombination and mutations influences the ex-
pected genetic patterns, by means of stochastic individual-based mod-
elling and mathematical analysis. In what follows the qualitative un-
derstanding obtained is summarised.

We analysed how the local adaptation proceeds from partially locally
adapted sub-populations. This was done by investigating how a mutant
allele (beneficial in one sub-population) is accepted in a system already
containing two alleles (each adapted to opposite sub populations) with
frequencies in steady state.

deterministic
advantage of mutant
allele

We found a parameter region where the mutant allele have a deter-
ministic advantage. Within the region the mutant allele is expected to
replace the original allele if the population size is infinite. For finite
populations however, the mutant allele may become extinct rather than
replacing the original allele due to stochasticity and random genetic
drift. The mutant allele is especially sensitive to fluctuations shortly
after its appearance when there are only few copies in the population.
We estimated the probability of replacement by measuring the num-
ber of replacement events versus total number of trials in stochastic
individual-based simulations.

pr increases with
selective advantage of
mutant allele

Our results show that the probability for a mutant allele to replace
the original allele increases as the mutant effect size increases, and is
larger in the beginning of adaptation than towards the end. In either
case the selective advantage of the mutant allele increases. The mu-
tant allele also becomes extinct more often when migration rate is high.
All our results regarding the replacement probability are in qualitative
agreement with those by Yeaman and Otto (2011) (although they stud-
ied a different and more restricted system).

A replacement event causes changes in the average phenotypes in the
sub-populations. We computed the change in the average phenotype
caused by a replacing mutant allele. A mutant allele is beneficial in
one sub-population and deleterious in the other. In the sub-population
where the mutant allele is beneficial our results show that the replace-
ment always causes an improvement in the average phenotype. The
improvement increases (and then saturates) the more locally adapted
the system becomes. Our results show that the reason for the increase
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in improvement lies in reduced gene-flow due to selection. selection reduces
gene-flow

In the begin-
ning of local adaptation, the improvement in the sub-population where
the mutant allele is beneficial comes with a cost in the other sub popula-
tion where the mutant allele is deleterious (when migration rate m 6= 0).
This may explain why the replacement probability does not strictly de-
crease as the degree of local adaptation increases (a strictly decreasing
trend is observed for m = 0). The system overcomes the cost of accept-
ing the mutant allele (because of reduced gene flow) in in the vicinity of
the maximum replacement probability (with respect to the parameter
X).

indication of
preference for
”stacking” of
mutations in certain
regions

In order to investigate the effect of recombination we studied two-loci
genotypes. We compared the improvement in average phenotype after
a mutation hit a large versus a small allele. We expect that the system
is likely to prefer to "stack" mutations on large loci if the improvement
is larger when a mutation is placed on a large versus a small allele. Our
results show that this is the case for many parameter settings. This
result is in qualitative agreement to what Yeaman and Whitlock (2011)
observed in their multi-locus model.

Our two-locus model, however, should still be further investigated.
In order to further explain how the placement of a mutation influences its
chances of replacing the original allele and consequently the preference to
"stack" mutations on a large locus, the replacement probability should
be estimated. Furthermore, in order to understand the difference in
barriers to gene flow between the two loci, the gene flow should be
measured for the two loci separately.

As already mentioned, the degree of gene flow between the sub-
populations saturates as the local adaptation proceeds. It would be
interesting to investigate other mechanisms for further reduction of gene
flow. One possibility is to extend our model with a locus that is respon-
sible for an assortative mating trait.

parameter estimationsIn order to understand which of the effects explained in this thesis are
of most importance for the local adaptation of biological populations,
and especially of Littorina saxatalis, estimates of the model parameters
are needed.
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6 Glossary
Adaptive allele: Alleles enhancing fitness

Allele: One out of a number of alternative forms of a gene or genetic
locus.

Allelic effect size: In this report used to refer to the number stored
at a specific locus. It can be thought of as the contribution to a
measurable trait of interest caused by a gene (or several tightly
linked genes).

Assortative mating: Non-random mating where some individuals are
more likely to mate with each other.

Barriers to gene flow: No exchange of genetic material. Can for ex-
ample be due to geographical barriers or distance or incompatibil-
ity, or due to some mating preference.

Deleterious allele: Allele reducing fitness.

Dimorphic: Only two allelic types.

Ecotype: The two ecotypes of Littorina saxatalis are the ones that live
in crab-rich boulder shores versus on wave-swept cliffs.

Fst is a comparison in variation of allelic types between and within sub-
populations. Estimates of Fst for many loci along the genome can
be used identify regions of that have been under selective pressure.
It is reasonable to assume that all loci have experienced the same
demographic history and thus loci that are showing unusually large
amounts of diversification indicate regions that have been under
diversifying selection, such as local adaptation to two habitats
(Holsinger and Weir, 2009). A long term goal is to be able to look
at the genome wide Fst-patterns and from that infer the adaptive
history of the ecotypes of Littorina saxatalis.

Gene flow: Exchange of genetic material.

Genotype: What is inherited and underlies a phenotype, which can be
observed.

Habitat: An ecological area that are inhabited by a specific type of
organism such as species or ecotype.
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Haplotype: Half of the diploid genotype. In the case of a one locus-
genotype, a haplotype is the same as an allele.

Improvement: We have used the word improvement to describe a
quantity that corresponds to a change in average phenotype in
our model system, caused by the invasion of a mutation.

Monomorphic: Only one allelic type.

Mutation effect size: In the model system the mutation effect size is
the value added to an allelic effect size due to a mutation event. In
reality it would translate into the of the specific trait of interest.

Population Group of individuals that mate more frequently with each
other than with other individuals.

RAD restriction site associated DNA (RAD) techniques is an option
to genotyping and to find genetic differences between ecotypes.
Roughly, one uniformly samples small pieces of DNA rather than
looking at the whole genome which makes it quicker, easier and
cheaper (Miller et al., 2007).

Random mating: All individuals are equally likely to mate with each
other.

Recombination: the process by which genetic material is broken and
joined to other genetic material.

Replacement: In this report used to describe the outcome when a
mutant allele replaces the original allele after a replacement event,
see Section 3.2
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A Approximation of pr for m = 0
An approximation of the fixation probability for an allele A1 in a well
mixed system with only possible alleles A1 and A2 has been derived by
Kimura (1957, 1962).

pfix(A1) =
1− e−4Nsp

1− e4Ns
. (3)

Here, p is the frequency of the mutant allele in the beginning, which
is p = 1

2N
when a mutation appear in a diploid population.

s is written on the form such that the relation ship between the
fitnesses of the three genotypes are:

w11 = 1 (4)

w12 = 1 + s (5)

w11 = 1 + 2s (6)

Our model reduces to two independent well mixed populations m =
0. The replacement probability when m = 0 is thus the same as the
fixation probability of an advantageous allele in a well mixed popula-
tion of size N. In order to use Kimuras formula, we to derive s for the
genotypes in our system. If A1 = X + ε and A2 = X, then the possible
phenotypes are:

z(A1A1) = z11 = 2X (7)

z(A1A2) = z(A2A1) = z12 = 2X + ε (8)

z(A2A2) = z11 = 2X + 2ε. (9)

The fitnesses are:

w11 = e−
(2X−θ)2

2σ2 (10)

w12 = e−
(2X+ε−θ)2

2σ2 (11)

w22 = e−
(2X+2ε−θ)2

2σ2 . (12)



In order to make w11 as in Equation (4), we divide all fitnesses with
w11:

w12

w11

= e−ε(4X+ε+2θ) σ<<1
≈ 1− ε(ε+ 4X − 2θ)

2σ2
= 1+

ε(2θ − ε− 4X)

2σ2
(13)

and

w22

w11

= e−ε(4X+ε+2θ) σ<<1
≈ 1− 2ε(2ε+ 4X − 2θ)

2σ2
= 1 + 2

ε(2θ − ε− 2X)

2σ2
.

(14)
From this s is derived:

s =
ε(2θ − ε− 4X)

2σ2
. (15)





B Deterministic approximations

• x(a)ij (t) denotes frequency of haplotypeAiBj in deme a. i, jε {1, 2, 3}

• w(a)
ijkl(t) is the fitness of an individual in deme a with haplotype

indices i, j, k and l. Note that the order of the indices in the
fitness variable has no meaning, wijkl = wklij = wljki etc.

• The two different demes are denoted a = 1 and a = 2 respectively.

b =
1 + (−1)a−1

2
+ 1, (16)

which means that b is the ”other deme”.

• m is the fraction of individuals in deme a that migrated from deme
b.

The weighted average fitness of individuals in deme a is given by Eq. (17).

w̃(a)(t) = (1−m)
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

x
(a)
ij (t)x

(a)
kl (t)w
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ijkl(t)

+m
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i=1
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j=1
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k=1

3∑
l=1

x
(b)
ij (t)x

(b)
kl (t)w

(a)
ijkl(t)

(17)

The deterministic approximation of haplotype frequencies of individuals
in deme a is then given by Eqs. (18)-(26). Because of convenience x(a)ij
and w(a)

ijkl are used instead of x(a)ij (t) and w
(a)
ijkl(t) respectively.
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Figure 17: Colour-coded phenotypic frequencies versus time. σ = 1.73, µ =
0.002, σµ = 0.1, r = 0, m = 0.1, θ = ±2
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Figure 18: Colour-coded phenotypic frequencies versus time. σ = 1.73, µ =
0.0002, σµ = 0.1, r = 0, m = 0, θ = ±2


