
Design, Implementation and Evaluation
of a Moving Target Defense in Distributed
Systems
An Open-Source Moving Target Defense System using Kuber-
netes Clusters

Master’s thesis in Computer Systems and Networks

PHILIP TIBOM
MAX BUCK

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Design, Implementation and Evaluation of a
Moving Target Defense in Distributed Systems

An Open-Source Moving Target Defense System using Kubernetes
Clusters

PHILIP TIBOM
MAX BUCK

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Design, Implementation and Evaluation of a Moving Target Defense in Distributed
Systems
An Open-Source Moving Target Defense System using Kubernetes Clusters
PHILIP TIBOM and MAX BUCK

© PHILIP TIBOM, 2022.
© MAX BUCK, 2022.

Supervisor: Ahmed Ali-Eldin Hassan, Computer Science and Engineering
Examiner: Vincenzo Massimiliano Gulisano, Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A simple illustration of a moving target defense system. The red and green
figures symbolizes the connection being rerouted from location C to B, while the
connection to Location A is dormant.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2022

iv

Design, Implementation and Evaluation of a Moving Target Defense in Distributed
Systems
An Open-Source Moving Target Defense System using Kubernetes Clusters
PHILIP TIBOM and MAX BUCK
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Cloud computing has recently become increasingly popular for server hosting. Ad-
ditionally, a new model of cloud computing has emerged where cloud resources are
placed at the edge of the network closer to the user. Both cloud and edge systems
share many common security concerns, however, edge systems may suffer an in-
creased risk of physical tampering and destruction. One way to harden the security
in both cloud and edge systems is to use a technique called Moving Target Defense.
The technique can be likened to the idea of frequency hopping in secure communi-
cation systems. Moving Target Defense is not yet widely adopted by industry and
the current research in the area is very limited. Additionally, to our knowledge,
there are no open-source implementations that can be easily replicated. The Mov-
ing Target Defense proposed in this thesis is an open-source implementation and
can move a critical application between virtual and physical nodes in order to avoid
and confuse adversaries. In addition to the implementation, we performed security,
availability, and performance tests on the system. The results show that our system
is able to successfully thwart some types of attacks while not significantly impacting
availability and performance.

Keywords: moving target defense, distributed systems, kubernetes, cluster,
cloud

v

Acknowledgements
First and foremost, we would like to extend our gratitude to our supervisor Ahmed
Ali-Eldin Hassan, for guiding and supporting us throughout the project. We would
also like to extend our gratitude to our examiner Vincenzo Massimiliano Gulisano for
taking us on. SNIC - Swedish National Infrastructure for Computing, for providing
us with the cloud system that we used to conduct our experiments. AI Sweden
(ai.se), for providing us with a workplace, seminars and guidance.

Philip Tibom and Max Buck, Gothenburg, August 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis, listed in
alphabetical order:

IoT Internet of Things
MITM Man-In-The-Middle
MTD Moving Target Defense
MVC Model-View-Controller

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Problem . 3
1.2 Purpose and Goals . 3
1.3 Scope . 4
1.4 Research Questions . 4
1.5 Our Contributions . 5
1.6 Thesis Outline . 5

2 Technical Background 7
2.1 Virtual Machines in the Cloud . 7
2.2 Container Technologies . 9
2.3 Container Orchestration . 11

2.3.1 Kubernetes Architecture . 11
2.3.2 Minikube – Local Kubernetes Cluster 12
2.3.3 Kubernetes Clusters in the Cloud 13
2.3.4 Kubeadm . 13

2.4 Kubernetes Concepts . 14
2.4.1 ReplicaSets . 14
2.4.2 Deployments . 15
2.4.3 Kubernetes Config Files in YAML 15
2.4.4 Kubectl . 17
2.4.5 Kubernetes API . 18

2.5 Network Load Balancing . 18
2.6 Security . 19

2.6.1 Defense Systems . 19
2.6.2 Fingerprinting and Vulnerability Scanning 20
2.6.3 Exploitation, CVE - Common Vulnerabilities and Exposures . 21
2.6.4 Backdoors . 22

xi

Contents

3 Related Work 23

4 Design 25
4.1 Our Definition of a Moving Target Defense 25
4.2 Requirements and Goals with the System 25
4.3 Design Choices and Process . 26
4.4 Design of the Infrastructure . 29
4.5 Switching Algorithm . 32

5 Implementation 35
5.1 Kubernetes Cluster Setup . 35
5.2 Code Design and Structure . 38
5.3 Building, Installing, and, Using the MTD Application 41

6 Tests and Results 45
6.1 Performance and Availability . 45
6.2 Security – Fingerprinting and Vulnerabilities 50

7 Discussion and Evaluation 55
7.1 Performance Evaluation . 55
7.2 Availability Evaluation . 56
7.3 Security Evaluation . 57
7.4 Application Constraints . 58
7.5 Ethics and Sustainability . 59
7.6 Future Work . 60

8 Conclusion 61

Bibliography 63

A Appendix 1 I

xii

List of Figures

2.1 This is a simplified representation of a cloud architecture. A physical
server contains a hypervisor, which in turn manages several virtual
machines. Each virtual machine has its own operating system and
manages its own software. 8

2.2 It is possible to run multiple instances of the same container image.
As seen in the figure, there are two container instances of application
A. It is also possible to run many different containers at the same
time. Additionally, the containers can be configured so that in the
case of a failure, the failed instance is automatically deleted, and a
new instance of the same container is created. 10

2.3 An example of a pod containing three different containers. Nginx
serves as a web server and displays information given by the web
application. The web application is connected to a MySQL database
server. The pod can be replicated and scaled horizontally to run
with multiple instances on the same worker node or distributed across
different worker nodes . 12

4.1 Infrastructure of a Kubernetes cluster with a moving target defense
application. 29

4.2 Infrastructure of a Kubernetes cluster with a moving target defense
application and a Load Balancer. 30

4.3 Infrastructure of a Kubernetes cluster with a moving target defense
application and an external data collector. 31

5.1 Showing the code structure and how the application flows, starting
from MTD main. 39

6.1 CPU usage of one node during the swapping of a Wordpress image
under no load. 47

6.2 CPU usage of two nodes swapping a Wordpress image under load
from ApacheBench. For example, the CPU usage shown on second
12 is the average usage between second 11 and second 12. 48

xiii

List of Figures

xiv

List of Tables

6.1 Results from stress tests when MTD is on versus when it is off 48
6.2 Results of Availability tests on three different docker images 49

xv

List of Tables

xvi

List of Listings

2.1 Deployment Example in YAML [1] 16
4.1 MTD Algorithm V2 . 33
4.2 MTD Algorithm V3 . 33
5.1 Configuration that is running on every kubernetes node (both master

and workers). 35
5.2 Configuration that is running on the Master node only. 37
5.3 Configuration that is running on the Worker nodes only. 37
5.4 pseudocode for the algorithm . 40
5.5 Example deployment file with minimum fields required for the MTD

application to work. 42
5.6 The CLI for the application . 42
5.7 Example settings file with load balancer and two different deploy-

ments that will randomly alternate. 43
5.8 The CLI for the application . 43
5.9 The CLI for the application . 44
5.10 Example Kubernetes Service file that acts as load balancer within the

MTD . 44
6.1 requestSender.py . 46
6.2 Metasploit Heartbleed configuration 51

xvii

List of Listings

xviii

1
Introduction

The cloud computing industry has grown exponentially during the last decade [2]
and is estimated to be valued at hundreds of billions of US dollars, with growth
predicted even further in the next few years [3], [4], [5]. There are large companies
such as Amazon, Microsoft, Google, and thousands of other companies as well as
billions of users relying on cloud technology to run their IT services [6]. Some of the
greatest advantages of cloud technology are the operational abstraction layers that
enable cost-effective and automatic scaling of IT services and features to achieve
high availability. Edge computing is also an increasingly popular technology [7]
where operational efficiency can be greatly improved by moving computation closer
to the data collection mechanisms such as in IoT.

However, as with every computer system, cloud and edge computers are at risk from
various digital threats and intrusions. Additionally, edge computers are at higher
risk from physical attacks and tampering due to there unprotected positional nature.
Traditionally, IT services are hardened by keeping software up-to-date, configuration
of access permissions, firewall rules, and intrusion detection systems [8]. These
defense mechanisms usually involve fixing bugs and reducing vulnerabilities, as well
as using signature-based detection. However, these methods are for the most part
only effective against known threats and attack vectors. For example, if an exposed
service contains an unknown security vulnerability, then the defense mechanisms
are likely to fail until the issue has been manually addressed. We are therefore in a
position today where security is under constant scrutiny and it will always be one
step behind an adversary.

Approaches to further harden the security of systems especially against unknown
threats have been suggested before. One of these promising approaches is the so-
called Moving Target Defense. In simple terms, a moving target should be more
difficult to hit than a stationary target and this is true in most situations where an
attack and defense are involved.

For example, a similar technology known as frequency hopping is used in wireless
communication systems to reduce the chance of eavesdropping [9]. The idea is
that the transmitter and receiver know in advance which frequency will be used
at what time and an attacker would have to constantly monitor all frequencies to

1

1. Introduction

guarantee successful interception. Similarly, a moving target defense can be used
in computer systems to make it more difficult for an attacker to successfully mount
an attack. The attacker would first need to locate the position of the target, and
then they would need to have enough time to prepare their attack before the target
moves. For example, a computer system could use moving parts such as continuous
switching of IP addresses, alternating between underlying software, and moving
critical applications between locations. In theory, an application that is being moved
between edge nodes located at different positions should be more resilient against
physical tampering and destruction. Furthermore, a service that is continuously
changing its underlying software stack might confuse fingerprinting techniques and
exploitation tools and thus, potentially defend against some unknown threats.

Cloud environments do not only pose similar risks as traditional computer systems,
but they also enable benefits such as the possibility of automatically scaling IT
services up and down horizontally [10], which could also be used to achieve a moving
target defense. Scaling and availability are often accomplished by using orchestration
and container tools such as Kubernetes [11] and Docker [12]. Container tools allow
applications to be containerized and to be easily deployed in container run-time
environments. Orchestration tools manage multiple such run-time environments in
a cluster and provide tools for high availability and scaling. This thesis explores the
possibility of leveraging these orchestration and container tools in cloud and edge
systems to achieve a moving target defense.

The idea of this thesis is to provide an open-source design and implementation of a
moving target defense using cloud and edge systems in combination with Kubernetes.
In addition, we will provide an analysis of the performance, availability, and security
of the moving target defense system to investigate if the chosen implementation is
viable in the real world. One key novel idea in our work is the idea of alternating
equivalent software services at runtime, e.g., alternating Nginx, and Apache web
servers to alternate potential vulnerabilities in order to prevent exploitation, and to
confuse fingerprinting techniques. Additionally, the implementation involves moving
the target service between multiple physical nodes to defend against potentially
compromised nodes as well as physical tampering. The analysis involves measuring
any changes in latency, and downtime as well as comparison of real-world threats
against the moving target defense compared to the same setup without a moving
target defense.

2

1. Introduction

1.1 Problem

Typically, defense systems include rule-based solutions such as firewalls, intrusion
detection systems, and anti-virus. It may also include storage encryption or commu-
nication encryption to protect against man-in-the-middle attacks and compromised
hardware. These security measures are however not always enough, encryptions can
sometimes be broken, encryption keys may be compromised [13], and rule-based se-
curity can be circumvented [14]. One way to improve the security against unknown
threats is to add a moving target defense as an extra layer of defense. Moving target
defense is a loose term that can be interpreted and implemented in many various
ways and each implementation will defend against different types of threats.

One way to implement a moving target defense is to interpret the term quite literally,
by moving the target application physically between different nodes. The approach
in this thesis is to use a cluster of cloud nodes to move a critical application between
the different nodes. Moving an application between nodes can defend against phys-
ical attacks against the hardware and man-in-the-middle attacks. Another feature
is to alternate exposed software services and in turn, also change the vulnerabilities
and fingerprints. For example, while a fingerprinting tool is running, the target
software may be swapped to other versions or software with similar functionality, to
reveal different fingerprints and thus, confuse the attacker. Alternatively, if there is
physical tampering such as side-channel attacks, the target application may move
to a different node avoiding the attack altogether, or in the case of destruction, the
application may continue to run on a different node.

1.2 Purpose and Goals

The purpose of this thesis is to conduct an experiment using the concept of the mov-
ing target defense presented in section 1.1 and to evaluate whether the concept can
work in reality. Furthermore, the purpose is to contribute to industry and academia
with a moving target defense project that can be easily replicated, adapted, and
built upon to help further increase security in services running in cloud or edge
clusters. The goal is to design a moving target defense prototype and evaluate the
viability of the idea and the implementation, in terms of performance and availabil-
ity, and evaluate the potential security improvements. The goal is also to show any
limitations that the system may have. To accomplish this, there will be two parts
of this project, the thesis and the prototype.

1. The thesis focuses on the theoretical parts of the prototype such as the
technical background, implementation design, experimentation, analysis,
and discussion. It aims to provide the necessary details to fully comprehend
the implementation and its underlying infrastructure.

2. The prototype is an open-source moving target defense system in cloud and
edge clusters and should enable others to build upon it. It is also meant

3

1. Introduction

to inspire ideas for future projects. The prototype aims to provide a public
git repository with the necessary documentation and code.

1.3 Scope
The moving target defense will be tested on a small-scale distributed system due to
time limitations and operational costs. This project aims to make a prototype and
not a production-ready product. It would be logical to conclude that if the defense
does not work for smaller systems, it would not work for larger ones either.

One of the potential benefits of an MTD system that we would like to test is that
it can protect against new threats with unknown vulnerabilities, so-called zero-day
threats. The problem with this is the task of identifying critical security bugs and
then creating threats to exploit them would be too large a task for this project. To
solve this, the penetration testing will involve known, already patched vulnerabili-
ties against older and knowingly vulnerable software for the purpose of demonstra-
tion and testing. If successful, it is likely that it can defend against similar new
threats.

The goal of the report and the moving target defense system is not to eliminate
all threats but rather to strengthen security and to highlight the moving target
defense system’s strengths and weaknesses. The experiments will explore whether
the moving target defense will improve defense against certain types of attacks. It
will not conclude whether it fails or succeeds against every type of attack.

1.4 Research Questions
Based on the goals in section 1.1, we have outlined two research questions below
that we will aim to answer throughout this thesis.

RQ1. Is the chosen type of MTD implementation viable in a real-world scenario,
in terms of availability and performance?

RQ2. Does the MTD provide any security benefits, and if so, when and how
much?

4

1. Introduction

1.5 Our Contributions
We show that it is possible to create a moving target defense using Kubernetes
with the help of the Kubernetes API and open-source tools. Our tests show that
the system was not noticeably degraded in terms of availability and performance
and that it could potentially be applied in a real-world scenario. Our security tests
show that the system can defend against certain types of vulnerabilities, such as
timing-sensitive attacks as well as MITM and physical attacks.

1.6 Thesis Outline
The thesis begins by introducing the topic in this chapter. Chapter 2 aims to
contribute with the necessary technical background information that will help the
reader to understand the underlying concepts and technology used in the project
and experiments. Chapter 3 goes into related work where other moving target de-
fense systems are discussed. Chapter 4 shows the design in theory. Chapter 5 shows
the implementation and the necessary details in order to recreate the project from
scratch. Chapter 6 contains experiments, evaluations and analysis of the implemen-
tation. Chapter 7 discusses the viability of the implementation based on the results
from the experiments. Lastly, chapter 8 concludes this thesis.

5

1. Introduction

6

2
Technical Background

This chapter explains the relevant technical background to understand the design
and implementation of the moving target defense system. We will start with an
overview of virtualization and containerization since these concepts are necessary
to understand the system. Then we will cover orchestration and load balancing
which are key components of the implementation. Finally, we go over some relevant
security concepts that we aim to address with the system.

2.1 Virtual Machines in the Cloud
A cloud consists of many physical servers, where each physical server contains a
hypervisor [15]. The hypervisor is used to manage the available resources and to
assign them to individual virtualized environments so that multiple virtual environ-
ments can run on a single physical server. One of the most elementary services in
a cloud computing environment provides the ability to create virtual machines on-
demand within the cloud, often referred to by cloud providers as compute instances
[16]. These virtual machines are allocated a fixed amount of resources such as CPU,
memory, storage, and bandwidth [17]. For each virtual machine, an operating sys-
tem must be installed and configured. Additionally, every dependency and software
that is required to run a specific application or service needs to be installed on each
virtual machine. A simplified representation of a cloud architecture is shown in
Figure 2.1 below.

7

2. Technical Background

Figure 2.1: This is a simplified representation of a cloud architecture. A physical
server contains a hypervisor, which in turn manages several virtual machines. Each
virtual machine has its own operating system and manages its own software.

Furthermore, since each virtual machine must be installed, configured, and secured
individually, it makes management very time-consuming and expensive. Especially if
we need to scale the service horizontally, and run hundreds or thousands of instances.
Though, it is possible to create an image of an instance and replicate it to other
instances and thus somewhat reduce the manual work. However, such an image
quickly becomes very large as it includes the entire operating system and all the
installed software. So, while doable in some scenarios, it is very inefficient to replicate
such an image to many nodes over a network, especially if the nodes are located on
the edge. Alternatively, it is possible to develop custom procedures to automatically
update and deploy specific software to many nodes.

Another part of managing a cluster in the cloud involves monitoring active instances
and to ensure that they are running properly. For example, there must be a routine
for handling instances that have encountered any sort of failure which is usually
solved by restarting the failed instance. If there is an issue with the hypervisor,
then the instance would need to be relocated to a working host. Additionally, a
single instance may run multiple services which can all fail individually and thus
require special monitoring for each service. As seen in the mentioned examples,
the monitoring adds yet another layer of complexity when running many instances.
This leads us to a technique called containerization, where many of these issues have
already been improved. Containers will be explained in section 2.2.

8

2. Technical Background

2.2 Container Technologies
A container is essentially an application that has been encapsulated together with
instructions on how the application should be executed [18]. For example, it may
include installation instructions for required dependencies. This allows the applica-
tion to be easily deployed to any compatible container runtime. It also reduces the
required operational knowledge for a specific application significantly and it becomes
easier to manage in the case of a failure.

To execute a container, a specific container runtime is necessary. There are many
different container runtime technologies such as Containerd [19], Runc, and CRI-O
[20] of which all follow a standard called OCI (Open Container Initiative) [21]. This
standard makes the container runtimes compatible with various different orchestra-
tors. Being OCI compatible also means they follow the same container formats,
meaning the different OCI compatible container runtimes can run any OCI com-
patible container. There are also more feature-rich runtime environments such as
Docker [12], which uses Containerd underneath to run its containers. More on why
Docker is useful will be mentioned later.

In contrast to virtual machines which contain an entire operating system, a con-
tainer includes only a specific application and its necessary dependencies [18]. The
container runtime environment typically runs on a Linux-based operating system.
The operating system can run directly on the hardware or it can run inside a virtual
machine. However, a single container runtime environment can run multiple con-
tainers which are all isolated from each other, but at the same time, they can share
the kernels. A simplified architecture stack is shown in Figure 2.2 below.

Containers and virtual machines offer different levels of security. Virtual machines
provide better security because they are isolated from the underlying operating sys-
tem. This means that any malicious activity or viruses on the host machine should
not affect the virtual machines. In contrast, containers are not as isolated as virtual
machines and can be affected by the underlying operating system. For example,
if the host machine is compromised, the containers can be as well. Additionally,
containers share the kernel with the host machine and with other containers. This
means that a security vulnerability in the kernel can affect all containers.

9

2. Technical Background

Figure 2.2: It is possible to run multiple instances of the same container image.
As seen in the figure, there are two container instances of application A. It is
also possible to run many different containers at the same time. Additionally, the
containers can be configured so that in the case of a failure, the failed instance is
automatically deleted, and a new instance of the same container is created.

Docker

Docker [12] is a container runtime environment and platform that uses Containerd
underneath. Docker comes with additional tools and functionality such as container
repositories, monitoring, and a CLI (command line interface). A container repos-
itory is a source from which the Docker runtime can download copies of specific
containers. For example, the official Docker repository contains popular container-
ized applications such as Nginx, Apache, MySQL, and many more. It is also possible
for an organization to host its own repository with private container images. Using
repositories is the typical method of deploying new containers and updates to ex-
isting instances. Once a container has been pulled to the runtime environment, it
remains in the cache and can be used to start instances until it is removed. Thanks
to the features of the containerized architecture, it becomes easy to deploy one or
more applications to a single node [18]. It makes failure handling easier and decou-
ples applications and dependencies. The infrastructure becomes modular and gets
easier to scale up and down as required. However, scaling and replication across

10

2. Technical Background

multiple nodes remain tedious as one would need to manually deploy the corre-
sponding containers to each and every node. This is where orchestrators come into
the picture, and they will be described in section 2.3.

2.3 Container Orchestration
An orchestrator is a tool to manage multiple container runtime environments [22]. It
is also used for scheduling and deployment of the containers mentioned in section 2.2.
Having multiple container runtime environments forms a so-called cluster. The
orchestrator will monitor the entire cluster and make sure that the applications
are running as they should. Apart from monitoring and failure handling, it will also
come with features such as rolling updates which means it will update an application
on the cluster gradually to ensure no down time of the service.

There are a couple of well-known orchestrators in the industry today such as Ku-
bernetes [11], Docker Swarm[23], Openshift[24] and Mesos[25]. Kubernetes was
originally created by Google but is now maintained and developed the Cloud Native
Computing Foundation which is part of the nonprofit Linux Foundation. This makes
Kubernetes open-source and vendor neutral which has allowed it to be implemented
in all the major cloud services from companies such as Amazon, Google, Microsoft,
IBM and more. This makes Kubernetes the currently most popular orchestration
tool.

2.3.1 Kubernetes Architecture
On an abstract level, Kubernetes contains mainly three parts, the orchestrator/-
manager, the container runtime environments, and the containerized applications
[11]. Together, these parts form a Kubernetes cluster. Each container runtime envi-
ronment is called a worker node. The worker node can be either on a physical or on
a virtual machine, and each node can execute multiple containerized applications.
Kubernetes supports any OCI-compliant container runtime which means that the
user is not locked in a specific vendor such as Docker for as long as the container is
OCI-compliant, and the user does not necessarily need to know which the underlying
container runtime is.

In Kubernetes, the containerized applications are wrapped in something called a
pod. A pod is the smallest deployable unit in Kubernetes. A pod can contain mul-
tiple containers and thus provide an entire application stack in a single deployment,
but the most common usage is to have one container per pod. A pod includes
additional information compared to a container such as logical hosts, how it is con-
nected to other pods on a virtual network on a specific node etc. A simple example
is illustrated in Figure 2.3 below.

11

2. Technical Background

Figure 2.3: An example of a pod containing three different containers. Nginx serves
as a web server and displays information given by the web application. The web
application is connected to a MySQL database server. The pod can be replicated
and scaled horizontally to run with multiple instances on the same worker node or
distributed across different worker nodes

Orchestration and containerization technology is highly relevant to the moving target
defense system presented in this thesis. This is because it allows applications to be
deployed quickly with less configuration in comparison to virtual machines. For
example, even a preconfigured virtual machine image will take significantly longer
to boot up than a container or a pod, which will result in a moving target defense
that will result in a larger overhead [18]. Furthermore, cluster management tools
that an orchestrator provides, such as Kubernetes are already available.

2.3.2 Minikube – Local Kubernetes Cluster
For simple testing and learning the basics of Kubernetes, it is usually simplest to
set up a cluster locally. Several tools have been developed to simplify the setup
and reduce the time needed to get up and running. Minikube, maintained by the
Kubernetes developers, is one of those tools [26]. With Minikube, a cluster can
be set up locally on a computer. It supports multiple container runtimes such as
Docker, Containerd and CRI-O and several ways to deploy the cluster. These include
running the cluster directly on bare metal, virtually in a VM, or in a container.

When starting a Minikube cluster with the command minikube start, a number of
specified nodes will be created for the user to populate with Kubernetes resources.
One of the nodes is the master node which contains the control plane [11]. It
consists of several components which are responsible for several different important
tasks within the cluster. These include for example a scheduler and a key-value
storage solution.

12

2. Technical Background

2.3.3 Kubernetes Clusters in the Cloud
Kubernetes clusters can also be set up in cloud environments such as Amazon Web
Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, or DigitalOcean.
These providers all offer managed Kubernetes services that take care of the under-
lying infrastructure [27]. When using a managed Kubernetes service, the user does
not have to worry about the underlying infrastructure or setting up and maintaining
the control plane. The cloud provider takes care of that automatically.

However, there are certain limitations to using managed Kubernetes services since
the user does not have as much control over the cluster. For example, DigitalOcean
does not currently support multi-region Kubernetes clusters. This means that if the
user wants to set up a Kubernetes cluster in multiple regions, they would have to
set up and manage the cluster themselves.

It is possible to set up and manage a cluster from scratch. This can be done on-
premises or in the cloud, allowing specialized hardware and configurations, such as
a cluster of edge devices. There are several tools available to help with the setup
process, such as kubeadm and kops.

2.3.4 Kubeadm
Kubeadm is a command-line interface toolkit that helps get a Kubernetes cluster up
and running [11]. It is the official way to provision a minimum viable Kubernetes
cluster that conforms to best practices. It handles the heavy lifting of bringing up a
Kubernetes cluster, from provisioning compute resources to configuring networking
and storage. Kubeadm is also responsible for joining new nodes to the cluster.

In order to run Kubeadm and bootstrap a cluster, certain prerequisites must be
fulfilled such as minimum available resources and software installation and config-
uration, which can be found on Kubernetes website [11]. Though, once all the
prerequisites are met, mainly three commands are used to provision a minimum
viable cluster, listed below.

kubeadm init
Used to create a control plane node. It does this by going through a series of tasks,
mostly setting up the components which makes up the control-plane and generating
a token which nodes uses to join the cluster.

kubeadm token
Used to create a token for a control plane. The token have an expiration-date,
so new ones need to be generated if nodes want to join a cluster after a certain
time.

kubeadm join
Used to create a Kubernetes node on the machine running the command and then
joining it to the specified control plane.

13

2. Technical Background

2.4 Kubernetes Concepts
This section aims to provide a general overview of the conceptual aspects of Kuber-
netes that will be used throughout the thesis.

Kubernetes employs a number of abstractions that make up an important part
of its API and are used to manage complex sets of containerized workloads. These
abstractions include ReplicaSets and Deployments, which both provide a declarative
way to manage groups of running workloads. Each of these two concepts will be
described in subsection 2.4.1 and subsection 2.4.2, and how to declaratively configure
such workloads will be described in subsection 2.4.3.

The API is organized around the concept of resources, which are collections of objects
with similar characteristics. Each type of resource has its own set of endpoints for
manipulating it. For example, the Deployment resource has an endpoint for creating
new Deployments, and another for listing existing Deployments. Furthermore, how
to access such endpoints will be described in subsection 2.4.4 with the help of the
official tool called Kubectl, and later in subsection 2.4.5 on how to access the API
using a custom-made client.

2.4.1 ReplicaSets
In Kubernetes, a ReplicaSet is a resource that ensures a specified number of pod
replicas are always available [11]. It does this by creating and deleting pods as needed
to maintain the desired replica count. ReplicaSets uses an algorithm to make sure all
the pods are evenly distributed among the nodes with available resources. If a pod
is deleted or crashes, the ReplicaSet will create a new pod to replace it. ReplicaSets
are a critical part of orchestrating and managing pods in Kubernetes, ensuring that
applications always have the resources they need to run effectively. This provides
high availability for applications running in Kubernetes.

ReplicaSets are also often used to create scalable applications, as they allow to easily
add or remove pods as needed to handle changing demand. For example, to have 10
instances of an application running at all times, a ReplicaSet with a replica count
of 10 would have to be created. The number of replicas can also be scaled up and
down on-demand. Pods that are part of the same ReplicaSet are usually identical,
meaning they have the same labels and annotations. This allows the ReplicaSet to
manage them as a group. When a new pod is created, it is automatically added to
the ReplicaSet.

14

2. Technical Background

2.4.2 Deployments
A Deployment is a type of workload that can be created in a Kubernetes cluster [11].
Deployments provide a way to create and manage replicated applications, scaling
them up or down depending on resource usage. Deployment is a higher-level concept
that manages ReplicaSets (described in subsection 2.4.1).

Unlike ReplicaSets, updates to Deployments are managed declaratively, using Ku-
bernetes’ YAML configuration files. This allows specifying the number of replicas
needed for an application and how those replicas should be deployed or upgraded.
With a ReplicaSet, the replication controller must be manually updated every time
there is a change in the application version or desired state.

Deployments also provide easier control over how the application is scaled and up-
graded. For example, a deployment can have a rollout strategy specified when
upgrading the application. It is also possible to roll back changes if they cause is-
sues in the application, without having to manually delete or modify the replication
controller. For example, during a rolling update, a Deployment manages two Repli-
caSets (A and B), where A scales down one step as B scales up one step. Whereas,
a single ReplicaSet on its own cannot accomplish a rolling update.

Due to the high-level functionality and flexibility provided by Deployments, they
are typically recommended for use instead of ReplicaSets. However, there are some
cases where a ReplicaSet would be more appropriate – for example, if precise control
over scaling is needed or a different deployment strategy needs to be used.

2.4.3 Kubernetes Config Files in YAML
YAML is a human-readable data serialization standard [28] that can be used to store
data in a structured format. It is often used for configuration files, but can also be
used to store data in a database or transmit data over a network.

Kubernetes supports both YAML and JSON for its configuration, though YAML
is more common and is recommended in the best practices [29]. In Kubernetes,
YAML is often used to specify which services should be provisioned as part of an
application deployment and how those services should interact with each other. For
example, a YAML file may contain instructions for launching a web service that
contains several microservices behind it and specifying the ports on which those
services should be exposed.

YAML is flexible and allows for a wide range of configuration options to be speci-
fied. This makes it possible to customize Kubernetes deployments in different ways,
depending on the needs of the organization or application.

Finally, YAML is widely supported by many different tools and programming lan-
guages. This means that you can use a wide variety of tools to manage and modify
Kubernetes configurations, without having to rely on proprietary formats that are

15

2. Technical Background

only supported by certain vendors.

Some important YAML configuration options for Kubernetes include:

• The services that should be provisioned for the application. This may
include container images and the ports on which they should be exposed.

• Storage volumes and any associated requirements, such as whether data in
those volumes needs to be encrypted or replicated across multiple nodes.

• Configuration settings for network policies, such as which traffic should be
allowed into the cluster and which services should be able to communicate
with each other.

• The desired state of the Kubernetes cluster, such as how many nodes should
be running and what version of Kubernetes should be deployed.

• Settings for cluster autoscaling, including minimum and maximum capaci-
ties for the nodes in the cluster.

• Settings for high availability, such as whether a replicated data volume
should be used to store persistent data.

An example of a YAML deployment file is specified below:
apiVersion : apps/v1
kind: Deployment
metadata :

name: nginx - deployment
labels :

app: nginx
spec:

replicas : 3
selector :

matchLabels :
app: nginx

template :
metadata :

labels :
app: nginx

spec:
containers :
- name: nginx

image: nginx :1.14.2
ports:
- containerPort : 80

Listing 2.1: Deployment Example in YAML [1]

The example YAML file above will create a Deployment with three Pods, each run-
ning the nginx container. The Deployment will expose port 80 on the Pods, allowing

16

2. Technical Background

users to access the application via a web browser. It will also automatically update
or replace Pods if they become unavailable or have performance issues, ensuring
continuous availability and high performance for the application.

• Kind specifies the type, such as Deployment or ReplicaSet

• Metadata specifies name and labels for the Deployment.

• Spec specifies what the Deployment should accomplish. It includes the
number of replicas, selector, and template. Template is used to create
Pods. It includes metadata and spec for the containers in the Pods.

• Containers specify the name, image, and port for each container in the
Pod.

2.4.4 Kubectl
Kubectl is a command-line interface (CLI) that provides access to the Kubernetes
API [11]. It is used to manage Kubernetes clusters, deploy applications, and perform
other tasks. It can be used to create, update, delete, and view resources in a
Kubernetes cluster, such as pods, services, and replication controllers. Some of the
most essential commands to understand are described below.

kubectl create
Used to create a resource, like a deployment or replicaset, from either a YAML file or
directly from the command line. If the command is run with the same input a second
time it will not work, since there already exist a resource with that name.

kubectl apply
Used to either create a resource from a YAML file or stdin, or apply the changes if
a resource with the same name already exists in the namespace. For this reason it
is recommended to use it over the kubectl create command.

kubectl get
Used to get useful information about the resources on the cluster. It can target
either a specific kind of resources like nodes or deployments, or an overview of the
whole cluster. Often used with the -o wide flag to get additional information.

kubectl label
Used to create labels on resources. Updating already existing labels is done via the
–overwrite=true flag.

kubectl delete
Used to delete resources from the cluster based on file name or their name together
with either resource type or labels.

kubectl rollout restart

17

2. Technical Background

Used to rollout updates to a resource, like a deployment. The command makes sure
that the cluster maintains availability by never taking down a amount of pods below
a user specified threshold. For example, if the deployment has 4 pods and threshold
of 75%, then it first takes down a pod and the creates a pod. It continues doing this
until all the pods has been replaced. There is a similar threshold of the maximum
number of allowed pods, which could be reached if the deletion process is slow. The
restart command in combination with rollout will simply restart the resource while
still having it available.

2.4.5 Kubernetes API
The Kubernetes API is a way to talk to the Kubernetes cluster [30]. It can be
used to do things like create new pods and services or get information about what’s
going on in the cluster. The API is divided into several parts, each with a different
purpose. The API server is the component that actually handles the requests from
clients. It then forwards the requests to the appropriate controller. The controllers
are responsible for making sure that the cluster is in the desired state. There are
many different types of controllers, each with a specific purpose. For example, there
is a ReplicationController which is responsible for making sure that there is the
correct number of replicas of a given pod. The API is however not intended for use
by end users. It is meant for use by tools and scripts that need to automate the
management of a Kubernetes cluster.

The CLI tool kubectl is built on top of the Kubernetes API. It can be used to
do all the things that can be done with the API, and more. It is also possible
to write programs that use the Kubernetes API directly. For example, there are
both official and third-party libraries available that implement the Kubernetes API
in different programming languages. However, many such commands that kubectl
performs such as a rollout restart is not part of the API and must be implemented
in the program that utilizes the API if such a feature is desired. There are however
libraries that mimics some of the kubectl commands, but not all of the commands
as can be seen in the official Kubernetes Java Client.

2.5 Network Load Balancing
A network load balancer is a device that helps distribute the workload of traffic
across different computers or servers [31]. This is helpful because it can make sure
that no one computer is too overloaded and that all of the computers are doing an
equal amount of work. They can also detect if a server is down and stop sending
traffic to it.

Nginx and HAProxy are two examples of programs that can act as load balancers
among other things. In Kubernetes, there are two types of load balancing: internal
and external [11]. Internal load balancing is when the load balancer is within the
cluster and only distributes traffic to services within the cluster. External load
balancing is when the load balancer is outside of the cluster and can distribute

18

2. Technical Background

traffic to services both inside and outside of the cluster.

Kubernetes services can be exposed in a number of ways. One way is to use a service
type called “LoadBalancer”. When using a “LoadBalancer” within a cloud system,
Kubernetes will automatically create and configure an external load balancer for
the service. This is useful because it means that there is no need to manually
set up and configure a load balancer. Another way to expose a service is to use
NodePort. NodePort exposes the service on each node in the cluster at a specific
port. Any traffic that is sent to this port on any of the nodes will be forwarded to
the service.

Kubernetes also has the ability to do load balancing at the application layer. This
is done with Ingress resources. An Ingress resource defines a set of rules that can be
used to route traffic to different services within the cluster. This is useful because it
allows for more control over how traffic is routed and it can make it easier to change
the routing in the future if needed.

2.6 Security
There are many concepts within cyber security, this section aims to provide some
general knowledge about the concepts used within this thesis. Some common defense
systems will be introduced to provide an understanding of the differences between
them and the Moving Target Defense that is experimented on in this thesis and
how they could be used together. This section also provides some basic informa-
tion about fingerprinting techniques, vulnerability scanning, exploitation, and how
security systems can be evaluated.

2.6.1 Defense Systems
Static Code Analysis and Dynamic Code Analysis are two methodologies for code
reviews [32]. Static Code Analysis is performed without running the code and it can
be done using tools that analyze the code for potential problems. This can be helpful
because it can find problems that would be difficult to find otherwise. However, it
can also produce false positives, which are when the tool reports a problem but
there is no actual problem. Dynamic Code Analysis is performed by running the
code and observing its behavior. This can be helpful because it can find problems
that are not easily found by static analysis. However, it can also be difficult to set
up and it can be slow.

A Firewall is a system that controls traffic between networks [33]. Firewalls can be
hardware, software, or a combination of both. They are used to protect networks
from external threats. A firewall works by inspecting traffic and comparing it to
a set of rules. If the traffic matches a rule, then the firewall will allow or deny
it. There are many different types of firewalls. Some common types are stateful
firewalls, application-level firewalls, and network-level firewalls. Stateful firewalls
keep track of the state of connections and only allow traffic that is part of an existing

19

2. Technical Background

connection [34]. Application-level firewalls such as web application firewalls (WAF)
inspect traffic at the application layer [35] and can make decisions based on the
application that is being used. Network-level firewalls inspect traffic at the network
layer and can make decisions based on the source and destination of the traffic.

A Network Intrusion Detection System (NIDS) is a system that monitors network
traffic and looks for signs of intrusion [36]. NIDS can be used to detect attacks as
they are happening or after they have happened. They work by inspecting traffic
and comparing it to a set of rules. If the traffic matches a rule, then the NIDS will
generate an alert. NIDS can be either host-based or network-based. Host-based
NIDS are installed on individual hosts and can only monitor traffic to and from that
host. Network-based NIDS are placed in the network and can monitor all traffic
that passes through them.

A Network Intrusion Prevention System (NIPS) is a system that monitors network
traffic and looks for signs of intrusion [36], similar to a NIDS. NIPS can be used to
detect attacks as they are happening and block them before they can do any damage,
in contrast to a NIDS which only generates an alert. NIPS work by inspecting traffic
and comparing it to a set of rules. In contrast to a network firewall, NIPS and NIDS
perform packet inspections in order to detect malicious payloads or activities.

Note that all of the defense systems mentioned in this section complement each other
in various ways and could thus be used in conjunction with each other. A moving
target defense is yet another defense system and does not replace or prevent any of
the other systems from being used. Usually within the perspective of security, the
goal is to harden a system as much as possible within a reasonable scope. Which
means that a simple system such as a network firewall is almost always used since
the overhead of such a system can be very light.

2.6.2 Fingerprinting and Vulnerability Scanning
Fingerprinting is the process of identifying the operating system, software, and hard-
ware of a device [37]. Fingerprinting can be used for many different purposes. For
example, it can be used to find out if a device is running an outdated or vulnerable
version of the software. It can also be used to target attacks against specific de-
vices. There are many different ways to fingerprint a device. Some common methods
are examining the headers of network traffic, looking for known vulnerabilities, and
running system-specific commands. Fingerprinting is therefore often one of the first
steps that an attacker will take.

A vulnerability is a flaw in a system that may be exploited. to gain access to the
system or its data. Vulnerabilities can be found in software, firmware, and hardware.
They can be found in operating systems, web applications, mobile apps, and devices.
Vulnerabilities can be discovered through manual testing or automated scanning [38].
Many vulnerabilities are reported to the vendor and some are made public. Some
common types of vulnerabilities are buffer overflows, cross-site scripting, and SQL

20

2. Technical Background

injection.

Vulnerability scanning is an automated process of identifying vulnerabilities in a
system [39]. Vulnerability scanners can be used to scan for known vulnerabilities and
verify that patches have been applied. Such scanners can also be used by adversaries
or malicious software to find vulnerabilities that can be exploited. There are different
types of vulnerability scanners. Some common types are web application scanners,
network scanners, and database scanners.

Later in this thesis, a scanner called OpenVAS Greenbone Security Assistant [40] will
be used to scan the moving target defense system for fingerprints and vulnerabili-
ties. OpenVAS Greenbone Security Assistant is a free and open-source vulnerability
management system. It is used to scan for vulnerabilities, track remediation, and
generate reports.

Another tool that will be used is Nmap. Nmap is a free and open-source network
exploration tool and security scanner [41]. Nmap can be used to scan for hosts and
services on a network. It can be used to identify hosts that are up, down, or have
specific ports open. Nmap can also be used to fingerprint devices to find out what
operating system and software they are running.

2.6.3 Exploitation, CVE - Common Vulnerabilities and Ex-
posures

A CVE, or Common Vulnerabilities and Exposures [42], is a rule that defines a class
of vulnerabilities. A CVE can be used to identify which devices are affected by a
particular vulnerability. CVEs are assigned by the MITRE Corporation. The CVE
website includes a searchable database of CVEs.

To exploit a system means to take advantage of a flaw in the system to gain access
to it or its data. There are many different types of exploits. Some common types
are buffer overflows, cross-site scripting, and SQL injection. To find out if a system
is vulnerable to an exploit, one can check the CVE database to see if there are any
CVEs that apply to the system.

In this thesis, the CVE-2014-0160 [43], also known as The Heartbleed Bug [44], will
be used as an example. The Heartbleed Bug is a security flaw in the OpenSSL
cryptography library. The flaw allows an attacker to read the memory of a system
that is using a vulnerable version of OpenSSL. This can be used to obtain sensitive
information such as passwords and private keys. The Heartbleed Bug was first
made public in April 2014. The exploitation of this bug works by sending a specially
crafted heartbeat request to a system that is using a vulnerable version of OpenSSL.
The response from the system will include sensitive information from the system’s
memory. The response is at most 64 kilobytes in size and contains random data
from the memory. This means that an attacker can send multiple requests and get
different pieces of data from the memory each time, in hope of finding the desired

21

2. Technical Background

data.

A free open source penetration testing framework called Metasploit [45] can be
used to make penetration testing easier. Metasploit comes with a large number of
exploits and payloads. It can be used to launch exploits amd payloads against vul-
nerable systems. In this thesis, the Metasploit module named “auxiliary/scanner/ss-
l/openssl_heartbleed” will be used to exploit the CVE-2014-0160, The Heartbleed
Bug, as later described in chapter 6.

2.6.4 Backdoors
A backdoor is a way to bypass security measures and gain access to a system.
Backdoors can be placed on systems by manufacturers, developers, or attackers.
They can be used to gain access to systems for legitimate purposes or for malicious
purposes. Typically, an adversary may upload a backdoor (a piece of software) to a
system in order to gain access to it at a later time.

Backdoors can be prevented by using security measures such as access control lists,
intrusion detection systems, anti-virus, and so on [46]. Access control lists can be
used to restrict access to systems and data. Intrusion detection systems can be
used to detect and respond to unauthorized activity and anti-virus may scan the file
system or memory for detected malicious software such as a backdoor. However, if
the backdoor is unknown and slips through these defenses, it can be very difficult
to find and remove since the host may not even know it exists [46].

22

3
Related Work

There are several research papers on the subject of Moving Target Defense. For
example, Roy et al. [47] proposes Moving Target Defense as a technique to combat
adversarial machine learning. The authors propose to alternate between different
algorithms in a given software and are introducing randomness into its parameters.
Zeitz et al. [48] goes into the design of a Micro-Moving Target IPv6 Defense for
Internet of Things (IoT). The authors propose protocols, modes of operations and
a possible simulation for Cooja (a network simulator for Contiki OS [49]).

However, our project takes a different approach than the two aforementioned pa-
pers [47] and [48]. Firstly, our project involves building a Moving Target Defense
system that moves the critical application between different nodes. Secondly, our
project aims to contribute with a proof of concept and the necessary details so that
researchers and developers in the field can replicate and adapt the project to a
real-world situation.

A third approach by Ahmed and Bhargava [50], proposes a framework for Moving
Target Defense for distributed systems. The project seems to have been implemented
and tested in practice by the authors, but the demo is not publicly available and
the paper is not focused on the security aspects and benefits.

Al-Shaer et al. [51] and Caroll et al. [52], have investigated methods of Moving
Target Defense that involve randomizing or shuffling the network addresses of hosts.
Their methods are different from our project but could in practice achieve a similar
result. They have studied the idea with simulations and tested it with small-scale
prototypes with a feasible outcome.

Another paper by Tian et al. [53], which was influenced by Al-Shaer et al. [51],
looked into the possibility of using MTD to thwart stuxnet-like attacks. These
attacks work by targeting the control signals and manipulating the measurements
on the system to mask the attack. Their results concluded that MTD could work
as potential security measure, in large part because reconnaissance of the system is
important to the attack which MTD is designed to handle.

23

3. Related Work

Kenney A. Torkura et al. [54] wrote a paper that explains that Microservice Archi-
tectures (MSA) tend to use common images from public repositories such Docker
Hub, which makes the services more vulnerable to attack since the same type of
service is running on many machines. They propose Moving Target Defense mecha-
nisms to overcome the security implications of homogeneous microservices by using
different types of scoring metrics and by automatically altering the container images
to accomplish diversification. These mechanisms are possibly something that could
be combined with the moving target defense explored in our thesis.

There is a company named Polyverse Corporation that claims offer a Moving Target
Defense Suite [55], based on a similar idea to our project. However, since it is not
an open-work/open-source project, it is difficult to tell how effective the solution
is.

Furthermore, Kaiyu Feng et al. [56] wrote a paper on preventing SQL injections
with the help of Moving Target Defense and suggested a potential strategy with
containerization technology combined with an orchestration tool such as Kubernetes,
which is similar to our idea. They did however not implement the strategy and could
therefore not test if it works in reality.

A method within the field of radio technology, known as Frequency-hopping spread
spectrum (FHSS) [57], is already widely used in practice to prevent for example
interference and eavesdropping. FHSS is an inspiration for this project and we hope
to design a Moving Target Defense based on similar ideas.

To the best of our knowledge, there is no project or paper that has published details,
examples or demonstrations with our suggested Moving Target Defense idea.

24

4
Design

This chapter describes our process of designing a moving target defense system.
The chapter is organized as follows: first, we describe our definition of a moving
target defense. Second, we enumerate the requirements and goals that guided our
design process. Third, we describe the design choices and processes that we followed.
Fourth, we detail the infrastructure design. Fifth, we discuss the algorithm that we
used for switching targets.

4.1 Our Definition of a Moving Target Defense
In order to create a moving target defense, we first had to establish the concept
and what we mean when using the term moving target defense. To do that, we will
describe what static and moving targets are and how they differ.

A static target is an object that does not move. In the context of computer security,
a static target is an object that is not changed or updated frequently. This could
be a server, a website, or even an individual file. Static targets are typically easier
for attackers to find and exploit because they do not change.

In contrast, a moving target is an object that is constantly changing. In the context
of computer security, a moving target is an object that is frequently updated or
changed. This could be a server, a website, or even an individual file. Moving
targets should be more difficult for attackers to find and exploit because they are
constantly changing. A moving target defense is thus a system that handles moving
targets.

4.2 Requirements and Goals with the System
The moving target defense should be designed to work in conjunction with other
security measures, such as firewalls and intrusion detection systems. The goal is to
make it more difficult for an attacker to find and exploit vulnerabilities by constantly
changing the system configuration. The moving target defense is not supposed
to be a bulletproof defense system, hence traditional defenses are still required in
conjunction.

25

4. Design

4.3 Design Choices and Process
To implement a moving target defense, we first needed to identify some poten-
tial attack vectors that could be used against our systems. We then designed the
moving target defense to address these threats. There are many different ways to
design a moving target defense [58]. The most important thing is to ensure that the
defenses are constantly changing and that they are effective against the identified
threats.

Some of the threats that we identified that a moving target defense could potentially
protect against include:

• Attacks that exploit static targets: A moving target defense can make it
more difficult for attackers to find and exploit vulnerabilities in static tar-
gets.

• MITM attacks: A moving target defense can make it more difficult for
attackers to intercept and modify communications between two systems.

• DoS attacks: A moving target defense can make it more difficult for attack-
ers to overload a system with requests, making it unavailable to legitimate
users.

• Physical attacks: A moving target defense can make it more difficult for
attackers to physically access a system.

We decided to address these types of threats by constantly changing certain aspects
of the system. We have come up with two defense mechanisms that should address
the above threats. Each of these defense mechanisms is described in more detail
below.

Defense 1: Change physical location and IP address frequently

One way to make it more difficult for attackers to physically access a system is to
change the physical location of the system frequently. Changing the IP address
of the system in combination with changing the physical location, makes it more
difficult for attackers to intercept and modify communications between two systems.
This makes it more difficult for attackers to find and target the system.

26

4. Design

Defense 2: Change software stack frequently

Another way to make it more difficult for an attacker to find and exploit vulnera-
bilities is to change the software stack that the system uses frequently. This should
make it more difficult for an attacker to fingerprint the system and makes it more
difficult to exploit any vulnerabilities.

The two mentioned defenses above should individually help with the identified attack
vectors, and in combination, improve the difficulty even more. More things can be
done to further improve the difficulty, but those are out of scope for this thesis.

We also needed to consider the tradeoffs when designing the moving target defense.
For example, we needed to balance the need for security with the need for avail-
ability and performance. Thus, in our design, we have chosen to focus on three key
areas:

• Security: We wanted our defense to be effective against the threats that
we have identified.

• Availability: We wanted our defense to be effective, without impacting
the availability of our systems.

• Performance: We wanted our defense to have minimal impact on the
performance of our systems.

To accomplish the two defense mechanisms outlined above, while also considering
security, availability, and performance, we had several options to consider. Intu-
itively, with the most basic thought process, one could simply automate the process
of changing the physical location, IP address, and software stack. This could be
done by for example having a script that changes these things on a regular basis.
However, this is not very practical as it would require a lot of effort to keep track of
all the changes and ensure that everything still works as intended. A more practical
solution would be to look at setting up hypervisors running virtual machines and
then provisioning different images. These images could have different configurations,
running with different software stacks. The IP address and physical location would
be controlled by some kind of orchestrator.

However, starting a virtual machine and moving images around can be both heavy on
resources and slow. This might not be the best solution in a production environment
where speed and efficiency are important. We decided to go with a third option
which is using container technology. Containers have several advantages over virtual
machines. They are much lighter on resources, can be started and stopped very
quickly and can be moved around more easily. This makes them a good candidate
for our use case.

There are several container technologies available, but we decided to go with Docker.

27

4. Design

The reason we have chosen Docker is that it is a very popular container platform
and has good support for all types of applications. It also has a large ecosystem
with many tools and services that can be used with it. The next step was to look
at orchestrating the containers to different locations because Docker by itself is
meant to run on a single machine. Instead of reinventing the wheel, we looked at
existing orchestration tools such as Kubernetes, Apache Mesos, and Docker Swarm.
We decided to go with Kubernetes because it is open-source, backed by a large
company (Google), is very popular, and is widely available in most cloud providers.
It also has good documentation, and a large ecosystem, and gives us the granular
control that we need to design our moving target defense.

Kubernetes is a container orchestrator that can be used to manage a large number
of containers across multiple machines. It can be used to automate the process of
starting, stopping, and moving containers around. Kubernetes also has many other
features such as load balancing, monitoring, and self-healing. All of these features
are important for our use case. The next step was to look at how we could use
Kubernetes to design our moving target defense.

The first thing that had to be done was to create a Kubernetes cluster. A Ku-
bernetes cluster is a group of machines that are used to run containers. We could
create a Kubernetes cluster on our local machines, or we could use a cloud provider
that provides pre-configured Kubernetes clusters such as Google Cloud Platform,
Amazon Web Services, Microsoft Azure, or Digital Ocean. We decided to use the
official Minikube tool for local development and testing on our local machines. We
were also given access to a cloud provider that is meant for researchers, called SNIC
(Swedish National Infrastructure for Computing). We, therefore, used SNIC when
we needed to do larger tests that couldn’t be done on our local machines. How-
ever, SNIC does not come with a preconfigured Kubernetes cluster, so we had to set
one up ourselves. More details about the configuration and setup are provided in
chapter 5. We also decided to use DigitalOcean during some experiments to achieve
realistic latency between different countries and continents, which is described in
more detail in chapter 6.

The next step was to look at how we could automate the process of starting, stop-
ping, and moving containers around. The common way is to use the Kubernetes
CLI called Kubectl. However, this is a very manual process and is not suitable for
our use case where we need to move containers between nodes automatically based
on certain criteria. We, therefore, looked into writing a script that would execute
Kubectl commands, however, we decided that it was more reliable and flexible to
write a program that uses the Kubernetes API. There are several open-source li-
braries available for the Kubernetes API, in different languages. We decided to go
with the official Kubernetes Java client because it is well-documented and likely to
receive continuous development and support in the future. It also had support for
most of the Kubernetes API resources that we needed to use.

28

4. Design

4.4 Design of the Infrastructure
This section will give a general overview of the design of our infrastructure and
then the actual hardware specifics will be detailed in section 5.1 about the cluster
setup.

Kubernetes runs with a Master Node and a set of Worker Nodes. The Master Node is
responsible for the management of the Worker Nodes. The Worker Nodes are where
the containers are actually running. In our design, we have one Master Node and
multiple Worker Nodes. The number of Worker Nodes can be increased or decreased
depending on the needs of the system and shall remain flexible. The moving target
defense will then communicate with the Master Node in order to determine which
Worker Nodes the containers should be running on. An illustration of the design is
displayed in Figure 4.1.

Figure 4.1: Infrastructure of a Kubernetes cluster with a moving target defense
application.

In Figure 4.1, an adversary could be located in between any of the three connections
between the worker nodes and the master node or target one of the nodes directly.

29

4. Design

However, the figure shown is sort of a black box since there are no connections to
the worker nodes other than the master node. This means the worker nodes are not
providing anything useful. We have therefore come up with two more designs that
extend this one. The first design is displayed in Figure 4.2.

Figure 4.2: Infrastructure of a Kubernetes cluster with a moving target defense
application and a Load Balancer.

The design in Figure 4.2, includes a load balancer that acts as a public endpoint to
the Kubernetes cluster. It redirects traffic to all the available pods. The green arrow
in the picture illustrates that the master node has provisioned a pod to the targeted
worker node. While a red arrow indicates that the master node has deleted any pod
if any, on the targeted worker node. The double-striped line indicates active traffic
between the load balancer and the worker node since that node has an active pod
running. Whilst the doubled-striped red line indicates no active traffic because the
targeted worker node has no pod running. An adversary is also illustrated between
the Load Balancer and Worker Node 3, to show that if that pod is not running,
the adversary should not be able to intercept the traffic nor be able to attack that
inactive node. However, a potential flaw is that the adversary may be able to target

30

4. Design

the load balancer directly and thus have any attack redirected to the active node, or
if having internal network access to the load balancer, may be able to intercept all
the traffic passing through it. This is why we have come up with one more design
shown in Figure 4.3, that will show a different use case.

Figure 4.3: Infrastructure of a Kubernetes cluster with a moving target defense
application and an external data collector.

As seen in Figure 4.3, there is a similar design to the one shown in Figure 4.2,
however, in this design, there is no load balancer and the worker nodes merely act
as data producers that send their data to an external data collector. This makes it
so that there is no public endpoint to the cluster, thus no load balancer redirecting
traffic to the active node, meaning it should be difficult for an adversary to track
which node is currently active in order to attack it. In addition, since there is no
public endpoint, the attacker must be located on the internal network of the node in
order to attack it, since there is also a firewall that only allows traffic to flow in the
outgoing direction of the cluster. Another thing that should be noted is that each
node within the cluster could be located physically anywhere, for example in different
cities, countries, and continents which would make it harder for an adversary to
attack multiple nodes, especially when internal network access is required for an

31

4. Design

attack as in the Figure 4.3 design.

4.5 Switching Algorithm
The main goal of the algorithm is to change the attack surface of the system in an
unpredictable way. To achieve this, the algorithm utilizes randomization on a couple
of different parameters. The first one is on which of the worker node the active pod
lives on. The second one is which deployment file to apply to the system, there may
be multiple deployment files with different configurations. The active worker nodes
and selected deployment files are randomized upon each iteration of the algorithm
as seen on row 4 and 6 in Listing 4.1.

In order to achieve the swapping of pods between nodes, the algorithm uses the label-
ing system that Kubernetes provides. A deployment file can include a nodeSelector
field which looks at the available nodes on the cluster and only deploys pods on
nodes which has a label matching what is in that field. Outside of this algorithm,
this matching is usually only used when the system is first starting up or if the
deployment file is changed manually to update the system configuration. However,
the algorithm is designed to take advantage of the fact that it is possible to change
the labels programmatically. For it to work, the deployment files given to the appli-
cation needs to have an entry in the nodeSelector field to be mtd/node=active.
Then, on each iteration of the algorithm, it will randomly choose a new node to
label mtd/node=active. When the randomly chosen deployment file is applied, it
looks for a node with an mtd/node=active label on it and deploys the pod to that
node.

We have come up with two versions of the algorithm, Listing 4.1 and Listing 4.2
below. The main reason for this was the need to update the functionality around
the load balancer. This was because the first version had a slight gap in availability
to the system, which resulted in lost requests when we tested the system. The
difference start from row 7 in the listings above and mainly differ in that version 3
of the algorithm starts a second deployment so that two run simultaneity for a short
time. The algorithm then waits a second for the load balancer to notice the new
pod, and only after that is the old deployment and by extension pod deleted. This
ensures at least in theory that there is now downtime from when the old deployment
is deleted to when the new one is applied. The implementation of version 3 is shown
in chapter 5 and the results of both versions are shown in chapter 6.

32

4. Design

1 Remove previous deployments with the same name
2 Remove active labels
3 Create a list of available worker nodes , and if there is a

currentNode , remove it from the list so it cannot be chosen as
the next node

4 Choose a node from the list at random
5 Put an active label on the chosen node
6 Choose a random deployments from the settings
7 Apply or restart the chosen deployment , depending on if its a

different or the same deployment file as the previous iteration ,
respectively

8 Wait for the pod to become ready before continuing
9 Wait a specified amount of time before starting a new iteration

10 Go back to line 2

Listing 4.1: MTD Algorithm V2

1 Cannot remove deployments from previous runs of the application
since their names depends on how many iteration it ran for

2 Remove active labels
3 Create a list of available worker nodes , and if there is a

currentNode , remove it from the list so it cannot be chosen as
the next node

4 Choose a node from the list at random
5 Put an active label on the chosen node
6 Choose a random deployments from the settings
7 Start a second pod on the randomly selected node in (4)
8 Add a number to the end of the deployment name equal to the

iteration count. This is done because we need to be able to
distinguish between the two deployments currently applied

9 Wait for the pod to become ready before continuing
10 Remove active label from currentNode
11 Wait for 1 second so that the load balancer has had enough time to

detect the new pod on currentNode
12 Delete the old deployment
13 Repeat from line 2

Listing 4.2: MTD Algorithm V3

33

4. Design

34

5
Implementation

This chapter describes the implementation of our moving target defense, which
essentially is a program that automates the process of starting, stopping, and moving
containers around in a Kubernetes cluster based on the settings and algorithms
that we have defined. The implementation is built around four main parts, the
Kubernetes cluster, the deployments, the code that makes up our application, and
finally the CLI which controls the application. These parts are described in the
following four sections.

5.1 Kubernetes Cluster Setup
In this section, we describe how we set up our own Kubernetes cluster on the SNIC
cloud. As mentioned in the previous section, we decided to use SNIC for our larger
tests that couldn’t be done on our local machines. SNIC allowed us to set up virtual
machines with different CPU, memory, and storage configurations. We also had the
ability to add more machines to our cluster if needed.

The first thing that we had to do was to create a virtual machine that would be used
as the Kubernetes master node. The master node is responsible for managing the
other nodes in the cluster and orchestrating containers. We decided to go with the
smallest machine size that SNIC offers that also satisfies the minimum requirements
of Kubernetes, which is 2 CPUs and 2GB of RAM. We also created four additional
virtual machines that would be used as Kubernetes worker nodes, with the same
hardware configuration. The operating system running on the virtual machines was
Ubuntu Server 20.04 LTS.

After the virtual machines were created, we had to set up a Kubernetes cluster on
them. We then had to install Kubernetes on our master node, using the Kubeadm
tool. There are different methods and configurations as to how to set up a cluster,
so we will detail our configuration below for replication purposes. Listing 5.1 shows
the configuration that is required on all nodes (Master and Workers), further more
each step is commented in the listing.
Update the host OS.
sudo apt update
sudo apt -y upgrade

35

5. Implementation

Install Docker runtime environment
sudo apt install -y docker .io

Allow iptables to see bridged traffic .
cat <<EOF | sudo tee /etc/modules -load.d/k8s.conf
br_netfilter
EOF

cat <<EOF | sudo tee /etc/ sysctl .d/k8s.conf
net. bridge .bridge -nf -call - ip6tables = 1
net. bridge .bridge -nf -call - iptables = 1
EOF
sudo sysctl --system

Reboot the entire server .
sudo reboot now

Check the status of the netfilter .
lsmod | grep br_netfilter

The output should look like
br_netfilter 28672 0
bridge 176128 1 br_netfilter

Add the kubernetes repository . Begin with installing curl &
dependencies .

sudo apt -get install -y apt -transport -https ca - certificates curl

Download and save the Kubernetes key rings.
sudo curl -fsSLo /usr/share/ keyrings /kubernetes -archive - keyring .gpg

https :// packages .cloud. google .com/apt/doc/apt -key.gpg

Add Kubernetes to the repository .
echo "deb [signed -by=/ usr/share/ keyrings /kubernetes -archive - keyring

.gpg] https :// apt. kubernetes .io/ kubernetes - xenial main" | sudo
tee /etc/apt/ sources .list.d/ kubernetes .list

Install kubeadm and kubectl
sudo apt -get update
sudo apt -get install -y kubelet kubeadm kubectl
sudo apt -mark hold kubelet kubeadm kubectl

Configure Docker ’s cgroup driver and restart the docker service .
sudo su
cat > /etc/ docker / daemon .json <<EOF
{

"exec -opts ": [" native . cgroupdriver = systemd "],
"log - driver ": "json -file",
"log -opts ": {

"max -size ": "100m"
},
"storage - driver ": " overlay2 "

}
EOF
systemctl restart docker . service

36

5. Implementation

Listing 5.1: Configuration that is running on every kubernetes node (both master
and workers).

Now that the basic set up of Kubernetes has been completed, the master node is
configured as shown in Listing 5.2
Start cluster , replace IP of master (api) in this command .
kubeadm init --pod -network -cidr 10.244.0.0/16 --apiserver -advertise

- address =129.16.123.61

If logged in as root user , do ’logout ’ or ’exit ’ if in a SSH
session and make sure to be logged in as non -root.

As a regular user , copy the kubeadm config so that it can be used
by kubectl .

mkdir -p $HOME /. kube
sudo cp -i /etc/ kubernetes /admin.conf $HOME /. kube/ config
sudo chown $(id -u):$(id -g) $HOME /. kube/ config

Wait for master node to become ready. Check with.
kubectl get nodes

Install Weave NET
kubectl apply -f "https :// cloud.weave.works/k8s/net?k8s - version =$(

kubectl version | base64 | tr -d ’\n’)"

Listing 5.2: Configuration that is running on the Master node only.

In addition, worker nodes were set up by following a similar procedure, except only
the master node needs to setup networking (Weave NET) and instead of using the
kubeadm init command, we used the kubeadm join command, providing it with the
cluster join token and hash that was given from the master node’s kubeadm init
command. After this process was completed, we had a fully functioning Kubernetes
cluster consisting of one master node and four worker nodes in different locations.
The worker node configuration is shown in Listing 5.3.
Every worker node run ,
kubeadm join <IP > --token <token > --discovery -token -ca -cert -hash <

discovery token >

If nothing is happening , generate a new token.
kubeadm token create --print -join - command

Check if the node has joined the cluster , run on Master node.
kubectl get nodes

Listing 5.3: Configuration that is running on the Worker nodes only.

The configurations in listing 5.1, 5.2 and 5.3 are derived from the official kubernetes
documentation [59], [60], [61].

37

5. Implementation

5.2 Code Design and Structure

This section describes the code design and structure of our moving target defense
application. The application is written in Java and makes use of the Kubernetes
Java client library. We will first describe the design of the application and then go
into detail about the different packages and files that make up the codebase.

Application Design

The goal of our application is to provide a way to automate the process of starting,
stopping, and moving containers around in a Kubernetes cluster. We also knew
from the start that we wanted a convenient way to start and stop the application,
as well as a way to easily configure the settings. Therefore, we decided to make
our application into a command line interface (CLI) application. This meant that
we would have to parse command line arguments in order to figure out what the
user wanted to do. For that reason, it made sense to use the Model-View-Controller
(MVC) pattern for our application [62]. The MVC pattern is a way of organizing
code into three different parts, the model, the view, and the controller.

The model is responsible for containing the data and business logic of the application.
In our case, this includes things like the settings that the user has configured, as
well as the functionality that we call upon to move containers around. The view
is responsible for displaying information to the user. The controller is responsible
for connecting the model and view together, as well as handling any input from the
user. The Kubernetes client came with useful functionality but it did not provide
the exact functionality that we needed out of the box, thus we had to take bits and
pieces and combine them to create the features that we needed. We also wanted the
client library to be replaceable in the future, hence we wrapped all the features and
abstracted away the code so that we got the exact code that we needed.

Package, File Structure, and Application Flow

The code for our application is organized into different packages, with each package
containing a specific group of related classes. The main packages in our application
are: model, view, controller. The view package contains MenuView, MtdView, and
SettingsView. The model package contains Settings and a package we call kuber-
netes. The kubernetes package contains our own classes that controls kubernetes
but they make use of the official client library. Finally, the controller package con-
tains our MTD algorithms and the corresponding controller classes for the views,
MenuController, MtdController, and SettingsController. The structure is illustrated
in Figure 5.1.

As illustrated in Figure 5.1, the application flow starts at MtdMain where the ap-
plication reads any input parameters. If there are no input parameters, MtdMain
executes MenuController which in turn displays a menu with the help of MenuView.
The MenuController then waits for user input until further action is taken, then

38

5. Implementation

Figure 5.1: Showing the code structure and how the application flows, starting
from MTD main.

finally creates or loads settings via the SettingsController, which is then used in
the MtdController to start the Mtd algorithm. The system is designed such that
it can be extended to choose different algorithms based on settings. Finally, the
Mtd algorithm is using our kubernetes classes to control the MTD. Since there are
interfaces encapsulating the kubernetes classes, it is possible to easily replace the
client library with a different one or a different version, if that need arises in the
future.

We have also provided unit tests which can be found in the test directory. These
tests are executed automatically as part of the build process and they provide good
coverage for the codebase. They have also proven useful while creating the MTD
algorithms as it allows for running them without the overhead of the entire applica-
tion.

The entire application (excluding dependencies) amounts to just over 3300 lines of
code. This includes comments, blank lines, and unit tests, but excludes javadocs
comments. The code is well organized and it should be easy to follow. We have
tried to stick to a consistent coding style throughout the codebase. The code is also

39

5. Implementation

fully documented with javadoc comments.

Algorithms, Pseudo-Code and Complexity

We have created and implemented two different algorithms that accomplish very
similar things, as mentioned in the design chapter. The more recent version is what
we call V3 and the description of this algorithm is shown in the design chapter,
Listing 4.2. The implemented algorithm is provided in Listing 5.4 below, as pseudo-
code and has been simplified to include only the most essential parts.

1 oldDeployment . delete ();
2
3 for (node : nodeList)
4 if (node. getLabels (). containsKey (LABEL_KEY))
5 node. deleteLabel (LABEL_KEY);
6
7 while ()
8 nodeList = NodeTools . getWorkerNodes ();
9

10 if (currentNode != null) {
11 nodeList . removeIf (tmpNode -> tmpNode . getName (). equals (

currentNode . getName ()));
12 }
13
14 oldNode = currentNode ;
15 currentNode = nodeList .get(random . nextInt (nodeList .size ());
16 currentNode . addLabel (LABEL_KEY , LABEL_VALUE);
17
18 currentDeployment = deployments .get(random . nextInt (deployments .

size ()));
19 currentDeployment .apply(deploymentCounter);
20
21 while (!(currentNode . getPods ().size () == 1 && currentNode .

getPods ().get (0). getPhase (). equalsIgnoreCase (" running "))) {}
22
23 currentNode . deleteLabel (LABEL_KEY);
24 sleep (1000) ;
25
26 if (! oldDeploymentName . isEmpty ()) {
27 oldDeployment = new Deployment (oldDeploymentName , " default

");
28 oldDeployment . delete ();
29 }
30
31 oldDeploymentName = currentDeployment . getName ();
32 deploymentCounter ++;
33
34 sleep(timeBetweenSwap);

Listing 5.4: pseudocode for the algorithm

The pseudo-code algorithm amounts to 34 lines of code as shown in the figure,
but the real implementation in Java amounts to 177 lines of code. The algorithm
runs forever until stopped, so the worst-case time complexity for one iteration of

40

5. Implementation

the algorithm is O(n) where n is the number of nodes or the number of provided
deployments, whichever is largest. Since the number of nodes is typically relatively
few (not in the millions) the time to execute the algorithm is negligible. However,
there are delays in terms of I/O inside the algorithm such as sending commands to
Kubernetes and waiting for pod deployments. Which in reality, means that one full
iteration (with complete node swap) takes at minimum between 3-5 seconds.

5.3 Building, Installing, and, Using the MTD Ap-
plication

This section describes the requirements of the MTD application, how to build it and
how to run it.

In order to use the MTD application, a Kubernetes cluster must be set up. This
can be done by following the information provided in the previous sections. Once
the cluster has been set up, the MTD application must be installed on a machine
that can run uninterrupted, preferably near the cluster. The application could also
be containerized and run from within the cluster. The installation instructions can
be found in this section. After the installation is complete, a user can run the MTD
application by using the command line interface (CLI). The CLI provides all of the
options for running and managing the MTD application.

Requirements

The MTD application must be run on a machine with Java 11 or later installed. The
application is a standalone program and does not require any additional dependen-
cies as they are all embedded inside the JAR. In addition, the Kubernetes cluster
must not have any other pods running under the default namespace, although they
can run under different namespaces.

Building

The MTD application is built using Maven. To build the application, simply run mvn
package in the project’s root. This will create a JAR file in the target directory
named MtdJava-1.0-SNAPSHOT.jar. To install the application, simply move it to
a folder from where it should be run, preferably on a server on the same network as
the Kubernetes master node to reduce latency and potential network interruptions.
The server must also have Kubectl installed with a cluster config since the MTD
application is using this config to connect to the cluster.

How to Use

After the application has been built and installed, the next thing that needs to
be done is to create a Kubernetes deployment file, which will be used by the tool
to provision pods. The deployment must include a nodeSelector with the label

41

5. Implementation

mtd/node=active, since this label is used to direct the pod to a specific node. Also,
the current version of algorithms only supports 1 replica and must use the default
namespace. An example configuration file is shown Listing 5.5:

1 apiVersion : apps/v1
2 kind: Deployment
3 metadata :
4 name: nginx - deployment
5 labels :
6 app: nginx
7 spec:
8 replicas : 1
9 revisionHistoryLimit : 5

10 selector :
11 matchLabels :
12 app: nginx
13 template :
14 metadata :
15 labels :
16 app: nginx
17 mtd: pod
18 spec:
19 containers :
20 - name: nginx
21 image: nginx :1.14.2
22 ports:
23 - containerPort : 80
24 nodeSelector :
25 mtd/node: active

Listing 5.5: Example deployment file with minimum fields required for the MTD
application to work.

After the configuration is created, the tool can be run in two ways. The first way is
to run it with a CLI interface using the following command:
java -jar MtdJava-1.0-SNAPSHOT.jar

It will bring up a menu that lets the user choose whether to create a new MTD
configuration or load and run an existing one, as shown in Listing 5.6.
Moving Target Defense
=====================
Menu Options
1. Create & Run Settings File
2. Load & Run Settings File
3. Exit

Make a selection (number):
1
Name your settings file (including file ending .yaml or .yml):
MTDSettings .yaml

Listing 5.6: The CLI for the application

42

5. Implementation

The second method is to run the application with a parameter which is the file
path to an existing MTD settings file. Doing so immediately starts the MTD. This
is more suitable for example when setting up a cronjob, running the MTD from a
script, or simply a convenience rather than having to start the interface. The syntax
for running with a parameter is as following:
java -jar MtdJava-1.0-SNAPSHOT.jar path/MTDSettings.yaml

The MTD settings file is a YAML file that can be edited in a text editor. The
file contains all the information needed to run the MTD on a given deployment or
multiple deployments. It is therefore important to follow the existing structure of
the file to avoid any potential errors. An example MTD settings file can be seen in
Listing 5.7.

1 name: " MTDSettings .yaml"
2 serviceEnabled : true
3 serviceFileName : " LoadBalancerService .yaml"
4 deploymentFileNames :
5 - " DeploymentGVMTest .yaml"
6 - " DeploymentGVMTest2 .yaml"
7 logToConsole : true
8 logToFile : false

Listing 5.7: Example settings file with load balancer and two different deployments
that will randomly alternate.

Once the tool is running, it will start to move the containers around in the Kuber-
netes cluster, based on the settings defined in the configuration file. The tool will
output information about what it is doing to stdout, which can be redirected to a
file if needed. An example output is shown in Listing 5.8.
Starting MTD alg.
Randomly selected node: MTDNode -02, adding active label.
Randomly selected Deployment : DeploymentGVMTest .yaml
Applying deployment with name: gvm - deployment1
Trying to find the new pod ...
Did not find new pod , waiting 1 second .
Did not find new pod , waiting 1 second .
Deleting active label on node: MTDNode -02
Swap finished , waiting 10000 ms before next iteration .
============= Iteration Done ============

Listing 5.8: The CLI for the application

The MTD is designed to be run as a continuous process, and will therefore keep
moving the containers around until it is stopped. It can be stopped by pressing
CTRL+C in the terminal where it is running or by killing the process.

If the user runs the application without a parameter which brings up the menu and
then selects the first option “Create & Run Settings File”, it will start a wizard that
guides the user through the process of creating an MTD settings file. An example of

43

5. Implementation

the wizard is shown in Listing 5.9. The MTD immediately starts after the settings
file has been created and will give an output like the one shown in Listing 5.8.
--- MTD Wizard ---
Do you want load balancing ? (y/n)
y
Type your Service YAML file name (including .yaml):
LoadBalancerService .yaml
Do you want logging to file? (y/n)
n
Do you want logging to console ? (y/n)
y
Type your Deployment YAML file name (including .yaml):
DeploymentGVMTest .yaml
Do you want to add another Deployment ? (y/n)
y
Type your Deployment YAML file name (including .yaml):
DeploymentGVMTest2 .yaml
Do you want to add another Deployment ? (y/n)
n

Listing 5.9: The CLI for the application

The first question in Listing 5.9 is whether or not the user wants the MTD applica-
tion to set up a load balancer. If answering yes, then the user will be prompted to
give a name for a load balancer settings file, also known as a Service within Kuber-
netes. This file must be placed in the same directory as the MTD settings file and
will be used by Kubernetes when setting up the load balancer. An example load
balancer file is shown in Listing 5.10.

1 apiVersion : v1
2 kind: Service
3 metadata :
4 name: lb - service
5 spec:
6 type: NodePort
7 selector :
8 app: nginx
9 ports:

10 - port: 80
11 targetPort : 80
12 nodePort : 30008

Listing 5.10: Example Kubernetes Service file that acts as load balancer within
the MTD

The following questions are the choices of logging, either to a file, console, or both.
The last input needed is the Kubernetes Deployment files that the application needs
to be able to run. Using multiple different deployment files can be used to alternate
images and configurations. The MTD system will randomly select a deployment file
from the list during each node swap. For example, one deployment file could use
an Apache image while another uses an Nginx image, and thus provide the same
service to the end user, but potentially alternate vulnerabilities.

44

6
Tests and Results

In this chapter, we will give a high-level overview of the experiments that we con-
ducted in order to test our moving target defense. The goal of our experiments was
to see if we could successfully move a container from one node to another, without
any downtime or user-visible effects. We also wanted to see the performance of
moving a container multiple times in quick succession while still maintaining avail-
ability. Lastly, we wanted to see if the moving target defense had any positive effect
on securing a system against various types of attacks.

6.1 Performance and Availability

The goal of the experiment was to determine how well our system performed while
the moving target defense was active. We did this by looking at three main metrics:
CPU utilization, memory usage, and requests per second (RPS). We also wanted
to see if there were any negative side effects of using the moving target defense,
such as an increased latency or errors in the system. We also conducted the tests
with the swapping algorithms running at different frequencies to see if that made a
difference.

As part of our performance analysis, we wanted to monitor the CPU and memory
usage of our nodes during different activities. We used the Prometheus and Grafana
tools for this purpose as they are commonly used in such monitoring setups.

Prometheus is an open-source system for monitoring and alerting. It scrapes met-
rics from configured targets at given intervals and stores the data in a time-series
database. Grafana is a visualization tool that can query Prometheus (or other data
sources) and create dashboards to visualize the data. We set up Prometheus to
scrape metrics from our Kubernetes cluster at a 1-second interval. We configured
it to scrape metrics from nodes in our cluster, as well as from the Kubernetes API
server. We also installed the node_exporter on each of our nodes to expose machine-
level metrics such as CPU and memory usage.

Grafana was then used to create dashboards with graphs visualizing the data col-
lected by Prometheus. These dashboards were used to monitor the resource usage

45

6. Tests and Results

of our nodes during different activities.

Testbed
As mentioned in section 5.1, we set up a Kubernetes cluster on the SNIC cloud with
one master node and four worker nodes. The master and worker nodes had 2 CPUs
and 2GB of RAM. We also created six additional virtual machines that would be
used as Kubernetes worker nodes, with the same hardware configuration, giving us
a total of ten worker nodes.

For the initial testing of the uptime of the system, we first used a browser to send
HTTP requests during each node swap, by simply refreshing the page frequently.
Once we saw that it was working, we moved on to more reliable testing, so we wrote
a Python script shown in Listing 6.1. It sends a request to the load balancer every
200ms to test to availability of the system while running the MTD algorithm.

1 from time import sleep
2 import requests
3 from datetime import datetime
4
5 wait_time = 0.2
6 ip = ""
7 port = ""
8 url = "http ://" + ip + ":" + port + "/"
9

10 while True:
11 try:
12 res = requests .get(url , timeout =5)
13 print ("{} {}". format (datetime .now ().time (), res.text))
14 sleep(wait_time)
15 except requests . exceptions . ConnectionError :
16 print ("{} Failed to establish connection ". format (datetime .

now ().time ()))
17 sleep(wait_time)
18 except requests . exceptions . ReadTimeout :
19 print ("{} Read timeout ". format (datetime .now ().time ()))
20 sleep(wait_time)

Listing 6.1: requestSender.py

For the final test of our system, we used the ApacheBench tool to generate load
on our system. ApacheBench is a tool for measuring the performance of HTTP
servers. It can be used to simulate different numbers of users accessing a website
or application. We ran ApacheBench from a separate machine, in order to more
accurately simulate real-world traffic. We configured ApacheBench to make 100000
requests to the system for the small container images and 2000 requests for the
system with larger images.

We also increased the size of the containers that we were using, in terms of CPU
usage, memory and storage. We did this because we wanted to see if the moving
target defense would still be effective when the containers were larger and had more

46

6. Tests and Results

resources allocated to them. The larger image is a WordPress image that was
∼ 600MB in size, we chose this image because it somewhat reflects a real world
application in terms of CPU, memory, I/O, database connections and so on.

Test 1 - Performance
For the performance test, we ran the MTD for 1 minute on 3 nodes to measure
the hardware usages of the system. The algorithm was setup to make swaps with
an interval of 10 seconds to make it clear in the graphs when the swaps occurred.
We also ran them under simulated load to test if the MTD still functions. Lastly
we tested the system to see if running MTD on a system decreases the amount of
requests it can handle.

Results

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

5

10

15

20

25

30

35

40

45

50

Elapsed time in seconds

Av
er
ag
e
C
PU

us
ag
e
[p
er

se
co
nd

]

CPU Usage over Time

Wordpress (Apache)

Figure 6.1: CPU usage of one node during the swapping of a Wordpress image
under no load.

Figure 6.1 shows the CPU usages of one of the nodes when running the MTD with
the WordPress image under no simulated load. The moment a swap occurs can
clearly be seen by the sharp spike. Looking at the graph, we can confirm that a
swap took around 3 seconds from start to finish which validates the results we got
from the output logs of the application. The increase in CPU usage during a swap
comes out to 29%.

47

6. Tests and Results

0 2 4 6 8 10 12 14 16 18 20 22 24 260

10

20

30

40

50

60

70

80

90

100

Elapsed time in seconds

Av
er
ag
e
C
PU

us
ag
e
[p
er

se
co
nd

]
CPU Usage over Time

Worker Node 1
Worker Node 2

Figure 6.2: CPU usage of two nodes swapping a Wordpress image under load from
ApacheBench. For example, the CPU usage shown on second 12 is the average usage
between second 11 and second 12.

Figure 6.2 shows the CPU usage of two of the worker nodes when running the MTD
with the WordPress image with a simulated load from ApacheBench. The two lines
are overlaid on top of each other to make it clear how the timing works when a
swap occurs. As we can see, the peaks of the two lines (running at 100%) are very
near each other and almost overlap. The reason they do not overlap perfectly on
the graph is because the CPU usage is measured as an average over the past second,
which means that on second 12 in the graph, the average CPU usage between second
11 and second 12 is indeed 100%, which is a perfect overlap.

Performance Tests with ApacheBench
Image Name RPS without MTD RPS with MTD

Nginx 2834.44 2887.66
httpd 2756.12 2633.62

WordPress 11.97 13.06

Table 6.1: Results from stress tests when MTD is on versus when it is off

As seen in Table 6.1, there are some small fluctuations in the measured RPS, but
this can be caused by a number of things besides the design and implementation
of the MTD system. For example, there may be background processes running on

48

6. Tests and Results

the same machines that are impacting the performance of the system, or network
congestion, running the test several times gave small random variations. In general,
the results show that the MTD system does not have a significant negative impact
on the performance of the system.

Test 2 - Availability
The goal of the availability test is to show if the MTD system significantly decreases
the uptime of the system. We measure the uptime by monitoring how often requests
to the system are successful. We also used three different methods to test the
uptime and generate load on the system, manual testing, our requestSender.py, and
ApacheBench, using the same configurations specified in the earlier sections. We
also used the three different types of container images, small (Nginx and Apache),
and large (WordPress running on Apache).

We also tested how frequently the MTD algorithm can swap nodes before it causes
significant downtime. We did this by starting the algorithm with a setting of 0
seconds and gradually increasing it to a level that was satisfactory.

Results

The first test with the browser showed that the V2 algorithm caused occasionally
timed-out requests during node swaps, which is why we created the V3 algorithm.
The same test on the V3 algorithm showed no dropped requests. Furthermore, the
rest of the tests are only performed on the V3 algorithm since it works better.

The following test with requestSender.py showed us that the load balancer randomly
redirects packets between two active nodes during a swap, and that occasional TCP
packets are timed out for a very brief moment after the older pod goes offline, since
the load balancer does not update the status of the pod instantly. However, due to
this shortened window, a typical HTTP implementation such as in a web browser,
tries to resend the HTTP request in quick succession. Due to the shortened time
window, it takes for the load balancer to get updated in algorithm V3, HTTP
requests still reach their target despite some packets being timed out, but with
some added latency in such rare cases.

Availability Tests with ApacheBench
Image Name # of Requests Requests per

second (RPS)
of Failed
Requests

Time Elapsed
(sec)

Nginx 100000 2887.66 0 34.630
httpd 100000 2633.62 0 37.971
WordPress 2000 13.06 0 153.098

Table 6.2: Results of Availability tests on three different docker images

Table 6.2 shows that all three tests with ApacheBench showed zero failed requests,
which means that the kubernetes cluster had 100% availability. The MTD algorithm

49

6. Tests and Results

handled the potential downtime when the swaps happened and the loadbalancer
managed to send and receive requests to the right node.

Furthermore, we tested what the highest swapping frequency setting was. From a
performance perspective the algorithm does not have to wait at all before being able
to start the next iteration. However, if we measure the amount of failed requests
the system gets as you lower the swapping frequency, the minimum achieved wait
time between a swap before it started to cause issues was less than 1 second. We
also wanted to see if added latency between the worker nodes and the master node
had any effect on the system as in how fast it can execute or if it would cause any
inconsistencies in terms of availability. We performed that test by hosting the nodes
in different regions on the cloud, thus achieving a natural latency of ∼ 90ms (instead
of ∼ 1ms). The MTD algorithm performed similarly as to the previous tests and
we were unable to find any issues due to the increased latency.

6.2 Security – Fingerprinting and Vulnerabilities
The moving target defense system has two defense mechanisms as mentioned in
the design chapter. This section aims to verify and analyze the security of each
mechanism by actively fingerprinting and exploiting the system. Each test is detailed
below along with the result of the defense mechanisms.

Test 1 - Physical tampering
To test if the system helps defend against physical tampering such as side-channel
attacks, we simply monitored the activity on each node such as the resource usage
before and after a pod was deployed and deleted from the nodes.

Results

Our tests confirmed that the system was changing the physical location of the con-
tainers as it moved them between nodes and that the process and RAM activity
were restored on the idle nodes, which means that there was no activity to tamper
with once the pod has been swapped to another node. If an attacker were to phys-
ically tamper with a node, they would only be able to do so for a short period of
time before the node was moved and their access was cut off. Although, depending
on the setup, the pod will be redeployed to a given node eventually and allow the
attacker to try again at a later stage.

However, the container image remains in the cache even after the pod is deleted
from the node. This means that if an attacker could somehow gain access to the
node, they would be able to find and tamper with the cached image in order to
deploy a malicious container. To mitigate this, the system could be configured to
delete the cached images after a certain period of time or when the pod is deleted.
Although, that would increase the overhead of the system as it would have to fetch
the images from the registry more often.

50

6. Tests and Results

Test 2 - Physical destruction
To test how the system handles destruction, we simply simulated destruction by
switching off the power to one of the nodes in two different cases. The first case
was when switching an idle node off to see if the algorithm tries to deploy to the
“crashed” node. The second case was when we switched off an active node that was
running a pod.

Results

Case 1, Kubernetes automatically marked the node as “NotReady” after a few sec-
onds at which point it is no longer considered a valid node by our MTD algorithm,
and therefore never deployed to it.

Case 2, Kubernetes automatically detects the failed pod after a couple of seconds
and tries to schedule the pod to another node. This results in expected behavior
however, since the deployment targets nodes labeled as active, the scheduling will
be waiting for that label to appear on a different node. The current version of the
MTD algorithm would also have to check the status of the crashed node and apply
the active label to a different node in order for the rescheduling to work. If the
algorithm implements this suggestion, there is an expected downtime that will last
about 5-10 seconds during a node crash, about 5 seconds for the node crash to be
detected, and another 3-5 seconds for redeployment.

Test 3 - Fingerprinting, Vulnerability scanning and Exploit-
ing a Specific Node
We have tested the system against active exploitation, fingerprinting, vulnerability
scanning, port scanning, and man-in-the-middle attacks. In these tests, we assume
that the attacker is located in a situation where they have network access only to a
specific node.

The MTD was set up with a container image that was vulnerable to Heartbleed [44]
in order to conduct meaningful tests. The MTD was then running with a swapping
interval of 10 seconds.

Case 1, was to test of exploitation was to run Metasploit’s Heartbleed module against
the system.

1 use use auxiliary / scanner /ssl/ openssl_heartbleed
2 set VERBOSE true
3 set RHOSTS ip - address
4 set RPORT 8443
5 set action DUMP
6 set leak_count 2000
7 run

Listing 6.2: Metasploit Heartbleed configuration

51

6. Tests and Results

Case 2, was fingerprinting and Vulnerability scanning which was conducted with
OpenVAS Greenbone Security Assistant, using all the NVTs and scanning options.

Case 3, The man-in-the-middle attack was conducted by sniffing the packets with
Wireshark and to measure the amount of data retrieved.

Case 4, The port scanning test was conducted by running Nmap against the sys-
tem.

Results

Case 1, The Heartbleed attack ran successfully for less than 10 seconds and was
then canceled due to the pod being moved. Since the pod is no longer on the same
node, the attacker can no longer exploit it. However, the goal with the Heartbleed
exploit is to extract sensitive information such as private keys or passwords, this
however takes time as the data continuously changes in memory.

Case 2, During the fingerprinting, it was observed that only the open ports on the
system were being scanned and reported back. The fingerprinting did reveal the
service and its vulnerabilities but only if it managed to perform the scans while the
chosen node was active. Hence, timing is critical for the attacker. If the attacker’s
goal is to exfiltrate data, they need to have access to the system at the same time
as the pod is deployed on the node. With two worker nodes running, OpenVAS was
successful 50% of the time. Hence more worker nodes reduce the probability of the
scan being successful.

Case 3, Like in the other cases, the man-in-the-middle attack was only successful
while the pod was deployed on the node. This was due to the fact that, when the
pod is redeployed, the traffic is rerouted and the attacker no longer has access to it.
However, the packet sniffing continued as the pod was once again were deployed to
the compromised node.

Case 4, The Nmap scan revealed the open port on the system including the service
name, however, like the other tests, it was only successful while the pod was deployed
on the node.

We also performed the same tests as in case 1-4, but by accessing the service via a
load balancer which redirects all the traffic to the active node. In this situation, the
Heartbleed attack and all the other tests were successful 100% of the time. This is
due to the fact that, even though the pod gets redeployed, the load balancer still
points to the same node. However, due to the nature of the Heartbleed attack,
dumping memory takes time, and since the memory is random, it takes time for
the attack to retrieve anything meaningful. With our setup, dumping 100 MB of
memory took about 1 minute, at which point the MTD had swapped nodes 6 times.
This means, the memory dumped is from different nodes and the chance of retrieving
useful memory is lower than normally, partly because there are different nodes, but

52

6. Tests and Results

also because the memory of the deployed pod is fresh during each swap thus less
likely to contain sensitive data.

Test 4 - Fingerprinting, Vulnerability scanning and Exploit-
ing via Load Balancer
This leads us to the testing of Defense 2, “change of software stack frequently”. In
this test, we used an old vulnerable version of Apache and the latest version of Nginx
with no known vulnerabilities. These two pieces of server software were used in the
same moving target defense system and swapped between each other at random.
We assume the position of going via the load balancer in order to get meaningful
test results other than what was already shown above. In which case the traffic is
always redirected to the active node. The same tools (OpenVAS and Nmap) were
used to scan the system for fingerprints and vulnerabilities.

Results

OpenVAS and Nmap both reported the fingerprint randomly, that is either Nginx
or Apache, depending on which server was active during the conducted test. The
same goes with the vulnerability scan which showed the given vulnerability only if
the vulnerable deployment was running at the time of the scan. Conducting the
tests 10 times resulted in the vulnerability being shown 50% of the time, as well as
the fingerprint 50% of the time.

The mentioned attacks against a specific node gave us the probability of success
given by 1/n where n is the number of nodes. Or in the case of attacks that were
mitigated by swapping software stack, 1/d where d is the number of deployments.
If the software stack swapping is combined with node swapping and the adversary
is only able to attack a specific node then 1/n ∗ 1/d. For example, executing an
attack against the vulnerable Apache image while only having access to 1 of 10
nodes and with 5 different software stacks (4 of which are not vulnerable), would
give 1/10 ∗ 1/5 = 2% chance of success given the attacks tested.

Test 5 - Backdoor Mitigation
During the development of the moving target defense, we discovered that there are
different types of storage in Kubernetes. The two types are called “emptyDir” and
“persistentVolumeClaim”. We found that the “emptyDir” storage is not persisted
after the pod is deleted, while the “persistentVolumeClaim” storage is. This means
that an attacker could create a backdoor on the target application and it should be
created inside the corresponding volume type. If it is created inside an “emptyDir”
volume and it should be wiped out when the pod is deleted. However, an attacker
could create a backdoor in a “persistentVolumeClaim” volume and it should remain
after the pod is deleted. We, therefore, wanted to test if our moving target defense
mitigates backdoors in either of the two types of volumes.

53

6. Tests and Results

In order to test our backdoor mitigation strategy, we uploaded a simple PHP shell
in a “persistentVolumeClaim” volume as well as in an “emptyDir” volume while
running the MTD algorithm.

Result

The MTD algorithm deletes the pod that contained the PHP shell and created a
new pod on a different node. We found that the PHP shell was still present in the
“persistentVolumeClaim” volume, while it had been completely removed from the
“emptyDir” volume. The backdoor was on the persistent volume was accessible once
again when the pod was redeployed on the compromised node.

This result means that while using non-persistent storage, an attacker would have to
re-create their backdoor each time the pod is deleted and recreated. However, if an
attacker were to use persistent storage, they would be able to retain their backdoor
even after the pod was deleted and recreated by the MTD algorithm.

54

7
Discussion and Evaluation

This chapter will discuss and evaluate the experiment of this thesis which was to
investigate whether the moving target defense is an effective defense strategy against
attackers as well as performant enough to be used in production environments. With
that said, the developed product is a prototype and is not meant to be used in
production environments as is. To further enhance the prototype and possibly make
it stable enough for production, a future work section is included at the end of this
chapter.

7.1 Performance Evaluation
The goal of the experiment was to mainly develop and test the “moving target
defense” to see if the system could achieve a positive security benefit, and secondary
to achieve high availability and performance to evaluate whether it could be used in
a production environment.

The performance tests conducted in the previous chapter show that the average CPU
and memory usage is increased significantly while the MTD algorithm is running
compared to running a static pod on a single node. This is due to the fact that the
system is constantly creating and deleting pods, and thus using more resources. For
example, measuring the CPU’s average usage over a longer time period increases
the average compared to measuring the CPU usage over a shorter time period. This
is because of how average CPU usage is measured. The average is calculated by
summing up the usage over a certain time period and dividing it by the number
of time periods. This means that when the system is running at 100% CPU usage
for half of the time, and 0% CPU usage for the other half, the average will be
50%. However, if we were to measure the average over a shorter time frame, the
average would be closer to 100% during its peaks and closer to 0% during its lows.
So during a more careful inspection with a shorter scraping of the average CPU
usage (1 second intervals), we can clearly see that the peaks are at 100% while the
system is creating and deleting pods. However, immediately once the pod is ready
and finished swapping by the MTD system, the usage goes down to normal levels
(same as a pod without the MTD). This means that the CPU and RAM are only
being taxed when the system is actively creating and deleting pods, hence the active

55

7. Discussion and Evaluation

pod within the MTD system does not perform worse than an identical pod outside
of the MTD system. As a result, the usage graphs will misrepresent depending on
what time frame they are averaged over, so it is important to be aware of that when
analyzing the usage.

7.2 Availability Evaluation

The fact that the moving target defense algorithm is constantly running and swap-
ping pods has an effect on availability. If we would want to use the system in
production, we would need to have a way of ensuring high availability. In other
words, the system should be able to continue running and providing service even if
one or more of its components fail. It should also not drop any requests during a
node swap.

We have developed two different algorithms to accomplish the same idea, swapping
nodes. However, they go about it slightly differently. The reason for this is that
the first version goes under the assumption that the integrated load balancer in
Kubernetes (NodePort) will automatically detect when a pod is taken off a node
and redirect the traffic to the new node. This in fact worked quite well during
the initial testing. However, with more thorough testing and much faster requests,
we were able to see that there were some issues with this approach. Namely, the
fact that the traffic was not being properly redirected to the new node when a pod
was taken off of a node. This resulted in some requests timing out, as they were
being sent to a node where no pod existed. We solved this problem by creating a
second version of the algorithm that controls node swapping more granularly, rather
than letting Kubernetes handle the swap automatically. We could then hold off
the pod deletion until the load balancer has caught up with the change, thus the
old pod will still continue to serve requests for a short period after the new pod is
ready (about 1 second). This basically eliminated any request timeouts, however,
there were some discrepancies. For example, once the load balancer detects that
both nodes are available. There is a tiny time window where it randomly redirects
requests between the two active pods (about 100ms) and then yet another small
time window before it detects that the old node has gone offline. This resulted in
much fewer packets getting dropped, but due to the reliability in TCP and how
applications implemented HTTP (automatically retrying), we could still see that all
requests got through. So even though we did not see any timeouts with this new
method, there were still some inconsistencies in the request handling.

From these availability evaluations, we can see that the MTD system does not have
any significant negative effects on availability compared to running a static pod on
a single node. In fact, it might even improve availability in some cases, as crash
handling could easily be implemented and prevent a single point of failure.

56

7. Discussion and Evaluation

7.3 Security Evaluation

Test 1 from section 6.2 shows that the system does provide an improvement in
security against physical tampering since the pods are only running for a limited
time, thus hardening the attack surface. Test 2 shows that the system could partially
handle physical destruction, in the event of a node going offline before the pod is
deployed to it. In the event that the node the active pod is running on goes offline,
the system in its current state was unable to relocate the pod. However, with a
minor improvement to the algorithm, that problem would be solved, and thus the
system would only suffer a couple of seconds of downtime before it comes back
online.

The security benefits of using a moving target defense system are numerous. The
fact that the pods are constantly being created and deleted makes it harder for an
attacker to gain access to the system. Even if an attacker is able to compromise a
pod, the pod will only be active for a short period of time before it is taken offline
and replaced by a new pod. This makes it much harder for an attacker to maintain
access to the system and also limits the amount of damage that can be done, as seen
in Test 5 where the backdoor is removed upon every redeployment, given that the
storage is not persistent. We can also see this in Test 3, that ongoing attacks such as
Heartbleed can be cut off during a node swap. In addition, we can see in Test 4 that
fingerprinters and vulnerability scanners may get different results depending on the
timing. If the scanner is able to fingerprint a system before it is swapped, it may
get different results than if it were to fingerprint the system after the swap. This
would make it more difficult for an attacker to gain information about the system
and fingerprint it correctly.

The overall effectiveness of the moving target defense is increased if the attacker
only has access to a specific node or a limited set of nodes rather than accessing it
via a load balancer. The more nodes that are in the system, the harder it is for an
attacker to keep track of which pod is running on which node. The more different
configurations/deployments and software stacks that are running in the MTD also
increase the difficulty to time an attack or a vulnerability scan.

For example, there may be applications that are not accessible via a load balancer
and/or has no public endpoints, and whose sole job is to report to an instance with
information such as sensor data. Such an application will benefit much more from
using our moving target defense system than for example a website with a public
load balancer as an endpoint that any adversary could access. On the other hand, if
the goal of an attacker is to attack a specific node, and the attacker is going via the
load balancer, then the attacks will be redirected to different nodes which defeats
the purpose of attacking a specific node.

The security benefits of a moving target defense are not a silver bullet or a one size
fits all solution. It depends on the environment in which it is used, what type of
system it is used on, and what the goals of the attacker are. In conclusion, we found

57

7. Discussion and Evaluation

that generally, the system works well against attacks that take a longer time to
complete than the amount of time it takes for the pod to get replaced on a different
node.

For example, if an attacker did successfully time fingerprinting and a vulnerability
scan on a vulnerable pod before it is replaced, as well as successfully exploiting it
in time. The attacker would only have a few seconds to collect sensitive data before
the connection is cut off since the pod is getting replaced constantly. The attacker
would then have to wait until the next opportunity to perform the attack again and
gradually collect the sensitive data. This could potentially slow down an ongoing
attack so that an intrusion detection system may alert the responsible party in time
for a manual response to the attack.

7.4 Application Constraints
Our target moving defense was designed with stateless applications in mind. State-
less applications are those where the data is not stored on the server. This type of
application can be easily replaced with a new one without any data loss. However,
stateful applications store data locally on the server. This type of application would
not be able to take advantage of our system since the data would be lost every time
the pod is replaced. Statefulness could however be achieved by storing the state
externally, outside the cluster, for example in a database.

Additionally, our system is not well suited for applications that need to maintain a
connection for an extended period of time. For example, if an application needed to
keep a video stream open for an hour, the stream would get interrupted since the
pod would likely be redeployed at least once during that time frame. The application
would need to be able to reconnect to the new pod after it is deployed. Such a use
case could be solved with for example a buffer so that the playback is not interrupted
during the swap. Thus, handling swaps in such use cases must be implemented in
the application.

Container images are downloaded from a container registry when a pod is deployed
for the first time. The image is then cached on the node. When the pod is swapped,
the pod will be deployed on a different node that may not have the cached image.
The image would then need to be downloaded again from the registry, adding some
delay to the swapping process. This however only happens the first time a new
pod is deployed on each node. On consecutive deployments, the cached image is
used instead. The result of this is that the very first iteration of the moving target
defense is slowed down and limited by the network bandwidth between the nodes
and the container registry which under our conditions typically added about a 20-
30 seconds delay depending on the image size. Once the image was cached on all
nodes, this delay was removed. This may bring a concern about whether the cached
image has been tampered with. A solution to that is to set the “imagePullPolicy” to
“Always” which will compare the cached image digest to the digest in the repository.
Kubernetes then redownloads the image if the repository digest is not present in the

58

7. Discussion and Evaluation

cache. However, for that to work, the repository must always be available. If the
system were to be used on a network with limited bandwidth, the nodes could
be prepared with cached images beforehand to avoid the above-mentioned initial
delay.

Clients that require fast responses from the server should not be impacted by the
swapping procedure since the clients are automatically redirected to the new pod by
a load balancer. Especially if our suggestions mentioned in 7.6 Future Work, about
improved management of the load balancer are implemented.

7.5 Ethics and Sustainability
From an ethics perspective, there are not any concerns that using a moving target
defense creates. It is a way to make it more difficult for an attacker to successfully
attack a system and does not have any negative consequences for the user. However,
the information we have provided about the moving target defense system may help
enable a malicious actor to understand the system and thus provide them with
information on how to circumvent it. For example, if the defense is unknown to a
malicious actor, they may be confused as to why the system is changing properties,
but reading this thesis will help them understand what is going on.

The methods used to analyze the security in this thesis such as The Heartbleed Bug
and vulnerability scanners could be used by malicious actors to attack real targets.
However, the methods we used have already been publicly known and patched for
several years so there should be no negative impact.

From a sustainability perspective, the moving target defense system is using more
energy and resources than a traditional system. The main use of energy is from
the nodes that are used to constantly create new pods and replicas. The system
also uses more resources in terms of storage and network bandwidth as it needs to
constantly pull down images and updates for the pods. There are also additional
nodes that need to stay on standby even when they are not used, thus using energy
while idling.

59

7. Discussion and Evaluation

7.6 Future Work
There are several ways in which the moving target defense system could be improved.
The most obvious and immediate improvement would be to implement crash detec-
tion on a currently running pod and apply an active label to a different node so that
Kubernetes can handle the rescheduling of the crashed pod properly.

Another improvement is to include management of the load balancer inside the
MTD algorithm, such that it can redirect the traffic and ensure zero lost packets.
As seen in our tests and section 7.2, we have achieved zero dropped requests but
there may still be individual TCP packets that are dropped during a node swap
on rare occasions, leaving the implementation on the requester’s side to solve it by
retrying to send a request. The improvement we suggest by controlling the load
balancer involves redirecting the traffic to the newly deployed pod only once it has
been confirmed as ready, instead of randomly sending packets between the old and
the new pod for a brief moment.

One way to improve further is to make the system more adaptive so that it can
automatically detect when an attack is happening and respond accordingly. For
example, if the system notices that a lot of packets are being sent to a specific node,
it could automatically add more nodes to the pool or redirect traffic to a different
node. Similarly, the system could be scaling up the number of replicas when there
is high legitimate traffic to the system. For example, the system could use a load
balancer to detect when there is high traffic and only then create more replicas.
This would save on resources when the system is not under a heavy load.

Another way to improve the system is to make it more scalable so that it can be
used on larger systems. For example, the system could achieve high availability by
scheduling multiple replicas of a pod on different nodes. This would ensure that
even if one node is taken down, there are still other replicas that can handle the
traffic with less downtime.

Finally, the system could use more rigorous testing to ensure that it is effective in
practice. For example, the system could be tested against more sophisticated attacks
such as DDoS attacks. Additionally, the system should be tested on a variety of
different systems to ensure compatibility, such as edge devices with limited resources.
As well as long-term tests to ensure that there are no performance degradation over
time or special cases of bugs that have not yet been discovered.

Moving target defense is a promising area of research that has the potential to
improve the security of systems. The methods used in this thesis are just a few of
the many ways in which the system can be improved. With further research and
development, the moving target defense system has the potential to become a key
component in securing systems against attacks.

60

8
Conclusion

The goal of the thesis was to explore the moving target defense concept and imple-
ment it on a real system to see if it is viable in practice in terms of performance
and availability, as well as to see if it has any real security benefits. We started by
surveying the literature to get an overview of the current state of the art in moving
target defense. We then looked at different ways of implementing moving target de-
fense that had not already been done and selected Kubernetes as our platform. We
implemented a prototype system on top of Kubernetes and ran it on a testbed of ten
nodes. We evaluated the system in terms of performance, availability, and security
and found that the system was able to provide an increased level of security with
only a small impact on performance and availability. In conclusion, we believe that
moving target defense is a viable approach to securing systems against attacks and
that it has the potential to be further developed into a key component of securing
systems in the future.

61

8. Conclusion

62

Bibliography

[1] The Kubernetes Authors. (2022). “Deployments | Kubernetes,” [Online]. Avail-
able: https://kubernetes.io/docs/concepts/workloads/controllers/
deployment/ (visited on 05/03/2022).

[2] 451 Research, “Digital Transformation Opportunity for Service Providers:
Beyond Infrastructure,” in 2017 Microsoft Cloud and Hosting Summit, Mi-
crosoft, 2017, p. 22. [Online]. Available: https://download.microsoft.com/
download/E/0/A/E0A16C07-CA08-4880-B434-5BC6F9B2F193/MCHS2017_
MELANIE%20POSEY.pdf (visited on 05/05/2022).

[3] IDC (International Data Corporation). (2021). “Cloud Infrastructure Spend-
ing Increased in Third Quarter of 2021 with Overall Growth Expected for 2021,
According to IDC,” [Online]. Available: https://www.idc.com/getdoc.jsp?
containerId=prUS48776122 (visited on 05/06/2022).

[4] MarketsandMarkets. (2021). “Cloud Computing Market Size, Share and Global
Market Forecast to 2026 | COVID-19 Impact Analysis | MarketsandMar-
kets,” [Online]. Available: https://www.marketsandmarkets.com/Market-
Reports/cloud-computing-market-234.html (visited on 05/06/2022).

[5] AppsRunTheWorld. (2022). “Top 10 Cloud Software Vendors, Market Size
and Forecast 2020-2025,” [Online]. Available: https://www.appsrunthewor
ld.com/top-10-cloud-software-vendors-market-size-and-market-
forecast/ (visited on 05/06/2022).

[6] Juniper Research. (2014). “Cloud Services to be Adopted by 3.6Bn Consumers
Globally by 2018, Juniper Research Finds,” [Online]. Available: https://
www.juniperresearch.com/press/cloud- services- adopted- by- 3bn-
consumers-2018.

[7] Transforma Insights. (2020). “Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2030, by vertical (in millions),” Statista, [On-
line]. Available: https://www.statista.com/statistics/1194682/iot-
connected-devices-vertically/ (visited on 05/06/2022).

63

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://download.microsoft.com/download/E/0/A/E0A16C07-CA08-4880-B434-5BC6F9B2F193/MCHS2017_MELANIE%20POSEY.pdf
https://download.microsoft.com/download/E/0/A/E0A16C07-CA08-4880-B434-5BC6F9B2F193/MCHS2017_MELANIE%20POSEY.pdf
https://download.microsoft.com/download/E/0/A/E0A16C07-CA08-4880-B434-5BC6F9B2F193/MCHS2017_MELANIE%20POSEY.pdf
https://www.idc.com/getdoc.jsp?containerId=prUS48776122
https://www.idc.com/getdoc.jsp?containerId=prUS48776122
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.appsruntheworld.com/top-10-cloud-software-vendors-market-size-and-market-forecast/
https://www.appsruntheworld.com/top-10-cloud-software-vendors-market-size-and-market-forecast/
https://www.appsruntheworld.com/top-10-cloud-software-vendors-market-size-and-market-forecast/
https://www.juniperresearch.com/press/cloud-services-adopted-by-3bn-consumers-2018
https://www.juniperresearch.com/press/cloud-services-adopted-by-3bn-consumers-2018
https://www.juniperresearch.com/press/cloud-services-adopted-by-3bn-consumers-2018
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/

Bibliography

[8] A. Yadav. (2020). “Network design: Firewall, IDS/IPS,” Infosec Institute,
[Online]. Available: https://resources.infosecinstitute.com/topic/
network-design-firewall-idsips/ (visited on 08/13/2022).

[9] G. Sharma, S. Bala, A. K. Verma, and T. Singh, “Security in Wireless Sensor
Networks using Frequency Hopping,” International Journal of Computer Ap-
plications, vol. 12, no. 6, Dec. 2010, issn: 09758887. doi: 10.5120/1686-2247.

[10] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling ap-
plications in the cloud,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 1, pp. 45–52, Jan. 2011, issn: 0146-4833. doi: 10.1145/1925861.
1925869.

[11] The Kubernetes Authors. (2022). “Production-Grade Container Orchestration
| Kubernetes,” [Online]. Available: https : / / kubernetes . io/ (visited on
04/10/2022).

[12] Docker, Inc. (2022). “Get Started with Docker,” [Online]. Available: https:
//www.docker.com/ (visited on 04/10/2022).

[13] K. Harrison and S. Xu, “Protecting Cryptographic Keys from Memory Disclo-
sure Attacks,” in 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’07), IEEE, Jun. 2007, pp. 137–143,
isbn: 0-7695-2855-4. doi: 10.1109/DSN.2007.77.

[14] M. Hemmati and M. Ali Hadavi, “Bypassing Web Application Firewalls Using
Deep Reinforcement Learning,” The ISC International Journal of Information
Security, vol. 14, no. 2, pp. 131–145, 2022. doi: 10.22042/isecure.2022.
323140.744.

[15] N. Manohar, “A Survey of Virtualization Techniques in Cloud Computing,” in
Proceedings of International Conference on VLSI, Communication, Advanced
Devices, Signals & Systems and Networking (VCASAN-2013), 2013, pp. 461–
470. doi: 10.1007/978-81-322-1524-0_54.

[16] Amazon. (2022). “Amazon EC2 FAQs,” [Online]. Available: https://aws.
amazon.com/ec2/faqs/ (visited on 07/14/2022).

[17] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer,
vol. 38, no. 5, pp. 32–38, May 2005, issn: 00189162. doi: 10.1109/MC.2005.
173.

[18] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing,
vol. 2, pp. 24–31, 3 May 2015, issn: 2325-6095. doi: 10.1109/MCC.2015.51.

[19] The Containerd Authors. (2022). “An industry-standard container runtime
with an emphasis on simplicity, robustness and portability | ContainerD,”
[Online]. Available: https://containerd.io/ (visited on 05/12/2022).

64

https://resources.infosecinstitute.com/topic/network-design-firewall-idsips/
https://resources.infosecinstitute.com/topic/network-design-firewall-idsips/
https://doi.org/10.5120/1686-2247
https://doi.org/10.1145/1925861.1925869
https://doi.org/10.1145/1925861.1925869
https://kubernetes.io/
https://www.docker.com/
https://www.docker.com/
https://doi.org/10.1109/DSN.2007.77
https://doi.org/10.22042/isecure.2022.323140.744
https://doi.org/10.22042/isecure.2022.323140.744
https://doi.org/10.1007/978-81-322-1524-0_54
https://aws.amazon.com/ec2/faqs/
https://aws.amazon.com/ec2/faqs/
https://doi.org/10.1109/MC.2005.173
https://doi.org/10.1109/MC.2005.173
https://doi.org/10.1109/MCC.2015.51
https://containerd.io/

Bibliography

[20] CRI-O. (2022). “Lightweight Container Runtime for Kubernetes | CRI-O,”
[Online]. Available: https://cri-o.io/ (visited on 08/13/2022).

[21] OCI. (2022). “About the Open Container Initiative | OCI,” [Online]. Available:
https://opencontainers.org/about/overview/ (visited on 08/13/2022).

[22] A. Khan, “Key characteristics of a container orchestration platform to enable
a modern application,” IEEE Cloud Computing, vol. 4, pp. 42–48, 5 Sep. 2017,
issn: 2325-6095. doi: 10.1109/MCC.2017.4250933.

[23] Docker, Inc. (2022). “Swarm mode overview | Docker,” [Online]. Available:
https://docs.docker.com/engine/swarm/ (visited on 09/04/2022).

[24] Red Hat, Inc. (2022). “Red Hat OpenShift | Red Hat,” [Online]. Available:
https://www.redhat.com/en/technologies/cloud-computing/openshift
(visited on 09/04/2022).

[25] The Apache Software Foundation. (2022). “Program against your datacenter
like it’s a single pool of resources | Apache Mesos,” [Online]. Available: https:
//mesos.apache.org/ (visited on 09/04/2022).

[26] The Kubernetes Authors. (2022). “Welcome! | minikube,” [Online]. Available:
https://minikube.sigs.k8s.io/docs/ (visited on 04/28/2022).

[27] A. P. Ferreira and R. Sinnott, “A performance evaluation of containers running
on managed kubernetes services,” IEEE, Dec. 2019, pp. 199–208, isbn: 978-1-
7281-5011-6. doi: 10.1109/CloudCom.2019.00038.

[28] Stackpath. (2022). “What is YAML?” [Online]. Available: https : / / www .
stackpath.com/edge-academy/what-is-yaml/ (visited on 06/14/2022).

[29] The Kubernetes Authors. (2022). “Configuration Best Practices | Kubernetes,”
[Online]. Available: https://kubernetes.io/docs/concepts/configurati
on/overview/ (visited on 09/18/2022).

[30] ——, (2022). “Client Libraries | Kubernetes,” [Online]. Available: https://
kubernetes.io/docs/reference/using-api/client-libraries/ (visited
on 08/13/2022).

[31] V. Cardellini, M. Colajanni, and P. Yu, “Dynamic load balancing on web-
server systems,” IEEE Internet Computing, vol. 3, pp. 28–39, 3 1999, issn:
10897801. doi: 10.1109/4236.769420.

[32] W. Kirchmayr, M. Moser, L. Nocke, J. Pichler, and R. Tober, “Integration of
Static and Dynamic Code Analysis for Understanding Legacy Source Code,” in
2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, Oct. 2016, pp. 543–552, isbn: 978-1-5090-3806-0. doi: 10.
1109/ICSME.2016.70.

65

https://cri-o.io/
https://opencontainers.org/about/overview/
https://doi.org/10.1109/MCC.2017.4250933
https://docs.docker.com/engine/swarm/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://mesos.apache.org/
https://mesos.apache.org/
https://minikube.sigs.k8s.io/docs/
https://doi.org/10.1109/CloudCom.2019.00038
https://www.stackpath.com/edge-academy/what-is-yaml/
https://www.stackpath.com/edge-academy/what-is-yaml/
https://kubernetes.io/docs/concepts/configuration/overview/
https://kubernetes.io/docs/concepts/configuration/overview/
https://kubernetes.io/docs/reference/using-api/client-libraries/
https://kubernetes.io/docs/reference/using-api/client-libraries/
https://doi.org/10.1109/4236.769420
https://doi.org/10.1109/ICSME.2016.70
https://doi.org/10.1109/ICSME.2016.70

Bibliography

[33] The Editors of Encyclopaedia Britannica. (2022). “Firewall,” Encyclopedia
Britannica, [Online]. Available: https://www.britannica.com/technology/
firewall (visited on 06/03/2022).

[34] M. Gouda and A. Liu, “A Model of Stateful Firewalls and Its Properties,” in
2005 International Conference on Dependable Systems and Networks (DSN’05),
IEEE, pp. 128–137, isbn: 0-7695-2282-3. doi: 10.1109/DSN.2005.9.

[35] V. Clincy and H. Shahriar, “Web Application Firewall: Network Security Mod-
els and Configuration,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), IEEE, Jul. 2018, pp. 835–836, isbn:
978-1-5386-2666-5. doi: 10.1109/COMPSAC.2018.00144.

[36] A. Fuchsberger, “Intrusion Detection Systems and Intrusion Prevention Sys-
tems,” Information Security Technical Report, vol. 10, no. 3, pp. 134–139, Jan.
2005, issn: 13634127. doi: 10.1016/j.istr.2005.08.001.

[37] J. P. S. Medeiros, J. B. B. Neto, A. M. B. Júnior, and P. S. M. Pires, “Learning
Remote Computer Fingerprinting,” in, 2014, pp. 253–283. doi: 10.1007/978-
3-319-05885-6_12.

[38] N. Schagen, K. Koning, H. Bos, and C. Giuffrida, “Towards Automated Vul-
nerability Scanning of Network Servers,” in Proceedings of the 11th European
Workshop on Systems Security, New York, NY, USA: ACM, Apr. 2018, pp. 1–
6, isbn: 9781450356527. doi: 10.1145/3193111.3193116.

[39] S. Rahalkar, “OpenVAS,” in Quick Start Guide to Penetration Testing, Berke-
ley, CA: Apress, 2019, pp. 47–71. doi: 10.1007/978-1-4842-4270-4_2.

[40] Greenbone Networks GmbH. (2022). “OpenVAS - Open Vulnerability Assess-
ment Scanner,” [Online]. Available: https://www.openvas.org/ (visited on
06/15/2022).

[41] G. Lyon. (2022). “Nmap: the Network Mapper,” [Online]. Available: https:
//nmap.org/ (visited on 06/15/2022).

[42] The MITRE Corporation. (2022). “Overview - About the CVE Program,”
[Online]. Available: https://www.cve.org/About/Overview (visited on
06/15/2022).

[43] Red Hat Inc. (2020). “NVD - CVE-2014-0160,” NIST, [Online]. Available: htt
ps://nvd.nist.gov/vuln/detail/CVE-2014-0160 (visited on 06/16/2022).

[44] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of heart-
bleed,” ACM, Nov. 2014, pp. 475–488, isbn: 9781450332132. doi: 10.1145/
2663716.2663755.

[45] Rapid7. (2022). “Metasploit - The world’s most used penetration testing frame-
work,” [Online]. Available: https://www.metasploit.com/ (visited on 06/14/2022).

66

https://www.britannica.com/technology/firewall
https://www.britannica.com/technology/firewall
https://doi.org/10.1109/DSN.2005.9
https://doi.org/10.1109/COMPSAC.2018.00144
https://doi.org/10.1016/j.istr.2005.08.001
https://doi.org/10.1007/978-3-319-05885-6_12
https://doi.org/10.1007/978-3-319-05885-6_12
https://doi.org/10.1145/3193111.3193116
https://doi.org/10.1007/978-1-4842-4270-4_2
https://www.openvas.org/
https://nmap.org/
https://nmap.org/
https://www.cve.org/About/Overview
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.metasploit.com/

Bibliography

[46] A. Kurniawan, B. S. Abbas, A. Trisetyarso, and S. M. Isa, “Classification of
Web Backdoor Malware Based on Function Call Exectuion of Static Analysis,”
ICIC Express Letters, vol. 13, no. 6, pp. 445–452, doi: 10.24507/icicel.13.
06.445.

[47] A. Roy, A. Chhabra, C. A. Kamhoua, and P. Mohapatra, “A moving tar-
get defense against adversarial machine learning,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, ACM, 2019, pp. 383–388, isbn:
9781450367332. doi: 10.1145/3318216.3363338.

[48] K. Zeitz, M. Cantrell, R. Marchany, and J. Tront, “Designing a Micro-Moving
Target IPv6 Defense for the Internet of Things,” in Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation,
ACM, 2017, pp. 179–184, isbn: 9781450349666. doi: 10 . 1145 / 3054977 .
3054997.

[49] B. Thébaudeau. (2019). “An Introduction to Cooja,” [Online]. Available: http
s://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
(visited on 05/13/2022).

[50] N. O. Ahmed and B. Bhargava, “Mayflies,” in Proceedings of the 2016 ACM
Workshop on Moving Target Defense - MTD’16, ACM Press, 2016, pp. 59–64,
isbn: 9781450345705. doi: 10.1145/2995272.2995283.

[51] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random Host Mutation for Mov-
ing Target Defense,” in Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, 2013, pp. 310–327,
isbn: 9783642368820. doi: 10.1007/978-3-642-36883-7_19.

[52] T. E. Carroll, M. Crouse, E. W. Fulp, and K. S. Berenhaut, “Analysis of
network address shuffling as a moving target defense,” in 2014 IEEE Interna-
tional Conference on Communications (ICC), IEEE, 2014, pp. 701–706, isbn:
978-1-4799-2003-7. doi: 10.1109/ICC.2014.6883401.

[53] J. Tian, R. Tan, X. Guan, Z. Xu, and T. Liu, “Moving target defense approach
to detecting stuxnet-like attacks,” 1, vol. 11, 2020, pp. 291–300. doi: 10.1109/
TSG.2019.2921245.

[54] K. A. Torkura, M. I. Sukmana, A. V. Kayem, F. Cheng, and C. Meinel, “A
cyber risk based moving target defense mechanism for microservice architec-
tures,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Com-
munications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018, pp. 932–
939. doi: 10.1109/BDCloud.2018.00137.

[55] J. Tanner. (2017). “Polyverse Announces Moving Target Defense Suite for
Container Environments,” [Online]. Available: https://www.businesswire.

67

https://doi.org/10.24507/icicel.13.06.445
https://doi.org/10.24507/icicel.13.06.445
https://doi.org/10.1145/3318216.3363338
https://doi.org/10.1145/3054977.3054997
https://doi.org/10.1145/3054977.3054997
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://doi.org/10.1145/2995272.2995283
https://doi.org/10.1007/978-3-642-36883-7_19
https://doi.org/10.1109/ICC.2014.6883401
https://doi.org/10.1109/TSG.2019.2921245
https://doi.org/10.1109/TSG.2019.2921245
https://doi.org/10.1109/BDCloud.2018.00137
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments

Bibliography

com/news/home/20170628005638/en/Polyverse-Announces-Moving-Targe
t-Defense-Suite-for-Container-Environments (visited on 05/13/2022).

[56] K. Feng, X. Gu, W. Peng, and D. Yang, “Moving target defense in preventing
sql injection,” in Artificial Intelligence and Security. ICAIS 2019, X. Sun, Z.
Pan, and E. Bertino, Eds., Cham: Springer International Publishing, 2019,
pp. 25–34, isbn: 978-3-030-24268-8. doi: 10.1007/978-3-030-24268-8_3.

[57] D. Torrieri, Principles of Spread-Spectrum Communication Systems, 4th ed.
Cham: Springer International Publishing, 2018, isbn: 978-3-319-70568-2. doi:
10.1007/978-3-319-70569-9.

[58] J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu, “Comparing
different moving target defense techniques,” ACM Press, 2014, pp. 97–107,
isbn: 9781450331500. doi: 10.1145/2663474.2663486.

[59] The Kubernetes Authors. (2022). “Container Runtimes | Kubernetes,” [On-
line]. Available: https://kubernetes.io/docs/setup/production-enviro
nment/container-runtimes/ (visited on 05/03/2022).

[60] ——, (2022). “Installing kubeadm | Kubernetes,” [Online]. Available: https:
//kubernetes.io/docs/setup/production-environment/tools/kubeadm/
install-kubeadm/ (visited on 05/03/2022).

[61] ——, (2022). “Createting a cluster with kubeadm | Kubernetes,” [Online].
Available: https://kubernetes.io/docs/setup/production-environment
/tools/kubeadm/create-cluster-kubeadm/ (visited on 05/03/2022).

[62] MDN contributors. (2022). “MVC | mdn web docs,” [Online]. Available: ht
tps://developer.mozilla.org/en-US/docs/Glossary/MVC (visited on
08/13/2022).

68

https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://www.businesswire.com/news/home/20170628005638/en/Polyverse-Announces-Moving-Target-Defense-Suite-for-Container-Environments
https://doi.org/10.1007/978-3-030-24268-8_3
https://doi.org/10.1007/978-3-319-70569-9
https://doi.org/10.1145/2663474.2663486
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://developer.mozilla.org/en-US/docs/Glossary/MVC

A
Appendix 1

The entire implementation and source-code is available on our GitHub repository
under the GPLv3 license.

GitHub repository

https://github.com/ptibom/Moving-Target-Defense-with-Kubernetes

I

https://github.com/ptibom/Moving-Target-Defense-with-Kubernetes

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden

	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Problem
	Purpose and Goals
	Scope
	Research Questions
	Our Contributions
	Thesis Outline

	Technical Background
	Virtual Machines in the Cloud
	Container Technologies
	Container Orchestration
	Kubernetes Architecture
	Minikube – Local Kubernetes Cluster
	Kubernetes Clusters in the Cloud
	Kubeadm

	Kubernetes Concepts
	ReplicaSets
	Deployments
	Kubernetes Config Files in YAML
	Kubectl
	Kubernetes API

	Network Load Balancing
	Security
	Defense Systems
	Fingerprinting and Vulnerability Scanning
	Exploitation, CVE - Common Vulnerabilities and Exposures
	Backdoors

	Related Work
	Design
	Our Definition of a Moving Target Defense
	Requirements and Goals with the System
	Design Choices and Process
	Design of the Infrastructure
	Switching Algorithm

	Implementation
	Kubernetes Cluster Setup
	Code Design and Structure
	Building, Installing, and, Using the MTD Application

	Tests and Results
	Performance and Availability
	Security – Fingerprinting and Vulnerabilities

	Discussion and Evaluation
	Performance Evaluation
	Availability Evaluation
	Security Evaluation
	Application Constraints
	Ethics and Sustainability
	Future Work

	Conclusion
	Bibliography
	Appendix 1

