
Numerical Strategies for Energy Optimiza-
tion in Battery Electric Vehicles
Master’s thesis in Systems, Control and Mechatronics

Jiapeng Wu, Lihe Chen

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se




Master’s thesis 2022

Numerical Strategies for Energy Optimization in
Battery Electric Vehicles

Jiapeng Wu
Lihe Chen

Department of Electrical Engineering
Division of Systems, Control and Mechatronics

Chalmers University of Technology
Gothenburg, Sweden 2022



Numerical Strategies for Energy Optimization in Battery Electric Vehicles
Jiapeng Wu
Lihe Chen

© Jiapeng Wu, Lihe Chen, 2022.

Supervisor: Anand Ganesan, Volvo Cars; Derong Yang, Volvo Cars
Examiner: Nikolce Murgovski, Department of Electrical Engineering, Chalmers Uni-
versity of Technology

Master’s Thesis 2022
Department of Electrical Engineering
Division of Systems, Control and Mechatronics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv



Numerical Strategies for Energy Optimization in Battery Electric Vehicles
Jiapeng Wu
Lihe Chen
Department of Electrical Engineering
Chalmers University of Technology

Abstract
For a vehicle with in-wheel electric machines, which is an over-actuated system, a
desired output can be achieved by different sets of control inputs. Based on different
criteria, those control signals satisfying the control requirements can be further eval-
uated. Therefore, the controller of an over-actuated system can be designed from a
particular perspective such as energy consumption. This thesis report presents an
energy-efficient torque vectoring (TV) control method for front-axle-steering elec-
tric vehicles with four in-wheel electric machines. The goal is to minimize energy
losses, while following a predefined trajectory with speed reference. Different en-
ergy loss models for both tire losses such as lateral slip loss and rolling resistance
loss and loss in wheel motors and inverters are established in this work. A spatial
vehicle dynamics model is established and used as the control model. The proposed
spatial model considers the relationship between the vehicle and the path in order
to track the path, and uses traveled distance along the path rather than time as
the independent variable. Combining the vehicle dynamics and loss models, the
optimal control problem is formulated. The cost function (i.e., the energy losses)
and system dynamics of the optimal control problem are nonlinear, which makes
it a nonlinear programming problem (NLP). A Newton type optimization method
called sequential quadratic programming (SQP) is then used to solve the formulated
NLP program.

The performance of the proposed torque vectoring method is verified through
simulation in different drive cycles. In each scenario, the energy losses of the pro-
posed TV method and an equal torque distribution method is compared. The results
show that in the uniform circular motion scenario, the TV method saves up to 3.85%
of the total energy losses compared to the equal torque distribution method. For an-
other drive cycle which is the handing track 1 of the Volvo Hällered Proving Ground,
the proposed TV method also performs better by saving 3.6% of the total energy
loss.

Keywords: All-Wheel-Drive Electric Vehicle, Model-Based Control, Torque Vector-
ing, Energy Optimization, Numerical Optimization Methods.
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

AWD All-Wheel-Drive
BEV Battery Electric Vehicle
CoG Center of Gravity
DAE Differential-Algebraic Equations
DoF Degree(s) of Freedom
MPC Model Predictive Control
NLP Nonlinear Programming Problem
ODE Ordinary Differential Equations
PMSM Permanent Magnet Synchronous Motor
QP Quadratic Programming
SQP Sequential Quadratic Programming
TV Torque Vectoring
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Nomenclature

Below is the nomenclature of indices, parameters, and variables that have been used
throughout this thesis.

Indices

⋆ Index for wheel location, can be front(f) or rear(r)
• Index for wheel location, can be left(l) or right(r)
(...)W Variables in the wheel frame
i Index for i-th wheel, see Fig 1.1

Parameters

xs,0 Initial state vector of the path
S Length of the entire path
xs,0 Initial x coordinate of the path
ys,0 Initial y coordinate of the path
ψs,0 Initial yaw angle of the path
m Mass of the vehicle
Izz Rotational inertia of the vehicle around z axis
lf Distance from vehicle’s CoG to front axle
lr Distance from vehicle’s CoG to rear axle
w Half track width
h Vertical distance from vehicle’s CoG to the ground
r Wheel radius
Rtr Transmission ratio between the motor and the wheel
Cα Cornering stiffness of the wheel
g Gravitational constant
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r0 Unloaded tire radius

Variables

κ Curvature of the path
s Arc length, represents traveled distance along the path
t Time
d Distance from vehicle’s CoG to path reference
vx Longitudinal velocity in vehicle frame
vy Lateral velocity in vehicle frame
ax Longitudinal acceleration in vehicle frame
ay Lateral acceleration in vehicle frame
ψ Yaw angle of the vehicle
ψ̇ Yaw rate of the vehicle
F⋆•x Longitudinal force provided by one tire in vehicle frame
F⋆•y Lateral force provided by one tire in vehicle frame
Fd Summation of dissipative forces
βV Tangent angle of the vehicle velocity
δ Steering angle
τ Torque applied on the wheel
τm Torque output from the motor
ω Angular velocity of the wheel
α Slip angle of the wheel
Penergy,loss Total energy loss
Pdrivetrain,loss Drivetrain energy loss
Ptire,loss Tire loss
Psx Longitudinal slip loss
Psy Lateral slip loss
Evelocity,error Velocity tracking error
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1
Introduction

1.1 Background

Figure 1.1: An all-wheel-drive vehicle with front steering and four independent
motors.

Transportation makes a great contribution to CO2 emissions, which is one of the
critical reasons leading to extreme weather events today. Traditional vehicles us-
ing internal combustion engines consume fossil energy. The fossil energy is non-
renewable, and it is also responsible for growing CO2 emissions. These drawbacks
have prompted people to continuously seek cleaner source of energy for transporta-
tion. Among them, electric vehicles have become the focus of research in recent
decades.

Among various electric vehicle architectures, all-wheel-drive(AWD) vehicles
have great potential in energy optimization, dynamic performance and safety due
to their high degrees of actuation freedom. To reach the full potential of AWD cars,
new control strategies will be needed.

As shown in the Figure 1.1, with front steering and four independent in-wheel
motors, the AWD vehicle is an over-actuated system. This means that for a certain
control target, there might be more than one alternative control signal to achieve
the desired behavior of the system. For example, the yaw motion of the car can
be achieved either by selecting a certain steering angle, or by generating different
distribution of the torque of the two front wheels.

The capability to distribute wheel torques for the four independent electric
motors makes the AWD vehicle an over-actuated system, and it needs more advanced
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1. Introduction

control strategy to find the energy efficient solution among multiple alternatives for
a certain control target. Therefore, while over-actuation brings the potential for
energy optimization[14], it also has higher computational demands.

To address such problems, many methods have been suggested. For example,
the authors in [13] propose an optimal torque split strategy for BEV powertrain
considering thermal effects, which gives the desired longitudinal velocity while taking
thermal performance and thermal-dependent power loss into account.

In [14], a method that allocates wheel torques and steering angles for all wheel
drive battery electric vehicles is proposed, to make the vehicle follow a given set of
desired longitudinal, lateral and yaw motion while minimizing the energy cost. It
has achieved impressive results in reference tracking and energy optimization. The
key to its success is the idea of the cost function containing both the error in the
path tracking performance and power losses that occur in various sub-systems of the
vehicle. However, this method suffers from transient steering angles while deceler-
ating, which generates additional lateral slip loss. This can be further improved by
regularizing the transient behavior of the allocated steering angles.

In [2], an energy-efficient torque vectoring controller is implemented based on
the experimental assessment of the influence of the control yaw moment on the
energy consumption for a wide range of lateral accelerations. The controller is
divided into several levels and in the higher level where forces and yaw moment
request are given, optimal control signals are decided based on the experimental
assessment data of electric drivetrain power losses. This method gives the optimal
solution under certain skid-pad tests, but might be unable to give a series of control
inputs that can optimize energy consumption for a complicated drive cycle.

In this presented work, the authors propose an optimization-based torque vec-
toring method that tracks a predefined path reference and minimizes energy losses
simultaneously. This approach increases the energy efficiency of AWD electric ve-
hicles. Furthermore, the Acados software package was used to implement the op-
timizer whose c-code can be used further in the real-time system for future appli-
cation development. Unlike the rule-based method proposed in [2] and [13], the
optimization-based approach proposed in this work places more emphasis on inves-
tigating the maximal energy that can be saved in an ideal scenario. Thus, detailed
dynamics of the system and energy loss models are needed in order to investigate
the full potential of energy savings. And compared to [14], transient steering angles
did not appear in this work. Difference in vehicle parameters might be the reason
for the disappearance of transient steering angles but further investigation into this
problem needs to be done.

In particular, model predictive control(MPC) is not implemented in this work.
MPC is an iterative optimization method which gives the best solution as a com-
bination of a sequence of sub-optimal solutions. The authors put emphasis on in-
vestigating the full potential of energy savings in this work, so the optimization is
implemented for the entire path at once. For the real-time implementation, MPC
can be a good choice and related discussions can be found in the subsection ’Future
work’.
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1. Introduction

1.2 Scope
The controller implemented in this work is designed and analyzed using MATLAB.
The energy losses focused on in this work contain only drivetrain losses from electric
motors and inverters, as well as power losses from tires. The vehicle architecture
studied in this work is front-steering vehicle with four identical electric motors and
inverters. The optimization is done offline to understand the maximum energy
saving possibility in an ideal scenario, i.e. the real-time capability is out of the
consideration of this work. The controller model used in the controller design is
assumed to be identical to the vehicle plant model, which means that the state
feedback from the controller model is assumed to be close to the true values of the
system states.

The main objectives of this work are as follows:
• How to model the non-linear dynamics of the AWD vehicle and the power

losses as a function of the control variables, wheel torques and steering angle,
with good enough numerical simplification such that it is sufficiently accurate
and computationally tractable to solve the optimization problem.

• How to generate a path reference from the given X-Y coordinates, which en-
ables simplification of problem formulation and the use of numerical solution
approaches.

• How to formulate the path tracking problem, to make the vehicle follow the
predefined path while optimizing the energy losses simultaneously.

• How to solve the formulated optimization problem efficiently by selecting
proper numerical solution strategies, e.g., iterative algorithms and other prob-
lem decomposition methods.

1.3 Outline
This paper is structured as follows. Chapter 2 describes the methodology of formu-
lating the problem of path tracking and energy loss optimization and also introduces
the numerical method chosen to solve the mentioned optimization problems. Chap-
ter 3 presents and discusses the simulation results and Chapter 4 summarizes the
conclusions from this work.

3
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2
Methods

This section introduces how the energy-efficient control solution is found by for-
mulating and solving an optimization problem. It first introduces an approach to
generate the curvature-based path reference, followed by the modelling of the spatial
vehicle dynamics and the energy losses. Finally, the algorithms and tools used for
solving the nonlinear optimization problem are introduced.

2.1 Simulation process

Figure 2.1: The simulation process proposed in this work.

Figure 2.1 shows the simulation process proposed in this work. There are two main
components considered in this thesis to formulate an energy-efficient TV optimizer
to track a given path reference: i) a reference generator, which can transform a
path reference from the form of a sequence of x and y coordinates to its curvature-
based representation, i.e, the reference is defined using a sequence of arc-length
along itself and corresponding curvatures; ii) an optimizer accepting path reference
as constraints of the optimal control problem, and solve it to minimize the energy
losses of the vehicle. Besides, a two-track vehicle model is needed as the controller
model and the plant model. More detailed descriptions of those components are as
follows:

• Curvature-based path reference: The path reference represented with x
and y coordinates is transformed to its curvature-based version. This makes

5



2. Methods

it possible to achieve path tracking simply by limiting the deviation between
path reference and the CoG of the vehicle.

• Energy-efficient optimizer:
– Vehicle dynamics model: Spatial dynamics, including a two-track ve-

hicle model, and the deviation from the path reference are used as the
controller model to help the optimizer understand how system states re-
spond to the control inputs.

– Energy loss model: As mentioned in the first chapter, for an over-
actuated system, there could be infinite control solutions. Energy loss
models, consisting of a tire loss model and a drivetrain loss model for
an electric machine, are used as the cost criterion for the optimizer to
determine the energy losses for a certain set of control inputs.

– Optimization algorithms: Once the optimal control problem is for-
mulated, it is transcribed to a constrained nonlinear problem (NLP) and
solved using off-the-shelf numerical solvers. In this work, an open-source
toolbox called ’Acados’ is used to solve the formulated problem.

• Plant: For simplification, the developed TV controller is validated on a plant
model identical to the controller model used for controller design.

2.2 Curvature-based representation of the path
Rather than representing the path in X −Y coordinates, in this work the curvature
κ is used instead to represent the path. More specifically, the reference path can be
described using the initial state,

xs,0 =

 xs,0
ys,0
ψs,0

 (2.1)

and the curvature function,
κ = κ(s) (2.2)

where xs,0 and ys,0 are the initial coordinates of the reference path, ψs,0 is the initial
tangent angle of the path and s is the traveled distance along the path.
Based on the initial state and the curvature function, the coordinates and yaw angle
of the path at any length s can be easily derived as

xs(s) = xs,0 +
∫ s

0
cosψs(σ)dσ

ys(s) = ys,0 +
∫ s

0
sinψs(σ)dσ

ψs(s) = ψs,0 +
∫ s

0
κ(σ)dσ

(2.3)

Based on the spatial representation of the path, one can derive the spatial ve-
hicle dynamics using s as the independent variable. The motivation to use this
representation is that it is easy to present obstacles (in this work, road boundaries
are considered) in the space domain rather than in the time domain. In addition, in

6



2. Methods

spatial representation, one avoids the problem of finding the correct reference point
on the reference path to track. The kinematic relationship between the path and the
vehicle is discussed in the following subsection. The possible downside of using the
representation is that it is hard to describe the vehicle’s stopping, since the vehicle
dynamics according to this representation assumes that the velocity of the vehicle
is not zero. This will be shown in Equation (2.22a) in the following section. One
may use a very small velocity to handle this situation.

2.2.1 Transforming the path representation from X − Y co-
ordinates to curvature κ

Since most existing reference path, or drive cycle, is represented using X − Y coor-
dinates, a method need to be developed to transform the path representation from
X − Y coordinates to curvature κ. In this work, this is achieved by formulating
and solving an optimization problem that estimates road angle and curvature by
fitting existing measurements on positions, while having the possibility to impose
constraints or penalize large deviations of the estimated curvature. The motiva-
tion for estimating the curvature using optimization instead of simple numerical
calculation is to obtain a smooth curvature profile accurately enough and prevents
numerical issues while solving the optimization problem later.
The state vector for the estimated path is defined as

xs =

 xs

ys

ψs

 (2.4)

where xs, ys are the coordinates of the path or the waypoints in global coordinate,
and ψs is the yaw angle of the path in global coordinate.

The control signal is defined as

us = κ, (2.5)

Therefore, the derivative of the state is

dxs

ds =

 cosψs

sinψs

κ

 = f(xs, us) (2.6)

To enable solving the optimization problem using numerical methods, dis-
cretization needs to be performed first. In this work, the Runge–Kutta method
(RK4) is used to approximate the dynamics. Note that the variables used here are
different and independent of the variables outside of this introduction section.
Define an initial value problem, expressed as

dy
dt = f(t, y), y (t0) = y0 (2.7)

7



2. Methods

where y is an unknown function of time t to be approximated. The derivative of the
function y and its initial conditions (t0,y0) are given.

The RK4 method approximates the function y discretely as

yn+1 = yn + 1
6h (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
(2.8)

for n = 0, 1, 2, ..., where h is the time step, using

k1 = f (tn, yn)

k2 = f

(
tn + h

2 , yn + h
k1

2

)

k3 = f

(
tn + h

2 , yn + h
k2

2

)
k4 = f (tn + h, yn + hk3)

(2.9)

Here yn+1 is the RK4 approximation of y (tn+1). The next value (yn+1) is
calculated by the present value (yn) plus the weighted average of four increments,
where each increment is the product of the size of the interval, h, and an estimated
slope specified by the derivative function f . Using the RK4 method to discretize
the system dynamics yields

xs(k + 1) = g(xs(k), us(k)) (2.10)

As mentioned previously, the path reference represented as the coordinates x
and y needs to be transformed to a curvature-based path reference by solving an
optimization problem

min
xs(k),us(k)

N∑
k=1

(xr(k) − x(k))2 + (yr(k) − y(k))2 +Q
N−1∑
k=1

(κ(k + 1) − κ(k))2

s.t. xs(k + 1) = g(xs(k), us(k))
xs(0) = xs,0

(2.11)

where xr and yr are the coordinates of the sample points, Q∑N−1
k=1 (κ(k+1)−κ(k))2 is

the penalty term on the change rate of the curvature. The penalty term is intended
to smooth the curvature. The constraint for initial position(xs(0) = xs,0) is not
necessarily needed if, e.g., the measurement of the initial positions is uncertain.

8



2. Methods

0 200 400 600 800

s [m]

0

0.01

0.02

0.03

0.04

0.05

e
rr

o
r,

 [
m

]

0 200 400 600 800

s [m]

-0.01

-0.005

0

0.005

0.01

lo
n
g
it
u
d
in

a
l 
e
rr

o
r 

[m
]

0 200 400 600 800

s [m]

-0.06

-0.04

-0.02

0

0.02

0.04

la
te

ra
l 
e
rr

o
r 

[m
]

0 200 400 600 800

s [m]

-0.04

-0.02

0

0.02

0.04

C
u
rv

a
tu

re
, 
k
 [
1
/m

]

Figure 2.2: The figure shows the curvature of the path estimated by solving the
optimization problem with the penalty term, and the spatial errors of the estimated
path when compared with the reference path.
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Figure 2.3: The figure shows the curvature of the path estimated by solving the
optimization problem without the penalty term, and the spatial errors of the esti-
mated path when compared with the reference path.
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Figure 2.4: The curvature-based path reference (waypoints) estimated by solving
the optimization problem with the penalty term.

Figures 2.2 and 2.3 show the curvature of the path estimated by solving the
optimization problem without or with the penalty term, and the spatial errors of the
estimated path when compared with the reference path, using an optimization tool-
box CasADi. By comparison, it shows that the penalty term can greatly smoothen
the curvature while maintaining the range of the distance error between the esti-
mated points and the reference points. Figure 2.4 shows the waypoints generated
by solving the optimization problem with the penalty term, to transform the rep-
resentation of the path reference. The estimated waypoints are very close to the
reference waypoints.

2.3 Spatial vehicle model

2.3.1 Two-track vehicle dynamics
In this study a two-track vehicle model is used that consists of longitudinal, lateral,
and yaw motions to model the dynamics of the vehicle. The control inputs in this
work are the steering angle of the front wheel δ and the four independent torques
applied to each wheel τi:

u =


δ
τ1
τ2
τ3
τ4

 . (2.12)

As shown in Figure 2.5, vx and vy are the longitudinal and lateral velocities of
the CoG of the vehicle, respectively, ψ̇ is the yaw angular velocity of the vehicle.
The motion of the vehicle is described by the dynamics of these three states (note
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2. Methods

Figure 2.5: 3-DoF Two-Track Vehicle Model

that the state vector defined later includes more states, see Equations (2.21)):

dvx

dt = vyψ̇ + (Fflx + Ffrx + Frlx + Frrx − Fd)
m

dvy

dt = −vxψ̇ + Ffly + Ffry + Frly + Frry

m
dψ̇
dt = 1

Izz

· [lf · (Ffly + Ffry) − lr (Frly + Frry)

+ w · (Ffrx + Frrx − Fflx − Frlx)]

(2.13)

where F⋆•x and F⋆•y are longitudinal and lateral forces for each tire in vehicle-fixed
coordinates (discussed in detail in Section 2.3.3), Izz is the rotational inertia of the
vehicle around the z axis, lf and lr are the length from CoG to front and rear axles,
respectively, w is the half track width of the vehicle, Fd is the dissipative forces, i.e,
aerodynamic drag and rolling resistance, expressed as follows [9]

Fd = CDA
ρv2

x

2 +mgCrr (2.14)

where CD is the drag coefficient, A is the frontal area, ρ is the air density, g is the
gravity acceleration, Crr is the rolling resistance coefficient. Note that the slope of
the ground is assumed to be zero in this work.

Note that there are two types of coordinate reference systems used for analysis.
One is the vehicle coordinate reference system fixed with the moving vehicle. The
other is the coordinate reference system fixed with each wheel(with superscript W ).
The equations that describe the relation of tire forces represented in these two
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different coordinates are as follows:

FW
⋆•x = F⋆•x cos δ + F⋆•y sin δ
FW

⋆•y = −F⋆•x sin δ + F⋆•y cos δ
(2.15)

2.3.2 Transforming temporal dynamics to spatial dynamics

Compared to time-dependent vehicle models, spatial models have proven to be su-
perior in some areas. The authors in [4] show that spatial predictive control can
improve the obstacle avoidance performance of the path planner while maintain-
ing the real-time feasibility. This is mainly because representing a general-shaped
obstacle with spatial models is more straightforward than representing it with time-
dependent models. In [8], spatial model is shown to be useful in terms of improving
driving safety and smoothness.

In this subsection, the two-track vehicle dynamics is converted to its correspond-
ing spatial representation, which combines the vehicle dynamics and the stretch of
the reference path using arc-length along the path s as an independent variable.
Figure 2.6 shows the geometry variables related to the following derivation.

Figure 2.6: The initial position (xI , yI), which is represented as a circle, is at
distance d from the corresponding projection along the path, (xs, ys), represented
by the square. When the sample distance traveled along the path is ds, the corre-
sponding real vehicle movement is dsV , in the direction of ψV + βV . The tangent
angle of the path and its radius are denoted by ψs and Rs, respectively.
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Based on temporal representation, a vehicle can be described as

ẋ(t) = dx
dt = f(x(t),u(t), t) (2.16)

The state vector x will be defined later in Equation (2.21). Alternatively, one
can sample along the path s instead of time and derive the spatial dynamics as
follows:

x′(s) = dx
ds = f(x(s),u(s), s) dt

ds (2.17)

The term dt/ds can be expanded to

dt
ds = dt

dsV

dsV

ds1

ds1

ds′ = 1
v

dsV

ds1

ds1

ds (2.18)

According to the geometric relationship, the last two terms can be derived as

dsV

ds1
= 1

cos (ψV + βV − ψs)
ds
Rs

= ds1

Rs − d
,⇒ ds1

ds = 1 − κsd

(2.19)

where Rs, κs = 1/Rs and ψs are the radius, curvature, and tangent angle of the
path s for the current position, respectively, d is the lateral deviation of the vehicle
position from the reference path and ds is the path traveled by the vehicle in one
infinitely small change dsV . This yields

x′(s) = 1 − κsd

v cos (ψV + βV − ψs)
f(x(s),u(s), s) (2.20)

The state vector x can be represented as

x =



t
d
vx

vy

ψ

ψ̇


(2.21)

where t is the time, vx and vy are the longitudinal and lateral velocities of the
vehicle in the vehicle frame, ψ and ψ̇ are the yaw angle and yaw rate of the vehicle,
respectively, s is the length traveled along the reference path. The vehicle dynamics
in the vehicle frame can be modeled as

13
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dt
ds = 1 − κs(s) · d

v cos(ψ + β − ψs(s))
(2.22a)

dd
ds = (1 − κs(s) · d) · tan(ψ + β − ψs(s)) (2.22b)
dvx

ds = (vy · ψ̇ + Fx − Fd

m
) · dt

ds (2.22c)
dvy

ds = (−vx · ψ̇ + Fy

m
) · dt

ds (2.22d)
dψ
ds = ψ̇ · dt

ds (2.22e)

dψ̇
ds = 1

Izz

· [lf · (Ffly + Ffry) − lr · (Frly + Frry)+

w · (Ffrx + Frrx − Fflx − Frlx)] · dt
ds

(2.22f)

where Fx is the sum of the longitudinal force for the four tires in the vehicle frame,
expressed as

Fx = Fflx + Ffrx + Frlx + Frrx

.
The forces applied on four tire are distinguished using three indexes. The first

index can be f(front) or r(rear), the second index can be l(left) or r(right) and
the third index can be x(longitudinal) or y(lateral). And Fy is the sum of the
longitudinal force for the four tires in the vehicle frame, expressed as

Fy = Ffly + Ffry + Frly + Frry

and βV is the tangent angle of the vehicle velocity, as shown in the Figure 2.6,
expressed as

βV = arctan vy

vx

2.3.3 Linear tire model
To simplify the optimization problem, the vehicle dynamics in this work does not
include as state variables the angular velocities of the four wheels. As a conse-
quence, it is assumed that there is no longitudinal slip in the wheels. Therefore, the
longitudinal tire force is simplified as

FW
⋆•x = τ⋆•/r (2.23)

where τ⋆• is the torque applied to the wheel and r is the wheel radius.
the torque applied on the wheel τ⋆• is determined by the torque produced by the
motor τ⋆•m and has the relation

τ⋆• = τ⋆•m ·Rtr (2.24)

where Rtr is the transmission ratio between the motor and the wheel.
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The lateral slip angle is defined as

α⋆• = δ⋆• − arctan vy

vx

(2.25)

The lateral tire force
FW

⋆•y = C⋆•α tanα⋆• (2.26)
where C⋆•α is the cornering stiffness of the wheels. Note that Equation (2.26) states
that the lateral tire force is the multiplication of a constant coefficient and the
tangent of the slip angle, which guarantees the linearity of the lateral force model
when the slip angle is small. There are more complicated nonlinear tire models based
on experiments [9]. In this work, the linearized model is used mainly to decrease
the computational load.

2.3.4 Weight transfer model
When a vehicle is driven with relatively large accelerations, the normal force dis-
tribution will be significantly affected by weight transfer. As a result, the rolling
resistance moment in each tire needs to be updated according to the corresponding
normal forces after considering the weight transfer. Therefore, it is important to
implement an online weight transfer model to properly handle the rolling resistance
moment. The authors in [11, 12] have investigated the contribution of weight trans-
fer to energy losses. In both works, the weight transfer model is simplified under
certain assumptions.

Assuming the vehicle is a rigid body in both longitudinal and lateral directions,
the static weight transfer model can be described as follows:

Fz,f = m
lfg − hax

L

Fz,r = m
lrg + hax

L

∆Fz,f = mayh

w
· lf
L

∆Fz,r = mayh

w
· lr
L

(2.27)

where h is the vertical distance from the CoG of the vehicle to the ground, and L
is the sum of lf and lr. The normal forces distributed at each wheel can then be
expressed as follows:

Fz,fl = 1
2Fz,f − ∆Fz,f

Fz,fr = 1
2Fz,f + ∆Fz,f

Fz,rl = 1
2Fz,r − ∆Fz,r

Fz,rr = 1
2Fz,r + ∆Fz,r

(2.28)

This weight transfer model describes the torque equilibrium along the axis x
and y, considering the effect of additional torques caused by longitudinal and lateral
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acceleration. Since normal forces are functions of acceleration, which are the deriva-
tives of the system states, algebraic variable z is introduced to represent normal
forces, and the system dynamics is described in an implicit form

f(x, ẋ,u, z,p) = 0 (2.29)

where p is the related parameters.

2.4 Energy losses model
During the operation of an electric vehicle, there are different types of power loss
occurring in different vehicle subsystems, for example, tire losses, electric losses in
motors and inverters, loss due to aerodynamic drag, transmission losses and battery
losses. In this thesis, the losses chosen to be minimized are tire losses and electric
losses in motors and inverters.

2.4.1 Drivetrain losses
There are drivetrain or electrical losses that occur in motors and inverters during
the operation of the BEV. To quantify them as a simple empirical model, the corre-
sponding power loss measurement data are used for the positive operating region of
the motor and the inverter. In this work, it is assumed that the motors and inverters
for the four tires are all identical Permanent Magnet Synchronous Motor(PMSM). [2,
7, 15] managed to approximate the power loss of the drivetrain through polynomials
that are functions of the drivetrain torques. Similarly, in this work the drivetrain
loss is approximated using polynomials that are functions of both the drivetrain
torque and the angular velocity of the electric motor. Implemented using the curve
fitting tool in MATLAB, drivetrain losses are modeled as polynomials of 3rd order
with respect to the angular velocity of the motor(ωm) and of 1st order with respect
to the squared output torque of the motor(τ 2

m), expressed as the equation

Pdrivetrain,loss(ωm, τ
2
m) = p10ωm +p01τ

2
m +p20ω

2
m +p11ωmτ

2
m +p30ω

3
m +p21ω

2
mτ

2
m, (2.30)

where p10, p01, p20, p11, p30, p21 are the fitting coefficients. They are constrained to be
positive so that the drivetrain loss function is monotonically increasing, thus more
realistic. This model also satisfies Pdrivetrain,loss|ωm=0,τm=0 = 0, which also makes the
model more realistic.

The motivation for using squared torque as an argument for the fitting function
is that it can handle the negative torque during braking, assuming that the drivetrain
loss function has the same value regardless of the sign of the torque.

2.4.2 Tire losses
The tire losses are modeled using the first principle method. In principle, tire losses
comprise three types of losses, that is, longitudinal slip loss, lateral slip loss, and
rolling resistance loss, expressed as

Ptire,loss = Psx + Psy + Prr (2.31)
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To the knowledge of the authors, it is necessary to include individual tire dynam-
ics if one would like to calculate longitudinal tire slip loss. In this work, longitudinal
slip loss is not included. The main reason is that including individual tire dynamics
makes the whole model too complex to calculate and also decreases the stability of
the optimizer. In addition, compared to rolling resistance loss and drivetrain loss,
longitudinal slip is much smaller[14].

When applying a steering angle to the wheel and turning the vehicle, lateral slip
occurs [16]. The slip results in a lateral slip velocity that is defined as the lateral
velocity of the wheel in the wheel frame. Slip velocity gives rise to a power loss
characterized by the following formula

Psy = −
4∑

i=1
FW

yi v
W
yi (2.32)

where vW
yi is the lateral slip velocity of tire i in the wheel frame, defined as

vW
yi = vyi cos (δi) − vxi sin (δi) (2.33)

where vxi and vyi are the longitudinal and lateral velocity of the wheel i in the vehicle
frame, and δi is the steering angle of the wheel i.

Rolling resistance arises due to the deflection of the carcass while rolling and
hysteresis in the tire. When the tire rolls, its rubber parts deflect upon contacting
the ground. The energy consumed during the deflection is not fully recovered when
the rubber parts leave the contact patch due to the internal damping in the tire.
This leads to a front-biased pressure distribution on the tire contact patch that
gives rise to a moment in the opposite direction of the wheel rotation, i.e., the
rolling resistance moment. The value of rolling resistance is affected by: tire design,
tire pressure, operating conditions, normal force, and torque applied to the tire. In
this thesis, the rolling resistance moment is defined as [9]

Myi = −Fzi · r0 ·

qsy1 + qsy2 · Fxi

Fz0
+ qsy3 ·

∣∣∣∣∣ vxi

vref

∣∣∣∣∣+ qsy4 ·
(
vxi

vref

)4
 (2.34)

where Fzi is the normal force on the tire i, r0 is the unloaded tire radius during
the tire measurement, qsy1 − qsy4 are the fitting parameters for the tire, Fz0 is the
normal force during the tire measurement, vref is the translational velocity of the
wheel center during the tire measurement. In this thesis, these parameters take the
values from [15] as the study case.

To simplify the calculation of the problem using numerical methods, the opti-
mizer removes the absolute operation in the third term of the Equation (2.34) during
the calculation. This change will not affect the result since in the testing scenarios
in this study, the vehicle always moves forward and vxi

vref
is always positive.

The total power loss due to rolling resistance for the four tires is expressed as

Prr =
4∑

i=1
−Myi · ωi (2.35)
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2.5 Formulation of the optimal control problem
The core objective of this thesis is to implement an optimizer for energy optimization
while tracking the given reference path. As described in section ’Spatial Vehicle
Dynamics’, the distance from the CoG of the vehicle to the corresponding point on
the reference path, denoted as d, is included as one of the state variables, and path
tracking is achieved by placing a constraint on d. The energy loss models described
in the section ’Energy Losses Model’ will be used to formulate the cost function of
the optimal control problem. The optimal control problem is formulated as

min
u

∫ S

0
(Penergy,loss(u,x) + Evelocity,error(u,x))ds (2.36a)

s.t. Equations (2.22) (2.36b)
x(0) = x0 (2.36c)
g(x,u, s) ≤ 0 (2.36d)
umin ≤ u ≤ umax (2.36e)
xmin ≤ x ≤ xmax (2.36f)

where the energy loss

Penergy,loss (u,x) = Pdrivetrain,loss(u,x) + Ptire,loss(u,x) (2.37)

and the velocity tracking error is chosen to be

Evelocity,error (u,x) = (vx − vx,ref )2 (2.38)

The optimal control problem formulated as Equations (2.36) has the energy loss
and velocity tracking error as a cost function, subject to system dynamics (2.36b),
control constraints (2.36e) and state control constraints (2.36f). The state vector x
is a vector of 6 states as described in Equations (2.21). Here, control constraints
and state constraints define the reasonable range of control signals as well as the
box constraints for both the state variables x and the algebraic variables z.

As a benchmark, a scenario of no torque vectoring is used, i.e., equal driving
torque for the four wheels. Under this scenario, the solutions are obtained also by
solving the above optimal control problem with the additional constraints on the
control variables such that the control variables satisfy the following relation:

τ1 = τ2 = τ3 = τ4 (2.39)

Given constant reference velocity, the alternative to implement velocity track-
ing, other than using velocity tracking error in the cost function, as described in
Equations (2.36), is to directly set the velocity constraints close enough to the con-
stant reference velocity for the velocity to be tracked. Constraints are expressed
as

vs(1 − δ1) ≤ vx ≤ vs(1 + δ2) (2.40)
where vs is the constant reference velocity, and δ1 and δ2 are small positive numbers.
The first method is suitable for scenarios with changing velocity reference, while the
latter one simplifies the problem for the case where the velocity reference is constant.
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2.6 Solving optimal control problem using numer-
ical method

2.6.1 Transcription of OCP to NLP
Optimal control problem, as an infinite-dimensional problem, can be converted
to a finite-dimensional approximation(NLP, namely) using a certain transcription
method.[5, 10] In this thesis, the multiple-shooting method is chosen to convert the
dynamic system into an NLP problem with finite variables. The multiple shooting
method works by breaking up the entire control horizon into several segments and
applying parameterized controls on these segments. Piecewise constant controls are
used in this work. Apart from controls, intermediate state variables also work as
decision variables in the multiple shooting method, which means that the transcrip-
tion is simultaneously achieved, and one should pay extra attention to match the
end of one segment to the start of the next.

There is an alternative transcription method called the single shooting method.
The main difference between single shooting and multiple shooting is that single
shooting works sequentially by optimizing a sequence of controls, while multiple
shooting works simultaneously by optimizing states as well. Although multiple
shooting increases the number of decision variables, it actually lowers down the
nonlinearity because a set of control signals only affects a certain segment. Thus,
multiple shooting tends to perform better than single shooting for large-scale prob-
lems and is used in this work. In the end, the general NLP problem can be formulated
as:

min
x
f(x)

s.t. g(x) ≤ 0
h(x) = 0

(2.41)

In particular, in this work the NLP for energy optimization can be defined as

min
x(0:N),u(0:N−1)

N−1∑
j=0

Penergy,loss (x(j),u(j)) + Evelocity,error (x(j),u(j)) (2.42a)

s.t. x(j + 1) = f(x(j),u(j)),∀j ∈ [0, N − 1] (2.42b)
x(0) = x0 (2.42c)
g(x(j),u(j)) ≤ 0, ∀j ∈ [0, N − 1] (2.42d)
umin ≤ u(j) ≤ umax,∀j ∈ [0, N − 1] (2.42e)
xmin ≤ x(j) ≤ xmax,∀j ∈ [0, N ] (2.42f)

where Equation (2.42b) represents the discrete system dynamics, which can be ob-
tained by applying the Runge-Kutta method to Equations (2.22).

2.6.2 Solving NLP using sequential quadratic programming
For a general optimization problem with both equality and inequality constraints, as
Equations (2.41) show, a common approach called the Lagrange multiplier method[1]
is exploited in this study.
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The Lagrange function is defined as

L(x, µ, λ) = f(x) + µ⊤g(x) + λ⊤h(x) (2.43)

where µ and λ are Lagrange multipliers for inequality constraints and equality con-
straints, respectively. Once the Lagrange function is formulated, one can use the
so-called KKT conditions[6] to find the potential optimum of the original optimiza-
tion problem. The KKT conditions state that if x⋆ is a local minimum of the NLP
problem represented by Equations (2.41), then there exist unique µ⋆ and λ⋆ that
satisfy following equations:

∇xL (x∗, µ∗, λ∗) = 0
µ∗ ≥ 0

g (x∗) ≤ 0, h (x∗) = 0
µ∗

i gi (x∗) = 0, i = 1, . . . ,m

(2.44)

The KKT conditions are very useful for finding a local optimum and they are
the basis for the optimization algorithm used in this thesis, namely the sequential
quadratic programming method. It turns out that one can linearize the fourth con-
dition in 2.44, and turn the KKT conditions into a corresponding quadratic problem.
SQP[1] is an iterative method by solving a sequence of quadratic optimization sub-
problems. At each iteration, a quadratic subproblem like the following is defined to
find the search direction:

min
x
fk

QP (x) =∇f
(
xk
)T
x+ 1

2
(
x− xk

)T
∇2

xL
(
xk, λk, µk

) (
x− xk

)
s.t. g

(
xk
)

+ ∇g
(
xk
)T (

x− xk
)

≤ 0

h
(
xk
)

+ ∇h
(
xk
)T (

x− xk
)

= 0

(2.45)

2.6.3 Acados
Acados is a software package used in this work that can efficiently solve the opti-
mal control and estimation problems. It consists of the following implementations:
the integration of ordinary differential equations (ODE) and differential-algebraic
equations (DAE), nonlinear programming solvers with real-time iteration, and in-
terfaces to a couple of state-of-the-art QP solvers, including qpOASES, qpDUNES,
HPIPM, and OSQP. Acados is powered by the high-performance linear algebra pack-
age BLASFEO behind the scenes.

In this work, HPIPM is used in Acados to solve the QP subproblems. HPIPM is
a high-performance framework for quadratic programming (QP), designed to solve
model predictive control (MPC) problems robustly and efficiently. Numerical ex-
periments show that HPIPM reliably solves complicated QPs and that it supersedes
other state-of-the-art solvers in speed [3].

The motivation to select to use Acados in this work is that this work can
make use of the modules provided by Acados to construct the optimization problem
formulated and solve solutions. Furthermore, Acados is able to produce the code
that can be used in the real-time system for future application development.
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3
Results

To test the performance of the algorithm, this work performs simulations under two
reference path, i.e., uniform circular motion and the track 1 of the Volvo Hällered
Proving Ground, as shown in the Figure 3.1. The first path reference is intended
to test the algorithm’s performance when the system is in the steady state, and the
second one is intended to test the algorithm’s performance under more complicated
and practical situations.

-60 -40 -20 0 20 40 60

x[m]

0

20

40

60

80

100

y
[m

]

path trajectory

reference

simulation

Figure 3.1: The two path references used for the simulation, i.e., a uniform circular
motion track (top) and the track 1 of the Volvo Hällered Proving Ground (bottom
left) whose waypoint representation (bottom right) is generated using optimization
as explained in section 2.2.1.
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As a benchmark, a scenario of no torque vectoring is used, i.e., equal driving
torques for the four wheels. In this scenario, the solutions are also obtained by
running the optimizer to minimize energy losses. To implement no torque vectoring,
additional constraints for the control signal torques are set in the optimizer.

3.1 Uniform circular motion
First as a simple scenario, a circle is selected as a path, and the reference speed
is constant during driving. Different speeds lead to different lateral accelerations,
which are used in this work to accurately describe the sharpness with which the
vehicle turns.

Since in this scenario the reference speed is constant during driving, speed
tracking is implemented by setting a constraint on the speed state, as explained in
the section ’Formulation of an Optimal Control Problem’.

3.1.1 Scenario with lateral acceleration ay = 8 m/s2 and the
path radius r = 60 m

Following are the results of the solution given by the optimizer, under the single
scenario where the lateral acceleration ay = 8 m/s2 and the path radius r = 60 m.
As shown in the Figure 3.1, the vehicle can drive smoothly along the circle without
a large lateral deviation.

To investigate it more clearly, the state trajectory from the solution is checked.
The Figure 3.2 shows that the deviation from the path (d) is always within the
allowed range, set to ±0.2 m in the optimizer. During most of the driving, the
speed is almost constant at the value of the lower bound for the speed during the
whole driving, and the yaw rate and the lateral speed of the vehicle are also very
stable. Therefore, it can be considered that the system is in steady state during
most of the driving.
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(a) State trajectory when with torque vectoring
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(b) State trajectory when without torque vectoring

Figure 3.2: State trajectory from the solution of the optimization problem.
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Figure 3.3: Control signal trajectory when with torque vectoring (top) and without
torque vectoring (bottom).
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Figure 3.3 shows the control signal trajectory when with and without torque
vectoring. After around 60-70 m, the system starts to be in the steady state. The
torques(Mw1−4) for the four wheels are different when torque vectoring is used,
whereas the torques are the same without torque vectoring. Since torque vectoring
gives rise to the difference in the longitudinal frictions for the four tires, there is
an additional yaw moment on the vehicle and the steering angle is different in
the two cases. Meanwhile, the difference in lateral friction in the four tires gives
rise to another yaw moment, and cancels out the yaw moment of the longitudinal
frictions. As a result, the total yaw moment is (almost) zero in the middle part of
the simulation, so that the vehicle keeps a constant yaw rate and achieves uniform
turning.

The energy loss during the driving simulation with and without torque vectoring
is shown in the Figure 3.4. Note that the energy loss here is the sum of the losses
from the four wheels. The loss becomes constant when the system goes into steady
state. In the steady state, each type of energy loss for the two cases has a different
level. Compared to the result without torque vectoring, torque vectoring gives rise
to a higher drivetrain electric loss and slightly higher lateral slip loss, but a lower
rolling resistance loss and a lower total loss, i.e., the sum of the three losses.
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Figure 3.4: Energy loss during the driving simulation when with or without torque
vectoring.
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3.1.2 Scenarios with a range of lateral accelerations ay = 0 ∼
8 m/s2 and the path radius r = 60 m
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Figure 3.5: Normal forces on the four tires for different lateral accelerations.

To test the performance of the algorithm in different situations, the scenarios with
a range of lateral accelerations ay and a constant path radius r = 60 m are used for
testing.

The Figure 3.5 shows the normal forces Fi,z applied on the four tires for different
lateral accelerations. When the lateral acceleration is higher, the difference between
the four normal forces is larger. Here, the normal force Fi,z at the outer wheels (i.e.,
the wheels on the right side since the vehicle is turning left) is larger than at the
inner wheels. As shown in Equations (2.34) and (2.35), the rolling resistance loss is
dependent on the normal forces. This gives room for the algorithm to optimize the
rolling resistance loss according to different lateral accelerations.

The Figure 3.6 shows the result of the motor torque distribution when with
torque vectoring(left) and without torque vectoring(right). As lateral acceleration
increases, the motor torques on the outer wheels are smaller. That is, the absolute
value of the negative yaw moment generated due to torque vectoring is larger.

The direction of turning is opposite to the direction of the torque vectoring yaw
moment, which may not be intuitive. This can be explained as follows. According
to the second term of the equation (2.34), the system can save energy by the torque
distribution where the longitudinal force Fi,x is smaller on the wheels with the higher
normal force Fi,z. The other terms of the equation (2.34) are more constant and can
be ignored for this scenario, since the longitudinal speed should track a constant
reference speed.

This result may not be good for stability and other aspects of vehicle operation.
But since this work is focused on energy optimization, this result is good in this
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regard.
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Figure 3.6: Motor torque distribution when with torque vectoring(left) and with-
out torque vectoring(right).

Figure 3.7 shows the energy loss with torque vectoring and without torque vec-
toring for different lateral accelerations. When the lateral acceleration increases,
the energy loss difference between with and without torque vectoring increases. The
total energy loss is saved by reducing rolling resistance loss while compromising on
lateral slip loss and drivetrain electric loss. Figure 3.8 shows the total energy saving
during the entire driving by the algorithm’s torque vectoring for different lateral
accelerations. As lateral acceleration increases, torque vectoring can save energy,
ranging from 0.22% to 3.85%.
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Figure 3.7: Energy loss when with torque vectoring and without torque vectoring
for different lateral accelerations.
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Figure 3.8: The total energy saving and energy loss during the entire driving by
the algorithm’s torque vectoring for different lateral accelerations.

3.2 Handling track 1 of the Volvo Hällered Prov-
ing Ground

In order to test the algorithm’s performance under more complicated and practical
situations, handling track 1 of the Volvo Hällered Proving Ground is used as the
second test scenario. The Hällered Proving Ground is a complete testing facility
for vehicles located north of Borås, Sweden, owned and operated by the Volvo Car
Group.

3.2.1 Simulation results

The simulation on the handling track with a constant velocity of 50 km/h is per-
formed. Since in this scenario the reference speed is constant during driving, the
speed tracking is implemented by setting a constraint on the speed state, as ex-
plained in the section ’Formulation of the optimal control problem’. Figure 3.9
shows the state trajectory of the simulation result given by the optimizer Acados.
Similar to the uniform circular motion, in both cases with torque vectoring and
without torque vectoring, the distance from the vehicle’s CoG to the path reference
d is always in the constraint range. In addition, the longitudinal velocity is always
in the constraint range. Therefore, it shows that the path tracking and the velocity
track are good. The yaw rate changes according to the path reference.
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(a) State trajectory when with torque vectoring

0 200 400 600 800

s[m]

-0.2

-0.1

0

0.1

0.2

d
[m

]

0 200 400 600 800

s[m]

13.75

13.8

13.85

13.9

v
x
[m/s]

v
x,path

[m/s]

0 200 400 600 800

s[m]

-0.5

0

0.5

v
y
[m

/s
]

0 200 400 600 800

s[m]

-0.6

-0.4

-0.2

0

0.2

0.4

y
a
w

 r
a
te

[r
a
d
/s

]

(b) State trajectory when without torque vectoring

Figure 3.9: The state trajectory of the simulation result.

The Figure 3.10 shows the control trajectory of the simulation result. Similar to
the uniform circular motion, the torque vectoring has a scattered torque distribution
for the four tires when the vehicle is turning. This also gives rise to a yaw moment
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opposite to the turning direction.
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Figure 3.10: The control trajectory of the simulation result with torque vectoring
(top) and without torque vectoring (bottom).
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The Figure 3.11 shows the four types of energy losses in the vehicle during
the simulation on the handling track with and without TV. Similar to the uniform
circular motion, when the vehicle is turning, rolling resistance loss is largely saved
compared to no torque vectoring, while compromising on lateral slip loss and driv-
etrain electric loss. As a result, the curve for the total energy loss is flattened for
the turning section of the driving. The total energy loss is reduced compared to no
torque vectoring.
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Figure 3.11: The four types of energy losses in the vehicle during the simulation
on the handling track with or without TV.
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Figure 3.12: The accumulated energy loss during the whole driving when with
torque vectoring and without torque vectoring.

The Figure 3.12 shows the accumulated energy loss during the entire driving
when with torque vectoring and without torque vectoring. As shown previously,
for torque vectoring, the drivetrain loss and the lateral slip loss is larger, while the
rolling resistance loss is smaller, and the total energy loss is smaller by 3.6%.
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4.1 Conclusion

In this work an offline energy-efficient controller is proposed to distribute the four
independent wheel torques and front wheel steering angle of the AWD BEV while
following the given path and velocity reference. The control strategy is designed
based on solving an optimization problem offline in terms of power loss minimization.
Path tracking is achieved by formulating the optimization problem in a constrained
manner and velocity tracking can be achieved using the same method or by adding
a velocity tracking error penalty term to the cost function. The latter method
gives the flexibility to track velocity varying in a large range, but would somehow
complicate the optimization target and thus leads to extra tuning effort to assign
proper weights to different terms of the cost function in order to make the best
trade-off between velocity tracking and power loss minimization.

To formulate the optimization problem, a curvature-based path reference is
given first. Then the space-based nonlinear system dynamics of a two-track vehicle
is derived to capture the relationship between the stretch of the path reference and
the corresponding dynamics of the vehicle. The desired path tracking algorithm
works by constraining the deviation from CoG of the vehicle to the path reference
at all of the sample points. Furthermore, energy loss models are also derived in
order to formulate the optimization problem. One can formulate the continuous
optimal control problem once the dynamics of the system and the cost functions are
accessed. In this work, multiple shooting method, which is a direct transcription
method, is used to transfer the original OCP problem with infinite dimensions to
a corresponding descritized NLP problem. RK4 method is used to approximate
the nonlinear dynamics at each segment, based on which the end of one segment
is enforced to match up with the start of the next. This formulated NLP problem
is then solved using a software package called Acados, which internally calls SQP
algorithm to solve NLP problem iteratively and use QP solvers like HPIPM to solve
the subproblems introduced by SQP.

To test the performance of the proposed method, simulations are done on uni-
form circular motion and handing track 1 of the Volvo Hällered Proving Ground.
Before the simulation, path fitting is performed to transform the path reference of
the handling track represented as x and y coordinate to curvature-based path refer-
ence by formulating and solving an optimization problem. The result gives a smooth
curvature and low error with the penalty term on the change rate of the curvature.
The simulation result for the torque vectoring method shows that the path track-
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ing and the velocity tracking is good, since the deviation from the vehicle to the
path reference and the velocity is always within the constraint range. The torque
vectoring is in effect and gives rise to a yaw moment, whose direction is opposite to
the vehicle turning’s direction. For the proposed method, the lateral slip loss and
the drivetrain loss is larger, while the rolling resistance loss is reduced and the total
energy loss is reduced. For the uniform circular motion with a lateral acceleration
of 8 m/s2 and path radius of 60 m, the total energy loss is saved by 3.85% compared
to no torque vectoring. For the handling track, the the total energy loss is saved by
3.6% compared to no torque vectoring.

4.2 Future work
One of the assumptions in this work is that there is no longitudinal slip, which is not
realistic. In order to capture the difference between the speed of the wheel surface
and the speed of the axle with respect to the road surface, wheel dynamics need
to be included. By doing so, angular velocities of all the wheels would be the four
extra state variables, which complicates the system. Also, torques applied to the
wheels can be directly transformed to the longitudinal tire frictions under current
assumption, which need to be modified if independent wheel dynamics is included.
One critical shortcoming of this work is that the evaluation of the developed con-
troller is running with the same model as the plant model for controller design.
Using a model with high fidelity from other software like IPG CarMaker, as the
plant model to validate the proposed controller could be very interesting and valu-
able for future work.

For the real-time implementation, model predictive control is more suitable
compared to the developed controller in this work. MPC could be implemented
based on the current work in this thesis following two steps: the length of the
control horizon should be shortened firstly, and at each horizon the control signal
at the first sample point should be chosen. By iteratively moving the horizon and
applying the control signal at the first sample point, model predictive control is
achieved.
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