An Exploration for Improving Robustness
of AUTOSAR Software Components with
Design by Contract

Master’s thesis in Software Engineering

YULAI ZHOU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

MASTER’S THESIS 2016:NN

An Exploration for Improving Robustness of
AUTOSAR Software Components with Design by
Contract

YULAI ZHOU

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

An Exploration for Improving Robustness of AUTOSAR Software Components with
Design by Contract

YULAI ZHOU

© YULAI ZHOU, 2016.

Supervisor: Johan Haraldsson, Volvo Group Trucks Technology
Mafijul Islam, Volvo Group Trucks Technology
Patrizio Pelliccione, Chalmers University of Technology

Examiner: Miroslaw Staron

Master’s Thesis 2016:NN

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

v

Abstract

The increasing volume of software in vehicles makes robustness a significant qual-
ity attribute for vehicle software. In order for high quality and high development
efficiency of the vehicle embedded software, Automotive Open System Architecture
(AUTOSAR) was put forward by several large manufacturers and suppliers in the
automotive industry around the world. In this thesis, Design by Contract is ap-
plied to improve robustness of existing AUTOSAR software components. The main
idea of Design by Contract is to view the relationship between two components
as a formal contract which expresses each component’s right and obligations. The
specific way is to separate input, output and invariant checks from the main process-
ing component and build additional components for them. Functions for checking
pre-conditions, post-conditions and invariants are defined in these components re-
spectively. Each function is invoked every time the corresponding check is needed.
The proposed solution is validated by conducting testings for the original and mod-
ified components in the unit testing tool ARUnit and comparing the results. The
results prove Design by Contract greatly increase the robustness of AUTOSAR soft-
ware components. None of the testings for the modified software components failed.
Certainly, this method has weaknesses such as possible errors brought by the newly-
built components. And also, it is hard to modify the components of which the code
is automatically generated from some model tools.

Keywords: AUTOSAR, Design by Contract, robustness, ARUnit

Acknowledgements

I would like to express my sincere appreciation to my supervisors at Volvo Group
Trucks Technology, Mafijul Islam and Johan Haraldsson for their great help and
guidance throughout the thesis work. I wish to thank my supervisor at the university
Patrizio Pelliccione for his encouragement and academic support on the ways of
doing the thesis work. I would also like to thank my examiner Miroslaw Staron for
his help in the mid-time seminar, final presentation and the thesis report. Finally, I
also would like to express my gratitude to Daniel Blomqvist and other staff at the
company for their help with the technical difficulties during the thesis work.

Yulai Zhou, Gothenburg, 2016

vii

Contents

1 Introduction 1
1.1 Related Work 2
1.2 Research Methodology 3

1.2.1 Problem Identification 4

1.2.2 Discussion and Suggestion 4

1.2.3 Design and Development 4

1.2.4 Evaluation 5

1.2.5 Conclusion and Report 5

Concepts of Related Technologies 7

2.1 AUTOSAR e 7

2.1.1 AUTOSAR Abstraction 7

2.1.2 AUTOSAR Software Component 8

2.1.2.1 Brake-By-Wire Application 9

2.1.2.2 Brake-Pedal-Input-Handler Component 9

2.1.2.3 Brake-Light-Control Component 9

2.1.3 AUTOSAR Software Component Communication 10

2.1.4 Virtual Functional Bus 11

2.1.5 Runtime Environment 11

2.1.6 AUTOSAR Infrastructure 11

2.2 Design By Contract o 11

2.3 Robustness 13

24 ARUnit 13
Designing the Solution: Design by Contract for AUTOSAR Soft-

ware Components 15

3.1 First Attempt 15

3.1.1 Description 15

3.1.2 Problems & Limitations 15

3.2 Second Attempt 16

3.2.1 Description L 16

3.2.2 Problems & Limitations 16

3.3 Final Attempt 16

3.3.1 Reference Patterns 16

3.3.2 Description of the Final Solution 17

ix

Contents

4 Implementation 21
4.1 Environment Setup and Components Import 21
4.2 Process of Modifying the Brake-Pedal-Input-Handler Component . . . 22

4.2.1 Issues of the Current Component 22

4.2.2 Identification of Pre-conditions and Post-conditions 22

4.2.3 Design and Modification 23

4.2.4 Test 24

4.3 Process of Modifying the Brake-Light-Control Component 25
4.3.1 Analysis and Identification of Pre-conditions and Post-conditions

................................... 25

4.3.2 Design and Modification 26

4.3.3 Test 28

5 Results and Evaluation 29
5.1 Testing results of the Brake-Pedal-Input-Handler Component 29
5.2 Testing results of the two modified Components 29
5.3 Evaluation 30

6 Conclusion and Future Work 33
6.1 Conclusion 33
6.2 Future Work 33

Bibliography 35

A Terminology and Abbreviations I

1

Introduction

Software volume in vehicles has been keeping increasing for years. The volume is
expected to increase by 50% by 2020[1]. In line with the trend of increasing software
volume in vehicles, more and more requirements for the robustness of the software
are elicited. According to some reports, software errors led to almost 60-70% of all
the recalls of vehicles in Europe and North America [1]. It endangers people’s lives,
affects manufacturers’ reputation and leads to enormous economic losses .

The robustness of the vehicle embedded software is just part of the quality require-
ments for the vehicle embedded system. In order for high quality and high devel-
opment efficiency of the vehicle embedded system, many large manufacturers and
suppliers in the automotive industry in Europe have been joined up to establish a
shared standard for vehicle system architecture since 2003. Then, Automotive Open
System Architecture (AUTOSAR) was put forward. Its goal is to get a de-facto open
industry standard for automotive E/E architectures [12], by which automotive sys-
tems can get better modularity, scalability, transferability and re-usability. Since
then, AUTOSAR has been a popular open standard in the automotive industry be-
cause of its great value and development potential. More and more manufacturers
and suppliers join and become partners of this project|[2].

However, challenges also come with the popularity of AUTOSAR. As AUTOSAR
just defines the architecture of the vehicle software system, the implementation of
the functionality is done by the manufacturers and suppliers themselves, of which
the quality is hard to ensure. This brings great challenges on the robustness of the
AUTOSAR software they developed. AUTOSAR is mature, but such AUTOSAR
software still needs to be improved. Researchers and developers are always willing
to develop AUTOSAR software components with good robustness, they have been
trying many different design ideas for development.

In these design ideas, Design by Contract may be a good design idea for AUTOSAR
software components. In Design by Contract, the relationship between a class and
its clients is viewed as a formal agreement in which each party’s right and obligations
are described|[3]. In practice, it sets precise conditions for the input and output of
the components. As the definition of robustness is “the degree to which a system
or component can function correctly in the presence of invalid inputs or stressful
environmental conditions” [4]. The output of one component is often the input of
another component. Design by Contract helps check the input and output of one
software component. Also, it checks the invariants inside the software component.

1. Introduction

To achieve a high degree of robustness, Design by Contract is worth a try. The aim
of this thesis is to answer the research question:

o Is the use of Design by Contract a methodology to increase the ro-
bustness of AUTOSAR software components?

The work in this thesis addresses this question. I apply Design by Contract to
the components of two AUTOSAR applications, a Brake-Lighting application and a
Brake-By-Wire system. With the design idea of Design by Contract, conditions for
input and output are set for the Brake-Pedal-Input-Handler component in the Brake-
By-Wire system and the Brake-Light-Control component in the Brake-Lighting ap-
plication. As the Brake-Pedal-Input-Handler component is also used in the Brake-
Lighting application, the connection of these two components is also considered and
implemented. These components which are modified with input and output check-
ing, are tested by black-box testing with ARUnit testing tool. By comparing the
test results of the original and modified components, the answer to the research
question can be gotten.

1.1 Related Work

Design by Contract(DbC) was firstly described by Bertrand Meyer [5] in his several
articles starting from 1986, which is introduced together with his Eiffel programming
language. Later in 1992, in the article Applying Design by Contract [6], Bertrand
Meyer introduced the application of Design by Contract. In this article, he empha-
sized the significance of software reliability which includes robustness and showed
how to reduce bugs by building software components on the basis of carefully de-
signed contracts. He defined the contract as the obligations and the benefits for the
client and the supplier. Assertions, which include pre-conditions, post-conditions
and invariants, were described by him to express contracts for software.

Liu et al.[7] presented how to specify the functionality of software components with
the theory and methods of the Design by Contract approach in their paper in 2002.
By their way of understanding Design by Contract, they concluded that if the oper-
ations are encapsulated within the components and the communications are made
through the interfaces, it will make the components more reliable and reusable.
Cheon et al.[8] introduced a method in 2005, to model program variables to write
and check DbC assertions without referring to the program states which makes the
assertions more readable and maintainable.

Benveniste et al.[9] wrote one paper in 2011 about contract-based design which
is similar to Design by Contract and its uses to address the challenges faced in
designing large-scale complex embedded systems. Concepts and the key steps of
contract-based design were introduced in this paper by giving three real examples.
Thiim et al.[10] introduced some approaches of integrating the Design by Contract
approach with feature-oriented programming by defining contracts of methods and
their refinements to increase the reliability. Some case studies were also performed

1. Introduction

by them to gain and then share the insights.

The work of this thesis is based on the ideas and implementations from these related
articles and work. As Design by Contract is used for objected-oriented languages
in most situations and AUTOSAR SW-Cs are developed by C without any existing
third-party tools that support Design by Contract, the author of this thesis needs
to explore a new way for applying Design by Contract in AUTOSAR SW-Cs and
evaluates the effect of improvement of robustness.

1.2 Research Methodology

After studying several research methodologies and considering the context of this
thesis, the research methodology described in [11], which is used for design research,
is selected. The process of the research methodology for this thesis is described in
Figure 1.1. The stages of the research methodology include problem identification,
discussion & suggestion, design & development, evaluation, and conclusion & report.

In design research, the solution for solving one particular problem is investigated
during the process of design and implementation [11]. In the context of this thesis,
the problem is to verify if the use of Design by Contract is a methodology to increase
the robustness of AUTOSAR software components. This problem also concerns how
to implement software to apply Design by Contract to the components. In order to
address the problem, different programming methods are proposed, discussed and
implemented. After that, the AUTOSAR software components, which are enhanced
with the programming method for Design by Contract, are tested with the unit
test tool ARUnit. The robustness is evaluated from the results of the test. From
the results, we can know whether Design by Contract helps improve robustness of
AUTOSAR software components. The process and conclusion are documented and
presented.

Besides some preparations for starting the thesis, the thesis work is done with 3
iterations. During the first iteration, assert() was discussed and used to apply the
Design by Contract approach to the original AUTOSAR SW-Cs. In the second iter-
ation, I tried to set independent pre-condition components for every type of inputs.
These two attempts were abandoned for their weaknesses described in Chapter 3. In
the third iteration, the method presented in Chapter 4 was used and implemented.
Besides the iterations, I have weekly meeting with the supervisors at Chalmers and
Volvo for delivering what has done, getting feedback and planning for next work.

1. Introduction

step1 step 2 step 3 step 4 step 5

Problem Discussion & Design & bl Evaluation Conclusion &
Identification [Suggestion Development Report

1 |

Figure 1.1: Research Methodology

1.2.1 Problem Identification

In this stage, the primary strategy is to collect information about AUTOSAR sys-
tem and Design by Contract through deep literature studying. On the one hand, I
learned knowledge about Design by Contract from the literature that the supervisor
at Chalmers provided. On the other hand, I studied about AUTOSAR and robust-
ness evaluation method for AUTOSAR software components from the literature that
supervisors at Volvo provided. The possible programming methods to apply Design
by Contract are searched by myself on the Internet.

Another part of significant work is to select the AUTOSAR software components
that I work on. After reading the documented specification of DEDICATE frame-
work project and discussing with supervisors, components in two AUTOSAR appli-
cations, a Brake-By-Wire system and a Brake-Lighting application, are selected.

1.2.2 Discussion and Suggestion

The main strategy that I used in this stage is weekly meeting with the supervisor
at Chalmers and Volvo. During the weekly meeting, the supervisors at Volvo pre-
sented the AUTOSAR system and relevant information about it, and the supervisor
at Chalmers presented the design idea of Design by Contract. Some suggestions
were also proposed by them about how to apply Design by Contract.

Based on the literature of applying Design by Contract to embedded system which
uses C programming language, one possible programming method was discussed
with the supervisors. It was to use assert() in the codes for contracts checking.
For several weaknesses of this method, it was abandoned. Later, the method of
building independent components for every input was tried. It was abandoned for
some weaknesses as well. After that, redesign of the components according to some
reference patterns was discussed and considered. We decided to try it in the third
iteration and evaluate the results.

1.2.3 Design and Development

In this stage, programming work is done to apply Design by Contract to AUTOSAR
software components. It contains 4 steps: raising issues of the original components,

4

1. Introduction

condition identification, design and programming and testing. In the first step, is-
sues of the original components are raised to see what needs to be improved in the
new design. In the second step, pre-conditions, post-conditions and invariants are
identified for the selected AUTOSAR software components. In the third step, by
designing the new components and programming, these conditions become code in
the components. In the final step, testings are conducted to get results.

1.2.4 Evaluation

In the evaluation stage, black-box testing is performed with ARUnit test tool. The
code of the software components is also in ARUnit which is based on Eclipse. The
steps of robustness evaluation are:

e In ARUnit, perform robustness testing of the original version of the software
component.

e Input a list of valid and invalid data, and calculate what percent of the output
data is the result of successful running and also in the expected range. Keep
this percentage as D1.

o In Eclipse, replace the original version of the software component with the
software component which has been enhanced with Design by Contract.

e Input a list of valid and invalid data, and calculate what percent of the output
data is the result of successful running and also in the expected range. Keep
this percentage as D2.

e Compare D1 and D2. If D2 is greater than D1, it means the software compo-
nent which is enhanced with Design by Contract has better robustness.

At the same time, the evaluation results also help improve programming method for
applying Design by Contract.

1.2.5 Conclusion and Report

In this stage, conclusion is gotten from the evaluation results. The availability of
Design by Contract for better robustness of AUTOSAR software components is ver-
ified. All the process and results are documented and further work is discussed.

1. Introduction

2

Concepts of Related Technologies

In this chapter, some introductions to the concepts related to the thesis are described
to help the readers better understand the thesis. Also, together with the concepts
are some examples.

2.1 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [12] is a collaborative project
initiated by several large manufactures and suppliers in automotive industry to
establish a shared standard for automotive E/E architectures. It is driven by the
intention for getting better flexibility, scalability, reliability and quality when the
complexity of E/E system is greatly increasing. This kind of increased complexity
is mainly concerned with the growth of the functional scope. Besides the goal of
making the developers concentrate on the realization of the functionality rather than
the design of the architectures, the standard of AUTOSAR also makes components
developed by different manufacturers or software companies be able to be integrated
with well-defined interfaces.

2.1.1 AUTOSAR Abstraction

AUTOSAR is a standard architecture to make vehicle software applications indepen-
dent of the hardware. Every AUTOSAR application is distributed to one or more
Electronic Control Units (ECUs). Communication between different ECUs are con-
ducted with a shared visual bus, which consists of hardware interfaces provided by
the basic software in AUTOSAR infrastructure. The Runtime Environment (RTE)
is an implementation of the Virtual Functional Bus (VFB). It provides a uniform
environment for communication between components [12]. So that when moving a
component to another ECU, developers do not need to change any code of the com-
ponent. The layered architecture of the AUTOSAR software for an ECU is shown
in Figure 2.1.

2. Concepts of Related Technologies

AUTOSAR Interface AUTOSAR Interface I AUTOSAR Interface AUTOSAR Interface

AUTOSAR Runtime Environment (RTE)

Standardized Standardized Standardized = - =
Intertace UTOSAR Inferface Intertace AUTOSAR Interface AUTOSAR Interface

ECU Complex
Abstraction Device
Drivers
Standardized Standardized Standardized
Interface Interface | Interface

ol

Standardized!
Interface

ET T
pazpIEURS

Microcontroller
Abstraction

ECU-Hardware

Interfaces
|} RE t VFB & RTE BSW
relevant ¥ relevant redevant

Figure 2.1: The layers of AUTOSAR architecture for an ECU.[12]

The thesis focuses on the application layer which consists of application software
components. Examples of components in AUTOSAR applications are given. But for
better understanding of how the system runs, short descriptions of related concepts
of others layers are also given.

2.1.2 AUTOSAR Software Component

AUTOSAR software component is defined as the encapsulation of part of the func-
tionality of the AUTOSAR application[12]. An AUTOSAR application is composed
of one or several SW-Cs. How to describe the interfaces of these AUTOSAR SW-Cs
is defined and standardized within AUTOSAR. Each component can only be dis-
tributed to one AUTOSAR ECU. This is the reason why the AUTOSAR SW-C is
called as “Atomic Software Component” [12]. AUTOSAR does not prescribe the
size of the SW-Cs and how the SW-Cs are implemented. But in order to be able to
integrate several AUTOSAR SW-Cs correctly, one formal and complete description
for one SW-C is needed when it is implemented. The description introduces how
to configure the infrastructure for the component when building the system. The
introductions to the components that I work on are given below.

2. Concepts of Related Technologies

2.1.2.1 Brake-By-Wire Application

In order to better understand the functionality of the selected AUTOSAR software
components in this thesis, the software application that includes these components
should be introduced. Here is the Brake-By-Wire application.

The Brake-By-Wire application is a research framework developed by the DEDI-
CATE project [13] that implements a brake-by-wire function distributed over five
ECUs. It is not the real system that is used in the real trucks. It is proposed to
give a example of distributed safety-critical system for validating research projects.
The BBW application also includes an environment model of the vehicle in order to
simulate the behaviour of the entire vehicle with regards to acceleration and braking
[13]. When using this application, the Brake Pedal ECU gets the signal of braking,
does calculation and then sends a corresponding brake force request to each wheel.

2.1.2.2 Brake-Pedal-Input-Handler Component

The distribution of the Brake-Pedal-Input-Handler component in the Brake-By-Wire
system is shown in Figure 2.2. The function of this component is to convert the
hardware pedal input into a pedal position (0-100%). The input of this component
is an integer with 12 bits and the output is a percentage from 0% to 100%. It
provides input for the Brake-Torque-Calculation component and the Brake-Light-
Control component.

Part of Brake
Pedal ECU

Hardware

Brake-Pedal-Input-Handler Brake-Torque-
Calculation

Figure 2.2: Brake-Pedal-Input-Handler component distribution on ECU.

2.1.2.3 Brake-Light-Control Component

The distribution of the SW-Cs in Brake-Lighting application is shown in Figure
2.3. The Brake-Light-Control Component is located on the BrakePedalECU. It in-
puts vehicle speed and brake pedal position (0-100%) and outputs ON or OFF for
the brake lights according to some rules. The basic rules [13] are : (1)The brake
light is always OFF when the pedal input is 0%. (2)The brake light is always fixed
ON whenever the pedal input > 0% and the vehicle speed is < 10km/h. (3)From
10km/h and above the brake light will blink ON/OFF if emergency braking is active

9

2. Concepts of Related Technologies

otherwise it is fixed ON.

BrakePedalECU
Er pac Brake pedal
Swe (HW or CAN signal)
Viehicle model _
s ' Acceleration pedal

"~ (CAN signal)

FLWheelECU FRWheelECU

RLWheelECU RRWheelECU

Figure 2.3: Brake lighting SW-Cs distribution on ECUs.[13]

2.1.3 AUTOSAR Software Component Communication

Communication between AUTOSAR . software components are conducted by well-
defined ports. A port is defined by an AUTOSAR interface. It can either be a

10

2. Concepts of Related Technologies

Provider Port which provides data or a Required Port which requires data. There
are two main types of communication patterns supported by AUTOSAR. One is
Client-Server and another one is Sender-Receiver. In the Client-Server pattern, the
client will send a request for service, and the server will perform the requested service
after receiving it and then respond to the request. A SW-C can be both a client
and a server. The Sender-Receiver pattern realizes asynchronous communication. A
sender will send information to one or several receivers without getting a response
from the receivers. And also, the time and way to use the received information are
decided by the receivers.

2.1.4 Virtual Functional Bus

The virtual functional bus (VFB) is defined as the abstraction of the AUTOSAR
SW-Cs interconnections [12] on the vehicle. It enables the components on different

ECUs to communicate with each other independent of the hardware and which
ECUs they locate.

2.1.5 Runtime Environment

The runtime environment (RTE) is an information exchange center for communi-
cation inside one ECU or between different ECUs. It is the implementation of the
VFB on a specific ECU [12]. It provides the same interface for the SW-Cs to the
AUTOSAR infrastructure and hardware despite where the SW-Cs locate. As differ-
ent components are used in different applications, the RTE will be tailored in order
to use resources more efficiently when the RTE is generated by the RTE generation
tool. Sometimes, the RTE is tailored according to the configuration. All these make
differences on the generated RTE of different ECUs.

2.1.6 AUTOSAR Infrastructure

AUTOSAR infrastructure is a collection of basic software which mainly consists
of services, communication, operating system, ECU abstraction, microcontroller
abstraction and device drivers [12]. Tts function is to provide platform services
to SW-Cs.

2.2 Design By Contract

Design by Contract, also known as programming by contract, is an approach for
designing software, by which software can get better robustness. The key concept
is “viewing the relationship between a class and its clients as a formal agreement,
expressing each party’s right and obligations” [3]. The agreements are similar to the
contracts in business. These contracts set conditions for input and output of soft-
ware components. The conditions have three types, pre-condition, post-condition
and invariant. When a client component calls an operation on a server component,
the client component needs to meet the pre-condition which is specific for that oper-
ation. For the return of that operation, the requirements of the post-condition need

11

2. Concepts of Related Technologies

to be met, which is an obligation for the server component. Invariant is a certain
property that are met for both of the two components. In this way, different com-
ponents of a software system can collaborate with each other with high robustness.

When Design by Contract was pioneered by Bertrand Meyer in the late 1980’s, it
was firstly used in his design of the Eiffel programming language [6]. Later, this
design philosophy of software starts to be popular in languages with native support
or with third-party support. The following code [14] is a simple example of how
Design by Contract works in C++. It is a short form of a class which omits some
code not relevant to the example.

class interface SquareRootable {
float value;

SquareRootable();
void sqrt()
verify.enableOld():
verify.preCondition(
value>=0,
“NOT value>=0"
“sqri()”
):

verify.postCondition(
value>=0 &&
(value>=1)?(value<=verify.old->value): (value>verify.old->value),
“NOT value>=0 or NOT value>=1?value<=old.value: value>old.value”

);

bool classInvariant() const |
return value >= 0;

This component functions as checking the input and output value of square root
calculation. In this component, all the three types of conditions are set for the
class. The pre-condition is that the input value should not be less than 0. The
post-conditions are that the output value should be greater than 1 when the output
value is less than the input value, and the output value should be greater than 0 and
less than 1 when the output value is greater than the input value. The invariant for
such a class is that the value should not be less than 0. If these criteria are not met,
the calculation will not be conducted. This is a simple example for understanding
such a design idea.

In C programming language, Design by Contract can be applied by assertions. For
the reason that there are no classes in C, the subjects of the conditions are the
functions. But the principles are similar. The caller function must meet all the
preconditions of the callee function, and the callee function must meet its own post-
conditions [15]. The failure of either party of the contract is a bug in the software

12

2. Concepts of Related Technologies

[3]. Invariants in C are the conditions that must be hold for a structure or type [15].

When giving examples of setting conditions for software components in AUTOSAR,
the conditions should derive from all the possible input (valid and invalid) and
requirements specification. Using the Brake-Pedal-Input-Handler component as an
example, the valid input is an integer from 0 to 4095 and the invalid input may be
less than 0 or greater than 4095. The pre-condition can limit the input value in
the valid range. Similarly, as the conversion calculation may make the output value
less than 0% or greater than 100%. Obviously, the post-condition should check the
output in the range of 0%-100%.

2.3 Robustness

Robustness is defined as “the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions” in
IEEE standard [4]. The definition is similar to what is described in ISO 26262-1.
The understanding of it is a bit different for software and hardware. For software,
robustness is the ability to respond to abnormal inputs and conditions. For hard-
ware, robustness is the ability to be immune to environmental stress and stable over
the service life within design limits [16].

In this thesis, I just work on the software part. If discussing the robustness of soft-
ware, on the one hand, good robustness means the system or component can handle
the data correctly even the input volume is very large. On the other hand, it should
be able to handle invalid inputs to ensure the successful running of the system or
component. As in the vehicle embedded system, most applications run repeatedly
over a time period. The time period can be 5ms, 10ms or 20ms according to the
requirements of the application. Considering the definition of Design by Contract,
my work in this thesis mainly focuses on improving the capability of handling invalid
inputs and ensuring valid outputs. That is how Design by Contract is applied.

The robustness of AUTOSAR software components is evaluated according to the
rules described below. ARUnit is used to run black-box testing for the components.
A list of data which may be valid or invalid is inputted to the component. For every
input, the output can be data in the expected range, data outside the expected
range or error. Better robustness means more output data in the expected range,
less output data outside the expected range and less errors. The comparison of them
shows the differences of different components’ robustness.

2.4 ARUnit

ARUnit is a unit testing tool which provides a lightweight testing environment for
AUTOSAR software components[17]. It is based on Eclipse. After importing the
components that need to be tested, it can compile the components and generate the
run-time environment for each single AUTOSAR software component. Of course,

13

2. Concepts of Related Technologies

test cases can be defined in it as well for the reason that it provides an API to
stimulate and query the state of the RTE from the outside[17]. It is a quite conve-
nient tool for operating unit testing effectively and efficiently. Figure 2.4 shows how
ARUnit generates RTE for AUTOSAR software components. The way of how the
data handled and exchanged inside between component A and component B

Software

SWCD ' { Component I
RTE

Figure 2.4: ARUnit provides RTE for single Software Component.

14

3

Designing the Solution: Design by
Contract for AUTOSAR Software
Components

In this chapter, three attempts of applying Design by Contract to AUTOSAR soft-
ware components with different methods are described. The first and second at-
tempts are abandoned for the problems and limitations they have. The final at-
tempt which builds new pre-condition, post-condition and invariant components
is adopted. The descriptions and figures are used to explain the solution in this
chapter.

3.1 First Attempt

3.1.1 Description

As described in [15], C programming language does not provide language features
that Design by Contract needs. What C language has is assert(). The first attempt
is to directly use assert() to add input and output checks into the code. For example,
there are two types of input and one type of output for one component. And the
requirements for them are input_1 > 0, input_2 < 0 and output > 0. Then I
need to add assert(input_1 > 0 & input_ 2 <0) at the beginning of the code and
assert(output > 0) at the end of the code. And also, if there are C-style structures
or types in any places of the code, assertions are needed at these places as well.
These assertions are used as the pre-conditions, post-conditions and invariants for
this component.

3.1.2 Problems & Limitations

An C-style assertion is not suitable for error handling especially in embedded soft-
ware. In most situations, there are not any screens available to show the information
of the errors. What such software needs is an approach to detect and handle the
errors. And also, there are many weaknesses of using assertions. They are lack of
robustness, intermixing application code with contracts and code redundancy [15].
As using assert() needs to add extra code into the original component which may
also possibly bring errors when running the preconditions, post-conditions and in-
variants checks. And also, assert statements tend to intermix with application code

15

3. Designing the Solution: Design by Contract for AUTOSAR Software
Components

[15] which is not good for readability, understandability and reusability of the code.
Moreover, duplicate code is needed when invariants for a common structure or type
exist in many different places in the code. Thus, assert() in C programming lan-
guage does not make Design by Contract reach desired effects to improve software
components’ robustness in AUTOSAR.

3.2 Second Attempt

3.2.1 Description

In the second attempt, I tried to set independent components for every type of
input, output and structures in the original AUTOSAR software components. Us-
ing the same example in Section 3.1.1, there should be 3 components around the
original component. In each of these components, there is a function which is used
to check the value. They are function 1(input_ 1), function 2(input_2) and func-
tion_ 3(output). These functions in different components are invoked when they are
needed by the original component.

3.2.2 Problems & Limitations

There are problems for this method. The most important one is that if there are
a huge number of types of input, output and structures for one AUTOSAR soft-
ware component, there will be the same number of components around the original
component. It makes it hard to manage so many components. And also, in most
conditions the requirements for one type of input, output or structure are not com-
plex. It is not worth the effort building so many new components just for one original
component. Other problems, such as redundancy of invoking these functions in the
code of the original component and bad readability of the code, also exist.

3.3 Final Attempt

In this final attempt, I tried to build a pre-condition component, a post-condition
component and an invariant component for one original component. The pre-
condition component contains a function to check all the types of input. The post-
condition component contains a function to check all the types of output. And the
invariant component has functions of checking all the structures or types in the orig-
inal AUTOSAR software components. This method effectively limits the number of
newly-built components and functions. It is also the method that I finally used in
the implementation period.

3.3.1 Reference Patterns

As mentioned in Section 2.2, the Design by Contract approach views the two sides
of the contract as the caller and the callee (or the client and the server). For this
reason, the traditional client-server pattern in the software architecture design is a

16

3. Designing the Solution: Design by Contract for AUTOSAR Software
Components

very good reference pattern. In the Client-server pattern, the component types are
clients and servers, and the principal connector type for it is a data connector driven
by a request/reply protocol used for invoking services [18]. A client is defined as a
component that invokes services from a server component. A server is a component
that provides services to clients. One component can be both a client and a server.
This pattern is wildly used as it "factors out common services which are reusable'
[18].

Another pattern that I drew lessons from is the Proxy patten. It is not how the
components in this pattern distribute, but the way it handles the invoked service
that is worthy of learning. As shown in Figure 3.1, when a client component invokes
a service from a server component, the proxy component will make pre-processing
for the input and post-processing for the output. The pre-processing and post-
processing can serve many purposes including converting formats [19]. That is why
I think it can also serve as input and output checking. This approach can combine
with the Design by Contract approach.

I:I task

service

k 4

pre-processing

4 service

post-processing

Figure 3.1: Process of how proxy pattern handles tasks [19]

3.3.2 Description of the Final Solution

When combining the Design by Contract approach with the two reference patterns,
the most significant point is where to define the pre-conditions, post-conditions and
invariants. Figure 3.2 shows the design for the new components enhanced with
Design by Contract and how the components work together. The main processing
component is almost same as the original component. It is responsible for calculating
or handling the input data and generating the output data. The newly-built pre-
condition, post-condition and invariant components around it are responsible for

17

3. Designing the Solution: Design by Contract for AUTOSAR Software
Components

data check.

L
\:_Ti A Component A 21
|

&]

Pre-condition Companent A

1

x‘\:l_lf

tain Processing Component & (O_ Invariant Component &
rl'\]
-

Post-condition Component A

]

rJ'-l
£

=
L]
A
A Component B 2]

_;l" E{ —:)— Pre-condition Component B
o
&
mll . 2]
hain Processing Component B L_C*_ Irvariant Comporent B

ry
-

2]

Past-condition Component B

O 10—

Figure 3.2: Design for AUTOSAR SW-Cs with Design by Contract

In the pre-condition component, there is a function that works for checking all the
input data. If the input is invalid or erroneous, it can throw it away or make it into
a default value. How to deal with it depends on the requirements. It will give the
checked input data to the main processing component for further calculation. In
the variant component, one or more functions are defined. Each function is used for
checking one structure or type in the code of the main processing component. When
there is a structure or type in the code, it will invoke the corresponding function

18

3. Designing the Solution: Design by Contract for AUTOSAR Software
Components

to check this structure before using it. In the post-condition component, there is
a function that works for checking all the output data. It will make sure that the
output is in the reasonable range.

Considering how Proxy pattern handles input and output data, the newly-built
pre-condition, post-condition and invariant components can be viewed as a proxy
component. If one component needs the output data of another component as its
input in an AUTOSAR software application, these two components can be seen as a
client and a server. Figure 3.3 shows how the input data are handled and exchanged
between the components.

ComponentB : Proxy Component A: Main Processing ComponentA: |

i input A 1 L
t i »
i pre-condition check
| checked input A -
M invariant
checked invariant
...................... ::,
{ output A
Q:..... p
post-condition check
checked output A <

Figure 3.3: How data handled and exchanged between components

19

3. Designing the Solution: Design by Contract for AUTOSAR Software
Components

20

4

Implementation

This chapter introduces the process of setting up the development environment
including exporting the Brake-Pedal-Input-Handler component and Brake-Light-
Control component from the Arctic Studio, and importing them into ARUnit. Then,
the implementation includes the identification of pre-conditions and post-conditions,
and the design, modification and testing of the two software components.

4.1 Environment Setup and Components Import

The PC uses Windows 7 as the operating system and the two main development
tools, Arctic Studio and ARUnit, are installed correctly on it. Arctic Studio provides
a complete embedded software development environment for automotive embedded
software based on AUTOSAR [20]. Another development tool, ARUnit, has been
introduced in section 2.4.

Arctic Studio is the original development tool for the existing AUTOSAR SW-Cs.
The whole AUTOSAR software package that was developed in the DEDICATE
framework project is in this tool. It makes the architecture easy to understand and
the components easy to recognize and read. By reading through the code of the
components and the DEDICATE framework description [13], I selected the Brake-
Pedal-Input-Handler Component and the Brake-Light-Control Component from the
applications in this package as the components I would modify in ARUnit.

As Arctic Studio and ARUnit are built for different purposes and ARUnit is more ef-
ficient for running and testing one single component or certain components, in order
to modify and test the two selected components independent of the relevant com-
ponents in the applications, the ECU and the real running environment, I exported
them from the whole package in Arctic Studio and imported them into ARUnit.
The files that I imported into ARUint are the source files of the components and the
software component description files of them. ARUint will generate the run-time
environment for them according to these files when running them. And also, code
files used for testings are built in ARUint as well.

In the software package of the DEDICATE framework project that the company
gave me, I did not find a structure or type that should be checked with invariants in

the components. That is why in the implementation part there are not descriptions

21

4. Implementation

about it. As how the functions in the invariant component work is similar to the
functions in the pre-condition and post-condition components, it will not affect the
verification of this method. In the AUTOSAR software components of other projects
or applications, there are structures or types. That means invariant component can
be used in those software components though it is not used here.

4.2 Process of Modifying the Brake-Pedal-Input-
Handler Component

In this section, analysis of the original component, process of design, modifying
and testing the Brake-Pedal-Input-Handler component with the Design by Contract
approach are described.

4.2.1 Issues of the Current Component

Several issues were raised when reviewing the original component that may threaten
the realization of the expected functionality and the robustness of the whole com-
ponent. One issue is that there are not complete input check for the component.
Inside the component, it does not handle the input in all the possible ranges that
are mentioned in the DEDICATE framework description [13]. In other words, the
input check is too simple to deal with all the possible conditions.

Another issue is that there is not output check to ensure the data gotten from the
component is completely correct for the next component that uses the data. Al-
though the calculation in this component is not complex, the errors can not be
completely avoided at run time. That is why output check is necessary.

Finally, the issue concerns the internal logic and the readability of the component
code. In the original component, the simple and incomplete input checks are mixed
with the code which is responsible for calculations. It makes the developers hard to
read and understand, which may also threaten the robustness when modifying the
code.

4.2.2 Identification of Pre-conditions and Post-conditions

According to the DEDICATE framework description [13] and the package of all
the program code, the Brake-Pedal-Input-Handler component is used to convert the
analogue input from the pedal into a pedal position which is from 0% to 100%.
The pedal provides an analogue input with the range from 10% to 90% of supply
voltage (5V direct current), which means the voltage is about from 0.5V to 4.5V. If
the analogue input is 0-0.5V, it means it is open circuit or short to ground. If the
analogue input is 4.5-5V, it means it is short to battery. Both of them are errors.
For the reason that the AD (Analog-to-Digital) converter of the microcontroller has
not been calibrated, this inaccuracy has to be considered when building the software
[13]. The output from the AD converter is the input for the software component

22

4. Implementation

I analyse and modify here. The input is a 12 bit value which uses 0 to represent
0V and uses 4095 to represent 5V. Of course, if considering that the input values of
the test cases for this component can also from the ARUnit, the input can possibly
be less than 0 or greater than 4095. Thus, input values in this range are seen invalid.

Range of Input Value
value < 0

0 <= value <= 400
401 <= value <= 499
500 <= value <= 3500
3501 <= value <= 3700
3701 <= value <= 4095

value > 4095

Table 4.1: Ranges of input value

Table 4.1 shows all the possible inputs of the Brake-Pedal-Input-Handler component.
What I need to do next is to set contracts for the component. That is to say,
pre-conditions and post-conditions will be discussed in detail. When setting pre-
condition part of the contracts, the information from requirements specification
should be carefully considered to cover all the possible inputs. Here, pre-condition
is that only the input value between 401 and 3700 is seen as valid and faultless. When
the input value is less than 0 or greater than 4095, it is an invalid input. Input value
in this range just appears in the testing environment in ARUnit. When input value
is in the range of 0-400 and 3701-4095, it is erroneous. Input value in this range
represents 0-0.5V or 4.5-5V. It is generated by the errors of hardware in the vehicles.
For the post-condition, it should meet two requirements. Firstly, the output of the
software component should be an integer from 0 to 100 to represent from 0% to
100%. Then, the correctness check for the calculation within the component is
needed. There are not structures or types used in this component. Hence, I do not
need to set invariant check for it.

4.2.3 Design and Modification

The aim of the modified software component is to solve the issues that exist in the
original component with the Design by Contract approach. As mentioned in Section
3.3, the separation of the contracts and the component itself is a good idea. The
architecture design of the new component is shown in Figure 4.1.

23

4. Implementation

&

Brake-Pedal-Input-Handler Component
g]

Pre-condition Camponent

&

Main Processing Cormponent

=]
.-

Past-condition Componen

Figure 4.1: Design for the Brake-Pedal-Input-Handler Component.

In the pre-condition component, there is a function. It gets the pedal signal and
verifies it for the main processing component. Only the valid and faultless data,
which are greater than 401 and less than 3700, can enter into the main processing
component. The invalid and erroneous data are detected and handled correctly.
In order to see the testing results intuitively, in my design it directly shows in the
console of ARUnit that it is invalid or erroneous. For example, if the input is -100,
the console shows it is an invalid input. But when running in the real ECU, other
approaches should be used to handle an invalid or erroneous input because of lack
of a screen. The possible approaches may be the correction of the data or getting
the next input data after some time. The main processing component works for
calculation of the data and giving the results to the post-condition component for
checks. The code for data processing in the main processing component is from the
original component. In the post-condition component, a function used for checking
the calculation results of the main processing component is defined. It checks if the
calculation is correct and the output is in the range of 0%-100%.

4.2.4 Test

In order to get to know if the modified component improves the robustness of the
component, a testing program is created for the original component and the modi-
fied component in ARUnit. When running the testing program, the input data are
sent into the component and the output data are shown on the console in ARUnit
through the testing program. For better readability of the output data, some ad-
ditional comments are attached with the output data to show the status of this

24

4. Implementation

running. Of course, this is used just in the testing environment to help develop the
component and collect information. In the real ECU, there are not such additional
comments at run time.

In Table 4.2, some examples of input data in all possible ranges of the Brake-Pedal-
Input-Handler Component are shown. According to the DEDICATE framework
description [13], the expected outputs of the software component are also included
to help readers better understand the testing.

Range of Input Value | Input Example | Expected Output
value < 0 -100 invalid input
0 <= value <= 400 200 erroneous input
401 <= value <= 499 450 0, successful
500 <= value <= 3500 2100 53, successful
3501 <= value <= 3700 3600 100, successful
3701 <= value <= 4095 3900 erroneous input
value > 4095 6000 invalid input

Table 4.2: Examples of input for the Brake-Pedal-Input-Handler component and
the expected output

In the testing period, 70 different input data are tested for both the original com-
ponent and the modified component. If the output gotten from the component is
the same as the expected output, it means it is a successful running. Besides the
testings that get valid output data such as 0, 53 and 100 which can be used by
other components are seen as successful testings, the testings that successfully de-
tect invalid input or erroneous input are also seen as successful testings. The results
of the testing are described in section 5.1. The robustness of the tested software
component can be seen through how many of the test cases are successful.

4.3 Process of Modifying the Brake-Light-Control
Component

In this section, the process of modifying the Brake-Light-Control component with
the Design by Contract approach will be described. Since this section emphasizes on
the collaboration between the Brake-Light-Control component and the Brake-Pedal-
Input-Handler component, some descriptions similar to Section 4.2 are omitted.

4.3.1 Analysis and Identification of Pre-conditions and Post-
conditions

The existing issues for the Brake-Light-Control component is similar to the Brake-
Pedal-Input-Handler component. It does not have complete input checks for the
input data to cover all the possible input data. Some simple input data checks are

25

4. Implementation

mixed with the program code. Also, it lacks output checks. The modification for
the original component is expected to solve these issues.

According to the DEDICATE framework description [13], the Brake-Pedal-Input-
Handler component is used to control the brake lights by the rules described in
Section 2.1.2.2. Its input should be the pedal position and the vehicle speed. The
pedal position is output of the Brake-Pedal-Input-Handler component. It is very
easy to know the pedal position should be between 0%-100%. The range of the
vehicle speed depends on different situations. Here, I set the highest vehicle speed
as 300 km/h. Another factor that affects the output of the component is the status
of emergency braking. The status of emergency braking can be active or inactive.
In order to concentrate on the collaboration of the two modified components, it
is directly sent into the Brake-Light-Control component as another input without
being included in the pre-condition. Thus, the pre-condition for this component
is that the pedal position should be 0%-100% and the vehicle speed should be 0
km/h-300 km/h. For the post-condition, it should check if the calculation in the
component is correct.

4.3.2 Design and Modification

The design of the new Brake-Light-Control component is similar to the new Brake-
Pedal-Input-Handler component. The pre-condition and post-condition are sepa-
rated from the main processing component as the pre-condition component and the
post-condition component. Figure 4.2 shows how these components work together.

26

4. Implementation

I j
,ir Brake-Pedal-Input-Handler Component =1
T

5]

Pre-condition Component

&]

Main Processing Compaonent

5 1
&

2]

Paost-condition Component

2

1

S

L]

k'j:, Brake-Light-Control Component = |
Bl

\J/
L]
x

'\._IJ

— Pre-condition Component

p!
)

8]

Main Processing Component

2]

Past-condificn Component

{ J—0O—

Figure 4.2: Design for the two selected components in the testing environment

There is a function in the pre-condition component of the Brake-Light-Control com-
ponent. It gets the input data from the Brake-Pedal-Input-Handler component and
other sources, and then verifies the data for the main processing component. Only
the input data with pedal position from 0% to 100% and vehicle speed from 0 km /h-
300 km /h are valid. The code for data processing in the main processing component
is from the original component. In the post-condition component, a function used
for checking the calculation results of the main processing component is defined. It
checks if the status of braking light is correct.

27

4. Implementation

4.3.3 Test

In order to know if the two modified components can collaborate with each other
and improve the robustness, a testing program is created for the original compo-
nents and the modified components in ARUnit. When running the testing program,
the input data are sent into both the two components. The similar data as Section
4.2.4 are passed to the the Brake-Pedal-Input-Handler component. Its output data
are used as the input data for the Brake-Light-Control component with the vehicle
speed and the emergency braking status. The output is the status of the brake
lights. It can be ON/OFF/BLINK. Some comments are attached to the output to
know which input is detected as invalid or erroneous.

In Table 4.3, some examples of input data are shown. According to the DEDICATE
framework description [13], the expected outputs of the software component are also
included to help readers better understand the testing.

Brake Pedal Input | Vehicle Speed | Emergency Braking Status Expected Output
2000 5 active ON
450 35 inactive OFF
3000 35 active BLINK
200 35 inactive erroneous brake pedal input
500 400 inactive erroneous vehicle speed

Table 4.3: Examples of input for the two selected components and the expected
output

In the testing period, 30 different sets of input data are tested for both the original
components and the modified components. If the output gotten from the compo-
nents is the same as the expected output, it means it is a successful testing. If
it successfully detects the invalid or erroneous input, it is still seen as a successful
testing. The results of the testing are described in section 5.2. The robustness of
the tested software component can be seen through how many of the test cases are
successful.

28

O

Results and Evaluation

In this chapter, the results of the testings described in Section 4.2.4 and Section
4.3.3 are shown. And also, the analysis and evaluation for the modification of the
software components are conducted.

5.1 Testing results of the Brake-Pedal-Input-Handler
Component

The testing results for the Brake-Pedal-Input-Handler component are shown in Table
5.1. For the original component, it failed 15 times in the 70 test cases. The modified
component failed 0 time in the 70 test cases. The success rates of them are 78.6% and
100.0% respectively. Obviously, the modified component has better robustness and
can handle more input data successfully. The analysis and evaluation are conducted
in Section 5.3.

Successful Testings

Total Testings

Success Rates

Original Component

95

70

78.6%

Modified Component

70

70

100.0%

Table 5.1: Results of testings for the Brake-Pedal-Input-Handler component

5.2 Testing results of the two modified Compo-
nents

The testing results for the two modified components are shown in Table 5.2. For the
original components, it failed 9 times in the 30 test cases. The modified components
failed 0 time in the 30 test cases. The success rates of them are 70.0% and 100%
respectively. Obviously, the modified components have better robustness and can
handle more input data successfully.

Successful Testings

Total Testings

Success Rates

Original Component

21

30

70%

Modified Component

30

30

100%

Table 5.2: Results of testings for the two modified components

29

5. Results and Evaluation

5.3 Evaluation

For the testing results, all input data of the failed test cases are in the ranges of
invalid input or erroneous input. The reason of why getting such results is that the
original component has incomplete and inaccurate input check in it. It does not
cover all the possible input data from different ranges. Although these invalid or
erroneous input data seldom appear or will be replaced by the next input quickly in
the real running in the ECU, they cannot be ignored.

There are two main reasons that make the modified components get better re-
sults. The first one is that all possible input data have been considered by carefully
analysing the documented specification when designing this new component. The
invalid input data and erroneous input data have been handled in the pre-condition
component and do not have the chance to get into the main processing component.
The second reason is that the data from the main processing component are checked
again in the post-condition component to ensure its correctness. The pre-condition
and post-condition components are like two guards that check all the input and
output data of the main processing component.

The prerequisite of setting such pre-condition and post-condition components that
can accurately cover all the possible input and output data, is that we need to
have complete requirements for the components. Some relevant information from
the company can prove the two software components used in this thesis are repre-
sentative. When developing AUTOSAR software components in the company, the
bottom line for the requirements of the components is that the whole range of ev-
ery input and output must be specified. And if they are not, someone will revise
or update the requirements. It means that almost all the requirements specify the
ranges of the input and output, and can be used to help set accurate pre-condition
and post-condition for the components like what I did in this thesis.

If evaluating the design of the components, the components themselves and the col-
laboration among different components work well in the testing environment. For
this design, there are clear and complete input and output checks that are con-
ducted by the pre-condition and post-condition components. The main processing
component can also focus on data processing. Moreover, the component code be-
comes more readable and easier to modify when necessary. What is different from
the real components in the ECUs is that in order to read the checking results more
easily, the components in this thesis directly shows the results in the console. The
way of detecting errors is the same. But in the real ECUs, if we detect errors, the
component will use other ways to handle these invalid data. For example, in the
Brake-Pedal-Input-Handler component, the component will switch to another sensor
to get the input if the input from one sensor is invalid. How to handle the invalid
data depends on the requirements. That is another reason why the well-specified
requirements are important.

Some strengths and weaknesses of using Design by Contract in AUTOSAR software

30

5. Results and Evaluation

Strengths

Weaknesses

e Better robustness of the
components and applica-
tions

e Increase readability and
understandability of the
code

e Convenient to refactor
manually coded software
components

e Add more components
which may also bring errors
to the components

e Strict data checks may
slow the components and
applications down

e Hard to modify the com-
ponents of which the code
is automatically generated

from some models

e Low redundancy

Table 5.3: Strengths and weaknesses of the Design by Contract approach in AU-
TOSAR

components have been mentioned in this thesis report more or less. A summary is
listed in Table 5.3.

Another thing that needs to be evaluated here is in which situation the Design by
Contract approach can be used to improve AUTOSAR software components’ robust-
ness. As known from the DEDICATE framework description [13], the code of some
components is generated from TargetLink which is a modeling and development tool.
Such kind of code is hard to read, import into ARUnit and modify manually. These
components that have code automatically generated by TargetLink should follow a
different approach. Contracts including pre-conditions and post-conditions should
be embedded in code generation instead of trying to modify the code a-posteriori,
as done by the approach proposed in this thesis. In the source base, nearly 50% of
the AUTOSAR software components are generated from TargetLink. Thus, at least
50% of the components of which the code is written manually are able to be modified
with the Design by Contract approach to improve their robustness. Moreover, new
AUTOSAR software components can certainly be designed and implemented with
the Design by Contract approach.

31

5. Results and Evaluation

32

O

Conclusion and Future Work

In this chapter, the conclusion that the Design by Contract approach can be applied
to build and modify AUTOSAR software components for better robustness is proved.
And possible future work for relevant topics is also described.

6.1 Conclusion

The Design by Contract approach can be applied to build and modify AUTOSAR
software components for better robustness. My way in the thesis is to build ad-
ditional pre-condition, post-condition and invariant components around the main
processing component. In other words, checks for input, output and invariant are
separated from the original component. By testing the components modified in this
way, the results prove that it improves robustness. This new design of components
has strengths as better robustness, better readability, better understandability and
low redundancy. It is very easy to apply this way to modify existing software com-
ponents that are manually coded. Two points are worth mentioning when applying
this way. One is that the developers should analyse the documented specification
or the stakeholders’ requirements carefully to know all the possible values of the
input, output and invariant. Another is that the pre-condition, post-condition and
invariant components should be well-defined to cover all the values known from the
first point. Certainly, the weaknesses such as the possibility of the errors brought
by additional components, also exist. That is why we need to go through careful
consideration when applying this way of Design by Contract. The Design by Con-
tract approach has been wildly used in many different software applications and
tools supported by programming languages themselves or third-party tools. There
may be other more effective ways of applying Design by Contract to AUTOSAR
software components to improve robustness. That is worthy of further exploration.

6.2 Future Work

Many AUTOSAR software components are automatically generated from models in
modeling tools. For example, some software components in the DEDICATE frame-
work are modeled in Simulink or TargetLink and C source code is generated from
TargetLink [13]. These components are hard to modify with my way of applying
Design by Contract. If the pre-condition, post-condition and invariant components
can be modeled in the modeling tools and C source code can also be automatically

33

6. Conclusion and Future Work

generated, this will be a great progress.

Further more, when searching for Design by Contract on the Internet, there are many
third-party tools that can be used to support the programming languages that do
not have Design by Contract language features. Developing a tool that can support
C language in AUTOSAR system to directly define pre-conditions, post-conditions
and invariants for AUTOSAR software components is worth of trying.

34

[1]

Bibliography

B. Fleming, An overview of advances in automotive electronics, Vehicular Tech-
nology Magazine, IEEE 9 (1) (2014) 4-9.

AUTOSAR, https://www.autosar.org, accessed: 2016-04-02.

Meyer, Bertand. 1997. Object-Oriented Software Contruction (2nd ed.). Upper
Saddle River, NJ: Prentice-Hall.

IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990.

Meyer, Bertrand: Design by Contract, Technical Report TR-EI-12/CO, Inter-
active Software Engineering Inc., 1986.

Meyer, Bertrand: Applying "Design by Contract', in Computer (IEEE), 25, 10,
October 1992, pp. 40-51.

Liu, Yi, and H. Conrad Cunningham. "Software component specification using
design by contract." Proceeding of the SouthEast Software Engineering Confer-
ence, Tennessee Valley Chapter, National Defense Industry Association. Vol. 6.
sn, 2002.

Cheon, Yoonsik, et al. "Model variables: Cleanly supporting abstraction in
design by contract." Software: Practice and Experience 35.6 (2005): 583-599.
Benveniste, Albert, et al. "Contracts for the design of embedded systems part
i: Methodology and use cases." Contract 2 (2011): G1.

Thiim, Thomas, et al. "Applying design by contract to feature-oriented pro-
gramming." International Conference on Fundamental Approaches to Software
Engineering. Springer Berlin Heidelberg, 2012.

A. Collins, D. Joseph, and K. Bielaczyc, Design Research: Theoretical and
Methodological Issues. Journal of the Learning Science 13, 1(2004), pp. 15-42.
AUTOSAR, AUTOSAR Technical Overview v2.2.2. 2012.

M. Jones and J. Haraldsson, D2.4 DEDICATE Framework Description, 2012.
http://www.dinisio.net /nicola/papers/verify12-en.pdf, accessed: 2016-05-30
http://www.onlamp.com, accessed: 2016-05-06.

ISO, Road vehicles - Functional Safety - 26262-6. ISO, 2011.
https://www.artop.org/arunit, accessed: 2016-06-10.

Reviewer-Herzog, Jared. "Software Architecture in Practice Third Edition Writ-
ten by Len Bass, Paul Clements, Rick Kazman." ACM SIGSOFT Software
Engineering Notes 40.1 (2015): 181-183.

Riccardo Scandariato. "Tricks of the trade: architectural patterns' Advanced
Software Architecture slides, 2015.
http://www.arccore.com/products/arctic-studio, accessed: 2016-08-30.

35

Bibliography

[21] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A design sci-
ence research methodology for information systems research', Journal of man-
agement information systems, vol. 24, no. 3, pp. 45-77, 2007.

[22] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Comparing
operating systems using robustness benchmarks, In: Proceedings of the 16th
Symposium on Reliable Distributed Systems, pp. 72-79, IEEE, 1997.

36

A

Terminology and Abbreviations

The terminology and their abbreviations used in this thesis are listed in the following

table.
Abbreviation Description
AUTOSAR AUTomotive Open System ARchitecture
BBW Brake by Wire
DbC Design by Contract
DEDICATE | Dependability and Diagnostics Concept Assessment and Test
ECU Electronic Control Unit
E/E Electrical and/or Electronic
PC Personal Computer
RTE Runtime Environment
SW-C Software Component
VAP Volvo AUTOSAR Platform
VFB Virtual Functional Bus

Table A.1: Terms and abbreviations

	Introduction
	Related Work
	Research Methodology
	Problem Identification
	Discussion and Suggestion
	Design and Development
	Evaluation
	Conclusion and Report

	Concepts of Related Technologies
	AUTOSAR
	AUTOSAR Abstraction
	AUTOSAR Software Component
	Brake-By-Wire Application
	Brake-Pedal-Input-Handler Component
	Brake-Light-Control Component

	AUTOSAR Software Component Communication
	Virtual Functional Bus
	Runtime Environment
	AUTOSAR Infrastructure

	Design By Contract
	Robustness
	ARUnit

	Designing the Solution: Design by Contract for AUTOSAR Software Components
	First Attempt
	Description
	Problems & Limitations

	Second Attempt
	Description
	Problems & Limitations

	Final Attempt
	Reference Patterns
	Description of the Final Solution

	Implementation
	Environment Setup and Components Import
	Process of Modifying the Brake-Pedal-Input-Handler Component
	Issues of the Current Component
	Identification of Pre-conditions and Post-conditions
	Design and Modification
	Test

	Process of Modifying the Brake-Light-Control Component
	Analysis and Identification of Pre-conditions and Post-conditions
	Design and Modification
	Test

	Results and Evaluation
	Testing results of the Brake-Pedal-Input-Handler Component
	Testing results of the two modified Components
	Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Terminology and Abbreviations

