THESIS FOR THE DEGREE OMASTER OFSCIENCE

IMPROVING TIME SERIESPREDICTION
USING RECURRENTNEURAL NETWORKS
AND EVOLUTIONARY ALGORITHMS

ERIK HULTHEN

Division of Mechatronics
Department of Machine and Vehicle Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden, 2004

Improving Time Series Prediction using Recurrent
Neural Networks and Evolutionary Algorithms

ERIK HULTHEN
© ERIK HULTHEN, 2004

Division of Mechatronics

Department of Machine and Vehicle Systems
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Goteborg, Sweden, 2004

Improving Time Series Prediction
using Recurrent Neural Networks

and Evolutionary Algorithms

ERIK HULTHEN

Division of Mechatronics

Department of Machine and Vehicle Systems
Chalmers University of Technology

Abstract

In this thesis, artificial neural networks (ANNSs) are useddiediction of financial and
macroeconomic time series. ANNS build internal models eftfoblem and are there-
fore suited for fields in which accurate mathematical modalsnot be formed, e.g.
meteorology and economics. Feedforward neural networksIs), often trained
with backpropagation, constitute a common type of ANNs. Ewsv, FFNNs suffer
from lack of short-term memory, i.e. they respond with themsautput for a given
input, regardless of earlier inputs. In addition, backagation only tunes the weights
of the networks and does not generate an optimal design. idrthbsis, recurrent
neural networks (RNNSs), trained with an evolutionary aitn (EA) have been used
instead. RNNs can have short-term memory and the EA has tlantde that it af-
fects the architecture of the networks and not only the wieigHowever, the RNNs
are often hard to train, i.e. the training algorithm tendgéo stuck in local optima.
In order to overcome this problem, a method is presented ichwthe initial popu-
lation in the EA is an FFNN, pre-trained with backpropagatiBuring the evolution
feedback connections are allowed, which will transformRER&IN to an RNN.

The RNNSs obtained with both methods outperform both a ptedand the FFNN
trained with backpropagation on several financial and nemoomic time series. The
improvement of the prediction error is small, but significéa few per cent for the
validation data set).

Key words: time series prediction, evolutionary algorithms, recotreeural networks

Acknowledgements

I would like to thank my supervisor Dr. Mattias Wahde for mispiration, support, and
tempo. | am also grateful to Jimmy Pettersson for all his ki@ipughout the course of
this work.

Erik Hulthén
Goteborg, January, 2004

Table of Contents

1 Introduction 1
1.1 Motivation. e 1
1.2 Relatedwork 2
1.3 Objectives e 3
2 Methods 5
2.1 Artificialneuralnetworks L o o 5
2.1.1 Feedforward neuralnetworks
2.1.2 Recurrent Neural Networks

2.2 Trainingalgorithms 10
2.2.1 Backpropagation 10
2.2.2 Evolutionary algorithms 12

3 Time series prediction 17

3.1 Introduction 17
3.1.1 Differenceseries 17
312 Scaling 18

3.2 Benchmarks e 19
3.2.1 Naivestrategy. e 19
3.2.2 Exponential Smoothing. 19

3.3 FFNNstrainedwithBP 19

3.4 RNNstrainedwithGA 21
3.4.1 Fitness 22

3.5 RNNsgeneratedfromFFNNs 22

\

TABLE OF CONTENTS

Vi

4 Results 23
4.1 Introduction 23
4.2 TIMESEreS e e 23
4.2.1 USD-JPY exchangerate 23
4.2.2 USunemploymentrate 24
4.2.3 Dow Jones Industrial Average 25
26

4.3 Conclusion

APPENDED PAPER

Appended paper

This thesis contains the paper listed below. Referencémetpaper will be made using
the Roman numeral associated with the paper.

|. Erik Hulthén and Mattias Wahde, Improved time seriesdfmon using evo-
lutionary algorithms for the generation of feedback comioas in neural net-

works, accepted for publication Proceedings of Computational Finance 2004
Bologna, Italy, April 2004.

Vii

viii

Chapter 1

Introduction

In this thesis recurrent neural networks, trained with etrohary algorithms, are used
for time series prediction. The results of the predictiarescmmpared with results from

feedforward neural networks, trained with backpropagatamd also with some other
methods commonly used for time series prediction. This aptroduces the subject
and motivates the approach used in this thesis. Chapterd 2 describe the methods
used and time series prediction, respectively. In chaptee4esults are reported and
discussed.

1.1 Motivation

In time series prediction the task is to forecast the nextesgValues) in a data set.
There are several fields in which time series prediction isesitral importance, e.g.
meteorology, geology, finance, and macroeconomics. Tipicathose fields, there
exists no accurate models of the system, and therefore ttes see studied from a
phenomenological, model-free point of view. In the physsmences, where models
are common, the use of model-free time series predictioaess tommon. Atrtificial
neural networks (ANNSs) are often used for time series pteidecause of their abil-
ity to build their own internal models. A common method isron feedforward neural
networks (FFNNSs) with backpropagation [5]. The method s/da use and generally
arrives quickly at small prediction errors. However, thare some drawbacks of us-
ing this method. First, in the training of an FFNN, by whatewethod, one can never
overcome the lack of short-term memory, illustrated in Hidl., and an FFNN is thus
dependent on the number of lookback steps (further destciibgection 3.3). Second,
backpropagation only tunes the weights in the FFNN and doesaffect the design
of the network. In order to achieve short-term memory a megurneural network
(RNN), i.e. an ANN with feedback connections, can be usedRAN can, in princi-
ple, store all former input signals and is thus not dependeriie number of lookback

1

2 CHAPTER 1. INTRODUCTION

o /2/

R N

.»A"'
A

N >
7z Cd

Fig. 1.1: An FFNN will always produce the same output for aginput.

steps. However, these networks cannot be trained with atdrizhckpropagation. In
this thesis evolutionary algorithms (EA) are used insteé#glng an EA may also pro-
vide the advantage that the design of the networks becomestatc, i.e. during the
training not only the weights can be subject to change buotthks architecture of the
connections between the neurons and the size of the network.

Here a new method is presented, in which an FFNN is first tcaimigh back-
propagation, and then evolved further with an EA. The FFNMlidated and slightly
mutated, forms the initial population of the EA. During thekition feedback con-
nections are allowed, i.e. the FFNN becomes an RNN if needed.

In order to illustrate the limitations of FFNNs a syntheitimé series was generated,
containing two situations with the same input values buedint desired outputs, as
shown in Fig. 1.1. The number of lookback steps was equal tod3ttze remaining
33 values were used for training and testing. The RMS disahetween the real
data set and the predictions were 0.0139, 0.0120, and 0f008@e FFNN, the RNN
trained with random initial population, and the RNN traineith the FFNN as initial
population, respectively. These results clearly illustthe drawbacks caused by the
lack of short-term memory in FFNNSs.

1.2 Related work

ANNSs have been used for time series prediction by severabasite.g. [4], [3], and
[7]. Many time series of interest, e.g. financial time serfes/e a high level of noise
which is not always a result of insufficient measurementsdwhre often exact in the
case of financial data) but the fact that the series come fyates with many diffuse
influences, e.g. human psychology in financial series. Omther hand filtering the
signal too much will take away small signs in the series tlaat give a hunch of the
coming turns. In [4], the use of an RNN is preceded by premsiog (differencing
and log compression) and translation to a symbolic encoditiy a self-organizing

1.3. OBJECTIVES 3

map. The output from the RNN is used to build a deterministitdistate automaton
describing some trend mechanisms. This procedure led terlowise levels. FFNNs
were used with success in [3] for prediction of USD-EUR exgjerate. The results
were compared with other forecasting techniques usingraegemparison methods.
In [7] the US Index of Industrial Production was forecasthw@én ANN that gave
superior results compared to traditional methods.

Backpropagation has been used for training ANN in many 8dns, see e.g. [5].
Using an EA for evolving ANNs has been proposed by e.g. Yad [@8her ways to
obtain ANNs with short-term memory is backpropagation tigio time (BPTT), de-
scribed in [10]. In these networks each neuron has a commmetttiall neurons, N time
steps back. However, the design of the network is still st@tid has to be specified
beforehand, and one of the motivations for using ANNs isijgsttructural flexibility
which is thus lost if BPTT is used. Another gradient-basethoe for training ANNSs
is real-time recurrent learning [11], but this method hasgame drawbacks as BPTT.

1.3 Objectives

The objectives for this thesis are

e to investigate whether it is possible to obtain better tirages prediction us-
ing RNNs trained with evolutionary algorithms instead ofN®s trained with
backpropagation.

e to test if an FFNN, trained with backpropagation, can be ssmtessfully and
efficiently to form an initial population in an EA that evolw&NNSs for time
series prediction.

Chapter 2
Methods

This chapter will introduce ANNs and their training algbnts, respectively. The time
series used for prediction are transformed to data setsimptit-output signals, and
will be described in detail in chapter 3.

2.1 Artificial neural networks

ANNSs are clusters of simple, non-linear function unitsedlheurons, and are strongly
inspired by biological neural networks found in animal bgi The history of artifi-
cial neural networks (ANNSs) goes back to 1943 when McCullact Pitts presented
a formula for artificial neurons that is basically the sameasassed today [5]. The
neurons are connected to each other via connections tmsfdéranformation. The
connections, also called synapses, weigh the transfeigadls. A neuron, shown in
Fig. 2.1, consists of a summarizer and an activation funcfltne summarizer forms a
sum of the input signals and a bias term, and gives the restlietactivation function,
which is the non-linear part of the neuron. One of its funtsics to limit the output of
the neuron to a given range, often [-1,1] or [0,1]. The outduhe activation function
is the output of the neuron itself.

Applications for ANNs can be found in various fields, e.g. tiaural sciences,
technology, and economics. A common application is imagegeition, e.g. face
recognition, automatic zip code reading, and analysis wige images [9]. ANNs
can also be used as artificial brains in autonomous robotA@pther field in which
ANNSs are used is non-linear control. Time series predidsadso an important field,
and constitutes the application in this thesis (describecerm chapter 3).

There are two main reasons for the large computing power dN&Rb]. First,
their parallel distributed structure, which allows thewertks to break down complex
computation tasks into several easier ones, and secongo#shility to learn and
make generalizations. The generalization makes it passiblan ANN to deliver a

5

6 CHAPTER 2. METHODS

Bias

7[6_>

Fig. 2.1: The architecture of an artificial neuron: inputsit, a bias term, a summa-
rizer, an activation function, and an output signal.

reasonable output even if the given inputs were not partefriining set. This is also
the reason for the robustness, i.e. insensitivity to n@g&NNs. As an example, in
face recognition, the image presented to the ANN as inpuredy exactly the same
every time, but a well-trained ANN may still be able to give tiight output. Another
benefit of using ANNSs is that they are model-free, i.e. it i$ necessary to have a
mathematical model of the system producing the inputs atlital This is especially
important in application where the systems behind the dettare often difficult to
model.

Here, a description of the two kinds of networks that havenhesed in this thesis
will follow.

2.1.1 Feedforward neural networks

The feedforward neural networks, FFNNs, used here conBisipat units and two
layers of neurons as shown in Fig. 2.2. The number of inpuswamd the number of
neurons are constant for each data set. In this thesis, thbemnof output neurons is
always equal to one. Each neuron has a connection to evergmeuinput unit in the
previous layer.

Neurons

Each neuron consists of a summarizer and an activationiumciThe summarizer
collects the signals from earlier layers and adds a hia$he activation functiong,
in all neurons is given by

o (s) = tanh (8s) (2.1)

2.1. ARTIFICIAL NEURAL NETWORKS 7

s > s > s

Input layer Hidden layer Output layer

Fig. 2.2: A feedforward neural network. The circles are pegy the boxes are input
units, and the arrows are connection weights.

wheref is a constant. Thus, the outputs from the neurons are cochpste

yi:U<szjx]—+bi>,izl,...,n, (2.2)
j=1

wheren, is the number of neurons or input units in the previous laygaye the signals
from that layer, andy;; are the corresponding connections between the previoas lay
and the current layer. The bias term of neufph, is used by the neuron to generate
an output signal in the absence of input signals.

2.1.2 Recurrent Neural Networks

In contrast to FFNNs, RNNs may have connections (synapeed) heurons in the
network, i.e. there exists no neuron layers. This bring$abethat there is no obvious
order for computing the output of the neurons. In biologieaural networks, the
problem with computing order does not exist. Instead, aogickl neural network is
a distributed processor allowing all neurons to executepeddently. Because of its
non-layered structure an RNN is more nature-like than anNFAN addition, RNNs
have the possibility to maintain signals even after the frgignals have disappeared.
Thus, properly constructed RNNs have a short-term memesyljelow).

8 CHAPTER 2. METHODS

Network equations

The RNNs in this thesis operate in continuous time. Sigmalathe neurons in RNNs
are given by

szeryz—U(b +wayj+2wm[> =1,...,n (2.3)

(see [8] and Paper |) where are time constantsy the activation functionp; bias
terms,w;; weights for the output signal; from the neurory, andw%\I weights for the
external input signal$;. y; is approximated with Euler's method as

Yt A =y (1)

= 2.4
yl At) ()

whereAt is the time step. The activation functions are given by
oi (s) = tanh (fis),i =1,...,n, (2.5)

whereg; are constants. The data sets used consist of input and sigpats which are
sampled with limited frequency. The time between two cousee inputs is denoted
AT and output signals are taken after each such period. The ewofilntegration
steps,N, between two output signals is

AT

N = 2.6

Ar (2.6)
The external inputs are therefore constant for N steps, slesvbThus, the time dis-
cretized equation will be

yi(t + At) = y;(t) + —

o <bi + Z w;;y;(t) + Z wINI) - yi(t)] (2.7)
j
The neuron outputs for the nei¥ — 1) time steps are calculated in the same way and

the output at time + N At is taken as the next prediction from the network

yi(t+ NAt) = y(t+AT) =
= yi(t—l-(N—l)At)—F

At

S E—
T -
J

—yi(t+ (N — 1)At) (2.8)

The external input to the RNN remains constant for shéme steps.

2.1. ARTIFICIAL NEURAL NETWORKS 9

N
I [Input signals

| L

i —

1 [

L L L t
AT 2AT 3AT >
AT + At 2AT + At 3AT 4+ At

ﬂ e 2Neuron signals
_—& ya e

1 [| > t
AT 2AT 3AT
AT + At 2AT + At 3AT + At

Fig. 2.3: Dynamical properties of an RNN.

Dynamical properties

As mentioned above, the RNNs used here operate in contiriumesData points are,
however, provided at discrete time steps. The externatitpiine RNN only changes
when a new data point arrives. However, in the time periodgio§ith AT) between
two data points, the internal dynamics of the RNN unfoldsading to Eq. 2.8. An
example is shown in Fig. 2.3.

Note that an FFNN, as specified in section 2.1.1, is a speas# of an RNN,
namely one lacking feedback connections, and with all tiovestantsr; approaching
zero. In principle, neurons may be affected by earlier irgigihals (depending on time
constraints). Thus, an RNN may contain a memory which is aardge compared
to the FFNN whose output is only affected by the current irgignals.

Network elements

The RNNs consist of neurons and input units. As shown in Fig, the connection
weights may connect neurons both to input elements and nenote that autocon-
nections are allowed). The number of connections from aatiopit or a neuron is
set individually between zero and a maximuid,. An unconnected neuron has, of
course, no effect on the output of the network.

The input units, which act as intermediaries between thetismnals and the

10 CHAPTER 2. METHODS

Input units Neurons

Fig. 2.4: A recurrent neural network. The arrows representection weights. The
output of neuron 1 is taken as the output of the network.

neurons, distributing signals to one or several neuromsypdated everAT. In the
applications considered here, only a scalar output is rkealed it is taken as the
output from the first neuron in the RNN (see Fig. 2.4).

2.2 Training algorithms

The computation of the ANN is determined by a design prodasswn as training.
For the training, backpropagation has been used for the BRI evolutionary algo-
rithms for the RNNs. Both methods will be described in thistiss.

2.2.1 Backpropagation

Backpropagation, see e.g. [9] and [5], is a gradient follmunethod used to train
FFNNSs, i.e. to adjust the weights in the network. The weidpetsveen the inputs and
the hidden layer are here denoted—", and the weights between the hidden layer
and the output layer are denoted ~°. With an interval ofAT (same as in section
2.1.2) the network provides an output upon the given inmnas. This outputy®, is
compared to the correct valug,for that time step giving the errat, as follows

e=o0—1y° (2.9)

2.2. TRAINING ALGORITHMS 11

The weight modifications between the hidden layer and thpututeuron are then
given by

AwaO = néyf (2.10)

wherer is a learning parameter andhe local gradient defined as

n(H)

d=eo’ Z w]H_’O:Ej + bo (2.11)

j=1

whereo’ is the derivative of the activation function. In a similarywthe weight modi-
fications between the input units and the neurons in the hitlleer are defined as

Aw[™ = nry) (2.12)

1] =

wherex is a weighted sum of théterms obtained from the output neurons (of which
there is only one in the cases considered here), and is cechpat

n() n(0)

K =0 Z wiMy! Z Srwi—° (2.13)
p=0 =1

When weight modifications have been calculated for both ibdddm layer and the
output neuron, the new weights are computed as

wIHH N wIHH_'_AwI*)H (214)

and

wH—>O N wH—>O+AwH—>O (215)

When training the network, the time steps in the trainingasetconsidered in random
order with weights updated after each output computation.

The learning parameter can be either fixed or variable. Hergjs variable and
defined as

n=—"1__ (2.16)
L+ (2)

wheren, is the number of past training epochs, andndr, are constants. This way

of calculatingn is implemented by Haykin (but for a single neuron) in [5] ansigired

by [1].

12 CHAPTER 2. METHODS

| Initialize population | S

|

|Decoding and evaluation | | Mutaie At |

| Selocti | | Structural mutationl
election :

| Mutation |

| Full mutation H Creep mutationl

Fig. 2.5: Schematic representation of the implemented GA.

2.2.2 Evolutionary algorithms

Evolutionary algorithms is a general term for training nueth inspired by darwinian
evolution, and includes e.g. genetic algorithms (GA), gen@ogramming (GP), and
Evolution strategies (ES) [9]. The methods have been usethimy different applica-
tions e.g. optimization, construction of neural netwotksag series prediction, control
system identification, reverse engineering, and autonsmahot control. As the name
implies, these methods are strongly inspired by naturduéem. Just as in nature,
species form populations consisting of individuals. Inunatindividuals are living
beings but in EAs the individuals are potential solutiongh®problem under consid-
eration. The variables of the problem are coded in the gesahthe individuals. A
genome may consist of one or several chromosomes, whichinrcansist of strings
of values, known as genes. The solutions are tested and dhiwdunals are given a
measure of goodness, referred to as the fitness value. Therhig fitness, the larger
the chance for an individual to be selected as parent to néwidtuals in the next gen-
eration. Reproduction may be sexual or asexual and musati@y occur. Although
the process of an EA contains stochastic parts it shouldabedstlearly that evolution
is not a random search. For a deeper review of this subjgas fBcommended.

The EA used here is a modified genetic algorithm (GA). The rddiarences com-
pared to a standard GA are that there is no crossover, stalichwtations are added,
and the mutation rate varies with the size of the network dadon the chromosome
(see EqQ. 2.24 below). The crossover operator, which corslgeaes from two indi-
viduals, is rarely useful when evolving neural networks erntherefore not used here.
In this thesis the genomes always consist of only one chromesbut the number of

2.2. TRAINING ALGORITHMS 13

Number of neurons

Time step, Neuron 1
Input unit 1] Neuron 2

Input unit 2 Neuron 3

\HH\HHH\---HHMHHUHH---
T Connection, 1
g) Connection2 -

{ On/Off

Neuron

e na panw Weight

Fig. 2.6: The description of the RNN is encoded in a chromasom

genes in a chromosome, and thus the number of neurons intfesponding RNNS,
may vary. The general progress of the GA used here can beenrsggy. 2.5. The
RNNs are then created from the decoded parameters of thenoboomnes and tested in
their application (in this case time series prediction)e Tést will give a fitness value
back to the GA which is used for selection of parents useddridhmation of the new
generation. The selection method used here is tournamiectisa, described later
in this section. The new generation is created asexuallgnmg that the individu-
als (before mutation) are copies of their parents. The nevwerggion is then exposed
to mutations which will distinguish the genomes of the ofiisgs from those of their
parents. When the new generation has been created a newtematiakes place. The
mutation is, as shown in Fig. 2.5, made in several steps. ffhetsral mutations are
essential since they let the RNN change size to adapt to thi@dgmn at hand. The
mutation procedure will be described in detail below.

Encoding

The encoding of the chromosomes can be seen in Fig. 2.6. Thmokomes consist
of genes represented by real numbers in the rangel]. The number of neurons,
in the RNN is given by

n=|Gy| M, (2.17)

where(, is the first gene in the chromosortieand M, is the maximum number of
neurons permitted),, is constant during the entire training. The time stefp(as in

14 CHAPTER 2. METHODS

section 2.1.2) is given directly by
At = |G| (2.18)

provided thaiG.| > 0.001, otherwiseAt is set t00.001. At is initially set to a small
value. Both neurons and input units are giversby 3M,. values in the chromosome,
where M. is the maximum number of connections from a neuron or inpiit tHow-

ever, the first three values are neuron-specific constagtgi@nthus not used in the
case of input units. The neuron-specific constantsrare, and the bias term. In

the following four equationgs; denotes those genes that encode the constant under
consideration, see also Fig. 2:6is given by

provided thatG,| > 0.001, otherwiser; is set to0.001.

where(C is a scale parameter, typically set to 2 here, thus lettirge in the range
[0,2C] and

bi = CiGj (2.21)

where(is a scale constant typically set to 1. Common for input uenits neurons is
that each possible connection is coded by three values: ishésfan on-off flag (on if
positive), the second denotes which neuron to connect tarenlést is the weight of
the connection. The index of the connected neuron is codédlaws

k= G,;M, (2.22)

where M, is the maximum number of neurons (same as in Eq. 2.17). Thghivis
coded according to Eq. 2.21 but with the scale congiarget to 2. The weights are
thus in the rangé—2, 2]. As is evident from Fig. 2.6, the length of the chromosome
depends on the size of the encoded network.

Fitness function

For every individual a scalar fitness value is obtained thessnres how well the in-
dividual performs. The selection of individuals is basedlus value, i.e. the better
the fitness, the larger the chance of being selected. Thée ps@m=dure by which the
fitness is calculated in the problems considered here wilhitvteduced in section 3.4.

2.2. TRAINING ALGORITHMS 15

Fig. 2.7: Two types of structural mutations are used. In tpeganel a neuron is
removed. In the bottom panel a new neuron is added gently@iag weak connection
weights).

Tournament Selection

Tournament selection, used for selecting parents whenifgrmew generations, oper-
ates as follows: a number;, of different individuals are selected randomly from the
population.n is calculated as

nr = max(2,0.15n;,q) (2.23)

wheren;,q is the size of the population. The individual to be copiechext gener-
ation is with probabilityp, the best of the.t selected individuals, and with probability
1 —p; any other individual, selected randomly. In this waskis typically of the order
0.6 - 0.75. The selection is repeateg, times.

Mutation

The mutation rate is calculated for each individual as
10
Pmut = N—G

whereNg is the number of genes used in the RNN built from the corredimgnchro-

mosome. Not all genes are necessarily used (due to on-off itathe chromosome
and the variable number of neurons used). This formula wed wih success in [8].

(2.24)

16 CHAPTER 2. METHODS

In each individual copied to the next generation eithergmeatation or full scale
mutation is made with equal probability. Creep mutationiclthmore gently modifies
the individuals, is introduced as a complement to full scaigation. All genes have
the same probability to be mutated, whether they are usedtor n

In full scale mutation one neuron or input unit is selectetdanly. One of its
genes, selected randomly, is then mutated. In additiomyetber gene building that
neuron or input unit is mutated with the probability,;. In full scale mutation, the
new value of a mutated gene is selected randomly in the rafgsg.

In creep mutation, as implemented here, only one gene irttoereosome mutates.
The creep mutation is computed as

Gnew = Gold (1 — 2rc+ C) (225)

where(is the geney is a random number in the ranffe 1], andc is a constant creep
rate, typically equal t0.05.
The time stepA\t mutates with probability,,... A time step mutation is performed

as 1
Atpey = ———— (2.26)

Atola
where At is the time step. Thus, for example, time step 0.2 may mutat2a5 or
0.1667.

Structural mutations have also been used, and the prisdel@nd them are shown
in Fig. 2.7. The mutation rates for structural mutationseiagen set empirically. With
the ratel.3p.., the network performs a structural mutation decreasingntimber of
neurons by one, provided that the network consists of mame ¢ime neuron. Outgoing
connections are discarded and incoming connections aneduwff. With mutation
rate,0.1pn., the network extends itself by adding a new neuron. The weighthe
connection from the added neuron are limited to a small ramgethe purpose of
avoiding a macro mutation by making a softer introductiothef new neuron.

Elitism

The best individual in each generation is copied to the nexegation without any
modifications. This guarantees that the maximum fithesseoptipulation never de-
creases.

Chapter 3

Time series prediction

3.1 Introduction

A time series is a sequence of time-ordered values. In timessprediction, the task
is, at a given time, to estimate the value in the time series at time f. The input
consists of thel, latest values from the time series. In Fig. 3.1 this is shovith w
L =5,andf = 1. For a series withn values,m — L estimations{) can be made. In
order to get an independent quality control, the data setidedt! into a training set and
a validation set [5]. The training algorithm only receivegdback from the training
set, and the validation set is evaluated separately. Wheetrdining algorithm starts
fitting noise (or other data behaviors not represented inahdation set) the error for
the validation set will commonly stop decreasing and irgstegin to increase. At this
point, the training is terminated and the predictor thaegithe lowest validation error
is kept.

In order to compare the results from the different methodeat mean square
prediction error is used, defined by

oo \/ZT (w5 — T;) (3.1)

L

wherez; are the correct values; are the predictions, and. is the number of points
compared.

3.1.1 Difference series

As an alternative to the original series, difference seaiesused in order to make the
prediction easier. A difference series is created from tigiral according to

xa(t) =zx(t+1)—x(t),t=1,...,(m—1) (3.2)
Difference series have been used in e.g. [3].

17

18 CHAPTER 3. TIME SERIES PREDICTION

Fig. 3.1: Prediction of atime series for time1 given values attime..t—4. The filled
disks are the inputs and the open disk is the signal to whielptédiction,z(t + 1), is
compared.

3.1.2 Scaling

In order to convert the input signals to the ANN to the rafigé, 1] a scaling is per-
formed according to
xr — Rlow

Ty =2—— 3.3
Rhigh - Rlow ()

wherez;, is the input signal to the ANNy is the input signal as it is given before the
scaling,R, is the low range limit andky;., is the high range limit. The corresponding
equation for the output signal from the ANN is given by

(Rhigh — Rlow) (xout + 1)

x:Rlow+ 9

(3.4)

wherez,,; is the output signal from the output neurad,,, is the low range limit,
Ruign is the high range limit and is the output in the original scale. The range limits
are chosen to cover the range of the time sefigg(is typically rounded to the closest
higher integer and,,, to the closest lower integer). In order to ensure that thpudut
zero from the ANN also gives the prediction zero when reskdlee scaling for the
difference series is made With,i,, = —Riow = R, WhereR = max(|zq|), andzq
represents the elements in the difference series.

3.2. BENCHMARKS 19

3.2 Benchmarks

In order to quantify the results from the neural networks sather methods were
used as well.

3.2.1 Naive strategy

The naive strategy is the most simple strategy, simply sayifomorrow is like today”
and is defined by: (¢t + 1) = z (¢). A useful predictor must at least surpass this naive
method. In principle, the most simple network with only or@gection from the
latest input signal to one single neuron with the activafiorctiono(s) = s would
perform the naive strategy. The naive strategy is used apaason method in e.g.
[3] and [4]. The activation function used in this thesis giaero as output when the
input is zero. Thus, in the case of a difference series, aar&twith zero weights and
biases already performs the naive strategy.

3.2.2 Exponential Smoothing

An alternative to the naive strategy, at least for smootkesgrs linear exponential
smoothing (LES), described e.g. in [6]. The forecast atithe t for f steps forward
is given by:

T+ f)=St)+T()f (3.5

whereS is the single exponentially smoothed value ghthe trend. The single expo-
nentially smoothed value is defined by

S(t) = asa(t) + (1 — ag) (St — 1) + T(t — 1)) (3.6)

whereag is a constant in the rande, 1] andz is the time series. The trend is a term
added to include the current direction of the series andcialisulated as

Tt)=ar(S{t)—St—-1)+1—ar)T(t-1) (3.7)

wherear is a constant in the range, 1]. The naive strategy described above is equal
to LES whenf =1, ag = 1, andat = 0.

3.3 FFNNs trained with BP

An FENN that can be used for predicting e.g. the time seriewshn Fig 3.1 is shown
in Fig. 3.2. The FFNN is created with the same number of inpatthe number of
lookback stepsL, in the time series. The input signals are presented to theoniein

such a way that input 1 always hold¢t), input 2 holdse (¢ — 1) etc. The number of

20 CHAPTER 3. TIME SERIES PREDICTION

Z(t+1)

Fig. 3.2: An FFNN, with five neurons in the hidden layer, thettraates the time series
x for timet + 1 given signals from time — 4 to ¢.

neurons in the hidden layer,, is determined empirically for each case, but s typically
around 5. Whem,, is chosen too large, the FFNN will overfit easily, i.e. thepuit
from the network will be very good when the training data sqtriedicted but worse
for the validation set, due to noise adaptation. On the dthad, a too smalt,, will
limit the capacity to a small number of different behaviorghe series. The constant
5, which is the same for all neurons in the FFNN used here, isdjlp 1. Initially,
the weights in the network are all set randomly in the rajrge 1]. When the FFNN
is trained, the weights are updated after each input-opigiu{prediction). The input-
output pairs are looped through in random order. The legrrate constant, was
typically about 0.02, while the learning time constart,was set in the range- 10*

to 2 - 106,

However, as mentioned in chapter 1, the FFNN has no shart-teemory. For
instance, in the example shown in Fig. 1.1, with= 3, the inputs are identical for
the two series and the output from the FFNN will thus be idehtirrespective of
earlier input signals. This is a built-in limitation of FFNNvhich cannot be evaded no
matter what training algorithms are used. This problem c&purse, be solved by
increasingL but then the number of weights will grow too (the number ofgins is
equal ton, (L + 2) + 1), and this will increase the risk of overfittning and make the
training of the network more computationally demandingsiBes, increasing will
not solve the optimal design problem for the FFNN, i.e. tlehiecture of the network
still has to be set beforehand. This is one of the main rea®omstroducing the new
method described in section 3.5.

3.4. RNNS TRAINED WITH GA 21

| Z(t+1)
I(t - 2) —_—

|
z(t — 3)

|
x(t — 4)

Fig. 3.3: An RNN that estimates the time serieat timet + 1 given signals from time
t—4tot.

3.4 RNNSs trained with GA

In Fig. 3.3, an RNN is to predict the time serieshown in Fig. 3.1. The number
of input units is set to the number of lookback stepsin the time series. The input
signals are presented to the network in consecutive or@er,nput 1 always holds
x(t), input 2 holdsz(t — 1) etc. Initially, the number of neurons is typically setxo
but most often it will decrease tbwhen the training begins, before it starts to grow
again. However, the number of neurons, the weights, and@atssare fixed during
the evaluation of a given RNN.

As mentioned in section 3.1, the training algorithm, in tbése a GA, is only
provided with feedback from the training data set, not thiedation set. However,
every network tried in the GA for the training data set is dlsed for the validation
data set outside the GA. This may have the effect that theneésbrk on the validation
set is a mutated individual which gave less good resultsheitiaining data set. It is
not likely that this individual would be selected for repuation, but if the individual
performed best on the validation data set it is still recdrdied the individual is kept
for future reference.

22 CHAPTER 3. TIME SERIES PREDICTION

(t+1)

Fig. 3.4: An RNN, evolved from an FFNN, that estimates theetsaries: attimet+ 1
given signals from time — 4 to t. The likeness with the original FFNN, shown in Fig.
3.2, is evident.

3.4.1 Fitness
The fitness value, needed for the EA (described in sectioni®.@efined by
1
F=— :
Z (3.8)

whereF is the root mean square error calculated as in Eq. 3.1.

3.5 RNNSs generated from FFNNs

In this method, proposed in Paper I, an ANN is first initiafiznd trained with back-
propagation as described above in section 3.3. The weightthan coded into a
chromosome (shown in Fig. 2.6) together with the constantsi, andb. A popu-
lation is formed from slightly mutated copies of this chrasome. Since the number
of genes is typically~ 102, mutation in too many genes would, with high probability,
destroy the performance of the original FFNN, even in the cdsreep mutations. A
GA, as described above, but with this initial populationt@&asl of a random one, is
then used for evolving RNNs. During the evolution, feedbeaknections are allowed
if needed. An example is shown in Fig. 3.4. Compared to theNFFNFig. 3.2, new
connections have been formed and some of the old connettawesbeen removed.

Chapter 4

Results

4.1 Introduction

In this chapter, results from the analysis of three diffetame series are reported,
namely the USD-JPY exchange rate, the US unemploymentanatethe Dow Jones
Industrial Average.

The linear exponential smoothing method rarely gave bettarlts than the naive
method, i.e. the constantg andar could be set 1 and 0, respectively. For this reason,
the results from the LES method are not shown separateleiregult tables.

4.2 Time series

4.2.1 USD-JPY exchange rate

The data set used consisted of weekly averages of the d&ggbank exchange rate
from US dollar (USD) to Japanese yen (JPY) between 1986 afd.2@ contained
906 values, the unit of the values was Japanese yen, andnitpe waas [82,164]. The
averaging period eliminates weekly patterhsvas set to 4, which gave 902 values left
for prediction, of which the first 539 were used for trainimglahe remaining 363 for
validation. For the difference series, the range was [d]%ut the number of values
used for training and validation was the same.

The RMS errors for both training and validation are shownabl& 4.1. The rela-
tive improvements from the naive strategy are shown in Tal#leThe RNN obtained
from the best FFNN in an EA, i.e. using the method proposed,terd in Paper I,
gave the best results. Compared to the FFNN, during the #ooltlhis RNN improved
its results by 0.9% and 4.7% for the RMS validation and tragrerror, respectively.
The difference series in the exchange rate gave generatbrbesults than the original
series. Here, the RNN evolved from a random initial popataperformed best. How-

23

24 CHAPTER 4. RESULTS

Table 4.1: Results from several different time series. Tdeosd column shows the
lookback length and the subsequent columns show the erooméiized to [0,1]),
obtained for the naive strategy, FFNN, RNN, and finally RNNlegd with FFNN as
initial population. A 'd’ after the series number impliesttthe difference series was
used. Series | = USD - JPY interbank exchange rate, Serie®JB £Jnemployment
rate, and Series Il = DJIA.

S. L Naive FFNN RNN RNN f. FFNN

Tr. Val. Tr. Val. Tr. Val. Tr. Val.
I 4 0.0183 0.0213 0.0191 0.0208 0.0216 0.0208 0.0182 0.0206
Id 0.0171 0.0207 0.0178 0.0203 0.0173 0.0204
Il 5 0.0275 0.0163 0.0233 0.0161 0.0234 0.0154 0.0228 0.0159
lid 0.0229 0.0160 0.0251 0.0157 0.0243 0.0156
I 5 0.0704 0.0564
[1d 0.0677 0.0535 0.0675 0.0530 0.0673 0.0530

ever, the RNN evolved from an FFNN made an improvement of If@&%he RMS
validation error but suffered a decrease of 1.2% for the Ri®ing value.

According to [12], in which ANNs are used on several difféarearrencies, it is
difficult to forecast the trends in Japanese yen with te@imilgorithms. Their theory
is that the market for JPY is large and more efficient, andetioee acts quickly on
signs of change.

4.2.2 US unemployment rate

In this case the data set used consisted of monthly measotemiethe US unem-
ployment rate (seasonally adjusted), between January d®di&eptember 2003. The
series consisted of 669 values, the unit was per cent (%)thencange of the series
was [2,11]. L was equal to 5, the training set consisted of the first 442egadund the
validation set the remaining 222. For the difference setiesrange was [-1.5,1.5] and
the validation data set was one value shorter.

The RMS errors are shown in Table 4.1, and the relative imgr®nts from the
naive strategy are shown in Table 4.2. For the original setige best result came
from the RNN evolved from a random population. The other RsWglved from the
FFENN, improved (lowered) the RMS error with 1.89% and 1.68%rdy the evolution
for the training and validation data set respectively. er difference series the best
result was obtained from the RNN evolved from the FFNN. Dgitime evolution, the
validation RMS error sank by 2.12%, but rose by 6.51% for taming set. However,

4.2. TIME SERIES 25

Table 4.2: Improvements from the naive method used for eaxbss A 'd’ after the
series number refers to the difference series. Series | =I5 interbank exchange

rate, Series Il = US Unemployment rate, and Series Il = DJIA.
Series FENN RNN RNN from FFNN
Tr. Val. Tr. Val. Tr. Val.
I -3.92% 2.20% -17.53% 1.93% 0.94% 3.12%
Id 6.90% 2.42% 2.77% 4.39% 5.79% 4.01%

Il 15.52% 1.19% 14.95% 5.50% 17.11% 2.84%
lld 17.02% 2.04% 8.71% 4.09% 11.62% 4.12%
ld 3.89% 5.08% 4.11% 6.01% 4.50% 5.89%

it should be noted that the FFNNs were only able to achievend gbfor the training
data set. Overall, the validation data set showed diffdsehtwvior to the training data
set, which can be seen in the results of the naive method. ™8 &ror for the
training data set is almost 70% larger than the validatioorer

The best RNN obtained from an FFNN is shown in Fig. 4.1.

4.2.3 Dow Jones Industrial Average

The series used is based on the average of 22 trading days @loaonth) of daily
Dow Jones Industrial Average (DJIA) closings from 1928 t®@20 Because of the
increasing trend of the data set the series was transformedai difference series
according to

Cx(t+1) —a(t)
=T

d=1,...,(m—1) (4.2)

The series consisted of 905 values in the range [-0.3,0.44as equal to 5, 600 values
were used for training, and 300 values were used for vatidati

The RMS values are shown in Table 4.1, and the relative inggn&ants from the
naive strategy are shown in Table 4.2. The result from theenaiethod is calculated
from the original series. The best result came from the RNdlvexd from a random
population. The other RNN, evolved from the FFNN, improvkavéred) the RMS
error by 0.64% and 0.86% for the training and validation data, respectively.

26 CHAPTER 4. RESULTS

Fig. 4.1: The best RNN obtained from an FFNN for the US unemplent rate. The
input units 1 to 5 and the neurons 1 to 6 descend from the afi§iRNN.

4.3 Conclusion

The general conclusion of this work is that it is possiblelitam better forecasts with
an RNN than with an FFNN, but that the improvements are gépesimall. At best,
improvements of a few per cent are obtained for the validet&t and, for the training
set, there is often a small degradation in performance cordga FFNNSs.

Evolving an RNN from a random initial population is more difflt (and thus time-
consuming) than training an FFNN using backpropagatiorrthéamore, the evolu-
tionary process does not always converge to a satisfacttvyonk.

By contrast, the new method introduced in this thesis andajpeP |, in which
RNNs are evolved starting from an initial population dedifeom an already trained
FFNN, shows more reliable convergence and, in many casgistiglbetter validation
performance than the RNNs evolved from random initial papahs.

Even though the improvements obtained with the new methedraall in relative
terms, they may be significant in absolute terms. As an examplan average trading
day, shares representing a market value of 38.5 billion UROraded on the NYSE.
Thus, a prediction difference of 0.1 per cent represents @@lion USD. Similarly, a
0.1 per cent difference in US unemployment representserdiite of 147,000 people.

Bibliography

[1]

[2]
[3]

[4]

[5]

[6]

C. DARKEN, J. GHANG, AND J. MoobDY, Learning Rate Schedules for Faster
Stochastic Gradient Searchn Neural Networks for Signal Processing 2 - Pro-
ceedings of the 1992 IEEE Workshop, New Jersey, 1992, IEEESPr

R. DAWKINS, The Selfish Gen®xford University Press, New York, 1976.

C. L. DuNIs AND M. WiLLIAMS , Modelling and Trading the EUR/USD Ex-
change Rate: Do Neural Network Models Perform Bettdd@rivatives Use,
Trading and Regulation, 8 (2002), pp. 211-239.

C. L. GILES, S. LAWRENCE, AND A. C. Tsol, Noisy Time Series Prediction
Using a Recurrent Neural Network and Grammatical Inferemdachine Learn-
ing, 44 (2001), pp. 161-183.

S. HAYKIN , Neural Networks, A Comprehensive Foundati®rentice Hall, New
Jersey, second edition, 1999.

S. MAKRIDAKIS AND S. C. WHEELWRIGHT, Forecasting Methods for Manage-
ment Wiley, New York, fifth edition, 1989.

[7] J. E. MooDY, Economic forecasting: Challenges and neural network smhst

in Proceedings of the International Symposium on Artifidl@ural Networks,
Hsinchu, Taiwan, 1995.

[8] J. PETTERSSON ANDM. WAHDE, Generating balancing behavior using recur-

[9]

[10]

rent neural networks and biologically inspired computatimmethods Submitted
to IEEE Transactions of Evolutionary Computation, Septen#®03.

M. WAHDE, An Introduction to Adaptive Algorithms and Intelligent Nitwes
Goteborg, Sweden, second edition, 2002.

P. WERBOS Backpropagation through time: what it does and how to d@rb-
ceedings of the IEEE, 78 (1990), pp. 1550-1560.

27

28 BIBLIOGRAPHY

[11] R. J. WILLIAMS AND D. ZIPSER A Learning Algorithm for Continually Run-
ning Fully Recurrent Neural Networksleural Computation, 1 (1989), pp. 270—
280.

[12] J. Yao, H.-L. PoH, AND T. JAsic, Foreign Exchange Rates Forecasting with
Neural NetworksSeptember 1996, pp. 754—759.

[13] X. YAao, Evolving Artificial Neural NetworksProceedings of the IEEE, 87
(1999), pp. 1423-1447.

