
Radioactivity in the ground at 2 hourly intervals (July 2005 to June 2006). 

 (Note the snow cover effect.)

Source: Walter Harms, Germany
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Change point detection in financial time series in connection to purchase behaviours
HANNA SKYTT
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Understanding purchase behaviours of individuals is of interest when the goal is to
inspire people to make more environmentally friendly choices. A company with these
aspirations is Svalna AB. They have created an app that uses a carbon calculator to
give an insight into greenhouse gas emissions based on financial transactions. The
aim of this thesis has been to investigate purchase behaviours by comparing the
underlying distributions before and after a change point has occurred. This thesis
has focused on change point detection in time series using the Metropolis-Hastings
algorithm. The model, which has been implemented from scratch, has been tested
on well-behaved simulated time series and can accurately find a change point. It has
then been used to investigate some specific cases in financial time series provided
by Svalna. The results from testing on the simulated time series show a promising
start and it is concluded that the overall method is a possibility to investigate the
underlying distributions of financial time series.

Keywords: time series, change point detection, bayes, metropolis-hastings, purchase
behaviours.
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1
Introduction

Change point detection has been a subject of investigation since the 50s [1], with
applications within many different subjects, such as dynamical systems [2] or climate
changes [3].
The startup company Svalna AB in Gothenburg has developed a technology that
uses financial data to estimate greenhouse gas emissions associated with consump-
tion and spending. Their aim is to inspire individuals and companies to make more
environmentally friendly choices in regards to their spending. The company states
their mission as “By inspiring citizens to change, helping businesses transform, and
supporting research about climate-friendly lifestyles, we contribute to creating a
sustainable world for ourselves and future generations.”[4].
Svalna has a free app that is accessible for individuals. When creating a profile in the
app, there are some questions to answer in regards to emissions, with categories such
as transport, living situation and food. There is also the possibility to connect to the
user’s bank account, and with that, give permission to Svalna to use the account
data to make emission calculations. Additionally, Svalna is conducting research
in cooperation with universities, such as Chalmers University of Technology [5].
Individuals can give consent to their data being used in that research. It is the
financial data from the individuals who have given their consent that has been used
in this project.

1.1 Aim
The overall aim of this project is to investigate purchase behaviours of individuals
before and after an event, a change point in a time series. To specify, investigating
the similarities and differences between parameter values of statistical distributions
before and after a change point, which includes being able to detect the change point.
A possible future continuation of the project is to use the potential similarities to
be able to make suggestions in the app for users to make more sustainable choices
regarding their spending.

1.2 Limitations and scope

The limitations of this thesis are based on the model implementation (see Section
3.1) along with the time frame of the thesis. The limitations as to how well the ques-
tions can be answered lies both in how well the implementation works for simulated

1



1. Introduction

data and in the provided financial data. It also depends on the quality and informa-
tion content of the data, if there is the possibility to make statistically meaningful
conclusions. One of the challenges is that the data could contain outliers that give
no meaningful information about a change in behaviour. An example could be that
an individual suddenly has a huge payment for a flight, but that might not indicate
that they will take a trip every following month.
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2
Background

2.1 Definitions and notations
This section describes the different definitions and notations that are used in this
thesis. It presents what time series are and gives some real life examples, along with
the relevant parts of Bayesian inference.

2.1.1 Time series
The definition of a time series, as described in [6], is a set of observations, xτ , with
each observation being recorded at time τ . If the set of observation times is of a
discrete nature, for instance where the observations are taken at fixed time intervals,
it is a discrete-time time series. If the observations are taken continuously, it is a
continuous-time time series. Examples of discrete-time time series can be seen in
figure 2.1. Time series can be found in many different areas, the examples show
one time series connected to the annual sales of a product, and the other one is
connected to temperature changes.

3



2. Background

Annual domestic sales and advertising of Lydia E, Pinkham Medicine, 1907 to 1960 

Source: Roberts (1992)
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Figure 2.1: Two different examples of time series, both taken from
the Time Series Data Library, tsdl. [7]

Time series data can be described by time series models that have marginal distribu-
tions describing different aspects of the data, such as the mean and variance. There
can also be a distribution describing the times of occurrences as opposed to the ac-
tual values. A change point in a time series is when an abrupt change happens to the
underlying distribution. A set of n change points, St = [t1, . . . , tn], divides a time
series with m points into different segments, S = [S1 = {x1, . . . , xt1−1}, . . . , Sn+1 =
{xtn , . . . , xm}]. Change point detection is widely used within different areas to find
these change points. This change could be a change in the mean or standard devi-
ation of the data, as well as the trend. An example of a time series with distinct
change points can be seen in figure 2.2, where the change points are marked by red
lines. It shows a measure of radioactivity in the ground at 2 hourly intervals, with a
lower radioactivity when the ground is covered by snow. The marginal distribution
has a clear change in the mean. For given time series data, we wish to construct
time series models that can describe the data. One way of doing this is by using the
principles of Bayesian inference.
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2. Background

Radioactivity in the ground at 2 hourly intervals (July 2005 to June 2006). 

 (Note the snow cover effect.)

Source: Walter Harms, Germany
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Figure 2.2: Example of a time series with notable change points
marked by red lines, taken from the Time Series Data Library, tsdl.

2.1.2 Bayesian inference
The following section introduces the relevant theory in Bayesian inference using the
notations found in [8, p. 6-7].
Bayesian inference can be used to make conclusions about a parameter θ, conditional
on the observed value y. It can be useful to determine if some parameter values are
more likely to describe the data than other parameter values, while taking prior
information into account. The differentiating thing between Bayesian inference and
frequentist inference is that Bayesian inference uses probabilistic assumptions on
the parameters. For a time series data y and some parameters θ, the sampling
distribution p(y|θ) can be constructed. Using this along with the density of the
prior distribution, p(θ), the joint probability density function can be written as

p(θ, y) = p(θ)p(y|θ). (2.1)
This expression is used in Bayes’ rule that gives the posterior density,

p(θ|y) = p(θ, y)
p(y) = p(θ)p(y|θ)

p(y) , (2.2)

with p(y) = ∑
θ p(θ)p(y|θ) for the case where θ is a discrete random variable, and

p(y) =
∫

p(θ)p(y|θ)dθ for the case where θ is a continuous random variable. Since it
is independent of θ for a fixed value of y, the density p(y) can be seen as a constant,
giving rise to the unnormalized posterior density,

p(θ|y) ∝ p(θ)p(y|θ). (2.3)
In order to find the posterior density and being able to perform statistical anal-
ysis of θ, which is often the goal, the model p(θ, y) is developed and appropriate
computations are done to find and present p(θ|y). There are some distributions
that are conjugate distributions, meaning that the prior distribution and the poste-
rior distribution belong to the same class of parameterized distributions. For many
distributions there are no easy conjugate distribution to perform calculations on.
Therefore, it can be more efficient to perform sampling methods of the posterior
distribution. One method, the Metropolis-Hastings algorithm, is described in more
detail in section 2.2.

5



2. Background

2.2 Metropolis-Hastings algorithm
This section presents the Metropolis-Hastings algorithm with definitions and nota-
tions from [8, p. 275-280]. The Metropolis-Hastings algorithm is useful for sampling
from the Bayesian posterior distribution, p(θ|y). It is a Markov chain Monte Carlo
(MCMC) method, that draws values of θ from an approximate distribution, and
then correcting to draw the next sample from a better approximation of the target
posterior distribution. The samples are drawn sequentially and each draw’s distri-
bution is only dependent on the previous draw’s value, hence, they form a Markov
chain.
The Metropolis-Hastings algorithm starts by drawing the starting point θ0 from a
starting distribution with density p0(θ), where p0(θ) > 0. Then it performs the
following steps for each time step i, for a number of iterations n.

1. Firstly, the algorithm samples a proposal θ∗ from a proposal density at time
i, Ji(θ∗|θi−1). The proposal density should be constructed in a way that it is
easy to sample θ∗ for any θ. The density should also provide a good trade-off
between exploration and exploitation of the space.

2. Secondly, it calculates a ratio of ratios,

r = p(θ∗|y)/Ji(θ∗|θi−1)
p(θi−1|y)/Ji(θi−1|θ∗) .

3. Lastly, it accepts the proposal θ∗ with probability min(r, 1) and rejects with
probability 1−min(r, 1). This is equivalent to sampling from a uniform distri-
bution, U(0, 1), and accepting if the sampled value is smaller than min(r, 1). If
it is accepted, θi = θ∗, and if it is rejected, θi = θi−1. It will always be accepted
if the posterior density increases, meaning that r ≥ 1, and the proposal moves
closer to the target.

This type of iterative sampling is useful for when direct sampling from the posterior
distribution is not possible. If working with a re-scaled target density, the constants
will cancel out one another, see equation 2.3. The ratio of ratios is calculated and
used in the acceptance stage in a way that it will always accept θ∗ if it will increase
the posterior density, but only sometimes accept if it will decrease the density. Even
if the value is rejected, the algorithm still counts it as an iteration. The algorithm is
summarized in Algorithm 1. The model will use this algorithm as a basis of sampling
from the posterior distribution, as well as some parameter values describing different
aspects of a time series. The model is described in detail in Section 3.1.

6



2. Background

Algorithm 1 Metropolis-Hastings Algorithm
function MH(y)

θ0 ∼ p0(θ)
for i = 1, 2, . . . , n do

θ∗ ∼ Ji(θ∗|θi−1)
r ← p(θ∗|y)/Ji(θ∗|θi−1)

p(θi−1|y)/Ji(θi−1|θ∗)
a ∼ U(0, 1)
if a < r then

θi ← θ∗

else
θi ← θi−1

end if
end for
return (θ0, ..., θn)

end function
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3
Method

This chapter will first present the model for change point detection, along with the
assumptions that are made, the explicit expressions and functions that are used,
and how the model is implemented. The different tests for the simulated time series
and the financial time series from Svalna are described in detail in Section 3.2.

3.1 Model
This section describes how the model used to find the change point and relevant
parameters is constructed. The input and output is summarized in Table 3.1.

Table 3.1: Descriptions of the input and output of the model.

Input Output
Symbol Description Symbol Description

τ Observation times t Change point
X Observation values µ Parameter values describing observation times

(α, β) Parameter values describing observation values

3.1.1 Assumptions on the data
This model focuses on finding a change point in a time series, along with parameters
describing the observation values before and after the change point. They are used
to compare how the behaviours of the observations change. This section describes
the assumptions that are made about the data and gives the explicit expressions
that are used later in the implementation.
The only known values connected to a time series are the observation times, τ ∈ R≥0,
and the observation values, X ∈ R≥0. The beginning of the time span of the time
series is assumed to be 0, and the end is denoted by T .
The first thing that is assumed is that there is a change point, t ∈ [0, T ], in the time
series. (This assumption will be relaxed to include the possibility of assuming no
change point later in the thesis, and is described in more detail in Section 3.3.) The
change point t is assumed to have a higher probability of being closer to the middle
of the time series, than to the ends. Therefore, it is assumed to have a truncated
normal distribution, t ∼ N[a,b](µ, σ). Different truncated normal distributions are
shown in Figure 3.1, and the values µ = T

2 and σ = T
3 are chosen to cover the given

time span [0, T ].

9
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Figure 3.1: Plots of the truncated normal distribution for different
parameter values, here T = 1. The third plot (dark green) shows

the plot for the chosen parameter values.

The frequencies of transactions/purchases are interesting to compare if there is a
difference before and after a change point. Therefore, for the number of observations
before and after the change point, I1 and I2 respectively, the followings assumption
are made:

I1 ∼ Pois(µ1 · t),
I2 ∼ Pois(µ2 · (T − t)),

(3.1)

with some prior assumptions on the parameter µ = (µ1, µ2),

log(µ1) ∼ N(µ0, σ2
0), (3.2)

log(µ2) ∼ N(µ0, σ2
0). (3.3)

The observation values, X, the actual transactions or purchases, are assumed to
come from the following distribution,

Xi ∼

Gamma(α1, β1), τi < t,

Gamma(α2, β2), τi ≥ t,
(3.4)

with prior distribution on the Gamma parameter β = (β1, β2),

log(β1) ∼ N(µ0, σ2
0), (3.5)

log(β2) ∼ N(µ0, σ2
0). (3.6)

The Gamma parameter α = (α1, α2) will not be estimated by the Metropolis-
Hastings algorithm, instead it uses a plug-in estimator in each iteration. From
the mean and variance of the Gamma distribution seen in Table A.1, the following
equation can be derived,

10



3. Method

(
α

E(θ)

)2

= α

var(θ) , (3.7)

α = (E(θ))2

var(θ) . (3.8)

The approximation of α for each iteration is chosen to be the following:

α1 = (mean(Xτ<t))2

var(Xτ<t)
, (3.9)

α2 = (mean(Xτ≥t))2

var(Xτ≥t)
. (3.10)

If the variance is 0, or if there is only one data point, the α values are set to mean(X)
if it is the first iteration, and for the following iterations it is set to the previous
value of α.

3.1.2 Functions

Prior density function

Given the assumptions of the parameter values t, µ, and β from the previous section,
Section 3.1.1, and the density functions from Tables A.1 and A.2, the prior function
can be written as

p(t, µ1, µ2, β1, β2) = pt(t)·pµ1(µ1, µ0, σ0)·pµ2(µ2, µ0, σ0)·pβ1(β1, µ0, σ0)·pβ2(β2, µ0, σ0),
(3.11)

with the following priors connected to each parameter:

pt(t) = 1
√

2π ·
(

T
3

)
· Z
· exp

− 1
2 ·
(

T
3

)2

(
t− T

2

)2
 ,

pµ1(µ1, µ0, σ0) = 1√
2πσ0

· exp
(
− 1

2σ2
0

(log(µ2)− µ0)2
)

,

pµ2(µ2, µ0, σ0) = 1√
2πσ0

· exp
(
− 1

2σ2
0

(log(µ2)− µ0)2
)

,

pβ1(β1, µ0, σ0) = 1√
2πσ0

· exp
(
− 1

2σ2
0

(log(β2)− µ0)2
)

,

pβ2(β2, µ0, σ0) = 1√
2πσ0

· exp
(
− 1

2σ2
0

(log(β2)− µ0)2
)

.

(3.12)

The value Z is used as a normalizing factor in the density function for the truncated
normal distribution with limits A and B, where Z = Φ

(
B−µ

σ

)
− Φ

(
A−µ

σ

)
. Φ(x) is

the cumulative distribution function for the standard normal distribution.
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Likelihood function

From the assumptions of the observation values X and times τ described in Section
3.1.1, and the density functions from Tables A.1 and A.2, the likelihood function
can be written as

p(X, τ |t, µ, α, β) =
∏

i,τi<t

β1
α1

Γ(α1)
Xα1−1

i e−β1Xi ·
∏

i,τi≥t

β2
α2

Γ(α2)
Xα2−1

i e−β2Xi ·

1
I1!

(µ1t)I1e−(µ1t) · 1
I2!

(µ2(T − t))I2e−(µ2(T −t)).

(3.13)

Posterior density function

As seen in the theory of Bayesian inference, see Section 2.1.2, the posterior density
function is proportional to the product of the prior and the likelihood,

p(t, µ, β|X, τ , α) ∝ p(t, µ, β) · p(X, τ |t, µ, α, β). (3.14)

Proposal distribution

The proposal distribution is chosen to be where the candidate θ∗ is sampled from a
normal distribution with the previous value θt−1 being the mean,

Jt(θ∗|θt−1) ∼ N(θt−1, ϵ2). (3.15)

3.1.3 Parameter values

There are two parameters in the model that are connected to the prior assumptions
on the data, µ0 and σ0, and one parameter in the proposal distribution, ϵ.
µ0 and σ0 are parameters to the normal distribution, and the values for log(β)
and log(µ) are assumed to be samples from the same normal distribution, N(µ, σ0).
Figure 3.2 shows some plots of the lognormal distribution using different parameter
values. The chosen values are µ0 = 3 and σ0 = 0.6.
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Figure 3.2: Plots of the Lognormal distribution for different
parameter values. The fifth plot shows the plot for the chosen

parameter values.

The parameter ϵ is used in the proposal distribution as a measure of the step size
used in generating the new candidate, θ∗, for each iteration. The step size is an
important part in whether or not the candidate is accepted. Too small of a step and
it is more likely that more candidates will be accepted, which are not substantially
different from the current value. Too large of a step might result in the opposite,
too few candidates are likely to be accepted. A good measurement to aim at is an
acceptance rate of 23% [9]. Table 3.2 shows a comparison of the mean acceptance
rate using different values of ϵ. From the table, the chosen value is ϵ = 0.07.

Table 3.2: The mean acceptance rate from 10 runs, for time series
using the parameters from parameters #13 (found in Table B.1),

comparing different values of the step size parameter ϵ.

ϵ 0.01 0.05 0.07 0.1
Mean acceptance rate 0.70176 0.36739 0.21895 0.14437

3.1.4 Implementation
For the implementation of the model described in the previous sections, the chosen
programming language is R [10]. R is useful for statistical computing and graphics
[11], as well as being effective at data handling, and it can perform calculations on
matrices.
In the implementation of the model, the function to find a change point in a time
series is based on the assumptions made in Section 3.1.1, the functions described in
Section 3.1.2 with parameters in Section 3.1.3.
The function Sampling seen in Algorithm 2, gives the outline of the function used
to calculate the random walk based on the Metropolis-Hastings algorithm described
in Section 2.2. The main difference is that all the explicit functions are implemented
as the logarithm of the functions. This is due to the fact that some of the functions
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give too high values to be able to compute, but the logarithm of the same value can
be used in computations. The input is a time series consisting of observation times
τ , observation values X, and the number of iterations n. The output is a matrix,
θ, of the values (t, µ1, µ2, α1, α2, β1, β2) found in each iteration.
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Algorithm 2 Metropolis-Hastings sampling implementation (with a plug-in
method)

function Sampling(τ , X, n)
t1 ∼ runif(min(τ ), max(τ ))
log(µ1,1) ∼ rnorm(µ0, σ0)
log(µ2,1) ∼ rnorm(µ0, σ0)
log(β1,1) ∼ rnorm(µ0, σ0)
log(β2,1) ∼ rnorm(µ0, σ0)
if var(Xτ<t1) is NA or var(Xτ<t1) = 0 then

θα1,1 ← mean(Xτ<t1)
else

θα1,1 ← mean(Xτ<t1)2/var(Xτ<t1)
end if
if var(Xτ≥t1) is NA or var(Xτ≥t1) = 0 then

θα2,1 ← mean(Xτ≥t1)
else

θα2,1 ← mean(Xτ≥t1)2/var(Xτ≥t1)
end if
θ1 ← (t1, µ1,1, µ2,1, α1,1, α2,1, β1,1, β2,1)
for i = 1 : n do

θ∗ ← log-proposal(θi)
if var(Xτ<θ∗

t
) is NA or var(Xτ<θ∗

t
) = 0 then

θ∗
α1 ← mean(Xτ<t)

else
θ∗

α1 ← mean(Xτ<t)2/var(Xτ<t)
end if
if var(Xτ≥θ∗

t
) is NA or var(Xτ≥θ∗

t
) = 0 then

θ∗
α2 ← mean(Xτ≥θ∗

t
)

else
θ∗

α2 ← mean(Xτ≥θ∗
t
)2/var(Xτ≥θ∗

t
)

end if
r1 ← log-posterior(θ∗, τ , X)
r2 ← log-posterior(θi, τ , X)
r3 ← log-proposal-density(θi, θ∗)
r4 ← log-proposal-density(θ∗, θi)
r ← r1 − r2 + r3 − r4
if runif(1) < exp(r) then

θi+1 ← θ∗

else
θi+1 ← θi

end if
end for
return θ

end function
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The function Find Parameters seen in Algorithm 3, gives the outline of what
calculations are done on the found θ from the Sampling function. It takes θ as
input, as well as the number of iterations n, and a warm-up value w. A warm-up
value [8, p. 282] is used to discard the first iterations, since the simulation may need
some time to reach the posterior distribution. By the same reference, the warm-up
value is chosen to be half of the number of iterations, w = n

2 . The found value of
each parameter is set to the mean of the relevant values.

Algorithm 3 Find estimated parameters
function Find parameters(θ, n, w)

θ̂ ← mean(θ[w : n])
return θ̂

end function

The result from running this model on a time series will be a vector of the estimated
values, θ̂. Along with the values, a figure is generated for each time series to show
where the estimated change point is. It shows the time series, the histogram from
the relevant values of t from the Markov chain, along with the estimated change
point. The figure also includes trace plots for the parameters that are estimated
using the Metropolis-Hastings algorithm: t, µ and β.

3.2 Time series

3.2.1 Simulating time series
In order to test the model before applying it on the financial data, some simu-
lated data was constructed. This section describes how the simulated data was
constructed, with descriptions of the parameters, variables and distributions used.
Table 3.3 describes the different parameters used in simulating a time series, as well
as the variables that are simulated.

Table 3.3: Descriptions of the parameters and variables used for
simulating a time series.

Parameters Variables
Symbol Description Symbol Description

T Total time t Change point
(α, β) Parameters for the Gamma distribution τ Observation times

µ Expected frequency of the observation times X Observation values

For a chosen total time T , a change point is simulated to lie within the middle 80%
of the total time, t ∼ U(0.1 ·T, 0.9 ·T ). The number of observations before and after
the changepoint, I1 and I2 respectively, are simulated by

I1 ∼ Pois(µ1 · t), (3.16)
I2 ∼ Pois(µ2 · (T − t)), (3.17)
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where µ1 and µ2 are given parameter values of the expected number of observations
per time unit. The Poisson distribution was chosen to simulate the number of obser-
vations since it is often used in data with counts of occurrences that are independent
[8, p. 43].
The observation times, τ , are simulated by

τi ∼

U(0, t), i = 1, . . . , I1,

U(t, T ), i = I1 + 1, . . . , I1 + I2,
(3.18)

and then sorted so that the following holds: τ1 < · · · < τI1+I2 . Each observation
time is simulated to be independent of the other times, with no fixed time interval.
The observation values connected to each observation time, X, are simulated by

Xi ∼

Gamma(α1, β1), τi < t,

Gamma(α2, β2), τi ≥ t,
(3.19)

with given parameter values, (α1, β1) and (α2, β2). The gamma distribution was
chosen to simulate the observation values due to the possibility of having a high
probability with lower values and a low probability with higher values.
The function used to simulate a time series can be summarized as

(t, τ , X) = Simulating time series(T, t, α, β, µ), (3.20)

and the step by step can be seen in Algorithm 4. An example of a simulated time
series can be seen in Figure 3.3.

Algorithm 4 Simulating time series
function Simulating time series(T, α, β, µ)

t ∼ U(0.1 · T, 0.9 · T )
I1 ∼ Poisson(µ1 · t)
I2 ∼ Poisson(µ2 · (T − t))
for i = 1 : I1 do

τi ∼ U(0, t)
end for
for i = (I1 + 1) : (I1 + I2) do

τi ∼ U(t, T )
end for
for i = 1 : (I1 + I2) do

if τi < t then
Xi ∼ Gamma(α1, β1)

else
Xi ∼ Gamma(α2, β2)

end if
end for
return (t, τ , X)

end function
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Figure 3.3: Simulated time series where the red line marks the
change point.

Test for the simulated time series

To test if the algorithm performs well on the simulated data, the following test was
set up.
For 29 different combinations of parameter values P (29×6 matrix), found in Table
B.1, a time series was simulated using the function Simulating time series,
specified with T = 10. The parameter values were chosen to produce a wide variety
of time series with change points. Some time series have a very clear and distinct
change point and others are more difficult to detect through visual inspection only.
For one time series, the Sampling function, Algorithm 2, was applied, followed by
the Find parameters function, Algorithm 3, in order to estimate values for t,
µ1, µ2, α1, α2, β1 and β2. Then the squared error, SE = (θ − θ̂)2, was calculated
for each estimated value θ̂ from the true value θ of the parameters. To get a
more comprehensive result, all steps are done for a number of runs, q. Lastly, the
root mean squared error, RMSE =

√
mean(SE), of all runs are calculated for each

parameter. The test is summarized in Algorithm 5, with the input being the number
of iterations (n = 30000) for a number of runs (q = 10) performed on all parameter
combinations (P ). The output is a matrix, RMSE, with the root mean squared error
for each parameter set. To be able to compare the parameters µ, α and β more
easily, they are also normalized by the standard deviations of each corresponding
column in table B.1.
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Algorithm 5 Test for simulated time series
function Testing simulated time series(n, q, P )

SE ← matrix(length(P ), q, 7)
for i = 1 : length(P ) do

θ ← Pi

for j = 1 : q do
(τ , X)← Simulating time series(T = 10, θ)
θ∗ ← Sampling(τ , X, n)
θ̂ ← Find changepoint(θ∗)
SEi,j ← (θ − θ̂)2

end for
end for
return RMSE ← sqrt(mean(SE))

end function

3.2.2 Financial time series from Svalna
This section gives a description of the data set from Svalna, with some relevant
descriptions of the categories and individuals connected to the data.
The data set consists of financial transactions from different individuals. Each trans-
action has beforehand been given a category according to Svalna’s categorizations.
Every transaction also has some information connected to the individual who made
the transaction, such as their salary and city of residence. Table 3.4 shows some
specifics of the data set.

Table 3.4: Specifics of the data set.

Number of transactions 244565
Number of variables connected to each transaction 343
Number of unique individuals 2595
Number of categories 65

Each individual has a unique time span, with a given start date and end date. A
transaction for each category is given weekly between the start and end date, and
if there has been no transaction for that week, the transaction value is set to zero.
These values corresponding to one individual and one category can be seen as a time
series.
Since there are 168675 unique time series (#unique individuals · #categories), it
was not feasible to investigate all time series. It was more interesting to find some
individuals that have something in common and investigate similarities and differ-
ences.

Test for the financial time series from Svalna

Based on the aim of this project to investigate differences in purchase behaviours
before and after an event, two scenarios were chosen to be the subject of investiga-
tion. The first is when the individual has bought a new car or changed car, and the
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second scenario is when the individual has moved once within their time span. Both
these changes can be found by comparing some of the variables connected to each
transaction, such as the city of residence or the number of cars the individual own.
It also gives the time of the proposed change point, t, which is the date at which
this change is made. This narrowed it down to 85 individuals who has changed car
once, and 162 individuals who has moved once.
All values in the time series that equal zero were removed from the time series,
since it is the same as an absence of a transaction. Some time series connected to
these individuals then had no values or few values. Based on the model used, if
there are too few values, nothing statistically interesting can be found. Therefore
a limit of at least 50 values in the time series was used to disregard the time series
with few values. To make the computations more general, the observation values
were normalized and the observation times were changed from specific dates to a
time line where τ = 1 is a year from the first transaction. More specifically, each
transaction time was ordered by number of weeks from the first transaction and
divided by 52.143, which is the average number of weeks per year. Since it was
interesting to compare what has happened both before and after the change point,
only the individuals that have a change point that lies within the middle 80% of the
full time span was investigated, in order to make sure that there were at least some
values on both sides of the change point.
For the time series that fulfill these requirements, the same steps as for the simulated
time series were done. Using the Sampling function, Algorithm 2, and the Find
parameters function, Algorithm 3, to investigate if the change point could be
found in that particular time series by calculating the squared error compared to t.
If the change point could be found accurately, it would then be worth investigating
the differences in the parameters µ, α and β.
Some of the most interesting questions to try to answer for this data were: are there
similar categories that accurately show the change point for different individuals,
and if so, are the changes in parameters also similar?

3.3 Reversible-jump Metropolis-Hastings
After some initial testing, it was concluded that there was a need for the model to
have the possibility of switching between the assumption that there exists a change
point or not. The main problem that occurs with switching assumptions is that
there is a difference in the number of parameters. When there is no change point,
the relevant parameters are only (µ, α, β) instead of (µ1, µ2, α1, α2, β1, β2, t). This
requires the model to make transdimensional moves during the iterations. This
was done using reversible-jump Metropolis-Hastings [12]. (Since the α variables are
approximated in the model and does not use random walk, they are excluded from
the following formulas for the sake of clarity.)
For every 10 iterations in the random walk of the model, see Algorithm 2, the
candidate θ∗ is given with the opposite assumption. Then a acceptance ratio, r, is
calculated based on the assumptions, and if the candidate is accepted, the next 10
iterations will run with the new assumption. The assumptions can be represented
by an extra parameter k ∈ {0, 1}, where k = 0 corresponds to the assumption that
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there is no change point present, and k = 1 corresponds to that there is. This gives
two different scenarios. (Note that in order to assure linearity, the parameters µ
and β work in the log scale. For easier notation; m = log(µ), and b = log(β).)

Case 1: k = 0, k∗ = 1
Going from the assumption of not having a change point to having a change point
in the time series requires the following function for the transformation:

g0→1(m, u1, b, u2, u3)→ (m1, m2, b1, b2, t), (3.21)
g0→1(m, u1, b, u2, u3) = (m− u1, m + u1, b− u2, b + u2, u3) . (3.22)

The assumption of having no change point resides in a smaller dimension than the
opposite assumption, therefore it is augmented by auxiliary variables, u1, u2 and
u3, such that the dimensions agree. The auxiliary variables are sampled from the
following distributions:

u1 ∼ N(0, 1), (3.23)
u2 ∼ N(0, 1), (3.24)
u3 ∼ U(0, T ). (3.25)

The model uses the acceptance ratio r to determine if the candidate is accepted.
The ratio is calculated by

r = p(m1, m2, b1, b2, t|k∗)p(k∗)
q(u1, u2, u3)p(m, u1, b, u2, u3|k)p(k) |Jg0→1|, (3.26)

where p(m1, m2, b1, b2, t|k∗) is the probability of the model having those parameter
values, and p(k) is the probability of the model having the chosen assumption. The
probability of this is set as p(k = 0) = p(k = 1) = 1

2 . The auxiliary variables give
rise to

q(u1, u2, u3) = ϕ(u1) · ϕ(u2) ·
1
T

. (3.27)

The Jacobian determinant is used since there is a change in variables,

Jg0→1 =


1 −1 0 0 0
1 1 0 0 0
0 0 1 −1 0
0 0 1 1 0
0 0 0 0 1

 = 4. (3.28)

Case 2: k = 1, k∗ = 0
When going from the assumption that there is a change point to that there is no
change point, the following function represents the transition:

g1→0(m1, m2, b1, b2, t)→ (m, u1, b, u2, u3), (3.29)

g1→0(m1, m2, b1, b2, t) =
(

m1 + m2

2 ,
m1 −m2

2 ,
b1 + b2

2 ,
b1 − b2

2 , t

)
. (3.30)
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The acceptance ratio in this scenario is calculated by the following formula:

r = q(u1, u2, u3)p(m, u1, b, u2, u3|k∗)p(k∗)
p(m1, m2, b1, b2, t|k)p(k) |Jg1→0|. (3.31)

The Jacobians of both functions are the inverse to one another, Jg0→1 = J−1
g1→0 , and

therefore |Jg1→0 | = 1
4 .

These two cases were integrated into the function Sampling (Algorithm 2) and is
the model that was used to provide the results.
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Results and discussions

4.1 Simulated time series

4.1.1 Results
The results for the test run on the simulated time series are presented here. Table
4.1 shows the root mean squared errors (RMSE) for the 10 runs using the different
parameters. The closer to 0 a value is, the more accurate the prediction is. The
error is only calculated for the runs that have the assumption that there is a change
point in the final iteration, and the column #runs shows the number of runs that
are used in calculating the error. Table 4.2 shows the percentage of the iterations,
after the warm up iterations, that work with the assumption of having a change
point to provide a measure of certainty.
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Table 4.1: RMSE for testing simulated time series.

t µ1 µ2 α1 α2 β1 β2 #runs
Parameters 1 5.48 1.93 2.05 5.32 4.33 4.67 3.68 2
Parameters 2 1.92 0.49 1.30 1.73 1.51 1.76 0.69 10
Parameters 3 0.17 0.81 0.54 2.03 0.37 2.06 0.91 10
Parameters 4 0.85 0.64 0.27 1.57 0.03 1.44 0.08 1
Parameters 5 0
Parameters 6 0.88 0.64 0.67 1.39 1.12 1.37 0.38 9
Parameters 7 2.71 0.78 1.96 1.34 0.46 1.31 1.57 10
Parameters 8 0
Parameters 9 2.13 0.53 0.51 1.80 0.84 0.70 2.17 10
Parameters 10 3.11 0.52 2.09 1.36 0.67 0.47 0.55 10
Parameters 11 1.54 0.77 1.01 1.05 2.38 0.41 2.91 10
Parameters 12 7.11 1.49 4.89 0.30 16.18 0.09 5.07 2
Parameters 13 2.43 1.82 0.95 10.33 0.73 3.88 1.95 10
Parameters 14 0.25 0.58 0.83 0.61 0.42 0.24 0.37 10
Parameters 15 1.66 0.70 0.78 0.45 0.76 1.31 0.94 10
Parameters 16 0.23 0.47 0.50 0.33 1.15 0.84 1.14 10
Parameters 17 2.24 0.81 0.94 0.91 1.37 2.34 0.56 9
Parameters 18 7.29 2.30 2.07 4.83 0.14 10.11 0.56 1
Parameters 19 0.74 0.59 1.00 0.40 2.90 1.06 4.82 10
Parameters 20 5.37 2.22 3.53 3.59 1.99 2.90 2.58 4
Parameters 21 2.46 0.78 1.85 0.35 0.63 0.44 0.33 10
Parameters 22 0.99 0.57 0.56 1.25 0.39 0.94 1.16 10
Parameters 23 0
Parameters 24 0.32 0.67 0.46 1.90 1.89 1.92 0.71 10
Parameters 25 0.32 0.58 0.66 0.79 0.34 0.85 0.92 7
Parameters 26 3.67 3.19 0.57 3.44 1.01 3.03 0.97 1
Parameters 27 1.80 0.59 1.33 3.15 0.77 1.14 1.80 10
Parameters 28 2.04 0.61 0.95 1.75 0.89 0.62 1.10 10
Parameters 29 0.44 0.89 0.73 0.69 0.47 1.96 0.37 9
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Table 4.2: Certainty of the assumption of having a change point,
in percentages.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Parameters 1 4 1 25 0 3 0 100 0 0 100
Parameters 2 100 100 100 100 100 100 100 100 100 100
Parameters 3 100 100 100 100 100 100 100 100 100 100
Parameters 4 0 0 0 34 0 30 0 12 0 0
Parameters 5 0 0 29 0 30 5 0 78 2 0
Parameters 6 100 100 100 100 100 44 100 100 100 100
Parameters 7 100 100 100 100 100 100 78 100 100 100
Parameters 8 0 0 3 0 0 0 3 14 4 7
Parameters 9 100 100 100 100 100 100 100 100 100 100
Parameters 10 100 100 100 100 100 100 100 100 100 100
Parameters 11 100 100 100 100 100 100 100 100 100 100
Parameters 12 5 1 1 100 0 1 0 0 0 100
Parameters 13 100 100 100 100 100 100 100 100 100 100
Parameters 14 100 100 100 100 100 91 100 100 100 87
Parameters 15 100 100 100 100 100 100 100 78 100 94
Parameters 16 100 100 100 100 100 100 100 100 100 100
Parameters 17 100 100 5 100 100 100 100 100 100 100
Parameters 18 0 2 4 1 67 1 2 0 1 0
Parameters 19 97 100 100 100 100 94 100 97 95 100
Parameters 20 0 0 22 100 71 0 0 47 0 100
Parameters 21 100 100 100 100 100 100 100 100 100 100
Parameters 22 100 100 100 100 100 100 100 100 55 100
Parameters 23 0 0 0 0 1 8 0 0 0 1
Parameters 24 100 100 100 100 100 100 100 100 100 100
Parameters 25 100 100 4 100 100 0 0 100 100 100
Parameters 26 0 2 0 0 0 3 10 0 4 100
Parameters 27 100 100 100 100 100 100 100 100 100 100
Parameters 28 100 100 100 100 100 100 100 100 100 100
Parameters 29 61 100 94 100 67 100 2 94 100 100

4.1.2 Does the model work for simulated time series?
The results of the test for the simulated time series show that they can be divided
into five different sections regarding the accuracy of finding the change point:

1. High #runs and low t-rmse value.
2. High #runs and high t-rmse value.
3. Low #runs and low t-rmse value.
4. Low #runs and high t-rmse value.
5. No #runs.

The first group with a high number of the runs finding change points (7 to 10)
and a low t-rmse value (< 1) are the time series where the model accurately finds
the change point for all relevant runs. It consists of time series generated from
the parameters #3, 6, 14, 16, 19, 22, 24, 25 and 29. From Table 4.2, all relevant
runs have a high certainty of the assumption of having a change point. By visually
inspecting the time series and comparing the parameter values the common factor is
that they all have a difference in the expected mean of the observation values before
and after the change point. Figure 4.1 shows examples of the time series along with
the corresponding histogram of the t parameter from a run. The corresponding
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trace plots for the variables t, µ1, µ2, β1 and β2 can be found in Appendix C, figures
C.1 and C.2. They show both the convergence of the model and that the found
parameter values are close to the correct values.
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Figure 4.1: Change points found for time series using parameters
#3 and #14 respectively.

The second group also have a high #runs, but higher t-rmse values (> 1). The time
series are generated from parameters #2, 7, 9, 10, 11, 13, 15, 17, 21, 27 and 28. They
all have high certainties of having the assumption that there is a change point in
most runs, as can be seen in Table 4.2. The common thread for these combinations
of parameters is that they also generate time series with different expected means
before and after the change point. By visually inspecting all images, the other
common thing is that the model can accurately predict the change point in most
runs, with a few exceptions. Between 1 to 3 runs for these parameters fail to find a
change point. Two examples of how it looks like when it fails can be seen in Figure
4.2. The corresponding trace plots can be seen in Figures C.3 and C.4.
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Figure 4.2: Failing to find change points for time series using
parameters #2 and #17 respectively.
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The third group has a low #runs and a low t-rmse value. This group only consist of
a time series generated from parameters #4, that has a difference in the expected
variance before and after the change point. For the one run that ends with the
assumption of having a change point, the certainty is low (34%), but the found
change point is close to the actual change point, see Figure 4.3. The low certainty
can also be seen in the trace plot shown in Figure C.5.
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Figure 4.3: Found change point for a time series using parameters
#4.

The fourth group has a low #runs and high t-rmse values. It consists of time series
generated from the parameters #1, 12, 18, 20 and 26. The time series generated
from parameters #1 are the only ones that do not have a change point. The rest of
the time series have only a change in the expected variance or the expected frequency
of the observation values before and after a change point, or a combination of the
two. They all have the same expected mean of the observation values throughout
the time series. The certainties of the assumption of having a change point are
mostly high, but they fail to accurately find the change point, see Figure 4.4 for
examples with corresponding trace plots found in Figures C.6 and C.7. However,
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most of the runs have the assumption that there is no change point.
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Figure 4.4: Failing to find change points for time series using
parameters #12 and #26 respectively.

The final group is the time series where none of the runs end with the assumption
of having a change point and it consists of time series generated from parameters
#5, 8 and 23. Most of the runs have low certainties of the assumption of having a
change point. Same as for the previous group, the time series have only a change
in the expected variance or the expected frequency of the observation values before
and after a change point, or a combination of the two.
Based on these results, it is clear that the model works in finding the change points
for the time series that has a difference in the expected mean, but has more trouble
finding them when there is a change in the expected variance. It also does not seem
to work for the time series that varies in the expected frequency.
Table 4.1, as well as the trace plots found in Appendix C, show that the parameter
values that are estimated using the reversible-jump Metropolis-Hastings algorithm
(µ1, µ2, β1, β2) are also accurately found at the same rate as the change point.

4.2 Financial time series from Svalna

4.2.1 Results

Tables 4.3 and 4.4 show the squared error from the found change point and the cor-
responding event for each individual with time series that have enough observations.
The categories where none of the individuals have enough observations are excluded.
If the final iteration in the model has the assumption that there is no change point
present, the error is shown as -Inf.

28



4. Results and discussions

Table 4.3: SE from the proposed change point for each category
time series, for the individuals who bought/changed car once.

Where the model has the assumption that there is no found change
point -Inf is used instead of an error.

2 3 5 6 7 9 12 13 14 16 21 22 23 27 30 32 33 34 38 39 40 41 42 43 44 47 48 49 50 51 53 57 58 59 60 62 63
Indv. 7 -Inf 0.00 -Inf 3.10 -Inf -Inf -Inf 0.17 32.20 -Inf 3.59 0.10 -Inf 5.49 -Inf
Indv. 8 0.00
Indv. 12 -Inf
Indv. 13 -Inf 0.41 0.01 -Inf
Indv. 14 -Inf
Indv. 15 4.79 0.93 -Inf -Inf -Inf 1.05 -Inf -Inf 0.27 -Inf 0.16 -Inf -Inf -Inf -Inf 0.93
Indv. 18 -Inf
Indv. 20 -Inf -Inf -Inf -Inf 0.27 -Inf 0.02 -Inf 6.02 -Inf 4.76 0.14 -Inf -Inf -Inf 1.75 0.95
Indv. 27 -Inf -Inf -Inf -Inf -Inf -Inf
Indv. 33 -Inf -Inf
Indv. 34 -Inf
Indv. 35 -Inf -Inf
Indv. 38 2.34 -Inf -Inf 2.93
Indv. 43 -Inf -Inf 0.15
Indv. 45 -Inf -Inf -Inf
Indv. 46 -Inf -Inf 0.08 0.99 -Inf
Indv. 51 -Inf -Inf 0.53 0.16 3.81 -Inf -Inf -Inf -Inf -Inf -Inf 0.02 -Inf 0.01
Indv. 61 2.15 0.15 0.07 -Inf -Inf -Inf -Inf 0.31 -Inf -Inf -Inf 0.12
Indv. 62 -Inf -Inf -Inf -Inf 1.40 -Inf -Inf 1.69 -Inf -Inf -Inf 2.58 2.79 -Inf 1.04 -Inf -Inf 0.01
Indv. 66 -Inf -Inf 0.84
Indv. 67 0.73 1.78 0.06 0.57 0.01 -Inf 0.04
Indv. 69 16.33 -Inf 3.48 -Inf 7.44 23.60 -Inf 10.66 -Inf -Inf -Inf -Inf -Inf 1.43 8.99 -Inf 0.55 23.56 0.43 4.25 3.38 -Inf 16.06 -Inf -Inf -Inf 6.38 22.42 -Inf
Indv. 77 -Inf 0.12 -Inf -Inf -Inf 2.21 -Inf
Indv. 80 -Inf -Inf -Inf
Indv. 82 4.60 -Inf -Inf 4.50 -Inf 0.42 7.32 -Inf -Inf -Inf -Inf 0.05 1.68 5.65 5.15
Indv. 84 -Inf -Inf -Inf

2 3 5 6 7 9 12 13 14 16 21 22 23 27 30 32 33 34 38 39 40 41 42 43 44 47 48 49 50 51 53 57 58 59 60 62 63
Indv. 7 -Inf 0.00 -Inf 3.10 -Inf -Inf -Inf 0.17 32.20 -Inf 3.59 0.10 -Inf 5.49 -Inf
Indv. 8 0.00
Indv. 12 -Inf
Indv. 13 -Inf 0.41 0.01 -Inf
Indv. 14 -Inf
Indv. 15 4.79 0.93 -Inf -Inf -Inf 1.05 -Inf -Inf 0.27 -Inf 0.16 -Inf -Inf -Inf -Inf 0.93
Indv. 18 -Inf
Indv. 20 -Inf -Inf -Inf -Inf 0.27 -Inf 0.02 -Inf 6.02 -Inf 4.76 0.14 -Inf -Inf -Inf 1.75 0.95
Indv. 27 -Inf -Inf -Inf -Inf -Inf -Inf
Indv. 33 -Inf -Inf
Indv. 34 -Inf
Indv. 35 -Inf -Inf
Indv. 38 2.34 -Inf -Inf 2.93
Indv. 43 -Inf -Inf 0.15
Indv. 45 -Inf -Inf -Inf
Indv. 46 -Inf -Inf 0.08 0.99 -Inf
Indv. 51 -Inf -Inf 0.53 0.16 3.81 -Inf -Inf -Inf -Inf -Inf -Inf 0.02 -Inf 0.01
Indv. 61 2.15 0.15 0.07 -Inf -Inf -Inf -Inf 0.31 -Inf -Inf -Inf 0.12
Indv. 62 -Inf -Inf -Inf -Inf 1.40 -Inf -Inf 1.69 -Inf -Inf -Inf 2.58 2.79 -Inf 1.04 -Inf -Inf 0.01
Indv. 66 -Inf -Inf 0.84
Indv. 67 0.73 1.78 0.06 0.57 0.01 -Inf 0.04
Indv. 69 16.33 -Inf 3.48 -Inf 7.44 23.60 -Inf 10.66 -Inf -Inf -Inf -Inf -Inf 1.43 8.99 -Inf 0.55 23.56 0.43 4.25 3.38 -Inf 16.06 -Inf -Inf -Inf 6.38 22.42 -Inf
Indv. 77 -Inf 0.12 -Inf -Inf -Inf 2.21 -Inf
Indv. 80 -Inf -Inf -Inf
Indv. 82 4.60 -Inf -Inf 4.50 -Inf 0.42 7.32 -Inf -Inf -Inf -Inf 0.05 1.68 5.65 5.15
Indv. 84 -Inf -Inf -Inf
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Table 4.4: SE from the proposed change point for each category
time series, for the individuals who changed home once. Where the
model has the assumption that there is no found change point -Inf

is used instead of an error.

2 3 5 6 7 9 12 13 14 16 17 19 21 22 23 27 30 32 33 34 38 39 41 42 43 44 47 48 49 50 51 53 55 57 58 59 62 63
Indv. 3 -Inf -Inf 0.86 0.48 0.00
Indv. 5 -Inf 1.40 -Inf -Inf -Inf
Indv. 13 -Inf
Indv. 14 -Inf 0.06 -Inf 3.10 -Inf -Inf -Inf 0.17 -Inf -Inf 3.54 1.47 -Inf 3.20 -Inf
Indv. 16 -Inf -Inf
Indv. 19 0.57 0.41 0.18 -Inf
Indv. 21 -Inf -Inf -Inf -Inf -Inf 0.00 0.03 3.79 0.34 -Inf 0.69 2.22
Indv. 22 -Inf 0.36 0.32 -Inf 0.19
Indv. 24 11.33 -Inf -Inf 0.74 -Inf 0.03 -Inf 18.22 32.99 70.11 -Inf 61.98 19.83 26.68 19.05 -Inf 11.86 10.91 38.62 0.08
Indv. 29 -Inf
Indv. 33 1.54 1.08
Indv. 35 -Inf -Inf
Indv. 43 3.05 -Inf -Inf -Inf 6.95 1.47 -Inf 5.52 -Inf 53.28 -Inf 0.41 1.76 0.57 -Inf 7.79 -Inf -Inf
Indv. 48 -Inf -Inf -Inf 17.53 1.72 13.81 0.19 -Inf 15.06 0.90 -Inf 16.76 -Inf 0.64 1.01
Indv. 49 1.29 -Inf -Inf -Inf -Inf -Inf -Inf
Indv. 51 -Inf 1.90 0.02 0.25 -Inf -Inf 0.16 -Inf -Inf 0.27 -Inf 1.87 0.11
Indv. 53 -Inf -Inf -Inf -Inf 25.46 -Inf -Inf -Inf 2.66 -Inf -Inf -Inf
Indv. 55 -Inf -Inf 0.43
Indv. 56 0.14 -Inf
Indv. 60 -Inf -Inf -Inf -Inf -Inf 0.55 -Inf -Inf
Indv. 63 0.00 4.23 4.36 -Inf 5.42
Indv. 65 0.51
Indv. 66 0.54 0.75 0.34 0.13 0.68 1.10 0.46
Indv. 67 -Inf -Inf -Inf
Indv. 68 -Inf -Inf 0.15 -Inf -Inf 0.20 0.04 3.66
Indv. 70 0.07 0.25 0.37 -Inf -Inf -Inf
Indv. 72 0.00 0.06 0.08 0.03 -Inf
Indv. 77 0.44 -Inf 0.00 -Inf
Indv. 79 -Inf
Indv. 80 -Inf -Inf 0.16
Indv. 82 -Inf
Indv. 83 -Inf -Inf -Inf
Indv. 84 -Inf -Inf -Inf
Indv. 85 -Inf 4.98 -Inf -Inf 0.82 -Inf 9.61 -Inf 0.88 2.16 -Inf -Inf -Inf 1.12 1.47 1.00
Indv. 86 -Inf 2.50 0.99 -Inf -Inf -Inf 1.32 -Inf 0.60 0.15
Indv. 87 -Inf -Inf 0.08 0.99 -Inf
Indv. 88 -Inf -Inf 0.00 -Inf
Indv. 96 -Inf 2.59 0.03 0.00 4.53 -Inf 0.80
Indv. 98 -Inf -Inf -Inf
Indv. 101 -Inf -Inf -Inf 0.11
Indv. 102 0.73 0.48 -Inf -Inf
Indv. 106 0.75 -Inf 0.65 0.00
Indv. 112 0.00 0.87 -Inf -Inf -Inf 0.95
Indv. 114 -Inf 2.20 1.59 -Inf -Inf 1.87 10.68 -Inf -Inf 13.88 2.01 -Inf 0.05 0.04 3.90 -Inf 6.26 0.77 5.30 -Inf
Indv. 115 -Inf -Inf 4.58 -Inf 1.59 -Inf -Inf -Inf -Inf 9.96
Indv. 117 -Inf -Inf
Indv. 123 0.38
Indv. 126 -Inf -Inf -Inf -Inf 1.58 -Inf -Inf 0.39 -Inf -Inf -Inf 2.58 -Inf -Inf 1.05 -Inf -Inf 0.00
Indv. 127 -Inf 1.04
Indv. 133 0.68 0.01 0.08 -Inf 0.67 2.65
Indv. 142 0.28 -Inf -Inf
Indv. 145 -Inf -Inf -Inf 0.08 1.38 1.11
Indv. 148 1.73 -Inf -Inf 0.21 0.04 0.94 3.26
Indv. 150 -Inf 0.12 -Inf -Inf -Inf 2.20 -Inf
Indv. 157 -Inf 0.69 0.45 -Inf -Inf 0.01 0.87
Indv. 161 -Inf -Inf -Inf 0.54 0.13 -Inf 0.65 0.52
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Continuation of Table 4.4.

2 3 5 6 7 9 12 13 14 16 17 19 21 22 23 27 30 32 33 34 38 39 41 42 43 44 47 48 49 50 51 53 55 57 58 59 62 63
Indv. 3 -Inf -Inf 0.86 0.48 0.00
Indv. 5 -Inf 1.40 -Inf -Inf -Inf
Indv. 13 -Inf
Indv. 14 -Inf 0.06 -Inf 3.10 -Inf -Inf -Inf 0.17 -Inf -Inf 3.54 1.47 -Inf 3.20 -Inf
Indv. 16 -Inf -Inf
Indv. 19 0.57 0.41 0.18 -Inf
Indv. 21 -Inf -Inf -Inf -Inf -Inf 0.00 0.03 3.79 0.34 -Inf 0.69 2.22
Indv. 22 -Inf 0.36 0.32 -Inf 0.19
Indv. 24 11.33 -Inf -Inf 0.74 -Inf 0.03 -Inf 18.22 32.99 70.11 -Inf 61.98 19.83 26.68 19.05 -Inf 11.86 10.91 38.62 0.08
Indv. 29 -Inf
Indv. 33 1.54 1.08
Indv. 35 -Inf -Inf
Indv. 43 3.05 -Inf -Inf -Inf 6.95 1.47 -Inf 5.52 -Inf 53.28 -Inf 0.41 1.76 0.57 -Inf 7.79 -Inf -Inf
Indv. 48 -Inf -Inf -Inf 17.53 1.72 13.81 0.19 -Inf 15.06 0.90 -Inf 16.76 -Inf 0.64 1.01
Indv. 49 1.29 -Inf -Inf -Inf -Inf -Inf -Inf
Indv. 51 -Inf 1.90 0.02 0.25 -Inf -Inf 0.16 -Inf -Inf 0.27 -Inf 1.87 0.11
Indv. 53 -Inf -Inf -Inf -Inf 25.46 -Inf -Inf -Inf 2.66 -Inf -Inf -Inf
Indv. 55 -Inf -Inf 0.43
Indv. 56 0.14 -Inf
Indv. 60 -Inf -Inf -Inf -Inf -Inf 0.55 -Inf -Inf
Indv. 63 0.00 4.23 4.36 -Inf 5.42
Indv. 65 0.51
Indv. 66 0.54 0.75 0.34 0.13 0.68 1.10 0.46
Indv. 67 -Inf -Inf -Inf
Indv. 68 -Inf -Inf 0.15 -Inf -Inf 0.20 0.04 3.66
Indv. 70 0.07 0.25 0.37 -Inf -Inf -Inf
Indv. 72 0.00 0.06 0.08 0.03 -Inf
Indv. 77 0.44 -Inf 0.00 -Inf
Indv. 79 -Inf
Indv. 80 -Inf -Inf 0.16
Indv. 82 -Inf
Indv. 83 -Inf -Inf -Inf
Indv. 84 -Inf -Inf -Inf
Indv. 85 -Inf 4.98 -Inf -Inf 0.82 -Inf 9.61 -Inf 0.88 2.16 -Inf -Inf -Inf 1.12 1.47 1.00
Indv. 86 -Inf 2.50 0.99 -Inf -Inf -Inf 1.32 -Inf 0.60 0.15
Indv. 87 -Inf -Inf 0.08 0.99 -Inf
Indv. 88 -Inf -Inf 0.00 -Inf
Indv. 96 -Inf 2.59 0.03 0.00 4.53 -Inf 0.80
Indv. 98 -Inf -Inf -Inf
Indv. 101 -Inf -Inf -Inf 0.11
Indv. 102 0.73 0.48 -Inf -Inf
Indv. 106 0.75 -Inf 0.65 0.00
Indv. 112 0.00 0.87 -Inf -Inf -Inf 0.95
Indv. 114 -Inf 2.20 1.59 -Inf -Inf 1.87 10.68 -Inf -Inf 13.88 2.01 -Inf 0.05 0.04 3.90 -Inf 6.26 0.77 5.30 -Inf
Indv. 115 -Inf -Inf 4.58 -Inf 1.59 -Inf -Inf -Inf -Inf 9.96
Indv. 117 -Inf -Inf
Indv. 123 0.38
Indv. 126 -Inf -Inf -Inf -Inf 1.58 -Inf -Inf 0.39 -Inf -Inf -Inf 2.58 -Inf -Inf 1.05 -Inf -Inf 0.00
Indv. 127 -Inf 1.04
Indv. 133 0.68 0.01 0.08 -Inf 0.67 2.65
Indv. 142 0.28 -Inf -Inf
Indv. 145 -Inf -Inf -Inf 0.08 1.38 1.11
Indv. 148 1.73 -Inf -Inf 0.21 0.04 0.94 3.26
Indv. 150 -Inf 0.12 -Inf -Inf -Inf 2.20 -Inf
Indv. 157 -Inf 0.69 0.45 -Inf -Inf 0.01 0.87
Indv. 161 -Inf -Inf -Inf 0.54 0.13 -Inf 0.65 0.52

4.2.2 Insights into the data

For the two cases (one change in car, one change in home), the results of running
the model on the different categories for these individuals were not enough to be
able to make any conclusions. See Figure 4.5 for one example where the found
change point lines up with when the individual changed car, and one example where
the change point is found at a different time. There are some instances where the
model finds the change point in a category at the same point in time as when an
individual has bought a new car or moved, but has not found it for other individuals
in the same category. Therefore it is not possible to make any certain conclusions
about the parameter values of the categories. One possible reason that the model
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cannot accurately find the change point could be that the model uses the wrong
assumptions on the parameters. It could also simply be that for these specific cases,
for these chosen time series, there is no change in spending habits, meaning that
there is no change point to be found.
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Figure 4.5: Found change points in time series from two different
individuals. The red line in the time series marks the time where

the individuals bought/changed car.

4.3 Discussion

4.3.1 Choice of model and assumptions
A non-time dependant model was chosen for the possibility to make general state-
ments and comparisons on the underlying distributions. The reason behind doing
the implementation from scratch was to develop a deeper understanding of how this
method would be able to answer the questions stated. The assumptions on the data
regarding the observation values, was chosen to be from a Gamma distribution to
capture the possibility of expensive outliers. The same reasoning is applied to the
assumptions on the µ and β parameters. We assume most of them lie within the
same span, but still including some outliers. The lognormal distribution that is
chosen is very similar in shape to the Gamma distribution, but the implementation
of the model becomes more simple if it operates within the log scale.

4.3.2 Possible continuation
The results from running the model on simulated time series show a promising start,
along with the need to improve the implementation by using more complex methods,
one being automatic tuning of the parameters. Another route is to implement this
with already finished functions, found in programming languages such as Stan [13].
Even if the model could be improved to be able to accurately find the change point
for time series where the variance or the frequency is varied, it still might not be
possible to find it in these particular real time series that has been investigated for
this thesis. More specific cases in the real data, that can include more individuals
and more time series, could provide more insights.
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4.3.3 Ethical aspects
There are some ethical questions that need to be considered when investigating
financial data connected to individuals, and their purchase behaviours. Some prin-
ciples of data ethics that can be discussed are Ownership, Transparency, Privacy,
Intention, and Outcomes [14].
Every individual has ownership over their own data, and therefore it is important
that there is some manner of informed consent before collecting and using the data in
research. The real data that have been used in this thesis comes from individuals that
have given consent in Svalna’s app for this purpose. In the meaning of transparency,
Svalna provides a link to their ongoing projects that the individual will give consent
to, as well as give an explanation as to what data will be included. Svalna works in
cooperation with Tink [15] and BankID [16] to provide secure data transfers.
The data provided for this thesis does not divulge any personal information such as
name, address, date of birth, phone number, etc. The data connected to an individ-
ual instead uses an unique identification number consisting of random numbers and
letters. Whether or not the information that is given can still be used to connect the
data with the correct person has not been investigated, but might still be a question
to have in mind. To ensure privacy, the only figure that uses real data, Figure 4.5,
uses normalized values so that the actual values are unknown. Nothing that can be
connected to an individual has been presented in this thesis.
Regarding the intentions of this thesis, the aim is to investigate purchase behaviours.
In the future this information might be used to be able to give recommendations to
individuals on how to choose more environmentally friendly options. Even though
a possible next step is outside the scope of this thesis, it can give rise to interesting
discussions. When and how should this information be presented to someone? What
deductions should be made from an individual’s purchases? Can this information
be used in some nefarious way?
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5
Conclusion

We have succeeded in implementing a model that is able to find the change point
in time series where there is a difference in the mean of the observation values be-
fore and after the change point. The model could be improved in order to more
accurately find change points where there is a difference in the variance of the ob-
servation values or the frequency of observations. For the financial data provided by
Svalna, the model is able to find some change points, or dismiss the assumption of
the time series having a change point. In the two specific cases that were looked at,
the model cannot be used to make any certain conclusions of the spending habits
of individuals. The overall method, using Bayesian inference and reversible-jump
Metropolis-Hastings sampling in order to find the underlying statistical distribu-
tions, is not dismissed. Instead, further improving the model, or implementing it
using already existing functions, could be a way forward. Investigating even more
cases and including more time series could also provide more insights into spending
habits.
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A
Relevant distributions

Here, the relevant distributions are presented for reference. Each distribution has
a description of the notation, parameters, density function, mean and variance.
Table A.1 shows the continuous distributions, and Table A.2 shows the discrete
distributions.

Table A.1: Continuous distributions as seen in [8, Table A.1].

Distribution Notation Parameters Density function Mean and variance

Uniform θ ∼ U(α, β)
p(θ) = U(θ|α, β)

boundaries α, β
with β > α

p(θ) = 1
β−α , θ ∈ [α, β]

E(θ) = α+β
2

var(θ) = (β−α)2

12

Normal θ ∼ N(µ, σ2)
p(θ) = N(θ|µ, σ2)

location µ
scale σ > 0 p(θ) = 1√

2πσ
exp
(
− 1

2σ2 (θ − µ)2) E(θ) = µ
var(θ) = σ2

Gamma θ ∼ Gamma(α, β)
p(θ) = Gamma(θ|α, β)

shape α > 0,
rate β > 0 p(θ) = βα

Γ(α) θα−1e−βθ, θ > 0
E(θ) = α

β

var(θ) = α
β2

Table A.2: Discrete distributions as seen in [8, Table A.2].

Distribution Notation Parameters Density function Mean and variance

Poisson θ ∼ Poisson(λ)
p(θ) = Poisson(θ|λ) rate λ > 0 p(θ) = 1

θ! λ
θe−λ, θ = 0, 1, 2, . . .

E(θ) = λ
var(θ) = λ
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A. Relevant distributions
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B
Combinations of parameter values

for simulated time series

Table B.1: Parameter values used for simulating time series.

µ1 µ2 α1 α2 β1 β2

Parameters 1 5 5 8 8 4 4
Parameters 2 10 10 20 20 10 4
Parameters 3 10 10 20 8 10 10
Parameters 4 10 10 20 8 10 4
Parameters 5 10 5 20 20 10 10
Parameters 6 10 5 20 20 10 4
Parameters 7 10 5 20 8 10 10
Parameters 8 10 5 20 8 10 4
Parameters 9 10 10 20 8 4 10
Parameters 10 10 10 20 8 4 4
Parameters 11 10 5 20 20 4 10
Parameters 12 10 5 20 20 4 4
Parameters 13 10 5 20 8 4 10
Parameters 14 10 5 20 8 4 4
Parameters 15 10 10 8 8 10 4
Parameters 16 10 5 8 20 10 10
Parameters 17 10 5 8 20 10 4
Parameters 18 10 5 8 8 10 10
Parameters 19 10 5 8 8 10 4
Parameters 20 10 5 8 20 4 10
Parameters 21 10 5 8 20 4 4
Parameters 22 10 5 8 8 4 10
Parameters 23 10 5 8 8 4 4
Parameters 24 5 5 20 20 10 4
Parameters 25 5 5 20 8 10 10
Parameters 26 5 5 20 8 10 4
Parameters 27 5 5 20 8 4 10
Parameters 28 5 5 20 8 4 4
Parameters 29 5 5 8 8 10 4

III



B. Combinations of parameter values for simulated time series

IV



C
Trace plots

V



C. Trace plots
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Figure C.1: Trace plots for a run on a time series using
parameters #3. The red lines for each trace plot corresponds to the

correct value.
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C. Trace plots
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Figure C.2: Trace plots for a run on a time series using
parameters #14. The red lines for each trace plot corresponds to

the correct value.
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C. Trace plots
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Figure C.3: Trace plots for a run on a time series using
parameters #2. The red lines for each trace plot corresponds to the

correct value.
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C. Trace plots
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Figure C.4: Trace plots for a run on a time series using
parameters #17. The red lines for each trace plot corresponds to

the correct value.
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Figure C.5: Trace plots for a run on a time series using
parameters #4. The red lines for each trace plot corresponds to the

correct value.
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C. Trace plots
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Figure C.6: Trace plots for a run on a time series using
parameters #12. The red lines for each trace plot corresponds to

the correct value.
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Figure C.7: Trace plots for a run on a time series using
parameters #26. The red lines for each trace plot corresponds to

the correct value.
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