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Abstract
Accurate predictions of wave and wind parameters over oceans are crucial for various
marine operations. Although buoys provide accurate measurements, their deployment
is limited, which necessitates the exploration of alternative data sources. Sentinel-1,
a satellite mission capturing Synthetic Aperture Radar (SAR) images with high
coverage, presents a promising opportunity. However, establishing the relationship
between SAR images and wave/wind parameters is not straightforward. This project
aims to develop a machine learning model that can effectively extract this relationship.

To accomplish this, data from all available buoys measuring significant wave height
and wind speed in the year 2021 were utilized. The corresponding SAR images were
located, and 2 km×2 km sub-images were extracted around each buoy. From each
sub-image, a set of features were extracted. These sub-images and features served as
input to train machine learning models capable of predicting buoy measurements,
supplemented with model data as necessary.

The project presents two final deep learning models: one utilizing only the extracted
features and another employing both the sub-images and features. These multi-class
regression models simultaneously predict significant wave height and wind speed. The
model using only features achieved a Root Mean Square Error (RMSE) of 0.553 m for
significant wave height and 1.573 m/s for wind speed. The model incorporating both
sub-images and features achieved an RMSE of 0.459 m for significant wave height
and 1.658 m/s for wind speed.

The code for the project can be found on https://github.com/SEE-GEO/sarssw.

Keywords: Machine Learning, Computer Vision, Synthetic Aperture Radar, Sig-
nificant Wave Height, Wind Speed, Radar, Master Thesis, Chalmers University of
Technology
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1
Introduction

Ocean and atmospheric conditions significantly influence numerous human activities,
particularly those related to the marine environment. The ability to accurately
measure and predict related parameters is invaluable to several stakeholders operating
in maritime spaces, from the renewable energy sector to maritime transportation,
from coastal infrastructure planning to environmental conservation. The extraction of
key parameters such as wave height and wind speed allows for a range of applications,
including the assessment of potential locations for renewable energy extraction,
maritime safety evaluation, optimisation of shipping routes, sediment movement
analysis, and the planning of coastal infrastructure [6–8].

Historically, several techniques have been utilised to measure these parameters. Buoys
placed in-situ, satellite-borne radio altimeters, and weather balloons have all provided
useful data [9]. However, the advent of satellite instruments, particularly Synthetic
Aperture Radar (SAR), offers a significant advancement. With the ability to provide
global coverage, the potential to extract up-to-date wave and wind parameter data
from SAR images is a promising avenue for enhancing our understanding of the
marine environment.

Early research on methods to predict wind speed using data from scatterometers has
been conducted and widely adopted. These studies include CMOD4 [10], CMOD5
[11], CMOD5N [12], and CMOD7 [13]. All of which formulate Geophysical Model
Functions (GMFs) based on the relationship between backscatter intensity and wind
speed. One after another they improve upon the earlier GMFs by incorporating new
empirical observations and ideas. Similar GMFs has been developed for SAR and is
benefiting from the higher spatial resolution compared to scatterometers [14]. These
GMFs include C-SARMOD [15], and C-SARMOD2 [14].

The rapid advancements in Artificial Intelligence (AI) technology have further
enriched the field of SAR image analysis. AI methodologies have been successfully
applied to determine the optimal areas for wind energy harvesting from SAR data [7].
A notable accomplishment was made using SAR images from the Chinese satellite
Gaofen-3, where the application of AI outperformed the CMOD7 GMF [16].

The application of SAR data to measure wave parameters has similarly benefited
from technological progression. Early work focused on algorithms for extracting
two-dimensional wave spectra [17–19]. Over time, more empirical algorithms such
as CWAVE_ERS [20], CWAVE_ENV [21], and CWAVE_S1A [22] were developed,
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1. Introduction

which do not require a wave spectrum prior. AI has been pivotal in this progression
as well, with machine learning methods such as Support Vector Classifiers (SVCs)
[23], as well as deep learning techniques [6, 8], including Neural Networks (NNs) [22,
24], and Convolutional Neural Networks (CNNs) [25, 26]. The method developed by
Quach et al. [8] was found to be so precise that it was integrated into the data suite
for the Sentinel-1 satellite [27].

1.1 Aim
The aim of this project is to explore the possibility to use SAR images collected
globally and features calculated from these to extract both wind and wave parameters
simultaneously using a machine-learning approach. The output will be evaluated
with in-situ data and the results compared with existing state-of-the-art methods.

1.2 Objectives
More specifically, during the project, the following questions and tasks will be
considered:

• How to utilise the right tools to handle the large data files in regards to efficient
handling, storage, and training of the models.

• Experiment with data filterings such as homogeneity filter, land, and ice masks.

• Experimenting with different approaches for the machine learning models to
get a feel for what works and what does not work.

• Explore ways to combine the two prediction models of wave and wind parameters
and train them together.

1.3 Limitations
The work will be limited to be focused on machine learning models and data handling
for solving this problem and will not consider further development of existing GMFs.

The data utilised for this study is primarily drawn from SAR-images provided by the
European Space Agency’s (ESA) Sentinel-1 mission. Specifically, images from the
Sentinel-1A and Sentinel-1B satellites in the Ground Range Detected (GRD) format
were used. The study employs data captured in the Interferometric Wide (IW) swath
mode and uses the VV and VH polarisations. An understanding of the concepts
related to SAR can be found in Section 2.2. The specific reasons for choosing these
settings are further explained in Section 3.1.1. Importantly, this research was limited
to data from the year 2021, with Sentinel-1B ending its service at the close of that
year [28].

Only data accompanying the SAR-images will be used as input in the models. No
additional sources of input like sea floor depth or historical knowledge about usual
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1. Introduction

wave or wind behavior will be considered.
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2
Theory

2.1 Significant Wave Height and Wind Speed In-
teractions

Significant Wave Height (SWH), in this report also referred to as wave height, and
wind speed are key parameters for the understanding of oceanic and atmospheric
interaction. SWH is a commonly used measure to describe the wave environment.
It is defined as the average of the highest one-third of waves in a wave record. In
other words, it is the mean wave height of the largest third of waves in a specific
time period [29]. Wind Speed, on the other hand, is the speed at which air is moving
horizontally past a given point, in this project assumed to be at height 10 m above
the sea surface.

The interaction between wind and waves is a fundamental aspect of the Earth’s
oceanic and atmospheric systems. Wind generates ocean surface waves that can
travel thousands of kilometres. This phenomenon occurs because wind provides an
input of energy to the sea surface, causing the water to move in a circular motion
and leading to the formation of waves [30]. The speed, duration, and fetch (the
unobstructed distance over which the wind blows) of the wind determines the size
and type of waves produced [31]. With increasing wind speed, the wave height also
increases.

2.2 Synthetic Aperture Radar and Sentinel-1
Synthetic Aperture Radar (SAR) operates on the principles of radar by emitting a
signal and measuring the backscattered (reflected) signal. The main advantage of
SAR is its ability to produce high-resolution images irrespective of weather conditions
or daylight availability [32]. The term “synthetic” in SAR refers to the practice
of artificially enlarging the antenna length using data processing techniques. As a
satellite with SAR moves along its path, it captures a series of radar signals over
a certain period of time. These separate captures are then combined into a single
large-scale observation, mimicking the output of a significantly larger antenna, hence
achieving greater spatial resolution [33].

SAR sensors typically transmit linearly polarised signals, labelled as horizontal (H)
or vertical (V). The combination VV, for example, signifies that the SAR sensor
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2. Theory

transmitted a vertically polarised signal and also received the reflected signal in
the same vertical polarisation. Different combinations of transmitted and received
polarisations correspond to distinct scattering types: rough surface, volume, and
double bounce. In ocean studies, VV polarisation is particularly informative as it
is sensitive to surface roughness, enabling the capture of wave and wind patterns.
Variations in these scattering signals can occur with changing signal wavelength due
to differences in penetration depth [33].

The Sentinel-1 mission [34], a key component of the European Union’s Copernicus
Programme, carry an all-weather, day-and-night imaging radar that utilises the
C-band frequency. Offering comprehensive geographical coverage and rapid data
dissemination, it has a significant operational role in marine monitoring, land moni-
toring, and emergency services. The mission systematically captures images of all
global landmasses, coastal zones, European shipping routes, and oceans.

Among its primary acquisition modes are the Interferometric Wide swath (IW) [35]
and Extra Wide swath (EW) [36]. IW mode is mostly used over land, capturing data
across a 250 km swath with a 5 m×20 m resolution using the Terrain Observation with
Progressive Scanning SAR (TOPSAR) technique. This technique ensures continuous
coverage with uniform quality throughout the swath. EW mode, on the other hand,
extends its use over sea-ice, polar zones, and maritime areas with a wider 400 km
swath at a 20 m×40 m resolution.

Ground Range Detected (GRD) [37] Level-1 data represents SAR data that has been
multi-looked and projected onto ground range, offering detected amplitude informa-
tion with reduced speckle at the cost of slightly compromised spatial resolution.

2.3 Data Sources
This thesis primarily relies on four sources of data. SAR images are taken from
Sentinel 1, as described in Section 2.2. The other three sources pertain to wave and
wind measurements. These include in-situ measurements in the form of buoy data,
which is described in Section 2.3.1, as well as two distinct predictive models outlined
in Sections 2.3.2 and 2.3.3.

2.3.1 Buoy Data
The Global Ocean- In-Situ Near-Real-Time Observations [4] dataset from Copernicus
is a comprehensive collection of in-situ measurements, encompassing a wide range
of oceanic parameters. It includes data on physical properties, such as wind speed,
significant wave height, wave period and direction, temperature, salinity, and current
velocities, as well as biogeochemical characteristics.

This dataset is collected from seven regions together forming a dataset with data from
all oceans allowing for a comprehensive analysis of different oceanic environments.
The data acquisition is carried out by a handful of independent actors and is then
compiled and validated to form a common dataset. The measurements are done
with instruments deployed on various platforms, including research vessels, fixed
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2. Theory

buoys, and floats. These instruments are equipped with sensors capable of measuring
the targeted parameters as well as depths and location to include detailed meta-
information for each datapoint. As different instruments of the same type carry
different types of sensors this is also reflected in the dataset.

VAVH, VHM0, and WSPD are some of the possible variables found in the fixed buoy
data. VAVH is measured as the average peak to through of the highest 1/3 of the
waves recorded during a burst [38]. VHM0 is a spectral analysis that approximates
the significant wave height as four times the square root of the first moment of the
wave power spectrum [39]. WSPD measures the sustained absolute speed of the wind
parallel to the ground and does not contain any information regarding direction [40].

2.3.2 ERA5 Significant Wave Height Model

The ERA5 hourly data on single levels from 1940 to present [1] is a vast and
comprehensive collection of climate reanalysis data provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF). The dataset offers hourly climate-
related quantities for a range of parameters for atmospheric, ocean and land related
phenomena. These quantities include, among others, significant wave height, wave
direction, temperature, humidity, wind speed and direction, precipitation and cloud
cover. The data is supplied in a long-lat grid format with a resolution of 0.25◦×0.25◦

for atmospheric and 0.5◦×0.5◦ for ocean related parameters.

This dataset is generated through assimilation, a process that combines predictions
from advanced atmospheric models with diverse observational data sources. This
assimilation technique enhances the reliability of global predictions, particularly for
parameters with limited observational coverage.

2.3.3 Copernicus Wind Speed Model

The Global Ocean Hourly Reprocessed Sea Surface Wind and Stress from Scat-
terometer and Model [5] consists of hourly Level-4 (L4) ocean surface wind products
generated by the Royal Netherlands Meteorological Institute. These products en-
compass global gridded near real-time and multi-year L4 sea surface wind and stress
variables at a standard height of 10 m in a long-lat spatial resolution of 0.125◦.

This product was created after the observation of systematic biases in the ECMWF
ERA5 models wind parameters (Section 2.3.2) as identified by Belmonte Rivas and
Stoffelen [41]. The corrections are made in a method similar to Trindade et al.
[42] where the mean biases of scatterometer measurements compared to ERA5 is
calculated in vector form over several days. These biases are then added to the ERA5
model fields to generate bias-corrected parameters. The scatterometer data are the
ASCAT instruments onboard Metop-A, Metop-B and Metop-C and the SeaWinds
instrument carried by the QuikSCAT satelite.

7



2. Theory

2.4 Machine Learning

Machine learning is a topic with varying definitions. For the purpose of this study,
in its essence machine learning is about creating algorithms that learn to solve
some task by finding patterns in data. There are various kinds of machine learning
depending on the task, like reinforcement learning for developing policies for agents
and unsupervised learning for finding patterns in unlabeled data. This study aims
to find an algorithm that can relate data from SAR images to the corresponding
wave height and wind speed. The relevant class of machine learning for this is called
supervised learning, which deals with data where the answer that the algorithm
should predict is already known. Specifically, the task for this project is a regression
task since the outputs are continuous values, as opposed to a fixed set of classes.

2.4.1 Traditional Machine Learning Algorithms for Regres-
sion

There are multiple models for solving regression tasks using machine learning. Most
state of the art models today use deep learning [43]. Sometimes it is however useful
to investigate more traditional models as they can be faster to train and serve as a
good baseline, or even outperform more advanced models.

Linear regression is a fundamental algorithm in machine learning that assumes a linear
relationship between the input variables and the output variable [44, Chapter 3].
It is simple and provides a useful prediction in various scenarios. However, in
the presence of multicollinearity (i.e., when input features are highly correlated)
and overfitting issues, different versions of linear regression, such as Ridge and
Lasso regression, become useful [45]. Ridge Regression, with its L2 regularization,
helps handle overlapping information by slightly adjusting the importance of each
variable, ensuring no single variable overly dominates the prediction. Lasso, through
L1 regularization, can entirely remove some variables if they’re not deemed crucial,
which is beneficial when working with numerous possibly redundant variables. Elastic
Net combines both approaches, making it versatile when the data has many correlated
variables [46].

In addition to linear regression, there are several decision tree-based regression
algorithms. Decision Tree Regressor splits the data into subsets based on feature
values, creating a tree that provides non-linear predictions. However, a single tree can
often lead to overfitting. Random Forest Regressor, an ensemble method, overcomes
this issue by aggregating predictions from a multitude of decision trees, leading to a
more generalised model [47]. Gradient Boosting Regressor builds trees sequentially,
with each new tree aiming to correct the errors of the previous one [48]. XGBoost
Regression is an optimised distributed gradient boosting library designed to be highly
efficient, flexible, and portable, providing a significant computational speed and
model performance advantage [49].

8



2. Theory

2.4.2 Deep Learning
Deep learning is a class of machine learning that employs algorithms with multiple
layers of computations, commonly known as hidden layers, to construct complex
relationships between inputs and outputs [43]. A deep learning model is constructed
by connecting these layers with non-linear functions, or activation functions, in
between. Each layer has a set of trainable parameters, which can modify the
relationship between its input and output.

The architecture of the model is designed such that the output layer has the same
shape as the target prediction. A loss function is then applied to this output layer,
quantifying the discrepancy between the model’s predictions and the actual target
values. The objective is to adjust the parameters to minimise the total loss, making
this an optimisation problem.

The entire model is constructed to be differentiable, which allows for the application
of a technique called backpropagation. Backpropagation, in tandem with an optimi-
sation algorithm like gradient descent, calculates the gradient of the loss function
with respect to the model’s parameters. The parameters are then iteratively updated
in the direction that minimises the loss.

While a deep learning model is theoretically capable of approximating any arbitrarily
complex relationship, its practical performance is dependent on several factors. These
include the availability of sufficient and representative training data, the selection of
an appropriate model architecture, and the careful tuning of hyperparameters.

2.4.2.1 Neural Networks and Fully Connected Layers

Neural networks are foundational structures in deep learning, designed to process
and learn from data in ways reminiscent of the human brain. At their core, neural
networks consist of interconnected nodes or “neurons.” These artificial neurons do
not replicate the full complexity of human brain cells, but they are inspired by the
general idea of processing and passing on information.

In a typical setup, neurons receive data, process it through a weighted sum operation,
and then apply an additional transformation known as an activation function. One
common activation function is the Rectified Linear Unit (ReLU), which outputs
the input if it is positive and zero otherwise. This helps the network capture and
model nonlinear relationships in the data. As these layers of processing stack and
interact, the network can recognise patterns and relationships within the input data,
eventually leading to the formation of a decision boundary. This decision boundary
acts as a separator, distinguishing between different classes or categories within the
data.

Among various configurations of neural network layers, the “fully connected” layer
is particularly noteworthy. In such a layer, each neuron is connected to every
neuron from the previous layer, meaning all available information from one layer
is passed to the next. This complete linkage is especially useful when no piece
of data should be overlooked, making these layers common in the final stages of
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2. Theory

many network architectures. However, while effective, they can be computationally
intensive, especially when dealing with large datasets or high-resolution inputs, such
as images.

2.4.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [50] are a specialised type of neural network
designed to handle grid-like data, such as images [43]. Instead of using fully connected
layers, CNNs utilise kernel convolutions. This involves striding a kernel (a small
matrix of weights) across the input. These kernels are not exactly the same as
convolutions in other fields of engineering, but serve a similar purpose in their
operation. The weights within the kernel are learnable parameters that are optimised
to minimise a loss function during training. This approach enables parameter sharing
across different parts of the image and reduces the number of parameters, focusing
only on one neighborhood of pixels at a time [43]. Most CNNs also employ pooling,
a technique that reduces the size of the input by aggregating a region of values into
a single value. This can be achieved by taking the maximum value from each region,
a method known as max pooling.

CNNs are a central part of modern machine learning, often employing pre-built
architectures such as ResNet [51] and VGG [52], which are readily available in
popular deep learning libraries. ResNet, developed by Microsoft Research, utilises
residual blocks with shortcut connections to facilitate gradient flow and thus enable
the training of much deeper networks. On the other hand, VGG, developed by the
University of Oxford, is recognised for its simplicity, utilising multiple layers of 3×3
convolutions to achieve excellent performance in large scale image recognition tasks.
Both these architectures, having been trained on massive datasets like ImageNet
[53], are frequently repurposed in a technique known as transfer learning. In transfer
learning, these pretrained networks are extended for specific new tasks. Instead
of starting from scratch, knowledge is essentially transferred from one task (like
recognising a million ImageNet images) to another (like identifying a particular set
of objects or features).

2.4.3 Metrics Used for Evaluation
In these equations, n is the number of observations, yi and ŷi are the actual and
predicted values for sample number i, and ȳ as well as ¯̂y denote the mean of the
actual and predicted values, respectively.

The Mean Absolute Error (MAE) is defined as the average of absolute differences
between the predicted and actual values, and is given by:

MAE = 1
n

n∑
i=1

|yi − ŷi|

The Mean Squared Error (MSE) is defined as the average of the squares of the
differences between the predicted and actual values, and is given by:
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MSE = 1
n

n∑
i=1

(yi − ŷi)2

The Root Mean Square Error (RMSE) is the square root of MSE, and is given by:

RMSE =
√

MSE

The bias of a model, a measure of prediction errors, is defined as:

Bias = 1
n

n∑
i=1

(ŷi − yi)

Slope is obtained by fitting a linear regression model on the predicted values as a
function of the actual ones, and can be calculated as:

Slope =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)∑n
i=1(yi − ȳ)2

The correlation coefficient represents the strength and direction of a linear relationship
between two variables. It ranges from -1 to 1, where -1 indicates a perfect negative
linear relationship, 1 indicates a perfect positive linear relationship, and 0 indicates
no linear relationship. Given the context, it can be defined as:

Correlation =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)√∑n
i=1(yi − ȳ)2 ×

√∑n
i=1(ŷi − ¯̂y)2
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Methods

This chapter covers the two main parts of the project. Section 3.1 describes the data
pipeline, and Section 3.2 explains the machine learning approaches used.

3.1 Data Pipeline
The machine learning models utilised data from four primary sources: SAR images
from Sentinel-1, buoy data from 2021, and model data for both wave and wind
parameters for that year. The process from raw data to input suitable for the machine
learning models is termed the “data pipeline.” This section provides an overview
of each component within this pipeline and the considerations for their integration.
Subsequent sections will delve deeper into the specifics of each component.

The first step of the pipeline was collocating the SAR-images with the buoy data
(Section 3.1.1), where for each measurement from a buoy the SAR-image closest in
time was located. For each of these SAR-images, a small sub-image was extracted
around each buoy measurement (Section 3.1.5). From these sub-images, a number of
additional features were extracted (Section 3.1.6). A filter was then applied to all
sub-images that flags for if there was any inhomogeneity in the image, like a boat or
ice (Section 3.1.7). After this, the final dataset for the machine learning could be
compiled (Section 3.1.9), which included the sub-images as well as a table of features
and the corresponding labels.

Special care had to be taken for the labels since some buoys only measure wind
or wave. Buoys offer the most precise data, but in order to enable predicting both
parameters at the same time, the model values were used to supplement missing
buoy measurements (Section 3.1.3).

3.1.1 Collocating SAR-images with Buoy Data
From the world-wide buoy data described in Section 2.3.1, the data from the year 2021
was extracted. Specifically, the parameters VHM0 and VAVH for significant wave
height and the parameter WSPD for wind speed were extracted. The measurements
were also filtered to exclude data points with a minimum euclidean distance to land
of 0.01◦.

This data was then collocated with the SAR-images from 2021 found on Alaska
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(a) Europe (b) North America

(c) Australia (d) South Korea

Figure 3.1: The four main clusters of buoys collocated with at least one SAR-image.

Satellite Facility’s Distributed Active Archive Center (ASF DAAC) [3] using their
Python module asf_search [54] for accessing the Sentinel-1 data. The SAR-images
were saved in GRD format for swaths IW and EW and all possible polarisations.
The collocation process then saved, for each spatially overlapping SAR-image and
buoy, the image itself and the measurement from the buoy temporally closest to the
midpoint of the SAR-image acquisition up to a maximum difference of one hour.
This collocation technique would, for SAR-images containing multiple buoys, possibly
save one collocation for each buoy.

Figure 3.1 shows the geographical locations of the buoys collocated with at least one
SAR-image with the four main clusters of buoys. There are some buoys not shown
scattered across the rest of the globe.

For the SAR-images from 2021 22 798 were collocatable with buoy data and resulted
in a total of 53 851 collocations since some SAR-images contained multiple buoys.
The distribution of the collocations in regards to swath and polarisation is shown in
Table 3.1 and in regards to the parameter types in Table 3.2.

The imbalance in regards to the distribution of swath and polarisation as seen in
Figure 3.1 was the motivation for the limitation to only use IW swath and VV, VH
polarisation since the addition of the other swath, polarisation combinations would
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Swath Polarisation Number of collocations
IW VV, VH 49 893
EW HH, HV 3331
EW VV, VH 333
IW HH, HV 246
IW HH 48

Table 3.1: Distribution of SAR-image swath mode and polarisation for the collocations.
IW swath and VV, VH polarisation constitute 92.7%. of the data.

Buoy variable name Number of collocations
VHM0 36 844
WSPD 22 137
VAVH 20 903

Table 3.2: Distribution of the buoy parameters of the collocations. Note that many
SAR-images were collocatable with buoys that measured multiple values and is why
the collocations sum to 79 884.

make the data more inhomogeneous while only adding an insignificant amount of
data.

3.1.2 Buoy Wind Speed Measurement Height Adjustment

Height adjustment of wind speed parameters is an essential process when working
with buoy data measured at different heights as wind speed can vary significantly
as a function for height due to factors like earth’s surface structure and friction [55,
p. 40]. The wind profile power law [56, 57] is a well-known empirical formula used to
adjust wind speed measurements to a common reference height. This adjustment
enables more accurate comparisons and integrations of wind data collected from
different sources and heights, thereby improving the quality of subsequent analyses.

The Wind profile power law assumes that the wind speed increases with height
following a power-law distribution as it relates the wind speed at one height to the
wind speed at another height via the Equation (3.1), where u2 is the wind speed at
height z2, u1 is the wind speed at height z1, and α is the wind profile exponent, in
this case 0.11 taken from [57] to reflect the open ocean condition. By using this law,
wind speed measurements from buoys have been adjusted to a standardised height of
10 m, the same as the reference height of the wind speed model described in Section
2.3.3.

u2 = u1

(
z2

z1

)α

(3.1)
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Figure 3.2: Correlation of wave height model and buoy data.

3.1.3 Model Data Assessment
This chapter shows the data analysis done for the models providing significant wave
height and wind speed prediction in preparation to extending the existing buoy
measurements from the collocation to form a complete dataset.

3.1.3.1 Significant Wave Height Model

For all the buoy measurements for the variables VHM0 and VAVH found during the
collocation step detailed in Section 3.1.1, overlapping predictions from the wave height
model described in in Section 2.3.2 were extracted and compared. The heatmap of
the correlation between model and buoy values is shown in Figure 3.2. Between the
model and buoy data the RMSE is 0.367 m and the bias is −0.014 m. Note that the
model lacks full geographical coverage near the shore, as 46.7% of the buoy data
points could not be linearly interpolated due to undefined values in the model. The
distribution of these two separate datasets, interpolatable and non-interpolatable
buoy data, can be seen in Figure 3.3 where the model interpolatable buoy data has
a mean of 1.580 m while non-interpolatable data has a mean of 1.188 m, 24.8% lower
than interpolatable values.

3.1.3.2 Wind Speed Model

The wind speed model used to complement the wave height buoy data where wind
speed measurements are missing is described in Section 2.3.3. In Figure 3.4 the
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Figure 3.3: Overlapping histograms of the significant wave height from the buoy
data separated by the interpolatability of the model. The model interpolatable data
has a mean of 1.580 m and non-interpolatable data has a mean of 1.188 m

interpolated model data is plotted against height adjusted buoy data from the WSPD
parameter. The RMSE is 1.862 m/s and bias is −0.025 m/s.

3.1.4 Merging Buoy and Model Data
From the collocation step each SAR-image has been paired with a value for at least
one of the buoy variables VAVH, VHM0, and WSPD, sometimes multiple. Since
the subsequent multi-task machine learning algorithm required complete labels with
values for both wind speed and wave height the models were used to complete the
labels for missing buoy values. In case the WSPD value was missing in the buoy
data the corresponding value from the wind speed model was used. For VAVH and
VHM0 the situation was a bit different since they both measure wave height. If the
buoy only has a measurement for one of the variables that one is used as the label
and if both variables are found VAVH is used, finally if none is found the label is
taken from the wave height model.

3.1.5 Extracting Sub-images from SAR-Images
The next step in the data pipeline was extracting smaller sub-images from the larger
SAR-images, centered specifically on the buoy’s location. To achieve this, the buoy’s
coordinates were mapped to specific locations on the SAR-image. A square patch,
measuring 2 km on each side, was then taken from the SAR-image, corresponding to
a resolution of 200 pixels by 200 pixels.
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Figure 3.4: Correlation of wind speed model and buoy data.

To augment and increase the amount of data, a shifting technique was employed.
Starting from the buoy’s image position, a distance of 500 m was either added,
subtracted, or kept unchanged, both horizontally and vertically. This procedure
yielded a 3×3 grid, creating nine distinct sub-images from each primary SAR-image.

Only those sub-images fully within the larger SAR-image and free from land or
undefined values were kept. For each retained sub-image, several attributes were
recorded, the most important being the backscatter σ0 and incidence angle. Addi-
tional information like land masks, swath, time, and coordinates were stored to aid
in potential troubleshooting later. These refined sub-images were then stored using
32-bit precision in the NetCDF-4 format. Examples of what these sub-images look
like can be found in Figure 3.7 and Figure 3.8.

3.1.6 Features
For each sub-image, several features were calculated. A number of features were
extracted using the Gray Level Co-occurrence Matrix (GLCM) [58]. These features
included contrast, dissimilarity, homogeneity, energy, correlation, and Angular Second
Moment (ASM). Additionally features based on statistics from the backscatter were
used. These were the mean, variance, mean divided by variance, minimum, maximum
and difference between minimum and maximum value. In addition, four variations of
azimuth cutoff wavelength were included. Finally, the incidence angle from the centre
of the image crop was included. Since each image used has two polarisations, each of
these features except incidence angle are doubled: once for the VV polarisation and
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once for the VH.

3.1.6.1 Calculation of the Azimuth Cutoff Wavelength

Another series of features that were calculated were related to the azimuth cutoff
wavelength. The azimuth cutoff wavelength is a property of SAR-images that has
been shown to be related both to significant wave height and wind speed [59]. It is
possible to make an estimation when exact calculation is not necessary.

The procedure for estimating the azimuth cutoff wavelength that was followed
was described by Corcione et al. [60]. The procedure involves first calculating the
autocorrelation function (ACF) in the azimuth direction. This can be done through
the Wiener Khinchin theorem. The theorem states how to estimate the ACF from
the backscatter σ0, which is done the following way. First, a 2-D power spectral
density (PSD) is computed from σ0:

PSD =
∣∣∣FFT2(σ0)

∣∣∣2 (3.2)

From the resulting 2-D PSD, a 1-D azimuth PSD was then derived by averaging the
2-D PSD along the range direction. Subsequently, the ACF was obtained by using
the inverse Fourier transform on the 1-D azimuth PSD. This ACF was then min-max
normalised, and a 7×1 median filter was finally applied, which served as a speckle
filter and removed the 0-lag contribution.

Once the ACF is calculated, the Gaussian function in Equation 3.3 can be fitted to
it:

C(x) ∼ e
−π2 x2

λ2
c (3.3)

C(x) represents the Gaussian function’s value at a given point x. The λc that makes
the Gaussian fit closest to the ACF is the azimuth cutoff wavelength [61]. The fitted
Gaussian is shown in Figure 3.5.

It was not certain how the median filter should be best applied, and if the backscatter
σ0 should be given in linear or decibel units. The feature was extracted for every
combination of these to allow for future feature selection. Finally, the fitting of a
curve was slow and unreliable for the data of this project. A workaround was to
instead take the standard deviation of the AACF. This should give a number closely
related to the azimuth cutoff wavelength. From the perspective of a machine learning
model, these should give the same information.

3.1.7 Homogeneity Filter
The sub-images that were extracted required a filtration of undesired objects that
sometimes appeared. The land mask included in the SAR-images was too coarse
to accurately filter out all land at the resolution required. The mask also did not
account for things like piers and harbors, as well as offshore constructions like wind
farms. Transient features like ships were also sometimes present in the sub-images.
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Figure 3.5: Gaussian fit of ACF.
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These are the hardest to remove since their location is not fixed, and therefore can
not be masked away like land.

These irregularities within the data could have potentially introduced confusion into
the model and it was decided that the implementation of a homogeneity filter was
necessary. The concept for the homogeneity filter involved collecting a set of example
sub-images that represented both homogeneous and non homogeneous conditions.
Different features could then be calculated between these two datasets which could
be used to differentiate the two classes.

The homogeneous dataset was assembled by slicing out sub-images from randomly
selected coordinates in SAR-images where land was absent. These sub-images align
closely with those the model is expected to encounter and provide a useful baseline.
However, the resulting dataset was not completely homogeneous, which is also the
motivation of needing one of these filters. This process was used to extract 875
sub-images.

For the non homogeneous dataset, wind farms were found to best represent the non
homogeneous conditions this filter should detect. Sub-images depicting wind farms
were obtained using a list of coordinates for wind farms in the Baltic, North, and
Irish seas [62]. Since the coordinates only indicated the center point of the wind
farms, which can span several kilometers, a random offset was applied to capture
more images from each farm. This method led to the collection of 203 sub-images of
wind farms.

After assembling the dataset, features were extracted using the GLCM [58]. These
were homogeneity, dissimilarity, and correlation. Figure 3.6 shows histograms com-
paring these features across the various sources of sub-images. Upon analysing these
plots, the decision was made to separate the classes by using a Support Vector
Classifier (SVC) [63].

A SVC was trained using the features calculated with the GLCM. The SVC was
specifically trained to differentiate between ocean and wind farm images, and achieved
an accuracy of 93%. Since the dataset was not manually labeled, perfect accuracy
was not the goal; rather, the aim was to find a classifier capable of establishing
the best threshold between these two types of images. Instead, a visual inspection
was employed to judge the separation. Some sub-images that were filtered out are
shown in Figure 3.7 and some that were kept in Figure 3.8. These images are from
sub-images never seen by the model during training. Furthermore, they are the first
25 sub-images that appear alphabetically in the final dataset (Section 3.1.9), and are
not hand picked.

Visually, it appears as the filter not only have learned to filter out wind farms like it
was trained on, but extends to what looks like ships and some land/harbour structure.
However, some images that were filtered out arguably are homogeneous and could
have been used. Moreover, the images that were marked homogeneous are all visually
homogeneous. This is more important since these images are the ones that were kept.
The homogeneity filter removed 24% of the images in the final dataset.
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Figure 3.6: Overlapping histograms comparing the distributions homogeneity, dissim-
ilarity, and correlation for different types of sub-images. The blue color represents
sub-images which had no land in them, according to the land mask. These are
similar to what sub-images looks like without the homogeneity filter, and should
be mostly homogeneous. The yellow images are gathered from coordinates of wind
farms. These should represent something non homogeneous that should be removed.
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Sub-images marked as non homogeneous by the homogeneity filter

Figure 3.7: Sub-images removed by the homogeneity filter.
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Sub-images marked as homogeneous by the homogeneity filter

Figure 3.8: Sub-images kept by the homogeneity filter.
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Wave source Wind source Nr. images Proportion of the data
Buoy Model 146 651 0.56
Buoy Buoy 92 094 0.35
Model Buoy 22 488 0.09

Table 3.3: Data sources of the final dataset.

3.1.8 Data Split
In the process of developing a machine learning model, the data splitting strategy
plays a crucial role in ensuring the robustness and generalisability of the model. A
common method of partitioning the data is a 60/20/20 split, where 60% of the data
is used for training, 20% for validation during model development, and the remaining
20% for testing the final model’s performance. This strategy ensures that the model
is not overfitted to the training data, as well as enabling effectively hyper-parameter
tuning using the validation set, and provides an unbiased evaluation of the final
model on unseen data from the test set [44, Chapter 7].

Since there is data augmentation in the SAR-image extraction step in the form of
overlapping sub-image offsets, as described in Section 3.1.5, a regular independent
random split cannot be used since it would introduce data leakage [64]. Instead the
split uses a hash-based approach that combines the original SAR-image name and
buoy name to create a unique identifier for each SAR-image and buoy name pair.
The hash of this identifier is then used to decide which set (training, validation, or
testing) the sub-image data point should belong to. This method ensures that all
sub-images from the original SAR-image cut abound each buoy is placed in the same
set. Another benefit with this method is ensuring a consistent split regardless of
changes or additions to other parts of the dataset and is beneficial since maintaining
the same split throughout the project further mitigates data leakage.

3.1.9 Final Dataset
The pipeline yielded a final dataset of 261 233 sub-images, each with corresponding
features and metadata. The combined size of these images was 122 GB where each
sub-image consisted of two layers representing the VV and VH polarisations. Of
the final dataset the training set included 157 229 sub-images, while the validation
and test sets contained 51 635 and 52 369 sub-images respectively. The breakdown
of data sources used for labels can be found in Table 3.3 while the distributions of
wave height and wind speed values are depicted in Figures 3.9 and 3.10 respectively.

3.2 Machine Learning Models
After extracting the data, the next step involved discerning the patterns between
the SAR data and the associated wave and wind parameters. A baseline was first
established using models not based on deep learning, because of ease and speed
of using these. Once the features had been evaluated and a baseline had been
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Figure 3.9: Overlapping histograms of the distributions of significant wave height
values from model and buoy in the final dataset. Buoy mean is 1.47 m/s and model
mean is 1.42 m/s.

Figure 3.10: Overlapping histograms of the distributions of wind speed values from
model and buoy in the final dataset. Buoy mean is 7.14 m/s and model mean is
6.62 m/s.
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established, different types of deep learning models were developed to achieve the
best results possible.

3.2.1 Traditional Model Baseline
To establish a preliminary understanding of the potential performance, a selection of
models not based on deep learning was employed and trained. All these models were
only trained on the features extracted from the sub-images, and not the sub-images
themselves. The models were also trained on wind and wave independently, and not
in a combined model. The models were trained on the training set and evaluated on
the test set using RMSE.

This assortment of models included various linear algorithms, namely, Linear Regres-
sion, Ridge Regression, Lasso Regression, and Elastic Net. Additionally, the Decision
Tree Regressor, a non-linear model, was also tested. The Linear Regression was also
applied to each feature individually to evaluate how useful each feature was.

Subsequently, a series of ensemble methods were utilised to potentially enhance model
performance. These methods incorporated the Random Forest Regressor, Gradient
Boosting Regressor, and XGBoost. These ensemble methods combine multiple
models to achieve better predictive performance than could be obtained from any
of the constituent models individually. Since the intention of this experiment was
only to investigate a baseline model to compare the final model against as well as
making sure the features had sufficient predictive power, no hyperparameter tuning
was done except for the XGBoost model. Here, the hyperparameter tuning library
Optuna [65] was used. The results are presented in Section 4.1.

3.2.2 Multi-Task Learning and Loss Function
The project’s objective included an exploration of the potential performance of a deep
learning model for this prediction task. Several different architectures were tested.
The first critical design decision involved creating a model that would concurrently
predict both target variables, wave and wind. This decision was motivated by the
observed correlation between these two variables as explained in Section 2.1. A
model designed in such a manner could utilise this overlapping information to share
useful intermediate features within its hidden layers. Another reason for this choice
was the project’s ultimate goal – predicting both values. Hence, it was deemed most
efficient to bundle these values into a single model.

To facilitate this, a custom loss function was adopted that could account for both
variables, enabling the simultaneous update of parameters for wave and wind during
backpropagation. Importantly, the goal was to minimise the RMSE for both targets.
However, as RMSE is dependent on the scale of the target, the loss function inputs
were normalised by the mean value of each target precomputed on the training set.
This adjustment ensured that both wave and wind would equally contribute to the
loss. The RMSEs of the normalised targets were then combined using root mean
square. The custom loss function, which incorporates these RMSEs, is then given
by (3.4) where yparameter and ŷparameter are the target and prediction vectors for each

27



3. Methods

parameter, and µparameter is the mean value of each parameter calculated from the
training set. In this case µwave = 1.46 and µwind = 6.85.

L =

√√√√RMSE
(

ywave
µwave

, ŷwave
µwave

)2
+ RMSE

(
ywind
µwind

, ŷwind
µwind

)2

2 (3.4)

The aggregation was accomplished using root mean square rather than the normal
arithmetic mean, motivated by the fact that root mean square gravitates more
towards the larger value. This aspect implies that the gradient step will be more
attuned to the output that is more significantly incorrect.

In addition to the loss, the RMSE and MAE is tracked for both wave and wind
independently for the training and validation set during the training of the model.
Whenever these metrics are calculated for the validation set, it is only done on data
from buoys and not model, to give a more truthful evaluation.

3.2.3 Model Structure for Only Features
Once the structure of multi-task learning had been decided, designing the network
was initiated. This included finding a structure of layers that worked well, as well
as tuning several hyperparameters. Trying every combination of hyperparameters
and settings is impossible due to the combinatorial explosion of possible choices. If a
hyperparameter with a number of choices is added to the search, the size of the search
space is multiplied by that number. Instead of a complete search, smaller subsets of
the search space were explored at a time. Once an intuition was built up for which
hyperparameters were important and which were not, successive experiments honed
in on the final network structure.

Hyperparameters and design choices that were included in the search for the best
network will be detailed here. Learning rate was found to be very influential and
was subsequently present in all the searches. Moreover, network depth and width,
dropout rate, optimiser, standardisation, and which features to include were all at
different times explored. The hyperparameters where chosen as to minimise the
validation loss. The hyperparameter tuning was done using the Optuna library [65],
which hones in on the region of the search space which hones in on the region that
gives the best results and prunes trials that are not fruitful.

The final feature-only network uses all features, which are normalised using standard
scaling. The features based on statistics from the backscatter were given in linear
scale. These features serve as inputs to a series of five fully connected layers, each
with 1024 neurons. Batch normalisation, dropout, and ReLU activation functions
are consistently applied after each of these layers. The network then diverges into
separate branches for wave and wind predictions. Each branch has five fully connected
layers with a successively decreasing number of neurons: 1024, 512, 256, 128, and 64.
Like the shared layers, each layer in these branches also uses batch normalisation,
dropout, and ReLU activation function. Both branches ultimately terminate in a
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Figure 3.11: Illustration of the features-only model. The number in each block refers
to the number of neurons in that layer. In addition, batch normalisation, dropout
and ReLU activation is applied after each layer.

single neuron each, serving as the prediction for wave and wind, respectively. The
network structure is illustrated in Figure 3.11.

The network is configured with a learning rate of 0.0087 and trained using the Adam
optimiser. A dropout probability of 0.42 is used at each dropout step. Every random
seed was set to 0. It was trained for 100 epochs using all the available data and a
batch size of 128, which took 1.71 hours on four A100 graphics cards. The model
that achieved the best validation loss is the model presented in the results.

3.2.4 Extending Model to Use Sub-images
An extended model using the extracted sub-images from the SAR-images as well was
developed. This network takes the sub-images and feeds them through a CNN to
reduce the images to a vector. This vector is concatenated with the feature vector
and the concatenation of these two is then fed through the exact same network
architecture as when using only the features.

Here a number of additional hyperparameters contributed to the search space.
Whether the image should be in linear or decibel was tried. A number of CNN
architectures were tried, namely ResNet- 18, 34 and 50 [51], as well as VGG- 16 and
19 [52]. These networks were taken from the built in models in PyTorch, but the first
layer was swapped with a kernel filter with two channels, one for each polarisation in
the SAR-image. It was tested both if this network should be initialised with random
weights or pre-trained on ImageNet.

For the final image-feature network, the images are normalised using standard scaling
and then augmented with mirrorings and multiples of 90◦ rotations. The final CNN
architecture was ResNet50 with weights pretrained on ImageNet. The images are
given in linear scale as opposed to decibel. The 512 neuron output of ResNet50 is
concatenated with the features and then goes through the exact same architecture
as the feature-only network. An illustration of the network is shown in Figure 3.12

The network is configured with a learning rate of 0.0005 and trained using the Adam
optimiser. A dropout probability of 0.2 is used at each dropout step. Every random
seed was set to 0. It was trained for 57 epochs using all the available data and a
batch size of 128, which took 1.92 hours on four A100 graphics cards. The model
that achieved the best validation loss is the model presented in the results.
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Figure 3.12: Illustration of the images-features model. The sub-image is fed through
ResNet50 and is reduced to a vector, which is then concatenated with the features
and fed through the same architecture as for only features. This results in the two
separate heads for wind and wave as during the features-only network.
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In this chapter, the results of the project is presented. As a point of comparison,
a baseline of traditional models is first presented in Section 4.1. Then, the results
from the final deep learning models using only features as well as sub-images and
features are presented in Section 4.1 through Section 4.2. All these evaluations are
done on the test set, which only contain datapoints from in-situ buoy measurements.
This test set for wind speed contains 22 677 datapoints and for wave height 47 796
datapoints.

4.1 Metrics for Models

Traditional Models as Baseline
In Table 4.1 the RMSE of the traditional models are presented. These results serve
as a point of comparison for the other deep learning models.

Model Wave RMSE Wind RMSE
Linear Regression 0.644 2.100
Ridge Regression 0.644 2.100
Lasso Regression 1.065 2.771
Elastic Net 1.018 2.538
Decision Tree Regressor 0.794 2.364
Random Forest Regressor 0.576 1.698
Gradient Boosting Regressor 0.592 1.778
XGBoost 0.580 1.600

Table 4.1: Wave and wind RMSE for traditional regression models not based on
deep learning.

Deep Learning Models
The metrics for the final models are shown in Table 4.2. The metrics include loss, as
well as RMSE, bias, slope and correlation for both significant wave height and wind
speed individually. How training and validation loss, as well as validation RMSE for
both wind and wave developed during the training can be found in Appendix A.
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Model Parameter Loss RMSE Bias Slope Correlation

Features-only Wave 0.294 0.553 -0.020 0.662 0.857
Wind 1.573 -0.225 0.721 0.916

Images-features Wave 0.267 0.459 -0.046 0.749 0.906
Wind 1.658 -0.425 0.767 0.903

Table 4.2: Performance metrics for both the model using only features and the one
using sub-images and features.

4.2 Correlation Plots from Target to Prediction
A heatmap of target significant wave height against predicted significant wave height
is shown in Figure 4.1. The model that uses only features is shown in Figure 4.1a
and the one that uses both sub-images and features is shown in Figure 4.1b.

A heatmap of target wind speed against predicted wind speed height is shown in
Figure 4.2. The model that uses only features is shown in Figure 4.2a and the one
that uses both sub-images and features is shown in Figure 4.2b.
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(a) Features only model results.
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Heatmap of wave height results for images and features model evaluated on the test set
Identity line x=y
Best fitted line y=0.75x + 0.32
RMSE: 0.459
Bias: -0.046
Slope: 0.749
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(b) Images and features model results.

Figure 4.1: Heatmaps for significant wave height predictions made on the test set by
the two deep learning models.
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(a) Features only model results.
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Heatmap of wind speed results for images and features model evaluated on the test set
Identity line x=y
Best fitted line y=0.77x + 1.25
RMSE: 1.658
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(b) Images and features model results.

Figure 4.2: Heatmap of wind speed predictions made on the test set data by the two
deep learning models.
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5.1 Comparison with Similar Studies
The resulting RMSE of the image and feature model of 0.459 m for significant wave
height is comparable with other state of the art methods using similar technique
and data. For example Quach et al. [8] that uses Sentinel-1 data acquired from
wave mode collocated with altimeter data achieve a RMSE of 0.53 m on their buoy
test set and 0.307 m compared to altimeter data. Although their dataset is bigger
their collocation step allows for up to a three hour difference between the SAR and
altimeter measurement.

Another similar result is from Xue et al. [25] that attain a RMSE of 0.45 m and 0.52 m
for their model trained on VV polarised data and VV and VH data respectively.
Their network is trained on a dataset were buoy measurements are collocated with
3330 SAR-images. Although their data source is significantly smaller they still
achieve similar results with a network of comparable size.

Yet another study with comparable results is conducted by Wu et al. [24]. They use
SAR images from EW swath collocated with radar altimeter data from the Arctic
sea and achieves a RMSE of 0.71 m on their test set constituted of radar altimeter
data.

These studies reveal that contemporary methods for predicting significant wave
height predominantly rely on machine learning. More specifically, these approaches
are grounded in neural network architectures and utilise SAR data, which is typically
paired with various other data sources. The model presented in this project also use
the same methodologies.

As for wind speed predictions according to Lu et al. [14] all state of the art GMF
achieve RMSE around 2 m/s on their test set of 1452 SAR images from coastal regions
collocated with in-situ buoy measurements. More specifically the results are RMSE
of 2.22 m/s for CMOD4 [10], 1.98 m/s for CMOD5 [11], 1.86 m/s for CMOD5.N [12],
1.93 m/s for CMOD7 [13], 1.92 m/s for C_SARMOD [15] and 1.84 m/s for their own
GMF C_SARMOD2 [14].

Regarding wind speed predictions, the model trained on both features and images
has demonstrated an RMSE of 1.658 m/s, thereby outperforming the other GMFs
mentioned. However, it is worth noting that Shao et al. [16] achieved an RMSE of

35



5. Discussion

0.74 m/s using the Gaofen-3 satellite. This satellite captures images in wave mode
with quad-polarizations: VV, HH, VH, and HV. Despite the unparalleled precision,
the results of this study are still unmatched.

5.2 Trustworthiness of the Results

While the results section evaluates the performance of the model on the available
dataset, the applicability of these results in real-world scenarios remains to be
investigated. This section discusses the measures taken to ensure the model’s ability
to handle new, unseen data and assesses the efforts to simulate realistic testing
conditions.

To enhance the model’s ability to generalise, four major strategies were implemented.

1. Diverse Dataset: The model was trained on a rich and diverse dataset encom-
passing 22 798 SAR-images. These images were collected over a full year from
various global locations, ensuring the model was exposed to patterns across
different oceans and seasons.

2. Early Split of Test Set: A fixed test set was carved out early in the project
to ensure consistent evaluation. This dataset was not involved in any part of
the model’s training or hyperparameter tuning process, providing a reliable,
unbiased evaluation of the model’s performance on completely new data.

3. Data Leakage Avoidance: The dataset split was conducted considering the
SAR-image names and buoy names, which ensured that images captured from
the same ocean area at the same time were placed in the same subset. This
approach effectively minimised data leakage, preventing artificially inflated
performance metrics that could occur if closely related data points were present
across different data subsets.

4. High-Quality Validation Data: Even though model data was used for training,
the validation and testing stages exclusively used buoy data, ensuring the
evaluation was based on the highest quality data available.

By implementing these four strategies, the risk was minimised that the model might
learn patterns not applicable to future data. As a result, although the model’s
reported performance metrics might appear more modest, these strategies ensure the
model is better equipped to handle new data, enhancing its real-world applicability.

One way our final model might be untrustworthy comes from the dataset’s sparse
coverage of open oceans. Since the data was gathered from buoys, which are primarily
situated near coastlines and smaller oceans, the model’s performance in vast open
oceans like the Atlantic or Pacific might be different.
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5.3 Limitations in Quality of the Data
Since the data is crucial to the success of a machine learning project, it is important
to be aware of limitations of the data that may produce unwanted results. Not
only to be better prepared for designing the model but also to guide future research
towards more accurate and reliable data collection and interpretation with similar
techniques. In this section, two such possible limitations are discussed: biases
arising from incomplete coverage in the wave model, and discrepancies between buoy
measurements and model predictions.

In the analysis of the significant wave height model in Section 3.1.3.1 it is noted that
the model does not have perfect geographical coverage of the buoy data as 46.7% of
the data is missing in the heatmap in Figure 3.2. This is due to the relatively low
resolution of the model (Section 2.3.2) and that it does not contain wave parameters
over land, making the shoreline only crudely approximated resulting in buoy data
close to shore being excluded from the analysis. This phenomenon can be seen in
Figure 3.3, as the buoy values with interpolatable values in the model have a wave
height 33.0% higher than the non-interpolatable thereby introducing some bias to the
dataset. But note also that there is an imbalance in the final dataset where model
values for wave height only make up 9% of the data as seen in Table 3.3 mitigating
this bias.

The wind model provides comprehensive coverage of all geographical areas represented
in the buoy data. However, the buoy measurements display a pattern where certain
values are more frequently recorded, as depicted by spikes in Figure 3.10. This
pattern is likely due to limitations in the resolution of some sensors responsible
for measuring wave height. When reducing the number of bins in the histogram,
the distributions between the model and buoy data start to align more closely, as
shown in Appendix B. This suggests a general consistency between the two datasets.
A similar, albeit less pronounced, trend can be observed in the wind speed data
presented in Figure 3.9. It is essential to consider these data characteristics when
interpreting model predictions, as a model’s outputs are influenced by its input data.

5.4 Improvements of the Homogeneity Filter
The homogeneity filter is one of the parts of the project that might benefit from
being revised. The main source of uncertainty about the results of the homogeneity
filter is that it is purposefully trained on imperfect data. There were both images in
the homogeneous dataset that had objects or land in them, and images that were
only of the ocean in the wind farm dataset. This leads to some instability where the
model is trained hoping that the images misclassified also were mislabeled.

An alternative method to develop this filter would be to manually label the images
the correct classes first. This would take some manual work, but would be doable
within reasonable time given the size of the dataset. Also, since a machine learning
model was trained to separate the classes, more features might as well have been
extracted since these might help find a better separation. A more thorough evaluation
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would also help to prove the usefulness of the filter, where more images would be
inspected. Another evaluation would be to train machine learning models both with
and without using the homogeneity filter. For this project, this test would be the
ultimate judge of how helpful the homogeneity filter is.

5.5 Apparent Clipping of Small Values
In the heatmaps showing the relationship between the target and predicted values
for the deep learning models in Figure 4.1 and 4.2, there is a clipping phenomenon
where no predictions are made below a certain threshold.

By examining the model’s intermediate layers preceding the output, one can trace
the origins of the observed behavior. The network employs multiple ReLU activation
functions throughout its architecture. Inherently, a ReLU function sets all negative
values to zero, which can be perceived as ’clamping’ numerous values at the 0 mark.
If the weights in the last layer are positive or not too large, this behaviour gets
carried through to the output where many values bunch up close to the bias term of
the last layer. This is algebraically why the behaviour arises, the question is though
why the weights end up being tuned this way.

This phenomenon is thought to have been learned by the model due to the imbalance
of the dataset. This imbalance in the distribution of the two output parameters
can be seen in the histograms in Figure 3.9 and 3.10. As the model gets exposed to
training samples in proportion to the frequency of their occurrence, the extremities
of the distribution are rarely seen. To adjust for this, the training samples can be
oversampled proportionally to the inverse of their frequency. Alternatively, the loss
can be adjusted to account for the underrepresented samples.

5.6 Comparison of the Models
As several models were developed during this project, it is interesting to compare
these and discuss the benefits of the different models. Depending on the needs of
a future application of this project, different models could serve the purpose best.
First, given how simple the model is, it is noteworthy that a linear regression was
not terrible, and is near instantaneous to train. Further, a model like Random
Forest Regressor or XGBoost showed some performance given the time these could
be trained compared to the deep learning models. Although they offered worse
performance than the deep learning models, they are noteworthy in a drafting stage
of a project to provide quick evaluation of the features, and could still be a viable
option in a project where quick training and predictions as well as simple and small
models are valuable.

In evaluating the models, it is evident that the deep learning models outperform the
traditional ones in terms of metrics. While the feature-only model exhibits faster
training times, the fact that training is only done once makes this advantage marginal.
If investing in training, it would be prudent to select a model that produces superior
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results, even if it requires slightly more time.

Moreover, while the feature-only model does offer quicker prediction times and a
more compact storage footprint, these factors are not important in the project’s
context. The primary aim of the project did not put limitations on speed or storage
efficiency as critical constraints. Therefore, given the project’s objectives, the model
that integrates both sub-images and features is deemed the most appropriate because
of its superior loss where both wave and wind predictions are weighed together.

5.7 Future Work
To conclude this discussion, several avenues for future research emerge. A primary
concern to address would be the observed clipping of values below a certain threshold.
It remains undetermined if this is a result of an error within the implemented program
(Section 5.5). If the model were to be updated so that the correct predictions were
made for these values, it would make a direct improvement to the results.

Refining the homogeneity filter, as detailed in Section 5.4, could result in significant
improvements to the outcomes. Beyond modifications to the filter, expanding the
dataset is worth consideration. This could involve adding data from subsequent years
or implementing more extensive data augmentation strategies. Nonetheless, given
the comprehensive dataset already employed in this study, it remains undetermined
whether additional data would lead to enhanced model performance.

One interesting extension would be to extend the study to also include data from
the open ocean to adapt the model for these conditions. Two such sources would
be SAR-images in EW and wave (WV) swath since these acquisition modes are
more common over open ocean than IW [36, 66]. Another interesting data source to
explore could be radar altimeters as done by Quach et al. [8] and Wu et al. [24].

The potential performance benefits from the current model structure appear to have
reached their peak. This conclusion is drawn from two observations: firstly, the
validation loss remained steady throughout training, as detailed in Appendix A.
Secondly, because of extensive hyperparameter tuning, as outlined in Section 3.2.3,
further adjustments seemed unlikely to yield significant improvements. To achieve a
notable performance boost, a new method may have to be tried, such as incorporating
an additional feature. An alternative strategy could be to train separate networks for
wave and wind. Even though this diverges from the project’s initial aim, observations
during training indicated the model often had to prioritise optimising for either wave
or wind, rather than both (see Appendix A). Thus, distinct networks for each might
enhance the overall results.
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Conclusion

This project ventured to investigate the potential of harnessing globally collected
SAR-images and their derived features to determine wind and wave parameters
through machine learning. The models have been thoroughly evaluated with in-situ
data, both using several metrics as well as a visual investigation of the prediction
patterns. The resulting algorithms capture the relationship between input and
output, although some potential errors and improvements have been highlighted.
Thought has been put into making sure that the results are honest and applicable to
diverse data.

A large portion of the project was devoted to developing tools for handling large
amounts of data, and in the end all of the data for the given year from all buoys
available could be utilised. This effort of thorough data handling have led the
algorithm to reflect the patterns in the data as accurately as possible.

The project has also investigated removing images based on land and ice masks. The
final project uses a land mask and a homogeneity filter. Some improvements that
could be made to these are highlighted in the discussion, but the mask and filter
helps to make the data more uniform.

Initially, it was not decided which polarisations and swath modes should be used.
Eventually, a model was however only developed for the IW swath mode. Although
the reasons for this design choice have been presented in the report, it still remains
interesting to investigate if the project could be extended to work for EW swath
mode as well.

The two deep learning models developed predict both the wave and wind parameters
simultaneously. This has shown that it is possible to design a model this way, and
comes with the benefits of ease of use and speed of training. However, the best
results were not necessarily achieved for both output values simultaneously. The
network being able to predict one did not mean it could also predict the other. This
suggests it might be possible to achieve even better results by training two separate
networks for each parameter. One could even utilise the prediction from the other.
The way the models were structured aligned the most with the aim of the project.
However, in the future different design choices could be made to potentially get
different results.
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A
Training Progress

In Figure A.1 it is shown how the metrics changed during training of the deep learning
models. The metrics shown include training loss, validation loss and validation RMSE
for significant wave height and wind speed individually.

Figure A.1: Logs of metrics during training progress. Purple is from the model using
features only. Orange is from the model that use both features and sub-images. The
title of each plot gives the value that is tracked, which is the y-axis. The x-axis
represent the number of steps that has passed during the training progress.
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B
Overlapping Histograms of Wind

Speed Distributions

In this appendix, the overlapping histograms of distributions of wind speeds are
presented in Figure B.1. This plots the same data found in Figure 3.10 but has
fewer bins to show that the spiking behaviour disappears as the number of bins is
decreased.
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B. Overlapping Histograms of Wind Speed Distributions

Figure B.1: Overlapping histograms of the distributions of wind speed values from
both model and buoy in the final dataset. The same data as in Figure 3.10 but with
only 30 bins.
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