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Trajectory planning for automated highway driving of articulated heavy vehicles
Convex optimization using the model predictive control framework
PATRIK WALLIN PATRIK NILSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
As the global level of CO2 in the atmosphere continues to rise, ways to decrease
and stop this rising trend are needed. One potential measure to combat rising green
house gases could be to use long combination vehicles, LCVs, for heavy duty freight
transports. However, because of the length, weight and motion characteristics of
LCVs, they become more difficult to maneuver, especially in dense traffic. The de-
velopment of advanced driver assist- or autonomous functions for controlling LCVs,
could help ease LCVs inherent problem of maneuvering in dense traffic. In this
project, the LCV considered is the A-double combination. An A-double combina-
tion consists of a tractor connected to a semi-trailer. Attached to this semi-trailer
is a converter dolly onto which a second semi-trailer is attached.

The objective for this project is to develop a trajectory planner for an A-double
combination to allow for automated driving in a highway environment. Trajectory
planning for automated vehicles consist of generating a trajectory that spans both
the longitudinal and the lateral dimension. This trajectory is calculated based on
the vehicle state and control evolution in time, given some set of constraints. There
are two core maneuvers that needs to be handled by the trajectory planner, lane
keeping and lane changing.

The method used for developing the trajectory planner is based on numerical op-
timization due to its innate capability to handle constraints and its real-time com-
patibility. This way, safe and smooth trajectories can be generated. The control
framework used is called model predictive control, MPC, and the trajectory planning
problem is formulated as a quadratic problem with linear constraints. The trajec-
tory planner was developed with the ACADO toolbox and then combined with the
solver qpOASES.

The generation of results was done in Matlab/Simulink by creating s-functions for
the trajectory planner, and then simulating it against a high-fidelity plant model
of an A-double combination. Two trajectory planners, one with a prediction hori-
zon of 2 seconds and one with a prediction horizon of 5 seconds, were simulated
and discussed. Both the planners successfully completed a pre-defined highway test
scenario regarding safety, smoothness, actuator limitations and computational time.
However, smoother longitudinal characteristics could be concluded for the planner
with a prediction horizon of 5 seconds compared to the trajectory planner with a
prediction horizon of 2 seconds.

Overall, the proposed trajectory planner is able to handle the two main maneuvers of
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highway driving, lane keeping and lane changing, while ensuring safety, smoothness
and that the actuator limitations are not being violated. This while ensuring solution
times suitable for a real time implementation when running on a notebook PC.

Keywords: long combination vehicles, A-double, trajectory planning, highway, quadratic
programming, convex, model predictive control, Matlab/Simulink, ACADO, QPOASES.
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1
Introduction

As the global level of CO2 in the atmosphere continues to rise, ways to decrease and
stop this rising trend are needed [6]. The surface freight transportation industry
in the OECD (Organization for economic cooperation and development) countries
is responsible for about 35% of its total CO2 emissions, and, is expected to rise
to about 50% in the coming 35 years [7]. With climate goals such as the Kyoto
protocol and the Paris agreement and the connection between global warming and
CO2 emissions, ways to decrease this is of high interest. One potential measure to
combat rising green house gases could be to use long combination vehicles, LCVs.
LCVs are vehicle combinations that typically are longer and heavier than current ve-
hicle combinations allowed under European legislation. As described by the author
in [4], LCVs often include two articulated joints or more and is most commonly be-
tween 27-32 meters in length. Furthermore, given their increased length and higher
weight, compared to regular tractor semi-trailer combinations, LCVs can transport
up to 2 times as much cargo in terms of weight and/or volume. As a consequence
of this, the author claims that their energy consumption is generally 15-20% lower.
In addition to contributing to lower energy consumption within the freight industry,
LCVs could also help decrease traffic congestion as fewer vehicles would be needed
to transport the same amount of goods and also decrease road transportation costs.
However, because of the increased length, weight and additional articulation joints,
LCVs become more difficult to maneuver, especially in dense traffic. The develop-
ment of advanced driver assist- or autonomous functions for controlling LCVs, could
help ease LCVs inherent problem of maneuvering in dense traffic.

In this project, the LCV considered is the A-double combination. An A-double
combination consists of a tractor connected to a semi-trailer. Attached to this semi-
trailer is a dolly onto which a second semi-trailer is attached. In fig. 1.1 an A-double
combination and its articulation points is shown.

Figure 1.1: Setup for an A-double combination. Picture from [2].
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1. Introduction

Given the challenging environment many traffic situations can pose, highway driving
is considered to be the first target for automated driving on public roads. This as
it presents a rather controlled setting with one-way traffic and road users driving at
similar speeds. Somewhat simplified, highway driving can be reduced to two main
maneuvers, lane keeping and lane changing. With these two core maneuvers, further
actions such as overtaking, entering and exiting the highway can also be produced,
thus enabling complete highway control. However, major challenges exist when de-
veloping algorithms for dealing with these two maneuvers. This as they require
extensive knowledge about the vehicle’s surrounding environment and the current
road profile, but also because systems for tactical decision making and trajectory
planning are necessary.

In this project, the objective is to develop a trajectory planner for the A-double
combination to allow for automated highway driving. Other key functionality for
automated driving will not be investigated to any greater extent, this will be fur-
thered discussed in section 1.3.

1.1 Background
Trajectory planning for automated vehicles consist of generating a trajectory that
spans both the longitudinal and lateral dimension. This trajectory is calculated
based on the vehicle state and control evolution in time, given some set of con-
straints.

As previously mentioned, there are two core maneuvers that needs to be handled by
the trajectory planner, lane keeping and lane changing. When generating a trajec-
tory for these maneuvers, there are some sets of constraints that needs to be taken
into consideration. First, due to the heavy weight of an A-double combination, the
longitudinal dynamics of the truck will be affected. Most notably will be the limited
acceleration capabilities, even on flat roads. The additional length and articulation
points of an A-double combination will also affect the lateral dynamics of the vehicle
combination. For example, phenomena such as rearward amplification and lateral
off-tracking are introduced. These will be further discussed in chapter 3.

Properties of the road also creates a set of important constraints for the trajectory
planner as the road profile will have an impact on the vehicle dynamics. For ex-
ample, the curvature of the road will add to the lateral acceleration of the vehicle
combination and the road topography will affect the longitudinal acceleration and
deceleration. Another important aspect that needs to be handled when planning
different maneuvers is the available road area for the truck to drive on. Fellow traf-
fic participants needs to be addressed to ensure that the truck will not come to close
to surrounding vehicles and for the truck to be able to change lane. Finally there
are limitations regarding the actuators of the truck, for example acceleration and
steering limits.

All these limitations are typically connected to safety and ride comfort in terms of

2



1. Introduction

keeping the vehicle motion within specified limits and keeping the actuation within
capacity limits. This needs to be addressed by the trajectory planner to ensure that
a safe and smooth trajectory is planned.

As described in [4], there are different methods for solving the trajectory planning
problem and they differ in how the available search space is represented. One way to
model it could be as a graph, where a transition between two nodes could represent a
change of states. This way, graph search algorithms could be used to plan trajectories
for different maneuvers. Another way of solving the problem could be by using
numerical optimization. If the search space is represented with models subject to a
set of constraints, the problem is modeled as an optimal control problem, OCP. By
simulating these models forward in time, subject to the set of constraints, trajectories
could be planned for a given time interval. In [8], numerical optimization techniques
are used in order to successfully perform lane change maneuvers for a passenger car
and in [2], non-linear numerical optimization have successfully been used in order
to state a trajectory planner for an A-double vehicle combination.

1.2 Objective

The objective of this project is, as briefly mentioned before, to study, develop, im-
plement and evaluate algorithms which will be used in a trajectory planner for an
A-double combination. The trajectory planner should be able to maneuver an A-
double combination driving in high speed in a highway application. Another part
of the objective is that the trajectory planner should be implemented with real-time
performance in mind.

The method used for developing the trajectory planner is based on numerical opti-
mization due to its innate capability to handle constraints and its real-time compat-
ibility. This way, trajectories that ensure both ride comfort and safety of the truck
can be generated.

1.3 Prerequisites

Trajectory planning is a vital part in a system for automated driving functionality.
In fig. 1.2, one can see a system overview which places the trajectory planning in
a system context in a system for automated driving functionality. In this project,
only the concept of trajectory planning will be addressed. Surrounding key function-
ality for automated driving, such as environment perception and decision making,
is assumed to be given or simplified in order to obtain a complete system for the
trajectory planner.

3



1. Introduction

Figure 1.2: Envisioned system for automated driving functionality.

The algorithms in this project are developed under the following prerequisites:
P1 Traffic situation predictions will be generated by using single integrator mod-

els of the surrounding vehicles. Furthermore, it is also assumed that the sur-
rounding traffic travels at a constant velocity without any lane changes. In a
more advanced system, this could be furthered developed to ensure that more
accurate information is provided to the trajectory planner.

P2 Traffic perception is assumed to be perfect in this project and the knowledge
about the speed and position of fellow road participants is assumed to be
known.

P3 Road perception is assumed to be perfect in this project, i.e., knowledge about
the curvature and topography is assumed to be known.

P4 Decision making functionality is assumed to be given. This will feed the tra-
jectory planner with information such as when to initiate a lane change and a
longitudinal velocity reference.

P5 Actuation control is assumed to be given. The trajectory planner will generate
references that will be fed forward to an actuation control layer that will create
control signals for actuation of the truck.

1.4 Limitations
In this thesis, the work has been carried out under the following limitations:

L1 Only an A-double LCV has been considered in the thesis.
L2 The developed algorithm is only intended for one way, multiple lane highway

use in a velocity range of 30-90 [km/h].
L3 The models used for describing longitudinal and lateral dynamics of the LCV

have been simplified to ensure linear dynamics.
L4 The developed algorithms will not be verified using physical testing. Instead

simulations against a high-fidelity model will be used to verify the algorithms.
L5 Only convex numerical optimization will be evaluated.
L6 The problem will be separated into two control problems, one for longitudinal

control and one for lateral control.
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L7 Only the ACADO toolbox will be evaluated when generating code for the
optimal control problem formulation.

L8 Only qpOASES will be evaluated as the solver for the generated quadratic
problem.

1.5 Outline of the thesis
Chapter 2 will briefly introduce the basics of numerical optimization and also intro-
duce a control framework called model predictive control. This by introducing the
concepts of convexity and receding horizon control.

Models will be used in both the trajectory planner and the tuning and evaluation
of the trajectory planner. Chapter 3 will present the lateral model used for repre-
senting the lateral dynamics of the A-double combination. The model used for the
longitudinal dynamics will also be presented along with the road representation and
the modelling of the surrounding traffic.

In chapter 4, the trajectory planning problem is stated as an OCP. Physical lim-
itations of the vehicle combination and an attempt to state the properties of an
desirable trajectory are explained. Then, two optimal control problems are stated
to describe the trajectory planning in both the longitudinal and lateral dimension.
At the end of the chapter, the software ACADO, which is used for stating and gen-
erating C-code for the optimal control problem, is presented together with other
implementation details.

Simulation results in a pre-defined highway scenario will be presented in chapter
5. In addition, a discussion regarding the performance of the trajectory generator
with respect to lane changing capability, traffic handling and real-time performance
is presented.

Lastly, chapter 6 presents the main conclusions as well as recommendations for
future work.
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2
Numerical optimization

The field of numerical optimization is broad and is used in many different areas,
from airline companies deciding how to route their planes and utilize their crew in
the most efficient manner [9], to how to control the temperature in the process of
freezing food [10]. In this chapter, a brief introduction to optimization is given in
section 2.1 and the property of convexity is explained in section 2.2. Furthermore,
the basic concept behind model predictive control is presented in section 2.3.

2.1 Introduction to numerical optimization
The basis for numerical optimization is to find a minimum of a function f, called
the objective function, with respect to the optimization variable(s). The objective
function could be a composition of different variables that should be minimized in a
system. The objective function can also be subject to a set of constraints that often
represents the dynamics and limits of the system. These constraints can be divided
into two sets, equality constraints, often describing the dynamics of the system, and
inequality constraints, often describing limitations in the system. This can more
formally be described as

minimize
x

f(x)

subject to h(x) = 0,
g(x) ≤ 0

(2.1)

where f(x) is the aforementioned objective function, x is the optimization variable,
h(x) is the set of equality constraint and g(x) is the set of inequality constraints. The
set of solutions satisfying the constraints is called the feasible set, F , and the set not
satisfying the constraints is called the infeasible set, I. In cases where F = ∅ the
problem is said to be infeasible, which means no solution satisfying the constraints
exists.

Depending on the formulation of the objective function and constraints, different
types of optimization problems can be stated. One example is a linear program,
where the objective function and the constraint functions are linear. This type of
optimization problem can efficiently be solved with for example the Simplex method
[11]. Optimization problems that are non-linear in the objective function and/or the
constraints are called non-linear programs and one example of a non-linear program
is the quadratic program, or QP for short. In a QP formulation, the objective
function is quadratic and the constraints are linear. This is described as:
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minimize
x

1
2x

TQx+ cTx

subject to Hx = keq,

Gx ≤ kin

(2.2)

In this formulation x is a vector containing the optimization variables, Q is a weight
matrix and c is a vector for handling linear contributions to the problem. H and G
are matrices used to state the equality and inequality constraints for the problem
and vectors keq and kin are used to define the equalities and inequalities. Finally,
this formulation is said to be convex if Q is positive definite. To solve a QP, a variety
of methods exists such as the interior point method or the active set method [12].

2.2 Convexity
To understand which types of optimization problems that can be efficiently solved,
the notion of convexity needs to be introduced. Convexity is a mathematical prop-
erty that applies to both functions and sets and can be similarly explained for both
functions and sets.

A convex set can be seen as an area where a straight line can be drawn between
any two points in the area, without leaving the area. Conversely, a non-convex set
can be seen as an area where a straight line can be drawn from two points in the
area with the line exiting the area at some instance. A graphical representation
of a convex and a non-convex set can be seen in fig. 2.1 where a line, XY, has
been drawn between two points, X and Y, in each set. The same concept applies
to convex functions, where a straight line between any points on the curve of the
function never should cross the curve.

(a) Convex set. (b) Non-convex set.

Figure 2.1: Difference between a convex and a non-convex set.

When optimizing over a convex set of solutions, if a minimum is found, it is the global
minimum. When using non-convex sets, all the minimums need to be evaluated
against each other, determining which of the minimums are only local minimums

8
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and which one is the global minimum. The use of convex sets hence reduces the
complexity and the algorithm will be more efficient. In this thesis, only convex sets
and functions will be considered. This is because of the real-time applicability of
convexity. For further reading on convexity, see [11].

2.3 Model predictive control
Model predictive control, or MPC for short, is a way of utilizing optimization in the
area of control theory by stating the control problem as an optimization problem.
This formulation is often referred to as an OCP. With this method, optimal control
signals can be generated based on forward simulation of the system. More specifi-
cally, MPC utilizes the models and constraints of the system it is applied to, in order
to optimize the control signal for the next time-step. By simulating the evolution
of the system over a fixed interval, called the prediction horizon, an optimal control
sequence is generated for that horizon. Also, the prediction horizon changes based
on the receding horizon idea. The author of [13] explains the idea as follows: At
the current time step, information about the current state of the system and the
information about the future states from the prediction, are used to generate an
optimal sequence of control signals. The first of these control signals, corresponding
to the next time step, is then applied to the real system. At the next time instance,
the prediction horizon has moved one time instance further and the procedure is
repeated.

For a graphical interpretation of MPC, see fig. 2.2, where an MPC tries to minimize
an offset to a reference trajectory. When the optimization at time step k is done,
the control input calculated for time step k is applied to the system and the current
time step is shifted to k+1 and the prediction horizon to k+p+1.

Figure 2.2: The principle of MPC for the current time step k, from [3].

In order to be able to steer the states of a system, x, to desired values, r, the opti-
mization problem in the MPC is formulated as a QP, giving the following objective
function

minimize
u

(x− r)TQ(x− r) (2.3)
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This way, the lowest possible value of the objective function is obtained when the
states are equal to the desired values. In practice this would mean zero offset
tracking. An added benefit for this choice of objective function is that if the set
of values satisfying the constraints is convex, the entire problem is convex and can
thus be efficiently solved. This results in the following OCP formulation:

minimize
z

1
2zTQz + cT z

subject to Aeqz = beq,

Ainz ≤ bin

(2.4)

where z =
[
xk+1, xk+2, . . . , xk+p, uk, uk+1, . . . , uk+p−1

]T
is a vector with the states

and control signals for the prediction horizon, c is a real valued vector, Q is a real
symmetric matrix and c is a real valued vector. The matrix Aeq and the vector beq

are used to impose equality constraints on the controller. Among these constraints,
the actual differential equations used to describe the system are included along with
other possible equality constraints. Finally, the matrix Ain and the vector vector bin

are used to impose in-equality constraints on the controller.

Depending on the linearity of the model dynamics and constraints used, MPC is usu-
ally divided into two groups, linear and non-linear MPC. If only linear dynamics and
constraints are present, this is simply referred to as MPC whereas if non-linearities
are present, it is usually referred to as non-linear MPC, or NMPC for short. The
method for solving NMPC differs a bit from solving regular MPC and the most
successful technique is the sequential quadratic programming method, or SQP for
short [14]. For more information on how SQP works, the reader is referred to the
work conducted in [14]. Finally, for the sake of clarity, when discussing MPC in this
master thesis report, only linear MPC is considered.

2.4 Summary
In this chapter, the basics behind numerical optimization is explained and the con-
cept of convexity was presented. These theories were then used in the model pre-
dictive control framework which is used for creating algorithms for the trajectory
planner. In this way, a trajectory planner that will ensure that the constraints from
the environment and the vehicle dynamics are kept, can be constructed.

In the next chapter, models for the lateral and longitudinal dynamics of the truck,
the road and the surrounding traffic will be introduced. These models will be used
in the algorithms for the trajectory planner, but also when the algorithms will be
tuned and evaluated.
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As discussed in the previous chapter, a system model is a vital part in MPC. Fur-
thermore, in order to test and verify the working capabilities of the final trajectory
planner by simulation, a model description of the complete system is needed. How-
ever, since the necessary vehicle models used in this project already have been de-
veloped within Volvo GTT, this has not been the main focus in this project and the
derivations will not be covered extensively. The vehicle modelling has been divided
into two models, with one model describing the lateral dynamics and one model
describing the longitudinal dynamics for the A-double combination.

In the first section of this chapter, the longitudinal and lateral models of the A-double
combination, together with some important lateral phenomena, will be presented.
After that the modelling approach for the road will be discussed in section 3.2
followed by the modelling of the vehicle positioning with respect to the road in
section 3.3. In section 3.4, the modelling of fellow traffic participants is presented.
The high-fidelity plant of the A-double combination that is used for simulations and
tuning of the trajectory planner is presented in section 3.5. Finally, section 3.6 will
provide a short summary of the chapter.

3.1 Vehicle modelling

The requirements for the model-fidelity of the lateral and longitudinal dynamics
differ quite much. Highway maneuvers are more sensitive to lateral movements than
longitudinal since the lateral safety margins are generally smaller than the longi-
tudinal safety margins. For example, the lateral distance to road limits or other
traffic participants is smaller than the longitudinal distance to vehicles ahead. Thus
a more accurate lateral model is needed. When modelling the longitudinal motion,
all forces, except the gravitational force, have been disregarded and the dynamics
are therefore rather simple. Because of this, a double integrator has been chosen
to model the longitudinal velocity and acceleration. The lateral motions and ro-
tations, on the other hand, are much more complex to model as the model has to
include several interconnected units with one degree of rotational freedom. As a
consequence of this, a single track model [15] has been used in this project.

However, the single track model is highly non-linear as it for example uses the lon-
gitudinal velocity when calculating many of the vehicle states. Though, under a set
of simplifications that can be assumed for the highway environment, the single track
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model can be stated linearly. This makes it possible to use the MPC framework and
state the trajectory planning problem as a convex QP.

Furthermore, given the length and articulation points of the A-double combina-
tion, some non-trivial lateral phenomena are introduced which needs to be handled.
Before presenting a model for the lateral dynamics, these phenomena will first be
discussed.

3.1.1 Lateral phenomena
The lateral phenomena that are introduced due to the length and articulation points
of the truck are rearward amplification, RA, and lateral off-tracking. RA can gener-
ally be described as the lateral motion of the last unit divided by the lateral motion
of the first unit [16]. In fig. 3.1, RA is demonstrated and it can be seen that the
lateral acceleration for the fourth unit is amplified compared to the lateral accel-
eration of the first unit. This occurs when the truck executes maneuvers like lane
changing or evasive lateral movements. In high speeds the RA can become quite
high, especially when executing evasive maneuvers.

High RA increases the risk that any of the units in the vehicle combination will roll
over due to the lateral acceleration, but, can also be dangerous as the swept path
by the units will become larger and risk sliding into the wrong lanes or off road.
Most notably, the last trailer faces this risk the most as the RA becomes greater
further back in the vehicle combination, and, in [17], it was found that the RA for
an A-double combination could be up to 1.74.

Figure 3.1: Demonstration of rearward amplification. Cropped from [4].

The second phenomenon introduced, lateral off-tracking, can be defined as the dis-
tance between the traveled path of the center point of the innermost axle and the
traveled path of the center point of the outermost axle [15] when driving in a curve.
In practice, this will most of the times be the distance between the front axle of the
truck and the rear axle of the second semi-trailer and one example is seen in fig. 3.2.
It shows how the front and rearmost axles of the truck travels different paths when
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the truck is going through a curve at high speed.

One thing that is worth pointing out is that the direction of the off-tracking between
the tractor and second semi-trailer will depend on the velocity that the truck is
travelling in. In high speeds, off-tracking as seen in fig. 3.2 will occur, that is that
the trailers will sweep outwards from the curve. However, when travelling at low
speeds, the trailers will instead sweep inwards in the curve that the truck is travelling
in. This inwards off-tracking typically starts to occur at speeds below 40 [km/h] [2].

Figure 3.2: Different trajectories for the first axle and the last axle of the truck.
From [2].

3.1.2 Lateral vehicle modelling
For the trajectory planner to be able to plan trajectories that are safe and smooth,
it needs a vehicle model that captures the motion characteristics of the A-double
combination in a highway environment. These motions could be the phenomena
described earlier or other movements that occur when executing a lane following
or a lane change maneuver. Also, for the trajectory planner to be able to run in
real-time, the complexity of the model must be kept on a level so that it is able to
be efficiently computed.

In this project, the lateral dynamics of the truck is described by a single track
model including a linear tire model. The single track model is a common choice
when modelling a vehicles basic cornering response [5] and is expected to provide a
good compromise in complexity and performance for highway driving [2]. The single
track model combines the tires of each axle into a virtual tire on one virtual axle,
hence the name single track, see fig. 3.3.

Figure 3.3: Simplification from a real truck, to the left, to a single track model,
to the right. Modified from [4].
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In this project, the single track model used for modelling the A-double combina-
tion is based on the model derived in [5]. The derived model is validated for high
speed vehicle cornering, typically in the speed range of 30-80 [km/h] with lateral
and longitudinal acceleration levels below 1.5 [m/s2] and 3 [m/s2] respectively. The
A-double single track model can be seen in fig. 3.4. Additionally, the parameter
values used in this project for the single track model can be found in appendix A.

Figure 3.4: A-double single track model for an A-double combination with param-
eters. From [5].

In order to, if ever so slightly, familiarize the reader with the derivation of this model,
a brief summary from [5] will now be presented. The model is derived by using
the Euler-Lagrange approach to generate the equations of motion for the A-double
combination. This results in a non-linear representation that can be linearized under
a set of simplifications:

• As the states in the single track model depends on the longitudinal velocity
of the truck, it will not be treated as a model state in the lateral model, but
instead as a time varying constant.

• Articulation angles between the units and steering angles are assumed to be
small in the highway environment. This allows for using the small angle ap-
proximation and also to set the products of steering and articulation angles
and their time derivatives to zero.

• The tires are used far from their performance limits in the highway environ-
ment, thus linear tire forces can be assumed.

For a fully detailed derivation of the model and the simplifications, the reader is
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referred to [5].

In this model, the following states are defined to describe the lateral dynamics of
the truck:

• The lateral velocity of the tractor: vy,1, [m/s].
• Yaw angle of the tractor: φ0, [rad].
• Yaw angle rate of the tractor: φ̇0, [rad/s].
• Articulation angle between tractor and the first trailer: θ1, [rad].
• Articulation angle rate between tractor and the first trailer: θ̇1, [rad/s].
• Articulation angle between the first trailer and the dolly: θ2, [rad].
• Articulation angle rate between the first trailer and the dolly: θ̇2, [rad/s].
• Articulation angle between the dolly and the second trailer: θ3, [rad].
• Articulation angle rate between the dolly and the second trailer: θ̇3, [rad/s].
• Steering angle of the truck: δ, [rad].

These states are controlled by the steering angle rate δ̇, [rad/s], and the following
state and control vectors can be stated:

ζlat =
[
vy,1, φ0, φ̇0, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, δ

]T
, ulat =

[
δ̇
]T

The time derivatives of these states are based on the derived equations in [5] and
its structure looks like:

˙ζlat =



a11 0 a13 a14 a15 a16 a17 a18 a19 a110
0 0 1 0 0 0 0 0 0 0
a31 0 a33 a34 a35 a36 a37 a38 a39 a310
0 0 0 0 1 0 0 0 0 0
a51 0 a53 a54 a55 a56 a57 a58 a59 a510
0 0 0 0 0 0 1 0 0 0
a71 0 a73 a74 a75 a76 a77 a78 a79 a710
0 0 0 0 0 0 0 0 1 0
a91 0 a93 a94 a95 a96 a97 a98 a99 a910
0 0 0 0 0 0 0 0 0 0



ζlat +



0
0
0
0
0
0
0
0
0
1



ulat (3.1)

For a more detailed formulation of the states see appendix B.

3.1.3 Longitudinal vehicle modelling
As previously discussed, the modelling of the longitudinal dynamics of the A-double
combination have been chosen to disregard all resistive forces but the gravitational
force, and thus rather simple dynamics are obtained. This means that this model
does not include any truck specific characteristics, such as gearbox dynamics, me-
chanical losses or engine efficiency. Moreover, it does not include any models of
aerodynamic drag or rolling resistance. The reason for this is to try to keep the
overall model complexity in the OCP formulation down, as a real-time implemen-
tation of the controller is in mind. The gravitational force is kept in the model in
order to take the effects of road topography into consideration. Hence, the A-double
combination has been modeled as a double integrator to describe the longitudinal
velocity and acceleration. The reasoning behind choosing a double integrator is that
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it provides a nice trade-off in model complexity and accuracy for highway driving.

The A-double combination is modelled to have three states:
• The longitudinal velocity of the tractor: vx,1, [m/s].
• The longitudinal acceleration of the tractor: ax,1, [m/s2].
• The desired acceleration of the tractor: ax,1des, [m/s2].

The desired longitudinal jerk, jx,1des, [m/s3], has been chosen as the control signal,
which results in the following state and control vectors for the longitudinal model:

γlong =
[
vx,1, ax,1, ax,1des]T , ulong =

[
jx,1des

]T
Furthermore, the time derivatives of each state can be stated as:

dvx,1

dt
= ax,1 − g sin(αroad) (3.2)

where g is gravitational acceleration and αroad is the slope of the road measured
in [rad]. In order to linearize the state equation for the time derivative, small
angle approximation is used. Furthermore, a motivation on why the small angle
approximation is possible is found in section 3.2.2. The change in acceleration of
the truck is modelled with an inertia. This to simulate the time delay from request
to actuation:

dax,1

dt
= ax,1 − ax,1des

τ
(3.3)

where τ is the response time for cruise controller of the truck. Finally, the time
derivative of the desired acceleration is set to be the input of the system.

dax,1des

dt
= jx,1des (3.4)

3.2 Road modelling
In this project, highway driving in Sweden is considered as the operational domain
for the controller. Given this, the road characteristics under which the controller
will operate can be stated. This section is mainly based on [4] and [18].

3.2.1 Horizontal road geometry
When building highways in Sweden, [18] state that three different geometric shapes
are used for horizontal design, namely straight lines, circular arcs and clothoids.
Straight lines are defined as horizontal curves with infinite radii. Circular arcs are
used for horizontal curves and have a constant curvature with a minimum radii of
800 [m]. When transitioning between straight line segments and horizontal curves,
clothoids are used to create smooth transitions. A clothoid is a line segment in
which the curvature of the line increases along the length of the line, which is how
a smooth transition can be created. This concept is visualized in fig. 3.5 where line
segment 1 is a straight line, segment 2 is a clothoid and segment 3 is a circular arc
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with radii 30 [m].

Figure 3.5: Design concept for horizontal curves on Swedish highways, where
segment 1 is a straight line, segment 2 is a clothoid and segment 3 is a circular arc.

The geometric shape design principles are applied in this project when modelling
the horizontal road profile. The road model used defines the curvature of the road
at certain distances along the road geometry from a given origin point. With this
description, a transformation from curvature to road heading in each point is then
possible. This will later prove to be important when the model of the vehicle com-
bination and the road are going to be connected, more on this in section 3.3.

3.2.2 Vertical road geometry

The requirements for vertical design are also stated in [18]. The allowed geometric
shapes for vertical design are straight lines, circular arcs and parabolas, where only
the latter two are allowed when designing vertical curves. The minimum concave
radii allowed for vertical curves ranges from 2000-6500 [m] depending on the length
of the curve and whether or not road lighting exists. The vertical slope of the
road, sloperoad, is defined in [%] and is calculated as the relationship between the
vertical distance traveled divided by the horizontal distance traveled. Furthermore,
the maximum slope allowed for Swedish roads is 8%, and to obtain the angle which
the road slopes, αroad, the following equation can be used:

αroad = tan−1(sloperoad) (3.5)

This means that the maximum slope allowed for Swedish roads is 4.5739 degrees,
which is why the small angle approximation has been used. The vertical road mod-
elling in this project follows the same structure as the horizontal road modelling,
i.e., that sloping angles are defined at certain distances from a given origin point.
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Figure 3.6: Visual representation of a road description in the global coordinate
system from position point p0 to pend. Along the description an arbitrary position
point pi is visualized, demonstrating the local coordinate frame present in each point
along the road description.

3.3 Vehicle positioning with respect to the road
Now that models for the vehicle and road description have been presented, they need
to be connected. First, a measure to relate the position of the vehicle combination
compared to the road geometry is needed. This is done by introducing the auxiliary
states d1, d4, s1 and s4, all defined in meters.

The states s1 and s4 each describe the length along the description of the road from
a given position p0. If slightly simplified, it can be said that s1 and s4 are the
distances travelled along the clothoid description of the road, from a given starting
point p0, for the center of mass of the tractor and the rearmost axle of the second
semi-trailer respectively. The states d1 and d4 describe the perpendicular offset from
the road geometry to the center of mass for the truck and to the center of the rear-
most axle of the second semi-trailer respectively. In fig. 3.6, a visual representation
of a road description together with an arbitrary point i can be seen. In the position
point pi, the local coordinate system describing the directions of s and d is visualized.

As mentioned in section 3.2.1, the road model is defined as curvatures at certain
points along the road. By interpolating between these points, it is possible to obtain
the curvature along the entire road. Then, by transforming the curvature into the
angle the road has compared to the global X axis, the heading can thus also be
obtained for the entire road. To describe the heading angle of the road in an arbitrary
point pi, this is done as:

φroad(pi) =
i∑

k=1
φroad,k−1 + (pk − pk−1)ck (3.6)
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where pk is the total distance travelled along the road geometry from a starting
point p0 and ck is the curvature at that point. With this formulation, the heading
of the entire road can be placed in a look-up table that is mapped to the distance
travelled along the road description.

The information regarding road heading is important as the states d1 and d4 de-
pend on this information at the positions s1 and s4. However, before stating the
expressions for d1 and d4, expressions for the states s1 and s4 evolution over time
are required.

ds1

dt
= vx,1 (3.7a)

ds4

dt
= vx,1 (3.7b)

Their first order differential equations are chosen to simply be the longitudinal ve-
locity. This however assumes that the truck follows the road description without any
major deviations so that the longitudinal velocity of the truck also is the velocity
in which it travels along the road geometry. With this information, the expressions
for d1 and d4 can be formulated as following:

dd1

dt
= vx,1 sin(φ0 − φroad,1) + vy,1 cos(φ0 − φroad,1) (3.8a)

dd4

dt
= vx,4 sin(φ4 − φroad,4) + vy,4 cos(φ4 − φroad,4) (3.8b)

where φroad,1 and φroad,4 describes the heading angle of the road in the points defined
by the states s1 and s4 and φ4 defines the heading angle for the second semi-trailer.

φroad,1 = φroad(s1) (3.9a)

φroad,4 = φroad(s4) (3.9b)

Important to note, is that this formulation of the lateral offset is not linear as both
the states include sinusoidal components. Furthermore, the heading angle and the
longitudinal and lateral velocities for the second semi-trailer are not available in our
state vector.

The sinusoidal components in the lateral offset states are removed by, again, using
the assumption that the truck follows the road. Then the difference between φ0 and
φroad,1 and between φ4 and φroad,4 become small and the small angle approximation is
again applicable. The heading angle for the second semi-trailer can also be obtained
rather easily, this by adding the heading angle for the truck with all the articulation
angles between the tractor, trailers and the dolly.

φ4 = θ0 + θ1 + θ2 + θ3 (3.10)

Since the truck is assumed to follow the road, vx,4 is assumed to be equal to vx,1
since all connection points are rigid. The only unknown variable left is thus the
lateral velocity of the second semi-trailer. This can be obtained by propagating the
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lateral velocity in the truck, through the vehicle combination, back to the second
semi-trailer. This has been done in the same manner as in [2] and for a more in
depth explanation the reader is advised to study the referenced material.

With these simplifications and re-writings, the resulting equations for dd1/dt and
dd4/dt can be written linearly as:

dd1

dt
= vx,1(φ0 − φroad,1) + vy,1 (3.11a)

dd4

dt
= vx,1(φ4 − φroad,4) +

(
− (a2 + a3 + a4 + b4 + c1 + c2 + c3)θ̇0

− (a2 + a3 + a4 + b4 + c2 + c3)θ̇1 − (a3 + a4 + b4 + c3)θ̇2

− (a4 + b4)θ̇3 + vy,1 − θ1vx,1 − θ2vx,1 − θ3vx,1
) (3.11b)

Now, the linear auxiliary states can be added to the lateral model so that it is
possible to relate the vehicle combination to the road. This results in the following,
final, state and control vector for the lateral model.

ζlat =
[
vy,1, φ0, φ̇0, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, δ, s1, d1, s4, d4

]T
, ulat =

[
δ̇
]T

(3.12)

3.4 Traffic modelling
Another aspect of highway driving that needs to be handled is modelling of other
traffic participants, this as the highway very seldom is free from other vehicles. Only
one major distinction has been made between different types of traffic participants,
that is whether it is classified as a truck or a car. This difference in object classifica-
tion will affect the objects retardation capabilities. In this project the values are set
to be representative, where cars are modelled to be able to decelerate with 7 [m/s2]
whereas trucks are modelled to only be able to decelerate with 5.9 [m/s2].

In this project, up to three objects will be taken into consideration for the trajectory
planner. All objects are modelled with a single integrator to describe their longitu-
dinal dynamics, to drive with constant velocity and are assumed to stay in the same
lane as they start. This means that no lateral model is required and the following
longitudinal model can be stated for an arbitrary object i:

d∆px,i

dt
= ∆vx,i (3.13a)

∆vx,i = vx,ego − vi (3.13b)

where ∆px,i is the distance from object i rearmost point to the front of the ego
vehicle, measured in [m], if the object is in front of the ego vehicle. If the object
is behind the ego vehicle, ∆px,i is then the distance from the rearmost point of the
second semi-trailer to the front of object i, measured in [m]. Note that in this case
eq. (3.13b) changes sign. ∆vx,i is the difference in velocity of object i compared to
the velocity of the ego vehicle measured in [m/s]. These states are used as auxiliary
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states in the longitudinal model. With this addition, the final state and control
vector for the longitudinal model can be stated as:

γlong =
[
vx,1, ax,1, ax,1des,∆px,1,∆px,2,∆px,3]T , ulong =

[
jx,1des

]T
(3.14)

3.5 High-fidelity plant
To evaluate and tune the trajectory planner, a high-fidelity plant model of an A-
double has been used. This model is implemented in Matlab/Simulink and is devel-
oped and validated by Volvo Group Trucks Technology. It models all of the axles
and its tires independently and provides a detailed description of the vehicle chas-
sis, suspension, steering system and powertrain. Furthermore, the high-fidelity plant
provides more realistic results compared to the single track plant and will thus give
an indication on how the trajectory planner would perform in a real truck.

3.6 Summary
In this chapter, an introduction to the models that are used in this project were
given. It describes the difference between the longitudinal and lateral modelling
and the phenomena of lateral off-tracking and rearward amplification. Furthermore,
how the horizontal and vertical geometries of the road has been modelled are dis-
cussed followed by a description on how the relationship between the road and the
truck is modelled. In addition, the modelling of fellow traffic participants are pre-
sented. Finally, a brief introduction to the high-fidelity plant developed by Volvo
Group Trucks Technology, which is used to evaluate and tune the trajectory planner,
is presented.

In the next chapter, the theory in chapter 2, will be concatenated with the models
described in this chapter to state the trajectory planning problem as an optimal
control problem.
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4
Trajectory planning as an optimal

control problem

The size and weight of the A-double combination presents some challenges for the
trajectory planner. These properties, along with the lateral phenomena discussed in
section 3.1.1, the road description and traffic environment needs to be handled by
the trajectory planner in order for it to plan safe and smooth trajectories. In this
chapter, the theory and models in chapter 2 and 3 respectively, will be concatenated
in order to formulate the trajectory planning problem as two MPCs.

In this project, real-time performance is a key property. Therefore, the longitudinal
and lateral planning problem has been separated into two loosely coupled MPC for-
mulations. The separation makes it possible to linearize the lateral vehicle model
under the assumption of constant longitudinal velocity in each time step, while the
longitudinal velocity can be modeled as a state in the longitudinal planner. Both
the OCP in the longitudinal and in the lateral MPC will be stated as a convex QP
problem with a quadratic objective functions and linear constraints.

This chapter will start with a description on how and why the trajectory planner has
been separated into one longitudinal and lateral trajectory planner in section 4.1.
After that, a discussion about the definitions of safe and smooth trajectories will
be presented in section 4.2. Section 4.3 and 4.4 will present the formulation of the
OCP for the longitudinal and lateral planner respectively. Thereafter, the complete
trajectory planner will be presented in section 4.5. Lastly, a short summary of this
chapter will be presented in section 4.8.

4.1 Separation of lateral and longitudinal trajec-
tory planning problem

The fundamental problem the trajectory planner is designed to solve, is to plan
trajectories in the lateral and the longitudinal dimension without violating any con-
straints. This is done by calculating the desired jerk of the truck in order to obtain
some predefined, desired, longitudinal velocity. Similarly, the desired steering angle
rate is calculated so that a, predefined, desired lateral position can be achieved. As
presented in section 2.3, given a model and an objective function, a control signal
can be calculated by numerical optimization and simulation of the model by using
the MPC framework. The same concept also applies if two models are used and

23



4. Trajectory planning as an optimal control problem

two control signals were to be calculated by a single MPC. By inserting the lateral
and longitudinal models, combined with auxiliary states, and a suitable objective
function into a single MPC, the jerk and the steering angle rate of the truck could
be calculated simultaneously.

However, as discussed in section 3.1.2, the lateral model needs a constant longitu-
dinal velocity in order for the dynamics to be linear. If both the longitudinal and
lateral model would be present in the same MPC, this would mean that the longitu-
dinal velocity would be a vehicle state and linear lateral dynamics would thus not be
possible, as discussed in section 3.1.2. To solve this issue, the trajectory planner has
been separated into two, one planning the longitudinal trajectory and one planning
the lateral trajectory. Recall from section 2.3 that the MPC calculates a control
signal for each time step over the entire prediction horizon. This means, that by
first calculating the desired jerk of the truck, the resulting longitudinal velocity is
also available in each time step over the prediction horizon. These longitudinal ve-
locities can then be passed to the lateral trajectory planner and be inserted into the
problem at the correct time instant. In this manner, the longitudinal velocity can
be used as a time varying constant in the lateral trajectory planning problem and
linear dynamics can be ensured. In fig. 4.1, a schematic overview of the separation
can be seen.

Figure 4.1: Separation of the trajectory planner into a lateral and longitudinal
trajectory planning problem.

Important to note is that the auxiliary states calculated for the lateral planner
are the auxiliary states added to the lateral model presented in section 3.3 and
equivalently, the auxiliary states calculated for the longitudinal planner are the
auxiliary states added to the longitudinal model in section 3.4. Furthermore, if not
otherwise stated, the term trajectory planner will henceforth refer to the combination
of both the lateral and the longitudinal trajectory planner.
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4.2 Desirable trajectories

Now that the structure of the trajectory planner has been presented, definitions
regarding what a desirable trajectory is needs to be presented for both the lateral
and the longitudinal planning. These definitions have been divided into two cate-
gories, safe and smooth trajectories, and will now be presented. Furthermore, as
the actuators have limited capabilities, a set of actuator constraints will also be
presented.

4.2.1 Safe trajectories

Safety is a very important aspect which the trajectory planner must handle. To
generate safe trajectories, there are some sets of constraints, both laterally and
longitudinally, that needs to be taken into account. These constraints will now be
presented together. Note however that they will only affect their corresponding
trajectory planner.

4.2.1.1 Lateral acceleration

To limit the additional swept path of the trailers and to make sure that none of
the trailers will roll over, the lateral acceleration will be constrained. The static roll
over limit for passenger cars is typically around 1.1 g, however, due to the relatively
higher center of gravity, the static roll over limit for heavy trucks can be as low as
0.35 g [4]. This is equal to an acceleration of roughly 3.44 [m/s2]. The absolute
value of the lateral acceleration, in both the truck and the second semi-trailer, is
therefore conservatively limited to be below 2.5 [m/s2].

The reason for why a limit on both the truck and second semi-trailer is imposed is
because of RA. If a lateral acceleration of only 2 [m/s2] would be applied to the
truck, the RA could amplify this acceleration so that an acceleration of 3.48 [m/s2]
would affect the second semi-trailer. This acceleration would thus risk the trailer to
roll over and is why the additional acceleration bound is present. Note that no bound
is placed on any of the units between the truck and the semi-trailer. This because
the RA is highest at the rearmost unit and thus provides a robust bound for all units.

It should be noted that the lateral acceleration for the tractor, ay,1, is present in
the lateral state vector as the state derivative for vy,1. Then, in the same manner
as discussed in section 3.3, the lateral acceleration for the second semi-trailer can
be obtained by propagating ay,1 through the truck. This results in the following
expression for ay,4:

ay,4 = −(a2 + a3 + a4 + b4 + c1 + c2 + c3)θ̈0

− (a2 + a3 + a4 + b4 + c2 + c3)θ̈1 − (a3 + a4 + b4 + c3)θ̈2

− (a4 + b4)θ̈3 + ˙vy,1 − θ̇0vx,1

(4.1)
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4.2.1.2 Distance constraints

When the truck moves in a lane, with no intentions to leave, there are some limits
to where the truck can move. These limits stem from the lane markings for the road
and safety distances to fellow traffic participants that drives in the same lane as the
truck. Intuitively, the lane markings on the road provides a natural set of lateral
constraints for the auxiliary states d1 and d4. However, as other vehicles may be
present in neighboring lanes, these constraints have also been set conservatively so
that the truck and second semi-trailer stay within the current lane markings plus
an additional safety margin of 0.2 meters, which is added to each side. The width
of the tractor is approximately 2.5 [m] and the lane width on Swedish highways
are between 3.25-3.5 [m] [18]. This means that the states d1 and d4 are allowed to
deviate 0.175-0.3 [m] in both directions from the lane center.

The longitudinal safety distance that should be kept to an obstacle i ahead is not
fixed, but is instead velocity dependent. This as a constant safety distance becomes
very conservative in low speeds if tuned for high velocities and dangerously low in
high speeds if tuned for low speeds. This safety distance is instead designed to allow
the truck to stop 5 [m] behind the obstacle ahead, even if that obstacle brakes as
hard as possible, and is calculated as:

dsafe
obs,i = vx,1(tbrake + tactuate) (4.2)

where tactuate is a time constant for the system to detect that the obstacle ahead
has started to brake and for the ego vehicle to start braking. This is dependent on
the system setup on the truck and has therefore arbitrarily been chosen to be 0.1
[s]. The constant tbrake can be seen as the time headway the truck needs to have to
the preceding obstacle, minus the actuation time, in order to be able to stop 5 [m]
behind the obstacle ahead if it needs to fully brake. Note that this constant will be
different depending on the obstacle type that is in front of the truck as passenger
cars are defined to have a higher deceleration capabilities than trucks.

4.2.1.3 Steering constraints

As the intended working domain of the controller are Swedish highways, this means
that the curves have a large radius and it can be assumed that the general longitudi-
nal velocity will be quite high. This means that the use of the full steering range of
the truck will not only be unnecessary, but could also be dangerous. Large steering
angles in high velocities could cause the vehicle combination to roll over or cause
understeer if the road surface has low friction. The absolute value of the steering
angle, δ, has therefore been constrained to be below 0.1 [rad] and the absolute value
of the steering angle rate, δ̇, has been constrained to be below 0.05 [rad/s].

4.2.2 Smooth trajectories
Another important property is the smoothness of the generated trajectories from
the trajectory planner. Furthermore, the truck needs to drive in a smooth, human
like behaviour that ensures ride comfort for potential passengers and so it does
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not cause any discomfort for other traffic participants. In this project, smoothness
refers to keeping the lateral acceleration and the longitudinal jerk of the truck within
moderate levels.

4.2.2.1 Tuning of lateral controller

When tuning the lateral controller, two different approaches can be used, either a
tuning for precise reference tracking or a tuning for smooth lane changes. Precise
reference tracking is desirable as that would imply that the vehicle combination
stays within the lane boundaries and drives in the middle of the ego lane. However,
when receiving a lane change request, the reference quickly changes from one lane
to another. This would cause the lateral distance of the truck to be far from it’s
reference and would result in large control actions in order to bring the state closer
to the reference quickly, which in turn would cause rapid, jerky, movements. A con-
troller tuned for smooth lane change maneuvers would however not generate such
large control signals when being far off from the reference, and a much smoother lane
change can be made. This would however mean that the lane following performance
of such a controller would be worse as it would not track the middle of the lane as
well. Therefore, it is always a trade-off when tuning the controller for the different
maneuvers. It should be noted that the parameters in the controller simply could
be changed online to provide good performance for the intended maneuver. This
has however not been done in this project. Instead, to be able to execute smooth
lane changes while still using the tuning setup used for lane following, a pre-defined
optimal trajectory is laid out and used as the lateral reference while executing a
lane change. In this way, how smooth the lane change is will mostly depend on how
smooth the reference trajectory is as the controller is tuned for reference tracking.

This reference trajectory is a fifth degree polynomial, also called quintic polyno-
mial, that defines the optimal path between two points with regards to minimum
lateral jerk. The polynomial can be derived by solving a minimization problem that
minimizes the jerk required for a point mass, modelled with a triple integrator, to
transition between a start point and an end point. The optimal jerk profile can then
be used to calculate the lateral distance reference as a function of how far the truck
has travelled along the path between the points. For a more detailed description on
how this has been derived the reader is referred to [2] as the same implementation
is used. The resulting reference polynomial for lane changing is then:

d1,ref (s) = −6(d1,0 − d1,1)(s− slc)5

∆t5lcv5
x,lc

+ 5(d1,0 − d1,1)(s− slc)3

∆t3lcv3
x,lc

− 15(d1,0 − d1,1)(s− slc)
∆tlcvx,lc

+ 1
2(d1,0 + d1,1)

(4.3)

where d1,0 and d1,1 represent the lateral start and end points respectively, slc is a
pre-defined longitudinal distance ahead for when the lane change should occur. Note
that this distance will decrease as the truck approaches this point. s is a vector with
longitudinal distances ahead, from the current position, that are mapped to a lateral
distance reference, ∆tlc is a pre-determined time for a comfortable lane change and
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vx,lc is the longitudinal velocity during the lane change. In this project, ∆tlc has
been chosen to be 7 seconds.

4.2.2.2 Longitudinal jerk

The absolute value of the longitudinal jerk of the truck has been constrained to be
below 2 [m/s3] so that the generated trajectories are smooth and don’t cause any
unnecessary discomfort for the surrounding drivers and/or any possible person(s) in
the truck.

4.2.3 Actuator constraints
Apart from the set of constraints that appear from ensuring smooth and safe tra-
jectories, an additional set needs to be added to ensure that the capabilities of the
actuators are not violated. This results in two additional constraints, namely on the
longitudinal velocity and on the longitudinal acceleration. These constraints depend
solely on the truck the controller is implemented on and will differ from truck to
truck. Therefore, the actuator constraints used in this project are not aimed at
replicating any particular truck, but are instead estimations.

4.2.3.1 Longitudinal velocity

The upper boundary condition for the longitudinal velocity could be chosen to be
the maximum speed limit for the truck, but has instead been set to represent the
maximum capability of the truck. This enables the desired longitudinal velocity of
the truck to be set freely within actuator boundaries. This means that the trajectory
planner does not ensure that legal speed limits are followed. In addition, as the
derived model of the A-double is validated in the speed range of 30-80 [km/h], the
lower bound has been set to 30 [km/h] (8.33 [m/s]). However, the upper velocity
limit has been set to 90 [km/h] (25[m/s]) to better represent the capabilities of the
A-double and as the model performance is found to be acceptable in that velocity
region.

4.2.3.2 Longitudinal acceleration

The acceleration capability of a truck depend on a number of things, for example the
current gear, the slope of the road and the power of the engine. Since the operational
domain of the controller is on Swedish highways, the acceleration capabilities are
assumed to be rather low as the velocity generally is high on highways. In addition,
given the heavy weight of a fully loaded A-double combination, the acceleration
capability is even further limited. Because of this, the acceleration is assumed to
be no higher than 0.25 [m/s2] and the upper acceleration constraints is therefore
also set to 0.25 [m/s2]. This however means that the maximum slope the vehicle
combination can climb, while still maintaining a constant velocity, is limited and
can be calculated by using eq. (3.2). The resulting slope is then around 2.5 [%], or
approximately 0.025 [rad], which is significantly lower than the maximum allowed
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slope on Swedish highways of 8 [%]. This is an issue that has not been dealt with in
this project and a hill with greater slope than 2.5 [%] has not been used. Though, it
should be noted that the current acceleration limit of 0.25 [m/s2] is based on that
the truck drives in high speeds and therefore in a high gear. Higher acceleration
capabilities are possible if lower gears are used, but it is not modeled in this project.

The deceleration capabilities however, are much greater and can be as high as 5.9
[m/s2]. The lower constraint for the longitudinal acceleration has therefore been set
to this limit.

4.3 Formulation of the longitudinal planner

In this section, the formulation of the longitudinal planner is presented. The optimal
trajectory generated by the longitudinal planner follows a velocity request, whilst
making sure that the longitudinal dynamics and limits of the truck are not violated.
The velocity request is supplied by some external decision making functionality
which also supply the longitudinal planner with lane change requests. In case of a
lane change request, the longitudinal trajectory planner is responsible for making
sure that the target lane for the lane change is free from other traffic participants.
This information is then passed forward to the lateral planner, which will plan the
lane change if the longitudinal planner allows it. For an overview of the inputs and
outputs of the longitudinal planner, see fig. 4.2.

Figure 4.2: Longitudinal planner and its interface. The longitudinal velocity and
lane change requests, current traffic situation, road and the state measurements are
used as inputs. A predicted longitudinal velocity, information whether a lane change
is possible or not and a desired longitudinal jerk are passed as outputs.

4.3.1 Objective function
The objective function is stated as quadratic function that should be minimized:

minimize
jx,1des

∫ T

t=t0

1
2
(
K long

1 (vxreq(t)− vx,1(t))2 +K long
2 ax,1des(t)2

+K long
3 jx,1des(t)2

)
dt

(4.4)
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where T is the length of the prediction horizon in [s], vxreq is the requested velocity,
vx,1 is the velocity of the tractor, ax,1des is the desired acceleration of the tractor,
jx,1des is the desired longitudinal jerk of the tractor and Ki, i = 1, 2, 3, are the
tuning parameters for the objective function. The states and tuning parameters in
the objective function have been chosen in order to make the trajectory planner able
to plan safe and smooth trajectories. The first term, (vxreq − vx,1) arises to ensure
that it is optimal to follow the velocity reference. Furthermore, the terms ax,1des and
jx,1des are added to give an incentive for the trajectory planner to generate smooth
trajectories.

4.3.2 Constraints
The constraints for the longitudinal trajectory planner are added to the OCP for-
mulation to state the dynamics and limits of the system, as described in section
2.1. These constraints are separated into equality and inequality constraints. The
equality constraints are used in the OCP to represent the dynamics of the system.
This way, the OCP can predict the system state evolution in time. The inequality
constraints are used in the OCP formulation to state the limits of the system.

Equality constraints

In the longitudinal planner, the system consist of the longitudinal vehicle model,
presented in section 3.1.3 and the auxiliary states for relating the vehicle to the
surrounding traffic, presented in section 3.4. Using these models, the current mea-
surement of vehicle, the road states and the surrounding traffic, the longitudinal
planner can simulate how the vehicle states will evolve in time, relative to the sur-
rounding traffic. The equality constraints can be described as:

dζlong

dt
= f(ζlong,ulong) (4.5)

where ζlong is the state vector and ulong is the control vector:

ζlong =
[
vx,1, ax,1, ax,1des,∆px,1,∆px,2,∆px,3]T , ulong =

[
jx,1des

]
(4.6)

Furthermore, to avoid discontinuities in the states, an initial value constraint is
added to ensure that the initial values of the states in the OCP, for each new time
instance, correspond to the current state values.

ζlong(0) = ζcurrent
long (4.7)

Inequality constraints

From section 4.2, the inequality constraints for the longitudinal planner are sum-
marized as follows. For a more detailed explanation of the constraints, the reader is
referred to section 4.2.

8.33 ≤ vx,1 ≤ 25 (4.8)
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where the velocity is stated in [m/s].

− 5.9 ≤ ax,1des ≤ 0.25 (4.9)

where the acceleration is stated in [m/s2].

− 2 ≤ jx,1des ≤ 2 (4.10)

where the longitudinal jerk is stated in [m/s3].

∆px,1 ≥ dsafe
obs,1 (4.11)

where ∆px,1 is defined as the relative distance to closest preceding vehicle in our
lane.

∆px,2 ≥ dsafe
obs,2 (4.12)

where ∆px,2 is defined as the relative distance to closest preceding vehicle in an
adjacent lane.

∆px,3 ≤ −15 (4.13)
where ∆px,3 is defined as the relative distance to closest trailing vehicle in an adjacent
lane and its constraint is defined in [m]. Furthermore, dsafe

obs,i is also defined in meters.

The relative distance constraints, dsafe
obs,i i = 2, 3, are only active when a lane change

is in progress and only refer to the vehicles in the target lane. When no lane change
is in progress, these two constraints are disregarded. The distance constraints are
changed depending on which speed the ego vehicle has, and this functionality is
described in 4.2.1.2.

4.3.3 Final OCP formulation
The final OCP formulation is a combination of the objective function and the equal-
ity and inequality constraints. This becomes an initial value problem where the
initial value for the states is the measurement of the state in the current time step.
The formulation thus becomes the following:

minimize
jx,1des

∫ T

t=t0

1
2
(
K long

1 (vxreq(t)− vx,1(t))2 +K long
2 ax,1des(t)2

+K long
3 jx,1des(t)2

)
dt

subject to dζlong

dt
= f(ζlong,ulong),

ζlong(0)= ζcurrent
long ,

8.33 ≤ vx,1(t) ≤ 25,
− 5.9 ≤ ax,1des(t) ≤ 0.25,
− 2 ≤ jx,1des(t) ≤ 2,
∆px,1(t) ≥ dsafe

obs,1(t),
∆px,2(t) ≥ dsafe

obs,2(t),
∆px,3(t) ≤ −15

(4.14)
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where ζlong is the state vector and ulong is the control vector:

ζlong =
[
vx,1, ax,1, ax,1des,∆px,1,∆px,2,∆px,3]T , ulong =

[
jx,1des

]
(4.15)

4.4 Formulation of lateral planner
In this section, the formulation of the lateral planner is presented. The optimal
trajectory follows a lateral reference, for example the center of the lane or a reference
for changing lane. This, while ensuring that limits from the road, actuators and
lateral dynamics of the truck are kept. As previously stated, when a lane change
request is received, the longitudinal planner determines whether a lane change is
possible or not. This is communicated to the lateral planner by the input lane
change possible. For a overview of the inputs and outputs of the lateral planner, see
fig. 4.3.

Figure 4.3: Lateral planner and its interface. The predicted longitudinal velocity,
the signal lane change possible, the current traffic situation and the state measure-
ments are used as inputs. The steering angle rate is passed as the output.

4.4.1 Objective function
Similarly as for the longitudinal planner, the objective function is stated as a
quadratic function,

minimize
δ̇

∫ T

t=t0

1
2
(
K lat

1 (d1ref (t)− d1(t))2 +K lat
2 (d4ref (t)− d4(t))2

+K lat
3 δ̇(t)2

)
dt

(4.16)

The term T is the length of the prediction horizon in [s], d1ref and d4ref are the lateral
distance references for unit 1 and 4 respectively, d1 and d4 are the lateral distance
offsets from the road geometry of unit 1 and 4 respectively, δ̇ is the steering angle rate
and Ki, i = 1, 2, 3, are the tuning parameters for the objective function. The states
and tuning parameters has been chosen in order to make the trajectory planner
able to plan safe and smooth trajectories. The first and second term, d1ref − d1
and d4ref − d4, are stated to make it optimal to follow the lateral references for the
trajectory planner. Furthermore, the last term, δ̇ is stated to give an incentive to
keep the steering angle rate as low as possible to allow for a smooth behaviour.
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4.4.2 Constraints
As discussed in 2.1 and 4.3.2, constraints are used in the OCP to describe the system
dynamics and limits and are separated into equality and inequality constraints. The
equality constraints are used in the OCP to predict the system state evolution in
time and the inequality constraints are used by the OCP to state the limits for the
system models in the equality constraints.

Equality constraints

In the lateral planner, the system consist of the lateral vehicle model, presented in
section 3.1.2, and auxiliary states for connecting the vehicle to the road, presented
in section 3.3. Using these models and the current measurement of the states, the
lateral planner can simulate how the vehicle states will evolve in time, relative the
road. The equality constraints can be described as:

dγlat

dt
= f(γlat,ulat) (4.17)

where γlat is the state vector and ulat is the control vector:

γlat =
[
vy,1, φ0, φ̇0, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, δ, s1, d1, s4, d4

]T
, ulat =

[
δ̇
]

(4.18)

Also, as described when stating the equality constraints for the longitudinal planner,
to avoid discontinuities in the states, an initial value constraint is added.

γlat(0)= γcurrent
lat (4.19)

Inequality constraints

For the lateral planner, the following inequality constraints are used in the OCP.
For a more detailed description, one is refereed to 4.2.

d1 ≤ d1 ≤ d1 (4.20)
d4 ≤ d4 ≤ d4 (4.21)

where d1 is the lower limit and d1 is the upper limit of the distance from the tractor
to the reference and d4 is the lower limit and d4 is the upper limit of the distance
from the rearmost axle to the reference.

The values of the upper and lower limits for d1 and d4 depends on the current ma-
neuver of the truck. If the truck is following the lane, the upper and lower limits
of d1 and d4 will be the same as described in section 4.2.1.2. However, if the truck
is executing a lane change, the limit in the direction of the lane change will be re-
laxed so that the trajectory planner is able to plan a trajectory into the target lane
without breaking any constraints. For example, if the lane change is to the left, the
limits in the left direction of d1 and d4 are extended so that they also include the
target lane, whilst the limits in the right direction of d1 and d4 still are the limits
in the departure lane. When the lane change is completed, the limits in the right
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direction of d1 and d4 are moved to the target lane.

The constraints for the steering angle and the steering angle rate are defined in [rad]
and [rad/s] correspondingly, and are presented below.

− 0.1 ≤ δ ≤ 0.1 (4.22)

− 0.05 ≤ δ̇ ≤ 0.05 (4.23)
The last set of constraints for the lateral planner is the lateral acceleration of the
tractor and for the rearmost axle. These are defined in [m/s2] and are presented
below:

− 2.5 ≤ ay,1 ≤ 2.5 (4.24)
− 2.5 ≤ ay,4 ≤ 2.5 (4.25)

4.4.3 Final OCP formulation
The final OCP formulation is a combination of the objective function and the equal-
ity and inequality constraints. Just as the longitudinal formulation, this becomes an
initial value problem where the initial value for the states is the measurement of the
state in the current time step. This results in the following formulation:

minimize
δ̇

∫ T

t=t0

1
2
(
K lat

1 (d1ref − d1(t))2 +K lat
2 (d4ref − d4(t))2

+K lat
3 δ̇(t)2

)
dt

subject to dγlat

dt
= f(γlat,ulat),

γlat(0)= γcurrent
lat ,

d1 ≤ d1(t) ≤ d1,

d4 ≤ d4(t) ≤ d4,

− 0.1 ≤ δ(t) ≤ 0.1,
− 0.05 ≤ δ̇(t) ≤ 0.05,
− 2.5 ≤ ay,1 ≤ 2.5,
− 2.5 ≤ ay,4 ≤ 2.5

(4.26)

where γlat is the state vector and ulat is the control vector:

γlat =
[
vy,1, φ0, φ̇0, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3, δ, s1, d1, s4, d4

]T
, ulat =

[
δ̇
]T

(4.27)

4.5 Complete trajectory planner
Now that the longitudinal and lateral trajectory planners have been presented sep-
arately, the combination of the two will be presented as the complete trajectory
planner. In fig. 4.4, a schematic overview of the complete trajectory planner is
presented. The longitudinal and the lateral planner are treated as two separate
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problems. However, as the lateral planner needs the longitudinal velocity in its
model of the lateral dynamics, the predicted longitudinal velocity is used as input
to the lateral planner. Also, as fellow traffic participants are handled by the longi-
tudinal planner, information describing if a lane change is possible to initiate needs
to be given as an input to the lateral planner.

Furthermore, the complete trajectory planner needs auxiliary state calculations for
both planners, as both the lateral and longitudinal planner include auxiliary infor-
mation such as the relative distance to fellow traffic participants and the connection
to the road. The planner also needs measurements of the states of the truck, the
road and information about fellow traffic participants, and these can be seen as
inputs in fig. 4.4. Lastly, requests of lane changes and longitudinal velocity are also
passed as inputs and are generated by some external decision making functionality.

Figure 4.4: Complete trajectory planner including the longitudinal planner and
longitudinal auxiliary state calculation and the lateral planner with corresponding
calculation of auxiliary states. Measurements of the road and traffic are used as in-
puts to the trajectory planner through perception systems. Requests of lane change
and longitudinal velocity are given from a decision making functionality and are also
passed as inputs. Lastly, the measurements of the truck states are also passed as
inputs to the trajectory planner.

The output from the trajectory planner is then the combination of the longitudinal
control, jx,1des, and the lateral control, δ̇.

4.6 Prediction horizon and sampling rate
As MPC is based on the receding horizon idea, a design choice of prediction horizon,
Tph defined in [s], must be made. As described in section 2.3, the prediction horizon
can be viewed as a fixed time-window of Tph seconds that moves forward in time,
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over which the models are simulated.

When choosing the value of Tph there is a trade-off. Generally, longer prediction
horizon includes more information into the OCP formulation, which in turn results
in better control signals. However, this additional information also increases the
computational time as more data needs to be calculated in each time step. Fur-
thermore, the effect of model miss-match and integration errors increase with longer
prediction horizon and the actions of other traffic participants become virtually im-
possible to predict over long time intervals.

In [19], it was found that the lane change intent of other traffic participants could
be predicted 2 [s] in advance. This indicates the complexity with using models for
predicting how fellow traffic participants will move in time.

Because of these reasons, two different prediction horizons will be used in order to
evaluate the performance of the trajectory planner. Furthermore, it should also be
noted that the length of the prediction horizon in the longitudinal MPC does not
necessarily need to be the same as the one in the lateral MPC. In this project how-
ever, the length of the prediction horizons will be the same in both MPCs.

Another design choice is the sampling time, Tsr, defined in [s], which is the dis-
cretization step used when discretizing the OCP problem. This way, Tsr determines
the resolution of the data in the OCP, i.e. with a large Tsr less data is included in
the problem. A large Tsr makes it possible to choose a larger prediction horizon,
while having the same computational time as when having a small Tsr and short
prediction horizon. However, the sampling time can not be chosen completely freely,
there is a rule of thumb when choosing the sampling time of a system. The sam-
pling time should be chosen to be between a factor of 5 to 30 times faster than the
fastest dynamics in the system [20]. By investigating the eigenvalues of the system,
the characteristics of the system dynamics can be determined. This has been done
in [2], where the fastest dynamics of the same linear A-double model used in this
project was identified to be 2 [Hz]. Also, as will be discussed in chapter 5, the
longest solution time for the trajectory planner is around 0.012 [s]. The sampling
time must be set to a value that is higher than the solution time, but also short
enough to give a good resolution. The sampling time has therefore been set to 0.05
[s].

4.7 Implementation tools
Since the OCP uses quadratic programming, the size of the OCP grows polynomi-
cally with the states and control signal and quickly becomes hard to handle man-
ually. Tools such as FORCES [21], YALMIP [22] and ACADO [23] have therefore
been developed to generate the necessary structure required by QP solvers. This
by simply formulating the mathematical description of the OCP in the tool. In this
project, ACADO, or Automatic Control and Dynamic Optimization, has been cho-
sen because it is an open-source software available for free online, the simple syntax
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used when stating the OCP and the possibility to generate C code for the stated
OCP.

ACADO uses a simple mathematical description of the OCP and then generates C
code which then can be efficiently solved by a QP solver. The QP solver used in
this project is qpOASES, which uses an active set method to solve the QP [24]. It
should be noted that the OCPs for the lateral and longitudinal trajectory planning
problems are implemented separately in ACADO. However, the implementation of
each trajectory generator follows these same steps:

• The states, control signal, objective function and constraints for the OCP are
stated in ACADO-syntax together with some code generation and solver set-
tings. The QP solvers supported for code generation by ACADO are qpOASES
and FORCES [25].

• ACADO then generates C code for the OCP and also interfaces the generated
code with the chosen solver, in this case qpOASES.

• Support functions, to handle for example traffic and road related updates, and
the communication between the longitudinal and lateral trajectory planner
have then been written in C++ code. This to interface the inputs to the
trajectory planner with the generated C code from ACADO.

The code generation settings in ACADO enables the user to choose which discretiza-
tion and integration types that are to be used in the OCP and also how many in-
tegration steps that are to be used. The discretization strategy used for the system
in this project is a multiple shooting node strategy which partitions the state and
control trajectories over the prediction horizon. Between each discretization node,
the system is then integrated with a Runge-Kutta 4 method with 5*N integration
points, where N is the number of points in the prediction horizon.

4.8 Summary
This chapter has introduced the formulation of two OPC:s, one for the lateral plan-
ner and one for the longitudinal planner. The theory from chapter 2 and the models
derived in chapter 3, are combined with constraints to state the OCP:s which will
generate safe and smooth trajectories for the truck. Why the trajectory planner has
been divided into two separate MPCs was discussed followed by definitions of what
a desirable trajectory is for both planners.

The resulting trajectory planner consists of one longitudinal and one lateral plan-
ner, which were presented separately. The lateral planner uses information about
the longitudinal velocity and if a requested lane change is possible to execute. This
information is supplied by the longitudinal planner, otherwise the planners are com-
pletely separated.

The choice of prediction horizon and the sampling interval was presented and the
chapter ended with a description of the tools used in the implementation of the
trajectory planner.
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In the next chapter, the trajectory planner will be tested for some scenarios and the
results will be presented.
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Results and discussion

Now that the modeling and the complete trajectory planner has been presented,
the performance of the trajectory planner needs to be evaluated. In order to do
so, simulations are performed in Matlab/Simulink on a notebook PC and the states
and computational times are measured.

In the first section of this chapter, the simulation environment where the results
are generated from is presented, thereafter the plant model used when testing the
trajectory planner will be stated. This will be followed by section 5.3 where the
pre-defined highway scenario used to test most of the functionality of the trajectory
planner will be explained. In section 5.4, the results and analyses for the simulations
testing the general performance of the trajectory planner will be presented when a
prediction horizon of 2 seconds is used. Section 5.5 will present the corresponding
results and analyses when a trajectory planner with a prediction horizon of 5 seconds
is used instead. This is followed by a simulation that shows the trajectory planners
ability to cope with a sloped road in section 5.6. Lastly, section 5.7 will present a
summary of the chapter.

5.1 Simulation environment

The simulation software used to generate the results was Matlab/Simulink 2015b
and was executed on a notebook PC. The specifications for the PC can be found
in appendix C. Both the trajectory planner application and the simulation software
were running on the same notebook PC during the simulations. Note that other ap-
plications were running in the background during the simulations when the results
were generated which could influence the solution time for the trajectory planner.

The code for the trajectory planner has been written in C/C++ and has been
interfaced with Matlab/Simulink by wrapping the C/C++ code into an S-function.
S-functions are used to create custom blocks in Simulink which execute the C/C++
code. In Simulink, the trajectory planner is combined with a plant model, which
represents the truck and its control layer, a road model, which feeds the trajectory
planner with information about the curvature and slope, and a traffic model which
feeds the trajectory planner with information about the relative positions of the
surrounding traffic. An overview of the simulation environment can be seen in fig.
5.1.
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Figure 5.1: Graphical overview of the simulation environment.

5.2 Plant model
When generating the results for the trajectory planner, the high-fidelity plant de-
scribed in section 3.5 is used as a plant model. This model is a more detailed
representation of the real truck compared to the prediction model and gives an in-
dication of how the performance of the trajectory planner would be if it would be
implemented on the real truck. Note that the prediction model in the trajectory
planner and the plant model are not the same. This introduces a model miss-match
which in turn could mean that the trajectories generated by the trajectory planner
are sub-optimal for the real plant. If the miss-match is large, the trajectory planner
could generate trajectories which can not be tracked when actuating the real plant.

Furthermore, the slope of the road is not implemented in the high-fidelity model, but
only in the prediction model. Therefore, when testing the trajectory planners ability
to cope with sloped roads, the trajectory planner is evaluated using the prediction
model as the plant model. This test procedure and the test results will be presented
separately in section 5.6.

5.3 Scenario
The scenario that has been simulated aims to test all the challenges the trajectory
planner needs to handle when driving on a highway, except sloped roads. The traf-
fic scenario that has been used in the simulations is shown in fig. 5.2. Note that
these figures are not proportionally correct, but only aim to give the reader a better
graphical understanding of the traffic situation.

The truck has an initial velocity of 20 [m/s] and a reference velocity of 20 [m/s].
The vehicle ahead of the truck, called obstacle 1, starts 40 [m] in front, is modelled
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(a) Before lane change is requested, only
the car in front of the truck is of inter-
est. The vehicle ahead starts 40 meters
in front of the truck and the distance con-
straint to it is velocity dependant.

(b) When a lane change is requested, the
target lane also becomes of interest. A
lane change will not be initiated until no
vehicles are inside the safety box repre-
sented in blue.

Figure 5.2: Lane change scenario which has been simulated when testing the
trajectory planner. The truck will have an initial velocity of 20 m/s and a velocity
reference of 21m/s. The other vehicles are modelled as cars with a constant velocity.

as a car and drives at a constant velocity of 19 [m/s]. This will cause the truck to
catch up with obstacle 1 and must therefore also adjust its own velocity so that it
does not come to close to obstacle 1. The distance constraint to obstacle 1, dsafe

obs,1, is,
as described in section 4.2.1.2, dependent on the velocity of the truck. To the left
of the truck, another vehicle is present, called obstacle 2. Obstacle 2 is initiated to
start 15 meters in front of the truck and is also modelled as a car. Obstacle 2 has a
constant velocity of 20 [m/s] and will thus drive past obstacle 1 after 25 seconds.

After 10 seconds into the simulation, the truck will receive a request to change lane
to the left. For the truck to be able to change lane, no obstacle can be inside a
safety box encompassing the truck and the target lane, see fig. 5.2b. The safety box
is defined from 15 meters behind the rear of the truck and a distance dsafe

obs,i ahead of
the truck, where dsafe

obs,i is calculated as in eq. 4.2. When driving at 19 [m/s], dsafe
obs,i

will be equal to approximately 30 meters. The reason 15 meters was chosen as the
safety margin backwards was to increase the comfort of surrounding drivers. This is
a design parameter and can be changed if the choice of 15 meters is too conservative.
The reason that dsafe

obs,i was chosen as the safety margin forward was to simply allow
the truck to be able to brake and avoid a crash if the vehicle ahead, in the target
lane, would fully decelerate.

At the time of the lane change request, the truck will not be able to change lane as
obstacle 2 will be inside its safety box and must therefore wait until obstacle 2 has
exited the safety box, see fig. 5.2b. Note that this means that the truck would never
be able to change lane if an obstacle inside the safety box would be driving at the
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same speed as the truck. However, since obstacle 2 is driving faster than obstacle 1,
the safety box for the truck will eventually become free of obstacle 2 and the truck
can then execute the lane change.

During the lane change, two distance constraints are active. The safety distance
to obstacle 1 must still be kept during the lane change and the safety box will add
an additional distance constraint. This means that the distance dsafe

obs,2 to obstacle 2
must also be kept. After the lane change, the truck will accelerate until the reference
velocity of 20 m/s has been reached.

The road used for the simulation is an S-curved road with three lanes, with the
truck starting in the center lane. The radii for both curves are 800 meters and the
road geometry can be seen in fig. 5.3. The reason why this road geometry has been
chosen is to show the trajectory planners ability to both follow and execute a lane
change on a curved road. Note that the truck will not necessarily use the entire
length of the road during the simulation.

Figure 5.3: Geometry of the road used in the simulations expressed in the global
coordinate system.

5.4 Simulation results, prediction horizon of 2 sec-
onds

One of the parameters in the MPC formulation that has the largest impact on the
computational load is the length of the prediction horizon. The length of the predic-
tion horizon also affects the control signal as the MPC can predict the state behavior
further into the future, resulting in better control signals. The tuning parameters
used in the controller can be found in appendix D. Note that the trajectory planner
with a prediction horizon of 2 seconds have been tuned differently compared to the
one with a prediction horizon of 5 seconds. This has been done to ensure good
overall performance.

As discussed in section 4.6, lane change predictions for fellow traffic participants can
be made 2 seconds in advance. In this section, a prediction horizon of 2 seconds
has therefore been used and the results from simulations of the scenario described
in section 5.3 will be presented.
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Please note that due to initial transient behaviour present in the high-fidelity plant
model, the trajectory planner is started after 6 seconds of simulation. This to avoid
that inaccurate control signals are generated by the trajectory planner. This has also
been implemented when simulating the trajectory planner with a 5 second prediction
horizon.

5.4.1 Lateral offset and lane change request
The results presented in fig. 5.4 display the evolution of the lateral offset states,
d1 and d4, over the simulation and also the signals requested lane and lane change
possible.

(a) Auxiliary states d1 and d4 during a
lane change maneuver.

(b) Requested lane by decision maker and
whether the lane change is possible to ex-
ecute or not.

Figure 5.4: The state evolution for the lateral offset and the signals for requested
lane and lane change possible, generated with a prediction horizon of 2 seconds.

In fig. 5.4b one can see that the requested lane changes from current lane, with id
0, to the adjacent left lane, with id 1, 10 seconds into the simulation. However, one
can also see that the lane change is not possible until approximately 20 seconds into
the simulation. This because obstacle 2 is present in the safety box, described in
section 5.3, up until that time. In fig. 5.4a, the lateral offset from the initial lateral
position can be seen. At second 20, when the lane change is possible, the lateral
offset constraints are relaxed and the reference for the lateral offset is changed to
allow for a smooth transfer to the center of lane 1.

When studying fig. 5.4a, it can be seen that the lane change maneuver starts roughly
3 seconds after the lane change is possible. This is so that the trajectory planner can
make a smooth transition between lane following and starting a lane change. When
the actual lane change maneuver starts, it can be seen that it takes approximately 7
seconds to move the states d1 and d4 to the target lane. As ∆tlc was defined to be 7
seconds, this serves as an indication that the pre-optimized reference trajectory for
lane changing is working properly.
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It can also be observed in fig. 5.4a that both of the states follow the reference, which
is the middle of the lane, really well. The offset between the states during the lane
change is due to that the vehicle combination has multiple connection points and a
delay on the second semi-trailer is thus introduced. The trajectory planner can with
ease stay within the distance constraints during, and after the lane change and no
significant overshoot for any of the states d1 or d4 after the lane change is visible.

5.4.2 Steering and lateral acceleration
In fig. 5.5, one can see the steering angle and the steering angle rate. As one can
see, both signals are well within their actuation constraints and that the change
in steering angle is smooth. At approximately 23 seconds into the simulation, the
steering angle rate changes because of the requested lane change. This results in a
change of steering angle during that same time period.

(a) Steering angle during the stimulation. (b) Steering angle rate during the stimu-
lation.

Figure 5.5: The state evolution for the steering angle, steering angle rate and
generated with a prediction horizon of 2 seconds.

The lane change is also visible in fig. 5.6 where the lateral acceleration for the tractor
and second semi-trailer is plotted.

Figure 5.6: Lateral acceleration for tractor and second semi-trailer during the
stimulation.
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It can be seen that during the initial part of the lane change, the lateral accelerations
for both units increases as the truck starts to turn. Note that the effect of RA is
not visible in this plot. This is because RA is more prominent when executing rapid
maneuvers. Before and after the lane change maneuver, the truck is following lane.
Because of the s-shaped geometry of the road, an offset for the steering angle and
for both the lateral accelerations can be observed. These appear because the truck
needs to turn in order to follow the road geometry.

5.4.3 Longitudinal movement

In fig. 5.7, the evolution of the longitudinal vehicle states over the simulation are
displayed. These are highly correlated with the plots in fig. 5.8 which displays the
relative distance to the two surrounding obstacles from the front of the truck.

(a) Longitudinal velocity. (b) Longitudinal acceleration and desired
acceleration.

Figure 5.7: The state evolution for the longitudinal velocity, desired acceleration
and the actual acceleration with a prediction horizon of 2 seconds.

As described in section 5.3, the initial velocity and the velocity reference for the
truck is 20 m/s. However, as obstacle 1 has a velocity of 19 m/s, the truck needs
to slow down. This is clearly visible in fig. 5.7a where the truck decelerates from
20 m/s to just over 18 m/s in roughly 8 seconds. This can also be seen in fig.
5.8a, where the relative distance to obstacle 1 is moving close to the constraint. As
a result of this, a negative desired jerk is requested, see fig. 5.9, which results in a
rapid deceleration visible in fig. 5.7b. This deceleration is then immediately followed
by a positive requested jerk as the current velocity is far from the reference velocity.
This creates a jerky movement of the truck and a more desirable trajectory would
be if a smooth adaption to the velocity of obstacle 1 could be made. The reason for
this jerky behaviour is the short prediction horizon. The trajectory planner simply
cannot predict far enough into the future to generate a velocity profile which gently
adjust the ego velocity to the velocity of obstacle 1.
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(a) Relative position to obstacle 1. (b) Relative position to obstacle 2.

Figure 5.8: The figures show the state evolution for obstacle 1 and obstacle 2 and
the constraints. Observe that the constraints can be active or inactive. This has
been generated with a prediction horizon of 2 seconds.

Figure 5.9: Longitudinal jerk generated with a prediction horizon of 2 [s].

As can be seen in fig. 5.8a, the distance constraint to obstacle 1 is active until ap-
proximately 30 seconds. At that time, the lane change is completed and the truck
has moved into the new lane. This is also depicted in fig. 5.4b when the lane change
possible signal becomes inactive again. Figure 5.8b shows how the constraint for ob-
stacle 2 becomes active at approximately 23 seconds, when the lane change becomes
possible to execute and the safety box adds a distance constraint to obstacle 2. The
additional constraint imposed by the safety box is visible as both the constraint for
obstacle 1 and 2 are active during the lane change maneuver. After the lane change
has been completed, only the obstacle in the ego lane is of interest and thus the
constraint for obstacle 2 is the only active constraint.

When the lane change is complete, obstacle 1 will no longer limit the truck to
drive at 19 [m/s] and at the end of the simulation, one can observe that the velocity
reference is successfully tracked, see fig. 5.7a. This can also be observed in fig. 5.8b,
as the relative distance to obstacle 2 levels out as they have the same velocity.

5.4.4 Solution time
The solution time for the trajectory planner is critical to keep low as real-time
performance is of interest. In fig. 5.10 the solution time for the complete trajectory
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planner is shown.

Figure 5.10: The solution time for the lateral and longitudinal planner in every
time step. It also shows the summation of these times and the limit for the solution
time. This has been generated with a prediction horizon of 2 seconds.

As discussed in section 4.6, the sampling rate of the trajectory planner was chosen to
be 50 [ms]. To be able to calculate a new set of control signals between each sample,
the solution time for the complete trajectory planner must therefore be below 50
[ms].

As can be seen, the solution time for complete trajectory planner is significantly
lower than 50 [ms] and is approximately 3 [ms] in mean. The deviations at approx-
imately second 27 and second 44 are most likely caused by background processes.
By looking closely, it can be noted that the solution time for the lateral trajectory
planner contributes the most to the total time. This is unsurprising as the models
used in the lateral trajectory planner are more complex than the models used in the
longitudinal trajectory planner.

5.5 Simulation results, prediction horizon of 5 sec-
onds

Now that the results for the trajectory planner with a 2 second prediction horizon
have been presented, the prediction horizon will be increased to 5 seconds. This to
provide the trajectory planner with more information so that smoother trajectories
can be generated. The tuning parameters used in the controller can be found in
appendix E. Once again, please note that the trajectory planners have been tuned
differently to ensure good overall performance.

Please note once more, that the initial 6 seconds of the simulation has been discarded
due to the initial transient behaviour in the high-fidelity model.
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5.5.1 Lateral offset and lane change request

In fig. 5.11 the states d1 and d4 are once again presented together with the signals
requested lane and lane change possible.

It can be observed that no major differences in the behaviour for the states d1 and d4
can be seen compared to in fig. 5.4 and that the states are well within the constraints
during the entire simulation. Once again, no significant overshoot in either of the
lateral offset states can be observed and the references are tracked nicely. The
only major difference between fig. 5.11 and fig. 5.4 is that the lane change becomes
possible to execute later when using a prediction horizon of 5 seconds. The reason
for this will be further discussed in section 5.5.3.

(a) Auxiliary states d1 and d4 during a
lane change maneuver.

(b) Requested lane by decision maker and
whether the lane change is possible to ex-
ecute or not.

Figure 5.11: The state evolution for the lateral offset and the signals for requested
lane and lane change possible, generated with a prediction horizon of 5 seconds.

5.5.2 Steering and lateral acceleration

In fig. 5.12, the steering angle and the steering angle rate can be seen. As in the
case of using a prediction horizon of 2 seconds, both signals are well within their ac-
tuation constraints and the character of the steering angle is smooth. Furthermore,
the characteristics for both signals are strikingly similar as in fig. 5.5 and no major
differences can be observed.

This is also true for the lateral acceleration of the tractor and the second semi-trailer,
visible in fig. 5.12. All in all, it can be concluded that the lateral dynamics of the
truck were not greatly affected by the increase of prediction horizon.
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(a) Steering angle during the simulation. (b) Steering angle rate during the simu-
lation.

(c) Lateral acceleration for tractor and
second semi-trailer during the simulation.

Figure 5.12: The state evolution for the steering angle, steering angle rate and lat-
eral acceleration of the tractor and rearmost axle of the second semi trailer generated
with a prediction horizon of 5 seconds.

5.5.3 Longitudinal movement

In fig. 5.13, the evolution of the longitudinal vehicle states over the simulation are
displayed. Once again, these are highly correlated with the results displayed in fig.
5.15.

When comparing these results to the results generated with a prediction horizon of
2 seconds, the same general conclusions can be drawn. The longitudinal velocity
of the truck is adapted depending on the velocity of obstacle 1, the truck can not
execute the lane change until obstacle 2 has moved out of the safety box and the
distance constraints to obstacle 1 and obstacle 2 become active and inactive in the
same manner as described in section 5.4.3.
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(a) Longitudinal velocity. (b) Longitudinal acceleration and desired
acceleration.

Figure 5.13: The state evolution for the longitudinal velocity, desired acceleration
and actual acceleration generated with a prediction horizon of 5 seconds.

Figure 5.14: Longitudinal jerk generated with a prediction horizon of 5 [s].

(a) Relative position to obstacle 1. (b) Relative position to obstacle 2.

Figure 5.15: The state evolution for obstacle 1 and obstacle 2 and their constraints.
Observe that the constraints can be active or inactive. This has been generated with
a prediction horizon of 5 seconds.
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However, some major differences in how the longitudinal trajectory is planned,
mostly in terms of smoothness, can be seen. One can observe that the longitu-
dinal velocity is adapted more gently to the velocity of obstacle 1, see fig. 5.13a,
and that the trajectory planner does not cause the truck to brake as much as in
fig. 5.7. This causes the relative distance to obstacle 1 to decrease more smoothly
and the truck does not "bounce" of the constraint as in fig 5.8, but instead drives
as close to obstacle 1 as the distance constraint allows, see fig. 5.15a. Because of
this, the overall longitudinal velocity is higher during the following of obstacle 1.
This causes obstacle 2 to exit the safety box later, compared to the simulation with
the trajectory planner based on a prediction horizon of 2 seconds, which is why the
lane change is initiated later. Also note that, as the desired acceleration changes
more slowly, the actual acceleration of the truck follows the desired acceleration
much better. This performance is much more desirable than the jerky behaviour
displayed when using a prediction horizon of 2 seconds.

The reason the trajectory planner now can adjust the longitudinal velocity much
better, is because of the longer prediction horizon. This makes it possible for the
trajectory planner to plan its longitudinal trajectory based on more information,
compared to the case with a prediction horizon of 2 seconds, and thus smoother tra-
jectories can be generated. Furthermore, the additional information has a greater
impact on the longitudinal planner as the response time for the longitudinal dy-
namics is larger than for the lateral dynamics. This because of the delay present in
the state derivative for the longitudinal acceleration. From these results, it can be
established that increase in prediction horizon positively affected the performance
of the longitudinal planner.

5.5.4 Solution time
In fig. 5.16 the solution time for the complete trajectory planner based on a predic-
tion horizon of 5 seconds is shown.

Figure 5.16: The solution time for the lateral and longitudinal planner in every
time step. It also shows the summation of these times and the limit for the solution
time. This has been generated with a prediction horizon of 5 seconds.

As can be seen, the total solution time for this trajectory planner is almost a factor
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3 larger than for the trajectory planner based on a prediction horizon of 2 seconds.
Once more, it is the solution time for the lateral planner that contributes with the
largest part. However, the total solution time is still far from the time limit of 50
[ms]. The explanation for the increased solution time is that the trajectory planner
now must process the additional information resulting from the larger prediction
horizon.

Furthermore, one thing to note is that the solution time for the longitudinal planner
is slightly higher in the region of second 8 to second 34. The longer computational
time can be attributed to the fact that the trajectory planner needs to adjust the
longitudinal velocity, and deviate from its reference, in order to stay behind obsta-
cle 1. It can be seen that when the constraint to obstacle 1 becomes inactive, the
solution time for the longitudinal planner decreases. This as the planner does not
need to adjust its velocity from the reference in order to stay behind obstacle 2.

Lastly, the spikes in the solution time for both of the planners are dismissed as
disturbances from background processes.

5.6 Simulation with sloped road
The trajectory planner need to model how much acceleration capability it has in
every time instance in order to be able to plan safe and smooth trajectories. As
explained in section 5.2, the slope of the road was not modeled in the high-fidelity
plant. Thus, to demonstrate the trajectory planners ability to cope with a sloped
road, simulations when the prediction model was used as the plant model were con-
ducted. Furthermore, this test has also been simulated with two different prediction
horizons, namely 2 and 5 seconds.

5.6.1 Scenario
To demonstrate the trajectory planners ability to use topographic information of
the road, the following scenario is simulated:
The initial velocity for the truck is set to be 20 [m/s] with the velocity reference
set to 22 [m/s]. The truck starts on a level road and after 275 meters the slope
of the road starts to increase and after an additional 50 meters the slope is the
maximum slope that the truck can manage while driving at a constant longitudinal
velocity. This maximum slope is based on the acceleration capability of the truck
and the maximum slope is discussed in section 4.2.3.2. As the maximum acceleration
capability of the truck is 0.25 [m/s2], the maximum slope that the truck can keep a
constant velocity in is roughly 2.5%. This slope will then be kept constant during
the entire simulation.

5.6.2 Result
As can be seen in fig. 5.17, as the slope of the road increases, the velocity levels
out at the current speed for the trajectory planner with a prediction horizon of 5
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seconds. However, the velocity starts to decrease and eventually levels out for the
trajectory planner with a prediction horizon of 2 seconds. This is partly because of
the shorter prediction horizon, which does not catch the increase in slope as fast as
the trajectory planner with a prediction horizon of 5 seconds, but also because the
trajectory planners are tuned differently. The difference in tuning can be seen in fig.
5.18, where the planner with a prediction horizon of 5 seconds is tuned to increase
the acceleration demand quicker than the planner with a prediction horizon of 2
seconds. Moreover, the tracking of the velocity reference can not be achieved since
all the acceleration capability of the truck is required to maintain its current speed
when moving uphill, as can be seen in fig. 5.17.

All in all, this result shows that the trajectory planner can adapt to the topography
of the road and use this information when generating trajectories.

Figure 5.17: The longitudinal velocity of the truck, the reference velocity and the
height of the road in a global coordinate frame.

Figure 5.18: The longitudinal acceleration of the truck and the desired acceleration
for a trajectory planner with a prediction horizon of 2 and 5 seconds.
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5.7 Summary
This chapter started with a presentation of the simulation environment used for
generating the results, the plant model used in the simulation and a detailed de-
scription of the scenario that is used to demonstrate the capabilities of the trajectory
planner. Thereafter, results from the simulations of the scenario with a trajectory
planner based on a prediction horizon of 2 seconds and one trajectory planner with
a prediction horizon of 5 seconds was presented and discussed. At the end of the
chapter, a simulation which demonstrates the ability of the trajectory planner to
cope with a sloped road was presented.

It was concluded that an obvious trade-off between the solution time and smoothness
of the generated longitudinal trajectory existed. This was visible when comparing
the results from the trajectory planner with a prediction horizon of 2 seconds with
the trajectory planner with a prediction horizon of 5 seconds. In the next chapter
the conclusions of the results will be presented followed by our recommendations for
future work.
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Conclusions and future work

This chapter will start with the conclusions that can be drawn from the results and
discussion generated by simulations with the high-fidelity plant model. This will be
followed by a recommendation for future work within this project.

6.1 Conclusions
The main conclusions from the simulations of the trajectory planner, tested with
both a prediction horizon of 2 seconds and 5 seconds, are the following:

• The trajectory planner can execute the two main maneuvers for an automated
truck in a highway environment, lane keeping and lane changing. This by us-
ing the method of dividing the trajectory planning problem into two separate
problems.

• All the constraints regarding, safety, smoothness and actuators are kept for
both lane keeping and lane changing maneuvers on curved roads. It is thus
also concluded that the trajectory planner works on straight roads as curved
roads present a greater challenge when generating the trajectory.

• The simulation results with the high-fidelity plant model were successful, both
with a prediction horizon of 2 and 5 seconds. This indicates that there is
small model miss-match between the prediction models used in the trajectory
planner and the high-fidelity plant model. This suggests that the trajectory
planner could work well if implemented in a real truck.

• The proposed objective functions and tunings used in the lateral and longitu-
dinal planners, together with the suggested pre-optimized trajectory for the
lane change maneuver, allows for a smooth behaviour when executing the lane
keeping and lane change maneuvers.

• The solution times for the trajectory planner, with different prediction hori-
zons are both below the time limit of 50 [ms]. However, as these results were
generated on a notebook PC with background processes running, the calcu-
lation times when running on embedded hardware in the truck are hard to
estimate. Nonetheless, as the calculations times are well below the time limit,
the proposed trajectory planner shows good potential to work in a real-time
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system.

• The main trade-off when the designing the trajectory planner has been identi-
fied to be between smoothness and computational time. This mainly depends
on the length of the prediction horizon as the generated longitudinal trajecto-
ries becomes smoother to a cost of increased computational time when using
a longer prediction horizon.

• It was shown that the trajectory planner was able to adjust the trajectory
depending on the slope of the road, regardless of the proposed prediction hori-
zons. This further indicates that the trajectory planner could be successfully
implemented in a real truck.

From this, it can be concluded that the main trade-off when designing the trajec-
tory planner is between the smoothness of the generated trajectories and the solution
time. It was also concluded that the modelling of the lateral dynamics required a
more complex model compared to the model used for the longitudinal dynamics
of the truck. As a result of this, the computational time for the lateral trajectory
planner was shown to be higher than for the longitudinal trajectory planner.

The length of the prediction horizon was concluded to be of greater importance
for the longitudinal planner than for the lateral planner. The reason for this was
that the delay present in the longitudinal dynamics is handled better with longer
prediction horizon. From this conclusion, a prediction horizon of 2 [s] for the lateral
planner and 5 [s] for the longitudinal planner could give a good trade-off between
smoothness and total solution time. This is however a solution that has not been
evaluated in this project.

Nonetheless, in this project it has been shown that the trajectory planner devel-
oped, with a prediction horizon of 5 seconds, both allows for planning of smooth
trajectories, while still keeping the computational time for the trajectory planner
far below the time limit. The resulting trajectory planner is able to handle the two
main maneuvers of highway driving, lane keeping and lane changing, while ensuring
safety, smoothness and that the actuator limitations are not being violated.

6.2 Future work
Since the chosen method for developing the trajectory planner shows good potential,
both in the performance of the generated trajectories but also in the solution time,
recommendations for future work will now be presented.

• Evaluate a trajectory planner with a different prediction horizons in the lat-
eral and longitudinal planners. This could further decrease the computational
time while still ensuring good performance.
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• Evaluate the solution time with embedded hardware to further examine the
real-time performance.

• Extend the functionality of the trajectory planner. This could for example be
to implement functional safety such as a robust abort maneuver when chang-
ing lane and also implement more robust signal management, for example how
to handle lost sensor signals.

• Implement a less conservative safety box. This could further increase the
use ability of the trajectory planner as the current implementation could be
somewhat conservative. This could be done by for example using a convex
parallelogram as the shape of the safety box instead.

• Implement a more advanced prediction model of the surrounding traffic. This
would mean that the trajectory planner could become less conservative and
that better trajectories could be generated. This in turn could also improve
the performance and the use-ability of the trajectory planner.

• A more advanced prediction model for the longitudinal dynamics of the truck
could be implemented. This to better model the resistive longitudinal forces
and to get a better representation of the capabilities of the truck. This could
for example be to include a model of the gearbox in the truck to better repre-
sent the acceleration capability of the truck.

• Evaluate other implementation tools and solvers than ACADO and qpOASES
in order to further improve the real-time performance of the trajectory planner.
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A
A-double parameters

Vehicle parameters for the A-double combination, from [5].

Parameter Symbol Value Unit

Mass, unit 1 m1 9841 kg
Mass, unit 2 m2 33601 kg
Mass, unit 3 m3 2700 kg
Mass, unit 4 m4 33801 kg
Yaw movement of inertia, unit 1 J1 20 · e3 kgm2/rad
Yaw movement of inertia, unit 2 J2 543 · e3 kgm2/rad
Yaw movement of inertia, unit 3 J3 2 · e3 kgm2/rad
Yaw movement of inertia, unit 4 J4 546 · e3 kgm2/rad
Distance from COM to front axle, unit 1 a1 1.45 m
Distance from front connection point to COM, unit 2 a2 4.43 m
Distance from front connection point to COM, unit 3 a3 4.55 m
Distance from front connection point to COM, unit 4 a4 4.65 m
Distance from COM to rear axle, unit 1 b1 2.23 m
Distance from COM to rear axle, unit 2 b2 3.27 m
Distance from COM to rear axle, unit 3 b3 0.65 m
Distance from COM to rear axle, unit 4 b4 3.05 m
Distance from COM to rear connection point, unit 1 c1 1.95 m
Distance from COM to rear connection point, unit 2 c2 5.97 m
Distance from COM to rear connection point, unit 3 c3 0.00 m
Front axle cornering stiffness, unit 1 C1f 4.07 · e5 N/rad
Rear axle cornering stiffness, unit 1 C1r 2.07 · e6 N/rad
Rear axle cornering stiffness, unit 2 C2r 1.24 · e6 N/rad
Rear axle cornering stiffness, unit 3 C3r 1.17 · e6 N/rad
Rear axle cornering stiffness, unit 4 C4r 1.42 · e6 N/rad
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B
Differential equations for the

lateral dynamics

The time derivatives of the states presented in section 3.1.2 are based on the derived
equations in [5] and by inserting the parameter values of the truck, see appendix A.
This results in the following equations:

dvy,1

dt
=− 70.6191

vx,1
vy,1 −

v2
x,1 − 9.7314

vx,1
φ̇0 + 21.9217

vx,1
θ̇1 + 1.9775θ1

+ 4.4014
vx,1

θ̇2 + 0.8494θ2 −
0.017
vx,1

θ̇3 − 0.0022θ3 + 45.9558δ
(B.1a)

dφ̇0

dt
=27.5489

vx,1
vy,1 −

174.2882
vx,1

φ̇0 −
21.0338
vx,1

θ̇1 − 1.8974θ1 + 4.2231
vx,1

θ̇2

− 0.815θ2 + 0.0164
vx,1

θ̇3 + 0.0021θ3 + 25.0956δ
(B.1b)

dφ0

dt
= φ̇0 (B.1c)

dθ̇1

dt
= −36.4048

vx,1
vy,1 + 165.4516

vx,1
φ̇0 −

10.5324
vx,1

θ̇1 − 3.9082θ1 + 12.8600
vx,1

θ̇2

+ 2.4818θ2 −
0.0498
vx,1

θ̇3 − 0.0065θ3 − 25.4638δ
(B.1d)

dθ̇2

dt
= 19.7904

vx,1
vy,1 −

216.8786
vx,1

φ̇0 −
170.0741
vx,1

θ̇1 + 2.2622θ1 −
125.6565
vx,1

θ̇2

− 22.9024θ2 −
7.1692
vx,1

θ̇3 − 0.9311θ3 + 0.5539δ
(B.1e)

dθ̇3

dt
= −12.4638

vx,1
vy,1 + 195.8250

vx,1
φ̇0 + 168.7766

vx,1
θ̇1 + 5.0960θ1 + 68.1597

vx,1
θ̇2

+ 22.7324θ2 −
54.6629
vx,1

θ̇3 − 7.0991θ3 − 0.1851δ
(B.1f)

dθi

dt
= θ̇i, i = 1, 2, 3 (B.1g)

dδ

dt
= δ̇ (B.1h)
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C
Specifications for notebook PC

Specifications for PC used for desktop simulations:

Model Dell Precision M6700
CPU Intel i7-3520M @ 2.9 GHz
Memory 16 GB 1600 MHz DDR3
OS Windows 7 64 bit
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D
Tuning parameters for trajectory
planner with a prediction horizon

of 2 seconds

Parameter Symbol Value
Longitudinal vehicle speed K long

1 5/2
Longitudinal desired acceleration K long

2 13/2
Longitudinal desired jerk K long

3 50/0.75
Steering angle rate K lat

1 0.5
d1 K lat

2 0.5
d4 K lat

3 0.5

IV



E
Tuning parameters for trajectory
planner with a prediction horizon

of 5 seconds

Parameter Symbol Value
Longitudinal vehicle speed K long

1 5/2
Longitudinal desired acceleration K long

2 13/2
Longitudinal desired jerk K long

3 25
Steering angle rate K lat

1 0.5
d1 K lat

2 0.5
d4 K lat

3 0.5

V
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