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Master’s Thesis in the Master’s programme in Sound and Vibration  
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Department of Civil and Environmental Engineering 
Division of Applied Acoustics 
Vibroacoustics Group 
Chalmers University of Technology 
 
ABSTRACT 
During the last decades, new building techniques based on lightweight 
systems have been developed and today they are frequently used in many 
countries. Since lightweight construction is a relatively new building 
technique, most of the acoustics regulations are still based on traditional 
building technology where heavyweight materials are mainly used. This has 
been shown to be a problem basically because the acoustic rating of a 
structure using the standard methods is not always well correlated with the 
perceived disturbances. The Thesis work pretends to clarify the vibrational 
behaviour of the lightweight floors at very low frequencies focusing only on 
the first order modes. The Waveguide Finite Element Method (WFEM) has 
been applied in order to study from a “wave’s” point of view using the 
dispersion relations plots as one of the main analysis tools. This approach is 
very helpful to facilitate the physical understanding of the vibrational 
performance of the floors. Two simple models have been built, a wooden and 
a concrete floor, in order to compare the wave field and the mobilities of a 
lightweight and a heavyweight floor. Additionally, the work includes a 
parameter study to analyze the influence of how certain parameters of the 
lightweight model influence its vibrational performance. The sound radiation 
of the structure is studied using baffle plane radiator and the Rayleigh 
integral. 
 
Key words: acoustics, vibration, radiation, waveguide, FEM, dispersion 
relation, lightweight floors, wooden floors, wave propagation, modes, 
mobility, periodic structure, pass-band, stop-band. 
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Preface 
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Kropp who has been the Supervisor of the study. The work has been done 
since July 2010 inside the Vibroacoustics Group at the Division of Applied 
Acoustics (Department of Civil and Environmental Engineering) of Chalmers 
University of Technology. 
The Thesis work pretends to clarify the vibrational behaviour of the 
lightweight floors at very low frequencies. The study has focused in the first 
order modes. The Waveguide Finite Element Method (WFEM) has been 
applied in order to study from a “wave’s” point of view using the dispersion 
relations plots as one of the main analysis tools. This approach is very helpful 
to facilitate the physical understanding of the vibrational performance of the 
floors. 
Two simple models have been built, a wooden and a concrete floor, in order 
to compare the wave field and the mobilities of a lightweight and a 
heavyweight floor. The results of the models using WFEM have been 
validated using a normal FEM approach. The initial plan was to validate the 
results using measurements on a real floor but after two frustrated tries the 
idea was discarded. 
The initial project goals were adapted as the first results were obtained and 
analyzed. We decided to include a parameter study to analyze the influence 
of some properties of the lightweight model in its vibrational performance. 
The sound radiation of the structure is studied using the baffle plane radiator 
and the Rayleigh integral. 
Finally, I would like to thank the people that have made this possible; they 
know who they are… 
 
Göteborg June 2011 
Raúl Pagán Muñoz 
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1 Introduction 
During the last decades, new building techniques based on lightweight 
systems have been developed and today they are frequently used in many 
countries. These systems are made of lightweight panels and beams, and they 
are often more environmentally friendly than other traditional techniques. 
Moreover, the lightweight materials are easier to transport and store reducing 
the overall cost of the process. Among other, these are some of the reasons 
why this building technique is getting more and more popular. 
One of the most extended materials used in lightweight buildings is wood 
and timber related products. This work is focused on a wooden floor. 
Since using lightweight construction in wood is a relatively new building 
technique, most of the acoustics regulations are still based on traditional 
methods using concrete and other heavyweight materials. This has been 
shown to be a problem, Hagberg (2005) (1) basically because the acoustic 
rating of a structure using the standard methods (p.e., ISO 140-7 (1998)(2)) is 
not always well correlated with the perceived disturbances caused by 
footsteps, falling masses, etc. Specifically, wooden houses were known for 
their poor impact sound insulation, fulfilling requirements but highly 
annoying, Sjökvist (2008) (3). 
This work is mainly focused on impact sound isolation at low frequencies (the 
frequency range of interest is from 0 to 200 Hz) where the problem is more 
noticeable. The goal of the project is to get a better understanding of the 
acoustical performance of these structures. To achieve this a numerical 
method is used to simulate and compare the vibrational field of a lightweight 
floor (LWF) and a heavyweight floor (HWF). The first part of the work 
concerns the design of a model for a wooden and a concrete floor using the 
Waveguide Finite Element Method (WFEM). 
WFEM can be used for structures with constant geometrical and elastic 
properties in one direction referred as waveguide (X-direction in this study). 
Traditional Finite Element Method (FEM) is used to solve the dynamic 
behaviour of the structure’s cross-section while the vibrational performance of 
the whole system is described in terms of waves along the waveguide using 
sine functions to introduce the simply supported conditions at the X-
dimension boundaries of the floor. WFEM can be considered a combination of 
several modelling techniques, Sjökvist (2008) (3). The modal approach is used 
to calculate the mobilities of the structures. 
The models and their results are described, analyzed and compared in 
Chapter 2. Moreover, a validation of the model is presented in Chapter 3. 
A parameter study for the LWF is carried out in order to understand how 
different parameters influence its acoustical performance (see Chapter 4). 
Chapter 5 concerns the sound radiation of the structure using a simple 
approach (Rayleigh integral): infinite baffle plane radiator as a sum of point 
sources. The basis of this approach is shown in Section 1.2 and the results of 
the sound radiation of the wooden floor are presented. 
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1.1 Waveguide Finite Element Method 
To carry out the vibrational analysis, a numerical approach based on WFEM is 
used. The method is suitable, in the frequency range from 0 to 200Hz, for 
systems with constant physical properties along, at least, one of its 
dimensions that will be referred as “waveguide” in this thesis. 
WFEM uses a 2-D FE model over the cross-section of the waveguide and the 
Fourier transform along the waveguide to describe the vibrations of the 
system as a set of waves. The method reduces the computational effort and 
time compared with standard 3-D FEM tools. Additionally, the different wave 
types are easy to identify and study by using WFEM. 
The Wavenumber Domain Software for Solids and Fluids, WANDS 2.1 ®, has 
been used to solve the models. The authorship and ownership of the software 
is the University of Southampton, UK. The output solutions from WANDS 2.1 
® have been loaded into MATLAB ® in order to evaluate other solution 
methods as the modal approach or the sound radiation. 
Aalami (1973)(4) was the first one to derive solid WFEM for structures with 
isotropic material properties. Both, solid elements and simplify elastic 
material constants (assuming isotropic properties) are used in this thesis to 
model the floors. 
 
1.1.1 Fundamentals 
Most of the derivations used in this section follow the ones used by Sabiniarz 
(2004)(5). 
Figure 1 is an example of a floor assuming constant properties and geometry 
along the X-dimension. The approximate wave equation (the time 
dependency is omitted), describing waves along the waveguide, is: 

!!
!!
!!! ! !!

!!
!!! ! !!

!
!" ! !! ! !

!! ! ! ! ! !  (1) 

!!!!"#$%"!!"#$$!!"#$%&'()!!"#$$%&!!!!"#$%&'( 
!!!"#$%"!!"#$$!!"#$%&'()!!"##!!"#$%& 
! ! !!"#$%&!!"!!"#$%!!"#$%&'()(*+# 
! ! !!"#!$%&'!!"#$% 
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Figure 1 Structure with constant properties in the X-dimension. 
 
In the absence of external load or source free form, solutions to the wave 
equation (1), representing waves travelling along the waveguide, are of the 
form: 

! ! ! !!!"# (2) 

!!!"#$$!!"#$%&'()!!"#$%&'($!!"#$%&'#( 
!!!"#$%&'($) 
 
If these solutions are inserted into the homogeneous form of equation (1), we 
arrive to the next eigenvalue problem: 

!!!! ! !!!! ! !!!" ! !! ! !!! ! ! ! (3) 

There are two ways of solving the problem. We can find the modeshapes and 
wavenumbers for every selected frequency or we can solve the problem fixing 
the wavenumbers and getting the modal eigenfunctions and the 
eigenfrequencies. When the wavenumbers fulfill equation (4) and are inserted 
into equation (3) the eigenfunctions (!!!!)1 and eigenvalues (!!!!! )1 are 
calculated for a finite floor with lenght “L”. 

!! !
!"
! !! (4) 

! ! !!! !!!! 
L, length of the waveguide [m] 
 

                                                
1 “m” stands for the number of degrees of freedom (DoF) of the system 
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These calculations allow for analyzing the different types of waves, the cross 
sectional vibration pattern and the dispersion diagrams (!! vs. !!!!), among 
other parameters. 
Additionally, to calculate the force response the modal approach is used (see 
equation (5)). 

! ! ! !!!!! !
!! !" !!!!! ! !! !!!!!!!!!

!!!!!!!!!!! ! !!!!!! (5) 

! ! !!"#$%&'()(*+!!"#$%!!"!!!!"#$%!!"#$%&%$'(!
! ! ! !!!!!!!"#$%!!"#$%!
!!!"#!#"!"#$%&!!"#$%&'!!"!!"#!!"#$%!!"!#$%!
!!!!!!"#$%!!"##!!!"#$!!"#$#%!!
 
The exponential terms of equation (5) represent the propagating waves in 
each direction of the waveguide from the excitation point. These terms 
introduce the simply supported boundary condition in the system, i.e. every 
node of the cross section geometry is simply supported at the boundaries of 
the waveguide. The approach assumes that the different parts of the structure 
have the same damping (!). It is important to notice that to have reliable 
results over the frequencies of interest, modes of a wider frequency range 
must be summed up. 
 
1.1.2 Methodology 
MATLAB ® has been used to generate the 2-D FE geometry (Y and Z-
dimensions). The models are built with quadrilateral solid finite elements, 
each element with eight nodes. WANDS 2.1 ® uses a quadratic interpolation 
within the elements. Figure 2 shows an example of cross-section FE geometry 
highlighting one finite element. Each dot in the next figure represents a node 
and the corresponding nodal line in the waveguide (see Figure 3). 

 
Figure 2 2-D FE geometry (Y and Z-dimensions) with highlighted finite element 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:88 5 

 
Figure 3 Detail of the nodal lines along the waveguide (X-dimension) 
 
The number of elements for each modelled structure depends on the 
geometry and the upper frequency limit of interest. As rule of thumb, at least 
six elements per wavelength are needed in order to reproduce the vibrational 
behaviour with sufficient accuracy and within a reasonable computational 
effort. A preliminary study was done to evaluate the influence of the number 
of elements; the results are given in Chapter 2. 
Regarding the elastic material properties of the structure, all the elements 
have been considered made of an isotropic material. Even when it was 
considered a dramatic simplification not to define wood as an orthotropic 
material, the assumption was accepted for simplicity. Which it is important 
for and for the understanding of the performance of the LWF. The elastic 
parameters used in the models are: Young’s modulus (E [N/m2]), Poisson’s 
ratio (  [--]), Density (  [kg/m3]) and Loss Factor (  [--]). 
Apart from the boundary conditions introduced in the waveguide by using 
equation (5), WFEM allows to constraint the displacement (ux, uy and/or uz) 
of any node of the cross-section geometry.  
The solutions from WANDS 2.1 ® are the global cross sectional complex 
stiffness (Ki) and mass (M) matrices. Those matrices are used in MATLAB ® 
for the calculations of the dispersion diagrams, structure deformations, 
mobilities, etc. 
 

1.2 Sound radiation 
Once the spatial distribution and the amplitude of the vibrations of the floor 
are known, it is possible to predict the sound radiation in the frequency range 
of interest. No fluid loading is taken into account during the calculations. 
The main parameters to be calculated are the radiated sound power (W) and 
the associated sound power level (LW). We have used the “Plane, baffle 
radiator” approach to carry out the calculations (the method can be found in 
Section 7.5 Cremer, Helckl and Petersson (2005)(6)). This approach is based on 
assuming a baffle plane radiator (top board of the LWF) as a sum of point 
sources which can be considered as monopoles in a large baffle (see Figure 4). 
Each point source radiates the volume velocity that is calculated as: 
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!! ! !!! (6) 

q0, volume velocity [m3/s] 
v0, amplitude of the velocity field [m/s] 
S, section area of the point source [m2] 
 

 
Figure 4 Floor’s mesh. Plane baffle radiators as point sources 
 
Once the volume velocity for each point source of the floor’s top board has 
been calculated, the contribution of each source to the total sound pressure at 
any point at a certain distance from the sources is just the simple summation 
given in Equation (7) which dates from Lord Rayleigh: 
 

! ! !"!!
!!

!!
!!
!!!!!!! ! !!!!

!!!!!!! !! ! !"!!
!!

!!
!!
!!!!!!!

!

!!!
 (7) 

p, sound pressure [Pa] 
!, angular frequency [rad/s] 
!!, density of fluid (air) [kg/m3] 
qn, volume velocity at point source “n” [m3/s] 
rn, distance from point source “n” to the receiving point [m] 
k0, wavenumber in the fluid (air) [rad/m] 
If instead of calculating the sound pressure for just one point, we place “m” 
receiving points2 over the surface area of a hemisphere surrounding the 
structure in free field conditions, the radiated sound power can be calculated. 
The origin of the hemisphere has been chosen at the centre of the structure 

                                                
2 Each receiving point corresponds to an equal surface area of a hemisphere surrounding the 
floor in free field conditions. 

q0 = v0S
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and the sound pressure is calculated for each of the receiving points (pi). The 
radiated sound power is calculated as: 

! ! !!!
!"

!
! !! !

!

!!!
 (8) 

W, radiated sound power [W] 
R, radius of the hemisphere [m] 
!!, density of the medium [kg/m3] 
c0, wave speed of the medium [m/s] 
m, is the total number of receiving points 
pi, sound pressure at receiving position “i” [Pa] 
 
From this the radiated sound power level from the structure can be calculated 
using: 

!! ! !"!"# !
!!

 (9) 

!!, radiated sound power level [dB re. 1 pW] 
W0, reference power [1 pW] 
 
The radiated sound power can be also related to the averaged velocity on the 
floor. This is expressed as the radiation efficiency “ ”: 

! ! !
!!!!! ! ! ! (10) 

W, sound power [W] 
!!, density of the medium [kg/m3] 
c0, wave speed of the medium [m/s] 
S, floor surface [m2] 

! !, spatially averaged mean square velocity of the structure [m2/s2] 
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2 Models 
This chapter presents the main features and parameters used in the design of 
the models, including an analysis of the influence of the number of finite 
elements. The last two sections present the analysis of the wave field and 
mobilities comparing the results of both modelled floors. 
The analyzed structures are very simple: the lightweight floor consists on a 
top board lying on five beams while the heavyweight floor is just a concrete 
plate. The dimensions of both structures (see Table 1) and the way the FE 
geometries have been designed make the results comparable between them. 
 
Table 1 Dimensions of the floors 

Reference direction Dimension [m] 

X 4.0 

Y 2.465 

Z 0.3 

 

2.1 Finite Element resolution 
The number of finite elements used when building a FE model is of main 
influence in the final results. If not enough elements are used the structure 
appears “stiffer”, therefore, the results are erroneous. The number of elements 
is related with the highest frequency to be analyzed; at least six elements per 
wavelength are recommended to obtain results within a reasonable precision. 
On the other hand, the more elements used the more computational effort and 
time is consumed. Therefore, it is needed to find a compromise between 
computational effort and accuracy. 
Two models of the HWF and another two for the LWF have been built using 
low and high element resolution scenarios. Figure 5, Figure 6, Figure 7 and 
Figure 8 show their cross-section geometries and Table 2 gives the number of 
finite elements used in each of them. 
 
Table 2 Number of finite elements used in each model 

Structure Low resolution FE High resolution FE 

HWF 34 225 

LWF 27 65 
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Figure 5 HWF 2-D FE geometry (low element resolution) 

 
Figure 6 HWF 2-D FE geometry (high element resolution) 

 
Figure 7 LWF 2-D FE geometry (low element resolution) 

 
Figure 8 LWF 2-D FE geometry (high element resolution) 
 
The point mobility, at one point on top of the structures, is presented in 
Figure 9 and Figure 10 for HWF and LWF respectively. During the analysis of 
the results, we have differentiated between frequency and level changes at the 
resonances. 
From the level point of view, the more elements used the more damped is the 
system. Relative to the frequencies at the resonances, the graphs are showing 
how, for the HWF, there is not significant change between both resolutions 
and thus the low resolution model will be used in the rest of the work. 
However, for the LWF the change is noticeable enough and therefore the high 
resolution model will be used from now on. 
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Figure 9 HWF FE resolution comparison 

 
Figure 10 LWF FE resolution comparison 
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2.2 Heavyweight floor (HWF) 
The model represents a simple concrete floor (see Figure 11). The main data of 
the 2-D FE model are given in the Table 3 and the geometry is shown in Figure 
12 together with the restrained nodes. The boundary conditions consisted on 
constraining all the DoF (ux, uy and uz displacements) of the indicated nodes. 
Finally, the material data and its elastic properties are given in Table 4. 

 
Figure 11 Detail of the HWF 
 
Table 3 FE model data of the HWF 

Elements  34 

Nodes  141 

DoF  393 

Restrained nodes  10 

Restrained displacements ux uy uz 

 
Figure 12 2-D FE geometry of the HWF and boundary conditions 
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Table 4 Material data of the HWF 

Material data HWF 

Material Concrete 

Type  Isotropic 

Young’s modulus [N/m2] 26 109 

Poisson’s ratio [--] 0.2 

Density [kg/m3] 2300 

Loss factor [--] 6 10-3 

 

2.3 Lightweight floor (LWF) 
The modelled lightweight structure is the simple wooden floor shown in 
Figure 13. The top board is made of “Chipboard” and the beams are built with 
“KERTO ®”. Table 5 includes the data of the FE geometry and boundary 
conditions (see Figure 14). Table 6 includes the information related with the 
floor materials. As before, the boundary conditions consist of restraining the 
ux, uy and uz displacements of the indicated nodes. 

 
Figure 13 Detail of the LWF 
 
Table 5 FE model data of the LWF 

Elements  65 

Nodes  328 

DoF  918 
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Restrained nodes  22 

Restrained displacements ux uy uz 

 
Figure 14 2-D FE geometry of the LWF and boundary conditions 
 
Table 6 Material data of the LWF 

Material data LWF - Board LWF - Beams 

Material Chipboard Kerto 

Type  Isotropic Isotropic 

Young’s modulus [N/m2] 3.4 109 4.4 109 

Poisson’s ratio [--] 0.4 0.4 

Density [kg/m3] 710 560 

Loss factor [--] 0.03 0.01 

Proportional loss factor 
(for mobility calculations) 0.02 
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2.4 Wave field analysis 
One of the main benefits of using WFEM, is the fact that the vibrations are 
described as waves along the waveguide. These waves can be identified and 
analyzed independently from each other, giving a deeper physical 
understanding of the investigated structure. 
 
2.4.1 Interpretation of the dispersion diagrams 
One of the most important tools to analyze the wave field on the structure is 
the so called “Dispersion” diagrams, which is a representation of how the 
wavenumbers are related to the frequency for each propagating wave along 
the structure. 
A vector of wavenumbers values (ki) is introduced in the calculation process 
and the eigenproblem is solved for the corresponding eigenfrequencies (!!!!!) 
and eigenfunctions (!!!!!). If the wavenumbers (ki) take any value, the 
eigenproblem is solved assuming an infinite waveguide. This is shown in 
Figure 15 and Figure 16 for HWF and LWF respectively, where the vector 
takes values from 0 to 10 with a resolution of 0.01. When the wavenumbers 
(ki) fulfil the condition given in Equation (4), then the solutions are calculated 
for a finite waveguide. Figure 17 and Figure 18 show the dispersion diagrams 
for the floors with a finite length (L). 
The dispersion diagrams together with the deformation plots allow to classify 
the waves as “Bending Waves” (BW) or “Longitudinal Waves” (LW). This 
classification has not been straightforward, at least for the LWF, since the 
dispersion diagrams represent discrete results and not continuous lines (even 
that they have the appearance of lines when the wavenumber resolution is 
high enough) and the different waves frequently intersect each other. The 
results of the classification are shown in Figure 17 and Figure 18. The figures 
show at least the first six bending waves of both floors. These waves will be 
the main responsible of the sound radiation in the frequency range of interest. 
The numbering of the bending waves (BW01, BW02, etc.) is related with the 
eigenfunctions or modal shapes order. When the floor is a simple plate as the 
HWF, it is easy to understand why the modal shapes are connected to 
represent a wave but for more clarity Table 7 to Table 12 include those cross-
section deformations for the first six bending waves. 
Figure 17 and Figure 18 show how to have the first six bending waves in the 
concrete floor we have to go up to 2 kHz, while for the wooden floor we just 
need to go up to 100 Hz. Appendix A includes a table with the values of the 
eigenfrequencies for the finite length floors. 
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Figure 15 Dispersion diagram of the HWF 
 

 
Figure 16 Dispersion diagram of the LWF 
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Figure 17 Waves classification for the HWF 
 

 
Figure 18 Waves classification for the LWF 
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2.4.2 Analysis of the deformation diagrams 
Another tool to analyze the wave field is to plot the deformations of the 
floors. We can easily compare the 2-D cross-section deformations (a certain 
transversal “cut” of the floor) or the top layer deformation. 
As before, we focus our analysis in the six lowest order free bending waves 
(see Figure 17 and Figure 18), plotting the deformations of both floors only for 
the first four modal wavenumbers (!!, n=1,2,3,4). 
The results presented in Table 7 to Table 12  show clearly how the influence of 
the beams in the vibrations of the LWF become noticeable from the second 
modal wavenumber and higher order modes. The deformations of the HWF 
are those of a simple plate where the different modes can be easily identified. 
Another conclusion from the deformation plots is how the first order mode 
(kn, n=1) of the LWF is similar to that of the HWF. For increased clarity, the 
LWF is vibrating as a simple plate for the first order modes and lowest order 
waves. 
 
  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:88 18 

Table 7 Deformation plots BW01 

HWF LWF 
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Table 8 Deformation plots BW02 

HWF LWF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 1    Eigenfrequency : 419  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 1    Eigenfrequency : 35  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]
0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 2    Eigenfrequency : 471  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 2    Eigenfrequency : 112  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 3    Eigenfrequency : 563  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 3    Eigenfrequency : 163  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 4    Eigenfrequency : 695  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4 0 0.5 1 1.5 2 2.5

-0.2
0

0.2

Y [m]

X [m]

k = npi/L    n: 4    Eigenfrequency : 184  Hz

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y [m]

Z 
[m

]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2011:88 20 

Table 9 Deformation plots BW03 

HWF LWF 
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Table 10 Deformation plots BW04 

HWF LWF 
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Table 11 Deformation plots BW05 

HWF LWF 
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Table 12 Deformation plots BW06 

HWF LWF 
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2.5 Mobility analysis 
As we indicated in Section 1.1.1, the force response of the structures can be 
calculated using Equation (5). This method allows introducing a force at any 
point situated on a nodal line at any distance from the boundary of the 
waveguide. Once the force has been applied, the point mobility or the transfer 
point mobility at any point of the structure can be calculated. The last 
parameters left are the direction of the force and what DoF of the velocity 
field (vx, vy, vz) is of interest at the reception point. 
In our calculations, a unit point force has been defined normal to the Z-
dimension of the floors. The points where the point mobility has been 
calculated are shown in Figure 19. They have been chosen to have one point 
on top of a beam (P1) and a second point between two beams (P2). Exactly the 
same points have been chosen in the concrete floor. The results are shown for 
the Z-direction of the velocity field. 
This approach is valid as long as we assume uniform damping over the whole 
system and when all the modes over the frequency range of interest are 
summed up. 

 
Figure 19 Position of the points used to calculate the point mobilities. 
 
Figure 20 and Figure 21 show the point mobility at position P1 for the HWF 
and LWF, respectively. Again, it can be seen how the LWF vibrational field is 
much more complex than the HWF field in this frequency range. 
Furthermore, as expected, it is easier to put energy into the LWF than the 
HWF. Therefore, the mobility level at the resonances is normally smaller in 
the latter case. 
The point mobilities of P1 and P2 for the LWF are compared in Figure 22. The 
mobility at point P2 (between beams) has normally a bigger level when the 
same resonance is excited at both points. 
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Figure 20 HWF point mobility at P1. 

 
Figure 21 LWF point mobility at P1. 

 
Figure 22 LWF point mobilities comparison (P1 – P2). 
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3 Validation 
The results from WFEM have been compared with those of the same structure 
but modelled using normal FEM. The software used for the calculations has 
been COMSOL Multiphysics ®. The modelled structure has the same 
geometry, material properties and boundary conditions than the ones used 
for the LWF when using WFEM. Figure 23, Figure 24 and Figure 25 show 
some details of the meshed structure and the constraint elements (blue 
highlighted). The boundary conditions in the waveguide direction have been 
introduced by constraining the displacement of the board top edges. Table 13 
includes the main data of the FEM model: 
 
Table 13 Main data of the FEM model 

Elements type Tetrahedral 

Number of elements 14676 

Mesh size Coarse 

DoF 89283 

Solver Spooles 

Average element quality 0.5042 

 
The point mobility is calculated at the same points P1 (on beam) and P2 
(between beams) used in the WFEM calculations (see Figure 19). 
Figure 26 and Figure 27 are showing the results for points P1 and P2 
respectively. These graphs are showing the comparison between the 
calculated point mobilities using WFEM and FEM. Table 14 is giving the 
frequency percentage deviations3 at the eigenfrequencies for the first six 
bending waves and lowest order modes. The frequency differences never get 
over 10% and the level deviations are below 3 dB (up to 150 Hz) what can be 
considered reasonable for the purposes of this work. 
The differences between the deformation plots using WFEM and FEM for the 
lowest order modes are shown in Appendix B. It is important to highlight the 
differences of some deformation plots (p.e. BW02 for k3 and BW03 for k3) since 
WFEM uses a sine function to propagate the wave along the waveguide and 
this is not always the appropriate solution for the real situation. 
  

                                                
3 FEM eigenfrequencies have been considered the reference values in the percentage 
calculations and have been calculated using “finer” mesh size. 
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Figure 23 FEM mesh and constraint elements (view 1) 

 
Figure 24 FEM mesh and constraint elements (view 2) 

 
Figure 25 FEM mesh and constraint elements (view 3) 
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Table 14 WFEM / FEM frequency deviation (%) at eigenfrequencies 

kn [1/m] 
Deviation [%] 

BW 01 BW 02 BW 03 BW 04 BW 05 BW 06 

/L !"# $# "# %&# %$# %&#

2 /L "# !# $# %'# %(# %$#

3 /L "# !# %$# %!"# %'# %)#

4 /L %!# %*# %+# %)# %!"# %!"#

 

 
Figure 26 WFEM / FEM comparison for P1 

 
Figure 27 WFEM / FEM comparison for P2 
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4 Parameter study 
This study consists in changing some of the main parameters of the LWF 
model to analyze the influence in the results. While designing the experiment, 
we decided to always keep the same bending waves sound velocity (cB) for all 
the different scenarios. Thus, we could change the value of any parameter but 
“cB” should be kept constant for all cases. Equation (11) has been used to 
calculate the bending wave sound velocity: 

!! ! ! !
!"

!
 (11) 

, angular frequency [rad/s] 
B, bending stiffness [kg!m], equal to the product of the Young Modulus (E) 
and the inertia moment (I) 
, density of the material [kg/m3] 

S, cross section area [m2] 
 
The parameter study has mainly focused in two different approaches that will 
be referred as PS_1 and PS_2. The first one consists in changing the elastic 
properties of the top board material. Basically, we have changed the Young’s 
Modulus (E) and the density ( ) to make the material more and less stiff than 
the original case. These two scenarios will be indicated as “PS_1.1 (less stiff)” 
and “PS_1.2 (stiffer)”. For the second approach we have changed the cross 
section geometry of the beams and since we wanted to keep “cB” constant we 
also had to change the Young’s Modulus (E) and/or the density ( ) values. 
Two scenarios have been analyzed and will be referred as “PS_2.1” and 
“PS_2.2” from now on. 
The last section of this chapter includes an extra study where the original 
LWF has been compared with the vibrational response of the same floor but 
removing the beams, i.e. only the top board. This study has been included to 
check if the periodic nature of the LWF produces the well-know “Pass-band / 
Stop-band effect” (7)(8)(9)(10)(11). 
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4.1 Material’s elastic constants analysis (PS_1) 
As we have already said, this first case consists in changing the elastic 
properties of the top board of the LWF. Table 15 shows the values of the 
parameters for the two evaluated scenarios plus the original one. 
 
Table 15 Parameter values PS_1 

Scenario Original  PS_1.1 (less stiff) PS_1.2 (stiffer)  

E [N/m2]  3.4 109 1.7 109 6.8 109 

 [kg/m3]  710  355  1420  

 
Figure 28 and Figure 29 show the dispersion relation comparison between the 
original case and the new scenarios. These graphs give information of how the 
modal eigenfrequencies are shifted for the given scenarios. 
More detailed information is given in Appendix C, where some deformation 
plots have been included, together with the dispersion relations plots of each 
bending wave separately, making the analysis easier. 

 
Figure 28 Modal dispersion relation comparison PS 1.1 (less stiff) 
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Figure 29 Modal dispersion relation comparison PS 1.2 (stiffer) 
 

4.2 Geometry analysis (PS_2) 
The second approach was to change the geometry of the LWF’s beams. Two 
scenarios have been analyzed4 PS_2.1 and PS_2.2 that will be presented 
separately in the next sections. 
 
4.2.1 Scenario PS_2.1 
For the first scenario we have analyzed the dispersion relations differences 
when the floor is modelled with shorter (Z-dimension) and wider (Y-
dimension) beams  (see Figure 30) than the original case. The data used in the 
model and the original values are presented in the Table 16. 
 
Table 16 Parameter values PS_2.1 

Scenario Original  PS_2.1 

E [N/m2]  3.4 109 1.76 1010 

 [kg/m3]  710  560 

Beam height [m]  0.3 0.15 

Beam width [m]  0.045 0.09 

                                                
4 The calculations for the parameter study PS_2 have been done using the low resolution 
finite element model since we are only interested in the relative differences between them. 
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Figure 30 Geometry detail PS 2.1 
 
The dispersion relations results have been divided for more clarity in two sets 
of waves. Set 1 BW01, BW02 and BW03 (Figure 31), and set 2 BW04, BW05 
and BW06 (Figure 32). The first set of waves show a similar tendency for both 
scenarios while for the second set of waves the change is much more 
significant. 

 
Figure 31 Modal dispersion relation comparison PS_2.1 for bending waves 1, 2 

and 3 
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Figure 32 Modal dispersion relation comparison PS_2.1 for bending waves 4, 5 

and 6 
 
4.2.2 Scenario PS_2.2 
In this second scenario, the beams have almost disappeared and the structure 
is getting closer to a simple plate. The geometry and data used for this case 
are given in Table 17 and Figure 33. 
Figure 34 shows the dispersion relations results. It can be seen how the new 
structure has a similar behaviour as the one of the HWF (see Figure 17, only 
BW), a plate performance. 
 
Table 17 Parameter values PS_2.2 

Scenario Original  PS_2.2 

E [N/m2]  3.4 109 8.8 108 

 [kg/m3]  710  112 

Beam height [m]  0.3 0.03 

Beam width [m]  0.045 0.225 
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Figure 33 Geometry detail PS 2.2 

 
Figure 34 Modal dispersion relation comparison PS 2.2 
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converge to the same line which can be considered the “pass-band filter”. If 
the systems were completely comparable, the lines should converge with a 
certain wave of the LW plate. 
The first set of propagating waves of the original LWF should converge 
approximately with the 4th wave of the LW plate, the second set with the 8th, 
the third with the 12th and so on. This is known as PASS-BAND behaviour, 
while the LW plate waves 1-2-3/4-6-7/9-10-11, etc. would be the STOP-BAND 
effect of the periodic system (shown in Figure 35).  

 
Figure 35 Dispersion relations comparison of the original LWF and the LW panel 

(infinite waveguide). Dotted green lines LW panel – Black lines 
Original LWF 

 
This behaviour is related with the number and dimensions of the periodic 
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Original LWF/ 1st set of waves 

 

LW plate / 4th wave 

 

Figure 36 Cross section deformation comparison: 1st set of waves - 4th wave 
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Figure 37 Cross section deformation comparison: 2nd set of waves - 8th wave 
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Figure 38 Cross section deformation comparison: 3rd set of waves - 12th wave 
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5 Sound radiation 
The radiated sound power level and the radiation efficiency have been 
calculated when a unit point force is applied at points P1 (on beam) and P2 
(between beams) of the LWF (see Figure 19). 
The top surface of the LWF is assumed to be a “Plane, baffle radiator” which 
velocity field has been already calculated when it is excited at those points. 
The surface has been meshed to have a number of discrete point sources, each 
of them having its own volume velocity. The centre of the floor is now the 
origin of the coordinate system. 
Once we have assigned the volume velocity to each point source, the sound 
pressure from each source to any receiving point can be evaluated by using 
Equation (7) and from those evaluations we can calculate the radiated sound 
power if enough number of receiving points are selected. 
An overall of 300 point sources over the floor surface and 87 receiving points 
over a hemisphere surface have been used in our calculations. The set-up is 
shown in Figure 39. 

 
Figure 39 Detail of floor and hemisphere receiving points 
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Figure 40 and Figure 41. 
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Figure 40 Radiated sound power exciting the floor at points P1 and P2 

 
Figure 41 Radiation efficiency exciting the floor at points P1 and P2 
 
Table 18 shows the values of the main “peaks” (frequency and sound power 
level) from Figure 40. The table includes an indication of which bending wave 
is responsible of each peak. 
Table 18 Analysis of the “peaks” of the radiated sound power level 
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49 82 BW03 

96 86 BW01 

112 78 BW02 

148 79 BW01 

164 77 BW02 

P2 (between 
beams) 

28 93 BW01 

96 86 BW01 

148 91 BW01 

170 89 BW01 

 
When the floor is excited at the point situated between the beams, the 
radiated power is higher than when it is excited on a beam. The main 
conclusion from analyzing the data presented in Table 18 is how the first 
bending wave (BW01) is mainly responsible of the sound radiation in the 
analyzed frequency range. 
From all the radiating peaks, it is important to highlight those at 96 Hz and 
148 Hz since they have the higher radiation efficiency and they appear in both 
excitation cases. 
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6 Conclusions 
The initial goals of this work were to gain a better understanding of the 
acoustical performance of a simple LWF and the evaluation of Waveguide 
Finite Element Method “WFEM” as a tool to predict the acoustic performance 
of structures. Therefore, we have drawn some conclusions based on the use of 
WFEM during the study and some others from the acoustic performance of 
the analyzed floors. 
The conclusions drawn from using WFEM are considered below: 

1. The main benefit of this method is that allows keeping the study from a 
“waves” point of view, what we consider basic for the physical 
understanding of the acoustical performance of a structure. We have 
used the tool to get dispersion relations, classify the type of waves, 
calculate mobilities, plot deformations, evaluate the sound radiation, 
etc. and in every case it is possible to find the corresponding wave, 
responsible of a specific acoustical performance. Furthermore, we 
could modify the properties of the structure and see how each specific 
wave changed. 

2. In Chapter 3, we could see how the difference between the number of 
elements and DoF’s used for modeling the same structure using WFEM 
and normal FEM is enormous. This can be seen as an indicator of the 
computational effort needed for both cases. If the WFEM tools are 
optimized the method is much faster and requires much less 
computational effort than normal FEM tools.  

3. In the other hand, we have seen how the method is limited (at least 
with the simplicity used during this work) to structures with constant 
properties along the waveguide, it is limited to the same loss factor for 
the whole structure (when calculating mobilities) and may be hard to 
implement complex boundary conditions.  

Relative to the acoustical performance of the LWF the next conclusions are 
drawn: 

4. At low frequencies, the results have shown how the vibrational field of 
the LWF is more complex than the one of the HWF. More complex 
means that there are more waves propagating in a LWF than in the 
HWF and the mobility level differences between both floors are huge. 

5. From the comparison of the deformations plots of both floors, we have 
seen how, the “plate behavior” of the HWF, happens in the low order 
bending waves of the LWF for the first wavenumbers but disappears 
for greater values. The LWF is a lightweight plate with periodic beams 
in one dimension. This type of periodic structures has been deeply 
studied and they are characterized by a periodic pass-band / stop-
band filter behavior as it has been shown in Section 4.3. 

6. Some additional scenarios have been analyzed by changing some 
properties of the original LWF. The effect of changing the elastic 
properties of the top board and the influence of the beams when they 
are made shorter to the point of disappearing have been shown. Again, 
the most important conclusion is that we can analyze the influence of 
the changes in each individual propagating wave. 

7. The overall radiated power is higher when the floor is excited at a bay 
between two beams. When the sound radiation results are correlated to 
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the propagating bending waves it is shown how the first bending wave 
(BW01) is mainly responsible of the sound radiation of the LWF. 
Particularly, those resonances at 96 Hz and 148 Hz are of special 
interest since they present the higher radiation efficiency and they 
appear in both excitation cases. 
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7 Future work 
The results of this work should be validated using experimental 
measurements. This was the initial plan but after two failed tries it was 
discarded. 
The radiation of the parameter study scenarios must be calculated and the 
results compared with those of the original LWF. The influence of the 
parameters in the sound radiation must be studied. 
Moreover, the excitation used in the whole study has been a unit point force. 
In the future, different and more realistic excitations (p.e. a falling mass, 
footsteps,...) should be included and compared with the results of normalized 
experiments. 
Finally, some of the steps of the WFEM process, as the geometry design, the 
calculations to get the deformation plots, etc., should be optimized because 
even if the method requires less computational effort than a FEM calculation 
of a complete 3D structure sometimes takes longer time just because the 
process is not completely optimized. 
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Appendix A. Dispersion relations frequencies 
 

kn [1/m] 

Frequency [Hz] 

BW 01 BW 02 BW 03 

HWF LWF HWF LWF HWF LWF 

/L !,(# &'# +!)# $(# ,$"# +)#

2 /L &$!# )*# +,!# !!&# ,,'# !&&#

3 /L $$)# !+'# (*$# !*$# '()# !'!#

4 /L +)&# !,"# *)(# !'+# ),+# !))#

5 /L *,)# !'$# '()# &"*# !!!)# &&!#

6 /L ')"# !)*# !"(!# &+"# !&')# &($#

7 /L !!!)# &!!# !&*$# &'*# !+'!# &)(#

8 /L !$*"# &&'# !+)"# $$'# !*)"# $+,#

 

kn [1/m] 

Frequency [Hz] 

BW 04 BW 05 BW 06 

HWF LWF HWF LWF HWF LWF 

/L !"'(# ('# !+,!# ,(# !','# '(#

2 /L !!&)# *)# !(!"# ,'# !)!$# )!#

3 /L !&"!# )&# !(,+# !"$# !),!# !!,#

4 /L !$"&# !!,# !**+# !&'# &"(&# !+$#

5 /L !+$"# !+$# !,,)# !(+# &!((# !*)#

6 /L !('&# !*,# !)!(# !,,# &&,,# !')#

7 /L !,((# !)"# &!$*# !)'# &+!)# &",#

8 /L !)+*# &!$# &$,,# &!)# &,)&# &&(#


