CHALMERS

UNIVERSITY OF TECHNOLOGY

Convolutional Linear Genetic Program-
ming for Underwater Image Classifica-
tion

Convolutional Linear Genetic Programming for Underwater
Man-Made Structure Image Classification

Master’s thesis in Applied Data Science

GABRIELE KASPARAVICIUTE

Department of Space, Earth and Environment
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

MASTER’S THESIS 2020:NN

Convolutional Linear Genetic Programming for
Underwater Image Classification

Convolutional Linear Genetic Programming for Underwater
Man-Made Structure Image Classification

GABRIELE KASPARAVICIUTE

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Space, Earth and Environment
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Convolutional Linear Genetic Programming for Underwater Image Classification
Convolutional Linear Genetic Programming for Underwater Man-Made Structure

Image Classification o
GABRIELE KASPARAVICIUTE

© GABRIELE KASPARAVICIUTE, 2020.

Supervisor: Peter Nordin, Department of Physical Resource Theory
Examiner: Claes Andersson, Department of Space, Earth and Environment, Physi-
cal Resource Theory

Master’s Thesis 2020:NN

Department of Space, Earth and Environment
Physical Resource Theory

Chalmers University of Technology

SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Subsea floor and template taken from the real world 3D cloud point and
imported into an underwater simulator.

Typeset in BTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2020

1ii

Convolutional Linear Genetic Programming for Underwater Image Classification
Convolutional Linear Genetic Programming for Underwater Man-Made Structure
Image Classification

GABRIELE KASPARAVICIUTE
Department of Space, Earth and Environment Chalmers University of Technology

Abstract

Real time 3D point cloud annotation of the subsea environment is an expensive and
challenging task. Therefore, industry is looking at robotics and machine learning
recent advancements for developing resident autonomous underwater vehicle (AUV).
In order to be able to achieve this task simultaneous localization and mapping
(SLAM) technique is utilized. However, a resident AUV is required to travel long
distances between man-made objects that do not require such a high resolution
annotation. This paper presents an innovative binary image classification method
employing linear genetic programming which aids in differentiating between the
images of interest and not. This allows to save battery and computational power to
avoid high resolution 3D cloud points during these trips between man-made objects.
The classifier’s results show over 95% accuracy. This paper also provides an overview
of SLAM techniques according to the industrial stakeholder’s requirements followed
by a review on the background of underwater simulations used in both industry and
academia.

Keywords: convolutional, linear, genetic, programming, underwater, image, classifi-
cation, binary, subsea, lgp.

iv

Contents

List of Figures

List of Tables

1 Introduction

1.1 Background
1.2 Problem Domain & Motivation
1.3 Research Goal
1.4 Contributions
1.5 Scope
1.6 Sectionlevels
2 Simultaneous Localization and Mapping

2.1 Basics
2.1.1 Mapping
2.1.2 Localization
2.1.3 SLAM

2.2 Principal paradigms to solve SLAM
2.2.1 Filter-based
2.2.2 Keyframe-based
2.2.3 Overview of SLAM implementations
2.2.3.1 DolphinSLAM

2232 DTSLAM.

2233 FABMAP

2.2.3.4 EKF MonoSLAM

2235 LSDSLAM

2236 ORBSLAM.

2.2.3.7 Pop-up SLAM

2.2.3.8 RKSLAM,

2.2.3.9 Selecting an Algorithm

2.3 Evolutionary Algorithms in SLAM and Image Classification
2.3.1 Existing approaches L.

3 Background on Underwater Simulation

3.1 Gameengines
3.2 Robot Operating System

viii

vi

Contents

4 Convolutional Genetic Programming Algorithm
4.1 Fitness function

5 Methodology

5.1 Collection of Data

5.2 Experiments
6 Results
7 Conclusion
Bibliography

A Appendix 1

27
29

31
31
32

35

39

41

vii

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17

2.18
3.1

4.1
4.2

List of Figures

Differences between underwater acoustic positioning methods. Taken

from Kongsberg (2016).. oL 2
One challenge affecting detection of underwater objects is water tur-

bidity. Example from Ferrera et al. (2019). 4
Mapping example from Imani et al. (2018). 7
Localization example from Imani et al. (2018). 8
SLAM example from Imani et al. (2018). 8
Front-end and back-end of SLAM from Cadena et al. (2016). 9
The flowchart for SLAM, based on Yuan et al. (2017).. 9
Flow chart of filter based SLAM based on Yousif et al. (2015). 11
Flow chart of key frame based SLAM. 14
Example of an underwater template taken from Engineering (2016). . 14
DoplphinSLAM architecture by Silveira et al. (2015). 15
DT SLAM architecture. 16
Flow chart of LSD SLAM. 17
Flow chart of ORB SLAM. Works with monocular camera as well. . . 18
Example of Pop-up SLAM. 19
Flow chart of RKSLAM. 20
Qualitative analysis of open source packages using the new datasets.

Data sets: Husky (unmanned ground vehicle) outdoor (H/Out); Husky
indoor(H/In); Quadrotor outdoor (Q/Out); Quadrotor indoor (Q/In);
Aqua on coral reef (A/Out); Aqua inside wreck (A/In); Drifters on

coral reef (D/UW). Taken from Liu et al. (2016). 21
Example of a tournament selection. This example uses standard fit-

ness value, which means the best fitness value is zero. 22
Example of a mutation in LGP where an operator changed in one

instruction.o 22
Example of a crossover in LGP. 23
Difference in rendered views taken from Kermorgant (2014) 26

LGP approach to object classification based on Zhang and Lett (2006). 27
LGP system flowchart example taking place in the Genetic Program-

eve—

viil

List of Figures

0.1

5.2
5.3

6.1
6.2

Subseafloor and template taken from the real world 3D cloud point

and imported into an underwater simulator. 31
NOT TEMPLATE images taken from the simulator. 33
IS TEMPLATE images taken from the simulator. 33
The only two mistakes the algorithm made. 36
Histograms of each of the best individual’s 29 instruction members. . 37

ix

5.1

6.1
6.2
6.3

Al

List of Tables

Selection of window and step size/stride, average taken after 3 repeats
of each experiment.

Koza tableau for convolutional LGP experiment.
Confusion matrix for the experiment run on validation data set.
Rates and calculations based on the confusion matrix.

List of most suitable SLAM techniques for solving the stakeholder’s
problem.

1

Introduction

The underwater world provides us with many resources: from fisheries, archaeolog-
ical discoveries, and deep sea minerals to oil and gas extraction. Currently, these
tasks are mostly accomplished manually by the use of remotely operated vehicles
(ROV). Methods like Ultra Short Baseline (USBL) and Long Baseline (LBL) allow
for more accurate ROV localization (Kim, 2012) (see fig. 1.1). USBL requires a
vessel in the sea, with a transceiver mounted on the bottom of its hull, while the
transponder is usually mounted on a diving ROV. By means of acoustic signals sent
between the transceiver and the transponder, it is possible to obtain an accurate
distance and bearing of the ROV. LBL works in the same way, except that it uses
a network of transponders, also known as beacons, which are planted on the sea
floor. Regardless, the ROV still requires an operator. As seen from the provided
industry standard, current manual assignments are costly and time consuming, thus
a different method of localization is needed.

Automation is crucial in order to be able to increase the efficiency of these tasks—
ROVs need to be replaced by Autonomous Underwater Vehicles (AUVs). However,
a difficult assignment falls on AUV software: it needs to navigate in a murky un-
derwater world.

Simultaneous Localization and Mapping (SLAM) is one of the best techniques avail-
able for navigating with AUVs. SLAM has been used in many different scenarios,
from augmented reality to assisted surgery. One of the most challenging environ-
ments for SLAM is underwater (Guth et al., 2014). The literature describes a vari-
ety of scenarios, from coral reefs (Williams et al., 2000) and ship wreck explorations
(Williams et al., 2016), to surveys for the oil and gas industry (Shukla and Karki,
2016) and inspecting the hulls of ships (Kim and Eustice, 2013).

1. Introduction

(a) Example of (b) Example of long baseline.
ultra short
baseline.

Figure 1.1: Differences between underwater acoustic positioning methods. Taken
from Kongsberg (2016).

1.1 Background

Research has suggested that SLAM can be divided on the basis of sensor combina-
tions (Kim, 2012). For example, according to Yuan et al. (2017), as of 2017 the most
popular solutions to underwater SLAM include filtering approaches which predomi-
nantly use imaging and side-scan sonars. Filtering techniques have a large number of
disadvantages; from growth in complexity in particle filters, to Gaussian assumption
and computational slowness in high dimensional maps. Yuan et al. (2017) suggested
an improved Extended Kalman filter (EKF), with an augmentation state. The al-
gorithm is based on features derived from stationary landmarks. Similar to the use
of QR codes for the localization in indoors environments (Zhang et al., 2015).
Underwater SLAM can use another sensor combination consisting of cameras and /or
laser scanners. Due to the rising popularity of these sensors, SLAM has faced two
main issues: scalability and reliable data association (Kim, 2012). Furthermore, it
is complicated by many camera options available, including stereo (Mahon, 2008),
RGBD (Anwer et al., 2017), and monocular (Jung et al., 2016).

Manzanilla et al. (2019) showcased promising results using PTAM (Parallel Tracking
and Mapping), techniques using monocular camera and Extended Kalman filter,
to fuse data from an inertial measurement unit (IMU), a pressure sensor, and a
magnetometer.

Aulinas Masé et al. (2011) investigated the combination of SLAM techniques in an
offline context, where data was acquired using an AUV equipped with a downwards-
facing camera, Doppler Velocity Log (DVL) !, and IMU. A similar sensor approach
has been shown by Jung et al. (2016), where they used keyframes and then, by
applying least square optimization, obtained the final pose graph. The experiments
were run in a basin and the final algorithm was compared to Monte-Carlo localization

'DVL acquires velocity measurements with respect to the sea floor.

1. Introduction

and other inertial navigation systems.

Eustice et al. (2005) applied Information Filter SLAM on data acquired from the
monocular camera of a ROV that visited the RMS Titanic. For the underwater
vehicle to be capable of moving around in unknown environment without causing
collisions, it requires the use of some SLAM methodology.

1.2 Problem Domain & Motivation

This paper focuses on AUVs and their inspection of underwater oil and gas struc-
tures. This issue has been emphasized by the stakeholder DeepOcean AS. Their goal
is to have a resident subsea AUV in the vicinity of man-made structures that pump
gas and oil at a depth of around 500 m. under the Norwegian sea. The company
wants an underwater garage for the AUV, so it can continuously inspect the area
and create a map of it for further visual inspections. The area requiring inspection
may expand up to 15000 x 50 meters.

This is a large area, which means that while the AUV travels from one structure to
another for inspection, it may create a map of the seafloor which is not needed. As a
consequence, the AUV is consuming the scarce battery power and computer power
on a task that does not produce value. The AUV should thus be able to detect
the desired structure, to increase the quality of the map it creates. Furthermore,
underwater SLAM has only been solved in theory, as the subsea environment brings
many challenges with it (Yuan et al., 2017), such as:

o Sensors. Generally, this is a problem for all robotics solutions. Sensors have
limited accuracy. Accumulated noise causes substantial errors when estimat-
ing localization and mapping, which usually means that the functions do not
converge. Another problem is a sensor’s unexpected collision or misalignment,
for example, when a camera might abruptly change its angle, resulting in a
motion blur (Younes et al., 2017).

o Feature extraction. SLAM requires features that can be easily and repeatedly
observed. This aids in reducing uncertainty in its estimations. Furthermore,
recognizable landmarks make data association processes much faster and less
prone to error. In underwater scenarios, feature extraction may face such
problems as occlusion, seafloor reflection, poor resolutions, and water turbidity
(see fig. 1.2).

o Absolute location. Due to a lack of global positioning system, underwater ve-
hicles require alternatives to be able to calculate their absolute locations. This
is commonly done using triangulation systems, e.g., Long Base Line (LBL),
Short Base Line (SBL), Ultra Short Base Line (USBL). These solutions have
a few significant drawbacks: implementation is extremely expensive; some so-
lutions (like LBL) require installation in the sub sea environment; and lastly,
they restrict the working area.

o Computational complexity. SLAM computational complexity largely depends
on the size of the exploration mission and its uncertainties, as the area may
grow exponentially.

In order to address the AUV’s first challenge, i.e. the inspection of the correct
man-made object, the robot needs to be able to classify the images/objects

3

1. Introduction

it senses. The goal of classification is to take an input vector and assign it a
discrete class. But in order to obtain the classifier, the model requires training.
The usual approach to construct such a model is by using supervised learning,
which requires correctly labeled data. In the case of a neural network tech-
nique, the optimal configuration of the neural network is not a known a priori.
Furthermore, training times may take a long time, and the reasoning behind
the final model is not clear (Oltean and Diogan, 2009). Genetic Program-
ming (GP) based techniques have an edge over some other known statistical
approaches due to having no requirements for prior knowledge about the dis-
tribution of data. Additionally, interpretability is a preferred characteristic of
GP. GP automatically selects features and different mechanisms to control the
size of the classifier (Kishore et al., 2000). Finally, GP is efficient for parallel
and distributed implementations, which reduces training time. Due to these
advantages, this paper explores GP-based image classification.

frrragre ®l fmage n*5 IFrTagre F Frage irrrage n*17 « Turbidity

I

{a) level

Figure 1.2: One challenge affecting detection of underwater objects is water
turbidity. Example from Ferrera et al. (2019).

1.3 Research Goal

This paper has two goals. The first is an extensive literature review of SLAM algo-
rithms based on the stakeholder’s requirements—establishing an AUV in a subsea
garage for monitoring oil and gas pumping structures. This is also called resident
AUV, as the vehicle stays underwater even when not in use. The second goal is
to examine a new method for image classification in the underwater world, using
convolutional genetic programming and incorporating it into the chosen SLAM al-
gorithm. It was not possible to use the actual location data, as it is very client
sensitive. Image classification is therefore achieved by recreating one part of the
real world subsea environment in an underwater simulator. This new approach to
image classification is then evaluated by running the trained model on unseen labeled
data and calculating the confusion matrix followed by other metrics from it.

1.4 Contributions

The aim of this paper is to review current SLAM techniques based on stakeholder
requirements and contribute with an implementation of a new approach for im-
age classification based on convolutional linear genetic programming. The data for
algorithm’s test is acquired in Robot Operating System (ROS) software.

1. Introduction

1.5 Scope

The industrial stakeholder’s goal is to be able to have a resident AUV available
to perform inspections at any given time. This also means that no USBL or LBL
should be used during the inspections.

Due to privacy of the data, the stakeholder provided a 3D cloud point of the un-
derwater structure with identifying numbers removed. The subsea template with
its surrounding ground was extracted and placed into a simulation. UWSim, a
package in Robot Operating System, has been chosen as the software simulation
environment. The software is open source and integrates underwater dynamics.

1.6 Section levels

This paper is structured as follows. The second section introduces the reader to ba-
sics of simultaneous localization and mapping (SLAM) and establishes the common
paradigms in solving SLAM. Additionally, the second section provides an overview
of SLAM implementations and summarizes them in an appendix. The third section
talks about the simulations used for subsea robotics. The fourth section presents the
main algorithm used for image classification which is followed by the methodology.
The last two sections develop results and conclusions from the experiments.

2

Simultaneous Localization and
Mapping

Simultaneous localization and mapping (SLAM, also known as concurrent localiza-
tion and mapping) is one of the biggest challenges in robotics (Imani et al., 2018). It
describes a problem where a robot moves within an unknown environment while at
the same time making observations of the environment (Durrant-Whyte and Bailey,
2006). SLAM processes can be divided into the two main steps of localization and
mapping, but at first both of these steps had to be solved separately. Fortunately,
due to the proposal of Durrant-Whyte and Bailey (2006), SLAM problems evolved
into the first comprehensive theoretical SLAM solution.

In this paper, the focus is on a single camera SLAM that can be fused with data
from other possible sensors, e.g. inertial measurement units (IMU), doppler velocity
logs (DVL), altimeters, and sonars.

2.1 Basics

The focal interest of this paper is to examine Visual and Visual-Inertial data (camera
data fused with inertial sensor data) and SLAM solutions applicable to the problem
posed by the stakeholder. Before digging into the details of SLAM, it is important
to understand the basics.

In order for the robot to be able to apply SLAM, it requires motion and at least one
sensor, in this case a monocular camera. SLAM is a probabilistic solution, therefore
the probability distribution requires it to be calculated for all times k:

P(xi, m|Zo.g, Uk, To) (2.1)

where:

o 1y is the state vector describing the location and orientation of the robot (in
this case it is z, y, 2, 0). x, y z are the robot’s coordinates and 6 is the angle
the robot is facing.

e uyg is the control vector which is applied on the robot to drive it from state
Tr—1 to xp.

e m; is a vector describing the locations of the ith landmark.

e 2z 1s an observation of the 7th landmark taken at time & at some location.

SLAM utilizes Markov process. Thus due to it, the motion model’s next state
transition depends only on the previous state xp_;. Therefore, the motion model

2. Simultaneous Localization and Mapping

for the robot consists of finding the current state, based on the previous state and
the motion at the current time k:

P(xk\:ck,l,uk) (22)

The last step is the observation model (z;) for the vehicle, which given a map calcu-
lates the probability of sensing landmarks at the current state x,. The observation
model is described in the following form:

P(zg|zg, m) (2.3)

This means that the probabilities for the observations are calculated by the given
state vector and described landmarks locations.
The next subsections go into more detail about the fundamentals of SLAM.

2.1.1 Mapping

Mapping is a part of the challenge of SLAM, as the vehicle has no prior knowledge of
the environment in which it travels, and its sensors provide noisy data. The former
results in the imprecise pose estimation of landmarks. Landmarks are features in
the environment that are easily recognized in the distance and help to establish
location. Figure 2.1 shows that the estimation of each landmark is not certain, and
is thus surrounded in an ellipse of possible poses.

Figure 2.1: Mapping example from Imani et al. (2018).

2.1.2 Localization

Localization is another feature of the SLAM algorithm, which is employed to es-
timate vehicle’s pose. When the vehicle moves through unknown environments at
discrete time intervals, it utilizes data from the mapping process. As can be seen
from the figure 2.2 below, the vehicle moves along a trajectory and utilizes its sen-
sors to recognize the environment and its landmarks. Since the vehicle knows the
approximate pose of landmarks, it can estimate its own pose in relation to them.
The example in figure 2.2 portrays a situation where a vehicle (square) started off by
calculating its pose correctly according to the most left stars/landmarks. However,

2. Simultaneous Localization and Mapping

later on, the actual motion model provided poor advice for the vehicle to turn left,
when in reality it should turn right. But, by observing the landmarks, the vehicle
was capable of correcting itself.

Figure 2.2: Localization example from Imani et al. (2018).

2.1.3 SLAM

The main idea behind SLAM is to allow the vehicle to build a map while at the
same time localizes itself within the map (see fig. 2.3). This is usually referred to
as the chicken and egg problem, since the vehicle needs to know the map in order
to be able to keep track of its location.

w
NG
3 o
A2

-1

......

Figure 2.3: SLAM example from Imani et al. (2018).

Due to the nature of stakeholder’s proposed problem, this paper focuses on Visual
and Visual-Inertial SLAM. This is because that after leaving the stationary un-
derwater garage, the AUV may be swept away by underwater currents, a possible
landslide, or other underwater disturbances. Visual and Visual-Inertial SLAM is
a different category of general SLAM. As the name suggests, its main sensor is a
camera or multiple cameras. Different researchers have been using discrete camera
setups to solve Visual SLAM problems. This includes, but is not limited to, the
monocular camera presented in Mur-Artal and Tardés (2017a), RGBD in Sturm

2. Simultaneous Localization and Mapping

et al. (2012), and a stereco camera in Engel et al. (2015). Visual SLAM can be
supplemented by other sensors, for example, inertial navigation systems, which aids

in increasing the accuracy of the algorithm. The sensors complementary to Visual
SLAM are called Visual-Inertial SLAM (Fuentes-Pacheco et al., 2015).

sensor SLAM
data front-end back-end estimate

‘ feature extractior w1 s

MAP ‘/—\ .
G- * Z ""' ";:’-:’r:j'_'. : estimation ’ ,J\J .
.fi ong-te sure) # Sipen by

Figure 2.4: Front-end and back-end of SLAM from Cadena et al. (2016).

Visual-Inertial SLAM (later on referred as just SLAM) has been researched a lot in
the last decades. There are many ways to divide it into different systems, strategies
or parts. Firstly, the most common separation of SLAM is into front-end and back-
end, following Cadena et al. (2016) (see fig. 2.4). As mentioned above, the first step
in SLAM is extracting sensor data and matching it to the vehicle’s appropriate state.
Since in Visual and Visual-Inertial SLAM the main sensor is a camera, extracting
the most important data and representing it in the vehicle’s state is challenging.
Therefore, front-end plays the role of extracting the most crucial features from the
environment and presenting it in a way understandable to the back-end. For ex-
ample, by taking pixel locations of the most important features in the viewpoint,
it allows the vehicle to further send this data to back-end. Furthermore, front-end
aids in associating sensor data to specific landmarks in the present environment.
This step is also called data association. Back-end acts as a process where the ve-
hicle estimates its pose and landmark locations (i.e., creates the map). The loop
between back-end and front-end is there because the back-end provides feedback on
the features to the front-end for loop closure Yuan et al. (2017).

oy
e|ea

Figure 2.5: The flowchart for SLAM, based on Yuan et al. (2017).

2. Simultaneous Localization and Mapping

The common flowchart of the SLAM process is shown in figure 2.5 based on Yuan
et al. (2017). SLAM consists of seven main steps. Works by others have reduced the
number to five fundamental steps (Naminski, 2013). These are as follows, excluding
the start and finish:

1. Select viewpoint. This step allows the vehicle to focus its camera on some
object.

2. Robot motion. This step is also called location prediction, as it stores the
information of the vehicle’s control into a vector. The control vector collects
the information of the different controls affecting vehicles. This vector usually
also provides knowledge of the vehicle’s orientation and changes over travelled
distance.

3. Observation. The observation phase includes gathering data of the observed
environment. It also contains a matrix of the calculated landmark’s pose.

4. Local perception map. After the vehicle has collected data of the environment,
it is substantial enough to estimate the vehicle’s local pose using triangulation.
In this step the vehicle can also adjust its location.

5. Data association. The vehicle attempts to associate previously observed land-
marks with those it currently observes.

6. Robot pose correction and Map fusion. Through triangulation of the observed
maps and the vehicle’s motion model, the vehicle is capable of computing the
probability of its current pose. Without this step, the vehicle can neither map
nor localize itself since it cannot use any previous information about its pose.

7. Global map. This final step estimates the landmarks’ poses. The global map
step also contains the process of calculating correlations between landmarks.
After this, the map of environment is updated.

2.2 Principal paradigms to solve SLAM

The main challenge of SLAM is uncertainty, which makes SLAM a probabilistic
problem. The uncertainty comes from noisy sensor measurements and difficult envi-
ronments with many factors affecting a vehicle’s localization and mapping making
the problem even more demanding.

One approach is to pick one frame at a time from a video stream and estimate the
camera poses with respect to the 3D structure obtained so far.

SLAM can be divided into the following strategies: incremental (picks one frame
and estimates the camera pose by triangulation with respect to observed landmarks),
hierarchical (uses balanced trees obtained from trifocal lenses gathered over a video
frame) and global (also referred to as batches) approaches (Patra et al., 2017).
According to Younes et al. (2017), monocular SLAM solutions are grouped into
and based on either filter or key frames. The former uses filters such as Kalman,
including its variations, e.g., Extended Kalman Filter and Unscented Kalman Filter
(Yousif et al., 2015). As stated by Younes et al. (2017), filter-based SLAM was most
popular before 2010. Later on the non-filter, also called keyframe-based SLAM,
had greater popularity. The filter-based systems update the camera pose and the
locations of all landmarks in the map for every handled frame. While key frame
based systems update camera pose over a small subset of the map, this is where

10

2. Simultaneous Localization and Mapping

the optimization takes place. According to Younes et al. (2017), key frame based
SLAM solutions outperform filter based ones. Thus, it is not surprising to see most
up to date research is based on key frame based SLAM. This section of the paper
digs deeper into the discussions of different SLAM techniques and explores them.

2.2.1 Filter-based

One of the solutions for SLAM uses filters. The most popular filters are Extended
Kalman Filter and Particle filter.

Clemei Sensor/Camera
y Measurement
State Prediction LandmarWEeature
Extraction

¢ v

State Correction '¢—| Data Association

Figure 2.6: Flow chart of filter based SLAM based on Yousif et al. (2015).

(a)

The Extended Kalman Filter's (EKF) foundations are based on the Bayes
technique. It computes the probability distribution of the state estimates by
using a recursive equation, which permits combining the control input and
observation model. EKF has two steps; the first one is called prediction.
During this step the vehicle takes measurements from a motion model. This
process allows it to propagate the robot state estimate. In other words, the
predicted belief keeps information about the mean and the covariance matrix
of the state. The mean estimate is calculated by using a nonlinear function
g. The covariance matrix computes uncertainty by using a Jacobian of the
motion model and adding the noise that has occurred during motion.

The second step, also called correction, takes into consideration the observation
measurements and includes observed landmark pose predictions. This step also
uses the so called Kalman gain which is the correction of the mean estimate
and the covariance matrix. The correction step for the mean multiplies the
Kalman gain by the observation model and the predicted observation. The
last equation calculates the correction of the covariance matrix.

The Particle Filter algorithm has been derived to also be used for nonlinear
motion models. The algorithm is also part of the recursive Bayes filter, along
with the Extended Kalman Filter. The idea behind Particle Filter is to use
random weighted samples that show the possible pose estimates of the robot.
Particle Filter consists of three main steps. The first step is called sampling

11

2. Simultaneous Localization and Mapping

step. During this step the algorithm produces random samples according to
the arbitrary distribution. The second step computes the importance weights
for the proposed particles. This includes taking the target distribution and
dividing it by the proposal distribution. In other words, it considers differences
between the proposed distribution and the target. The final step swaps the
most likely particles with less probable ones.

(c) Graph-SLAM. The idea behind Graph-SLAM is to use graphs to represent
the problem, where each node corresponds to a pose and edge shows a spatial
constraint between them. While the vehicle moves, it generates constraints
between successive poses. This means that Graph-SLAM is an optimization
problem where it needs to find the proper node configurations that minimizes
the introduced constraints.

2.2.2 Keyframe-based

Keyframe-based SLAM techniques focus on optimization in order to be able to
estimate the motion and map. In contrast to filter-based solutions where they
perform both localization and mapping at the same time, keyframe-based techniques
separate them into steps. These steps include camera pose estimation and key frame
optimization.

Keyframe-based SLAM consists of 7 components: visual initialization, data associa-
tion, pose estimation, topological /metric map generation, map maintenance, failure
recovery, and loop closure (see fig. 2.7).

According to Younes et al. (2017), in keyframe-based SLAM the camera pose and
the structure of environment are unknown during initialization. Therefore, the first
step for initialization is to initiate these two estimates. With each new key frame,
data association uses the previous camera pose to estimate the new pose. Then the
new estimate is used for establishing a 3D map and its associations. The error vector
calculated by the difference between the true measurement and the matched pose is
iteratively minimized. If the data association step fails, failure recovery boots up.
If the frame was chosen as the key frame, then it is used to triangulate landmarks
between two key frames and create the map. Map maintenance optimizes the map
by removing outliers and detecting loop closures. The keyframe-based components
in detail are as follows.

(a) Visual initialization is a challenging start of the keyframe-based SLAM tech-
niques. The main problem arises from the fact that neither pose nor structure
is known at initialization. Therefore, the usual tactics to solve this problem
are as follows; the first frame is always set as the key frame. The subsequent
frames monitor if the data associations between the frames have reached some
distance. Usually Homography ! or Fundamental matrix ? are used to estimate
initial camera pose and scene structure. Sometimes random depth initializa-
tion is used to address the degenerate cases. This is done by assigning random
depth values and updating them with each frame until depth variance con-
verges.

1Used for relating translations between two planes.
2Used for relating corresponding points in stereo images.

12

2. Simultaneous Localization and Mapping

(b)

Data association can be direct, feature-based, and hybrid. Further down,
direct data association is separated into dense and semi dense. The formal di-
rect data association method looks at every pixel while the semi dense method
looks at the most significant gradients of the image.

The direct data association looks at a window of a location of interest in the
source image, and tries to find the transformation that minimizes the same
window of a location of interest in the target image. The fundamental idea
behind the direct method is called brightness consistency. It is based on the
idea that the location of interest in two consecutive images will have similar
brightness intensity.

The feature-based methods are advantageous compared to the direct data as-
sociation methods, as their aim is to reduce computational costs. Instead of
looking at windows of location of interest, the feature-based methods intro-
duce the idea of matching salient image locations. Sometimes these locations
are called features or keypoints. The features must be distinctive and not be
affected by illumination, blur or image noise problems. Since computational
speed and a high resolution of features are difficult to solve, researchers have
shown that a trade-off is a usual practice in SLAM. Feature detectors are al-
gorithms that allow to extract the most interesting parts of the image. The
feature detectors examples include but are not limited to Hessian corner de-
tector, Harris detector, Laplacian of Gaussian detector, and FAST. Feature
descriptors, as the name suggests, describes the extracted features from the
previous step. Examples of feature descriptors can be as simple as raw pixel
values or can be represented as a bag of words, local orientation, etc. Re-
searchers have worked on this problem continuously over the past decades,
with many proposed representations for feature descriptors such as SURF,
SIFT, HoG, and ORB.

The last data association method is a hybrid of both feature-based and direct-
based methods. They use a combination of both to update camera estimates
and create maps.

Pose estimation allows to make assumptions and make the data association
step easier. Most systems use the constant velocity motion model, thus the
prior for the two consecutive frames stays the same. Having a good estimation
of the pose allows the system to establish better estimates for feature locations
and plays a role as a basis for the minimization procedure.

Camera pose optimization is done by minimizing the measure error between
frames. These frames are achieved by projecting a 3D landmark into a 2D
frame.

A map generation/expansion process is responsible for generating a map for an
unseen environment with unknown landmarks. Usually they are represented
as dense or sparse cloud points. Every time a new key frame is added to the
map, the data association is performed between the new key frame and the
neighbouring key frames. Then triangulation is executed with new landmarks.
In case the map has pose graphs, it updates the pose graph’s links. Otherwise,
the information is forwarded to the map maintenance module.

The options for maps in SLAM techniques are twofold; metric and topological.

13

2. Simultaneous Localization and Mapping

Metric maps are created by projecting the 3D landmarks between two or more
key frames using epipolar geometry. It is done by associating 3D landmarks
projected into 2D by minimizing the sum of all projections. Topological maps
use nodes and arcs. These maps allow distorting point poses without changing
spatial relationships between the nodes.

(e) Map maintenance is achieved by map optimization through bundle adjustment
or pose graph optimization. This step is important, as it aids in minimizing
the accumulated camera pose errors. Map maintenance begins by establishing
data association between either all landmarks and key frames or just a batch.
This step determines if a global or local bundle adjustment is going to be used.

(f) Global localization is a required step which is needed when the camera loses
its pose track and needs to localize itself in the global map. Two forms are
considered to be part of global localization; failure recovery and loop closure.
Failure recovery is usually a problem when the camera loses sight of the feature.
Loop closure allows reducing the accumulated drift error when and if the loop
closure process comprehends that the same feature has been observed again.
This is usually done using pose graph optimization or bundle adjustment.

I 3D Map m Data Error vector Pose Pose estimates
Initialization - o S
Pose estimates {Vay association optimization
Map 3D Map Map
maintenance expansion

Figure 2.7: Flow chart of key frame based SLAM.

T

Failure
recovel

3D Map Loop
Pose estimates | closure

2.2.3 Overview of SLAM implementations

In order to be able to solve the problem of allowing the AUV to leave the under-
water garage, identify a man made sub-sea structure, e.g., a template (see fig. 2.8),
navigate towards it, do a survey around it, and come back again to the garage with
a 3D map of the said structure, it is crucial to choose the proper SLAM method.

Figure 2.8: Example of an underwater template taken from Engineering (2016).

14

2. Simultaneous Localization and Mapping

The main requirement for the SLAM technique is to ensure that the sensor used is
a monocular camera that also has the possibility to incorporate IMU and possibly
other sensors in the future. The second reason is to ensure that the SLAM is a
complete SLAM technique, as in this case we are not interested in separate front-
end (e.g. Direct Sparse Odometry) or back-end (e.g. RatSLAM) systems of SLAM.
Furthermore, in order to solve the problem proposed by the stakeholders, SLAM
requires to have a loop closure. Finally, it needs to be open source. Following these
requirements, the following table has been created (see table A.1) based on work by
Kahlefendt (2017).

2.2.3.1 DolphinSLAM

Researchers have long questioned just how living beings navigate through the world.
By taking their studies into account, a new development of SLAM techniques, called
DolphinSLAM, has come to the surface (Silveira et al., 2015). DolphinSLAM has
been inspired by another animal related SLAM technique called RatSLAM, devel-
oped by Milford et al. (2004). DolphinSLAM is purposely built to solve SLAM prob-
lems in underwater environments. Input is passed through a Continuous Attractor
Neural Network which computes the robot’s pose estimation in unseen environments.

' — PooeptionCues 4—— %
Sanar ¥ Camera

ewel-. —_— » ExporioncMap
p -)

Pt Detectio

;
o ’/’ ‘\-H-" a

oL

Figure 2.9: DoplphinSLAM architecture by Silveira et al. (2015).

DoplphinSLAM has the advantage of linear computations and its capability to in-
volve optical and acoustic image sensors. These sensors are: sonar, camera, Doppler
Velocity Log ?, and IMU (see fig. 2.9).

A Perception Cue module is responsible for extracting important information from
the sensors. A Hessian feature detector is applied on optical sensors measurements,
followed by SURF descriptors. Sonar image registration uses the HU image moment
calculation, as it allows to determine clear geometric shapes. All vehicle perceptions
are mapped into neurons called local view cells. The FabMAP algorithm applied
over of these neurons allows it to determine if the environment is being seen for the
first time or if it has been visited before. At each moment only one local view cell is
activated. A motion detector module is responsible for extracting information from
IMU and DVL sensors. The 3D place cell network is a Continuous Attractor Neural
Network. Each neuron is accountable for only one specific area in the environment.
Each neuron is then passed to a competition of the most reliable vehicle’s pose
estimation. The winner neuron will become an attractor, where the main focus of

3DVL acquires velocity measurements with respect to the sea floor.

15

2. Simultaneous Localization and Mapping

the Continuous Attractor Neural Network is condensed. An experience map module
is in charge of creating the environment map. Every time a new place is visited, the
experience map creates a new node.

2.2.3.2 DT SLAM

DT SLAM was created to unify the ability to triangulate points (Herrera et al.,
2014). It has been tested on videos taken in cities by a moving robot arm. It
consists of three main parallel threads: tracking, mapping, and bundle adjustment
(see fig. 2.10).

The tracking module is responsible for feature matching. It uses the previous pose
estimation to be able to track the feature matching. The originality of the tracking
module is the use of 3D and 2D features as both of them provide information to a
better pose estimate.

The mapping thread checks if a new keyframe is contributing to the map creation.
Firstly, it checks the new keyframe against all possible matches. If a feature has been
found, it needs to ensure that it is over some baseline threshold. Lastly, the mapper
thread updates the pose of the new keyframe and the locations of the features using
1-frame bundle adjustment.

The bundle adjustment thread takes care of keyframe optimization as it runs uni-
formly in the background. Keyframe optimization is achieved by taking both 2D
and 3D features into consideration using the same framework as in the tracking
module.

]

Tracking thread Similarity Match 3D Pose Distance from
. features I Estimation 3D points

b
Feature Detection :t;:‘e:: Match 2D Distance from
(FAST) features Epipolar segment

Check scene

Mapping thread convergence .
Find extra ke N 1-frame
o — e = New keyframe

BA
triangulations

BA thread Bundle Adjustment

i i

Figure 2.10: DT SLAM architecture.

2.2.3.3 FAB MAP

Fast Appearance-based Mapping algorithm was created by Cummins and Newman
(2008) and further extended by Cummins and Newman (2011) to enable this prob-
abilistic appearance-based place recognition SLAM technique to work on maps of
thousands of kilometers. The idea behind FAB MAP is that it compares images
and computes the probability for re-visiting a location seen in one of the images.
It also provides the probability for seeing the new location for the first time. FAB
MAP has a feature-based data association using a visual bag of words database. It
thus requires to train its model on images similar to those it may encounter while
traversing the unseen map. The system uses the SURF descriptor/detector. FAB
MAP was tested on imagery collected by a mobile robot in a neighborhood.

16

2. Simultaneous Localization and Mapping

2.2.3.4 EKF MonoSLAM

The Extended Kalman Filter Monocular SLAM technique has been extensively re-
searched by Grasa et al. (2011). In order to achieve SLAM using EKF operations,
it is important to map events to SLAM and EKF actions. For example, the robot
motion maps to the EKF prediction step, while the camera’s detection of a new
landmark portrays landmark initialization and state augmentation in EKF SLAM.
If a camera detects a known landmark, that means in EKF SLAM it goes into the
next, Kalman filter correction, step where it adjusts the position of the observed
landmark. Finally, if the mapped landmark is deprecated, the EKF has a module
called state reduction to take care of it.

EKF Monocular SLAM has been implemented both indoors (Hwang and Song, 2011)
and outdoors (Herrera et al., 2014), and even to aid surgeons (Grasa et al., 2011).

2.2.3.5 LSD SLAM

The Large Scale Direct SLAM technique is based on using direct data associations, as
opposed to the previous feature-based techniques (Engel et al., 2014). This means
that the full input image is kept by using photometric error minimization, also
known as intensity difference, which allows calculating per-pixel depth to create a
semi-dense depth map. The idea behind LSD SLAM is to reduce computational
costs when it comes to extracting and matching features (see fig. 2.11).

By using a semi-dense depth map on keyframes it allows the reconstruction of whole
images. LSD SLAM process goes as follows: a structure in the input video is tracked
by using SE(3) alignment to current keyframe. A frame is only considered to be the
new keyframe if the tracked structure is no longer visible in the input image. In that
case, the depth map is propagated on the new keyframe. If the previous keyframe
is not replaced by a new one, the former is refined by adjusting its depth map.
Each new keyframe is incorporated into the map and is checked against previous
keyframes of a loop closure. Map optimization is achieved by using g2o pose graph-
based framework.

. ! . . b P .
Tracking ' . Depth Map Estimation |5 Map Optimization
I
P P Current, Map
4 ! 5
New 1 o Take KF? » s il BB
ew Image | : yes no ([g 1
) . I
(640 x 480 at 30Hz) i : : : 1 \ % w
A % =
/1| Create New KF Refine Current KF |1 % o
* | || — propagate depth map | |— small-baseline stereo |1 N
Track on Current KF: to new frame — prohab.ﬂistica.lly | L,
. . . 1| ||— regularize depth map merge into KF [A add to map
i estimate SE(3) transformation 5 regularize depth map 3 : Add KF to I\/Iap
! .
. 25, replace KF refine KF ! 1|~ find closest keyframes
»Ir i 52’325) > ;’sz(:ai)) o ¢ P ‘ | | | estimate Sim(3) edges
. p 7 s Current KF min 3 AN r3(.6)
D gesim@3) B || Trpme) Tra. |ls

I
.]
tracking reference | |

Figure 2.11: Flow chart of LSD SLAM.

LSD SLAM’s achievements have been displayed in a few scenarios. One example is
by von Stumberg et al. (2017) where the authors have demonstrated LSD SLAM
working on an autonomous drone by using a monocular camera.

17

2. Simultaneous Localization and Mapping

2.2.3.6 ORB SLAM

Oriented FAST and Rotated BRIEF SLAM is an efficient and successful alternative
to the closed source SIFT and SURF data association types (Mur-Artal et al., 2015).
ORB SLAM adopts feature based data association, where the feature type is FAST
and feature descriptor is ORB (see fig. 2.12).

ORB SLAM starts with map initialization where it keeps information on the map
points and keyframes. Map points contain details on keyframes that were observed
from a 3D point, while keyframes store data on camera pose, its parameters and ORB
features. ORB SLAM extracts corners using FAST through eight pyramid levels.
The descriptors are stored into a bag of words. Criterion to add a new keyframe
depends on the significance of the scene appearance change. One of ORB SLAM’s
advantages in visual initialization is the fact that it calculates both Fundamental
matrix and Homography in parallel. In case the tracking shows poor results and not
enough feature correspondences, the visual initialization is disposed of.

Pose estimation is established through a constant velocity motion model. ORB
SLAM detects matched features among keyframes. ORB SLAM has shown success-
ful results in large environments. This is due to utilization of subsets of the global
map. These subsets are called local maps and they consist of keyframes that share
edges.

Map maintenance is attained by using local bundle adjustment. It requires using two
topological and one metric map. One of the topological maps is called a co-visibility
graph that contains information in the arcs between edges. This information includes
the visibility of keyframes among each other. The other topological map only allows
two arcs per edge which display the strongest visibility of keyframes.

ORB SLAM keeps a database of the keyframes, which allows to compare a keyframe
against other ones to find loop closure. Instead of searching all databases, the loop
closure module only looks at the edges of the co-visibility graph.

This SLAM technique has shown promising results in both indoor and outdoor
situations (Strasdat et al., 2010). For example, Mur-Artal and Tardds (2017Db)
implemented monocular ORB SLAM with an incorporated IMU in an aerial drone.

TRACKING

Pose Prediction
(Motion Model)
or Rel lization

KeyFrame
PLACE

RECOGNITION MAP

KeyFrame
Visual
Vocabulary

Stereo/RGB-D Pre-process

Track New KeyFrame
Frame [Input

Local Map Decision

Insertion
MapPoint:
Recent
MapPoints
Culling

Recognition
Database

Covisibility Spanning
Graph Tree

New Points
Creation

Loop Correction Loop Detection Local BA

i|| Optimize H Local
. Loop Compute Query :
Essential . [*T KeyFrames
Graph Fusion SE3 Database Culling

ONIddYWN 1v¥O01

Update || Full H
Map BA [*7]

FULL BA v LOOP CLOSING

Figure 2.12: Flow chart of ORB SLAM. Works with monocular camera as well.

18

2. Simultaneous Localization and Mapping

2.2.3.7 Pop-up SLAM

Pop-up SLAM developed by Yang et al. (2016) is used for low-texture scenes or also
defined as scenes that do not have many features. The presented SLAM technique
has been tested in indoors corridors. The main idea of this SLAM technique is to
utilize monocular sequences and create a single pop-up (a rough 3D model of the
scene). This SLAM technique achieves it by detecting the edges between ground and
walls using a Convolutional Neural Network and estimates the camera rotation. Due
to SLAM’s general under-constraint nature, Pop-up SLAM employs LSD SLAM.
This is due to dual reasons; firstly, LSD allows to estimate depth which is much
needed for the 3D model. Secondly, the poses provided by the LSD aid Pop-up
SLAM to constraint odometry.

Figure 2.13: Example of Pop-up SLAM.

2.2.3.8 RKSLAM

Robust Keyframe-based SLAM was initiated with the idea to develop a robust,
monocular SLAM able to withstand strong rotation and fast motion (Liu et al.,
2016). This is achieved by two main changes compared to LSD SLAM and DT
SLAM; firstly, RKSLAM uses multihomography based feature tracking model for
3D points; and secondly, unlike other keyframe based systems, RKSLAM executes
the local map expansion and optimization in the main thread which aids in handling
motion and rotation. RKSLAM extracts multihomography; global, local, and plane
homographies (see fig. 2.14). The latter two functions help align the local regions
of the image while the global one aligns the whole image.

19

2. Simultaneous Localization and Mapping

Foreground Thread Background Threads
Feature >l Global Map
| —— | ._;—
Glolbal
iracina rasckaiiiln
Homography-
> based Feature m
| A |
Local Camera Pose
Hnmﬁraihi I s Re-localization
A 4 '\
,/'// Quality ™~

Assessment

Poor

Good

k Local Map

.

New Yes
Keyframe?

Figure 2.14: Flow chart of RKSLAM.

The experiments were conducted on both a PC and a mobile device in indoors and
outdoors environments. Neither of the environments included large scale maps.

2.2.3.9 Selecting an Algorithm

As seen from the discussed techniques above, there are many algorithms to choose
from, but we must select the one most appropriate to the use case (see table A.1).
Strasdat et al. (2010) have compared filter-based SLAM systems against non-filtering
systems. They found that filter-based SLAM techniques are better when using
hardware within a constrained budget. In the case of this paper, the AUV will
have a high-end computer, so we can focus only on algorithms with non-filtering
approaches.

The number of applicable algorithms is further reduced by the need for the SLAM
to operate in a large, featureless underwater environment. As fig. 2.15 shows (green:
successful results, yellow: some failed experiments, red: completely failed trials), in
this case only ORB SLAM is capable of delivering positive results. Furthermore,
the SLAM framework is required to create and record a map. Additionally, we also
require that the SLAM framework be open source, use at minimum a monocular
camera with a possibility to include IMU, and incorporate loop closure—The only
algorithm that fits all of the criteria is ORB SLAM.

20

2. Simultaneous Localization and Mapping

[Package [H/Out[H/In|Q/Out[Q/In[A/Out[A/In[D/UW

MonoSLAM [5]

ibviso [/ | [|
PTAM 19
ORB-SLAM (26
SVO 10
LSD-SLAM 9

[RatSLAM__ [2]] [] [|

COLMAP [29

Ceres il

Figure 2.15: Qualitative analysis of open source packages using the new datasets.
Data sets: Husky (unmanned ground vehicle) outdoor (H/Out); Husky indoor(

H/In); Quadrotor outdoor (Q/Out); Quadrotor indoor (Q/In); Aqua on coral reef

(A/Out); Aqua inside wreck (A/In); Drifters on coral reef (D/UW). Taken from
Liu et al. (2016).

2.3 Evolutionary Algorithms in SLAM and Image
Classification

In order to summarize achievements within SLAM and image classification when
applying genetic algorithms/evolutionary algorithms, it is crucial to understand the
basics of the evolutionary paradigm. Genetic algorithms (GA) are an artificial in-
telligence technique based on biological principles of evolution, fitness, crossover,
and mutation. GAs allow us to find an approximate solution to a problem, are thus
often compared to neural networks. Applied Darwinian principles allow significant
improvements to the space of solutions by avoiding the local optima (Banzhaf et al.,
1998).

GA solutions depend on the representation of the solution, which may vary from one
problem to another. The gene in LGP is an instruction, e.g., a = b + ¢, where a is
a register and b and c¢ are operands. The operands can also be constant values, e.g.
a = 2-+c. The constant values are called terminal sets, according to the Koza tableau
(Koza and Rice, 1991). The collection of operators that can be selected is known as
the function. Examples of an operator can be +, -, /, * \/x. Another way is a tree
representation, where in the previous LGP example, nodes depict the variables and
edges represent the basic operation (addition, subtraction, multiplication, division).
A number of instructions compile an individual, while many individuals amass to a
population. The chromosome or individual in that case is a number of instructions
that make up one solution, e.g., in this case the individual (chromosome) consists
of 3 instructions (genes) (a =b+c¢,b=a—c,a =2xa).

Chromosomes or individuals that consist of ineffective instructions, i.e. that have no
impact to the final fitness value, are called introns. An example of an intron is b =
0 + b. Introns have both an advantage and disadvantage. The disadvantage is that
the individual/chromosome may fill up itself with useless instructions just to reach
the maximum size. This may lead to the population being stuck in local minimum,
longer training times and of course computational costs. The benefit of having
junk code is that it protects the important instructions from the destructiveness of
crossovers (Espejo et al., 2010).

The next step is to evaluate all these individuals, acquired by calculating their fitness

21

2. Simultaneous Localization and Mapping

value. Fitness function is authentic to problem at hand. However, one of the key
factors of this process is that it must be fast, since it will be run thousands of times
per population.

Individual 1 Individual 2 Individual 3 Individual 4

Fitness

Individual 1 Individual 2 Individual 3 Individual 4

Figure 2.16: Example of a tournament selection. This example uses standard
fitness value, which means the best fitness value is zero.

The usual choice for the GAs is a steady-state algorithm, where 4 individuals are
chosen from the population. They are evaluated among each other by the fitness
function. Then, the 2 highest scoring individuals are copied for further crossover and
mutation and the lowest scoring individuals are overwritten with the highest scoring
ones (see fig. 2.16). This allows keeping the most fit individuals in the population
(Nordin and Banzhaf, 1997).

Figure 2.17: Example of a mutation in LGP where an operator changed in one
instruction.

Variation operations provide changes in the population. Otherwise the population
would not be able to adapt. One of the examples of variation operations is a crossover

22

2. Simultaneous Localization and Mapping

where two individuals (sometimes called parents) are chosen and portions of each
individual are exchanged (see fig. 2.18.) The idea behind mutation is that any
component of the instruction (destination register, operands, and operator) can be
swapped for another alternative (see fig.2.17).

. .-..)c .-..

Figure 2.18: Example of a crossover in LGP.

Crossover point

2.3.1 Existing approaches

GAs in SLAM have already been employed. One of the most famous techniques in
SLAM, Monte Carlo localization, is a light form evolutionary algorithm (Dellaert
et al., 1999). The Monte Carlo localization (MCL) algorithm uses particles (possible
locations of the robot/vehicle) randomly drawn from various distributions to show
a robot’s position. The highest weighted particles have a higher chance of survival
for the next check. This looks a lot like evolutionary algorithms, but MCL exploits
neither mutation nor crossover. It is therefore not surprising that more particle
filter-like techniques, combined with evolutionary algorithms, exist in the research
field (Dong et al., 2007).

Researchers in Duckett et al. (2003) proposed a SLAM technique based completely
on GAs. Authors suggested to find the best robot trajectory using GA-SLAM which
is done by initialising the first population by looking at the odometry data. GA-
SLAM then creates an occupancy grid for each individual, and checks its fitness
by evaluating its correctness against observation (in this case a laser scanner). If
a travelled trajectory is represented by a vector [0y, vy, ..,0n, an] where §; and «;
depict relative distance and rotations travelled by the robot in a step j, then the
candidate individual is portrayed as [Ady, Aay, ..,Adyr, Aays]. Ady and Aayy are
correction factors for a segment M. All trajectory is divided into segments M to allow
better map optimization. Fitness function has two major factors; map consistency
and map compactness. The former measures the conflict between sensor readings
by looking at the occupancy grid map’s cells that are taken and that are empty
by taking the minimum of that. Map compactness includes rewarding the GA for
producing smaller and compact maps by fitting a bounding box to the map. The
results were promising.

Lindblad et al. (2002) proposed an interesting way to find features in the images.
The authors proposed to create graph trees that show different object locations in
the image followed with various size scalars and colors. The individual’s genotype
is composed of nodes, which are positions and objects. The position node carries

23

2. Simultaneous Localization and Mapping

information such as translation and rotation of every object in the sub tree, while
the edge depicts where the object is—for example, near a parent, flat on the ground,
flat on top of the parent, and such. Object represents size scalar, color, and type
of object (in this case a block). All positions have a child node which is an object.
An object may have any number of children that define the relative position of each
sub tree. Just like in Duckett et al. (2003), Lindblad et al. (2002) also highlight the
importance of the complexity of the model in the fitness function.

Kasparaviciuté et al. (2018) and Alvarez et al. (2004) describe the use of GAs for
autonomous underwater vehicles. The former presented an idea for an ocean clean-
ing AUV. The fitness function is a multi-objective function that has two major
parts; navigation and object detection. The latter describe application of GAs for
path planning, focusing especially on achieving energy efficient solutions in a strong
current characterized environment.

Image classification utilizing genetic programming (GP) has been approached by a
few authors. Due to GP’s wide variety of application, each author applies GP in a
different way. Johnson et al. (2000) produced a chromosome for each class. In their
example, the system is required to run twice each time for one class. The fitness
function is the root mean square error of predictions of each class. Fitness function
also included penalty to reinforce chromosomes that are shorter. Huang et al. (2006)
have showcased a similar idea, but they allowed the GP to create several individuals
per class. Eggermont et al. (1999) chose to create one chromosome/individual for all
labeled data. However, the algorithm defines its own fitness function while training
itself by modifying weights at the run time. Hope et al. (2007) used GP to classify
mammograms for breast cancer. The researchers have taken only the windows of
images that have microcalcification (a feature that shows if the mammogram dis-
plays breast cancer or not) and selected such features like mean, second and third
moments.

As mentioned before, image classification task is usually solved by employing deep
neural networks. However, for a neural network to achieve over 90% accuracy, it gen-
erally requires at least 100 images in a training set (Chan et al., 2015). Another ex-
ample of use of deep neural networks also shows that it requires some pre-processing
on images (Ciresan et al., 2012). Ciresan et al. (2012) also show that in order to
evaluate one image may take up to a thousand or more connections (calculations)
in the neural network.

24

3

Background on Underwater
Simulation

Autonomous underwater vehicles have become increasingly popular in industry and
research, as using remotely operated vehicles costs in not only man hours but also
logistics—it is expensive to deploy a ship full of engineers to an offshore location to
investigate man-made structures, such as the wells and risers used for oil and gas
pumping. Testing and experimentation with AUVs is challenging as it also requires
vessels to move underwater vehicles and engineers to set them in place, and there
exist many uncertainties in the environment, which may result in the destruction or
loss of the AUV. Therefore, there is a high demand for AUV simulators. Usually,
small missions can be carried out in swimming pools, but these lack the intensity of
the real world environment.

3.1 Game engines

Game engines offer the capabilities in graphics and physics needed when creating
simulations. Most popular game engines are used for AUVs, such as Unity3D, Unreal
4 Engine, and CryEngine (Chin et al., 2018). An example of such an AUV simulator
is developed by Abyssal Technology (Parente, 2018). However, this simulator is not
open source. Chin et al. (2018) have described the development steps needed to make
an underwater simulator using the Unity3D game engine. Some of the inspiration
for future simulators has been taken from older generation simulators, such as MVS,
CADCON, NEPTUNE, SUBSIM, etc. Matsebe et al. (2008) provided an extensive
review of all of them.

3.2 Robot Operating System

Nowadays, most open source simulators are based on Robot Operating System
(ROS). It is a robot software framework consisting of the following components;
nodes, messages, and topics. Nodes are software modules that communicate with
each other in a peer-to-peer manner. Messages are published by the nodes that
other nodes can subscribe to. This means that many nodes can be connected to one
topic, and vice versa. The message holds the data and its structure.

UWSim is an example of an underwater simulator based on ROS (Prats et al., 2012).
It uses an open source 3D graphics application called OpenSceneGraph and renders
realistic underwater images through osgOcean. Figure 3.1 showcases the traditional

25

3. Background on Underwater Simulation

(a) View in Gazebo (b) View in UWSim

Figure 3.1: Difference in rendered views taken from Kermorgant (2014)

and underwater-oriented rendered views in simulations. UWSim allows the addition
of different sensors including DVL, GPS (which works only up to a certain depth),
robotic claw, etc. UWSim contains drawbacks, as it is mostly a kinematic simulator.
Gazebo, on the other hand, manages dynamics and contact physics, but is mostly
designed for terrestrial robots. Kermorgant (2014) presented a combination of both
simulators by incorporating Gazebo into UWSim, called freefloating Gazebo.
MORSE is another simulator for academic robotics (Echeverria et al., 2011). Its
rendering is based on Blender Game Engine and it supports 6 different open-source
middlewares, including ROS, Mavlink, etc. MORSE comes with a range of different
sensors that are able to simulate human robots, terrestrial, aerial and underwater
vehicles. Furthermore, it is able to handle dozen of robots. On the other hand,
MORSE does not include advanced algorithms e.g., for path planning nor does it
have a GUI.

Carvalho et al. (2014) also presented an underwater simulator using ROS as a mid-
dleware, but they utilized Virtual Reality Engine. Its name, SimUEP-Robotics, is
based on the name in Portuguese. The aim of their simulator is to enable testing of
ROVs and AUVs for the oil and gas industry. The system supports multiple robots
simultaneously, equipped with the usual expected sensors and actuators. SimUEP-
Robotics has also integrated trajectory visualizations, ghostview animations, sce-
nario editors, etc.

26

4

Convolutional Genetic
Programming Algorithm

This paper proposes a new way for solving binary image classification problems,
based on Linear Genetic Programming (LGP). The basics of LGP are explored in
section 2.3. The population is created and all individuals are evaluated according
to a fitness function. A few individuals are chosen among the population pool, and
they compete against each other. The winners replace the losers to maintain highly
evaluated individuals. Then, a few of the selected winners go through mutation and
crossover to create new individuals.

The process of image classification can be seen in figure 4.1, showing the learning/-
training process and testing procedure.

Sliding window Input image

—> -)
l IRRAREEETEY Mot
|

Training set

. . Image
Cevrrseees Classification

l (LGP Testing)

Testing set

Figure 4.1: LGP approach to object classification based on Zhang and Lett
(2006).

The training starts with taking the first window of the training set image of size n
by n. This window becomes the input image and is then passed as an array, instead
of a matrix, to the LGP training process. The individual or chromosome is then

27

4. Convolutional Genetic Programming Algorithm

executed using the passed registers (image’s raw pixels in the chosen window). More
information on fitness function is in section 4.1. Each window moves s number of
steps, also referred to as a stride, and is then passed as a register. When all windows
have been passed through an individual, the accumulated result from the fitness
function is compared to the label of the image and then added to the total of the
error of individuals. The error of an individual is the accumulated squared difference
between the label and retrieved result. All images are evaluated in the same way.

LGP SYSTEM

Figure 4.2: LGP system flowchart example taking place in the Genetic
Programming Training Process in fig. 4.1 based on Kasparavi¢iute et al. (2018)

The general pseudo-code example of a genetic algorithm is shown below. The initial-
ization requires establishing variables like populationSize, individualLength (which
could be divided to minimum and maximum possible individual length), probabil-
ity of crossover, probability of mutation, and max number of generations (or other
stopping criteria). When the population is initialized (all population individuals are
set to the maximum possible fitness value), the main process of LGP starts which
can also be seen in the figure 4.2). Usually 4 individuals are randomly chosen for a
tournament from the total population, and then compete against each other. The
two winners then replace the losers of the tournament, and the original winners
proceed to the genetic operations step.

In crossover, the winners become the parents and some random crossover point
is chosen so that the parents are able to create two new individuals. These two
individuals are then exposed to mutation, after which they are placed back into the
population. The original parents are left untouched and added to the population.
The total population is then evaluated and the best individual is kept. When the
maximum number of generations have reached, the bestIndividual, or solution, is
then retrieved. The arrow to the left represents assigning.

28

4. Convolutional Genetic Programming Algorithm

Input: populationSize, individualLength, pCrossover, pMutation, maxGenerations,
tournamentMembers

Output: bestIndividual

Population <— InitializePopulation(populationSize, individualLength)

bestIndividual <— First individual of Population

While(generation < maxGenerations)
Children <— TournamentSelection(Population, tournamentMembers)
Childl, Child2 <— Crossover(Children, pCrossover)
Children <— Mutate(Childl, pMutation)
Children <— Mutate(Child2, pMutation)
EvaluateChildren(Children)
Population <— PutChildrenBackToPopulation(Population, Children)
bestIndividual <— RetrieveBestIndividual(Population)

End

Return (bestIndividual)

Listing 4.1: General evolutionary algorithm pseudo-code.

4.1 Fitness function

Fitness function allows evaluation of the individual. The fitness function for convo-
lutional genetic programming starts with the scratch Variable and registers (windows
of the images). The scratchVariable is saved in the last position of a register array.
This value gives awareness to the function about the image (if an object exists or
not). It can be set in the function in any way but is not cleared between subimage
loop-steps, it is only cleared at the start of the new image.

When a window is passed to the decoder, all the individual’s instructions are exe-
cuted and only the first and last register values are returned. The first register value
is added to the total of y_ result which keeps track of the image (see eq. 4.1). scratch-
Variable is passed on to the next window and is reused by the individual. When all
of an image’s windows have been evaluated, the result is calculated by multiplying
scratch Variable by a high value alpha and adds the accumulated y_result (see eq.
4.2).

The final step for the error calculation is to look at the label of the image and subtract
the result from it in the form of absolute value (see eq. 4.3). The difference is then
squared and added to the final error variable that keeps track of each individual’s
fitness (see eq. 4.4).

y_result =Y registers|0] (4.1)

n=1
RET = a * scratchVariable +y_result (4.2)
DIFF = abs(LABEL — RET)? (4.3)

29

4. Convolutional Genetic Programming Algorithm

Fitness =Y DIFF; (4.4)

=1

where:

One

y_result is the sum of first registers in each window of an image.

n is the number of windows per image.

RET is the intermediary result from one image.

scratchV ariable is the value that allows the algorithm to keep notes about
the subpictures/windows.

« is the number that shows the weight of scratch Variable.

DIFF is the calculated squared absolute difference between the label value
and the RET.

¢ is the number of images in the set.

Fitness is the final fitness value.
individual’s evaluation example code can be seen below in listing 4.2.

1 float ConvLinearGeneticProgramming::evaluateIndividual(Individual individualToEvaluate)

D

{

float error = 0.0f;
for (int m = 0; m < imagesNumber; m++)

{

float scratchVariable = SCRATCH__VAR,;
float y_ result = 0.0f;

for (int row = 0; row <= images[m].rows — WINDOW _ SIZE; row += STEP)
{

for (int col = 0; col <= images[m].cols — WINDOW __SIZE; col+= STEP)

{
cv::Rect windows(col, row, WINDOW _SIZE, WINDOW _ SIZE);

cv::Mat roi = images[m|(windows); //Region Of Interest

std::pair<float, float> answer = decodelndividual(individualToEvaluate, roi,

scratchVariable);

}

scratchVariable = answer.second;
y_ result += answer.first;

}
}

float y_ result_ final = scratchVariable * 1000 + y_ result;
float y _groundtruth = labels[m];

float diff = abs(y_ groundtruth — y_result_ final);

error += diff * diff;

return error;

Listing 4.2: Fitness function pseudo-code.

30

O

Methodology

The following chapter describes how data was acquired in order to be able to test
the convolutional linear genetic programming.

5.1 Collection of Data

Data acquisition was performed in two steps. First, the stakeholders could not
share their sensitive data from subsea ROV dives, so an alternative was proposed.
The stakeholders used a Structure from Motion (SfM) ! where they gathered a 3D
cloud point of a subsea template and the subseafloor. The stakeholders were able
to remove the identification numbers from the template to provide us with a 3D
model of the template and subseafloor, with a texture that looks exactly like how it
does at a depth of 500 m. under the Norwegian sea. Secondly, both the mesh of the
template and subseafloor and textures were imported into an underwater simulator
called UWSim that utilizes Robot Operating System (ROS) (see fig. 5.1).

Figure 5.1: Subseafloor and template taken from the real world 3D cloud point
and imported into an underwater simulator.

The template is 25 m. x 25 m. x 20 m. in size. The subseafloor is approximately 100
m x 100 m in size. The depth chosen for the simulator was 500 m. The autonomous
underwater vehicle (AUV) used for exploring this area and gathering the images is
called Gironab00 (Ribas et al., 2012), and is the default AUV in UWSim. The AUV

1A technique used for creating 3D objects from 2D image sequences.

31

5. Methodology

required some alterations to follow the stakeholders’ requirements. Firstly, a change
was made to the camera angle from 180°(downward looking) to 135°. Secondly,
the camera’s intrinsic and extrinsic parameters were changed to mimic imperfect
conditions (i.e., to mimic water turbidity).

The AUV was controlled manually using the keyboard. It began at the edge of the
sea floor and moved towards the template, where it moved in a zigzag pattern in
order to be able to investigate it from all angles.

5.2 Experiments

Two runs were made to gather the images. Firstly, the AUV was controlled to
simply move towards the template, with just a few changes in depth, where it was
able to see part of the template at all times. The second run was accomplished by
controlling the AUV from the side opposite the first run. The AUV changed its
depth often, which meant it would lose sight of the template more often. This was
done in order to simulate waves or other disturbances in the water. Both runs were
approximately 90 seconds long and acquired around 200 frames each.

Each image is 320 x 240 pixels in size. The original pictures were rotated, flipped,
and scaled with several different possible configurations (e.g., rotated and flipped,
only rotated, rotated and scaled, and so on). The parameters for picture transfor-
mations were completely random. The pictures were labeled into IS TEMPLATE
(see fig. 5.3) and NOT TEMPLATE (see fig. 5.2). The algorithm was trained on a
total number of 30 images, where half were labeled IS TEMPLATE and the other
half NOT TEMPLATE.

The validation or test set includes 576 images, which, like the training set, are
augmented in various ways. Each class has half images.

Before running the experiments, some parameters relevant to the problem such as
window size and step/stride were needed, so an extra experiment was performed to
find them out. Each of these short experiments was conducted 3 times, with the
average shown in table 5.1. The winner hyperparameters are in the experiment that
used window and stride of 5 pixels each.

32

5. Methodology

(a) Original picture. (b) Flipped original
picture.
(c) Flipped and rotated (d) Rotated and scaled
original picture. original picture.

Figure 5.2: NOT TEMPLATE images taken from the simulator.

(a) Original picture. (b) Flipped original
picture.

(c) Flipped and rotated (d) Rotated original
original picture. picture.

Figure 5.3: IS TEMPLATE images taken from the simulator.

33

5. Methodology

Table 5.1: Selection of window and step size/stride, average taken after 3

repeats of each experiment.

Training Best Termination

Experiment data Window Step/stride Fitness individual’s o
: . criteria

set size size
1 30 5 1 26 190 2898 200 gens.
2 30 5 5 22 042 485 200 gens.
3 30 8 4 121 294 964 200 gens.
4 30 8 8 35 581 874 200 gens.
5 30 10 5 68 182 2206 200 gens.
6 30 10 10 75370 830 200 gens.
7 30 20 10 52 912 468 200 gens.
8 30 20 20 86 590 2309 200 gens.

34

O

Results

This section describes the results of the experiment. In order to be able to discuss
the results, we first need to discuss the parameters used to achieve them. The table
for these parameters is sometimes referred to as a Koza tableau (Koza and Rice,
1991). Most of these parameters have been discussed in the previous section (see
sec. 2.3). Probabilities of crossover, tournament, and mutation have been chosen
according to the standard (Hu, 1998). Window and step size/stride have been chosen
after running short experiments (max 200 generations) and registering the achieved
fitness value (see section 5). The number of images in the training set is 30, while
the validation set consists of 576 images. The validation set includes unseen data.

Table 6.1: Koza tableau for convolutional LGP experiment.

Parameter

Setting

Fitness function
Terminal set
Function set

Standardized, root mean squared error
None

[+7'7*7/7\/E]

Safe division enabled? Yes
Window size 5
Step size/stride 5
Number of registers 26
Population size 10000
Crossover probability 0.7
Tournament probability 0.95
Mutation probability 0.05
Selection Steady-state tournament
Number of tournament members 4
Termination criteria None
Minimum individual length 10
Maximum individual length 3000
Label for IS TEMPLATE 100
Label for NOT TEMPLATE 0
Alpha 1000
Scratch variable 0

After

The best individual reached a length of 205, including junk instructions.
introns were removed, the length of the individual was reduced by 85%, to 29 in-

35

6. Results

structions. Classification results have an accuracy of 99.8%. The best individual
was then used on a video gathered from the simulator, achieving a classification
rate of 55 frames per second. This means that the proposed algorithm has a po-
tential to evaluate 55 frames per second in a provided video. As a comparison, the
usual movies are shown at 24 frames per second. The achieved result shows a high
potential.

The confusion matrix reveals classification performance on the validation data set
(see table 6.2). As seen in table 6.1, the value for IS TEMPLATE is shown as
100, while the value for NOT TEMPLATE is 0 (zero). Therefore, the threshold
for differentiating between these two classes has been chosen as 50. The confusion
matrix also provides rate information in table 6.3, where it can be seen that the
overall accuracy of the proposed classifier is high (0.996)—the classifier made only
two mistakes (see pictures in fig. 6.1). The calculated predicted values for both of
these mistakes was very close to the threshold (55 and 52 respectively, compared to
the threshold set at 50). When the classifier predicts IS TEMPLATE, it is correct
99.3% of the time. It was also important to show that half the images belong to one
class and the other half belongs to the other, which is shown in the prevalence rate
of 0.5. The weighted average of the recall and precision, also called F1 Score, was
also high.

(a) First classification (b) Second classification
mistake. mistake.

Figure 6.1: The only two mistakes the algorithm made.

Table 6.2: Confusion matrix for the experiment run on validation data set.

Actual values

IS TEMPLATE | NOT TEMPLATE | Total

Predicted values IS TEMPLATE 288 2 290
NOT TEMPLATE 0 286 286

Total 288 288 276

The best results and the shortest individual were achieved when the window and
step sizes were 5 x 5, therefore these parameters have been also chosen for the main
experiment. The number of registers is calculated by the following equation:

registers_number = WINDOW _SIZE « WINDOW _SIZE + 1 (6.1)

36

6. Results

The extra one register is the added scratch variable for the algorithm.

Due to linear genetic programming’s transparency advantage, it is possible to give
the trained classifier a closer look. This can be achieved by looking at the histograms
of each instruction, e.g., (a = ¢+2), member,i.e., register(a), operand#1(c), operand#2(2), andopera
As previously discussed, the proposed image classification method has many ad-
vantages compared to the regular neural network. Firstly, it does not require any
pre-processing done on images. Secondly, due to the removal of introns, the final
amount of instructions is reduced by at least an order of magnitude. Furthermore,
Nordin and Banzhaf (1996) have provided evidence that by using programmatic
compression it is possible to run LGP retrieved result on embedded devices and
achieve even higher rate per frames, e.g. 60 frames per second. Lastly, the provided
convolutional linear genetic programming image classification technique was able to
distinguish between images by training it only on 30 images.

Lhti ot

6 8 10 12 14 16 18 20 22 24 0 6 8 10 12 14 16 18 20 22 24
Registers Operand #1

(b) Operand #1 histogram.

Frequency
N w

Frequency

(a) Registers histogram.

IS

Frequency
w

Frequency

Lakaal

6 8 10 12 14 16 18 20 22 24
Operand #2

(c) Operand #2 histogram.

0 1 2 3 4 5

Operator

(d) Operators which are addition,
subtraction, multiplication, division, and
square roots of both operands,
respectively.

Figure 6.2: Histograms of each of the best individual’s 29 instruction members.

37

6. Results

Table 6.3: Rates and calculations based on the confusion matrix.

Rate Formula Calculation
Accuracy (TP+TN)/total 0.996
Misclassification Rate (FP+FN) /total 0.003

True Positive Rate/Recall/Sensitivity TP /actual IS TEMPLATE 1.0

False Positive Rate FP/actual NOT TEMPLATE 0.007

True Negative Rate/Specificity TN/actual NOT TEMPLATE 0.993
Precision TP /predicted IS TEMPLATE 0.993
Prevalence actual IS TEMPLATE /total 0.5

F'1 Score 2 % %’% 0.996

38

-

Conclusion

This paper focuses primarily on implementing a classification algorithm for an au-
tonomous underwater vehicle (AUV) based in a subsea garage, where it will perform
inspections and other related work. In order to allow the AUV to roam the sea floor
without any manual intervention, the AUV requires some sort of SLAM technique
to navigate its surroundings. In order for the AUV to accomplish it, Visual and
Visual-Inertial SLAM has been separated into front- and back-end, where front-end
takes care of the feature extraction and data association and back-end aids in map
estimation. The principal paradigms to solve SLAM are filter and keyframe-based.
The latter one has showcased much more promising results than its predecessor,
filter-based SLAM.

This paper reviewed the basics of SLAM techniques such as localization and map-
ping, followed by highlighting major SLAM methodologies, i.e., DolphinSLAM, DT
SLAM, FAB MAP, EKF MonoSLAM, LSD SLAM, ORB SLAM, Pop-up SLAM,
RKSLAM. These have been chosen from many other possible SLAM techniques
due to how their design meets the following requirements: they utilize monocular
cameras with the possibility to fuse their output with other sensors such as inertial
measurement units, they are open source, they use a loop closure, and finally, they
offer a complete SLAM technique. The selected algorithm for the stakeholder’s use
case is ORB SLAM as it has been proven to show positive results in large, featureless
underwater environments.

Secondly, this paper proposes a new method for image classification. The main
advantages of linear genetic programming are; the transparency of the results, the
prior knowledge about the distribution is unnecessary thus pre-processing is not
required, it automatically selects features and different mechanisms to control the
size/length of the classifier; easy parallelization which reduces training time. Due
to these reasons the proposed binary image classifier utilizes linear genetic program-
ming. The data was acquired from the actual subsea environment that extracted
3D cloud points, reaching depths of 500 m. in the Norwegian sea. The AUV was
manually controlled in Robot Operating System, where it gathered different real-
istic images of the undersea environment. The images were sorted (labeled as IS
TEMPLATE and NOT TEMPLATE), augmented, and then transferred into the
convolutional linear genetic programming system, which created a classifier based
on only 30 images from a training set. The validation set included nearly 600 im-
ages and the classifier achieved 99.8% accuracy. Due to the best individual’s short
length of instructions, it was possible to achieve a classification rate of 55 frames
per second.

Due to the use of Robot Operating System (ROS), the paper also provided an

39

7. Conclusion

assessment of current underwater simulators. The most popular simulators are based
on game engines, such as Unity3D, Unreal 4 Engine, and CryEngine. There are a
few simulators that are mostly used in academia. These include but are not limited
to UWSim and Gazebo which are both based on ROS and MORSE.

Future work includes performing classification on real world images. Furthermore,
next steps include enhancing the new methodology’s capabilities, and to also use it
for object detection.

40

Bibliography

Alvarez, A., Caiti, A., and Onken, R. (2004). Evolutionary path planning for au-
tonomous underwater vehicles in a variable ocean. IEEFE Journal of Oceanic
Engineering, 29(2):418-429.

Anwer, A., Ali, S. S. A., Khan, A., and Mériaudeau, F. (2017). Underwater 3-d
scene reconstruction using kinect v2 based on physical models for refraction and
time of flight correction. IEEE Access, 5:15960-15970.

Aulinas Maso, J. M., Carreras Pérez, M., Llad6 Bardera, X., Salvi, J., Garcia Cam-
pos, R., and Prados Gutiérrez, R. (2011). Feature extraction for underwater visual
slam. © Oceans (2011: Santander: Espanya). OCEANS, 2011 IEEE-Spain.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic pro-
gramming: an introduction, volume 1. Morgan Kaufmann San Francisco.

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, 1.,
and Leonard, J. J. (2016). Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age. IEEE Transactions on Robotics,
32(6):1309-1332.

Carvalho, F., Raposo, A., Santos, 1., and Galassi, M. (2014). Virtual reality tech-
niques for planning the offshore robotizing. In 201 12th IEEE International
Conference on Industrial Informatics (INDIN), pages 353-358. IEEE.

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. (2015). Pcanet: A
simple deep learning baseline for image classification? IFEE transactions on
image processing, 24(12):5017-5032.

Chin, C., Zhong, X., Cui, R., Yang, C., and Mohan, V. (2018). Virtual simulation
platform for training semi-autonomous robotic vehicles’ operators. In Autonomous
Vehicles. IntechOpen.

Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural
networks for image classification. arXiv preprint arXiv:1202.27/5.

Cummins, M. and Newman, P. (2008). Fab-map: Probabilistic localization and map-
ping in the space of appearance. The International Journal of Robotics Research,
27(6):647-665.

41

Bibliography

Cummins, M. and Newman, P. (2011). Appearance-only slam at large scale with
fab-map 2.0. The International Journal of Robotics Research, 30(9):1100-1123.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte carlo localization
for mobile robots. In ICRA, volume 2, pages 1322—-1328.

Dong, J. F., Wijesoma, W. S.; and Shacklock, A. P. (2007). An efficient rao-
blackwellized genetic algorithmic filter for slam. In Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation, pages 2427-2432. IEEE.

Duckett, T. et al. (2003). A genetic algorithm for simultaneous localization and
mapping. IEEFE International Conference on Robotics and Automation.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping:
part i. IEEFE robotics & automation magazine, 13(2):99-110.

Echeverria, G., Lassabe, N., Degroote, A., and Lemaignan, S. (2011). Modular
openrobots simulation engine: Morse. In Proceedings of the IEEE ICRA.

Eggermont, J., Eiben, A. E., and van Hemert, J. I. (1999). A comparison of ge-
netic programming variants for data classification. In International Symposium
on Intelligent Data Analysis, pages 281-290. Springer.

Engel, J., Schops, T., and Cremers, D. (2014). Lsd-slam: Large-scale direct monoc-
ular slam. In Furopean Conference on Computer Vision, pages 834-849. Springer.

Engel, J., Stickler, J., and Cremers, D. (2015). Large-scale direct slam with stereo
cameras. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1935-1942. IEEE.

Engineering, C. S. (2016). Measurement of system reliability part 1.

Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the application of
genetic programming to classification. IEEFE Transactions on Systems, Man, and
Cybernetics, Part C' (Applications and Reviews), 40(2):121-144.

Eustice, R., Singh, H., Leonard, J. J., Walter, M. R., and Ballard, R. (2005). Visually
navigating the rms titanic with slam information filters. In Robotics: Science and
Systems, volume 2005, pages 57-64.

Ferrera, M., Moras, J., Trouvé-Peloux, P., and Creuze, V. (2019). Real-time monoc-
ular visual odometry for turbid and dynamic underwater environments. Sensors,

19(3):687.

Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendén-Mancha, J. M. (2015). Visual
simultaneous localization and mapping: a survey. Artificial Intelligence Review,
43(1):55-81.

Grasa, O. G., Civera, J., and Montiel, J. (2011). Ekf monocular slam with relo-
calization for laparoscopic sequences. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 4816-4821. IEEE.

42

Bibliography

Guth, F., Silveira, L., Botelho, S., Drews, P., and Ballester, P. (2014). Underwater
slam: Challenges, state of the art, algorithms and a new biologically-inspired
approach. In 5th IEEE RAS/EMBS International Conference on Biomedical
Robotics and Biomechatronics, pages 981-986. IEEE.

Herrera, C. D., Kim, K., Kannala, J., Pulli, K., and Heikkil4, J. (2014). Dt-slam: de-
ferred triangulation for robust slam. In 3D Vision (3DV), 2014 2nd International
Conference on, volume 1, pages 609-616. IEEE.

Hope, D., Munday, E., and Smith, S. (2007). Evolutionary algorithms in the classifi-
cation of mammograms. In 2007 IEEE Symposium on Computational Intelligence
in Image and Signal Processing, pages 258-265. IEEE.

Hu, Y.-J. (1998). A genetic programming approach to constructive induction. In
Genetic Programming 1998: Proc. 3rd Annual Conf, pages 146-151.

Huang, J.-J., Tzeng, G.-H., and Ong, C.-S. (2006). Two-stage genetic program-
ming (2sgp) for the credit scoring model. Applied Mathematics and Computation,
174(2):1039-1053.

Hwang, S.-Y. and Song, J.-B. (2011). Monocular vision-based slam in indoor en-
vironment using corner, lamp, and door features from upward-looking camera.
IEEE Transactions on Industrial Electronics, 58(10):4804-4812.

Imani, V., Haataja, K., and Toivanen, P. (2018). Three main paradigms of simulta-
neous localization and mapping (slam) problem. In Tenth International Confer-
ence on Machine Vision (ICMV 2017), volume 10696, page 106961P. International

Society for Optics and Photonics.

Johnson, H. E., Gilbert, R. J., Winson, M. K., Goodacre, R., Smith, A. R., Rowland,
J. J., Hall, M. A., and Kell, D. B. (2000). Explanatory analysis of the metabolome
using genetic programming of simple, interpretable rules. Genetic Programming
and Evolvable Machines, 1(3):243-258.

Jung, J., Choi, S., Choi, H.-T., and Myung, H. (2016). Localization of auvs using
depth information of underwater structures from a monocular camera. In Ubiqui-
tous Robots and Ambient Intelligence (URAI), 2016 15th International Conference
on, pages 444-446. IEEE.

Kahlefendt, C. (2017). List of slam and visual odometry algorithms. https://
github.com/kafendt/List-of-SLAM-V0-algorithms/.

Kasparavic¢iute, G., Nielsen, S. A., Boruah, D., Nordin, P., and Dancu, A. (2018).
Plastic grabber: Underwater autonomous vehicle simulation for plastic objects
retrieval using genetic programming. In International Conference on Business
Information Systems, pages 527-533. Springer.

Kermorgant, O. (2014). A dynamic simulator for underwater vehicle-manipulators.
In International Conference on Simulation, Modeling, and Programming for Au-
tonomous Robots, pages 25-36. Springer.

43

https://github.com/kafendt/List-of-SLAM-VO-algorithms/
https://github.com/kafendt/List-of-SLAM-VO-algorithms/

Bibliography

Kim, A. (2012). Active visual slam with exploration for autonomous underwater
navigation. Technical report, MICHIGAN UNIV ANN ARBOR DEPT OF ME-
CHANICAL ENGINEERING.

Kim, A. and Eustice, R. M. (2013). Real-time visual slam for autonomous un-
derwater hull inspection using visual saliency. IEEE Transactions on Robotics,

29(3):719-733.

Kishore, J. K., Patnaik, L. M., Mani, V., and Agrawal, V. (2000). Application of
genetic programming for multicategory pattern classification. IEEFE transactions
on evolutionary computation, 4(3):242-258.

Kongsberg, M. (2016). Hipap high precision acoustic positioning.

Koza, J. R. and Rice, J. P. (1991). Genetic generation of both the weights and archi-
tecture for a neural network. In IJCNN-91-seattle international joint conference
on neural networks, volume 2, pages 397-404. IEEE.

Lindblad, R., Nordin, P., and Wolff, K. (2002). Evolving 3d model interpretation
of images using graphics hardware. In Proceedings of the 2002 Congress on Evo-
lutionary Computation. CEC’02 (Cat. No. 02TH8600), volume 1, pages 225-230.
IEEE.

Liu, H., Zhang, G., and Bao, H. (2016). Robust keyframe-based monocular slam
for augmented reality. In Mized and Augmented Reality (ISMAR), 2016 IEEE
International Symposium on, pages 1-10. IEEE.

Mahon, I. (2008). Vision-based navigation for autonomous underwater vehicles.
Technical report, University of Sydney.

Manzanilla, A., Sanchez, S. R., Rangel, M. A. G., Ravell, D. A. M., and Lozano,
R. (2019). Autonomous navigation for unmanned underwater vehicles: Real-time
experiments using computer vision. IEEE Robotics and Automation Letters.

Matsebe, O., Kumile, C., and Tlale, N. (2008). A review of virtual simulators for
autonomous underwater vehicles (auvs). IFAC Proceedings Volumes, 41(1):31-37.

Milford, M. J., Wyeth, G. F., and Prasser, D. (2004). Ratslam: a hippocampal
model for simultaneous localization and mapping. In Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEFE International Conference on, volume 1,
pages 403-408. IEEE.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147—
1163.

Mur-Artal, R. and Tardés, J. D. (2017a). Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgh-d cameras. IEEFE Transactions on Robotics,
33(5):1255-1262.

44

Bibliography

Mur-Artal, R. and Tardés, J. D. (2017b). Visual-inertial monocular slam with map
reuse. IEEE Robotics and Automation Letters, 2(2):796-803.

Naminski, M. R. (2013). An analysis of simultaneous localization and mapping
(slam) algorithms. Technical report, Macalester College.

Nordin, P. and Banzhaf, W. (1996). Programmatic compression of images and sound.
In Proceedings of the 1st annual conference on genetic programming, pages 345—
350. MIT Press.

Nordin, P. and Banzhaf, W. (1997). Real time control of a khepe. ra robot using
genetic programmmg. Control Cybern, 26(3).

Oltean, M. and Diogan, L. (2009). An autonomous gp-based system for regression
and classification problems. Applied Soft Computing, 9(1):49-60.

Parente, M. (2018). Leveraging solutions from other industries.

Patra, S., Gupta, K., Ahmad, F., Arora, C., and Banerjee, S. (2017). Batch based
monocular SLAM for egocentric videos. CoRR, abs/1707.05564.

Prats, M., Perez, J., Fernandez, J. J., and Sanz, P. J. (2012). An open source
tool for simulation and supervision of underwater intervention missions. In 2012

IEEE/RSJ international conference on Intelligent Robots and Systems, pages
2577-2582. IEEE.

Ribas, D., Palomeras, N., Ridao, P., Carreras, M., and Mallios, A. (2012). Girona
500 auv: From survey to intervention. IEEE/ASME Transactions on mechatron-
ics, 17(1):46-53.

Shukla, A. and Karki, H. (2016). Application of robotics in offshore oil and gas
industry—a review part ii. Robotics and Autonomous Systems, 75:508-524.

Silveira, L., Guth, F., Drews-Jr, P., Ballester, P., Machado, M., Codevilla, F.,
Duarte-Filho, N., and Botelho, S. (2015). An open-source bio-inspired solution to
underwater slam. [FAC-PapersOnLine, 48(2):212-217.

Strasdat, H., Montiel, J., and Davison, A. J. (2010). Real-time monocular slam:
Why filter? In 2010 IEEE International Conference on Robotics and Automation,
pages 2657-2664. IEEE.

Sturm, J., Engelhard, N.; Endres, F., Burgard, W., and Cremers, D. (2012). A
benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 573-580. IEEE.

von Stumberg, L., Usenko, V., Engel, J., Stiickler, J., and Cremers, D. (2017). From
monocular slam to autonomous drone exploration. In Mobile Robots (ECMR),
2017 European Conference on, pages 1-8. IEEE.

45

Bibliography

Williams, S. B., Newman, P., Dissanayake, G., and Durrant-Whyte, H. (2000).
Autonomous underwater simultaneous localisation and map building. In Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEFE International Conference on,
volume 2, pages 1793-1798. IEEE.

Williams, S. B., Pizarro, O., and Foley, B. (2016). Return to antikythera: Multi-
session slam based auv mapping of a first century bc wreck site. In Field and
Service Robotics, pages 45-59. Springer.

Yang, S., Song, Y., Kaess, M., and Scherer, S. (2016). Pop-up slam: Semantic
monocular plane slam for low-texture environments. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 1222-1229.
IEEE.

Younes, G., Asmar, D., Shammas, E., and Zelek, J. (2017). Keyframe-based monocu-
lar slam: design, survey, and future directions. Robotics and Autonomous Systems,
98:67-88.

Yousif, K., Bab-Hadiashar, A., and Hoseinnezhad, R. (2015). An overview to visual
odometry and visual slam: Applications to mobile robotics. Intelligent Industrial
Systems, 1(4):289-311.

Yuan, X., Martinez-Ortega, J.-F., Ferndndez, J. A. S., and Eckert, M. (2017). Aekf-
slam: a new algorithm for robotic underwater navigation. Sensors, 17(5):1174.

Zhang, H., Zhang, C., Yang, W., and Chen, C.-Y. (2015). Localization and navi-
gation using qr code for mobile robot in indoor environment. In 2015 IEEFE In-
ternational Conference on Robotics and Biomimetics (ROBIO), pages 2501-2506.
IEEE.

Zhang, M. and Lett, M. (2006). Genetic programming for object detection: Improv-
ing fitness functions and optimising training data. IFEFE Intelligent Informatics
Bulletin, 7(1):12-21.

46

A

Appendix 1

A. Appendix 1

IT

SI00PINO puv

S100pUL [10q POISOL (9102) ‘e %o nr7 Juoumsnlpe oppung LSV NINI “Te[moouoly NVISMY
SIOOpUL Pa3sa], (9102) T8 90 nry INVIS dS'T NNDO Temoouoly - NS dn-doq
SHOTHHOLATS (®LT0T) SOPIR], pu® [RIIY-INJ\ 103drI0sep NIAI °1qrssod
[eLIOR pue PUNOIS L X) juowrysnipe orpung : . i INVIS 9490
eoRqNS T POSA. (GT0Z) ‘T 30 [eIy-InJN aInyed] gy IR[NOOUOIN
NINIT
FIOTHHOLALD [EHOT () ‘Te 30 [PSuy 073 OSUOP-TWOS asn 03 aqrssod INVIS AST
pue punoid ur paIsa], vioe) 1 l . . ;
IR[MOOUOIN
SI00PINO pue HOREZIE01Y ouo
S TOODI pog @QMQ (TT0Z) ‘T® 20 ®eselr) JST] posTiopueY LSV ‘UoIeds 9AT)OY IR[MOOUOIN VIS mvhm
PR Pl ‘DVSNVY 1od-1
10qO1 (8007) uewmoaN oords-eoueresdde ur AYNS yum
SIqOWL HIM PAISIT, pue surmwn) UOI)TUZ009I 99R[J SPIOM JO Seq [ensip TETIOTON dVI dVvd
j0qo1 .
SIqow UM Pa3saT, (¥107) e 10 eIDIY jueumsnlpe sfpung ISVA IR[NOOUOTA INVIS LA
AUNS eFeu] TAQ ‘TeUog
ToyeMIDPUN POYSA], (GT0Z) ‘T8 90 BIPA[IS puo-peq NYISIRY ‘sjuowout ([:Ieuog Gemoouory JAVISTHARd
‘yuepuadep I0SUSG [INT 91 N
S9JON SIEN | pue-yoeg pue-juoI] SIOSUG e N

Table A.1: List of most suitable SLAM techniques for solving the stakeholder’s

problem.

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Domain & Motivation
	Research Goal
	Contributions
	Scope
	Section levels

	Simultaneous Localization and Mapping
	Basics
	Mapping
	Localization
	SLAM

	Principal paradigms to solve SLAM
	Filter-based
	Keyframe-based
	Overview of SLAM implementations
	DolphinSLAM
	DT SLAM
	FAB MAP
	EKF MonoSLAM
	LSD SLAM
	ORB SLAM
	Pop-up SLAM
	RKSLAM
	Selecting an Algorithm

	Evolutionary Algorithms in SLAM and Image Classification
	Existing approaches

	Background on Underwater Simulation
	Game engines
	Robot Operating System

	Convolutional Genetic Programming Algorithm
	Fitness function

	Methodology
	Collection of Data
	Experiments

	Results
	Conclusion
	Bibliography
	Appendix 1

