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Fuel Level Estimation Methods
Ellen Eskilsson and Alexander Örneskans
Department of Electrical Engineering
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Abstract
Being able to rely on the fuel level estimation is important for the driving experience.
However unprocessed fuel level signals are highly noisy and therefore misleading. To
ensure a good and predictable driving experience it is important to process the fuel
level signals. The way this thesis has tackled this problem is by comparing and
evaluating different model based estimation methods.

The estimation algorithms were designed based on a saddle type tank developed
by Volvo Car Corporation. The fuel level sensor consists of a floater arm and can
only detect fuel levels within its physical reach. The tank size can deviate from
the standard volume and it will affect the measurement. Acceleration, angular
orientation and fuel consumption are all factors related to fuel level estimation and
therefore their relationship to the estimation problem is investigated.

An experiment was devised to investigate the relationship between angular ori-
entation, fuel volume and fuel level readings. ARX based models were made in-
cluding angular orientation. The relationship was concluded to be non-linear, since
the magnitude of the fuel displacement depend on both current volume and angle
orientation.

The Kalman, H∞, Particle and Recursive Least Squares filters were compared.
The Kalman and RLS filters had the most desirable traits and were therefore further
developed.

Both Kalman and RLS resulted in smooth estimates on the driving cycles tested.
The Kalman filter provided a steadier estimate and could be easily tuned for faster
convergence to zero. The Kalman filter can easily be changed to accommodate
parametric uncertainties which improve its robust qualities. The RLS method was
considered more robust towards tank variation and tank ageing.

Keywords: Fuel volume estimation, Kalman, H∞, Particle Filter, Recursive Least
Squares
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1
Introduction

This Master thesis has been conducted at Volvo Car Corporation VCC, in Gothen-
burg. It was conducted within the departments of Fuel Distribution and Driver
Information. VCC is a Swedish automotive company that produces premium auto-
mobiles and is owned by Geely Holding Group.

1.1 Background
The fuel level is one of the corner stones when a driver plans the driving. Knowing
when to refuel is important, and basing the plan on inaccurate information may have
big consequences. The fuel level measurements are noisy and may be misleading due
the movement of the fuel. It is therefor necessary to process the measurements before
displaying the information to the driver.

The current method in which the fuel level is displayed emphasises on stabil-
ity, the ability to tell the driver that fuel level is zero when the tank is empty and
detecting when refuelling is done. Such information helps with trip planning and
distance to empty predictions. However, during certain situations the fuel level esti-
mation may be slightly inaccurate. It is therefor interesting to investigate alternative
methods.

1.1.1 Problem description
The fuel level sensor of concern is a variable resistor that is attached to a arm
equipped with a buoyant floater. The position in which the arm is in will determine
the resistance of the variable resistor. This resistance is thus proportional to the fuel
levels and can therefore give a fuel level reading. However the possible resistances in
which the variable resistor can achieve are done in discrete steps, therefore the sensor
has a certain measurement resolution. It is also important to note at two thresholds
, dead-zones, the fuel level sensor cannot acquire accurate fuel level information.
This is because there is a physical limitation in which the arm can be positioned
in. [3]

However reading fuel levels is not as simple as reading the raw sensor values.
There are sources of disturbances and uncertainties that affect the precision and
accuracy of the measured fuel levels.

Mechanical disturbances or process noise affect the measured fuel levels. The liq-
uid in the tank may produce a sloshing phenomena in the tank as the car accelerates
or decelerates. The angular orientation of the car also changes the displacement of
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1. Introduction

the fluid in the tank. Fluid motion and its displacement in the tank will be influ-
enced by the actual fluid volume. [4] These disturbances affect the position of the
floater arm and therefore changes the measured fuel level readings.

The tank comes with a standardised mathematical model that is a look up table,
that transforms resistance into fuel level volumes. A look up table is made for a
specific tank type,size and may not be an exact representation of all tanks of that
type. The making of a tank table is also exposed to measurement noise.

The sensor itself may also be noisy which is yet another factor that influences
fuel level readings.

Many traditional methods uses a frequency domain approach to solve the prob-
lem. However there are many other alternative approaches to solving this estimation
problem and some of these alternatives will be investigated in this thesis.

1.1.2 Motivation
The issues discussed in Section 1.1.1 can cause instabilities in fuel level readings.
These issues may cause several problems to occur which may diminish the overall
driving experience.

It is important for drivers to know how much fuel is in the car as this helps
with distance to empty prediction. Such prediction help with trip planning, when
to refuel and how to drive. Trip planning becomes difficult when fuel level readings
are inconsistent or inaccurate. Since there are deviations in tank geometry the fuel
level reading can potentially be positive when in reality it is zero. This could leave
the driver stranded on a road with no fuel. Fuel level readings can be inconsistent
when the vehicle is at an angle, which could leave the driver to believe that he or she
has more or less fuel than in reality. Such problems can be solved through filtration
strategies in software and in turn improve the driving experience.

Since there are no definitive answers to digital fuel level estimation it is important
to look at different strategies that provide a robust fuel level estimation. The reason
for a robust method is that there are deviations in tank volumes, as well as modelling
uncertainties that govern fuel level prediction. There are cases that bring up non-
linear behaviour such as slosh, refuelling online and offline that the estimator needs
to take into account.

1.2 Research questions
The three research questions this thesis aims to answer is:

• How to make the fuel level estimation more reliable?
• What estimation methods can provide a sufficient fuel level estimation?
• What signals can be used in the estimation?

1.3 Aim
The objective of this master thesis is to evaluate different filtration strategies that
provide a robust estimation of the fuel level. This will be done by:

2



1. Introduction

• Applying different modelling techniques that model the fuel level dynamics.
• Construct model based fuel level estimators.
• Comparing and contrast different model based estimation strategies.

1.4 Scope and limitations
The algorithms that govern fuel level estimation, will be developed based on the
fuel system present in the cars currently manufactured by VCC. Two different fuel
tank shapes are of use in cars produced by VCC, but only the saddle tank type will
be considered during filter development. Conditions where fuel boils or where the
car overheats will not be considered in the filter development. Neither crashes or
situations where the car is flipped upside down, for example after a large collision,
will be covered. In other terms what will be mainly considered are general driving
scenarios.

Conditions that will be considered in the filter development are
• Driving from full to empty tank.
• Refuelling online and offline.
• Inclined parking.
• Driving under heavy acceleration.
• City and highway driving.

1.5 Outline
This report is divided into five chapters. In Chapter 2 is theory behind the system,
the modelling and the different estimation algorithms presented. The methodology
behind an experiment is presented as well. Chapter 3 contains the implementation
of the theory and the result from the experiment. It describes the modelling, the
implementation of the model and the comparison of different algorithms. In Chapter
4 is the method and the result discussed. Chapter 5 contains an conclusion.

3



2
Theory and Method

This chapter describes the system used, followed by information about the principals
behind modelling and different filter design strategies.

2.1 System
This section describes the system that will be investigated within the thesis. The
signals of interests, tank architecture and disturbances that influence fuel level read-
ings will also be described.

2.1.1 Fuel tank
The fuel tank acts as a storage unit for fuel and when needed the pump inside the
tank sends fuel to the engine. The tank can come in various sizes and forms, however
filter development will be focusing on a saddle tank. Two illustrations of a saddle
tank are showed in Figure 2.4, one in which the fluid is still and one in which the
fuel is sloshing. A saddle tank has two chambers, one active and one passive. The
two chambers are separated by a low wall which allows fuel to move from one side
to the other. A pump transfers fuel from the passive to the active side. Each of
the two chambers are fitted with a level sensor mirrored from each other. They are
placed mirrored from each other, to compensate for the change in fluid displacement
as a result from the car being tilted. [5]

The production of plastic tanks that are of concern in this thesis are done through
blow moulding. This process is not fully precise and therefore the tanks that are
made can deviate in size with reference to the desired tank volume. [3]

4



2. Theory and Method

(a) Tank with static fluid. (b) Tank with sloshing fuel.

Figure 2.1: Two illustrations of a 71 litre fuel tank used within this thesis. Sub-
figure a has stationary fuel and b has sloshing fuel. The tank is a saddle tank and
is divided into one active and one passive chamber. The active side is the chamber
to the right in both figures. [1]

2.1.2 Fuel level sensor
There are multiple ways to measure fuel levels in a fuel tank. One of the most pop-
ular and economically viable solutions within the automotive industry is a variable
resistor attached to an arm with a floater. Figure 2.2 shows a floater arm attached to
the fuel pump. The floater ensures that the arm can be either raised or lowered de-
pending on the amount of fuel in the tank. Raising the arm decreases the resistance
of the variable resistor and lowering the arm increases the resistance. The resistance
changes in discrete steps which affects the precision of measured fuel levels. There is
also a min and max position the arm can be in and therefore, a min and max resis-
tance that can be achieved . This affects max fuel level readings, since liquid above
the maximum raised position of the arm cannot be detected. Once a known voltage
is applied to the variable resistor it is possible to measure the voltage drop with
changes in resistance. This voltage signal can be directly mapped to the position
of the arm and thus the amount of liquid in the tank. The measurement resolution
of the sensor that will be investigated is 0.2 litres. This mapping is currently done
through a look-up table.
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2. Theory and Method

Figure 2.2: A fuel pump with a fuel level sensor. The resistor card, the arm and
the floater is marked in the figure. The resistor card is attached to the fuel pump,
which is the large white container.

2.1.3 Signals
The identification of a parametric model depends on the available signals on the
Flexray network. FlexRay is a deterministic communications protocol used in the
cars produced by VCC. [6]

This subsection presents some of the available signals used.
• Volume measurements.

Subsection 2.1.2 describes the volume measured by two floater arms. Both the
raw resistance values and the translated volume values are available.

• Usage mode status.
A signal containing information on state of the car, for example when in the
driving or inactive state.

• Vertical, lateral and longitudinal acceleration.
The cars acceleration in three directions are available on the network. They
all originate from accelerometers.

• Angular orientation in pitch, yaw and roll.
The car orientation is described through angles, given in radians.

• Fuel consumption.
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2.1.3.1 Fuel consumption

The amount of fuel available in the tank is directly linked to how much fuel is
consumed over a period of time. The consumed fuel is estimated using injection
cycles. By knowing how long fuel is injected into the cylinders in the motor of
the vehicle, it is possible to estimate the instantaneous loss of fuel. Heating also
consumes fuel and therefore is also included in the fuel consumption signal. However
this method is not fully accurate and its maximum uncertainty is approximately X%.
It is worth noting that this thesis does not focus on fuel consumption prediction
however it is worth discussing about it for future work.

2.1.4 Disturbances
The liquid in the fuel tank has the freedom to move once there is space for such
motion. Such motion changes the overall displaced liquid in the tank and are caused
by certain factors. The way that the fuel is displaced in the tank will also determine
how the fuel level sensor arm is positioned, which in turn affects the read fuel levels.

Sloshing is the motion of a fluid inside a object, in this case a fuel tank. The
phenomena can either be linear or non-linear and in this thesis both cases are preva-
lent. This sloshing phenomena displaces the liquid in the tank differently in time
and therefore influences the position of the floater arm which in turn disturbs fuel
level readings. Such sloshing occurs when the vehicle accelerates and decelerates.
The fuel movement is also dependent on how rapid the acceleration changes. [4]

The resistance of the resistor card in fuel level sensor is mapped to a volume
through a look-up-table. As mentioned tank sizes can vary and therefore this map-
ping may be less accurate for different individual tanks.

Angular orientation will decide how the fluid is displaced in the tank. The fuel
level sensor is also effected, since the floater arm floats on the fluid. As the fluid is
displaced differently the readings may indicate an increase or decrease in fuel levels.

2.1.5 Orientation
Angular orientation is a way to describe the orientation of a body in the space it
occupies. That is the amount of rotation that is required to move the object to a
new position. In this case three axis are used to describe the orientation of the cars.
Typically the terms roll, yaw, and pitch are used to describe these three axis.

7
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Figure 2.3: A diagram of a car that describes the rotational axis such as yaw,
pitch and roll. [2]

An illustration of the roll, pitch and yaw is shown in Figure 2.3. Roll is found at
the centre of gravity around the vehicle. This rotation is directed forward towards
the grill of the car. If there is change in roll then the left wheels will be lifted, the
right wheels will be lowered and vice-versa.

Yaw is found at the centre of gravity around the vehicle. This rotation is directed
toward the top of the vehicle. If change in yaw were to happen then the nose of the
vehicle would change in direction. In a car yaw can be changed by moving forward
or backwards and simultaneously changing directions with the steering wheel.

Pitch is found at the centre of gravity around the vehicle. This rotation is
directed towards the left of the vehicle. Positive changes in pitch will raise the front
of the car up, lower the trunk and vice-versa. [7]

8
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2.2 Modelling
Modelling and approximating reality is important within science and engineering
as it helps understanding the properties and behaviours of a system. With such
knowledge it is possible to predict the future behaviour of the systems and rule
out outliers. It is therefore desirable to use a model based approach while filtering
a signal. Proper or strictly proper, causal models are considered. Some of these
modelling approaches are discussed in the subsection below.

2.2.1 Modelling approaches
Methods to model systems can be divided into three different approaches: white-,
black- and grey-box models. White-box models are completely based on theory.
Black-box models uses no prior knowledge about the system and is only based on
the available data. Grey-box models have some knowledge about the system but
some parameters or relationships remain unknown. It therefore uses both knowledge
about the physical model and available data. [8]

2.2.2 System Identification
System identification is a technique to build a model representation of a dynamical
system through measurements and methods in statistics. It can be used both in
grey- and black-box modelling. System identification typically uses a predetermined
model structure with unknown coefficients. These coefficients are found through the
minimisation of the difference between the estimation and the actual measurement
with respect to a cost function. [9]

2.2.2.1 ARX

The Auto-Regressive with eXogenous input model ARX, is a simple approach to
modelling. It maps a certain output as a combination of delayed outputs, inputs
and single varying error in its prediction. The model assumes the form:

y(k) + a1y(k − 1) + ...+ anay(k − na) =
= b1b

u(k − 1) + ...+ bnb
u(k − nb) + e(k)

(2.1)

where y is the set of outputs, u the set of inputs and e(t) the innovation term. The
coefficients ai and bi are chosen to minimise a cost function. [9] The ARX model is
of interest as it is a model that is easily implemented and has a separate innovation
term.

2.3 Filters
This section describes different filtering algorithms. The filters described in this
section are model based filters.

9
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2.3.1 Kalman Filter
The Kalman filter is an optimal filter as long as the following criteria are met.
Optimality is regarding state estimation error covariance minimisation.

• The system dynamics are linear, see Equation 2.2, and perfectly matches the
real system.

• Process noise and measurement noise are un-correlated and zero-mean white
noise.

• The system dynamics are observable and detectable.
However cases where the noise is Gaussian yields an exact conditional probability
estimate.

In Equation 2.2, x(k) is the state vector at time instance k, u is the input, w
is the process noise, v is the measurement noise and y is the measured variable.
Describing a system in this form is called state space representation. [10]

x(k) = Ax(k − 1) +Bu(k) + w(k)
y(k) = Cx(k) + v(k)

(2.2)

The first equation is called the state transition model, and describes what the state is
predicted to be in the next time instance. The second equation is called measurement
model, and relates measurements to the states.

The Kalman filter has two stages, the prediction and the update step. At the
prediction step, the state vector and co-variance matrix at the time instance k + 1
is predicted with the use of the state-transition matrix. It is shown in Equation 2.3.
Predicted state value is denoted x(k|k − 1), which means that it is the state value
at time instance k based on all the measurements made up to instance k − 1. The
same applies for the co-variance matrix P (k|k − 1).

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu(k)
P (k|k − 1) = AP (k − 1|k − 1)AT +Q

(2.3)

In the update step shown in Equation 2.4, the new state is given by the previous
state plus a gain multiplied by the predicted state and the measured state. The
Kalman gain, K(k), is used to update the state value to fit both the predicted and
the measured value. [11]

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1

x̂(k|k) = x̂(k|k − 1) +K(k)(y(k)− Cx̂(k|k − 1))
P (k|k) = (I −K(k)C)P (k|k − 1)(I −K(k)C)T +K(k) ·R ·K(k)T

(2.4)

It is important to note that the co-variance matrix converges to the optimal
algebraic Riccati solution after some iterations.

2.3.2 H∞ Filter
The H∞ approach is similar to the Kalman filter, but differs in the minimisation
problem. Kalman filters try to minimise the covariance of the estimation error

10
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and is a special case of the H2 filter. [12] However the H∞ approach formulates
the estimation problem in a different way. It quantifies modelling uncertainties,
as a maximal error and tries to guarantee convergence of the estimation in these
conditions. This makes the filtering approach robust to modelling uncertainties and
all types of noise. In other words the H∞ approach tries to minimise the worst case
estimation error, such that sup( ‖e‖2

‖d‖2
) < γ, where e and d are the estimation error

and the process and sensor noise respectively. The variable γ is a tuning parameter
and is the worst case amplification, [13].

One iteration of the H∞ estimation algorithm can be expressed as:

L(k) =
(
I −QP (k)γ + CTV −1CP (k)

)−1

K(k) = AP (k)L(k)CTV −1

x̂(k + 1) = Ax̂(k) +Bu(k) +K(k)(y(k)− Cx̂(k))
Pk+1 = AP (k)L(k)AT +W

(2.5)

Where I is an identity matrix, Q is a weighting parameter, P (k) is the co-variance
matrix and V andW are tuning parameters that model the system noise properties.
K(k) is the H∞ gain. [14]

The cost function of the H∞ filter is essentially the ratio between Q divided by
V and W , which is the ratio between Q over process disturbances and sensor noise.
These two disturbances are usually modelled as a type of sensitivity and complemen-
tary sensitivity function that describes the upper bound of each respective signal.
It is important to note that gamma has to be chosen such that P has eigenvalues
less than one. This constraint will determine whether there is a solution to the H∞
problem. [15]

2.3.3 Particle filter
Particle filters, PF, has the ability to estimate highly nonlinear systems under the
right circumstances. It approximates the distribution of a variable using particles.
A state space model is still required, but is denoted as a probability distribution.
The measurement model can hence be denoted p(x(k)|x(k − 1),y(k)), which is the
probability of x(k) given x(k − 1) and y(k).

PF uses the sequential importance sampling algorithm. It usesN particles, which
is initially distributed as the initial distribution. Each particle, x(i), is updated at
each time instance k according to Equation 2.6.

x(k)(i) ∼ q(x(k)|x(k − 1)(i),y(k)) i = 1,...N (2.6)

The distribution q is called the importance density and can be chosen differently
dependant on the current available signals and models. The common choice is
however the distribution shown in Equation 2.7.

q(x(k)|x(k − 1),y(k)) = p(x(k)|x(k − 1)) (2.7)

Each weight is also computed at every time instance k:

wi(k) ∝ w
(i)
k−1

p(y(k)|x(k)(i))p(x(k)(i)|x(k − 1)(i))
q(x(k)(i)|x(k − 1)(i),y(k)) (2.8)

11
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The weights are then normalised.
Finally, the probability for the new state value is calculated. [16]

p(x(k)|y(1 : k)) ≈
N∑
i=1

w
(i)
k δ(x(k)− x(k)(i)) (2.9)

One common problem is degeneracy. That means that eventually all but one
particle will have a weight close to zero. Re-sampling can be used to avoid this
problem. The first step of re-sampling is to draw N samples with replacement from
the set of particles at the current time instance. The probability of picking a particle
is the same as the corresponding weight. This new set replaces the old particle set
and all weights are set to 1

N
. [17]

2.3.4 Recursive Least Squares
The physical system modelled may change over time. It can therefore be preferable
to update the parameters of the model as the system dynamics evolves.

The Recursive Least Squares algorithm, RLS, is an online regression method
that computes the parameters of a given model whilst minimising a linear weighted
least squares problem. This is in contrast to the offline method where the solution
of the parameters and total cost are found once over a finite data set. In essence
the coefficient that govern the linear dynamics and the cost of the cost function
are computed at every time a new data point is given to the algorithm by finding
coefficients that minimise the cost.

N∑
k=0

e2(k)λN−k (2.10)

Equation 2.10 demonstrates the weighted least squares cost function as a function
of the coefficient vector. The objective is to minimise this cost online. N is the
amount of samples and λ is the forgetting factor. The forgetting factor is often
a scalar between 0.98 and 1, and in layman’s terms the λ value tells how long in
history the error cost should be remembered. By remembering and accumulating
the error cost far back in history equates to a value close to 1. Making history less
important equates to a value closer to 0.98. A higher value also leads to a robust
estimation towards measurement noise, but will adapt slowly as the physical system
changes.

The p last values of the state value are placed in the state vector:

x(k) =


x(k)

x(k − 1)
...

x(k − p)

 (2.11)

This is due to limit the memory demands on the algorithm, since using all the past
value will make the problem grow with time.

α(k) = d(k)− xT (k)w(k − 1) (2.12)

12
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The gain vector is denoted g(n) and is calculated at every time instance according
to Equation 2.13.

g(k) = P(k − 1)x(k)
{
λ+ xT (k)P(k − 1)x(k)

}−1
(2.13)

Where P is calculated according to Equation 2.14.

P(k) = λ−1P(k − 1)− g(k)xT (k)λ−1P(k − 1) (2.14)

Finally the weight w can be calculated. [18]

w(k) = w(k − 1) + α(k)g(k) (2.15)

It is important to note that the RLS filter uses the algebraic Riccati equation,
similar to the Kalman filter.

2.4 Quality of an estimator
Determining whether an estimator is sufficient can be difficult, especially when no
true state is available for comparison. There are however methods that help with
the analysis of an estimator in terms of its estimation performance.

2.4.1 Mean squared error
Mean squared error, MSE, is a common measure of estimator accuracy. Computing
the MSE is shown below

MSE = 1
n

n∑
k=1

(Y (k)− Ŷ (k))2. (2.16)

where Ŷi is the predicted state at time step n and Y the measured variable. The
MSE is always non negative due to the square. A value closer to zero indicates a
good estimator. [19]

2.4.2 Variance Accounted For
Variance Accounted For, VAF, is another way of measuring the quality of a esti-
mator. VAF explains how the variance of the original data set is related to the
variance of the estimated data set. The variance of the estimated data set should be
less than the original data set. The difference between the estimate, ŷ, and the mea-
surement, y, is divided by the variance of the measurement. [20] VAF is calculated
by implementing Equation 2.17.

VAFk =
(

1− var(y(k)− ŷ(k)
var(y(k)

)
· 100% (2.17)

A high VAF-value indicate a good estimate.
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2.4.3 Standard Deviation
Standard deviation, STD, describes how far or dispersed the estimator is from the
true value. A low STD indicates an even error over the data set, while a large STD
indicates large variations. [21] It is calculated by:

STD =
√
E[x− µx] (2.18)

where µx is the mean of x and E[] is the expected value operator.

2.4.4 Robustness
A term that is used in this thesis to describe filters is robustness. A filter can be
tuned to perform well for specific data sets. The parameters of a model can also be
identified with a use of a specific data set, however in order to validate the models or
filters other data sets need to be used. This will determine how robust the models or
filters are to new scenarios. A model or filter is considered robust if the predictions
behave as desired to new scenarios and circumstances.

2.5 Relationship between angle and fuel readings
This section explains the method in which data was gathered to study the rela-
tionship between tank volume readings versus roll, pitch and actual volume. The
materials and lab setup that were used during the experiment are described in detail
in Appendix A.

2.5.1 Hypothesis
The idea behind this experiment was to capture the dynamics involved with how
fuel level readings changed based on a change in angular orientation of the tank.
These angles include pitch and roll. Yaw is not included as gravity does not act on
the fluid in that axis.

As a result of different angular orientations the fluid in the tank will move and
thus be displaced differently. Because of such change the floater arm in the tank
will also be positioned differently, which will in turn change the resistance of the
variable resistor, thus changing fuel level readings.

Thus the aim of this experiment is to capture how change in roll and pitch
changes the fluid level readings over different sets of volumes.

2.5.2 Experimental setup
Before the experimental method can be explained in details it is important to first
understand some of the equipment and materials used in the experiment.
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(a) 71 litre tank (b) Connection to pump

Figure 2.4: Tank used in the data collection while placed on the tilt rig is seen to
the left. To the right is the top of the pump shown together with the connection.

The tank used was a saddle type and estimated to hold 71 litres of petrol from
manufacturing specifications, however with a possibility of some deviation. It was
attached to a tilting rig that allowed for variations in roll and pitch. The tank placed
inside the tilt rig can be seen in Figure 2.4. These pitch and roll variations are done
through rotating a circular lever by hand.

The level measurements were measured through the cables and resistors seen in
Figure 2.4b. The angles were measured through a phone, which was placed on the
middle top part of the tank. The time in which measurements start is dependant on
when both the phone and level measurements are started. Two people are needed in
order to start the devices simultaneously and because of such a factor the time vector
of each respective measurement may be out of sync. To combat this issue, a separate
sensor that measures angles, with less accuracy than the phone, is connected to the
same network as the level measurements. The tank itself was placed in the tilt rig
such that the rotation axis was in the middle cross section of the tank. Detailed
description of the cables, power suppliers and other equipment can be found in
Appendix A.

2.5.3 Experimental procedure
Once the tank is attached to the tilt rig and the angle measurement units are
attached on to the top middle portion of the tank, the software is set to record at
50 Hz. The measurements of the tank volumes are started along with the sensors.

Once the equipment have been prepared the tank is first tilted very slowly in
roll. The experiment always ends at the initial starting point in roll, i.e. 0 degrees.
The procedure is then repeated but now for pitch. Pitch is varied slowly and always
ends at 0 degrees.

5 litres of fuel are added to the tank with the use of a measuring jug. This
procedure is repeated until the tank is full.

It was only possible to measure voltages with the equipment. However what is
of interest is the resistance inside the resistor card of the fuel level sensor. This
problem was solved by measuring the voltage drop over a known resistance. A more
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detailed explanation together with a circuit diagram and a derivation of how the
resistance relate to the voltage drop can be seen in Appendix B.
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3
Implementation

In this chapter the theory and the result from the experiment described in Chapter
2 are implemented. Firstly is a model based on the angle experiment estimated,
followed by a RLS based on the same experiment. The model is then implemented
in different filter structures and compared with each other and the RLS. The two
most successful filters are then developed further and finally evaluated.

3.1 Model estimation
This section describes the process of modelling fuel level dynamics. It results in two
different state space models, one simple and one complex model, which are to be
implemented in filter structures further on in this report.

3.1.1 Covariance analysis
The initial stages of system identification requires the selection of signal or variables
that affect the measured output. In this case this section presents the correlation
coefficient between raw fuel level signals and signals describing the motion of the
car.

The correlation coefficient, ρ, for two signal arrays A and B is calculated accord-
ing to Equation 3.1.

ρ(A,B) = 1
N − 1

N∑
i=1

(Ai − µA
σA

)(Bi − µB
σB

) (3.1)

where µ is mean, σ is standard deviation and N is the amount of samples. The
correlation coefficient is an indication on the linear dependency of two signal arrays.
[22]

Correlation coefficients for a number of signals relative to fuel level readings
are shown in Table 3.1. The coefficients are calculated based on a measurement
where the car is driven from a full 50 litre tank to an empty tank. A 50 litre tank
was used due to lack of available 70 litre data. Relationships between different
signals should be similar between different tank sizes. Certain sections of a data set
could yield higher or lower correlation coefficients. However this section covers the
correlation between the whole data sets. A high absolute value indicates a strong
linear relationship, while a small absolute value indicates a small relationship or a
nonlinear one.
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Table 3.1: Correlation coefficients for named signals and the fuel level sensor value.

Signal Correlation
Fuel Consumption -0.8347
Lateral acceleration -0.3564
Velocity 0.2733
Roll 0.1513
Pitch 0.1281
Roll rate 0.0370
Longitudinal acceleration -0.0244
Vertical acceleration -0.0124

It is visible from Table 3.1 that fuel consumption has a negative correlation
coefficient. This means that as fuel levels decreases there is an increase in fuel
consumption, which is a reasonable trend. The absolute value of the correlation
coefficient is largest among the signals investigated that indicate a strong linear
relationship.

The two angles roll and pitch have correlation coefficients 0.15 respectively 0.13.
The magnitude of these values are large enough for a linear relationship, however it
is also possible that this relationship is not significant for certain data sets. The data
used in Table 3.1 is from city and highway driving and no steep hills are included.
The angles are therefore limited to small changes and it is reasonable that the effect
on the fuel level readings is not large.

It is however not in these driving scenarios that the angle should be of interest.
For example for a car parked in a tilted position, it would be possible to establish a
stronger relationship with angles. [23] It is therefore still interesting to evaluate the
angle’s effect.

Vertical acceleration has a correlation coefficient close to zero and this could be
indicative of a poor linear relationship to fuel level readings. Lateral acceleration
on the other hand has a non-zero coefficient and its relationship should be looked
into further.

It has also in a previous master thesis at VCC been concluded that longitudinal
and lateral acceleration in some cases can have major impact on the fuel level read-
ings. [23] It is therefore interesting to investigate longitudinal acceleration further,
despite the low correlation.

3.1.2 State transition model
The theoretical change in fuel volume is the fuel consumed by the car. Thereby
the current fuel level reading is the previous reading subtracted with the consumed
volume of fuel. This claim is supported by the covariance analysis done in Section
3.1.1. The analysis concluded that there was a strong negative linear relationship
between the fuel level reading and the consumed fuel. This can be expressed as a
state transition model,

x(k + 1) = x(k)− u(k) (3.2)

18



3. Implementation

where xk is the fuel volume at instance k and u is the consumed fuel since the last
time instance. The state transition model predicts the consecutive level, but does
not relate the state to the measurement. The measured fuel level can be seen as
a function of the fuel state and fuel displacement due to angular orientation. This
function is called a measurement model.

3.1.3 Measurement model
A measurement model is used to relate the measurements to the states. This section
describes the modelling procedure and how angles, volume state and level measure-
ments relate to each other.

3.1.3.1 Fuel displacement due to angle variations

Logically, the fuel level reading will be most accurate when the car is horizontal.
As the tank is tilted, the fuel reading error will increase due to the change in the
fluid displacement. The execution of the experiment in which the tank is tilted
was described in Section 2.5. Result of the experiment is presented in this section
together with a parametric model based on the result.

Figure 3.1 shows the correlation between angular displacement and the fuel vol-
ume readings for the different tested volumes. Every fifth litre between 5 and 71 litre
is tested. For the majority of the tested volumes, the correlation has a magnitude
above 0.8, indicating a linear relationship between angle and volume displacement.
The sign of the correlation coefficient vary, due to the placement of the sensor. It
is however important to remember that a nonlinear function can behave piecewise
linear for small angles, for examples sinus and tangens. The correlation is smaller for
the total volumes 35 and 40 litres as the pitch angle is varied. This might come from
the active side of the tank being full, making less room for volume displacements
and therefore saturating the movement.
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(b) Pitch

Figure 3.1: Correlation between angle and fuel level reading, depending on the
total volume in the tank. A value with magnitude close to 1 indicate a strong
relationship.
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Since the correlation analysis in Section 3.1.1 with regards to angular orienta-
tions indicated a linear relationship, a linear model is fitted to the data for each
measurement series. Each measurement series has a different total volume and will
result in a different linear fittings. Roll variation for a total volume of 35 litres is
shown in Figure 3.2. A linear function is illustrated in the same figure, with the
form ∆V = A∆θRoll + C.
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Figure 3.2: How the read values of volume change as the roll angle is varied. The
measurements are plotted with a blue cross. A linear fitting is shown as a solid red
line.

The magnitude of the fluid displacement changes as the total volume changes.
Coefficients in the linear fitting will therefore also change. Figure 3.3 shows how
coefficients A and C change depending on total volume. A high magnitude of A
indicate a big change in volume reading as the angle vary.

20



3. Implementation

0 10 20 30 40 50 60 70

Total volume [l]

-10

-8

-6

-4

-2

0

2

4
A

 [
l/
d
e
g
re

e
]

A´s dependancy on total volume, where ∆V=A∆θ
roll

 + C  

(a) A

0 10 20 30 40 50 60 70

Total volume [l]

0

10

20

30

40

50

60

70

80

C
 [
l/
d
e
g
re

e
]

C´s dependancy on total volume, where ∆V=A∆θ
pitch

 + C  

(b) C

Figure 3.3: Coefficients A(V ) and C(V ) in the linear fitting ∆V = A(V )∆θRoll +
C(V ) are functions of the total volume, V . This figure shows the two coefficients
the total volume vary from 5 litres to a full tank of 71 litre. The roll angle is varied.

Coefficients for the linear fitting as pitch is changed is showed in Figure 3.4. A
has a large value for small total volume values, and is therefore large for the volumes
close to 35 litre since the passive side starts to fill.

The active and passive sections of the tank is one reason for why the coefficients
depend on the volume. The passive and active fuel level sensors are placed mirrored
to each other. They therefore behave differently to angular displacements.

Which fuel sensor that has the largest effect on the readings depend on the
volume. The angle error will have a small effect as long as the active side is full.
The active side will have a large effect when the passive side is empty and the active
side starts having a decreasing volume.
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Figure 3.4: Coefficients A(V ) and C(V ) to the linear model fitted ∆V =
A(V )∆θPitch +C(V ). They change as a function of the total volume, V. The coeffi-
cients are shown as the total volume vary from 5 litre to a full tank of 71 litre. The
pitch angle is varied.

A piecewise linear model is proposed since the parameters vary depending on
the total volume in the tank. The angle parameters then change depending on the
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current volume estimate. This means that the model will be non-linear, since the
parameter depends on a state. Parameters for 14 different volumes are showed in
Figure 3.3 and 3.4. A simplified model containing 4 parameters is made to avoid
instabilities due to rapid changes in dynamics and to limit memory demands.

The values for 5, 20, 35 and 50 litres are saved, since they capture the behaviour
of the almost empty and full tanks. Parameters are interpolated between the four
given parameters as the volume estimate has changed more than one litre.

Acceleration and retardation of the vehicle will cause a change in fluid displace-
ment in the tank. This is supported by Newton’s second law. Acceleration in lon-
gitude and latitude could therefore be used in the measurement model. This would
help with reducing misleading sensor results. Including acceleration in the mea-
surement model can make the estimation of fuel level based on measurement easier.
Unfortunately, it is difficult to perform an experiment that isolates the accelerations
effect. A measurement model for acceleration will therefore not be presented in this
report.

3.1.4 Final state space model
The different models derived can now be combined to create complete state space
models. Two different state space models are used. They are referred to as the
complex model and the simple model. The complex model include angle data, while
the simple model is a simple integrator using only the consumption signal.

3.1.4.1 Complex model

A measurement model can be constructed using the angle orientation model derived.
The fuel level reading can be seen as the true volume plus the volume deviations
described in the previous sections.

y = xlvl(k) + proll(k) · θRoll(k) + ppitch(k) · θPitch(k) (3.3)

where xlvl is the true volume estimate value, proll and ppitch are coefficients and y
is the reading from the tank. The coefficients proll and ppitch originate from the
coefficients derived in the previous section. They have then been modified to better
fit the purpose of making fuel level measurements less misleading while positioned
in a slope.

This means that it is now possible to write the system in a state space form.
The state space vector used, seen in Equation 3.4, includes the estimated volume
and the angles roll and pitch.

~x =
[
xlvl θroll θpitch

]T
, ~x(k + 1) = A~x(k) +B~u(k) (3.4)

As described in Section 3.1.2, the next value of the volume can described as the
previous one minus the consumed fuel. This is described by the first row in the A
and B matrix in Equation 3.5.

A =

1 0 0
0 1 0
0 0 1

 B =

−1
0
0

 (3.5)
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The time update relates the measurements to the states and uses the measure-
ment model. Equation 3.3 is rewritten into matrix form as the first row in C:

C =


1 proll ppitch

0 1 0
0 0 1

 ~y(k) = C~x(k) (3.6)

Note that there exist many different C-matrices, since the angle parameters de-
pend on the current volume estimate. This makes the measurement model non-
linear. It is however a piecewise linear model. The parameters are changed every
one litre, making the change in parameter value small.

The remaining states, containing angle data, use a simple measurement model.
The angle states are present to help get a more precise value of the fuel level. They
are used as states to avoid having inputs in the measurement model. Having inputs
in the measurement model makes it more difficult to design algorithms like the
Kalman and H∞ filters. Using them as states instead of inputs can however have
the same effect. Increasing the weight on the measurement model and having a
small weight on the state transition makes the estimate behave close to an input.

3.1.4.2 Simple model

This section describes an alternative state space model. It has the same state tran-
sition matrix, shown in Equation 3.5, but with only the fuel level as a state. Instead
of having angles in the measurement model, it simply assumes that the volume
measurement is equal to the volume state plus Gaussian distributed noise. This is
expressed as a state space model, seen in Equation 3.7 and 3.8.

x = xlvl, x(k + 1) = 1 · x(k)− 1 · u(k) (3.7)

C = 1, y(k) = Cx(k) (3.8)

The simple model is used to evaluate different filter structures further on in the
report. It is simpler to integrate than the complex model. Due to the simple nature
of the model it was preferred to compare different filter structures with this model.

3.1.5 Properties of the state space models
A complete state space model is now developed. In this section the properties of
the state space are evaluated.

A discrete state space system is asymptotically stable if and only if all eigenvalues
of the A matrix are within the unity circle. The eigenvalues of the A matrix in
Equation 3.5 are on the edge of the unity circle. This means that the system is
marginally stable. The state transition matrix, A, can be multiplied with a value
somewhat less than 1 to ensure asymptotic stability. [24]

A system is completely observable if there always is a time t0, t0 < t1, for
which the state can be uniquely determined given measurement up to time t1. A
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n-dimensional linear time invariant system is completely observable if and only if
the observability matrix, seen in Equation 3.9, has full rank. [25]

O = [C CA ... CAn−1]T (3.9)
The observability matrix for the matrices presented in the previous section has

rank 3 for the complex model, for all combinations of angle parameters tested. The
rank is 1 for the simple model. It implies complete observability for both models.
This is a desirable property, since it otherwise would not be possible to implement
successfully in a Kalman filter. [26]

3.2 Recursive Least Squares
This section presents an alternative parametric model in regard to the simple and
complex state space models. It only needs lateral and longitudinal acceleration as
well as raw fuel level readings to estimate the fuel level.

3.2.1 Fuel displacement due to acceleration
It is hypothesised that lateral acceleration and longitudinal acceleration will cause
the liquid in the tank to move and therefore are disturbance factors. This claim is
supported by Newtons second law.
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Figure 3.5: Two detrended signals, fuel level measurements and lateral accelera-
tion. The correlation coefficient between the signals is -0.2138. The continuous line
is the measured fuel level whilst the dashed line is measured lateral acceleration

The data presented in Figure 3.5 is given by VCC and shows fuel level readings
of a fuel tank whilst the car is driving with extreme lateral acceleration. The car
is driving in an eight-shaped test track. It is aesthetically visible that acceleration
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and fuel level signals behave similarly. As the acceleration is increased the measured
fuel level is decreased. As mentioned in Figure 3.5 there is a negative correlation at
around 21 percent which indicates a strong linear relationship. The data showed in
this section originate from extreme acceleration, making the trends easier to locate.
The data sets have also been detrended, meaning that the declining trend of the fuel
level is not present. This makes the similarities between the acceleration and level
measurements larger.
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Figure 3.6: The graph shows two detrended signals. The correlation coefficient
between the signals is -0.3280.

The measured fuel level and longitudinal acceleration for a data set where the car
has heavy longitudinal acceleration can be seen in Figure 3.6 and is linearly related
with a correlation coefficient of -32.8 percent. This relationship is reasonable, as the
car stops and starts the liquid will have to move with the car. If there are heavy
accelerations involved then the body of liquid should slosh. [4]

The acceleration of the car is measured by accelerometers. Since the gravity
affects the accelerometer can the acceleration signals be used to capture the angle
orientation of the car. By using the acceleration signals in the model, instead of the
angle signals, can both the driving pattern and the car orientation be included in
the model.

3.2.2 RLS model formulation
Through the experiment described in Section 2.5, it has been shown that there is a
clear relationship between biased fuel level and angular orientations. However this
relationship is non-linear and therefore a linear model would not suffice under various
tank volume conditions. It has previously been described how a piece wise linear
model relating angle to fuel displacement was created in Section 3. This section
describes another approach. Instead of switching between a fix set of parameters, a
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dynamic model is proposed. Therefore a model structure that fits the RLS algorithm
will be investigated.

The method in which a model is made is through the grey-box modelling concept.
It is known that the liquid in the tank and its sloshing phenomena is affected by
acceleration. However how exactly the acceleration influences liquid dynamics in
the fuel tank, the structure of the model and its order, is unknown.

Through experimental results and with regards to the results shown in this sec-
tion, it seems clear that acceleration influences the sloshing mechanics in a linear
way. However as discussed earlier this relationship is evolving as a function of ac-
celeration and volume of liquid in the tank.

The modelling structure used will be of a ARX type model. This model is shown
in the equation below:

y(k) = θlatalat(k − 1) + θlgtalgt(k − 1) + θlvl (3.10)

Where alat, along are lateral and longitudinal acceleration signals, θ is coefficients and
y(k) the measured fuel level signal. Equation 3.10 shows the equation that will be
used in the RLS algorithm. The coefficient θlvl models the estimated fuel level.The
product of the acceleration, algt and alat, and the corresponding coefficients, θlgt and
θlat, model the fuel displacement that occur due to acceleration of the car.

Therefore the online minimisation problem is:

min
θlat,θlgt,θlvl∈Θ

m∑
k=1

(y(k)− (θlatalat(k − 1) + θlgtalgt(k − 1) + θlvl))2 (3.11)

where m is the horizon. For each iteration in this weighted least squares minimisa-
tion problem the variable θlvl is the estimated fuel level.

3.2.3 Robustness
This method is robust to different fuel tanks and varying dynamics. It minimises the
cost function online, and therefor finds coefficients that model the fluid behaviour
in the closest history. This makes it robust to different tanks and ageing tanks, in
contrast to the static state space models described earlier in this chapter.

3.3 Filters
The Kalman, H∞ and particle filters are presented in this section. This section
also describes the implementation of the models described in section 3.1.4 into these
filter structures described. The objective is to compare the different filter structures
that obtains the most robust volume estimation.

Only the Kalman filter was implemented using both the models. The Kalman,
H∞ and particle filter were implemented using the simple model, with no information
using angles. This was done as it was more time consuming to implement the
complex model and it was therefore not possible to implement both models for all of
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the filter structures. The simple model was therefore used to compare the different
filter structures. The models share the same state transition model, which is heavily
trusted compared to the measurement models in all filter structures. It was assumed
that if one filter structure was proven better than the other with the simple model,
it would also succeed better with the complex one.

The five filter structures investigated are therefore:
• Kalman with simple model.
• Kalman with complex model.
• H∞ with simple model.
• Particle filter with simple model.
• RLS, described in Section 3.2.

3.3.1 Steady state Kalman and complimentary filter
The steady-state Kalman filter and complimentary filters were considered to be of
interest. These filters both used the simple model as described before. However
they will not be included in the comparison, since their behaviour were very similar
to recursive Kalman filter with the simple model.

The complimentary filter was considered more difficult when it came to imple-
menting models with angles and acceleration, since it does not use measurement
models in the same clear way as the Kalman filter does. It also showed similar
behaviour as Kalman filter, but did not have any other advantages. Therefore the
filter as mentioned was disregarded.

The steady state Kalman filter also behaved similar to recursive Kalman filter.
One drawback of the steady state Kalman filter is that it is more difficult to imple-
ment nonlinear models. Therefore the steady state version was disregarded as the
complex model is non-linear.

3.4 Comparison of filter structures
This section will compare and present five different types of model combinations
and filter structures. The objective of this comparison is to conclude which filtering
method provides a robust estimation and from there further develop these filtering
methods. Things that will be tested are the convergence time, response time of
online and offline refuelling, estimation of fuel levels in inclined parking situations
and lastly their computational demands.

3.4.1 Convergence
The previous estimated value of the fuel level is saved before the car is turned off.
Once active again the previously saved value is used as a initial state. However
under some circumstances the initial value could be incorrect. Such errors can arise
under situations where fuel is used for heating or if fuel has been removed from the
tank. It is therefore important that the filters will adapt to the new true volume at
the same time with minimal noise or fluctuations. The time it takes for the filter to
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converge to the new volume is called convergence time and is the number of samples
multiplied by the sampling time.

Table 3.2: Time needed before filter has converged. Convergence time is showed
in minutes.

Filter|Initial offset [l] -15 -10 -5 0 5 10 15
Kalman with simple 2.3 1.9 1.3 0 8.8 8.8 8.8
Kalman with complex 2.3 1.9 1.3 0 10.1 10.1 10.1
Particle filter 6.8 4.9 2.7 0 8.3 15.3 16
H∞ 0.2 0.1 0 0 0.3 0.3 0.3
RLS 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 3.2 shows the convergence time in minutes, as the initial state value offset
is varied. The filter is said to be converged when it is less than 1 litre away from
the stable measured fuel levels.

The Kalman based filters convergence time depends on the ratio between the Q
and R matrices. A large quota indicates fast convergence, since the measurement
update is weighted higher than the model prediction. As a result of a large quota, the
filter will trust the measurement values heavily and therefore prone to following the
noise characteristics of the sensor measurement. The tuning of the filters therefore
play a large roll in the convergence time. The filters have been tuned so that they
behave smooth on legal city and highway driving.

The RLS based filter has the lowest overall convergence time, which is not sur-
prising. RLS can be seen as a Kalman filter without the prediction step, which
increases the dependency of the measurement values.

The particle filter has the longest convergence time for almost all initial offset
values. This also depend on the quota between the R and Q matrix. It also depends
on number of particles. 50 particles are used in this filter, which is a large number.
Having a lower number resulted in noisy behaviour and insufficient estimates.

3.4.2 Online refuel detection
If the vehicle is active, i.e. not turned off, while refuelling neither the simple nor
the complex state space model will be correct. The state transition model in all
models predicts that the consecutive value should be the previous one subtracted
the consumed fuel. This is not true while refuelling. Refuelling often takes place
offline, i.e. turned off. However, it may be necessary to keep the car on in cold
conditions. It is also possible to keep the car on at manned refuelling stations,
where the staff refuels the car.

Table 3.3 shows estimator quality indicators for the estimators compared to the
raw value. The raw value is used since it has a relatively small co-variance while
refuelling due to the steady position of the car. The estimates together with the
raw value is shown in Figure 3.7.
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Table 3.3: Mean square error, variance accounted for and covariance for the dif-
ferent filters compared to the raw signal as new fuel is inserted.

Filter MSE VAF Correlation STD
Kalman with the simple model 1.22 0.999 0.9996 0.59
Kalman with the complex model 2.03 0.9986 0.9994 0.6892
Particle Filter 12.7 0.9915 0.9981 1.72
H∞ 74.36 0.9580 0.9949 3.8323
RLS 27.86 0.9859 0.9967 2.2186
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Figure 3.7: Fuel level estimations as the tank is refuelled. Subfigure 3.7a shows
Kalman filter based on the simple model, the complex model as well as the steady
state Kalman. Subfigure 3.7b shows the particle filter, H∞ and the RLS filter.

All filters behave in a sufficient way as the tank is refuelled. This may be as a
result of the slow paced nature of the refuelling in this data set. This gives enough
time for the filters to converge to the increased fuel levels.

3.4.3 Detect offline refuelling
Detecting whether refuelling has taken place as the vehicle was turned off can also
be problematic. This is related to Section 3.4.1, where the convergence time for the
filters were investigated. It is important that the level indication adapts quickly to
refuelling, as it is confusing for the driver if an empty tank is indicated directly after
refuelling. It is therefore important that a refuelling is detected quickly after the
car is turned on after a refuelling.

Refuelling to a full tank offline will also lead to problems, since the floater has
trouble giving a sufficient volume reading in that region. It can therefore be difficult
to decide if the tank was refuelled to a full tank or somewhat less.

29



3. Implementation

0 100 200 300 400 500

Time [minutes]

5

10

15

20

25

30

35

40

45

50

V
o

lu
m

e
 [

lit
re

]
Estimates as refuelling takes place offline.

Raw

Particle

Complex

Simple

H
∞

RLS

Figure 3.8: Fuel level estimate as the vehicle is turned off around, refuelled and
then turned on.

Figure 3.8 shows the five estimator values as the vehicle is turned off, refuelled
and then turned on. All five converge slowly towards a full tank. Both Kalman
filters converge over approximately 10 minutes, whilst the particle filter converges
over approximately 39 minutes. H∞ converges the slowest, which is due to tuning.

Both Kalman filters behave similar in both the online and the offline refuelling.
This is expected, due to the horizontal placement of the car in a refuelling situation.
The complex model based Kalman filter uses angle data in the measurement model,
which the simple does not. Angular orientation is close to a constant value for these
two data sets since the car is placed stationary on a horizontal surface. The simple
and complex models behaves similar as angular orientation is kept close to zero.

3.4.4 Large angles
Parking or driving in a tilted position can be a part of the everyday driving routines
for some drivers. It has been previously discussed and shown that different angular
orientations will give a misleading fuel level reading due to a change in fluid displace-
ment. It is therefore important that the filter predictions are not affected by such
situations. Angular orientations under long periods lead to many misleading fuel
level readings, which can lead to the assumption that either refuelling or removal of
fuel has occurred which is simply not the case.

To test the filter’s performances under these conditions, several experimental
driving cycles were performed and the corresponding data was collected. The car
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was filled up with three different volumes of fuel: 5, 20 and 50 litres.
The volumes were chosen in such a way to test the different positions of the

floater arm: the active arm close to the bottom, the active arm in the middle and
the passive arm in the middle.

Six different positions were tested for each volume. The first four were: car
frontal upwards, car frontal downwards, driver side downwards, driver side upwards.
Two combinations of the basic positions were then tested to see if the assumption
of superposition was correct. Car frontal upwards while driver downwards and car
frontal downwards while driver downwards were therefore tested. The pitch was
tested as the car frontal was upwards or downwards. The roll angle was tested when
the drivers side was up or down. How the filters handled three of the positions for
one of the volumes will be showed in this section. The reasons for not showing all
18 data sets is due to the filters behaving similar on all of them.
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Figure 3.9: The raw volume readings together with Kalman and H∞ estimates
as the car is driven into a tilted position. The car stands in the tilted position in
approximately 5 minutes before driven down to flat surface.

Figure 3.9 shows the fuel level readings along with the Kalman based estimations
as the car is positioned in a hill. The inclination varies in the hill, but the car is
positioned in a spot where it is measured 14.5 degrees. The sequence start as the
car is standing still at the end of the hill in a horizontal position. The fuel level
reading in this position indicate a value close to 3 litres. The car then drives up the
hill, resulting in large variance in raw value. In the following 5 minutes the car is
standing still in the hill. Subfigure 3.9a has the cars frontal side pointing downwards
and subfigure 3.9b has the driver side of the car pointing downwards. The raw fuel
level readings indicates a larger volume as the car is standing still in the hill. At
the end of both sequences the car is driven down to the horizontal position at the
end of the hill.

The simple Kalman filter and the H∞ filter which does not include angle data in
the models start to converge to the larger volume data. The Kalman filter which do
include the angle data, referred to as the Complex one, does not adapt in the same
extent. This is a desired behaviour, and point to the necessity of using the angle
data.
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Figure 3.10: The raw volume readings together with RLS and PF estimates as
the car is driven into a tilted position. The car stands in the tilted position in
approximately 5 minutes before driven down to flat surface.

Figure 3.10 shows the same data sets as 3.9 as the RLS algorithms together
with the particle filter are applied. The RLS with acceleration data keeps the true
indicated volume even in the tilted position, which the particle filter does not.
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Figure 3.11: The raw volume readings together with Kalman and H∞ in a and
RLS and PF estimates in b as the car is driven into a tilted position. The car stands
in the tilted position in both roll and pitch and is in the position for approximately
5 minutes before driven down to flat surface.

Figure 3.11 shows the different estimators estimate the level as the car is in a
tilted position in both roll and pitch at the same time. The hypothesis of superpo-
sition between the two angles seem to be acceptable, as the complex model based
Kalman filter behaves sufficient.

3.4.5 Computational power
Each and every algorithm that is mentioned computes an estimate with different
amounts of CPU operations. This section will describe the computational complex-
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ity of the algorithms within the thesis.
The scope of this evaluation is to evaluate the running time and memory usage

of the algorithms in a online manner. This concerns only the running time for a
single iteration as all algorithms will be run online.

3.4.5.1 Running time

The values within Table 3.4 were brought out through running all these algorithms
under one iteration 1842452 times and taking the mean of the running times. These
algorithms were tested on a Intel i-7 6600U CPU vPro edition

Table 3.4: Running time of various filter algorithms under one iteration

Filter Time (s)
Steady state Kalman 3.8664 · 10−7

Recursive Kalman 7.9006 · 10−4

RLS using acceleration 2.4043 · 10−5

Particle Filter 1.6 · 10−3

H∞ 1.7702 · 10−4

It is visible from Table 3.4 that most of the filter run quickly. All run well under
one second for a single iteration. However to conclude they would work efficiently
in a ECU is still a question to be answered. Therefore further investigations are
required. The computational steps for each and all the algorithms are minimal,
however the only algorithm that could be of concern is the particle filter as its
complexity grows with an increase in particles. The steady state Kalman filter is
included to show how fast the filter runs once it has converged.

3.4.6 Conclusion of filter structure comparison
All of the five filters investigated showed good performance, most behaved similar
on the majority of qualities tested. Only the complex Kalman filter and the RLS
behaved desirable under angular conditions, which was expected as the others did
not use angle data. Since no filter is exactly perfect the two most desired filter
structures were chosen based on simplicity and predictive performance. These filters
are chosen and further developed on. The two filters that were chosen were further
tuned, some extra functions were implemented and were tested as well.

The majority of the filters behaved similar on the online refuelling case and have
similar complexity and memory demands. The offline refuelling case also resulted
in similar result. It is therefore difficult to draw a conclusion. The tilted position
test however, resulted in large variations in result. The Kalman filter and the RLS
algorithm with angle and acceleration data respectively gave a truer indication com-
pared to the other filters. The PF was disregarded as it did not provide a smooth
estimate as the Kalman and H∞ did. It is also worth noting that the H∞ filter was
disregarded as it has more variables to tune than the Kalman filter with performance
similar to it. Therefore to keep things simple it is better to choose a more widely
used and easily tune-able filter.
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3.5 Final Filters
The two filter structures that were chosen to be proceeded were the Kalman and
RLS filters and both needed further development. Both filters would benefit from
the ability to detect whether refuelling is or has occurred. This would make it
possible to have a slow responding filter under normal driving conditions as it could
be assumed that a increase in fuel volume will not be happening.

When refuelling is detected the filters can be tuned to respond quicker to such
quick fuel level increases.

3.5.1 Online refuelling detection
In some VCC cars, for example the XC60, the tank lid is opened by an electronic
signal. [27] It is logical to use this signal in the detection of online refuelling. As
long as the lid of the fuel tank is closed then no fuel can be added into the tank.

A state can be constructed where the state requires a open lid and zero velocity
signal. Once this state is true the filters can be re-tuned to respond quicker. The
Kalman filter is tuned in such a way that it trust the measurement more or trusts
the model less when the state is true. The RLS re-tunes the lambda value which
lowers the trust on previous measurements as the lid is opened.

3.5.2 Offline refuelling detection
The state of the lid signal cannot be detected once the car is turned off and all car
models produced can not detect the opening of the tank lid. Therefore the filters
cannot always detect whether refuelling has taken place. It is therefore necessary to
detect whether refuelling has occurred every time the car is turned back on.

An offline-refuelling state is introduced, which is true if offline refuelling is de-
tected. Refuelling can be seen as a step response and therefore it is important to
look at the impulse response of the fuel level signal. This is done by taking the
difference between the last volume estimate and the new volume measurements, af-
ter the new measurements have been angle corrected. There should be a significant
difference if the driver has refuelled. The angle model described in Section 2.5 is
used both for the Kalman and the RLS filters.

If offline refuelling is detected, the filter enters a similar state to online refuel
detection. The filters heavily trusts new measurements rather than model based
predictions.

3.5.3 Low fuel levels
The floater arm is not capable of providing reliable information past small volume
readings. This has been discussed previously and relates back to physical limitations
of the floater arm. The estimation of the consumed fuel is however independent of the
volume in the tank. When the filters detect a low fuel level and does not detect online
refuelling, it is therefore reasonable to trust the consumption signal completely.
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From there on the filters use dead-reckoning with the use of instantaneous fuel
consumption to predict the fuel levels.

The fuel consumption signal has an approximate uncertainty of X%. This un-
certainty could be added as additive parametric uncertainty to the B matrix in the
Kalman filter when the volume estimate is smaller than a fixed small fuel volume.
This in theory should make it more robust. The uncertainty was increased to Y%,
with X < Y , to avoid estimating more fuel than the true value due to entering the
dead reckoning mode at a too low fuel volume.

3.6 Filter evaluation
To look at how robust filters are it is important to test the filters with data sets
that were not used in the tuning and the designing of the filters. This method will
show how robust the filters are outside of data sets used to tune it. Therefore if the
filters are able to perform well under many different types of unknown conditions,
the filters could be considered robust.

The two filters that were proceeded with are evaluated using seven sets of pre-
viously unused data. The data sets are collected from real driving scenarios in
various cars and therefore belong to different kinds of tanks. Data is presented
along with the Kalman and RLS estimate. The estimates are evaluated based on
what is assumed reasonable. It is important to point out that the true volume value
is unknown with the exception to when the tank is completely empty.

Throughout this section, the raw fuel level values are shown in light grey and
the estimates are shown as a crosshatched red line.
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Figure 3.12: Kalman and RLS estimates based on a drive from a full to an empty
tank. Both estimators give a stable value throughout the drive. Kalman estimator
have a value closer to zero as the car stops.

Figure 3.12 shows the Kalman and RLS estimate for a driving cycle using a 71
litre tank. The driving cycle is from full tank to engine stop due to no available
fuel. The driving pattern differs through out the cycle, making the variance of the
raw measurement vary.
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Figure 3.13: Raw values for a drive cycle from full tank to engine stall. The cycle
ends with an online refuel. Both Kalman and RLS estimate the empty tank closely
before the engine stalls.

A drive cycle from a full 60 litre tank to engine stall is shown in Figure 3.13. The
tank is refuelled at the end of the driving cycle in the online mode. RLS indicates
a volume value of 3.7 litres at engine stall. One patch of data is missing, making
the raw values drop directly from 6 litres to 2 litres. Therefore both Kalman and
RLS indicate a nonzero value at engine stall. This shows how much both filters rely
on detecting online and offline refuelling or hosing. However, in this case this is not
a weakness of the filters but rather that the data set is missing information. After
the engine stalls, the tank lid is opened and both filters enters the online refuelling
mode.
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Figure 3.14: Raw volume measurements as a car is driven to engine stop due to
missing fuel. Both the Kalman and the RLS estimation estimate zero volume before
the stall.

Figure 3.14 shows a cycle from approximately 15 litres to empty. The initial
value means that the active side was close to half full as the tank had a total volume
of 71 litres. Both the Kalman and the RLS provide a smooth estimate and indicate

36



3. Implementation

a zero value at the end. The curvature of the estimate differs between the filters.
This can be derived from the Kalman filter’s large dependency on the consumption
and the RLS dependency of the raw volume value. The Kalman estimation indicates
zero volume approximately 7 minutes before the final stop due to lack of fuel and
the RLS circa 1 minute before. It is also worth noting that the Kalman filter on
start up is more stable than that of the RLS filter. If the co-variance matrix is set to
zero on start-up then the RLS predictions will fluctuate until the covariance matrix
stabilises.

0 50 100 150 200 250

Time [min]

0

10

20

30

40

50

60

70

V
o
lu

m
e
 [
lit

re
]

Raw volume value together with Kalman estimate. 

Raw value

Kalman

(a) Kalman estimation.

0 50 100 150 200 250

Time [min]

0

10

20

30

40

50

60

70

V
o
lu

m
e
 [
lit

re
]

Raw volume value together with RLS estimate. 

Raw value

RLS

(b) RLS estimation.

Figure 3.15: A driving cycle including hosing, driving to empty, refuelling to full
tank and finally normal driving. The Kalman and the RLS both indicate zero before
the engine stop, with Kalman estimating an empty tank first.

The driving cycle presented in Figure 3.15 starts at approximately 60 litre. The
car is then turned off and approximately 45 litres were extracted. The car is then
turned on once again, and driven to an empty tank. Both estimators indicate zero
volume at engine stall. The Kalman filter indicates an empty tank 3 minute before
the RLS. The car was then refuelled to a full tank, approximately 71 litres.
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Figure 3.16: Driving from a full 71 litre tank. The Kalman filter and the RLS
filter estimate different fuel levels, with Kalman estimating a lower volume.
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Figure 3.16 shows a driving cycle from a 71 litre tank. It shows driving from full
tank. Note that Kalman and RLS indicate approximately 65.6 litre and 67.1 litre
respectively at the final instance. The big difference could originate from the Kalman
depending on the consumed fuel and RLS on the raw volume measurements. Since
the floater arm is not giving sufficient readings at the top position, the measurements
can be misleading. It is not possible to conclude what estimate is closer to reality
since no true value is given.
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Figure 3.17: Diving from circa one third full tank to empty twice, followed by one
sixth full to empty. The first refuelling is done in steps. The Kalman estimate zero
remaining fuel before the RLS does for both engine stops.

Figure 3.17 shows a driving cycle for a car with a 60 litre tank. The car start
with approximately 24 litres and drives to empty. It is then refuelled in 3 rounds,
until it reaches approximately 20 litres. It is then driven to empty once again and
refuelled. Lastly it is driven to empty once again. The Kalman estimation shown
in Figure 3.17a, indicates zero volume shortly before all engine stalls. The same
applies for the RLS filter, seen in 3.17b.

The overall impression after looking at these driving cycles is that both estimators
behave in a smooth and stable manner. The online and offline refuelling detection
seem to work, but both filters behave noisier as they detect the online refuelling.
Kalman and RLS both reach zero indication before the engine stalls, with Kalman
reaching it some minutes before. This is a tuning property, and can be changed.
What is preferred, reaching it long before or as precise as possible, can differ. It is
important however, that all filters reach zero before the tank is empty.
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4
Discussion

This chapter discusses different aspects on the project. The results and the uncer-
tainties are discussed, followed by suggested future work.

4.1 Filter evaluation
This section discusses and evaluates the two final filters, the Kalman and RLS filters,
based on the result in Section 3.6.

4.1.1 Evaluation uncertainties
As previously mentioned, it is inherently difficult to conclude whether any of the
filters investigated give an accurate prediction. The only reference value available
is when the car comes to a stop as a result of an empty fuel tank. This is visible
through the velocity data. Conventionally the prediction performances of filters are
assessed numerically with regards to some true value. However there are no actual
reference values or true fuel level volumes to compare to. Because of such issue it is
not possible to evaluate the filters performances properly in a numerical way, that
is looking at the mean squared error, standard deviations etc. Therefore assessing
can be done through qualitative methods, by looking at the visual properties of the
filters. This assessment is done by looking at how the filter follows the noisy fuel
level trends and how stable it is. However such assessment is subject to the designer
of the filter and could be influenced by faulty intuition or bias.

4.1.2 Filter behaviour
Both the Kalman and RLS filters indicate a fuel level close to zero before the car
stops as a result of an empty tank. It is visible that the Kalman filter has a tendency
to indicate zero faster than the RLS filter. What is preferred may differ and depend
on requirements. Indicating zero fuel close to the engine halt will increase the
indicated driving range. Such behaviour may be a desirable trait as it may be used
as a selling point. However such traits may lead to over estimation which may
lead to engine stalls during times where the car indicates a positive fuel level. The
Kalman filter can be designed in such a way that it has a higher safety margin and
for such engine halt situation to occur would be less likely.

Neither the Kalman or RLS filter are indicative of terrible predictions. None of
the filters increase fuel level volumes unless refuelling is registered. However both
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filters are largely dependant on the two following signals: fuel cap status and the
state of the car, that is when it was off or on. If these signals were not present then
the filter would not be able to detect refuelling with the proposed solution. Fuel lid
state signal is currently available in the car network, however its function seem to
be only available in some cars. However enabling the function of this signal for the
next generation cars should be a relative simple and beneficial fix.

As discussed both filters are viable options for implementation, however visu-
ally it is possible to see that there are some differences between the filters. The
Kalman filter is a more stable filter; the Kalman benefits from having two sources
of information when it comes to fuel level predictions: the fuel level and the fuel
consumption. The Kalman filter can easily be designed to converge to zero faster
with adding additive parametric uncertainty to the B matrix.

The RLS type filter is more noisy than the Kalman filter, however tends to follow
raw fuel level trends more than the Kalman filter. The filter is generally slower at
converging to zero and by improving its converges rate one would have to re-tune
the lambda value. Such tuning could possibly lead to a noisier estimates. However
where the RLS performs well are situations where the car is parked in an angle.
The RLS is able to change its dynamics to accommodate the non-linear dynamics
of the system. Therefore it is effective in removing biased fuel level readings under
angular orientations over different sets of fuel volume. In conclusion both filters
are quite similar but as discussed has some advantages and disadvantages over each
other. The most preferable filter would thereby have the best traits from both
filters. These traits in the future could be combined into one filter for better future
predictions of fuel levels.

4.2 Motivation of research methodology
Both filters are developed based on a 71 litre saddle based petrol tank. The tank and
fuel type were chosen based on the preference that VCC had. It was also possible
to use a real tank of this size and relevant data was available. Many different types
of tanks were used during the evaluation. It is therefore difficult to point out faults
that is either based on the data given or the filters themselves. The filters behaved
as desired even without being specifically tuned for a certain tank type. There is a
chance that the filters could yield a better prediction with some tuning.

4.3 Kalman frequency domain behaviour
Equation 4.1 shows the transfer function from the innovation, ȳ = y(k)− ŷ(k), and
the input consumption, q(k), to the estimate of the measurement, ŷ = Cx̂(k|k− 1).

ŷ(k) = C · (I · z − A)−1 · A ·Kk · ȳ(k) +B · (I · z − A)−1 · I · z · q(k) (4.1)

where z is the shift operator. The function that the shift operator acts on is shifted
one instance in to the future: z · x(k) = x(k + 1). In this section the frequency
characteristics of the transfer functions are investigated.
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Figure 4.1: Bode plots for the transfer functions between the input fuel con-
sumption and level estimate in a, fuel level measurement and estimate in b. The
consumption to estimate act as an all pass filter, and the measurement to estimate
act as a low pass filters.

It is visible from Figure 4.1 that the filter behaves similar to a lowpass-filter
between the level measurement and the estimate. The attenuation is very high,
making it close to an all-stop filter. This is more or less the case when the system
dynamics are simple. The noise characteristics of the fuel level signal is in the high
frequency spectrum. Therefore interesting information lies within the low frequency
spectrum. However, the Kalman filter does not put a lot of faith in the measure-
ment, making the attenuation high. The fuel consumption signal has its interesting
properties within both the high and low frequency spectrum. The filter therefor
behaves as an all-pass filter between consumption and estimate. Neither of the fre-
quency responses behave sufficiently after 25 Hz. This is related to the sampling
frequency being 50 Hz. Due to Nyquist and Shannons sampling theorem, which
states that only frequencies up to half the sampling frequency can be reconstructed,
this is expected. [28]

As a result from tuning the properties of the Kalman filter changes. It is therefore
interesting to investigate the behaviour of the filter with different tuning. The
quotient between R and Q, ρ = R/Q, determines the frequency response of the
filter.

The singular values of the closed loop system will showcase the frequency re-
sponse of the filter. The definition is shown in Equation 4.2.

σ(G) =
√
λ(GTG) (4.2)

The Kalman Frequency Domain Identity, Equation 4.3, offers an alternative way
of describing the behaviour. [29]

(I +GKF (jω))(I +GKF (jω))T = I + 1
ρ
C(jω · I − A)−1(jω · I − A)−TCT (4.3)

Where GKF is the filter loop transfer function from innovation to the estimation.
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The singular values for the Kalman gain can then be formalised as:

σ(I +GKF (jω)) =
√

1 + 1
ρ
σ2(C(jω · I − A)−1) (4.4)

The singular values depending on frequency is plotted in a log-plot and shown
in Figure 4.2. The figure shows five curves with different tuning. The bandwidth
of the filter changes as ρ is changed. The final tuning of the filter has ρ = 1010

and the figure includes ρ-values 10 and 100 times smaller and bigger. It can be
concluded from the figure that a smaller ρ leads to a larger bandwidth. A smaller
quota means a larger trust in the measurements and noisier estimate. Increasing
the quota further would therefore limit the frequencies the Kalman can successfully
map. However, the lower frequency spectrum is of most interest as change in fuel
volume is a slow process.

100 101 102 103 104 105

Frequency [Hz]

100

101

102

103

104

105

M
a
g
n
it
u
d
e

Singular value depending on frequency for different tunings. 

100 · ρ

10 · ρ

ρ

0.1 · ρ

0.01 · ρ

Figure 4.2: Singular value depending on frequency for different tunings. The
tuning used in the final Kalman, ρ = 1010 is a solid black line. 10 and 100 times
larger and smaller ρ is also shown.

4.4 Future Development
This section presents different suggestions and discussions on how this thesis could
be continued and further developed on.
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4.4.1 State detection
This thesis has mainly focused on the differences in prediction performances of
various filter algorithms. However a problem that has been encountered in the
thesis is the detection of nonlinearities. As discussed, these nonlinearities include
offline and online refuelling. Online refuelling can be detected robustly with the use
of the fuel lid signal. However offline refuel detection is more of a difficult problem.
The system can detect refuelling only above three litres and at times can lead to
noisy initial estimates. Therefore it would be beneficial to look at a robust method
for offline fuel detection.

The noisy properties of the fuel level measurement change as acceleration changes.
The relationship depend on the current volume. These nonlinear behaviours are dif-
ficult to quantify in a model. However it would be beneficial to investigate how
to detect these nonlinear states robustly. Once these nonlinear states have been
detected the filters can be re-tuned for the specific states in order to improve on the
predictions of the filters.

4.4.2 The fuel consumption signal
The fuel consumption signal is directly related to how much fuel there is in the tank.
This information is also crucial for the Kalman filter and its stable predictions. It
has been observed that the fuel consumption signal is not fully accurate. Through
future work it would be beneficial to investigate how to improve fuel consumption
predictions. A method to do so is by looking at ways to model fuel consumption
behaviour.

In order for good prediction it is worth improving the fuel consumption signal
and therefore factors that influence and disturb fuel consumption. Velocity and
acceleration are variables that influence such consumption and can potentially lead
to models with 90 percent accuracy. Another factor includes road slope, a 1 percent
inclination could increase consumption by 9 percent [30]. Power demands, engine
RPM and heating within the car are also other factors [31]. Through intuition,
the throttle percentage, engine load and torque should also have an impact on the
estimation of fuel consumption.

4.4.3 Adding a tank lid state to the network
Another result was the large benefits that tank lid state information gave. An im-
plementation of the signal to the FlexRay could have large benefits and would make
it possible to detect online refuelling efficiently. Otherwise it would be interesting
to investigate other techniques to detect online refuelling.

Even with the lid state present detection of offline and online refuelling can be
difficult. The solution presented in this thesis involves an angle model, the last
measured value and the state of the car. It is still a rather unexplored problem, and
further investigation about the problem would be beneficial.
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4.4.4 Implementation of angle logic
A conclusion that has been drawn from this thesis is that including either angle or
acceleration signals in fuel level predictions have major advantages. It is therefore
beneficial to investigate how these features can be implemented with current filters
used in the cars. Large changes in software can take long time to implement. A
simple change that can be implemented is the logic for offline refuel detection. By
adding angles to the detection, it is possible to avoid false refuel detections.

The angle model presented in this thesis is based on an experiment. It may be
possible to construct equivalent angle models from simulations. It will then be easier
and cheaper to make specific models for each tank size.

The acceleration data could be used instead of using the angle data. The dy-
namics are captured by both signals, but the acceleration data is sent with a higher
frequency on the FlexRay bus.

4.4.5 Future evaluation
One of the large difficulties in this thesis has been to evaluate the estimators, since
no true value was available. A way to overcome this problem is to install a sensor
with better precision inside a test tank. For example a ultrasound sensor could be
installed. The high precision sensor could then be used to benchmark the behaviour
of the filters.
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5
Conclusion

The aim of this thesis was to investigate what filtering methods that provide a
sufficient and robust fuel level estimation. This was done by first examining differ-
ent disturbances, then constructing a model and finally comparing different filter
structures.

Different problems related to fuel level estimation were investigated. The in-
herent problems of fuel level estimation are based on a few types of disturbances.
These disturbances include liquid slosh as this makes fuel readings very noisy. The
noise properties also change as a function of acceleration and total volume of fuel.
The signals read from the fuel level sensor and its translation to volume in litres is
designed based on one fuel tank. Fuel tanks can deviate in size and therefore this
translation is not always accurate. Inclined parking gives a biased fuel level reading
and is therefore another factor that disturbs read fuel levels. All of these factors
have been considered in the design of the filters.

Angular orientation has been considered a major factor that disturbed fuel level
readings. Therefore a lab based experiment was setup to find a relationship between
fuel level readings and angular orientation. This experiment had a saddle type tank
tilted at various angles with various petrol volume. This experiment showed that
the relationship between angles and fuel level readings could be modelled piece-wise
linearly or as an adaptable model.

Variants of Kalman filters, a H∞ filter, particle filter and a RLS filter have all
been compared with each other. There were two different types of Kalman filters,
one with a simple model and one with a complex model. The complex model used
angular orientation. The H∞ and particle filter used the same simple model. The
RLS filter used a ARX based model by having longitudinal and lateral acceleration.
The Kalman filter with a complex model along with the RLS filter were chosen to
be further developed on.

Results showed that both the finalised filters behaved sufficient in the situations
tested. However it was concluded that the Kalman filter was generally smoother
and more tunable, faster in its convergence to zero fuel. The RLS filter was more
noisy and was slower in its convergence to zero. It also followed fuel level trends
more, which were not always necessarily better. It was however better in its way of
handling angular offset readings from the fuel level sensor. In conclusion the better
filter would be the filter that combines the best aspects of both the filters.

45



Bibliography

[1] Jonas Eklund, Rickard Kreuger.
[2] Wikipedia: Rpy angles of cars, 2008. https://upload.wikimedia.org/

wikipedia/commons/f/f5/RPY_angles_of_cars.png.
[3] Volvo Car Corporation: Internal documents, 2017.
[4] D’Alessandro, Vincenzo: Modeling of tank vehicle dynamics by fluid sloshing

coupled simulation. 2012.
[5] Volvo Car Corporation: An introduction to fuel system, May 2017.
[6] National instruments: Flexray automotive communication bus overview. http:

//www.ni.com/white-paper/3352/en/. Accessed: 2018-05-09.
[7] Yan Li, Li Yuxing, Qihui Hu Wuchang Wang Bin Xie Xichong Yu: Sloshing

resistance and gas–liquid distribution performance in the entrance of lng plate-
fin heat exchangers. 82, May 2015.

[8] Lennart Ljung: Black-box models from input-output measurements. 1:138 – 146
vol.1, June 2001.

[9] Lennart Ljung: System identification - theory for the user.
[10] Ramser Faragher: Understanding the basis of the Kalman filter via i simple

and intuitive derivation. IEEE Signal Processing Magazine, pages 128–132,
September 2012.

[11] L. Kleeman: Understanding and applying Kalman filtering. Master’s thesis,
Monash University.

[12] Urban Forssell: On H∞ and H2 optimal estimation, 1996.
[13] Simon, Dan: From here to infinity.
[14] J. Seo: An extended robust h infinity filter for nonlinear uncertain systems with

constraints. Decision and Control.
[15] M. J. Grimble, A. E. Sayed: Solution of the H∞ optimal linear filtering problem

for discrete-time systems, volume 38. IEEE Trans. on Acoustics Speech and
Signal Proc., 1990.

[16] Lisa Turner: An introduction to particle filtering, 2013.
[17] Roland Lamberti, Yohan Peletin, Frençois Desbouvries: Independent resampling

sequential monte carlo algorithms. IEEE Transactions on Signal Processing,
65(20), October 2017.

[18] Tomas McKelvey: Lectures notes in Applied Signal Processing. Chalmers Uni-
veristy of Technology, February 2014.

[19] John A Rise: Mathematical Statistics and Data Analysis. 2007.
[20] Julien Frère, François Hug: Between-subject variability of muscle synergies dur-

ing a complex motor skill. 6, December 2012.

46

https://upload.wikimedia.org/wikipedia/commons/f/f5/RPY_angles_of_cars.png
https://upload.wikimedia.org/wikipedia/commons/f/f5/RPY_angles_of_cars.png
http://www.ni.com/white-paper/3352/en/
http://www.ni.com/white-paper/3352/en/


Bibliography

[21] M.D. Bradley, E. CopeLand: Standard deviation. a practical means for the
measurement and control of the precision of clinical laboratory determinations.
American Journal of Clinical Pathology, 27(20), May 1957.

[22] Paolo Frasconi: Machine Learining and Knowledge Discovery in Databases, vol-
ume 2. The Springer Nature, September 2016.

[23] Louise Hagman: Impact of parameters on fuel level indication. Master thesis,
Lund University, Department of Chemical Engineering, June 2017.

[24] Claudiu C. Remsing: Lecture Notes - Linear Control. RHODES UNIVERSITY,
2006.

[25] Huibert Kwakernaak, Raphael Sivan: Linear Optimal Control Systems. Wiley-
Interscience, a Division of John Wiley & Sons, Inc., 1972.

[26] Ben Southall, Bernard F. Buxton, John A. Marchant . January 1998.
[27] Volvo Car Corporation : Ägarmanual online - xc60. https://support.

volvocars.com/se/cars/pages/owners-manual.aspx?mc=y413&my=2017&
sw=16w17&article=645be458f78dfe38c0a801e80158dabc, May 2018.

[28] Franco Maloberti: Data Converters. Springery, 2007.
[29] Balázs Kulcsár: Lecture Notes - Linear Control System Design (SSY285) - Fre-

quency domain and robustness. Chalmers University of Technology, 2017.
[30] Sangjun Park, Hesham Rakha: Energy and environmental impacts of roadway

grades, 2005.
[31] Ahmet Gürkan Capraz, Pinar Özel, Mehmet Sevkli Ömer Faruk Beyca: Fuel

consumption models applied to automobiles using real-time data: A comparison
of statistical models, 2016.

47

https://support.volvocars.com/se/cars/pages/owners-manual.aspx?mc=y413&my=2017&sw=16w17&article=645be458f78dfe38c0a801e80158dabc 
https://support.volvocars.com/se/cars/pages/owners-manual.aspx?mc=y413&my=2017&sw=16w17&article=645be458f78dfe38c0a801e80158dabc 
https://support.volvocars.com/se/cars/pages/owners-manual.aspx?mc=y413&my=2017&sw=16w17&article=645be458f78dfe38c0a801e80158dabc 


A
Measurement instruments

This chapter describes the measurement instruments used in the experiment de-
scribed in Section 2.5. The experiment had the aim to measure the fuel displace-
ment while changing the angle. The measurement tools used were a computer with
required software and a measurement tool by the name of m-sense. This measure-
ment tool had 4 input readings and reads a analogue voltage signal. The sampling
time is set through the software on the computer.

A LG G6 telephone was used to capture angular orientation of the tank. This
phone outputs an angle with the help of gyroscopes, a magnetometer and an ac-
celerometer. The resolution of this angle measurement is up to one micro degree.

The second IMU unit could capture orientation but will only output a voltage.
The settings of the device are unknown. Software for this sensor was also unavail-
able. Accuracy of the device is also unknown. The device is known as the 3DXM
orientation sensor.

There were in total of four power supplies used. These power supplies could keep
a constant DC voltage output and were called CPX400S SA SP. This power supply
can keep the voltage constant within 0.3%.

The last remaining power supply is a constant output 12 Volt source.

A.1 Cables
Cables that connect to the m-sense sensor are of BNC female connectors.

(a) A BNC female to m-sense port cable (b) A modified fuel pump cable

Figure A.1: Image a is a cable that connects to the m-sense sensor as well as the
male BNC connectors on image b
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A. Measurement instruments

Another important cable is a modified cable that is connected to the fuel tank.
This cable is wired in such a way that the cable connects to the tank via a out BNC
male, that measure the fuel level from the left and right side of the tank. These two
BNC cables share the same Ground. This BNC cable has a resistor soldered onto
the measuring port of the BNC.

There were 4 modified power cables that connects the power supply to the vari-
able resistor circuits via a test pin hook.

Two resistors of 1000 ohm were used with an uncertainty of 1 percent.
A flask was used to measure the amount of fuel that went into the tank. The

resolution on the flask is within ± 10 ml

A.2 Inertial Measurement Unit
Two orientation sensors are used within this experiment. One is a advanced Inertial
Measurement Unit (IMU), by the name 3DXM orientation sensor, however its set-
tings are unchangeable since there is no available software for interfacing with the
device. So far it is believed only the accelerometer provides a orientation signal.

The second sensor used is a sensor within the smart phone LG G6 that combines
a magnetometer, gyroscope and a accelerometer to compute angular orientation.

The 3DXM sensor is however synced up with data in regards to fuel level mea-
surements whilst the phone is not. Therefore the 3DXM sensor will be used to help
to determine at which time-stamp the orientation signals of the phone are influencing
fuel tank readings.

The 3DXM sensor can also be used to establish a relationship between angles
and fuel volume reading errors, however the sensor is noisy therefore the LG G6 is
preferred.
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B
Measuring the resistance of the

resistor cards in the tank

It is only possible to measure voltages with the measurement tools provided. This
means that a system must be made such that the resistance of the variable resistors
in the tank is measured through a change in voltage. The way to do this is to
connect a known resistor in series with the resistor card circuit and measure the
voltage drop across the known resistor.

The measurement computer is firstly connected to the m-sense sensor via a cable
interface. The sensor is powered with a power supply of 5 volts. Each variable
resistor circuit within the tank is powered by independent power supplies in order
to keep voltage drops for each circuit independent of each other.

In theory if the total voltage is kept constant then it is possible to compute the
resistance of the variable resistor using Ohms law.

Figure B.1: The measurement circuit with a 5 volt voltage source. Measurement
is done across the known resistor as seen by the voltage meter
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B. Measuring the resistance of the resistor cards in the tank

Firstly, Ohms law states that,

Vtotal = ItotalRtotal ,where:
n∑
i=1

Vi = Vtotal

n∑
i=1

Ii = Itotal

n∑
i=1

Ri = Rtotal

(B.1)

Which can be rewritten as:

Vtotal = V1 + V2

V2 = Vtotal − V1

R2Itotal = Vtotal − V1

(B.2)

In order to remove current from the equation in B.1 the relationship below can be
used.

Itotal = Vtotal
R1 +R2

(B.3)

Replacing equation B.2 with B.3 results in the equation below.

Vtotal
R1 +R2

R2 = Vtotal − V1

V1R1

Vtotal − V1
−R2 = 0

(B.4)

This yields the final equation which maps the voltage read across the known resistor
to the resistance of the variable resistor.

V1R1

Vtotal − V1
= R2 (B.5)
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