
Security Analysis of Code Bloat in Ma-
chine Learning Systems

Master’s thesis in Computer science and engineering

Fahmi Abdulqadir Ahmed
Dyako Fatih

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Security Analysis of Code Bloat in Machine
Learning Systems

Fahmi Abdulqadir Ahmed
Dyako Fatih

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Security Analysis of Code Bloat in Machine Learning Systems
Fahmi Abdulqadir Ahmed
Dyako Fatih

© Fahmi Abdulqadir Ahmed, 2022.
© Dyako Fatih, 2022.

Supervisor: Ahmed Ali-Eldin Hassan, Department of Computer Science and Engi-
neering
Examiner: Philipp Leitner, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Security Analysis of Code Bloat in Machine Learning Systems
Fahmi Abdulqadir Ahmed
Dyako Fatih
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Code bloat is a significant issue in modern software systems as they continue to
increase in size and complexity. Furthermore, with the widespread adoption of con-
tainerized applications, there is an abundance of unneeded packages that suffer from
a wide range of vulnerabilities. In this thesis, we analyze the prevalence of security
vulnerabilities in containers used for Machine Learning (ML) systems. We consider
two popular ML frameworks, namely, PyTorch and TensorFlow. Making use of
container scanning tools, we observed over 100 Common Vulnerabilities and Expo-
sures (CVE) in the tested containers. Our experiments show that debloating using
Cimplifier leads to a reduction in the image sizes of up to 49% and a reduction of
vulnerabilities of at least 87%. The majority of the removed CVEs can be attributed
to the removal of bloat specific to redundant parts of the containers’ installed OS
packages. A smaller portion of the CVEs detected in the Python packages were
removed by Cimplifier.

Keywords: Security, Debloating, Vulnerability Scanning, Machine Learning Sys-
tems, Containers, Docker.

v

Acknowledgements
We would first like to thank our supervisor Asst. Prof. Ahmed Ali-Eldin Hassan for
his continuous support, guidance and assistance throughout the whole project. We
would also like to thank the our examiner Asst. Prof. Philipp Leitner for the time
he took to both examine our thesis as well as give extensive feedback along the way.
Their contributions are sincerely appreciated. Additional thanks are extended to
Mohannad Alhanahnah and the team that developed Cimplifier for sharing it with
us. Finally, we would like to thank our families and friends for their support and
understanding throughout the long and arduous process.

Fahmi Abdulqadir Ahmed & Dyako Fatih, Gothenburg, June 2022

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Scope . 3
1.3 Thesis Outline . 3

2 Theory 5
2.1 Container Virtualization . 5
2.2 Machine Learning . 5
2.3 Debloating . 7
2.4 Security Vulnerabilities . 8
2.5 Vulnerability Scanning . 9

2.5.1 Container Scanning Tools . 9
2.6 Related work . 11

3 Methods 13
3.1 Approach . 13

3.1.1 Initial Component Analysis 13
3.1.2 Data Collection and Analysis 14

3.2 Problems and Mitigation . 15
3.2.1 System Wide Inspection . 15
3.2.2 ML Framework Inspection . 16

3.3 Environment . 18
3.3.1 Target Systems . 18
3.3.2 ML Workloads . 18
3.3.3 Hardware Configuration . 19

4 Results 21
4.1 Prevalence of Vulnerabilities in ML Systems 21
4.2 Vulnerability Reduction by Debloating 24

4.2.1 Container Debloating . 24
4.2.2 Scanning Debloated Containers 24
4.2.3 Verification of Removed CVEs 25

ix

Contents

5 Discussion 27
5.1 Detected Vulnerabilities . 27
5.2 Container Scanning . 28
5.3 Effects of Debloating . 28
5.4 Possibility of Inflated Results . 29
5.5 Threats to Validity . 31

6 Conclusion 33
6.1 Future Work . 33

Bibliography 35

A Appendix I

x

List of Figures

2.1 Debloating Docker images with Cimplifier as it pertains to the thesis
project . 7

2.2 Generalized chart of how container scanning tools function 10

3.1 Work-flow for running the experiment testing each ML system +
model combination . 14

4.1 Number of vulnerabilities found in each container (a) before debloat-
ing and (b) after debloating . 22

4.2 Comparison of the size difference between containers before and after
debloating . 24

xi

List of Figures

xii

List of Tables

4.1 Number of CVEs for each severity level in the PyTorch v1.10.2 image
(a) before debloating and (b) after debloating. Numbers in parenthe-
sis represent the number of CVEs found in Python packages 21

4.2 Number of CVEs for each severity level found in the TensorFlow
v2.7.0 image (a) before debloating and (b) after debloating. Numbers
in parenthesis represent the number of CVEs found in Python packages 23

4.3 Number of CVEs for each severity level found in the TensorFlow
v2.7.1 image (a) before debloating and (b) after debloating. Numbers
in parenthesis represent the number of CVEs found in Python packages 23

A.1 No. of vulnerabilities detected by Grype in tensorflow/tensorflow:2.7.0-gpu
for each package . I

A.2 No. of vulnerabilities detected by Grype in tensorflow/tensorflow:2.7.1-gpu
for each package . V

A.3 No. of vulnerabilities detected by Grype in anibali/pytorch:1.10.2-cuda11.3
for each package . VII

xiii

List of Tables

xiv

1
Introduction

Large software projects tend to grow in size and complexity with time. As the
amount of code increases with every release, so does the unnecessary features and
unused code, also known as code bloat. Consequently, the attack surface of these
complex systems expands. Code bloat is becoming a major issue in such systems
and as a result has seen a significant interest in recent years [1]–[3]. With more
code bloat comes higher energy consumption [4], increased risk of failure and worse
security [5].

Figure 1.1: The growth of the TensorFlow code base in million lines of code 1

1Figure is generated with the tool git-of-theseus: https://github.com/erikbern/
git-of-theseus

1

https://github.com/erikbern/git-of-theseus
https://github.com/erikbern/git-of-theseus

1. Introduction

Given the many problems code bloat can have on large systems, most of the research
focus has been given to big data systems [2]. On the other hand, bloat in Machine
Learning (ML) systems have, to our understanding, not received much research
attention. This is despite the large expansion of the code base in popular ML
frameworks. Sildnik and Wang [6] have shown the prevalence of code bloat in ML
systems and that the existing research in debloating can be adapted and applied to
Docker containers running ML systems. Azad et al. [5] demonstrated the security
risks caused by bloated software and presented a first analysis of the security benefits
of debloating web applications.

Xiao et al. [7] found many vulnerabilities in different ML frameworks and some
patches were made based on their research from 2017. Since then, frameworks such
as TensorFlow have grown substantially introducing even more bloat. Figure 1.1
shows a five-fold increase in the TensorFlow code base containing over 4 million
Lines of Code (LoC) since 2017. Therefore, there might be a non-trivial increase in
the likelihood that new vulnerabilities have made their way into these frameworks
and their long list of dependencies.

Docker containers are commonly used for their flexibility and are frequently dis-
tributed online with little oversight [8]. The study notes that containers containing
vulnerabilities can spread and be used extensively by many users. Sildnik and Wang
[6] showed that roughly half of the code in a Docker container used for ML workloads
could be removed while retaining full functionality for each separate use case.

1.1 Problem Statement

It has been shown that debloating can improve the security of a system [5]. How-
ever, this was limited to web applications, and little (if any) has been done to
quantify security vulnerabilities in ML systems introduced by code bloat. Sculley
et al [9] discuss the unique challenges that are specific to ML systems in addition
to the maintenance problems of traditional code. They summarize these challenges
into several categories, including ML-system anti-patterns, Data dependencies bloat,
Configuration bloat and Feedback loops.

The primary objective of this thesis is to quantify the security improvements caused
by debloating Docker containers used for ML systems. In doing so, we attempt to
answer the following Research Questions (RQs):

RQ1: How common are vulnerabilities within containers running ML systems?

RQ2: How well do existing vulnerability scanning tools work on debloated
containers?

RQ3: How effective is debloating in reducing the amount of security vulnerabilities?

Answering these research questions requires a way to quantify vulnerabilities in
Docker containers. One approach is to use existing vulnerability scanning tools

2

1. Introduction

such as Trivy2, Anchore3 and Clair4. These tools scan Docker images for publicly
disclosed vulnerabilities found in the Common Vulnerabilities and Exposures (CVE)
database [10].

1.2 Scope
The scope of this project will be limited to analyzing the security of containerized ML
systems and any potential effects debloating may have in the context of improving
security. We will also look into the efficacy of using vulnerability scanning tools for
the purpose of analyzing the security implications of debloating.

A list of the constraints of the project is given below:

• The focus of the project will be limited to Docker containers given their pop-
ularity and consistency for repeated use.

• This project will not develop a debloating tool but will instead make use of an
already existing tool.

• We will not build our own vulnerability scanning tools, but instead use and
test existing ones.

• We will only make use of the container scanning tools and not other tools or
software produced by their respective creators.

• The vulnerabilities that are investigated are limited to already disclosed ones
and discovering new vulnerabilities is beyond the scope of the project.

1.3 Thesis Outline
In the next chapter we will give an overview of different topics, tools and tech-
nologies used, as well as some previous work done debloating and security. This
includes virtualization with containers, Machine Learning, debloating with Cimpli-
fier, security vulnerabilities, and vulnerability scanning. In Chapter 3 we go over our
testing methodology, ways to validate removal vulnerabilities from debloating, and
the working environment used in this thesis. Chapter 4 contains the results from our
experiments. Chapter 5 discusses the achieved results, their validity, the answers
to the research questions, and point out some ideas for future research. Finally, in
Chapter 6 the conclusion is presented.

2https://aquasecurity.github.io/trivy
3https://github.com/anchore/anchore-engine
4https://quay.github.io/clair/

3

1. Introduction

4

2
Theory

This chapter explains the concepts that serve as background to the rest of the
thesis. These concepts include virtualization tools, ML systems, debloating and
vulnerability scanning. We close the chapter by discussing the related work.

2.1 Container Virtualization
Modern applications rely on other services each with their own set of dependencies
that may conflict with others. Containers are a form of operating system virtual-
ization that allow developers to package a software/application along with all of its
dependencies. These include executable binaries, libraries and configuration files.

Docker is an open source containerization platform that allows developing, shipping
and running applications [11]. It makes applications portable and isolated by pack-
aging them in containers that run in the Docker Engine. A text document called
Dockerfile serves as a blueprint to build a Docker image which includes everything
needed to run an application. Docker images are a standalone executable packages
of software that contain the instructions necessary to create containers that run
on the Docker Engine. The use of containers to package different components of
an application can be advantageous by avoiding many problems such as platform
differences, conflicting dependencies and missing dependencies.

2.2 Machine Learning
Machine Learning (ML) is a branch of Artificial Intelligence (AI) that allows systems
to learn through experience and improve their performance with respect to a given
task [12]. In this context, experience is the observations of the available data by
the ML algorithm. A ML task can be described in terms of how the ML system
can process the dataset in order to achieve the type of inference we want it to make
based on the problem we want to solve. The performance metric is specific to the
task being solved and is usually used to evaluate how the ML model performs on
unseen data.

5

2. Theory

There are mainly three types of ML algorithms:

• Supervised learning: This category of algorithms uses labelled datasets to
learn a function that maps the inputs in the training dataset to the desired
label. The training data consists of (xi, yi) pairs, where xi is the input to
the algorithm and yi is the desired output. The learning task involves finding
a function f such that f(xi) is as close to yi as possible. Classification and
regression tasks are examples of supervised learning.

• Unsupervised learning: These algorithms are trained with unlabelled datasets
and learn useful properties of the structure of the unlabelled data. Such algo-
rithms build an internal representation of the input data to discover its inher-
ent structure, data groupings or hidden patterns. An example of this category
is clustering, which divides the data into groups based on their similarities.

• Reinforcement learning: An agent observes the environment and learns the
best strategy known as a policy. The agent selects actions based on the policy
to maximize cumulative rewards. Such algorithms do not use a fixed dataset
but instead interact with an environment and learn by trial and error.

There are many libraries and frameworks that allow developers to easily build ML
models without needing to worry about the underlying algorithms. Some of the
most popular ones are:

• TensorFlow1: TensorFlow [13] was originally built by the Google Brain team
within Google’s Machine Intelligence Research organization for internal use
but was released as open-source project in 2015. It is a ML framework that
supports both CPU and GPU computing devices. The core of TensorFlow
is built with C++ and runs on several operating systems. TensorFlow uses
dataflow graph representation for numerical computation and state. This al-
lows the deployment of applications on distributed clusters, local workstations,
mobile devices and custom-designed accelerators [13]. Nodes in the dataflow
graph represent units of local computation while the edges represent the nu-
merical data arrays, i.e. tensors, that are communicating between the nodes.

• PyTorch2: PyTorch [14] is an open source ML framework developed by Meta
AI research group (formerly known as FAIR) that supports hardware acceler-
ators such as GPUs. Although most of PyTorch is written in C++, it is based
on Python and the Torch library. PyTorch supports tensor computation with
automatic differentiation and strong GPU acceleration [14]. In contrast to
TensorFlow which uses static dataflow graphs, PyTorch uses dynamic compu-
tation graphs.

• Scikit-learn3: This is an open source Python framework built on top of NumPy
and SciPy that is designed for supervised and unsupervised ML algorithms

1https://www.tensorflow.org/
2https://pytorch.org/
3https://scikit-learn.org/

6

2. Theory

[15]. NumPy is used for data and model parameters while SciPy provides
algorithms for optimization, linear algebra, interpolation and other tasks.

In this thesis, a ML system refers to a Docker container and an integrated ML
framework.

2.3 Debloating
Software debloating is the process of removing unused code and unneeded function-
alities such as excess libraries from a system or program. A debloated program may
have reduced functionality beyond the specific use-case of the end user compared
to the original program. As a result, debloating can significantly reduce resource
consumption and attack surface. This can potentially improve the performance [4]
and security of software systems [5].

Debloating can be performed on compiled binaries, at the source-code level or at
a file level removing unused files from the target system. Most of the proposed
techniques for software debloating target either source code or binaries. However,
there are a few who target file-level debloating, such as Cimplifier [16], which is the
main focus of this thesis project.

Figure 2.1: Debloating Docker images with Cimplifier as it pertains to the thesis
project

Cimplifier is a file-level debloating tool that uses dynamic analysis to collect informa-
tion on how the application executables use resources by collecting system call logs

7

2. Theory

with strace. It takes an input container and partitions it into a set of containers
isolated from each other to provide privilege separation. The partitioned containers
contain just the resources needed to run them to perform their functionality while
still satisfying the user-defined constraints [16].

Cimplifier operates in three steps: resource identification, partitioning and glueing.
The first step uses system call logs to collect information on how various processes
access resources such as files, inter-process communication and network objects in a
running container. This step identifies which files that are needed by the end user.
The second step uses the results from the resource identification and any user-defined
constraints to partition the original container into a number of smaller containers.
However, a single container can also be produced by setting the partitioning policy
to all-one-context. This policy does not perform any container partitioning and
places all executables in one container. The final step, glueing, uses remote process
execution (RPE) to allow the resulting containers to communicate with each other
as necessary to maintain the functionality of the original container. RPE allows a
process in one container to execute another process in a different container.

All relevant system call logs can be collected with strace automatically when the
command docker run is used to launch the container, which can be achieved by
using a modified version of runc4 written by Sildnik and Wang [6]. This version
of runc starts the strace process right before the container starts to run the entry
command, identifying the runc process ID (PID) and the current docker ID. Figure
2.1 shows an example of using Cimplifier to debloat a container running an LSTM
model with the MNIST dataset using the all-one-context partitioning policy. The
figure also demonstrates how we use Cimplifier in this thesis.

2.4 Security Vulnerabilities
Each of the machine learning algorithm types explained in Section 2.2 has its own
set of vulnerabilities [17]. In general, security vulnerabilities in ML systems can
be divided mainly into two groups. The first group consists of vulnerabilities in
the ML system during training, e.g. data poisoning. The second group targets
online ML systems after the underlying model has been trained. Evasion attacks
and membership inference are two examples of such vulnerabilities.

There has been quite some effort put into tackling ML system vulnerabilities of the
kinds mentioned above. These vulnerabilities are, however, not code-specific. In-
stead, they are “algorithm vulnerabilities” inherent to the model design as described
by Spring et al. [18]. There are also what Spring et al. [18] refer to as “implemen-
tation vulnerabilities”, which are caused by the underlying source code or binaries
of some software.

However, today’s systems not only contain the source code but also many dependen-
cies in the form of libraries, frameworks and Operating System (OS) packages. Each

4https://github.com/wy0917/runc/tree/v1.0.0-rc93-strace

8

2. Theory

dependency might contain their own set of vulnerabilities. One way of identifying
vulnerabilities is thorough scanning of the source code and/or the dependencies with
a scanning tool. This allows the necessary countermeasures to be taken to eliminate
or limit the identified security risks.

Publicly disclosed vulnerabilities are tracked and given a unique identification num-
ber, such vulnerabilities are commonly referred to as CVEs. CVE stands for Com-
mon Vulnerabilities and Exposures. The next section further discusses this topic.

2.5 Vulnerability Scanning
A growing number of security vulnerabilities in systems are discovered every year.
Publicly disclosed vulnerabilities are listed in the CVE list [10]. The CVE program
is maintained by the MITRE corporation, with funding from the US Cybersecurity
and Infrastructure Security Agency (CISA) of the US Department of Homeland
Security. Entries in this list are assigned unique identification numbers by a CVE
Numbering Authority (CNA). The Common Vulnerability Scoring System (CVSS)
is used to assess the severity level of a vulnerability with a score ranging from 0 to
10 [19]. A higher number indicates a higher degree of severity.

Vulnerability scanning is a powerful tool used to identify security weaknesses and
vulnerabilities in a system with the aim of mitigating security risks and protecting
the exposure of sensitive data. Scanning a container for vulnerabilities make it
easier to detect and mitigate any openly known threats that the installed libraries
and dependencies may have. Some of the common vulnerability scanning tools that
scan Docker containers are Trivy, Anchore, Clair and Snyk5.

All four of the previously mentioned tools are able to be integrated into development
pipelines making it easier to stay up to date on newly discovered vulnerabilities
whenever they are disclosed or when an update is made to the container. We are,
however, focusing on the core container scanning tool provided. Note that the core
container scanning components Anchore provide are called Grype and Syft, and
from now on, will be referred to as Grype.

2.5.1 Container Scanning Tools
Trivy, Grype, and Clair are all open source and free to use. Snyk on the other
hand is a paid service with limited trial use and is not fully open source, hence we
cannot make any concrete claims as to how it actually functions. Based on testing
the different container scanning tools, Snyk appears to function in a similar fashion
to the other three container scanning tools (will be referred to as scanners from now
on).

Following Figure 2.2 from left to right, the scanner pulls the Docker image from
either a local repository or a remote one, which can be composed of several layers,

5https://snyk.io/

9

2. Theory

Figure 2.2: Generalized chart of how container scanning tools function

allowing it to scan the file system of the docker container as defined by the Docker
image.

After extracting the image layers, the next step is to generate a Software Bill Of
Materials (SBOM). The SBOM is a list of all the different packages, libraries and/or
software along with their respective versions installed on the container. Generat-
ing the SBOM is achieved by inspecting log files generated by different package
managers. For Ubuntu based images, /var/lib/dpkg/status is the file which doc-
uments the list of all the preinstalled packages found in the Operating System (OS).
It also includes packages installed with Debian PacKaGe (DPKG), or the more
commonly used tool Advanced Packing Tool (APT). Trivy and Grype have separate
software, which is included with their installs, called Fanal and Syft respectively.
These are also able to detect packages installed with other package managers, such
as Pip6, by inspecting log files similar to the status file for the OS packages. A
list of the files Trivy (Fanal) inspects can be found in the documentation for Trivy7.
Grype (Syft) inspects similar files.

The final step is to take the SBOM and match the entries with a database that is
regularly updated from several sources. This database is normally stored locally,
but it can be hosted remotely in a Docker container. Sources include National
Vulnerability Database (NVD), GitHub Security Advisory (GHSA), and many of the
popular Linux distributions’ own security advisories. The full list can be found in
the scanners’ documentation. Each entry in the generated SBOM will be referenced
with the database and reported if a vulnerability relating to the specific entry exists.
The format of the scanning report can be customized or use some of the predefined
formats, such as, JSON. Each detected vulnerability is reported with a vulnerability
ID, which in most cases is a CVE ID, the vulnerable package, severity level, and
other descriptive information if available.

6https://pypi.org/project/pip/
7https://aquasecurity.github.io/trivy/v0.25.3/docs/vulnerability/detection/language/

10

2. Theory

2.6 Related work
Code bloat is claimed to increase energy consumption and have a negative impact on
security. There exists some research in the field of debloating from recent years [20],
[21] with a focus on either debloating the source code or the binary files directly.
We will will go over a couple of different debloating techniques, discuss how they
function and the security implications of the different techniques.

CARVE [20] is a debloating technique used to debloat the source code of programs
or packages. This technique allow developers to define how the debloating should
occur in a fine grained manner. The developer adds feature mappings to the source
code, and then instruct the debloater which pieces of code to remove or replace it
with. The feature mappings can be done in two different ways:

• Implicit Feature Mapping (///[FEATURE_X]): Maps the code segment under-
neath the tag to FEATURE_X. A code segment may be a function, if block, for
loop, or any other syntactically enclosed segment.

• Explicit Feature Mapping (///[FEATURE_X] ...code... ///): Maps any-
thing withing between the tags to FEATURE_X. Additionally, a developer may
specify code to replace the mapped code with enclosing it within a pair of
///ˆ tags placed withing the explicit feature mapping.

These feature mappings along with the source code is then given to the debloater.
Depending on the specifications given to the debloater as to which features should
be removed, it removes the source code segments with the tags matching the names
specified.

A part of the debloating process is to rebuild the software from the debloated source
code. This may however introduce potential vulnerabilities in the form of new
gadgets [22]. Gadgets are a set of instructions that ends with a return, indirect
jump, or function call instruction. These kinds of gadgets may be used by an
attacker by chaining instructions to build a payload with the existing code, also
called code reuse attack. In [22], they demonstrate that although the total number
of gadgets may be reduced by debloating using the kind of technique used in [20],
[23], the new gadgets introduced may worsen the security of the program.

LibFilter [21] is another debloating system developed to debloat dynamically linked
libraries. The system uses a tool called Egalito8 to extract the Function Call Graph
(FCG). The FCG starts from the entry point of an executable binary and traces all
the functions used from the libraries the binary calls. Anything that is not used is
then replaced with a halt command (hlt).

This method of debloating does not involve altering the source code of any binaries
or libraries. In fact, it does not need access to the source code at all. Another
benefit of this kind of debloating is the fact that instructions are only removed from
the libraries, hence there is no way for new gadgets to be introduced.

8https://egalito.org/

11

2. Theory

These kinds of techniques are effective at debloating and are shown to generally
improve security. However, debloating whole ML systems with such techniques is
most likely an unfeasible task due to the size of ML systems. It is also not clear if
the use of these debloating techniques would work with the mix of languages used
in the ML systems (mainly Python and C/C++). To the best of our knowledge, the
only successful debloating endeavor of ML systems was demonstrated in [6]. Thus,
the security benefits of debloating ML systems have not been researched as far as
we are aware.

12

3
Methods

This chapter describes the approach taken to tackle the RQs described in Section
1.1, problems encountered early on and how they were mitigated, as well as the
testing environment, the tools used, and the target systems analyzed in the thesis.

3.1 Approach

The approach is split into two primary parts: (1) Initial Component Analysis and
(2) Data Collection and Analysis. The first part of this section aims to test and
analyze different scanners, select ML systems to test the scanners on, and debloat
the ML systems. This is done in order to enable us to choose the appropriate
scanners for this thesis, as well as setting up an environment where the systems and
scanners work properly. Information gathered during the first part will answer RQ1.
It will also give us the prerequisite knowledge needed to proceed with running the
experiments required to help answer RQ2 and RQ3. The RQs are stated again for
ease of reading:

RQ1: How common are vulnerabilities within containers running ML systems?

RQ2: How well do existing vulnerability scanning tools work on debloated contain-
ers?

RQ3: How effective is debloating in reducing the amount of security vulnerabilities?

3.1.1 Initial Component Analysis
Firstly, we select two popular ML frameworks that the ML systems will be based on.
We choose to focus on two large and popular ML frameworks, specifically PyTorch
and TensorFlow. The choice of Docker images is dictated by ML frameworks and
their corresponding versions used in this thesis. The versions of the ML frameworks
should be recent to keep the thesis relevant.

Secondly, different container scanning tools are analyzed and tested. The scanners
considered for this thesis are: (1) Trivy, (2) Grype, (3) Clair, and (4) Snyk. They
are each tested on a ML system image to assess their applicability for the type of

13

3. Methods

systems we are analyzing. The scanners need to preferably be capable of scanning
the Python based frameworks and packages installed on them.

Many of the existing debloating tools target source code or executable binaries
and are meant for code which is compiled, such as C/C++. However, based on
the research conducted by Sildnik and Wang [6], Cimplifier [16] is the only tool
that produces working Docker containers running ML systems. This project will
therefore use Cimplifier.

Lastly, we will set up the final environment used for the experiments in the second
part of the approach. This will primarily be determined by the requirements of the
software tools that will be used. Additionally, it will be based on what hardware
is required to properly make use of hardware acceleration for efficiently running
ML systems. Due to limited hardware resources available on premise, we opted
to perform the experiments on the cloud platform Amazon Web Services (AWS).
Delays in receiving access to the cloud platform halted us from proceeding with the
experiments for a substantial amount of time.

3.1.2 Data Collection and Analysis
After analyzing and selecting suitable scanners, receiving access to the AWS cloud
platform, choosing the Docker containers, and configuring the environment, we con-
tinue with the experiments and gather data for analysis. Several combination of
Docker containers running different ML systems and models will be tested as shown
in Figure 3.1. The data gathered here will help answer RQ2 and RQ3.

Figure 3.1: Work-flow for running the experiment testing each ML system + model
combination

The first and second steps, as seen in Figure 3.1, are meant to gather data on
the the baseline performance of the ML system and on how vulnerable the system
is respectively. Baseline performance of each configuration of ML framework plus
reference workload (ML model) will be compared to their debloated variant in the
third step. The extent to how vulnerable the ML system is will be assessed based
on the CVE count reported after scanning the Docker image the system is based on.
The reports from the scanners are used in later steps.

14

3. Methods

In step three, the ML system is debloated with the same reference workload used in
the first step. The debloated ML system is run again, its performance is measured,
and then compared with the results from the first step to ensure that the system is
still performing properly.

The fourth step was supposed to be the same as the second step, but due to how
Cimplifier debloats Docker containers, the ML systems cannot be properly scanned
with any of the scanning tools and produce usable reports. Thus to be able to
detect vulnerabilities in the debloated ML systems, we resorted to manually inspect
the debloated systems with assistance of two different scripts made to mitigate the
previously mentioned problem. The specific problem and how the manual inspection
was performed is described in more detail in Section 3.2. The detected vulnerabilities
are documented and then we proceed with the final step.

In the fifth and final step, the reports produced from the container scanners in step
two and the manually detected vulnerabilities are compared between the original ML
system and its debloated variants. CVE count is our main metric for determining if
debloating may improve the security of the ML system. We will also look into the
vulnerabilities to see what parts of the ML system are affected the most/least.

3.2 Problems and Mitigation

Attempting to scan a debloated ML system was not as fruitful as described in
Section 3.1.2. We therefore had to resort to manually inspect the debloated systems
for vulnerabilities, or CVEs. In this section, we are describing the reason why
the scanners were not effective, and the approach we took to inspect the systems
manually.

3.2.1 System Wide Inspection

A container scanner attempts to document each and every package installed in a
container. It does so not by searching through the entire file system, but rather
by reading key files which document all the installed packages and their versions.
The documented packages are then referenced with a database to determine if any
package is vulnerable or not. In Section 2.5.1, this is described in more detail.
When Cimplifier is used to debloat a container, files that are not necessary to run
the reference workload are removed. This includes the exact files the scanner reads
which document the installed packages and important system information such as
OS distribution and version, leading to no packages being detected and therefore no
vulnerabilities being reported. Accessing the files as a part of the reference workload
will leave the files intact after debloating. This however inverts the problem, causing
the scanner to “detect” every package just as before the container was debloated.
Thus leading to the scanner producing a report identical to the one before the system
is debloated.

15

3. Methods

The approach we took to find the remaining CVEs mixes manual work and a script
to speed up the process making it feasible to perform. Note that this was done on
a Ubuntu system. The step by step approach is described below:

• Extract the entire file system from the debloated container, making sure the
actual container is created then extracted to get the complete file system and
not extracting the layered structure of a Docker image

• Using the report generated when scanning the original system, parse each
specific package name correlating to every vulnerability reported as entries
in the report. Additional information, such as, severity level may also be
extracted to better compare the result with the original scanning results

• Using the find command, we are able to search through the file system and
find anything that contains a string of choice. Each vulnerable package is
searched for as such:

find <path> -iname "*<name>*"

where <path> is the root directory of the extracted container file system,
<name> is the parsed name of a vulnerable package, and flag -iname tells the
tool to be case insensitive. Anything in the file system containing the string
<name> in any way is returned along with the path to where it was found

• Whatever is found by the script is then manually checked to make sure what
is found is actually the binary file that is vulnerable, and not something else
that happens to contain the searched string in its name

3.2.2 ML Framework Inspection
Another problem we faced was trying to pinpoint the vulnerabilities found in the
ML framework TensorFlow. Unlike the OS packages, which have one binary file
for each piece of software or feature, the ML framework is compiled into relatively
few Shared Object (SO) files. The CVEs detected by the scanner did not point to
specific SO files in the file system, but rather the installation of the entire framework.
The scanner also referenced the source code files that are vulnerable. However, the
source code files are not a part of the installed framework.

TensorFlow v2.7.0 consists of 4755 C and C++ source code files which are compiled
down to 61 SO files when installed on the Docker container. Reading the code
repository to match the vulnerable source code files with the SO files is a daunting
and time consuming task. Thus we resorted to inspect the SO files directly. The
compiled SO files comply with the Executable and Linking Format (ELF)1 allowing
us to potentially extract useful information from them. The step by step approach
is described below:

1https://man7.org/linux/man-pages/man5/elf.5.html

16

3. Methods

• We created a list of all the vulnerable source code files referenced by the
scanning report. We double checked that the reported files match the ones
documented in the TensorFlow GitHub repository

• The path to the folder that contains all the installed components of TensorFlow
is specified

• The locations of all SO files are found with the command:

find <path> -iname "*.so*"

where <path> is the initial directory to search through (path to the TensorFlow
folder). The path to every SO in the TensorFlow framework is gathered

• Each SO file is inspected with the readelf command to find every source code
file used to compile them:

readelf -sW <so-file> | grep 'FILE' | awk '{print $NF}'

The -sW flags tell the readelf command to return all the entries found in the
symbols table. Then we use grep to return the entries of type FILE. Finally,
awk '{print $NF}' returns the last column of every remaining entry, which
are the names of the files of interest. This extracts the names of every source
code file used to compile the SO file

• The extracted file names are then compared to the list of vulnerable files
created earlier. Any match would indicate that the CVE(s) are present in the
file. This is done for every SO file

• In the case when a Python file contains a vulnerable code or function, we use
the following command to locate it:

grep --include=*.py -rnw . -e "<function-name>"

The meaning of different options is as follows: -r is recursive, -n option in-
cludes the line number in each output, -w matches the whole word and -e is
used to specify the pattern used for the search. The <function-name> is the
name of the vulnerable function

It is possible to find the file names in the SO because the TensorFlow framework
is open source. Thus, all debug information is left in there and not stripped out to
hide any information from the public.

17

3. Methods

3.3 Environment
This section will describe ML systems that are analyzed as well as the underlying
hardware used during the experiments.

3.3.1 Target Systems
The target system refers to the Docker containers which will be analyzed for security
vulnerabilities. These containers are generated from Docker images that contain all
the required software and ML frameworks preinstalled to be able to train and use
ML models.

The Docker images used to generate the containers are all based on an Ubuntu
20.04 base image with CUDA installed to allow the use of GPU acceleration which
is necessary to effectively train and use ML models. This thesis focused on two
popular frameworks, namely PyTorch and TensorFlow. Different versions of the
ML frameworks are preinstalled in the different container images.

PyTorch Image

For testing a PyTorch based system, we are using the anibali/pytorch:1.10.2-
cuda11.32 image to generate the Docker container. PyTorch v1.10 was the latest
version available when we started the project.

TensorFlow Image

On the other hand for TensorFlow, we are using two images with different ver-
sions of TensorFlow v2.7. The two images (tensorflow/tensorflow:2.7.0-gpu3

and tensorflow/tensorflow:2.7.1-gpu) are both identical feature wise. Version
v2.7.1 was a security update that patched over 50 vulnerabilities and was released
in February 2022. Using both versions of the TensorFlow framework allow us to see
if the scanning tools are able to detect vulnerabilities between versions of the same
framework.

3.3.2 ML Workloads
To enable the debloating of the ML systems, a reference workload is required by
Cimplifier. The workload gets logged with the tool strace, and the resulting logs
will tell Cimplifier what components need to remain in the debloated container to
still function. The reference workload will be ML models being trained and tested.

LSTM/MNIST: The LSTM model is trained with the MNIST dataset and will
be used with both target systems. The code for both PyTorch and TensorFlow
frameworks were acquired from GitHub4. Minor modifications were made to
fix a "divide-by-zero" bug.

2https://hub.docker.com/r/anibali/pytorch
3https://hub.docker.com/r/tensorflow/tensorflow
4https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML

18

3. Methods

DLA/CIFAR-10: The Deep Layer Aggregation (DLA) model is trained with the
CIFAR-10 dataset. This workload will be used for the system with the PyTorch
framework. The code was acquired from GitHub5.

3.3.3 Hardware Configuration
The hardware available to a ML system affects the results of the debloating process.
It is common practice to use GPU(s) to accelerate a ML workload, be that training,
testing or inference. This is commonly achieved with the use of the CUDA API
stack allowing the workload to be offloaded to Nvidia GPU(s). To make sure the
CUDA API is used, we used an AWS EC2 cloud instance.

The specific instance used during the project is the g4dn.xlarge6. This instance
has 4 virtual threads of Intel Xeon Scalable (Cascade Lake) processors, 16 GB of
memory, and a Nvidia T4 Tensor Core GPU7. The operating system used with the
instance is the UBUNTU 18.04 based AWS Deep Learning AMI8.

5https://github.com/kuangliu/pytorch-cifar
6https://aws.amazon.com/ec2/instance-types/g4/
7https://www.nvidia.com/en-us/data-center/tesla-t4/
8https://aws.amazon.com/marketplace/pp/prodview-x5nivojpquy6y?sr=0-1&ref_=

beagle&applicationId=AWSMPContessa

19

3. Methods

20

4
Results

This chapter presents the results of the conducted experiments. First, we look
into the vulnerabilities of different severity levels found in the containers before
debloating. Second, we present the results obtained by debloating the selected
containers.

4.1 Prevalence of Vulnerabilities in ML Systems
The first step was to analyze the prevalence of publicly disclosed vulnerabilities in
containers running ML systems. This was achieved by using the scanning tools men-
tioned in Chapter 3. There are three images we used for the two chosen frameworks,
TensorFlow v2.7.0, TensorFlow v2.7.1 and PyTorch v1.10.2. Trivy and Grype di-
vided the installed packages in these images into two categories, OS packages and
language-specific packages, whereas Clair and Snyk only detected the OS packages.
The total number of CVEs detected by all four scanners can be seen in Figure 4.1a.

Table 4.1a shows the results of scanning the PyTorch container. We can see that the
results of Grype and Trivy are very similar, reporting a total of 119 and 118 CVEs
respectively. However, Trivy does not have Negligible severity level and instead
reports these as Low. Both scanners identified 113 CVEs in OS packages and only
5 and 6 CVEs are found in Python packages by Trivy and Grype respectively.

Table 4.1: Number of CVEs for each severity level in the PyTorch v1.10.2 image
(a) before debloating and (b) after debloating. Numbers in parenthesis represent
the number of CVEs found in Python packages

(a) Before debloating
Scanner Total Critical High Medium Low Negligible
Grype 119 (6) 3 (3) 6 52 (2) 46 (1) 12
Trivy 118 (5) 3 (3) 6 51 (1) 58 (1) -

(b) After debloating
Scanner Total Critical High Medium Low Negligible
Grype 7 (6) 3 (3) 0 2 (2) 2 (1) 0
Trivy 6 (5) 3 (3) 0 1 (1) 2 (1) -

21

4. Results

(a) Number of vulnerabilities detected by each scanner before debloating

(b) Number of vulnerabilities remaining after debloating

Figure 4.1: Number of vulnerabilities found in each container (a) before debloating
and (b) after debloating

22

4. Results

The scanning results of the two TensorFlow images are shown in Tables 4.2a and
4.3a. Similar as before, the results of both scanners are similar. However, in Ta-
ble 4.2a, 440 of the 504 CVEs identified by Grype are categorized as OS-package
vulnerabilities while 64 are Python-package CVEs. For Trivy, 425 are OS packages
and the Python-package vulnerabilities are 58. Most of the language-specific CVEs
are related to TensorFlow v2.7.0.

Table 4.2: Number of CVEs for each severity level found in the TensorFlow v2.7.0
image (a) before debloating and (b) after debloating. Numbers in parenthesis rep-
resent the number of CVEs found in Python packages

(a) Before debloating

Scanner Total Critical High Medium Low Negligible

Grype 504 (64) 1 (1) 42 (22) 296 (41) 127 38

Trivy 483 (58) 1 (1) 40 (20) 279 (37) 163 -

(b) After debloating

Scanner Total Critical High Medium Low Negligible

Grype 66 (62) 1 22 (22) 41 (39) 2 0

Trivy 61 (57) 1 20 (20) 38 (36) 2 -

On the other hand, the TensorFlow framework v2.7.1 does not have any publicly
disclosed CVEs at the time of writing. As a result, Python-package CVEs are only
6 for Grype and 1 for Trivy.

Table 4.3: Number of CVEs for each severity level found in the TensorFlow v2.7.1
image (a) before debloating and (b) after debloating. Numbers in parenthesis rep-
resent the number of CVEs found in Python packages

(a) Before debloating

Scanner Total High Medium Low Negligible

Grype 397 (6) 24 224 (2) 111 (4) 38

Trivy 374 (1) 22 206 146 (1) -

(b) After debloating

Scanner Total High Medium Low Negligible

Grype 7 (4) 3 (2) 3 (2) 1 0

Trivy 3 1 1 1 -

23

4. Results

4.2 Vulnerability Reduction by Debloating
This section presents the results after debloating and the observed reduction of
CVEs that are still present in the containers. The number of vulnerabilities found
in each container after debloating is summarized in Figure 4.1b.

4.2.1 Container Debloating
Four containers were debloated with the Cimplifier tool. The two models used for
the experiments are LSTM using the MNIST dataset and DLA with CIFAR-10.

Results from the debloating of all the containers show that the performance of all the
tested models remained unchanged and the container size was reduced substantially.
As seen in Figure 4.2, the size reduction was 37% for the PyTorch container running
both models, which is a smaller reduction to what Sildnik and Wang [6] observed,
and 49% for both TensorFlow containers running the LSTM/MNIST model. The
accuracy and training time for each model was effectively the same before and after
debloating, which tells us the debloating process has not affected the integrity of
the models.

Figure 4.2: Comparison of the size difference between containers before and after
debloating

4.2.2 Scanning Debloated Containers
In Section 4.1, we saw the scanning results of the original images. The number vul-
nerabilities detected in each container before debloating can be seen in Tables 4.1a,

24

4. Results

4.2a, 4.3a and in Figure 4.1a. However, all scanners failed to detect any vulnerabil-
ities after the images were debloated.

This is due to the fact that the relevant metadata files and package managers are
removed by the debloating process. Thus they fail to detect the installed packages
and their versions.

4.2.3 Verification of Removed CVEs
To mitigate the problem of not being able to scan the debloated images, we verified
the packages that remain installed in the resulting container from debloating as
explained in Section 3.2.1. The result is the list of CVEs associated with each
remaining package from the vulnerability report that was obtained from scanning
the original container.

As shown in Table 4.1b, the number of CVEs that remain after debloating the
container running the LSTM/MNIST model is just 7 for Grype and 6 for Trivy.
All vulnerabilities reported are found in three packages: bash, Pillow and NumPy.
Both scanners detect bash and Pillow whereas Trivy does not detect NumPy. The
debloated anibali/pytorch container that was running DLA/CIFAR-10 gave iden-
tical results as in Table 4.1b.

In Table 4.3b, we can see that there are only 7 CVEs found by Grype and 3 by
Trivy that are left in the debloated LSTM/MNIST-TensorFlow container. All of
those CVEs are found in three packages: bash, python3.8 and urllib3. The
urllib3 python library is present in the debloated container and there are four
CVEs in the library. However, only Grype detected urllib3 when scanning the
original container, hence the different results in the table.

The scanning result of tensorflow/tensorflow:2.7.0-gpu has many more vulner-
abilities compared to tensorflow/tensorflow:2.7.1-gpu. This is because Ten-
sorFlow v2.7.1 is an updated version of v2.7.0 with all the known vulnerabilities
patched. Both Trivy and Grype reported 57 CVEs in the TensorFlow framework in
tensorflow/tensorflow:2.7.0-gpu. Most of these CVEs are found in the C/C++
files in the source code of TensorFlow which are compiled to a number of SO files.
This makes it hard to verify exactly which files from the source code are removed
from the package by debloating because the scanning reports only reference the
source code of the framework and not the SO files.

Section 3.2.2 describes how we verified the presence of CVEs in the SO files of
the TensorFlow v2.7.0 framework. There are 61 SO files in the framework before
debloating and 13 are removed in the debloated version. All 57 CVEs found in the
TensorFlow framework are still present after debloating in the 48 remaining SO files.
The remaining CVEs in this container are shown in Table 4.2b.

25

4. Results

26

5
Discussion

The chapter discusses the results presented in Chapter 4. The first section focuses
on the detected vulnerabilities to answer RQ1. Sections 5.2 and 5.3 focus on RQ2
and RQ3 followed by discussing the validity of the results. The chapter ends with
suggestions for future work.

5.1 Detected Vulnerabilities

In Section 4.1, we presented the results of scanning the ML systems. As shown in
Figure 4.1a, we can see that there are many vulnerabilities detected by all four scan-
ners. The scanning reports by Trivy and Grype divided the installed packages into
two categories, OS-packages and language-specific packages, i.e., Python packages
for ML Systems. Clair and Snyk, however, only reported vulnerabilities found in the
OS packages. Snyk does support detecting Python packages in container images,
but for container registry integration and not the Snyk Container command line
interface (CLI), which scans local images.

As shown in Tables 4.1a, 4.2a and 4.3a, the overwhelming majority of the CVEs are
found in the OS packages. For example, the Python-package CVEs in the PyTorch
container only account for 5% and 4% of the total CVEs reported by Grype and
Trivy respectively. All of those were found in only two packages: Pillow and NumPy.
Although TensorFlow v2.7.0 image had the most Python-package CVEs of all the
images scanned, they are still around 12% of the total CVEs detected by both Trivy
and Grype in the TensorFlow v2.7.0 image. This time, all of those CVEs are found
in four packages: pip, NumPy, urllib3 and TensorFlow.

In Figure 4.1a, we can see that Grype detected 504 CVEs in the TensorFlow v2.7.0
container. All 504 vulnerabilities were found in the 115 packages listed in Table A.1.
Of the 504 total CVEs, the package linux-libc-dev and the TensorFlow library
accounted for 205 and 190 vulnerabilities reported by Grype and Trivy respectively.
Neither of those two packages were detected by Snyk or Clair, which explains the
large difference in the total number of CVEs reported by them compared to Trivy
and Grype.

27

5. Discussion

Based on the results of the scanners shown in these tables and Figure 4.1a, we can
answer RQ1 and conclude that containers running ML systems are vulnerable and
contain numerous CVEs of varying severity levels in both OS and Python packages.

5.2 Container Scanning
Using container scanning tools such as Trivy and Grype, we were able to successfully
quantify the number of vulnerabilities in all three container images. However, the
process of debloating the containers with Cimplifier caused the scanners to not yield
any results. All the tested scanners fail to scan the debloated container images
because the meta-data files that document the installed packages are removed. This
problem and our mitigation strategy is described with more details in Section 3.2.1.

Even though the container scanning tools failed to scan the debloated container
images, the reports they produced from scanning the original container images were
still useful in detecting the remaining CVEs. We know that Cimplifier does not alter
files but only removes them. Thus we can assume with certainty that, in the worst
case, the maximum number of CVEs remaining is equal before and after debloating.
Therefore, we can use the original scanning reports to narrow down our search for
the remaining CVEs.

In the case of the CVEs detected in TensorFlow v2.7.0 seen in Table 4.2a, we needed
to perform some deeper analysis. The reports produced by Trivy and Grype did
neither point to nor name any specific installed files when reporting the CVEs.
Rather, they referenced the original source code found on the TensorFlow’s GitHub
page. By compiling a list of all the vulnerable files and inspecting each SO file,
which is explained in greater detail in Section 3.2.2, we were able to find which
SO files were vulnerable. This allows us to determine if any CVEs are removed by
debloating the container image.

The short answer to RQ2 is: The existing vulnerability scanning tools we tested do
not work on debloated containers. However, the reports produced when scanning
the non-debloated container images are very useful in helping us asses the reduction
of CVEs due to debloating with Cimplifier.

5.3 Effects of Debloating
The debloating process successfully shrunk the containers and reduced the number
of CVEs by up to 98% while retaining the desired functionality for each tested use
case. This is because most of the removed CVEs were detected in the OS packages,
which account for the majority of the detected CVEs by Trivy and Grype. For
the purpose of a ML system, only a few of these packages are needed. Out of
the reported vulnerable OS packages, only bash and python3.8 are retained after
debloating the TensorFlow containers. The reason python3.8 is reported as an OS
package is because it is installed directly with the OS package manager.

28

5. Discussion

However, debloating did not help in removing any of 57 CVEs detected in the source
code of the TensorFlow v2.7.0 library. The majority of these 57 CVEs were found in
the C/C++ files. As explained previously in Section 3.2, the C/C++ source files are
compiled into a few SO files, and most of the vulnerable C/C++ files are found in the
libtensorflow_framework.so.2 and _pywrap_tensorflow_internal.so files. As
the names imply, these files contain the bulk of the source code of the TensorFlow
framework. Only one CVE, CVE-2022-23563, was found in Python source code files
where TensorFlow uses the function mktemp to create temporary files. Given that
Cimplifier is a file-level debloating tool, all used files are left intact, which makes it
difficult for file-level debloating tools to effectively reduce such vulnerabilities.

Considering the substantial reduction in the number of CVEs found in all the tested
containers, we can answer RQ3. Debloating is very effective in removing all of the
unneeded packages along with their vulnerabilities. The few packages that remain
installed in the debloated container are mostly the Python packages that were used
by the ML system.

5.4 Possibility of Inflated Results

The results from the experiments show a remarkable reduction in the total number
of CVEs after debloating the tested containers. These results may raise some suspi-
cions regarding the methodology for finding the figures. The large majority of the
vulnerable packages are part of the OS in the container. Most of these packages
are redundant and not used because of the fact that the host system’s OS kernel is
shared with the container and we were only running the ML models and nothing
else.

The only OS package with a known CVE remaining in the debloated PyTorch con-
tainer is bash. This makes sense as we used a Bash terminal within the container
during the debloating process. The higher values reported by Trivy and Grype seen
in Figure 4.1b, are due to them also detecting language based packages that remain
after debloating.

Both TensorFlow containers have hundreds of CVEs detected by the vulnerability
scanners and almost all of the CVEs were removed after debloating. There are a
few reasons why the number of detected CVEs are so high:

• In Tables A.1 and A.2, we can observe the presence of “dev” variants of
many of the vulnerable packages are reported for the TensorFlow contain-
ers. An examples of this are the libexpat1 package and its “dev” counterpart
libexpat1-dev, both accounting for 15 CVEs each. These 15 CVEs from the
libexpat1 package and its “dev” variants are technically duplicates, because
they share the same dependencies that are actually vulnerable. Even though
they are duplicate, they still impose a valid concern. Having two packages
using the same dependencies increases the entry points to the vulnerable de-
pendencies. This phenomenon is not present in the PyTorch container. Our

29

5. Discussion

assumption is that the “dev” packages are not supposed to be there, as there
are in fact developer versions of the TensorFlow containers available.

• Similar to the previous point, some of the reported packages share CVEs.
binutils, libbinutils, binutils-common, libctf-nobfd0, libctf0 and
binutils-x86-64-linux-gnu are a set of reported packages all sharing the
same dependencies. This phenomenon can be observed in all three containers,
as seen in Tables A.1, A.2, and A.3.

• We observed an occurrence of actual duplicate reporting of vulnerabilities.
The urllib3 package, which was detected in both TensorFlow containers with
Grype, has two vulnerabilities, but four are reported. The two vulnerabilities
are documented in both the CVE list and in the GHSA, hence having both
CVE and GHSA IDs. Grype has for some reason reported both sets of vul-
nerabilities, somewhat inflating the CVE count. This is however the only
occurrence of such duplication we managed to detect.

We consider that the repetition of vulnerabilities reported described in the the first
two points as valid. If we decide to only count vulnerabilities with unique IDs,
the tensorflow/tensorflow:2.7.0-gpu container would still have detected 301
vulnerabilities based on the the report produced by Grype.

Furthermore, the difference in the number of vulnerabilities detected by different
scanners as seen in Figures 4.1a and 4.1b can be due to several reasons:

• Differences in which metadata files they read and how they interpret them.

• What sources they use to update their vulnerability databases.

• The scanners tend to update their vulnerability databases at different rates.
For example, Trivy does it every 12 hours, Clair every 6 hours and Anchore
checks for updates every time a scan is performed. Moreover, the time we
performed scanning with different scanners is not necessarily the same for all
images. This is because the goal was not to compare the results obtained
from different scanners but rather a comparison between the number of CVEs
detected before and after debloating.

Whichever way one might decide to look at the reported CVE count of the bloated
containers, the number of CVEs are still substantial even if one makes a more
conservative interpretation of the reports. Based on the analysis of the reported
vulnerabilities, we can say with confidence that the total number of CVEs is reduced
substantially and that it can be attributed to the debloating of the containers.

30

5. Discussion

5.5 Threats to Validity
This section discusses some potential threats to the validity of this thesis.

Construct Validity

Using the scanners to detect CVEs in the non-debloated ML systems can be assumed
to be accurate to a certain degree. We did see variations in the results from different
vulnerability scanners as well as a very large number of CVEs for some of the
ML systems. There can be many explanations as to why these variations may
happen, which we discuss in more detail in Section 5.4. This is the main reason we
used several scanners to better understand the overall security state of the systems.
The use of CVE counts as a measure for the vulnerability of a system is not all-
encompassing. However, it is a useful way of analyzing larger pieces of software or
systems where analyzing the code directly is unfeasible.

In the case of validating the remaining CVEs after debloating, we believe our method
is accurate. The method was tested on the non-debloated containers and we always
found all the CVEs reported by each scanner. Therefore, it can be assumed that
we would not miss any remaining CVEs when searching for them in the debloated
containers.

Internal Validity

The substantial reduction of CVEs found in the ML systems can only be attributed
to the debloating done with Cimplifier.

External Validity

Although the number of analyzed systems was small, we believe that the results
should generalize quite well to other models. This can already be seen in the PyTorch
container when training both the LSTM and DLA models, where the results were
identical. This can be attributed to the fact that most of the removed CVEs are
found in OS packages that are unlikely to be used by other models. On the other
hand, most of the CVEs detected in the Python packages were still found in the
debloated containers, which are the packages commonly used in ML systems, such
as NumPy. However, there might be variations in what Python packages that are
used by different models, which would still account for a very small proportion of
the overall CVE count.

Our method for validating the overall number of remaining CVEs in a debloated
container should be applicable to any container with a Linux-based file system.
However, the methodology used to verify the remaining CVEs in the TensorFlow
shared object library files installed in the container is more specific to TensorFlow.
However, the core idea of the method should work, with small modifications, for any
open-source code base written in C/C++ with the plain-text symbols still available
in the complied files.

31

5. Discussion

32

6
Conclusion

This thesis demonstrated the prevalence of security vulnerabilities in containers
used for ML systems. Furthermore, we analyzed the effectiveness of debloating
in reducing the number of publicly exposed vulnerabilities in such containers. Our
experiments show that debloating bloated containers running ML systems can reduce
up to 98% of the vulnerabilities detected by the Grype vulnerability scanner while
retaining the desired functionality of the original containers. The majority of the
removed CVEs are detected in the OS packages installed in the containers. However,
the extent of the reduction in the reported vulnerabilities depends on the scanner
used and whether it can detect the programming language-specific packages.

While file-level debloating proved to be effective in reducing the total number of
CVEs in the Docker container as a whole, it is limited in removing vulnerabilities in
the ML frameworks as Cimplifier failed to remove any CVEs from the TensorFlow
framework. A more fine-grained debloating technique would more likely be capable
of removing CVEs from such frameworks.

6.1 Future Work

The file-level debloating done with Cimplifier is effective in reducing the total num-
ber of vulnerabilities found in containerized ML systems. According to our observa-
tions on the structure of ML frameworks such as TensorFlow, there is further room
for improvement. The majority of the library files comprising the framework are
still found in the debloated ML system, hence most vulnerabilities associated with
the framework remains. Performing a more fine-grained method of debloating could
yield even better results in removing vulnerabilities.

Making use of a tool such as LibFilter is an avenue to potentially further improve
upon the results achieved in this thesis. Even though the ML frameworks analyzed
are Python based, a large portion of the core functionality is written in C/C++,
especially TensorFlow. One idea is to test a two-stage debloating process. First
stage would be the file level debloating, and the second stage would be the lower
level library debloating.

33

6. Conclusion

Another path for the future work is to try debloating on distributed ML systems
using a framework such as Horovord1. With more complex ML models being trained,
the use of distributed setups with more total computing power is beneficial. It
would be an interesting challenge coordinating the debloating of multiple containers
working on the same task.

1https://horovod.ai/

34

Bibliography

[1] S. Bhattacharya, K. Gopinath, and M. G. Nanda, “Combining concern input
with program analysis for bloat detection”, in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapo-
lis, IN, USA, October 26-31, 2013, A. L. Hosking, P. T. Eugster, and C. V.
Lopes, Eds., ACM, 2013, pp. 745–764. doi: 10.1145/2509136.2509522. [On-
line]. Available: https://doi.org/10.1145/2509136.2509522.

[2] Y. Bu, V. R. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for
big data applications”, in International Symposium on Memory Management,
ISMM 2013, Seattle, WA, USA, June 20, 2013, P. Cheng and E. Petrank,
Eds., ACM, 2013, pp. 119–130. doi: 10.1145/2491894.2466485. [Online].
Available: https://doi.org/10.1145/2491894.2466485.

[3] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-wise
compilation and loading”, in 27th USENIX Security Symposium, USENIX Se-
curity 2018, Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P.
Felt, Eds., USENIX Association, 2018, pp. 869–886. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/quach.

[4] S. Bhattacharya, K. Rajamani, K. Gopinath, and M. Gupta, “The interplay
of software bloat, hardware energy proportionality and system bottlenecks”,
in Proceedings of the 4th Workshop on Power-Aware Computing and Systems,
HotPower ’11, Cascais, Portugal, October 23, 2011, R. Bianchini and P. Dutta,
Eds., ACM, 2011, 1:1–1:5. doi: 10.1145/2039252.2039253. [Online]. Avail-
able: https://doi.org/10.1145/2039252.2039253.

[5] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quantifying
the security benefits of debloating web applications”, in 28th USENIX Se-
curity Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, N. Heninger and P. Traynor, Eds., USENIX Association, 2019,
pp. 1697–1714. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/azad.

[6] M. Sildnik and Y. Wang, “Debloating machine learning systems”, 2021. [On-
line]. Available: https://hdl.handle.net/20.500.12380/302760.

35

https://doi.org/10.1145/2509136.2509522
https://doi.org/10.1145/2509136.2509522
https://doi.org/10.1145/2491894.2466485
https://doi.org/10.1145/2491894.2466485
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1145/2039252.2039253
https://doi.org/10.1145/2039252.2039253
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://hdl.handle.net/20.500.12380/302760

Bibliography

[7] Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning imple-
mentations”, in 2018 IEEE Security and Privacy Workshops, SP Workshops
2018, San Francisco, CA, USA, May 24, 2018, IEEE Computer Society, 2018,
pp. 123–128. doi: 10.1109/SPW.2018.00027. [Online]. Available: https:
//doi.org/10.1109/SPW.2018.00027.

[8] D. Huang, H. Cui, S. Wen, and C. Huang, “Security analysis and threats
detection techniques on docker container”, in 2019 IEEE 5th International
Conference on Computer and Communications (ICCC), 2019, pp. 1214–1220.
doi: 10.1109/ICCC47050.2019.9064441.

[9] D. Sculley, G. Holt, D. Golovin, et al., “Hidden technical debt in machine
learning systems”, in Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, De-
cember 7-12, 2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015, pp. 2503–2511. [On-
line]. Available: https://proceedings.neurips.cc/paper/2015/hash/
86df7dcfd896fcaf2674f757a2463eba-Abstract.html.

[10] About the cve program. [Online]. Available: https://www.cve.org/About/
Overview.

[11] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and
analysis of its performance”, International Journal of Computer Science and
Network Security (IJCSNS), vol. 17, no. 3, p. 228, 2017.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[13] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale
machine learning”, in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016,
K. Keeton and T. Roscoe, Eds., USENIX Association, 2016, pp. 265–283. [On-
line]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi.

[14] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library”, in Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, Eds., 2019, pp. 8024–8035. [Online]. Available: https://
proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-
ing in python”, CoRR, vol. abs/1201.0490, 2012. arXiv: 1201.0490. [Online].
Available: http://arxiv.org/abs/1201.0490.

36

https://doi.org/10.1109/SPW.2018.00027
https://doi.org/10.1109/SPW.2018.00027
https://doi.org/10.1109/SPW.2018.00027
https://doi.org/10.1109/ICCC47050.2019.9064441
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://www.cve.org/About/Overview
https://www.cve.org/About/Overview
http://www.deeplearningbook.org
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1201.0490
http://arxiv.org/abs/1201.0490

Bibliography

[16] V. Rastogi, D. Davidson, L. D. Carli, S. Jha, and P. D. McDaniel, “Cimplifier:
Automatically debloating containers”, in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Pader-
born, Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van Deursen,
and A. Zisman, Eds., ACM, 2017, pp. 476–486. doi: 10 . 1145 / 3106237 .
3106271. [Online]. Available: https://doi.org/10.1145/3106237.3106271.

[17] P. Xiong, S. Buffett, S. Iqbal, P. Lamontagne, M. S. I. Mamun, and H. Molyneaux,
“Towards a robust and trustworthy machine learning system development”,
CoRR, vol. abs/2101.03042, 2021. arXiv: 2101 . 03042. [Online]. Available:
https://arxiv.org/abs/2101.03042.

[18] J. M. Spring, A. Galyardt, A. D. Householder, and N. M. VanHoudnos, “On
managing vulnerabilities in AI/ML systems”, CoRR, vol. abs/2101.10865,
2021. arXiv: 2101.10865. [Online]. Available: https://arxiv.org/abs/
2101.10865.

[19] N. I. of Standards and T. (NIST), Vulnerability metrics. [Online]. Available:
https://nvd.nist.gov/vuln-metrics/cvss.

[20] M. D. Brown and S. Pande, “Carve: Practical security-focused software de-
bloating using simple feature set mappings”, in Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software Transformation, ser. FEAST’19,
London, United Kingdom: Association for Computing Machinery, 2019, pp. 1–
7, isbn: 9781450368346. doi: 10.1145/3338502.3359764. [Online]. Available:
https://doi.org/10.1145/3338502.3359764.

[21] B. Shteinfeld, “Libfilter: Debloating dynamically-linked libraries through bi-
nary recompilation”, Undergraduate Honors Thesis. Brown University, 2019.

[22] M. D. Brown and S. Pande, “Is less really more? towards better metrics for
measuring security improvements realized through software debloating”, in
12th USENIX Workshop on Cyber Security Experimentation and Test (CSET
19), Santa Clara, CA: USENIX Association, Aug. 2019. [Online]. Available:
https://www.usenix.org/conference/cset19/presentation/brown.

[23] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program debloating
via reinforcement learning”, in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and X. Wang,
Eds., ACM, 2018, pp. 380–394. doi: 10.1145/3243734.3243838. [Online].
Available: https://doi.org/10.1145/3243734.3243838.

37

https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://arxiv.org/abs/2101.03042
https://arxiv.org/abs/2101.03042
https://arxiv.org/abs/2101.10865
https://arxiv.org/abs/2101.10865
https://arxiv.org/abs/2101.10865
https://nvd.nist.gov/vuln-metrics/cvss
https://doi.org/10.1145/3338502.3359764
https://doi.org/10.1145/3338502.3359764
https://www.usenix.org/conference/cset19/presentation/brown
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838

Bibliography

38

A
Appendix

The Appendix contains a table listing every vulnerable package detected with Grype
and how many CVEs are related to every package for all three Pre-debloated con-
tainer.

Table A.1: No. of vulnerabilities detected by Grype in
tensorflow/tensorflow:2.7.0-gpu for each package

Package Version No. of Vulns
linux-libc-dev 5.4.0-89.100 148

tensorflow 2.7.0 57
libexpat1 2.2.9-1build1 15

libexpat1-dev 2.2.9-1build1 15
libhdf5-103 1.10.4+repack-11ubuntu1 11
libc-dev-bin 2.31-0ubuntu9.2 11
libhdf5-dev 1.10.4+repack-11ubuntu1 11
hdf5-helpers 1.10.4+repack-11ubuntu1 11

libc6-dev 2.31-0ubuntu9.2 11
libhdf5-cpp-103 1.10.4+repack-11ubuntu1 11

libc-bin 2.31-0ubuntu9.2 11
libc6 2.31-0ubuntu9.2 11

libctf-nobfd0 2.34-6ubuntu1.3 4
binutils-x86-64-linux-gnu 2.34-6ubuntu1.3 4

libsqlite3-0 3.31.1-4ubuntu0.2 4
libctf0 2.34-6ubuntu1.3 4

libbinutils 2.34-6ubuntu1.3 4
urllib3 1.25.8 4

libsepol1 3.0-1 4
binutils-common 2.34-6ubuntu1.3 4

binutils 2.34-6ubuntu1.3 4
libpolkit-gobject-1-0 0.105-26ubuntu1.1 3
libpython3.8-minimal 3.8.10-0ubuntu1 20.04.1 3

libpython3.8 3.8.10-0ubuntu1 20.04.1 3
python3.8-minimal 3.8.10-0ubuntu1 20.04.1 3

libzmq3-dev 4.3.2-2ubuntu1 3

I

A. Appendix

libpcre3 2:8.39-12build1 3
libpolkit-agent-1-0 0.105-26ubuntu1.1 3

policykit-1 0.105-26ubuntu1.1 3
libpython3.8-dev 3.8.10-0ubuntu1 20.04.1 3
python3.8-dev 3.8.10-0ubuntu1 20.04.1 3

unzip 6.0-25ubuntu1 3
libzmq5 4.3.2-2ubuntu1 3

libpython3.8-stdlib 3.8.10-0ubuntu1 20.04.1 3
python3.8 3.8.10-0ubuntu1 20.04.1 3
bsdutils 1:2.34-0.1ubuntu9.1 2

libgcrypt20 1.8.5-5ubuntu1 2
libkrb5-3 1.17-6ubuntu4.1 2
libfdisk1 2.34-0.1ubuntu9.1 2

libgssapi-krb5-2 1.17-6ubuntu4.1 2
python-pip-whl 20.0.2-5ubuntu1.6 2

patch 2.7.6-6 2
libmount1 2.34-0.1ubuntu9.1 2

libkrb5support0 1.17-6ubuntu4.1 2
libkadm5srv-mit11 1.17-6ubuntu4.1 2

libgssrpc4 1.17-6ubuntu4.1 2
util-linux 2.34-0.1ubuntu9.1 2
libuuid1 2.34-0.1ubuntu9.1 2

fdisk 2.34-0.1ubuntu9.1 2
python3-pip 20.0.2-5ubuntu1.6 2
libk5crypto3 1.17-6ubuntu4.1 2
libkrb5-dev 1.17-6ubuntu4.1 2
libblkid1 2.34-0.1ubuntu9.1 2

libsmartcols1 2.34-0.1ubuntu9.1 2
mount 2.34-0.1ubuntu9.1 2

libkadm5clnt-mit11 1.17-6ubuntu4.1 2
krb5-multidev 1.17-6ubuntu4.1 2

libkdb5-9 1.17-6ubuntu4.1 2
gcc-9 9.3.0-17ubuntu1 20.04 1

libhcrypto4-heimdal 7.7.0+dfsg-1ubuntu1 1
libudev1 245.4-4ubuntu3.11 1
libasan5 9.3.0-17ubuntu1 20.04 1

gcc-9-base 9.3.0-17ubuntu1 20.04 1
perl-modules-5.30 5.30.0-9ubuntu0.2 1

systemd-sysv 245.4-4ubuntu3.13 1
libjpeg-turbo8-dev 2.0.3-0ubuntu1.20.04.1 1

libssl1.1 1.1.1f-1ubuntu2.8 1
cpp 4:9.3.0-1ubuntu2 1

libgcc-9-dev 9.3.0-17ubuntu1 20.04 1
perl 5.30.0-9ubuntu0.2 1

II

A. Appendix

libperl5.30 5.30.0-9ubuntu0.2 1
libxml2 2.9.10+dfsg-5ubuntu0.20.04.1 1
numpy 1.21.3 1

systemd-timesyncd 245.4-4ubuntu3.13 1
systemd 245.4-4ubuntu3.13 1

g++ 4:9.3.0-1ubuntu2 1
zlib1g-dev 1:1.2.11.dfsg-2ubuntu1.2 1

zlib1g 1:1.2.11.dfsg-2ubuntu1.2 1
g++-9 9.3.0-17ubuntu1 20.04 1

pip 20.2.4 1
libcryptsetup12 2:2.2.2-3ubuntu2.3 1

libgssapi3-heimdal 7.7.0+dfsg-1ubuntu1 1
passwd 1:4.8.1-1ubuntu5.20.04.1 1

libhx509-5-heimdal 7.7.0+dfsg-1ubuntu1 1
liblzma5 5.2.4-1ubuntu1 1

libkrb5-26-heimdal 7.7.0+dfsg-1ubuntu1 1
libasn1-8-heimdal 7.7.0+dfsg-1ubuntu1 1

libheimntlm0-heimdal 7.7.0+dfsg-1ubuntu1 1
libroken18-heimdal 7.7.0+dfsg-1ubuntu1 1

libgmp10 2:6.2.0+dfsg-4 1
libicu66 66.1-2ubuntu2 1

dbus-user-session 1.12.16-2ubuntu2.1 1
xz-utils 5.2.4-1ubuntu1 1
login 1:4.8.1-1ubuntu5.20.04.1 1

libsasl2-modules-db 2.1.27+dfsg-2 1
pip 20.0.2 1

coreutils 8.30-3ubuntu2 1
dbus 1.12.16-2ubuntu2.1 1
gcc 4:9.3.0-1ubuntu2 1

libheimbase1-heimdal 7.7.0+dfsg-1ubuntu1 1
perl-base 5.30.0-9ubuntu0.2 1

libstdc++-9-dev 9.3.0-17ubuntu1 20.04 1
libpam-systemd 245.4-4ubuntu3.13 1

libdbus-1-3 1.12.16-2ubuntu2.1 1
bash 5.0-6ubuntu1.1 1
gzip 1.10-0ubuntu4 1

libapparmor1 2.13.3-7ubuntu5.1 1
tar 1.30+dfsg-7ubuntu0.20.04.1 1

libjpeg-turbo8 2.0.3-0ubuntu1.20.04.1 1
libsasl2-2 2.1.27+dfsg-2 1

python3-urllib3 1.25.8-2ubuntu0.1 1
openssl 1.1.1f-1ubuntu2.8 1

libsystemd0 245.4-4ubuntu3.13 1
cpp-9 9.3.0-17ubuntu1 20.04 1

III

A. Appendix

libwind0-heimdal 7.7.0+dfsg-1ubuntu1 1

IV

A. Appendix

Table A.2: No. of vulnerabilities detected by Grype in
tensorflow/tensorflow:2.7.1-gpu for each package

Package Version No. of Vulns
linux-libc-dev 5.4.0-97.110 117
libexpat1-dev 2.2.9-1build1 15

libexpat1 2.2.9-1build1 15
libc-bin 2.31-0ubuntu9.2 11

libhdf5-cpp-103 1.10.4+repack-11ubuntu1 11
libc6-dev 2.31-0ubuntu9.2 11

hdf5-helpers 1.10.4+repack-11ubuntu1 11
libc-dev-bin 2.31-0ubuntu9.2 11

libc6 2.31-0ubuntu9.2 11
libhdf5-dev 1.10.4+repack-11ubuntu1 11
libhdf5-103 1.10.4+repack-11ubuntu1 11

binutils 2.34-6ubuntu1.3 4
urllib3 1.25.8 4

binutils-common 2.34-6ubuntu1.3 4
binutils-x86-64-linux-gnu 2.34-6ubuntu1.3 4

libbinutils 2.34-6ubuntu1.3 4
libsqlite3-0 3.31.1-4ubuntu0.2 4

libctf-nobfd0 2.34-6ubuntu1.3 4
libsepol1 3.0-1 4
libctf0 2.34-6ubuntu1.3 4

libpcre3 2:8.39-12build1 3
libzmq3-dev 4.3.2-2ubuntu1 3

libzmq5 4.3.2-2ubuntu1 3
unzip 6.0-25ubuntu1 3

python3.8-dev 3.8.10-0ubuntu1 20.04.2 2
libmount1 2.34-0.1ubuntu9.1 2
python3.8 3.8.10-0ubuntu1 20.04.2 2

libpolkit-gobject-1-0 0.105-26ubuntu1.2 2
util-linux 2.34-0.1ubuntu9.1 2

policykit-1 0.105-26ubuntu1.2 2
libsmartcols1 2.34-0.1ubuntu9.1 2

python-pip-whl 20.0.2-5ubuntu1.6 2
libpolkit-agent-1-0 0.105-26ubuntu1.2 2

libk5crypto3 1.17-6ubuntu4.1 2
python3-pip 20.0.2-5ubuntu1.6 2

libkadm5srv-mit11 1.17-6ubuntu4.1 2
libkrb5-dev 1.17-6ubuntu4.1 2
libblkid1 2.34-0.1ubuntu9.1 2
libkrb5-3 1.17-6ubuntu4.1 2

libkrb5support0 1.17-6ubuntu4.1 2
libgssrpc4 1.17-6ubuntu4.1 2

V

A. Appendix

patch 2.7.6-6 2
libgssapi-krb5-2 1.17-6ubuntu4.1 2

libpython3.8-stdlib 3.8.10-0ubuntu1 20.04.2 2
libkdb5-9 1.17-6ubuntu4.1 2
libuuid1 2.34-0.1ubuntu9.1 2

krb5-multidev 1.17-6ubuntu4.1 2
libkadm5clnt-mit11 1.17-6ubuntu4.1 2

libpython3.8 3.8.10-0ubuntu1 20.04.2 2
libpython3.8-minimal 3.8.10-0ubuntu1 20.04.2 2
python3.8-minimal 3.8.10-0ubuntu1 20.04.2 2

bsdutils 1:2.34-0.1ubuntu9.1 2
mount 2.34-0.1ubuntu9.1 2
fdisk 2.34-0.1ubuntu9.1 2

libpython3.8-dev 3.8.10-0ubuntu1 20.04.2 2
libfdisk1 2.34-0.1ubuntu9.1 2

libwind0-heimdal 7.7.0+dfsg-1ubuntu1 1
passwd 1:4.8.1-1ubuntu5.20.04.1 1

libhx509-5-heimdal 7.7.0+dfsg-1ubuntu1 1
zlib1g 1:1.2.11.dfsg-2ubuntu1.2 1

libgssapi3-heimdal 7.7.0+dfsg-1ubuntu1 1
libasan5 9.3.0-17ubuntu1 20.04 1

libstdc++-9-dev 9.3.0-17ubuntu1 20.04 1
libdbus-1-3 1.12.16-2ubuntu2.1 1

libjpeg-turbo8 2.0.3-0ubuntu1.20.04.1 1
libperl5.30 5.30.0-9ubuntu0.2 1

dbus-user-session 1.12.16-2ubuntu2.1 1
libkrb5-26-heimdal 7.7.0+dfsg-1ubuntu1 1

gzip 1.10-0ubuntu4 1
libheimntlm0-heimdal 7.7.0+dfsg-1ubuntu1 1

perl-base 5.30.0-9ubuntu0.2 1
libssl1.1 1.1.1f-1ubuntu2.10 1

gcc 4:9.3.0-1ubuntu2 1
libcryptsetup12 2:2.2.2-3ubuntu2.3 1

gcc-9-base 9.3.0-17ubuntu1 20.04 1
pip 20.2.4 1

g++-9 9.3.0-17ubuntu1 20.04 1
liblzma5 5.2.4-1ubuntu1 1

pip 20.0.2 1
libapparmor1 2.13.3-7ubuntu5.1 1

tar 1.30+dfsg-7ubuntu0.20.04.1 1
libsasl2-modules-db 2.1.27+dfsg-2 1

bash 5.0-6ubuntu1.1 1
dbus 1.12.16-2ubuntu2.1 1

perl-modules-5.30 5.30.0-9ubuntu0.2 1

VI

A. Appendix

libgcc-9-dev 9.3.0-17ubuntu1 20.04 1
gcc-9 9.3.0-17ubuntu1 20.04 1

libasn1-8-heimdal 7.7.0+dfsg-1ubuntu1 1
cpp 4:9.3.0-1ubuntu2 1

cpp-9 9.3.0-17ubuntu1 20.04 1
login 1:4.8.1-1ubuntu5.20.04.1 1

python3-urllib3 1.25.8-2ubuntu0.1 1
libheimbase1-heimdal 7.7.0+dfsg-1ubuntu1 1
libroken18-heimdal 7.7.0+dfsg-1ubuntu1 1
libhcrypto4-heimdal 7.7.0+dfsg-1ubuntu1 1

libxml2 2.9.10+dfsg-5ubuntu0.20.04.1 1
zlib1g-dev 1:1.2.11.dfsg-2ubuntu1.2 1

g++ 4:9.3.0-1ubuntu2 1
openssl 1.1.1f-1ubuntu2.10 1
libudev1 245.4-4ubuntu3.13 1
libsasl2-2 2.1.27+dfsg-2 1
xz-utils 5.2.4-1ubuntu1 1

perl 5.30.0-9ubuntu0.2 1
libgmp10 2:6.2.0+dfsg-4 1

libjpeg-turbo8-dev 2.0.3-0ubuntu1.20.04.1 1
coreutils 8.30-3ubuntu2 1

Table A.3: No. of vulnerabilities detected by Grype in
anibali/pytorch:1.10.2-cuda11.3 for each package

Package Version No. of Vulns
libexpat1 2.2.9-1build1 15
libc-bin 2.31-0ubuntu9.2 11

libc6 2.31-0ubuntu9.2 11
Pillow 8.4.0 5

libsepol1 3.0-1 4
libsqlite3-0 3.31.1-4ubuntu0.2 4

openssh-client 1:8.2p1-4ubuntu0.4 3
libpcre3 2:8.39-12build1 3

libkrb5support0 1.17-6ubuntu4.1 2
git-man 1:2.25.1-1ubuntu3.2 2

git 1:2.25.1-1ubuntu3.2 2
util-linux 2.34-0.1ubuntu9.1 2
bsdutils 1:2.34-0.1ubuntu9.1 2
libkrb5-3 1.17-6ubuntu4.1 2

fdisk 2.34-0.1ubuntu9.1 2
libk5crypto3 1.17-6ubuntu4.1 2

libblkid1 2.34-0.1ubuntu9.1 2
krb5-locales 1.17-6ubuntu4.1 2

VII

A. Appendix

mount 2.34-0.1ubuntu9.1 2
libgssapi-krb5-2 1.17-6ubuntu4.1 2

libmount1 2.34-0.1ubuntu9.1 2
patch 2.7.6-6 2

libuuid1 2.34-0.1ubuntu9.1 2
libfdisk1 2.34-0.1ubuntu9.1 2

libsmartcols1 2.34-0.1ubuntu9.1 2
login 1:4.8.1-1ubuntu5.20.04.1 1

numpy 1.21.2 1
libasn1-8-heimdal 7.7.0+dfsg-1ubuntu1 1

libsasl2-2 2.1.27+dfsg-2 1
gzip 1.10-0ubuntu4 1

libwind0-heimdal 7.7.0+dfsg-1ubuntu1 1
perl 5.30.0-9ubuntu0.2 1

liblzma5 5.2.4-1ubuntu1 1
coreutils 8.30-3ubuntu2 1

libhx509-5-heimdal 7.7.0+dfsg-1ubuntu1 1
zlib1g 1:1.2.11.dfsg-2ubuntu1.2 1

perl-modules-5.30 5.30.0-9ubuntu0.2 1
libhcrypto4-heimdal 7.7.0+dfsg-1ubuntu1 1

openssl 1.1.1f-1ubuntu2.10 1
libsasl2-modules-db 2.1.27+dfsg-2 1

bash 5.0-6ubuntu1.1 1
passwd 1:4.8.1-1ubuntu5.20.04.1 1

tar 1.30+dfsg-7ubuntu0.20.04.1 1
libssl1.1 1.1.1f-1ubuntu2.10 1

libkrb5-26-heimdal 7.7.0+dfsg-1ubuntu1 1
libperl5.30 5.30.0-9ubuntu0.2 1

libheimntlm0-heimdal 7.7.0+dfsg-1ubuntu1 1
libroken18-heimdal 7.7.0+dfsg-1ubuntu1 1

libsystemd0 245.4-4ubuntu3.13 1
perl-base 5.30.0-9ubuntu0.2 1
libudev1 245.4-4ubuntu3.13 1

libheimbase1-heimdal 7.7.0+dfsg-1ubuntu1 1
libgmp10 2:6.2.0+dfsg-4 1

libgssapi3-heimdal 7.7.0+dfsg-1ubuntu1 1

VIII

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Scope
	Thesis Outline

	Theory
	Container Virtualization
	Machine Learning
	Debloating
	Security Vulnerabilities
	Vulnerability Scanning
	Container Scanning Tools

	Related work

	Methods
	Approach
	Initial Component Analysis
	Data Collection and Analysis

	Problems and Mitigation
	System Wide Inspection
	ML Framework Inspection

	Environment
	Target Systems
	ML Workloads
	Hardware Configuration

	Results
	Prevalence of Vulnerabilities in ML Systems
	Vulnerability Reduction by Debloating
	Container Debloating
	Scanning Debloated Containers
	Verification of Removed CVEs

	Discussion
	Detected Vulnerabilities
	Container Scanning
	Effects of Debloating
	Possibility of Inflated Results
	Threats to Validity

	Conclusion
	Future Work

	Bibliography
	Appendix

