
The Hegselmann-Krause Model of Opinion Dyna-
mics in One and Two Dimensions: Phase Transi-
tions, Periodicity and Other Phenomena

Kandidatarbete inom civilingenjörsutbildningen vid Chalmers

Gustav Karlsson
Jesper Johansson
Jimmy Ekström
Mattias Danielsson

Institutionen för matematiska vetenskaper
Chalmers tekniska högskola
Göteborgs universitet
Göteborg 2015





The Hegselmann-Krause Model of Opinion Dynamics in One
and Two Dimensions: Phase Transitions, Periodicity and Other
Phenomena

Kandidatarbete i matematik inom civilingenjörsprogrammet Teknisk fysik vid Chal-
mers
Jesper Johansson

Kandidatarbete i matematik inom civilingenjörsprogrammet Teknisk matematik vid
Chalmers
Gustav Karlsson Mattias Danielsson

Kandidatarbete i matematik inom civilingenjörsprogrammet Industriell ekonomi vid
Chalmers
Jimmy Ekström

Handledare: Peter Hegarty
Bi-Handledare: Edvin Wedin
Examinator: Maria Roginskaya

Institutionen för matematiska vetenskaper
Chalmers tekniska högskola
Göteborgs universitet
Göteborg 2015





Abstract
In this paper we have investigated the Hegselmann-Krause model of Opinion Dynamics in

one and two dimensions.
The first result concerns the critical length of an interval for the phase transition from

asymptotically almost surely consensus to almost surely fragmentation. Our simulations sup-
port the conjecture that the critical length exists and is slightly greater than 5. We have
introduced a continuous agent model and calculations have been made by hand, showing the
process for the two first time steps assuming a continuum of agents and a uniform initial
distribution.

For various domains in R2, we have investigated the critical area for dilates of the domain.
We make a conjecture which says that there exists no critical area for the disc. Results from
our simulations suggest that the critical area is heavily dependent on the shape of the domain
of the distribution. These simulations have concerned disc, equilateral polygons and equiareal
rectangles with different width

height
-ratios.

We have also investigated square lattices. We discussed the periodic diagonal movement
of the corners of a finite square lattice, stating a conjecture of a lower bound on the freezing
time. Further we have proved periodicity for the evolution of a half plane lattice Z≥0 × Z

by treating it as a one dimensional self-weighted model. We prove that from the 10th time
step, the evolution of this configuration is periodic with period 21. To this end we prove basic
theorems regarding distance space.

We end the report with a discussion of a self-weighted version of the model that approaches
a continuous time model.



Sammanfattning
I denna uppsats har vi utforskat Hegselmann-Krause-modellen av Opinionsdynamik i en

och två dimensioner.
Vi börjar med att presentera ett resultat rörande den kritiska längden av ett intervall, för

fasövergången från asymptotiskt nästan säkert konsensus till nästan säkert fragmentering. Våra
simuleringar stödjer förmodan om att den kritiska längden existerar och har ett värde strax
över 5. Vi har introducerat en kontinuerlig agentmodell, där beräkningar som har gjorts för
hand visar processen för de två första tidsstegen om vi antar ett kontinuum av agenter med
likformigt fördelade åsikter.

Vi har även för olika områden i R2 utforskat den kritiska arean för dilatationer av dessa
områden. Vi gör en förmodan om att det inte finns någon kritisk area för en cirkelskiva. Resul-
tatet av våra simuleringar tyder på att den kritiska arean är starkt beroende av områdets form.
Dessa simuleringar har gjorts på cirkelskivor, liksidiga polygoner och ekviareala rektanglar för
olika värden på bredd

höjd
-kvoten.

Vidare har vi gjort undersökningar på kvadratiska gitter, där vi fört en diskussion om
den periodiska rörelsen längs diagonalen. Vi lägger fram en förmodan rörande en undre gräns
för frystiden. Vi har bevisat att utvecklingen för halvplanet Z≥0 × Z är periodisk genom att
behandla den som en endimensionell modell med självvikt. Vi bevisar att utvecklingen har en
period om 21 tidssteg, med början i tidssteg 10. Till detta bevisar vi grundläggande satser för
avståndsrummet.

Vi avslutar rapporten med att diskutera en självviktad version av modellen, som går mot
en tidskontinuerlig modell.
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1 Introduction
Opinion Dynamics as a mathematical field of study is a recent development. One of the more
popular models is one first put forth by Rainer Hegselmann and Ulrich Krause in the late 1990’s,
known as the Hegselmann-Krause bounded confidence model of opinion dynamics (the HK-model
for short). [1] [2]

In this model there are a number n of so-called agents which have opinions represented by real
numbers. These opinions then change according to

xt+1(i) = 1
|Nt(i)|

∑
j∈Nt(i)

xt(j), (1.1)

where xt(i) is the opinion of the i:th agent at a time t and Nt(i) is the set of neighbours of agent i
at time t,

Nt(i) = {j : ‖xt(i)− xt(j)‖ ≤ 1}. (1.2)

In words, every agent moves to the average of those that currently have an opinion that differs by
at most 1 from its own. In higher dimension, each agent instead has an opinion represented by a
vector in Rk, where the distance is taken to be the 2-norm.

This update-rule does not have to be thought of as the evolution of opinions. Rather than
talking about opinions we can instead think of semi-automatic robots, each having a ”radar” that
can see all other robots in a ball with radius 1 unit around them. They are then programmed to
move to the average of all the robots they can see. The point of this is trying to get all robots
within range of each other.

In the robotics interpretation, it is natural to think of two-dimensional opinions as a ”floor” on
which they move. However, in this case, one might introduce obstacles such as walls. It would be
possible to modify the model so that the agents cannot see through walls, nor move through them.
We have not done so.

The purpose of this paper is to analyse and to find new facts concerning the HK-model presented
above, mainly in two dimensions since this area of research on the model has very few known results.

We have done a lot of simulation work and formulated conjectures which seem difficult to prove.
The simulations were primarily done in two dimensions, mostly concerning critical areas, but also
simulations regarding square lattices and some simulations regarding the critical length in one
dimension. There is also some work done on a continuous-agent version of the HK-model in one
dimension. Our main rigorously proven result is a generalisation of a 1-dimensional result proven by
our supervisors Peter Hegarty and Edvin Wedin. We prove that if an infinite number of agents are
placed in a square lattice at a distance 1 apart, such that no agent has a negative x-coordinate, then
the process will be periodic in a certain sense. In order to prove this we provide sufficient conditions
for the dynamics to be periodic. This can be found in Section 4. This leads to a discussion about
infinite self-weight and its connection to a continuous time model.

The only feasible way of calculating the evolution is through numerical simulation. We have
done this using MATLAB. Sample code, and explanations, can be found in appendix B.

1.1 An Introduction to the Hegselmann-Krause Model
The definition of the update-rule has already been shown in equation (1.1). Let us therefore begin
this introduction by looking at an example of the dynamics in action. Consider 5 agents that have
initial opinions 0, 1, 2, 3, 4. Then we get the following evolution of the opinions

0
1
2
3
4

 −→


0.5
1
2
3

3.5

 −→


0.75
1.17

2
2.83
3.25

 −→


0.96
1.31

2
2.69
3.04

 −→


1.13
1.42

2
2.58
2.87

 −→


1.52
1.52

2
2.48
2.48

 −→


2
2
2
2
2

 ,

which can also be visualised as in Figure 1. The major things that happen in this evolution are:

(i) At time 4, agents 1 and 5 now both have agent 3 as a neighbour.
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Figure 1: An example of the evolution of a configuration in the HK-model. In this case, the initial
configuration was 0, 1, 2, 3, 4. The agents all stabilise at opinion 2, they have reached consensus.

(ii) At time 5, all agents are neighbours, causing them to average to the same value, 2 at t = 6.

Motivated by this example we can introduce a few definitions.
The vector containing all the agents’ opinions as components, with agent i having opinion xt(i)

at time t, is called the opinion vector. In our example, the initial opinion vector would be

x0 =


0
1
2
3
4

 . (1.3)

In higher dimensions each agent has a vector of opinions, the matrix consisting of these vectors as
rows is called the opinion matrix.

Two agents that have each other as neighbours are commonly referred to as seeing each other.
The opinion vector is also commonly known as the configuration. There is a convention that in
one dimension the opinion vector should always be written in order of increasing opinion. This is
because the order is preserved. It is easy to see that this is the case, if an agent is to cross another
he would have to see agents that lie beyond the range of the latter, which is impossible1.

If several agents have the exact same opinion they are called a cluster2. In the example above,
we can see that agents 1 and 2, as well as 4 and 5 formed a cluster at time 5, and all agents formed
a cluster at time 6. At this point it is obvious that xt+1 = xt, nothing more will happen, we call
such a configuration frozen. Agents that will never move again are also referred to as frozen. The
so-called 2r conjecture states that there is a tendency for clusters to lie a distance 2 apart. This is
a quite vague conjecture and no good precise formulation is available.

The time it takes for a configuration to freeze is called the freezing time. In the previous example,
the freezing time is 6. It is known that for any finite configuration of agents the freezing-time is
finite. We have the following theorem, which has been proven separately by at least two groups, A.
Bhattacharya et al [4] and S. Mohajer & B. Touri [5].

Theorem 1.1. Let f(n) denote the maximal number of steps needed for a configuration of n agents
to freeze. Then f(n) = O(n3).

1There are variations of the model where this is not impossible, for instance if agents can have different ranges.
See the work done by Anahita Mirtabatabaei and Francesco Bullo. [3]

2Some authors refer to a cluster as a group of agents that have frozen with the same opinion. We only demand
that the agents have the same opinion. In one dimension there is no difference between these two conventions.
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Figure 2: An example of the evolution of a configuration in the HK-model. In this case, the initial
configuration was 0, 1, 2, 3, 4, 5. We do not get consensus, as we did in Figure 1.

It is thought that this bound is larger than it has to be, since no known one-dimensional sequence
of configurations actually takes this long to freeze. The sequence of configurations that freeze the
slowest among the ones we know today has a freezing time that is Ω(n2) and was constructed by
Peter Hegarty and Edvin Wedin [6]. These configurations, Dn, consist of 3n+ 1 agents with initial
opinions

x0(i) =


− 1
n if 1 ≤ i ≤ n,

i− (n+ 1) if n+ 1 ≤ i ≤ 2n+ 1,
n+ 1

n if 2n+ 2 ≤ i ≤ 3n+ 1.
(1.4)

If all agents share the same opinion when frozen the configuration is said to have reached
consensus. This does not always happen, in fact it is quite rare and mostly happens when the
agents are spread over a small interval. Simply by adding another agent to our configuration in
(1.3), making

x0 =


0
1
2
3
4
5

 , (1.5)

we get the evolution that can be seen in Figure 2. In this case, our agents split into two camps that
freeze at 2885

1728 and 5755
1728 . Thus we do not get consensus with this configuration. Instead we say that

the configuration has fragmented.
There is a conjecture regarding configurations on an interval on the line and whether or not they

reach consensus. It states that there is a critical length L such that for a large number of agents
consensus tends to be reached asymptotically almost surely if the length of the interval over which
agents are initially spread is shorter than L, and there tends to be fragmentation if it is longer [7].
This conjecture is explored in more detail in section 2, where we also give a precise formulation.
We have also studied generalisations of this conjecture in two dimensions in section 3.

The graph consisting of nodes representing the agents and where two nodes are connected if they
can see each other is called the influence-graph of the configuration, mostly referred to as just the
graph. This contains all the information needed to construct the dynamics. In one dimension it is
true that if the graph contains disconnected subgraphs, those subgraphs will remain disconnected.
This is because if an agent sees no other to its left, it will never move to the left, and likewise for
right. Thus if there is a gap greater than 1, it can never close.

3
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Figure 3: Percentage of simulations that reached consensus for different numbers of agents placed
uniformly i.i.d on an interval. As the number of agents is increased, the distribution approaches a
step-function, as predicted by Conjecture 2.1. We can also see that the critical value L, if it exists,
is probably somewhere just above 5.

By looking at the definition of the update-rule (1.1) we see that for each fixed time the evolution
is a linear transformation of the opinion vector. We can therefore write

xt+1 = Htxt, (1.6)

where Ht is called the transition matrix at time t. The components of Ht are

(Ht)ij =
{

1
|Nt(i)| if agents i and j are neighbours,
0 otherwise.

(1.7)

It is important to remark, however, that Ht depends on xt so the update-rule is not in fact a linear
transformation, only piecewise linear. Even so, it is often useful to work with these matrices.

2 The Critical Length of the Interval
Let us consider the HK-model in one dimension. Specifically, consider the case of a large number,
n, of agents with opinions that are uniformly i.i.d on [0,L] for some L. Let us ask what is the
probability of reaching consensus, PC(L,n). There is the following conjecture regarding this, first
precisely formulated by Edvin Wedin and Peter Hegarty. [7]

Conjecture 2.1. There is a critical length of the interval, L ≈ 5, such that

lim
n→∞

PC(L,n) =
{

1 if L < L
0 if L > L.

(2.1)

The above conjecture is pretty well supported by simulations. The results of our simulations
can be seen in Figure 3, which points to the critical length being approximately five. There are a
lot of open questions regarding this conjecture. It is not known whether such an L actually exists.
Indeed it is not even known that if for some L0 the probability for consensus tends to zero as the
number of agents tends to infinity, then it also tends to zero for any L > L0.

One approach to proving this conjecture is shown below, and it highlights why this is harder to
prove than it seems; the complexity of the distribution of the agents quickly becomes overwhelming.
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2.1 A Continuous Agent Model
In order to get some understanding of what happens when the number of agents is increased, as
is the case in the conjecture regarding the critical value, we consider a continuous variety of the
HK-model. In this model, we introduce a density of agents, that describes how many agents have
a certain opinion.

Let Ft(x) at a time t be defined as the ratio of the number of agents to the left of x and the
total number of agents. Then we define ft, possibly a distribution, by

Ft(x) =
∫ x

−∞
ft(ξ) dξ, (2.2)

or equivalently,
ft = dFt

dx . (2.3)

We can define the Hegselmann-Krause-operator, HKt(x), which maps an agent with opinion x
at time t to its opinion at time t+ 1,

HKt(x) =
∫ x+1
x−1 ξft(ξ) dξ∫ x+1
x−1 ft(ξ) dξ

. (2.4)

This is clearly equivalent to the finite case when ft is a finite sum of delta-functions. The update-rule
for Ft is then

Ft+1(x) =
∫
Lt(x)

ft(ξ) dξ, (2.5)

where Lt(x) is the set of all agents that get mapped to the left of x by HKt.
From (2.4) it is clear that HKt(x) is a non-decreasing function of x, and therefore agents in this

continuous agent model can never change their order. Then, since HKt is non-decreasing it follows
that Lt(x) = (−∞, sup{y : HKt(y) < x}). If HKt is non-constant around x it is locally invertible
and thus Lt(x) = (−∞, HK−1

t (x)]. We will be somewhat sloppy and use HK−1
t (x) to refer to both

cases.
Using this we get the following alternative form of (2.5),

Ft+1(x) =
∫ HK−1

t (x)

−∞
ft(ξ) dξ, (2.6)

and therefore
ft+1(x) = ft

(
HK−1

t (x)
)
·
(
HK−1

t (x)
)′ =

ft
(
HK−1

t (x)
)

HK ′t(HK−1
t (x))

. (2.7)

We need to define what consensus means in this model. There is one obvious way to define this.

Definition 2.1. Given an initial distribution f0 we say that it will reach consensus if there exists
an opinion o such that

lim
t→∞

Ft(x) = θ(x− o), (2.8)

where θ is the Heaviside step function and the limit is taken in the L2 norm.

Remark 2.1. If the configuration does reach consensus in the above sense, it is clear that it must
do so in finite time since all agents must then eventually be within distance 1 from one another.

We developed this continuous model because the following conjecture seems likely.

Conjecture 2.2. Let n agents have opinions that are i.i.d random variables with distribution f0.
Let P (n) be the probability that they reach consensus.

Then under suitable conditions on f0, if the continuous agent model with f0 as initial distribution
reaches consensus then P (n) → 1 as n → ∞ and if it fragments under the continuous model then
P (n)→ 0 as n→∞.

Remark 2.2. It is obvious that this conjecture can be generalised to higher dimensions.

Remark 2.3. If this conjecture is true then it implies a 0-1 law, that the probability either tends
to 0 or 1 as the number of agents tends to infinity, regardless of the initial distribution.

5



2.1.1 Attempt at Proving the Conjecture Regarding the Critical Length

Let us now consider the case where, for x ∈ [0,L],

f0(x) = 1
L

(2.9)

that is to say, the opinions are distributed uniformly on [0,L].
In order to calculate f1 we need to determine HK−1

0 , which means we need to determine HK0.
We have for 1 ≤ x ≤ L− 1

HK0(x) =
∫ x+1

x−1
ξ dξ

/∫ x+1

x−1
dξ = x. (2.10)

For 0 ≤ x ≤ 1 we have

HK0(x) =
∫ x+1

0
ξ dξ

/∫ x+1

0
dξ (2.11)

=
[
ξ2

2

]x+1

0
/(x+ 1) (2.12)

= x+ 1
2 . (2.13)

Since f0 clearly is even around L/2 we do not need to calculate the special case on the far side of
L/2.

Thus we have

HK0(x) =
{
x+1

2 if 0 ≤ x ≤ 1
x if 1 < x ≤ L/2.

(2.14)

This allows us to calculate

HK−1
0 (y) =

{
2y − 1 if 1

2 ≤ y ≤ 1
y if 1 < y ≤ L/2.

(2.15)

By plugging this into our update-rule (2.7) we get

f1(x) =


0 if 0 ≤ x < 1

2
2
L if 1

2 < x < 1
1
L if 1 < x ≤ L/2
and evenly symmetrical around L/2.

(2.16)

If we repeat this process for our new density we find that

f2(x) =



0 if 0 ≤ x < 11
12

2
L

(
1 + x√

x2−1/2

)
if 11

12 < x < 9
8

1
L

(
1 + x√

x2−1/2

)
if 9

8 < x < 27
20

1
L

(
1 + 1−x√

(x−1)2+8

)
if 27

20 < x < 2
1
L if 2 < x ≤ L/2
and evenly symmetrical around L/2

(2.17)

At this point HK2 has become very complex. For example, in the interval 47
20 ≤ x < 3 we have

HK2(x) =
4 ln 8− 9

8 − 4 ln
(

2(x− 2) + 2
√

(x− 2)2 + 8
)

+ x
2
√

(x− 2)2 + 8 + 2x√
(x− 2)2 + 8− 1

. (2.18)

This function, while invertible, is not invertible in elementary functions. Therefore calculating the
densities beyond this point must be done numerically. Doing it numerically doesn’t allow us to
decide if the conjecture is true.

6
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exponentially.

3 Critical Areas
We have looked at the one-dimensional case, and concluded that there probably exists a so-called
critical length. We will now study the same behaviour in two dimensions.

In two dimensions besides the density of agents and the area (analogous to the length of an
interval in one dimension), the shape is also likely to influence the probability of consensus.

For example, any number of agents distributed on a disc with area π
4 will always reach consensus

in one time step since all agents can see each other. This is not the case for a widely stretched
rectangle with the same area.

Before proceeding we need to define precisely what the concept of a critical volume in Rd (i.e
critical area in R2) really is.

Definition 3.1. Consider a fixed domain D ⊂ R
d with volume 1. Let PC(a,n), a ∈ R+, be

the probability that n agents with opinions that are uniformly i.i.d random variables on aD reach
consensus. If there exists an ac such that for a < ac, PC(a,n) → 1 as n → ∞ while for a > ac,
PC(a,n) → 0 as n → ∞, then the volume of acD, adc is called the critical volume of all domains
with the shape of D and ac is called the critical value.

Remark 3.1. It is not proven that there exists a critical length of an interval in one dimension,
even though it seems likely. We do not have a proof that the same phenomenon exists in two
dimensions either, in fact we suspect that there might be domains that don’t have finite critical
areas.

Remark 3.2. In this section, unless otherwise noted, d = 2.

From the definition, two questions arises: For a fixed d, does there exist an ac for all D and is it
independent of D? If not, which shapes are optimal in the sense that they have the largest critical
area in some family of shapes?

We start by trying to answer the first question with a theoretical discussion backed by results
from simulations on discs and equilateral triangles. The second question is examined in two ways.
First we use the result from the first discussion and investigate equilateral polygons and their prob-
ability of consensus. Secondly we expand the question and investigate how different width/height
ratios of equiareal rectangles affect the probability of consensus.

3.1 Critical Area of the Disc
By running the HK-model on agents uniformly i.i.d on a disc we have seen that the agents tend to
group up in circles inside of each other. One can see this tendency in Figure 5. The circles observed
in the disc-simulations should tend to perfect circles as the number of agents tends to infinity, which
should reach consensus.
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Figure 5: An evolution of 25600 uniformly i.i.d agents on a disc with area 40. At t = 5 we see that
two ”circles” have formed inside one another.

More precisely, if we accept the generalisation of Conjecture 2.2 in two dimensions then the
probability of consensus should tend to 1 for any area of the disc as the number of agents tends to
infinity. This is because it is obvious that a uniform distribution of agents on the disc will reach
consensus in the continuous agent model. Thus we state the following.

Conjecture 3.1. If D is a disc of area 1 then, in the notation of Definition 3.1, PC(a,n) →
1, for all a > 0, as n→∞.

The data from our simulations support Conjecture 3.1. Looking at Figure 6, we see that
increasing the number of agents exponentially, doubling each time, seems to move the curve roughly
the same distance to the right every time. We expect this behaviour to continue if the number of
agents is increased further.

The number of simulations in the underlying data can be found in the appendix. Worth mention-
ing here however, is that the curve for 51200 agents is based only on between 20 and 50 simulations
for each area, and is not to be thought of as an unquestionable result.

3.2 Critical Area of The Equilateral Triangle
From the simulations on the disc we saw that it doesn’t appear to have a critical area. We will now
seek to motivate that there are shapes that in fact do have critical areas.

Comparing Figure 6 to Figure 7 we see that the percentage of configurations reaching consensus
as a function of the area seems to approach a step function as the number of agents are increased
exponentially on the triangle, while on the circle the curves move to the right. This means that the
equilateral triangle probably has a critical area, around 18.
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Figure 6: Percentage of simulations resulting in consensus as a function of the area of the disc on
which the agents were initially distributed. The curve moves to the right as the number of agents is
increased, rather than tending to a step-function as in Figures 3 and 7. Thus there doesn’t appear
to be a critical area.
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Figure 7: Percentage of simulations resulting in consensus as a function of the area of the triangle
on which the agents were initially distributed. It seems like it’s approaching a step-function, just
like in Figure 3. Therefore it seems like there is a critical area for the triangle and that it is around
18.
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Figure 8: Approximate area for which 800 agents reach consensus 95% of the time as a function
of the number of sides on the polygon. It seems like its approaching the area for the disc as the
number of sides increases.

Thus we have seen one shape that probably doesn’t have a critical area, the disc, and one that
probably does, the triangle. Now we seek to answer the second question, what shapes are optimal?
We will begin by looking at the influence that corners and edges have in equilateral polygons and
then we will turn to asymmetry by looking at rectangles.

3.3 Behaviour of Equilateral Polygons
Concerning distributions of agents on equilateral polygons, a reasonable conjecture to be made is
the following:

Conjecture 3.2. The critical area of an equilateral polygon with N ≥ 3 sides exists, increases
monotonically with N and tends to infinity as N tends to infinity.

The reasoning behind this conjecture is simply that a polygon with N sides will approach the
appearance of a disc as N → ∞. Another aspect is that having corners will probably lower the
probability of consensus, since clusters tend to form near them.

When studying finitely many uniformly i.i.d agents, we have the odd chance of agents starting in
configurations which will not result in consensus. Looking at the area for which all of the simulations
result in agents reaching consensus is therefore not a useful way to examine how different factors
influence the probability of consensus. A way to avoid this problem, while still having results
that can support our conjecture, is to instead look at the area for which a certain percentage of
simulations result in consensus for a fixed number of agents. We see that this is an eligible approach
since we can see in Figures 6 and 7 that the curves always have a sharp descent and look similar
near the critical area, if it exists. The ”if it” exists is important, as it appears impossible to tell
from a fixed number of agents whether a shape has a critical area. The triangle probably does have
a critical area however, so we have reason to assume that any polygon will as well.

Figure 8 supports conjecture 3.2 as it’s easier to reach consensus for larger areas when the
number of sides is increased. The figure shows that the area for which 95% of our simulations result
in consensus seem to grow as a function of the number of sides of the domain, with the limit being
the ”95%-consensus area” of the disc for 800 agents.

We conclude that corners and sharp edges probably lower the probability of consensus, and that
Conjecture 3.2 is probably true.

10



3.4 Behaviour of Agents Distributed on Equiareal Rectangles.
What happens if we shift the relationship between the side lengths of a rectangle with a given area,
if the width-height ratio is increased while keeping the area constant?

What happens for the percentage of configurations reaching consensus as the ratio is increased?
Can we say anything about the supposed critical area for a given ratio? For example, does the
critical area decrease monotonically as the ratio is increased? Likewise, does there exist something
like a critical ratio for a given area?
Definition 3.2. rc(A) is a critical ratio for a given area A of the rectangle if

lim
n→∞

PC(r,A,n) =
{

1 if r < rc

0 if r > rc.
(3.1)

where PC(r,A,n) is the probability that n agents reach consensus on a rectangle with area A and
width
heigth -ratio, r.

Fixing a shape and increasing the number agents in the simulations (as we have done in Figure
6) when investigating several ratios would be incredibly time consuming. This made us settle on
investigating four different areas for a given density (400 agents/unit area) and let the ratio change
for all of them.

Before presenting the results we want to introduce what we call "semi-stable configurations".
These are examples of configurations with higher freezing times than normal. In order to present
this we first need to define what a stable configuration is. We will use the definition presented
by V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis [8] where we consider a weighted HK-model
where each agent i has an associated weight wi ∈ R+, and where the update rule is as follows:

xt+1(i) =

∑
j∈Nt(i)

wjxt(j)∑
j∈Nt(i)

wj
. (3.2)

Definition 3.3. Let x̃ be a frozen configuration. Add a perturbing agent with opinion x0 and weight
m to the configuration, update according to (3.2) until a new frozen configuration x̃′ is obtained,
and then remove the perturbing agent. x̃ is called a stable configuration if

sup
x0

∑
i

wi|x̃i − x̃′i| → 0, as m→ 0. (3.3)

Remark 3.3. Note that (3.2) is equivalent to (1.1) if we let wi = 1 ∀i. Further, note that this
makes the definition of stable configurations consistent with (1.1).

In words, a configuration is stable if and only if, by adding an agent of arbitrarily small weight,
we cannot induce major changes in it.

The ”semi-stable configurations” are the following configurations, which are examples of unstable
configurations where such a perturbing agent has been added.3 The name is slightly confusing. If we
have clusters of n0 agents at x0, n1 agents at x1 and n2 agents at x2, where x0,x1,x2 ∈ Rk, k ∈ N,
we will refer to the configuration as semi-stable if

i n0 ≈ n2

ii n1 << n0,n2

iii ‖x1 − x0‖ ≤ 1

iv ‖x1 − x2‖ ≤ 1

v ‖x0 − x2‖ > 1.
As the semi-stable configuration updates (with notation as above), x0 and x2 will move a

distance proportional to n1
n0

and n1
n2

respectively, towards x1.
We have investigated areas and ratios for configurations where the final configuration will have

either two clusters at a distance approximately 2, or one cluster. This often leads to semi-stable
configurations when we are close to criticality.

3Blondel, Hendrickx and Tsitsiklis went the other way around, and used these configurations as motivation for
introducing the definition of a stable configuration.
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Figure 9: Evolution of 6400 uniformly random i.i.d agents on a rectangle with area 16 and
width/height ratio 1.11. Corner clusters approximately move along red lines. Red lines meet
at what we refer to as the ”short-end points”. At t = 30 the configuration is semi-stable, and will
eventually reach consensus.

3.4.1 Results and discussion

When looking at the simulations we have observed two different behaviours of the rectangles: the
”square” behaviour and the ”rectangle” behaviour. For both behaviours clusters will form at the
corners. What induces the changes in the behaviours is the location of the points towards which
the clusters tend to move, before they see a cluster from another corner. It’s obvious that the
corners at the short ends ultimately tend towards the same point due to symmetry, so the essential
difference in the behaviours depends on how far away these short-end points (as in Figure 9) that
attract the clusters are from each other.

The ”rectangle” case appears if these points are far away from each other. The corners will
collapse into two clusters, one at each short end side, long before they can see another cluster from
the far side.

In the ”square” case, however, this behaviour will not appear. The configuration will be more
dependent on how the agents are initially distributed and it’s hard to tell which corners will see
which corners first.

Further, in the ”rectangle” behaviour there are semi-stable configurations and non-semi-stable
configurations. Semi-stable configurations appear when the two short-end-side-clusters are at a
distance ≤ 1 from the middle, where a small cluster most often occurs. As said above, these
configurations slowly move towards the middle which yields a greater freezing time, but consensus
will eventually be reached, at least most of the time.

The non-semi-stable configurations appear when the distance from the middle to at least one of
the short-end clusters is greater than one, hence, this cluster won’t tend to the middle. As a result
these configurations have a smaller freezing time and will not reach consensus.

Looking at Figure 11 there is one tendency that is particularly interesting. The consensus
percentage of A = 16 and A = 15 appears to be not strictly decreasing as a function of the
ratio, which is surprising. We believe this is a result of a behavioural transition from the ”square”
behaviour to the more ”rectangle” behaviour around ratio 1.2. This theory is supported by Figure
13 where we see a significant increase of the average freezing time for these ratios. The tendency
is also true for density 800. If this is true as the number of agents tends to infinity, then, as a
consequence, there would be no critical ratio as we define it, for these areas. Also, if the probability
of consensus tends to some number between 0 and 1 for some ratio around 1.2 as the number of
agents tends to infinity, this would indicate that there is no critical area for this ratio and contradict
the supposed 0− 1 law discussed in Remark 2.3.
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Figure 10: 3d-histogram for the evolution depicted in Figure 9. At t = 30 there is a cluster of 4
agents in between the two larger clusters, not visible in the figure.
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Figure 11: Percentage of simulations reaching consensus for uniformly i.i.d agents with a density of
400 agents/unit area (solid lines) and 800 agents/unit area (dashed line) on equiareal rectangles as a
function of the width

height -ratio of the rectangle. Looking at ratios between 1.15 and 1.25 the percentage
appears to be increasing. Note that the minimum before the percentage rises also increases as the
number of agents is increased. This indicates that either the probability tends to 1 and the 0-1 law
is true, or, more interestingly, the probability of reaching consensus could be tending to something
else that is neither 0 nor 1.
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Figure 12: Figure 11 (solid lines) where the percentage of simulations with a freezing time greater
than 50 has been superimposed (dashed lines). At higher ratios the curves overlap very closely.

Figure 12 depicts the consensus percentage as well as the percentage of configurations resulting
in a freezing-time greater than 50. From this it seems reasonable to conclude that if consensus is
reached for configurations with ”rectangle” behaviour, then the configuration became semi-stable.
The reversed case is seemingly also true, that semi-stable occurrences almost always reach consensus.
This is not at all certain for higher ratios.

Since the percentage of configurations reaching consensus is an increasing function of the ratio
in the interval (1.15,1.25) both for a density 400 agents/unit area and 800 agents/unit area, it would
be interesting to do simulations including an even larger number of agents in this interval in order
to get a hold on what’s going on. We have at least 1300 simulations for all ratios and areas. For
ratios in the interval (1.15,1.25) we have at least 2300 simulations, and are thereby confident in our
results.

We also believe that semi-stable occurrences are much more frequent around rc, if it exists,
compared to its surrounding. As a result we suggest that, given an area that has a critical ratio,
for a large enough number of agents, if we approach the critical ratio from below, then the average
freezing time would increase and reach maximum just around rc.

Further it would be relevant to investigate how the critical area depends on the ratio, r, as
r → ∞. As r → ∞, then Ac → 0, and the width of the critical rectangle ought to tend to the
critical length of the interval.

3.5 Conclusions
We’ve found that there probably is a critical length of the interval in R1. As we move from one
dimension to two we can have shapes that appear to have no critical area, for example the disc, and
some that do, for example the equilateral triangle. Corners and sharp edges are bad for reaching
consensus and going from a square to a rectangle leads to simulations with surprising behaviour,
where increasing the asymmetry of the rectangle first tends to decrease the probability of consensus,
then increase it, and then reduce it again.

4 Periodicity for equidistant lattices
We will now stop our discussion on critical lengths and areas and instead talk about periodic
evolutions in configurations where the agents are placed at fixed distances from their neighbours.
We will begin by stating a result in one dimension, and then try to generalise it to two dimensions.
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Figure 13: Average freezing time for uniformly i.i.d agents with a density of 400 agents/unit area
on equiareal rectangles as a function of the width

height -ratio of the rectangle. Maxima of the curves are
thought to be around the last ratio where the semi-stable configurations can occur as the number
of agents tend to infinity.

Consider a chain of n agents placed a distance 1 apart on the line where n = 6k + l, 0 ≤
l ≤ 5. That is to say, the initial configuration is x = [0, 1, 2, · · · , n − 1]. The behaviour of these
configurations has been studied by Edvin Wedin and Peter Hegarty [9].

They proved that the evolution is in some sense periodic, namely:

i After every fifth time step, a group of three agents disconnect from both ends of the chain, and
at the subsequent time step they form a cluster.

ii the final configuration will consist of 2k clusters of size 3, and one cluster of size l with opinion
n+1

2 .

iii the freezing time is 5k + ε(l), where

ε(l) =
{
l − 1 if l = 2,3,
l if l = 1,

(4.1)

In Figure 14 one can clearly see what is meant with the behaviour being periodic.
However, this result begs the question, how common is this periodic behaviour? Simulations of

agents placed on the line with other inter-agent distances tend to also behave very regularly. It is not
easy to prove that the behaviour will be regular. Indeed, it is not even easy to formulate precisely
what we mean with it being regular. We will now look at this phenomenon in two dimensions.

4.1 Finite Square Lattices
It is not immediately obvious how to generalise the configuration with equidistant agents on an
interval into two dimensions, but we have chosen to study squares. An example of such a config-
uration is in Figure 15, where we see the evolution of such a configuration of length 7 where each
agent initially lies a distance 1 from its closest neighbours.

It is not obvious from this figure if there is any periodicity involved. Instead we will look at a
larger configuration, the one in Figure 17, with length 40. There is not much obvious regularity in
a square of this size.

There is one thing we can say with some certainty, concerning the behaviour of the main diag-
onals. Every third time step, two agents on the diagonal will move far from their initial positions

15



Time

0 5 10 15 20 25 30 35 40

O
p
in

io
n

0

5

10

15

20

25

30

35

40

45

50
Opinions for Distance 1 in 1 Dimension

Figure 14: The evolution of a 1-dimensional chain where each agent starts at a distance 1 from its
nearest neighbours. One can see that the evolution is periodic.
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Figure 15: The initial configuration of a square to the left and the evolution to the right. In the
figure to the right the blue crosses are the final opinions while gray lines and circles represent the
path of the agents and the old opinions, thus one can see the path the agents took. The evolution
itself is not trivial.
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Figure 16: The evolution of a part of the square lattice along the diagonal from the 10:th to the
13:th time step. After the 13:th time step, the two red agents in image 4 are in almost the same
situation as the two red agents in the first image. Therefore the evolution should repeat in the
same way.

and start forming a cluster with nearby agents, as can be seen in Figure 17 if looking closely. The
exception to this is the agents that lie in the corner of the initial configuration, it takes four time
steps for them to be perturbed. This behaviour can be seen in more detail in Figure 16. Thus we
state the following conjecture.

Conjecture 4.1. For a square lattice where each agent is placed a distance 1 apart from its nearest
neighbours, the freezing time is at least 3L+2

4 , where L is the width of the lattice.

Remark 4.1. This lower bound for the freezing time for the square lattice is at least 3
4L, while for

the one-dimensional case the freezing time has been proven to be close to 5
6L [9]. This means that

the freezing time might be smaller for the square of width L than for the line of length L.

Saying much more than this is hard, the problem is that these square lattices with inter-agent
distances equal to 1 are difficult to simulate correctly. We are so close to the discontinuity in the
update-rule that small errors can lead to vastly different configurations.

We have reason to suspect that our simulations are unreliable for larger lattices. Consider a
rectangular lattice with inter-agent distances equal to 1, made up out of three columns with N
rows each. For n large enough, agents in the middle rows of the lattice will be static vertically so
the distance to the closest neighbour above and below an agent will remain exactly 1 for all time
steps t < n

2 . However, the distance ε to the closest neighbour in the same row will eventually be
very small. As a result the distance to the closest agent above, in an adjacent column, will be√

12 + ε2. After enough time, ε2 will be on the order of the machine-epsilon, thus, when calculating
this distance MATLAB will interpret it as exactly 1, even though it should be greater than 1. This
means that these rounding errors can change the graph if the agents lie close to distance 1, causing
large errors.

We know that this rounding error has a significant effect on the square lattice. As we can see
in Figure 17 the sides consist of three rows that have disconnected from the rest of the square. In
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Figure 17: The evolution for a square lattice with initial distance 1. At t = 25 (left image) we can no
longer see any resemblance to a square, and there is no obvious regularity in the final configuration
either (right image).
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Figure 18: The evolution for a square lattice with initial distance 0.9. At t = 25 (left image) the
parts in the middle are still shaped like a square, in stark contrast to the configuration in Figure 17.
In the final configuration (right image) we can see that the evolution is highly regular. By tracing
the grey lines we can see that the evolution along each row or column happened in essentially the
same way.

these rows the agents will converge exponentially to the same opinion in one direction. From here
on the evolution will be wrong.

We can instead look at lattices where the inter-agent distance is smaller than 1. These lattices
are less prone to errors. They also tend to be more regular. In Figure 18 we see an example, where
the agents are placed a distance 0.9 apart in a square lattice. There is clearly repetition going on
in the evolution almost everywhere.

Analysing the entire square at once is too big a project, so we will study a smaller problem: the
edge of an infinitely large square.

4.2 Periodicity for the Half-Plane
Consider an infinite number of agents placed in a half-plane, Z≥0×Z. The initial distances between
neighbouring agents are 1.

It is obvious due to symmetry that displacement will only occur horizontally. Further, while
there is no vertical displacement, all displacement in the horizontal direction will be identical for
each row. Thus, every agent will have two others, one above and one below with the same horizontal
opinion as itself at distance exactly one.

Because the agents always remain at a distance 1 vertically, an agent can only see another in a
different row if they have the exact same opinion horizontally. And since clustering happens only
when two or more agents have the same set of neighbours, clusters will never form. Therefore,
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every agent will at all times see exactly two others with the same horizontal opinion as itself. As a
further corollary to this, the freezing-time is no longer finite, since no two agents will ever see the
same average.

The update rule is therefore equivalent to a one-dimensional model, where, in every step, each
agent’s own opinion is weighted by an additional two. This update-rule can be written as

xt+1(i) = 1
2 + |Nt(i)|

[
2xt(i) +

∑
j∈Nt(i)

xt(j)
]

(4.2)

We will go on to prove that for this model the behaviour of the configuration [0, 1, 2, · · · ] is
eventually periodic. In order to get there, we will need to develop some theory regarding the
evolution of the distances between consecutive agents.

4.2.1 Distances Between Agents

What we want to do here is to prove Corollary 4.1, which tells us when the evolution is periodic. In
order to prove it we will need some properties regarding the dynamics in what we call distance-space.
In distance-space, the configuration is described by a vector that contains the distances between
consecutive agents. It is a useful description of the configuration in one-dimensional models such
as this one.

In particular we will need to prove that the transition matrix Bt in distance-space is non-
negative, just like the Ht-matrix in opinion-space.

The vector of distances between consecutive agents for a configuration xt can be written as

yt =

xt(2)− xt(1)
xt(3)− xt(2)

...

 = ∆xt (4.3)

where

∆ =


−1 1 0 · · ·
0 −1 1 · · ·
0 0 −1 · · ·
...

...
...

. . .

 . (4.4)

∆ is not an invertible matrix. However, if we apply an additional condition that x(1) = 0 there
exists a right4 inverse matrix,

∆−1
0 =


0 0 0 · · ·
1 0 0 · · ·
1 1 0 · · ·
...

...
...

. . .

 (4.5)

In the more general case where we demand x(1) be any real number the right inverse is

xt = ∆−1(yt) = xt(1) · 1∞ + ∆−1
0 yt, (4.6)

where 1∞ is a vector with all components 1.
Using these two matrices we can calculate the operator that evolves a distance-vector. Since

the dynamics are translationally invariant we can wlog assume that xt(1) = 0 to get

xt+1 = Htxt (4.7)
⇒ ∆xt+1 = ∆Htxt (4.8)
⇒ yt+1 = ∆Ht∆−1

0 yt (4.9)
= Btyt, (4.10)

where we define
Bt = ∆Ht∆−1

0 . (4.11)
4We have ∆∆−1

0 = I but not ∆−1
0 ∆ = I. This last product instead equals S−1. The reason for this is that with

finitely many, N , agents ∆ is an (N − 1) × N matrix, so it is not ”truly” square.
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This is good, now we know Bt if we know Ht. What we want is Bt based only on the graph of
the configuration. We can rewrite

∆ = S1 − I, (4.12)
where S1 is a shift matrix as defined in appendix A, in order to get

(∆Ht)ij = (S1Ht −Ht)ij (4.13)
= (Ht)(i+1)j − (Ht)ij . (4.14)

We can also write

∆−1
0 =

∞∑
k=1

S−k (4.15)

to get

(∆Ht∆−1
0 )ij =

∞∑
k=1

(
(Ht)(i+1)j − (Ht)ij

)
S−k (4.16)

=
∞∑
k=1

(
(Ht)(i+1)(j+k) − (Ht)i(j+k)

)
(4.17)

=
∞∑
k=1

(Ht)(i+1)(j+k) −
∞∑
k=1

(Ht)i(j+k) (4.18)

From the definition of Ht we can interpret the first of these sums as the proportion of neighbours
of i+ 1 to the right of agent j, and the second sum as the proportion of neighbours of i to the right
of agent j. Therefore we can rewrite the sums as

(Bt)ij = ni+1,j

Ni+1
− ni,j

Ni
= ni+1,j

ni+1,j + ñi+1,j
− ni,j
ni,j + ñi,j

, (4.19)

where nx,y is the number of agents agent x sees to the right of agent y, not including agent y, Nx
is the total number of agents agent x sees and ñx,y is the number of agents agent x sees to the left
of agent y, including agent y.

Now we claim that the first of these terms is at least as great as the other.

Proposition 4.1. Bt only has non-negative entries.

Proof. It is obvious that for any i,j, we have ñi+1,j ≤ ñi,j and ni+1,j ≥ ni,j . This together with
(4.19) gives us

(Bt)ij = ni+1,j

ni+1,j + ñi+1,j
− ni,j
ni,j + ñi,j

(4.20)

= ni+1,j ñi,j − ni,j ñi+1,j

(ni+1,j + ñi+1,j)(ni,j + ñi,j)
≥ 0 (4.21)

Remark 4.2. It follows directly that agents will never change order. Since Bt only has positive
entries, we can never get negative entries in yt if we start with only positive ones.

Remark 4.3. Bt will have only positive entries in any variation of the HK-model of the form

xt+1(i) =
wxt(i) +

∑
j∈Nt(i) xt(j)

|Nt(i)|+ w
(4.22)

as long as w ≥ 0. We will come back to models of this form in Section 4.3.

We are now ready to state and prove the following theorem.

Theorem 4.1. If we have three initial configurations a0, x0 and b0 such that

∆a0 ≤ ∆x0 ≤ ∆b0, (4.23)

and the transition matrices (and therefore graphs) for at and bt are equal at all time steps up to
some time τ , then xt also has the same matrices (and graphs) as at and bt up to time τ .
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Remark 4.4. The ordering we’re using is a < b if and only if for all i, a(i) < b(i).

Proof. Suppose we know that at some time t, ∆at ≤ ∆xt ≤ ∆bt. It is then true that any agents
that are not neighbours in configuration at are also not neighbours in xt. By the same token, any
agents that are neighbours in bt are also neighbours in xt. Since at and bt are assumed to have the
same graphs, this means that xt also has the same graph.

Since by proposition 4.1 Bt only has positive entries the inequalities are preserved in the next
time-step. By induction in t up to τ the proof is finished.

Corollary 4.1.1. Suppose we have three configurations a0,x0, b0 as above but also know that there
exists a k such that the first k elements each of a0,b0 become disconnected from the rest of the
agents at time τ . Suppose further that we have for all m

∆a0 ≤ Tm∆x0 ≤ ∆b0, (4.24)

where we define
T = SkB(aτ−1)B(aτ−2) · · ·B(a1)B(a0) (4.25)

and B(x) is the transition matrix in distance-space for the configuration x.
Then we know, writing t = lτ + t′, with 0 ≤ t′ < τ , that

B(Slkxt) = B(xt′) (4.26)

Proof. Follows directly from Theorem 4.1 by induction.

In essence Theorem 4.1 states that if we have two configurations that behave the same way, and
a configuration that lies between them in distance space, then the middle configuration will also
behave in the same way. The corollary states that if the inner part of this middle configuration
looks similar enough to the original configuration (and the outer part has disconnected) then this
inner part will behave the same way as the original configuration, that is, the matrices describing
the transitions will be the same, and the evolution is periodic.

4.2.2 Proof of Periodicity

Theorem 4.2. The evolution of the weighted version (4.2) of the HK-update rule with initial
distance vector z0 = 1∞ is periodic from t = 10 and onwards, with period τ = 21. At t =
10 + lτ, l ∈ N, the four outermost agents will be disconnected from all other agents.

What we need to prove periodicity is upper and lower bounds on the distance vector over time.
These bounds need to be tight enough for Corollary 4.1 to be applicable.

We start by calculating the transition matrices and the upper bound. Thereafter we prove a
proposition that gives us a lower bound. These combined are enough to finally prove this theorem.

Proposition 4.2. At t = 31, the distance vector of the still connected agents is y0 = T(S3B1
1B9

01∞),
with T, B0 and B1 as below.

Proof. The transition matrix B0 for the original configuration is

B0 =


11
20

1
5 0 . . .

1
5

3
5

1
5 0 . . .

0 1
5

3
5

1
5 0 . . .

0 0 1
5

3
5

1
5 . . .

...
. . .

 .

Direct calculation shows that this is the same for each of the first 9 time steps. Thus, z9 = B9
0z0.

At t = 9, agent 0 can see agent 2. For this time-step, we instead get the transition matrix

B1 =


2
5 0 0 . . .
1

30
7

15
1
6 0 . . .

1
6

1
3

19
30

1
5 0 . . .

0 0 1
5

3
5

1
5 . . .

...
. . .


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After one more time step, agents 0, 1 and 2 are disconnected from the rest and we disregard
these to only consider the distance-vector from agent 3 and beyond. This is done by multiplying
z10 by S3 and we have ẑ10 = S3z10.

The following 21 time steps describe the evolution that will reoccur every period. So we are
now deriving the total transition matrix T.

The transition matrix for the remaining agents during each of the next 9 time-steps is again B0.
At t = 19, agents 3 and 5 see each other for the first time. This yields the same transition matrix
as for t = 10, B1, which is valid during the next 11 time steps. At t = 30, agents 3 and 4 will both
see agent 6 and we have a new transition matrix,

B2 =



1
3 0 0 . . .
0 1

3 0 0 . . .
1

42
1

21
17
42

1
7 0 . . .

1
7

2
7

3
7

23
35

1
5 0 . . .

0 0 0 1
5

3
5

1
5 0 . . .

...
. . .


,

valid during one time-step.
In the subsequent time step, at time t = 31, agent 6 can no longer see agent 7, thus agents 3 to

6 are disconnected from the rest of the agents. To disconnect agents 3 to 6 we multiply z31 by S4
and we have

ẑ31 = S4B2B1
11B0

9ẑ10. (4.27)

In our proof we will let y0 = ẑ31 be the initial distance vector. We will also use the total
transition matrix defined as

T = S4B2B1
11B0

9. (4.28)

Remark 4.5. The curious reader finds the initial components of the vector y0, the row sums of
T and the repeating sequence of all non-zero elements at each row in T, starting at row 18, in
appendix C. Noteworthy is that all row sums are less than or equal to one.

Proposition 4.3. For y0 as above, and ym = Tmy0 , for all m ∈ N, we have the following
inequalities:

0 < y0(i)− ym(i) < c(i), i ≤ 40 (4.29)
0 < y0(i)− ym(i) < aγi, i > 40, (4.30)

where γ = 0.6, a = 1
1000 , and c is the solution to the following minimisation problem:

minimise
c(i)

z =
200∑
i=1

c(i)

s.t. (T̃− Ĩ)c ≤ y1 − y0

c(i) > 0,∀i.

(4.31)

Here

i) T̃ is the first 200 rows of T including all non-zero columns: T̃ ∈ R200×(200+25).

ii) Ĩ ∈ R200×(200+25), where the first 200× 200 rows and columns are the identity matrix, and the
last 25 are zero-columns.

Proof. Concerning the left-hand inequalities, assume that Tym ≤ ym. We know that T is a non-
negative matrix, since it by Proposition 4.1 and 4.2 is a product of non-negative matrices. Thus
we have Tym+1 = T(Tym) ≤ Tym = ym+1. Lastly we have that y1 = Ty0 ≤ y0. For the small
indices we can verify this by direct multiplication. For the larger indices we can use that y(i) = 1
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for all i >> 0 and that the row sums of T are at most 1. By induction, ym+1 ≤ ym, and therefore
ym+1 ≤ y0.

Regarding the right-hand inequalities, suppose that

y0 − ym < c̃ (4.32)

for some m. We have

y0 − ym+1 = y0 −Tym (4.33)
= y0 −Ty0 + T(y0 − ym) (4.34)
= y0 − y1 + T(y0 − ym). (4.35)

Then, inequality (4.32) implies that y0 − ym+1 < y0 − y1 + Tc̃. If, for the same vector c we have

y0 − y1 + Tc̃ ≤ c̃, (4.36)

then, by induction, (4.32) holds for all m if it holds for the base case y0 − y1 < c̃. One such c̃,
fulfilling (4.36) while being ”fairly tight” is the solution to the linear minimisation problem

minimise
c̃(i)

z =
∞∑
i=1

c̃(i)

s.t. (T− I)c̃ ≤ y1 − y0

c̃(i) > 0,∀i.
(4.37)

To avoid solving an infinite system of equations it is sufficient to find any c̃ from the solution
space of (4.37). Finding such a c̃ can be done by solving the partial problem (4.31) and combining
parts of the yielded vector with an infinite vector γ with elements defined as γ(i) = aγ40+i, i =
1,2, . . ., that is

c̃ = [c(1),c(2), . . . ,c(39),c(40),γ(1),γ(2), . . .]. (4.38)
We need to motivate that c̃ is in the solution space of (4.36), namely that

y0(i)− y1(i) + Tic̃ ≤ c̃(i), ∀i. (4.39)

We divide the problem into three cases:
1. i such that Tic̃ and c̃(i) only includes elements from (4.31), i ≤ 15.

2. i such that Tic̃ and c̃(i) includes values from both the solution of (4.31) and γ, i ∈ [16,57].

3. i such that Tic̃ and c̃(i) only includes elements from γ, i ≥ 58.
The first case already satisfies (4.39). The second case is confirmed to satisfy (4.39) by calcula-

tions in MATLAB. When checking the last case we observe that y0(i)− y1(i) = 0, i ≥ 27, so (4.39)
is reduced to Tic̃ < c̃(i). We subtract c̃(i) from both sides and expand to get

Tic̃− c̃(i) =
i+25∑
j=i−17

T (i,j)c̃(j)− c̃(i) =
i+25∑
j=i−17

T (i,j)aγj − aγi. (4.40)

The sum is finite due to the fact that most of the elements in T are zero. We realise that
i+25∑
j=i−17

T (i,j)aγj − aγi = a
( 25∑
j=−17

T (i,i+ j)γi+j − γi
)

= aγi
( 25∑
j=−17

T (i,i+ j)γj − 1︸ ︷︷ ︸
≈−0.614, ∀i

)
. (4.41)

Hence all three cases satisfy (4.39) and c̃ is in the solution space of (4.37). Checking that
y0 − y1 < c̃ holds and that the transition matrix describes the same behaviour for a displaced
vector y0 − c̃ completes the induction step.

Proof of Theorem 4.2. Proposition 4.3 gives us an upper and lower bound that satisfy the
requirements of Corollary 4.1.1. Thus, we have periodicity.

The half-plane lattice updates according to (4.2) and therefore the evolution of the half-plane
is also periodic.
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4.3 Discussion and Continuous Time Model
In (4.2) we stated the update rule for a HK-model where each agent’s own opinion is weighted by an
additional two. We will now look at different generalisations of this, and derive a related HK-model
with continuous time.

Consider a configuration Z≥0 × Zd. Then we obtain an update rule according to

xt+1(i) = 1
2d+ |Nt(i)|

2dxt(i) +
∑

j∈Nt(i)

xt(j)

 . (4.42)

It is clear that this formula would work for any value of d, not only integers. Thus, we can
consider the rule above for any w = 2d ∈ R.

xt+1(i) = 1
w + |Nt(i)|

wxt(i) +
∑

j∈Nt(i)

xt(j)

 , (4.43)

where we will assume w ≥ 0.
In this model, each agent will move toward the average opinion of the agents it sees, just like in

the standard model. The main difference is that it will now do so much more slowly as w increases.
It is therefore reasonable to make the model take smaller time steps, we will use time steps of
dt = 1

w . Thus we arrive at what we will call the HKw model.

xt+1/w(i) = 1
w + |Nt(i)|

wxt(i) +
∑

j∈Nt(i)

xt(j)

 . (4.44)

Now, consider the expression

xt+1/w(i)− xt(i)
1/w = w

 1
w + |Nt(i)|

wxt(i) +
∑

j∈Nt(i)

xt(j)− (w + |Nt(i)|)xt(i)

 (4.45)

= w

w + |Nt(i)|
∑

j∈Nt(i)

(xt(j)− xt(i)). (4.46)

If we treat this as a continuous function of time we might be tempted to take the limit and arrive
at the following set of coupled differential equations, where we now move the vector index to a
subscript and time as a parameter,

dxi
dt =

∑
j∈Ni(t)

(xj(t)− xi(t)). (4.47)

One must tread carefully, however, for it is not quite clear how we should interpret this limit, since
x is not usually interpreted as an actual function of a continuous time, and the right hand side is
not continuous for all times!

Instead, we can consider the integral equations

xi(t) = xi(0) +
∫ t

0

∑
j∈Ni(τ)

(xj(τ)− xi(τ)) dτ, (4.48)

a solution of which is a so-called Carathéodory solution to (4.47). These equations have been
studied by Blondel et al [10], and they have shown that a unique solution exists for almost all
initial configurations x0.

A lot of things are still unclear. For instance, what, if anything, can we say about the behaviour
of a configuration in the HKw model given the behaviour of the configuration in the continuous
time model?
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5 In Conclusion
We have introduced the concept of critical volume and investigated the concept in two dimensions,
as well as provided support for a conjecture in one dimension. We found that the disc probably
has no critical area, and that there are major differences in the behaviour of the evolution between
squares and rectangles as well as other polygons.

We have developed theory for distance-space and proved some basic theorems. We also proved
that agents spread on an integer half-plane will eventually have a periodic evolution.

Finally, we showed that by imagining the HK-model in an infinite number of dimensions we get
something that probably behaves like a HK-model in continuous time.
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A The Sk Matrices
In this thesis, particularily section 4, we make repeated use of matrices denoted Sk. They are
defined as follows (with i,j ≥ 0);

(Sk)ij = δi+k,j =
{

1 if i+ k = j

0 otherwise.
(A.1)

As an example,

S3 =


0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .

 . (A.2)

If k is positive they strip the first k elements of a vector, and if k is negative they prepend zeroes
in the k first places. For k = 0 we get the identity matrix.

When acting upon matrices the behaviour still depends on the sign of k. If k is positive and
we multiply with Sk from the right the matrix is shifted k columns to the right, with zeroes in the
”new” components. If we multiply from the left the matrix instead gets shifted up, removing the
first k rows. If k is negative we get the opposite effect; when multiplying from the right we shift
the matrix to the left, removing the first k columns. When multiplying from the left it shifts down,
adding k rows containing only 0.

B Matlab Files
Below are the files referenced in the introduction and used throughout for most numerical calcula-
tions. They can be used to simulate and visualise a lot of the simpler problems in the HK-model.
No license, do with them as you wish.

B.1 HK_example.m
The following file is a full-fledged example, that creates a random configuration, calculates the
evolution and plots the result. This file requires HK_solver.m, HK_plot.m and HK_opts.m.

1 % A sample script for using the functions HK_solver, HK_plot and HK_opts.
2 % Uses a configuration of an N-cube of length L with uniform random
3 % opinions.
4

5 L = 5;
6 agents = 100;
7 dimensions = 3;
8 % Generates initial agents.
9 Initial_Ops = L*rand(agents,dimensions);

10

11 % Default options for the initial configuration. Since we don't change any
12 % options this is technically unneccesary. We don't need to supply it to
13 % HK_solver or HK_plot in this case.
14 opts = HK_opts(Initial_Ops);
15 % Solves for all times.
16 results = HK_solver(Initial_Ops, opts);
17

18 % Plot the results.
19 HK_plot(results, opts)
20

21 % Plots the results, and prints the clustersize next to each cluster when
22 % it's done.
23 % HK_plot(results, opts, results.allweights{end});
24

25 % Instead prints when the cluster froze
26 %HK_plot(results, opts, results.indiv_freeze_times)
27 % Prints nothing
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B.2 HK_solver.m
This is the file that finds the opinions at all times for a given initial configuration. Let us first look
at the file in its entirety and then look at some of the more complex parts.

1 function [ results ] = HK_solver(Initial_Ops, Opts)
2 % Finds the opinion vectors for all times up to the freezing time or
3 % Opts.tmax, whichever comes first, starting at Initial_Ops.
4 % Initial_Ops should be an N x d matrix, where N is the number of
5 % agents and d is the number of dimensions. Opts is an optionl argument
6 % containing options, it is a struct, as a default use Opts=HK_opts();
7

8 if ischar(Initial_Ops)
9 % Loads data from the given file instead of starting anew. Most

10 % commonly this would be in order to restore a simulation.
11 load(Initial_Ops);
12 else
13 % Initial data
14 if nargin == 1
15 Opts = HK_opts;
16 end
17 [clusters,dimensions] = size(Initial_Ops);
18 results.Ops{1} = Initial_Ops;
19 t = 0;
20

21 results.pre_cluster_indices = {};
22 results.post_cluster_indices = {};
23

24 results.indiv_freeze_times = zeros(clusters,1);
25 weights = ones(clusters,1);
26 epsilon = Opts.epsilon; % Extracts epsilon for the parfor loop
27

28 % Timers
29 print_iteration = tic;
30 save_progress_timer = tic;
31 end
32

33 while t < Opts.tmax
34 % Clusterises the opinion matrix/vector
35 [results.Ops{t+1}, ia, ic] = unique(results.Ops{t+1},'rows');
36 % New number of agents/clusters
37 [clusters, ~] = size(results.Ops{t+1});
38 % Save indices so that the unclustered opinion vector can be
39 % restored
40 results.pre_cluster_indices{t+1} = ic;
41 results.post_cluster_indices{t+1} = ia;
42

43 % Calculate new weights.
44 preweights = weights;
45 weights = zeros(clusters,1);
46 for c = 1:clusters
47 % Sum of all weights that clustered to cluster c
48 weights(c) = sum(preweights(ic == c));
49 end
50 results.allweights{t+1} = weights;
51

52 few_agents = clusters < Opts.large_num_agents;
53

54 Old_Ops = results.Ops{t+1};
55 [New_Ops] = HK_iteration(Old_Ops);
56

57 % Extracts the freeze times of the still existing clusters
58 results.indiv_freeze_times = results.indiv_freeze_times(ia);
59

60 % If cluster didn't move, do nothing. If it did, add current time
61 % and subtract old freezing time.
62 moved = sum((New_Ops-Old_Ops).^2, 2) > Opts.epsilon;
63 current_times = t*ones(clusters,1);
64 results.indiv_freeze_times = results.indiv_freeze_times ...
65 + moved.*( current_times ...
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66 - results.indiv_freeze_times );
67

68

69 % The matrices aren't exactly equal even if we are frozen due to
70 % floating point arithmetic, and I want control over this rather
71 % than Matlab
72 if (length(New_Ops) == length(Old_Ops)) ...
73 && (norm(New_Ops-Old_Ops) < Opts.maxnorm)
74 break;
75 else % If we didn't freeze, store the result and go on.
76 results.Ops{(t+1)+1} = New_Ops;
77 t = t + 1;
78 end
79

80 if Opts.verbose && toc(print_iteration) > Opts.print_progress_delay
81 fprintf('Iteration %d, remaining clusters, %d.\n', ...
82 t, clusters);
83 print_iteration = tic; % resets timer
84 end
85 if toc(save_progress_timer) > Opts.save_progress_delay
86 if Opts.verbose, fprintf('Saving progress..'), end;
87 save(Opts.save_progress_path);
88 if Opts.verbose, fprintf('! Done!\n'), end;
89 save_progress_timer = tic; %resets timer
90 end
91 end
92

93 function [ newops ] = HK_iteration( Ops )
94 newops = zeros(clusters,dimensions);
95 if few_agents
96 for i = 1:clusters
97 Own_Ops = repmat(Ops(i,:),clusters,1);
98 dists = sum((Own_Ops-Ops).^2,2);
99 N = dists <= 1 + epsilon;

100 newops(i,:) = (weights.*N)'*Ops/(N'*weights);
101 end
102 else
103 parfor i = 1:clusters;
104 Own_Ops = repmat(Ops(i,:),clusters,1);
105 dists = sum((Own_Ops-Ops).^2,2);
106 N = dists <= 1 + epsilon;
107 newops(i,:) = (weights.*N)'*Ops/(N'*weights);
108 end
109 end
110 end
111 end

The solver will begin setting up options if it hasnt’t received any, or load in old data if it is
given a file to load from. It then enters the main loop, which will continue until the configuration
freezes or t > tmax, where tmax is given by the options, and is usually infinite.

The first step in the main loop is ”clusterising” the opinion matrix. This means taking all agents
that have the exact same opinions and storing them as a single agent, but with a different weight.
This is done by the following lines.

1 % Clusterizes the opinion matrix/vector
2 [results.Ops{t+1}, ia, ic] = unique(results.Ops{t+1},'rows');
3 % New number of agents/clusters
4 [clusters, ~] = size(results.Ops{t+1});
5 % Save indices so that the unclustered opinion vector can be
6 % restored
7 results.pre_cluster_indices{t+1} = ic;
8 results.post_cluster_indices{t+1} = ia;
9

10 % Calculate new weights.
11 preweights = weights;
12 weights = zeros(clusters,1);
13 for c = 1:clusters
14 % Sum of all weights that clustered to cluster c
15 weights(c) = sum(preweights(ic == c));
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16 end
17 results.allweights{t+1} = weights;

The first block does the actual clusterisation, and stores the results. The second block calculates
the new weights. The vector ic contains the indices in the new matrix corresponding to indices in
the old matrix. That is, if [C,ia,ic]=unique(A), then A=C(ic,:). Thus, what the second block
does is simply adding the weights of the clusters that now formed.

The purpose of doing this is to lower the amount of agents that have to be simulated. This is
crucial in being able to simulate large dense configurations.

Updating the opinion matrix itself is done by the loop

1 for i = 1:clusters
2 Own_Ops = repmat(Ops(i,:),clusters,1);
3 dists = sum((Own_Ops-Ops).^2,2);
4 N = dists <= 1 + epsilon;
5 newops(i,:) = (weights.*N)'*Ops/(N'*weights);
6 end

The first row creates a matrix where all the rows are the opinion of agent i. Thus, the vector dists
contains the distance from agent i to all other agents, and N is a vector with N(j) equal to 1 if i
and j are neighbours. The last row is thus essentially

xt+1(i) =

(w(1)N(1) w(2)N(2) · · · w(c)N(c))


xt(1)
xt(2)
...

xt(c)



(N(1) N(2) · · · N(c))


w(1)
w(2)
...

w(c)


. (B.1)

B.3 HK_plot.m
This file plots the results from HK_solver.m in a reasonable manner.

1 function [ ] = HK_plot( res, opts, final_data)
2 [clusters,dimensions] = size(res.Ops{1});
3

4 if nargin < 2 % Gets default options if none are provided
5 opts = HK_opts(res.Ops{1});
6 end % Sets final_data if it is not provided.
7 if nargin < 3
8 final_data = [];
9 end

10

11 % If final_data is not empty we fix it up and say that it should be
12 % plotted.
13 if ~isempty(final_data)
14 draw_str_data = true;
15 if isnumeric(final_data)
16 final_data = cellstr(num2str(final_data));
17 end
18 else
19 draw_str_data = false;
20 end
21

22 % Sets stopping time.
23 if ~isfinite(opts.tmax)
24 tmax = length(res.Ops)-1;
25 else
26 tmax = opts.tmax;
27 end
28
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29 % Used for axis limits. The minima and maxima of the starting
30 % configuration are never passed at any time so they serve as good
31 % boundaries.
32 mins = min(res.Ops{1});
33 maxs = max(res.Ops{1});
34

35 fig = figure; hold on;
36 if dimensions == 1
37 xlabel('Time'), ylabel('Opinion');
38 elseif dimensions == 3
39 view(3);
40 elseif dimensions > 3
41 error('Cant plot in more than 3 dimensions');
42 end
43

44 circs = [];
45 lines = [];
46

47 t = 0;
48 while true
49 [clusters,~] = size(res.Ops{t+1});
50 switch dimensions
51 case 1
52 circs = plot(t, res.Ops{t+1}, ...
53 opts.opinion_marker, ...
54 'Color', opts.active_color);
55 if t > 0 && opts.draw_move_lines
56 inds = res.pre_cluster_indices{t+1};
57 lines = plot([t-1 t], ...
58 [res.Ops{t} res.Ops{t+1}(inds)], ...
59 opts.linestyle, 'Color', opts.active_color);
60 end
61 axis([-0.3 length(res.Ops) mins(1) maxs(1)]);
62 case 2
63 if t > 0 && opts.draw_move_lines
64 inds = res.pre_cluster_indices{t+1};
65 lines = plot([res.Ops{t}(:,1)'; res.Ops{t+1}(inds,1)'],...
66 [res.Ops{t}(:,2)'; res.Ops{t+1}(inds,2)'],...
67 opts.linestyle, 'Color', opts.active_color);
68 end
69 circs = plot(res.Ops{t+1}(:,1)', res.Ops{t+1}(:,2)',...
70 opts.opinion_marker, ...
71 'Color', opts.active_color);
72 axis([mins(1) maxs(1) mins(2) maxs(2)]);
73 case 3
74 if t > 0 && opts.draw_move_lines
75 inds = res.pre_cluster_indices{t+1};
76 lines = plot3([res.Ops{t}(:,1)'; res.Ops{t+1}(inds,1)'],...
77 [res.Ops{t}(:,2)'; res.Ops{t+1}(inds,2)'],...
78 [res.Ops{t}(:,3)'; res.Ops{t+1}(inds,3)'],...
79 opts.linestyle, 'Color', opts.active_color);
80 end
81 circs = plot3(res.Ops{t+1}(:,1)', res.Ops{t+1}(:,2)',...
82 res.Ops{t+1}(:,3)', opts.opinion_marker,...
83 'Color', opts.active_color);
84 axis([mins(1) maxs(1) mins(2) maxs(2) mins(3) maxs(3)]);
85 end
86 title(sprintf('t=%d,clusters=%d', t, clusters));
87 drawnow
88

89 if opts.pause_time > 0
90 pause(opts.pause_time);
91 end
92

93 if t >= tmax || ~ishandle(fig)
94 break;
95 end
96 if dimensions > 1
97 if opts.delete_old
98 delete(lines);
99 delete(circs);
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100 else
101 set(lines, 'Color', opts.old_color);
102 set(circs, 'Color', opts.old_color);
103 end
104 end
105 t = t + 1;
106 end
107

108 if ishandle(fig)
109 switch dimensions
110 % we don't do anything special for 1d
111 case 2
112 if ~opts.delete_old
113 plot(res.Ops{t+1}(:,1)', res.Ops{t+1}(:,2)', ...
114 opts.final_cluster_marker, 'Color', opts.active_color,...
115 'MarkerSize', 15, 'LineWidth', 2);
116 end
117 if opts.draw_circles;
118 viscircles(res.Ops{t+1},ones(length(res.Ops{end}),1),...
119 'LineWidth', 1);
120 end
121 if draw_str_data
122 text(res.Ops{t+1}(:,1)',res.Ops{t+1}(:,2)', final_data,...
123 'VerticalAlignment','bottom', 'FontSize', 18);
124 end
125 case 3
126 plot3(res.Ops{t+1}(:,1)',res.Ops{t+1}(:,2)',res.Ops{t+1}(:,3)',...
127 opts.final_cluster_marker, 'Color', opts.active_color, ...
128 'MarkerSize', 15, 'LineWidth', 2);
129 if draw_str_data
130 text(res.Ops{t+1}(:,1)',res.Ops{t+1}(:,2)',res.Ops{t+1}(:,3)',...
131 final_data, 'VerticalAlignment','bottom', 'FontSize', 18);
132 end
133 end
134 title(sprintf('t=%d, clusters=%d',t,clusters));
135 end
136 end

B.4 HK_opts.m
Provides options for the file HK_plot.m and

1 function [ opts ] = HK_opts( IOps )
2 % Generates default options for an initial configuration IOps. IOps is an
3 % optional argument. If it is not supplied a ''worst case'' configuration
4 % will be assumed (read:large configuration).
5

6 % HK_multi_dim.m opts
7 % If the solver should print things.
8 opts.verbose = true;
9

10 % Maximum norm difference for ''different'' opinion matrices.
11 opts.maxnorm = 1e-6;
12

13 % Term added to ensure that neighbours are actually counted. This
14 % results in a slight overcounting of the number of neighbours to an
15 % agent, but having it as 0 leads to larger errors as agents are then
16 % undercounted.
17 opts.epsilon = 1e-13;
18

19 % What constitutes a LARGE number of agents. If there are more agents
20 % than this the solver will calculate the opinions in parallell.
21 opts.large_num_agents = 10000;
22

23 % Minimum time between each successive progress message. The solver can
24 % only state its progress in between time steps though.
25 opts.print_progress_delay = 60;
26

27 % Minimum time between each save. The solver can only save its progress
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28 % in between time steps though, so the time is only approximate.
29 opts.save_progress_delay = 3600;
30

31 % The path the solver saves progress to.
32 opts.save_progress_path = 'current_progress';
33

34 % HK_plot opts
35 % Color of agents in the current time step.
36 opts.active_color = [0 0 1];
37

38 % Color of agents in previous time steps, if delete_old is false.
39 opts.old_color = [0.5 0.5 0.5];
40

41 % Symbol to represent agents
42 opts.opinion_marker = 'o';
43

44 % Style used for lines connecting successive opinions, if
45 % draw_move_lines is true.
46 opts.linestyle = '-';
47

48 % Symbols used to clearly mark where the configurations ended up, only
49 % used if delete_old is false.
50 opts.final_cluster_marker = 'x';
51

52 % What constitutes a small number of agents. This controls what
53 % defaults are reasonable when plotting
54 opts.small_num_agents = 500;
55

56 % If no initial configuration is given we have to guess what the number
57 % of agents is, we guess large, since small configurations work with
58 % the large number defaults, but the small number defaults don't work
59 % with large numbers of agents (plotting 10000 lines is hard work,
60 % and mostly looks cluttered.
61 if nargin == 1 %
62 [agents,~] = size(IOps);
63 else
64 agents = inf;
65 end
66 opts.tmax = inf;
67

68 % Bool saving wether or not the number of agents is small.
69 opts.is_small_num_agents = agents < opts.small_num_agents;
70

71 % Only pause if the number of agents is small, otherwise the time it
72 % takes to plot is sufficient.
73 opts.pause_time = opts.is_small_num_agents*0.3;
74

75 % Draws lines between the old opinion and the new for each agent. We
76 % only do this for small number of agents.
77 opts.draw_move_lines = opts.is_small_num_agents;
78

79 % Deletes old points. We delete for large numbers of agents.
80 opts.delete_old = ~opts.is_small_num_agents;
81

82 % This one is mostly for debugging. Draws circles over the final
83 % configurations.
84 opts.draw_circles = false;
85 end
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C Vectors And Row Sums From Theorem 4.2

y0 =



0.939434455792740
0.974026205690910
0.988867155446126
0.995281299625763
0.998133487411561
0.999347260629519
0.999803484327996
0.999949216324104
0.999988599972631
0.999997733206551
0.999999592532790
0.999999932745440
0.999999989730794
0.999999998552695
0.999999999813982
0.999999999978612
0.999999999997848
0.999999999999815
0.999999999999987
0.999999999999999

...



row sums of T =



0.943289394780053
0.976626016149058
0.990378548497346
0.996051088497944
0.998480647346650
0.999486654774494
0.999853388903845
0.999965130541467
0.999993112164404
0.999998868765432
0.999999845841670
0.999999982761419
0.999999998455863
0.999999999893532
0.999999999994697
0.999999999999830
0.999999999999997
1.000000000000000

...


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non-zero elements of 18th row in T=



0.000000000000002
0.000000000000132
0.000000000004008
0.000000000077951
0.000000001092417
0.000000011750672
0.000000100924016
0.000000710907940
0.000004186424759
0.000020905815945
0.000089494781581
0.000331201792577
0.001066657232324
0.003005153910970
0.007437386488071
0.016222305311175
0.031265519829195
0.053352061225862
0.080729347237190
0.108440297672697
0.129407305986437
0.137254703068160
0.129407305986437
0.108440297672697
0.080729347237190
0.053352061225862
0.031265519829195
0.016222305311175
0.007437386488071
0.003005153910970
0.001066657232324
0.000331201792577
0.000089494781581
0.000020905815945
0.000004186424759
0.000000710907940
0.000000100924016
0.000000011750672
0.000000001092417
0.000000000077951
0.000000000004008
0.000000000000132
0.000000000000002


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c̃ =



0.003587993320581
0.002786941973362
0.001946652172613
0.001241650117371
0.000729718584874
0.000397283599498
0.000201274026043
0.000095399986897
0.000042599281979
0.000018074390882
0.000007358600904
0.000002905015619
0.000001123483585
0.000000429432534
0.000000163290714
0.000000062005826
0.000000023550730
0.000000008949611
0.000000003402465
0.000000001294409
0.000000000493342
0.000000000188995
0.000000000073380
0.000000000029459
0.000000000012770
0.000000000006426
0.000000000004013
0.000000000003093
0.000000000002740
0.000000000002602
0.000000000002546
0.000000000002520
0.000000000002506
0.000000000002495
0.000000000002487
0.000000000002478
0.000000000002470
0.000000000002462
0.000000000002453
0.000000000002444

0.000000000000802 = (γ(1))
aγ42

aγ43

...


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