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ABSTRACT 

The use of fibres has gone through quite a big development in the last 30 years. The 
advantages of FRC (fibre-reinforced concrete) are proved but the structural behaviour 
has to be clarified. A common application for FRC are slabs on grade and other non-
structural elements but structural elements, like beams, slabs or walls, need an 
appropriate structural analysis. 

RILEM (International Union of Laboratories and Experts in Construction Materials) 
has developed several recommendations with regard to structural design of FRC 
members. Many countries may adopt these recommendations due to the lack of other 
design codes but these recommendations are still being developed and they cannot be 
considered as a real design code. 

In this thesis, the RILEM TC 162-TDF recommendations available for analysing 
flexural members have been investigated. Two approaches describing the tensional 
and flexural behaviour of FRC are presented, namely the σ−ε (stress-strain) and the 
σ−w (stress-crack opening) approach. The work carried out has been focused on (1) 
analytical non-linear calculations and (2) finite element calculations. All the material 
properties required to analyse beams and slabs members are presented, as well as a 
detailed study of the available expressions to calculate the crack-spacing. Some of the 
material properties have been obtained from laboratory tests while others have been 
obtained using the conventional reinforced concrete codes like EC2. Different sizes of 
the elements as well as other characteristics, such as fibre dosage or concrete strength, 
have also been studied in order to investigate the influences that a change on them 
causes. 

It is concluded that both approaches can be used in the design but some modifications 
may bee needed in one of them (σ−ε) in order to obtain similar characteristic result. It 
was found that the σ−ε approach might not be suitable for FEM calculations. In 
contrast, the result confirm that the σ−w is a very good approach; no size effect is 
identified comparing the analytical calculations and the FEM calculations and it was 
found that the for the ultimate limit state the value of the crack-spacing is not so 
important. 

 

Key words: concrete, fibre-reinforced, crack-spacing, stress-crack opening 
relationship, non-linear analysis 
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RESUMEN 

El uso de fibras ha sufrido un gran desarrollo en los últimos 30 años. Las ventajas del 
FRC (hormigón reforzado con fibras) han sido demostradas, pero el comportamiento 
estructural tiene que ser clarificado. Usos comunes para el FRC son losas de 
cimentación y otros elementos no estructurales, pero los elementos estructurales como 
vigas, forjados o paredes necesitan un análisis estructural más detallado. 

RILEM (Unión Internacional de Laboratorios y Expertos en Materiales de 
Construcción) ha desarrollado diversas recomendaciones respecto al diseño estructural 
de elementos de FRC. Muchos países adoptan esas recomendaciones debido a que no 
existen otros códigos de diseño, pero esas recomendaciones están todavía siendo 
desarrolladas y no se pueden considerar como un verdadero código de diseño. 

Esta tesis analiza las herramientas de diseño disponibles para el estudio de miembros 
sometidos a flexión pura. Dos modelos que explican el comportamiento en tensión del 
FRC son estudiados: σ−ε (tensión-deformación) y σ−w (tensión-apertura de grieta). El 
trabajo llevado a cabo esta centrado en (1) cálculos analíticos utilizando análisis no 
lineal (2) cálculos usando un modelo de elementos finitos. Todos los datos que son 
necesarios para analizar vigas y losas son presentados, así como un estudio detallado 
de las actuales expresiones disponibles para calcular un valor realista de la distancia 
entre grietas. Algunos de estos valores son extraídos de tests anteriormente realizados 
mientras que otros son obtenidos usando códigos habituales de diseño como el 
eurocódigo 2 (EC2). 

La tesis concluye que ambas aproximaciones pueden ser utilizadas en diseño, pero son 
necesarias algunas modificaciones en una de ellas (σ−ε) para obtener un resultado 
similar en ambas. También es demostrado que el modelo σ−ε no es adecuado para ser 
utilizado en modelos de elementos finitos y que el modelo σ−w es una aproximación 
realmente buena. No se ha identificado ningún efecto de forma comparando los 
resultados analíticos con los de elementos finitos cosa que también demuestra que la 
influencia de la distancia entre grietas no es tan importante cuando se está analizando 
el estado límite de servicio. 

 

Key words: concrete, fibre-reinforced, crack-spacing, stress-crack opening 
relationship, non-linear analysis 
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1  Introduction 

1.1 Fibre reinforced concrete.  

Fibre reinforced concrete is a composite material that is made of concrete and short 
fibres. The fibres can be considered as, more ore less, uniformly distributed and their 
orientation is usually random. Fibre-reinforced concrete can also be combined with 
conventional reinforcement (steel bars) and post-tensioning or prestressing.  

Although fibre-reinforced concrete is a relatively young material, some cultures have 
used fibres as reinforcement in other materials in different ways. For example, old 
buildings were made of clay and straw fibres, and the builders made them without any 
significant technical knowledge. 

Currently, the use of fibres has gone through a quite big development in the last 30 
years, see e.g. Zollo (1997). There are many applications for fibres e.g. cars, industrial 
devices, etc. but the application that is going to be treated in the thesis is the fibre 
reinforced concrete (FRC). 

Traditionally steel bars have been used to improve the tensile behaviour of concrete 
structures. But nowadays, the increased cost of steel has made it necessary to find new 
materials and ways to design the structural elements. Figure 1 shows the development 
of steel prices in Europe during the last 11 years, although last year the prices have 
decreased a bit, they are still high. 

 

Figure 1.1a Prices of steel in Europe from 1994 to 2005 (from www.CRUspi.com) 

There are many kinds of fibres that can be used in FRC: steel, glass, polymeric, 
carbon, etc. but the most common type is the steel fibres. The other type of fibres 
could be very important in the future if the cost of the steel continues to increase. 

Apart from the issue of the cost, there are many advantages in the use of FRC: 

• Improved post-peak response in flexural, which means increased capacity to 
carry load. The post-peak response usually begins when elastic limit of the 
concrete in tension is reached, see chapter 2. 
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• Improved tensile ductility. 

• Possible to achieve a 3-D distribution of the fibres, which is favourable for 
triaxial loads. 

• Excellent repair material, e.g. old structures. 

• Probably reduced cost of the execution of the work, moreover, the work 
techniques of manufacturing and distribute fibres are developing quite fast. 
See Li (2002). 

• Advantages in durability 

There is, nevertheless, not so much information about the structural behaviour of the 
FRC structures and if it is possible that the conventional reinforcement can be avoided 
completely.  

Hence, there is a long path to travel until FRC is a commonly used material. 

1.2 Applications of FRC 

Most of the actual applications of FRC are in non-structural or semistructural 
elements. This is mostly due to the fact that there is no completely developed code 
available or a systematic guide to design elements made of FRC.  

Examples of applications are: pavements, walls, beams, slabs, tunnel-linings, etc. The 
use of FRC in these applications also leads to improvements in their behaviour. These 
depend on the type of load, Li (2002): 

• Flexural members  Improves the post-peak response and increase the post-
peak load. 

• Shear loads  Increased shear capacity and post-cracking safety. 

• Torsion loads  Increased torsional capacity and post-cracking safety. 

• Uniaxial tension-members  increased joint spacing and reduced crack 
widths. 

New application areas may be discovered as more tests and investigations are 
conducted. For that reason, it is important to define a good and not too complicated 
code that is useful for all the designers who want to use FRC. 

1.3 Background 

RILEM (International union of laboratories and experts in construction materials) is 
an association that has been involved in different studies about FRC among other 
issues. Several countries may adopt the RILEM TC 162-TDF recommendations due 
to the lack of other design codes or recommendations.  
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RILEM has developed two models that try to define the behaviour of FRC, see 
RILEM TC 162-TDF (2003). It is very important to get a good theoretical model in 
order to facilitate the designers and extend the use of FRC to structural elements. 
Another important issue is the importance of knowing the properties of FRC. There 
are many parameters that are important like w/c-ratio (mix design), class of steel, 
shape of the fibres, and quantity of fibres. Shape and class of the fibres are obviously 
very easy to determine, but some properties of the FRC, like tensile strength, and the 
exact amount of fibres and where are they located, are not so easy to determine. Some 
tests are being developed in order to obtain flexural parameters of FRC, and a 
comparison between them has been made, while others are developed to obtain uni-
axial properties i.e. σ−w, see Löfgren et al. (2005). The wedge split test (WST) and 
three point bending test (3PBT) are two of them. 

1.4 Aim and scope of the thesis 

The aim of the thesis is to analyse what is the most appropriate model to design and 
calculate different structures made of fibre reinforced concrete. This is very important 
because the most appropriate approach or the easiest to apply should be use by the 
future article of the code about FRC. The thesis will analyse what is the most realistic 
approach in the ultimate limit state (ULS) and the service limit state (SLS).  

Laboratory test have been used to determine the values of the constants according to 
RILEM specifications. These values have then been introduced in FEM software 
(DIANA) to simulate the behaviour. Also some equilibrium equations are derived in 
order to obtain the value that can be obtained by hand calculations. Both ways of 
analysis are compared in order to decide the validity of the approaches. 

Also 3 different sizes and 3 different mixes (concrete with fibres) have been analysed 
to investigate the effects that can be distinguished by the models if a change of these 
factors are done. The effect of the bond slip is also considered in the FEM 
calculations although it is not considered in the analytical analysis. 

Finally, in this thesis, it has also been important to use a realistic value for the spacing 
between cracks when an element is being loaded. Different proposals have been 
analysed and finally one of those has been chosen as the most appropriate to be used 
in this thesis. 

1.5 Limitations 

The thesis is limited to the analysis of these elements: 

• behaviour of beams in flexural have been analysed. 
• behaviour of slabs in flexural have been analysed. 

It is not considered the time-dependent effects in the concrete like creep or shrinkage.  

1.6 Outline of the thesis 

The thesis consists of 8 chapters that are numbered in chronological order. It allows a 
good understanding of the research process from the beginning to the end. 
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In the second chapter, the theoretical basis about the RILEM material models is 
presented and the approaches are studied in order to get a good understanding of 
them. It is also shown how to calculate all the values that are needed for the hand 
calculations and numerical analysis.  

In the third chapter analytical expressions to obtain some the variables when the 
element is being loaded are derived. Also a study of the approaches available for 
obtaining the crack spacing in flexural elements is made.  

The forth chapter explain the FEM models that have been developed for both 
approaches and the inputs that have to be chosen in order to get the appropriate 
accuracy in the results.  

The fifth chapter explains the numerical values of all the constants required for the 
hand calculations and the FEM analysis. Furthermore, the values for the crack spacing 
using the different approaches are compared and one of the approaches is chosen as 
the most appropriate.  

The sixth chapter explains all the results obtained in the analytical calculations as well 
as in the FEM calculations. Values for the crack spacing are presented and 
comparisons between the results introducing variations as height of the element, 
quantity of fibres or concrete strength are made. Also changes in some values of the 
RILEM constants are introduced in order to obtain a better accuracy of the results. 

Chapter seven includes the summary, conclusions and suggestion for future research 
in the FRC design field. 
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2 Approaches to analyse the flexural behaviour of 
FRC  

In this chapter, a theoretical basis about the two approaches developed by RILEM TC 
162-TDF will be explained. The models explain the behaviour of fibre reinforced 
concrete before and after peak-load.  

2.1 The σ−ε approach 

This approach is based on more or less the same fundamentals that are used for 
normal reinforced concrete. However, when normal reinforced concrete is analysed, 
or used for designing, the σ−ε relationship is very different. This is due to that FRC 
has a post-cracking resistance, the fibres make a bridge between the cracks and make 
possible for the concrete to carry a tensile load across the crack, see figure 2.1 

 

  (a)           (b) 

Figure 2.1 Crack process in FRC where fibre bridging occurs, from Löfgren 
(2005) and RILEM TC 162-TDF (2003). 

Figure 2.1a and 2.1b show the real behaviour and the model used for the design of 
normal reinforced plain concrete elements that are tested in uniaxial tension: 

 

Figure 2.1a σ−ε relationship (Uniaxial tension tests) in plane reinforced concrete 

Figure 2.1b model used for the design of plane reinforced concrete elements. The 
post-peak resistance is neglected 

Design 
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Figure 2.2 shows the simplified behaviour of FRC and plain concrete when loaded in 
uniaxial tension, it also can be appreciated that a general behaviour is that the load 
carrying capacity can be improved if more fibres are added (fibre volume). 

 

Figure 2.2 Example of the behaviour of FRC and plain concrete. From cement and 
concrete institute, www.cnci.org.za 

To define all the parameters of the RILEM TC 162-TDF σ−ε model, some constants 
and properties of the concrete have to be known: 

fcm is the mean compressive strength of fibre reinforced concrete obtained by concrete 
cylinder test and fR,i is the residual flexure strength. The residual flexure strength can 
be determined by conducting a three point bending test and is calculated using the 
following expression, see RILEM TC 162-TDF (2003): 

sp

iR
iR bh

LF
f 2

,
, 2

3
=  (N/mm2)                    (2.1) 

sp

L
Lfct bh

LF
f 2, 2

3
= (N/mm2)                 (2.2) 

Where: 

b is the width of the specimen (mm) 

hsp is the distance between the tip of the notch and top of cross section (mm). View 
section 5.1 

L is the span of the specimen (mm) 

FR,i is the load recorded at CMODi or δR,i (N) 

LF  is the maximum load in the interval (δ or CMOD) of 0.05mm 

When all the parameters are known, the design model can be defined. Figure 2.3 
shows the stress-strain diagram that defines the behaviour of the FRC element. By 
means of the following expressions it is possible to calculate all the points of the 
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tensile stress-strain diagram and the Young’s Modulus in compression and in tension 
for this approach (the same in both cases). 

It is important to underline that test results are needed to calculate most of the 
parameters, but there are two variables (h and d) that has to be included from the real 
element that is going to be analysed. In other words, the test is just used to calculate 
the iRf , parameters but not the σi values if the cross-sectional height of the considered 
element is different than the tested one.  

 

Figure 2.3 Stress-Strain diagram of FRC (σ−ε approach) 

Where: 

( ) clfctm Edf /     m)in  (d   6.17.0 11,1 σεσ =−⋅=                          (2.3) 

‰1.0                           45.0 121,2 +=⋅⋅= εεκσ hRf               (2.4) 

‰25                           37.0 34,3 =⋅⋅= εκσ hRf               (2.5) 

( )                        9500 3
1

c fcmfE ⋅=                 (2.6)
    

In the model, a size factor has been introduced, which is necessary to apply if the 
height of the beam or slab is different from the tested one, as it is in most cases. 
RILEM TC 162-TDF (2003) explains the use of this factor, stating that when a 
comparison with experimental results was made, a strong overestimation of the load 
carrying capacity was found. They also underline that the origin of the size-effect is 
not fully understood. Nanakorn and Horii (1996), suggests that a size-factor could 
exist due to that the crack lengths are very different if the size is changed. Therefore, 
if the length of the crack changes, regarding the stress-crack opening relationship, the 
load carried will vary. Moreover, it is known that the fibre orientation is influenced by 
the structural dimensions and this will have an direct effect on the behaviour which 
may be interpreted as a size-effect. Löfgren (2005) proposed an approach to consider 

3.5 

σc 

σ1 

σ2 

σ3 

ε3 

εc [‰] 
ε1 ε2 

σc 
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this effect by adjusting for the difference in fibre orientation (fibre efficiency) 
between material test specimens and structural elements.  

 

 

Figure 2.4 Size factor proposed by RILEM TC 162-TDF 

The compressive stress-strain relationship is going to be defined according to EC2, 
which is presented in chapter 3. 

Note that 4,Rf  and 1,Rf  factors are calculated considering a linear elastic distribution 
in the section, figure 2.5a. Although to calculate a more realistic stress in the cracked 
zone, a constant stress in this zone could be assumed, see figure 2.5b. Furthermore, 
there is a third approach that was defined before, figure 2.5c. This is the most 
complicated approach and it is the one proposed by RILEM TC 162-TDF, which is 
going to be used in the calculations proposed but it is not used to calculate the values 
of the curve. 

0

 

Figure 2.5a Stress distribution. Assumption 1 

Figure 2.5b  Stress distribution. Assumption 2 

Figure 2.5c  Stress distribution. Assumption 3 

 

σ 

y 
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5.12][6.00.1 ≤≤

−
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2.2 The σ−w  approach 

This model is based on fracture mechanics and the relationship between stress and 
crack opening, see Hillerborg (1980). When a concrete specimen, loaded in tensile, is 
cracking three zones can be distinguished, namely (see Figure 2.6): cracked, a 
fictitious crack (fracture process zone), and un-cracked. 

When no crack is present, the behaviour is assumed as linear elastic. When a crack 
appears, the fractured zone is modelled as a fictitious crack. Stresses within the 
fictitious crack are related to the displacement (w), and the stresses outside the 
fictitious crack are related to the strain (ε). Only if the stress is higher than fct it is 
considered as a cracked zone. It is also important to distinguish between a real crack 
and a fictitious crack. A real crack does not transfer stresses whereas the fictitious 
crack does. Although a crack is visible, it is only a real crack if the stress on it is zero. 
Otherwise it is a fictitious crack. For fibre reinforced concrete this definition means 
that, in the range of crack openings that are of interest, only fictitious cracks are 
present. 

Figure 2.6 explains the fictitious crack model; note the difference between the fracture 
zone and the non-fracture zone. The maximum stress is in the vertex of the hinge. 

 

Figure 2.6 Fictitious crack model 

For FRC, the σ−w relationship can be divided into a contribution from the concrete 
and from the fibres. However, it is necessary to find a relationship which is not too 
complicated but that provides a sufficient diagram that can be used as an 
approximation. The σ−w relationship is usually determined by conducting tests and, 
in some way, analysing the test results. But these often non-linear curves are not 
practical for design purpose, so it is necessary to obtain an acceptable approximation. 
An example of a multilinear σ−w relationship obtained from test results can be seen in 
figure 2.7. 

Fictitious crack w 
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σ=f(w) 
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Figure 2.7 Multilinear Approach for the σ−w relationship 

A reasonable approximation is the bi-linear relationship, see figure 2.8. The first part 
of the graph describes the cracking of concrete, which drops quickly, whereas the 
second part relates to the contribution of the fibres, which decreases slowly. 

 

Figure 2.8 Bilinear stress-crack opening relationship 

The bi-linear relationship can be described using the following mathematical 
expression:  

⎪
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Hence, four parameters are required to completely define the material. Of course it is 
also needed to know the modulus of elasticity Ec, but this can be determined by means 
of the expression proposed by EC2, see chapter 5. 

If all the expression is divided by fct it is possible to obtain another expression that 
also can be used: 

w1 wc
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This expression can be represented in a graph, see figure 2.9. 

 
 
Figure 2.9 Another expression of bilinear stress-crack opening relationship 

Figure 2.10 shows the representation of the stress on the element by means of this 
model (bilinear approach): 

 

Figure 2.10 Stress on the cracked element with the bilinear approach 
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3 Analytical analysis of a cross section 
In this chapter, general considerations about the behaviour of the elements, which are 
to be studied, have been written. Furthermore, the analytical models and their 
equations are presented. 

3.1 The σ−ε approach 

3.1.1 Material models 

3.1.1.1 Concrete in Compression 

A continuous equation has been chosen according to the recommendation of EC2 for 
the use in a non-linear analysis and make easy to solve the model (Ecm is replaced by 
Ec regarding the notation). See figure 3.1. 

 

Figure 3.1 Stress-strain diagram of concrete in compression. EC2 

This curve has an analytical definition: 

( )  
))((21
))(())(())((

2

⎥
⎦

⎤
⎢
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⋅−+
−⋅

−=
yk
yykfy cmc εη

εηεηεσ                 (3.1) 

Where 
1

)())((
c

yy
ε

εεη =                  (3.2) 

And 
cm

cc

f
E

k 105.1
ε⋅

⋅=                                                                                               (3.3) 

An approximate definition is the secant value between σc=0 and σc=0.4·fcm (tangent 
of the angle with the x axis). As the strain which yields a stress of 0.4·fcm is unknown 
and it should be necessary to solve the equation, an alternative equation is proposed: 

3.0

10
22 ⎟

⎠
⎞

⎜
⎝
⎛⋅= cm

c
f

E GPa with fcm expressed in MPa             (3.4) 
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3.1.1.2 Concrete in Tension 

),( yct εσ is derived from the tri-linear stress-strain relationship proposed by RILEM 
that was showed in chapter 2 (see appendix C for the whole derivation) and figure 3.2  

 

Figure 3.2 Stress and strain diagram (σ−ε approach) 
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3.1.1.3 Conventional reinforcement 

The characteristic stress-strain relationship for the steel is chosen according to EC2 
see figure 3.3: 

 

Figure 3.3 Characteristic stress-strain diagram of reinforcement 
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Due to that, the stress-strain equation is (see appendix C for the whole derivation): 
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3.1.2 ULS: Flexural and loaded with normal force behaviour 

First of all there are some assumptions that are made in the RILEM approach to 
complete the proposed model, and taken in account in the analytical model: 

• Plane sections remain plane (Bernoulli hypothesis) 

• The stress-strain diagram is the one showed in the figure 2.3 

• The stresses in the reinforcement are derived from a bi-linear stress-strain 
diagram based on the EC2  

• The limit strain in compression is -3.5‰ 

• The maximum allowable crack opening is 3.5 mm to ensure enough anchorage 
capacity for the steel fibres. 

• For SFRC with conventional reinforcement (bars) the strain at the position of 
the reinforcement is limited to 25‰ 

• In some cases the contribution of steel fibres must be reduced, but this is 
dependent on the exposure class 

 

3.1.2.1 Failure occurs at the same time in concrete as in reinforcement. 
Equilibrium equations 

This is a special case, and not always realistic but it could be a first approximation in 
order to derive the equations. 

The distribution of stress and strain is for a beam in ULS (loaded by a moment and a 
normal force) if it is supposed that failure of the concrete in compression and the 
reinforcement occurs at the same time can be seen in figure 3.4. The position of the 
neutral axis is then predefined. 

Then, the equilibrium equation can be like that: 
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NFFF sctfc +++=0                  (3.7)
  

Where: 

fcF  is the compressive force supported by concrete 

ctF is the tensile force supported by concrete 

sF   is the tensile force supported by steel 

N    is the possible external normal load 

 

Figure 3.4 Stress and strain diagram (σ−ε approach) 

 

The equilibrium equation can be written by means of stresses like this: 
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Where: 

),( ycc εσ is the compressive stress in concrete (above the neutral axis) 

),( yct εσ is the tensile stress in concrete (due to the fibres) 

sσ  is the tensile stress in the conventional reinforcement 

sA  is the total cross-sectional area for the conventional reinforcement 
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Concrete in compression. The equations regarding the concrete in compression have 
to be changed in order to find the relationship between the strain and the position of 
the neutral axis )(yε . This has to be done according to figure 3.1 and 3.4. The result is 
the equation (3.9).The complete derivation can be found in Appendix C.  
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Concrete in tension. If equation (3.5) is expressed by means of y according to figure 
3.2 and 3.4, it yields the equation (3.10). The complete derivation can be found in 
Appendix C. 
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Where sε is the limit of strain of the conventional reinforcement that is the same as 
the limit proposed for the strain of concrete at the position of the reinforcement 
(25‰). 

Conventional reinforcement. According to figure 3.3 the equation that defines the 
behaviour of the reinforcement bars is equation (3.6) showed before. As the strain in 
the reinforcement is supposed to be the maximum permitted in FRC (25‰) the 
equation can be written as: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⋅
=           

1000
25)1(

yk
s

yk

s

yk
uk

syk
s f

E
f

E
f

kf

ε
σ             (3.11) 

(3.10) 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 
17

If these stress terms are added, the final equilibrium equation is obtained. Hence, from 
this equilibrium equation is possible to obtain the position of the neutral axis y0. 
Although its value is predefined because the limits of the strain curve are known, it is 
necessary that exists a real equilibrium. That means that the amount of reinforcement 
has to be exactly one defined value to produce the balance failure. 

When the position of the neutral axis is known, the moment equilibrium equation can 
be solved in order to know the maximum moment that can be supported. The equation 
taking the top concrete point as a reference: 

Rsctcc MMMM +++=0                (3.12) 

Rss

d

y
ct

y
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0

0

),(),(0
0

          (3.13) 

Where ),( ycc εσ , ),( yct εσ and sσ are the same than defined at (3.9), (3.10) and (3.11) 
respectively. 

 

3.1.2.2 Failure occurs at different time in reinforcement as in concrete. 
Equilibrium equations 

The assumption that the failure occurs at the same time in the reinforcement and 
concrete is not so common. Normally concrete elements are designed in the way that 
yielding in the reinforcement happens before that the concrete failure because the last 
one is more critical and dangerous than the first one. 

Due to that, another diagram is proposed. In this diagram, different values will be 
given to the strain in the reinforcement position until the allowable limit is reached. It 
is also necessary to check if the strain in the top is less than the limit for the 
compressed concrete. If it is not, the assumption of the failure of the FRC in tension is 
false, and the concrete will fail in compression before. Note that the failure criteria is 
the same that is used in the RILEM recommendations (strain in the concrete at the 
level of the reinforcement must be less or equal than 25‰). Figure 3.5 shows the new 
proposed diagram. 
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Figure 3.5 alternative strain diagram of a cross-section 

Where 
ryd

s 1

01

=
−

=
ε

κ                           (3.14) 

Where κ is the curvature of the beam and r is the curvature radius. 

This new diagram yields new equilibrium equations. It has to be noticed that with this 
assumptions it is possible to take an advantage of the tensile resistance of FRC 
between y=d and y=h (RILEM does not take into account this contribution of FRC). 
This is quite important in order to compare both approaches (σ−ε  and σ−w), because 
the stress-crack opening relationship considers the contribution of the concrete in all 
the height. 
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Concrete in compression. The new equation for the concrete in compression is (see 
appendix C for the whole derivation): 
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Concrete in tension. The equation for the concrete in tension is (see appendix C for 
the complete derivation): 
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Conventional reinforcement. The equation for the reinforcement (see appendix C for 
the whole derivation): 
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3.1.3 SLS: Cracking 

RILEM TC 162-TDF proposes an expression to calculate the crack width based on the 
same expression that it is used in EC2, see equation 3.18 

smcrack sw εβ ⋅⋅=                 (3.20) 

Where crackβ is a constant which takes into account the size effect, s is is the crack 
spacing which can be calculated as different ways as it is showed in 3.2.3, and smε is 
the mean steel strain in the reinforcement allowed under relevant combination of 
loads for the effects of tension stiffening, shrinkage… 

The value of the crack width calculated using this expression is a design crack width 
value. Hence, it not has sense to compare this values with the characteristics ones 
obtained using the σ−w approach which do not consider other additional effects. 

 

 

(3.18) 
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3.2 The σ−w approach 

3.2.1 The cracked non-linear hinge model 

The basis of the cracked hinge model is the concept of the fictitious crack model 
developed by Hillerborg, see Hillerborg (1980). It basically consists of considering 
the element as divided in two zones: zone 1 is where a crack is being developed, 
which is modelled as a non-linear hinge; and zone 2 which is the non cracked part 
which maintains the elastic behaviour, see Olesen (2001). Of course many cracks and, 
obviously, many non-linear hinges can occur at the same time in an element such as a 
beam. 

In order to keep the equilibrium it is supposed that the end faces of the non linear 
hinge remain plane, are connected to the rest of the structural, and are loaded with the 
generalized stress in the element, see RILEM TC 162-TDF (2003). The length of the 
non-linear hinge is s, and its value is not quite easy to determine. A further study 
about this value is carried out in chapter 3.3. Figure 3.6 shows the non-linear hinge 
model. 

 

Figure 3.6 Non-linear hinge model, from Löfgren (2005)  

3.2.2 ULS: Flexural and loaded with normal force behaviour 

There are some assumptions that are important in order to simplify the model and 
make it suitable to be used easier. The assumptions depend on the model and there are 
three models proposed by RILEM TC 162-TDF (2003): 

• The first one (Pedersen, 1996) assumes that the fictitious crack surfaces 
remain plane, and that the opening angle is the same as the overall 
deformation of the non linear hinge. It is the easiest of the three ones. It is also 
assumed that ϕ = ϕ∗. See figure 3.7a. 

s 

ELASTIC 
ELASTIC 

NON-LINEAR 
(elastic behaviour 
outside the hinge) 
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Figure 3.7a Non-linear hinge model 1, first kinematic assumption (Pedersen, 1996) 

Figure 3.7b Non-linear hinge model 1, third kinematic assumption (Olesen, 2001) 

• The second approach was used by Casanova and Rossi (1996 & 1997). The 
fictitious crack surface remains plane and the opening angle is the same as the 
overall deformation of the non linear hinge. But the difference is that the 
curvature variation is based on an assumption of parabolic variation. 

• In the third approach, the fictitious crack surface does not remain plane and 
the deformation of that is governed by the stress crack opening relationship. 
This is the most complicated model to solve, even using mathematical 
software. It was developed by Olesen (2001). See figure 3.7b. 

If a comparison between first and third approach is made, it can be seen (studying the 
moment versus the turn of the section) that there are only small differences between 
the approaches. Hence, the first approach is a really good approach, at least for FRC 
with conventional reinforcement. See figure 3.8 and 3.9 (further information about the 
model one and the derivations can be founded in next chapters). 
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Figure 3.8 Comparison between Pedersen (1996) and Olesen (2001). 125mm beam 
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Figure 3.9 Comparison between Pedersen (1996) and Olesen (2001). 500mm beam 

Based on this investigation, no significant difference was observed for the two 
approaches and thus the first model will be used and the equations that govern it are 
going to be explained.  

The curvature of the non-linear hinge is: 

s
ϕκ =                              (3.21) 

And the crack mouth opening displacement (CMOD), as it can be seen in the figure 
3.10, is: 

awc ⋅= *mod ϕ                  (3.22) 

In the figure 3.10 the stress and the cross section is represented to have a clearer 
vision of the equilibrium of forces and moments: 
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Figure 3.10 Non-linear hinge model 1, stress distribution 
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To obtain the equations that are needed to define the behaviour of the cross section, 
the procedure is quite similar to the derivation in the σ−ε approach. The equilibrium 
of forces are: 

 NFFFF sctfctecc ++++=0                           (3.23) 

Where: 

ccF  is the compressive force supported by concrete. 

cteF  is the tensile force supported by concrete in the elastic part of the curve. 

ctfF  is the tensile force supported by concrete in the fractured part of the curve. 

sF     is the tensile force supported by steel. 

From this equation (3.23) the following general equation can be derived: 
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Where: 

a is the length of the crack, which can also be written in function of ϕ as: 
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See figure 3.11. 

 

 

 

 

 

 

 

Figure 3.11 Relation between a and ϕ  

),( ycc εσ is, like in the σ−ε model, the stress-strain relationship for the concrete in 
compression zone, see equation (3.25).  
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It is necessary to transform the equation in another one which depends only on y (see 
Appendix C): 
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The behaviour of concrete in the elastic tensile zone can be obtained by means of this 
expression which is based on the geometrical assumptions: 
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As it was explained in the section 2.2 the σ−w relationship is: 
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This relationship has to be expressed by means of y: 
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And sσ is the same than it is showed in the equation (3.6) 

Providing values of ϕ, it is possible to calculate the position of the neutral axis y0, if 
the length of the non-linear hinge s is known. Note that the crack opening can be 
expressed as: 
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( ) cwwyyyw ≥−⋅=  if   )( 0ϕ                (3.31) 

Then it is possible to derive the moment equilibrium equation and to determine the 
maximum moment that can be supported: 

Rsctfctecc MMMMM ++++=0   that yields              (3.32) 
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3.3 SLS: Crack spacing 

3.3.1 Introduction 

The values of s (crack spacing) depend, in general, on the type of structural element, 
its dimensions, and the amount, type, and dimension of the reinforcement. The studies 
that have been published (see e.g. Borosnyói A. and Balázs (2005) and JSCE (1997)) 
are concentrated mainly on conventional reinforced concrete, and articles dealing with 
fibre-reinforced concrete and the possibilities to modify the conventional crack 
spacing models are not that many. Due to this lack of a “universal” formula, it is 
necessary to choose one of the proposed. 

Most of the values proposed for s are based on the concept of transfer length. If a load 
is applied to a reinforced concrete element there is a difference between the strain of 
the reinforcement and the surrounding concrete. To transfer the load from the 
reinforcement to the concrete a certain transfer length is required. 

The first crack is generally formed at a random place that coincides with a weak 
section. When a crack is formed in plane concrete, the stress in the concrete instantly 
becomes zero, and the tensile force is carried by the reinforcement. But at a distance 
from the crack the concrete starts to carry stresses and the larger the distance the 
higher the stress is in the concrete. When the distance from the crack is enough the 
compatibility of strain is recovered and the stress in the concrete approaches the 
tensile strength. Due to that the crack spacing is mainly governed by these variables: 

• The stress in the steel at the crack, which depends on the steel material and 
geometrical properties 

• The bond-slip behaviour, i.e. the bond behaviour of the reinforcement bar 
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• The concrete cover and concrete strength 

When the load is increased, the crack spacing decreases until it reaches the minimum 
value. See figure 3.12. 

 

Figure 3.12 Evolution of the crack spacing when load is increased. From Borosnyói 
and Balázs (2005). 

When the minimum value is reached, the previously mentioned transfer lengths in the 
cracks reach each other due to the fact that the crack spacing is very short. 

It is also important to define the so called Ac,eff. This is the contribution of the concrete 
in tension, but it is not the same as the tensile area of the concrete. To calculate this 
value a non-linear expression should be use. However in order to facilitate the 
calculations in design issues, some simplifications in the expression are available to 
be used. 

As a consequence of the bond-slip, the strain of the reinforcement is not constant 
along the longitudinal axis of the bar. It also produces a contribution of the concrete 
increasing the stiffness of the concrete (some force is transferred to the adjacent 
concrete), see Borosnyói and Balázs (2005).  Figure 3.13 shows the mechanism of the 
strain variation along the crack distance. 

 

Figure 3.13 Strain and bond stress distribution between cracks. From Borosnyói 
and Balázs (2005). 
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For fibre reinforced concrete, the problem is that traditional formulas for plane 
concrete cannot be used because the crack spacing is different due to the fibre 
bridging at the crack. Apart from the factors that govern the crack spacing mentioned 
before, two new factors have to be introduced: 

• Diameter and length of the fibres, i.e. fibre slenderness factor 

• Volume of fibres 

When fibres are including into the plane reinforced concrete, there will be a bridging 
effect at the cracks. This effect includes a new stress that could be called fibre 
bridging stress, see figure 3.14. Also in this figure the differences between the stresses 
of reinforcement bar, plane concrete and fibre reinforced concrete can be seen when a 
normal load is applied. 
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 Figure 3.14 Response of reinforced tensile member. 

This new effect should be appropriately introduced, e.g. by a new term in the 
proposed formulations to take into account the presence and the behaviour of the 
fibres regarding crack spacing. 

3.3.2 Analytical approaches of the crack spacing 

There are some analytical approaches that are suitable to be used in order to estimate 
the length of the non-linear hinge. 

RILEM rough proposition: 

2,
hs RILEMm =                   (3.34) 
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This value is considered an adequate choice and is proposed by RILEM TC-162 TDF. 
Maybe it is a good choice if there is not conventional reinforcement in the element, 
but there are not test results which allow to corroborate if the assumption is true.  

Eurocode 2 proposition and variations: 

Now the assumption that appears in the Eurocode 2 and its variations is analysed. The 
formula can be derived analysing a reinforced tension rod loaded with a normal force. 
The rod is reinforced with a reinforced bar (area As). For this case, fibres are going to 
be introduced in order to obtain a formula that takes into account the fibre bridging 
effect. Figure 3.15 shows the zone that is analysed. The maximum distance between 
cracks sr,max is equal to 2·lt,max+2·Δr, where lt,max is the maximum transfer length and 
Δr is the damage region that is considered that does not transfer bond stresses; see 
Engström (2004). 

It can be seen that at the crack, fibre reinforced concrete transfer σw. As it was 
explained before, σw depends on the crack opening. Along the rod, the stress increases 
until it reaches the fct value because the transfer length mechanism. Also the bond 
stress τb varies along the length, so it can be convenient to take an average value τbm: 

τ
τ

bm

b

l

t,max

x dx

l

t max

=
∫ ( ),

0                 (3.35) 

If the equilibrium equations are derived in a lt,max+Δr length, see figure 3.11: 

cctcwmaxr,bbm AfArs ⋅=⋅+Δ−⋅⋅⋅ σφπτ )5,0(                                              (3.36) 
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Figure 3.15 Equilibrium forces in a fibre reinforced concrete rod. Based on 
Engström (2004). 
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It is better to consider the effective tension area because for a beam or slab not all the 
concrete area is subjected to the tensile stress. As it was mentioned, this area depends 
on the distance to the crack. In order to simplify the equation, is assumed as a constant 

value that is the lesser of bdhA effc ⋅−⋅= )(5.2, , bhA effc ⋅=
2, or b

yh
A effc ⋅

−
=

3
)( 0

, , 

where y0 is the distant to the neutral axis measured from the top (expressions taken 
from EC2).                 (3.37) 

So, it yields: 
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Where ρeff  is the effective reinforcement ratio and φb  is the average diameter of the 
conventional reinforcement bars. If (3.38) is introduced into (3.36), it yields: 
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The minimum crack spacing can be defined as half of the maximum crack spacing: 
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So, if the average crack spacing is considering as the average value of (3.38) and 
(3.39): 
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The average bond stress, depends either on the properties of the concrete and of the 
reinforcement. Based on experimental results, a formula has been derived: 

ctbm f
k

⋅
⋅

=
12

3τ                 (3.42) 

Where 1k  takes into account the properties of the conventional reinforcement bars and 
has the value of 0.8 for high bond (ribbed) bars, 1.2 for indented bars and 1.6 for plain 
(smooth) bars.  

If the damage region is considered with a length of 
5.1

2 cov er
b

u
r +⋅≈Δ φ , where erucov  is 

the cover of the reinforcement bars, and equation (3.42) is inserted in (3.41): 
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So it can be seen that the crack spacing can be reduced using low diameters of 
reinforcements (using the same reinforcement ratio), using reinforcement with better 
bond properties, increasing reinforcement ratio and ratio between the bridging stress 
and concrete tensile stress. Also, a new term has to be introduced in order to consider 
the effects of strain distribution: 
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Where 2k has the value 0.5 for bending and 1.0 for pure tension. 

A new constant can be defined for the fibre contribution: 
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And if expression (3.44) is introduced into (3.43): 
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If there is no fibres in the concrete, the term κ3 becomes one and also if it is 
considered that 503 cov ≈+⋅ erb uφ . The formula that appears in the EC2 is derived: 

)(25.050 212, mmkks
eff

b
ECm ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅⋅+=

ρ
φ

             (3.47) 

There are studies, see Vandewalle (2000) and Vandewalle and Dupont (2003), which 
has suggested that the spacing of cracking decrease when more quantity of fibres are 
included but finally a fibre volume factor is not included in the final expression. This 
is because the influence of fibre volume is considered by the author as not as 
important as other factors. Vandewalle (2000) proposed to add a new term to take into 
account the effect of fibres, but this factor does not depend on fibre volume or any 
size variable as the same geometry was studied in the tests. The alternative expression 
by Vandewalle (2000), which is also considered by RILEM TC 162-TDF (2003), is: 
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fibL ; The length of the fibres disposed 

fibφ ; The diameter of the fibres 

Borosnyói and Balázs proposition: 
 
There are another study carried out by Borosnyói and Balázs (2005) that analyse the 
spacing and width of the cracks in a loaded reinforced concrete. However, the article 
is focused on plane concrete. In addition the formulas proposed are simply compiled, 
but there is not any test to check them. So this is not really a fourth proposition but a 
high quantity of propositions. 
Basically the formulas take into account all the factors that have an influence into 
crack spacing. The basis expression which is proposed is: 
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Where ucover is the cover of the reinforcement and uspac is the spacing of the 
reinforcement bars. However these expressions are not further studied in this thesis 
because they are pointed in conventional reinforced concrete and they are considered 
as useful. 
 
Ibrahim and Luxmoore proposition: 
 

Finally there is another article that proposes a formula for fibre reinforced concrete, 
Ibrahim and Luxmoore (1979). It is based on the Leonhardt’s method and it has a 
quite complicated expression, but at least it takes into account the fibres, so the 
approximation should be better. The article exposes that the presence of fibres in FRC 
reduces the crack spacing and the crack width and increases the anchorage strength of 
the bars by 35-40%. The expression that is proposed is: 
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The terms of the equation have to be defined: 
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γ
τ

γ
bm

ctf
K

K == 2
2'                 (3.52) 

Where ctf is the tensile strength of concrete, τbm is the average bond strength of 
reinforcement bars embedded in ordinary concrete or fibre concrete, respectively and 
γ  is a factor representing increase of anchorage of bars due to fibre inclusion. 
Leonhardt stated that 2K can be considered as a constant and, due to that, independent 
of concrete quality. The values proposed are 0.4 for standard ribbed bars and 0.74 for 
smooth hot rolled bars. 

The γ  value can be only determinate by tests. Using linear interpolation, an analytical 
formula is proposed to calculate this constant: 

4.14.0
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⋅+= fV

γ                (3.53) 

The 3K term can be defined as: 

0.25 for pure tension 

0.125 for pure bending 

The value of  sη  is based on the ratio of the load carried by the conventional 
reinforcement relative to the total applied load. The expression proposed is: 
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pullfP , is considering 2-D random position: 
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Where dτ is the average sliding friction bond strength of fibres. 

Finally effcA . can be calculated as in equation (3.37) 

More information about crack spacing can be found in 5.6 and a comparison between 
the results is made. 
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4 Finite element model 
This chapter will explain the use of the finite element method to solve the problem 
that is being discussed.  

It is important to get a good model which can be used to make a comparison between 
the two approaches and the two methods of analysis. It is supposed that the FEM 
software should give a similar response as this element would have in the reality with 
the same material properties. The analysis will be done using a finite element software 
which is called DIANA (see TNO DIANA (2005) ).  

4.1 Material models. Flexural and loaded with normal 

Apart from the different constants of the materials, some models have to be chosen to 
make possible the comparison between the analytical and the FEM results. It is, 
therefore, necessary to choose models of the behaviour which are as closer as possible 
to the models proposed by RILEM and the Eurocode. 

4.1.1 The σ−w approach 

4.1.1.1 Non-Cracked behaviour of concrete 

The compressive zone is defined based on the total strain crack model. There are two 
options in this model: strain relations is fixed or rotating axis. The rotating axis is 
chosen because it is not necessary to use shear retention parameters. 

This total strain model has the advantages that it is not necessary to use complicated 
functions, it can also be used in concrete for compression and mathematically it does 
not require complicated iterations. This model has also disadvantages but they are not 
so important to this analysis. It cannot permit non-orthogonal multidirectional 
cracking, but in the assumptions this kind of cracks are not taking into account. At last 
this is not a good model if for example it is necessary to consider creep and shrinkage, 
see Rots (2002). 

Regarding the behaviour in compression it is possible to choose between the models 
which are presented in the figure 4.1. 

The best option consists on inserting points (multilinear model, see figure 4.1b) giving 
values to the strain and getting the stress value using the EC2 expression which has 
been explained in 3.1.1.  

The behaviour in tension is supposed elastic as in the non linear crack hinge model. 
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 Figure 4.1 Models to define the compressive behaviour. DIANA users  manual 

4.1.1.2 Cracking behaviour of concrete 

The zone that will crack can be defined as an interface zone and it has a special 
properties. The model is thus based on a discrete crack because the position of the 
crack is predefined.  

To approach the tensile behaviour of concrete, the multilinear tension softening model 
has been chosen. The main reason is that this model can be adjusted completely to the 
proposal made by RILEM in its recommendations. In DIANA, this is presented as 
mode1 (opening mode) 3 (model three – multi-linear). 

    

Figure 4.2 Models to define the tension softening behaviour σ−w. DIANA manual 

The values have to be the same as the ones used in the analytical model. It has to be 
noticed that it is necessary to give three values to completely define the curve. 
Moreover, the values of the crack opening have to be half of the normal values. This 
is due to the fact that only half of the beam is modelled whereas the analytical model 
uses the whole element, for further information see 4.2 about geometrical model. 
These values are showed in figure 4.3. 
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Figure 4.3 Values to introduce in the DIANA model (sigma-opening relationship) 

It is also defined that a crack will appear if the tensile stress reaches the limit of the 
tensile strength ft. Finally it is supposed that the stress will return directly to the elastic 
behaviour when an unloading is applied. 

I addition a constant shear stiffness modulus is chosen and it has to be an appropriate 
value in order to obtain realistic results. A very high value for the interface stiffness 
could give unexpected results. Rots (2002), recommend that this stiffness be chosen 

approximately according to this expression: Dstiffcrack=
L
E

×1000 . Where L is the 

characteristic length of the structure as can be noticed in figure 4.4. The same can be 
applied to the shear stiffness but changing the young modulus by the shear modulus: 

Dstiffcrack = L
G

×1000 . 

 

Figure 4.4 Selection of dummy interface stiffness 

The value L is calculated as half crack spacing value. Due to that, the final values for 
the dummy interface stiffness are calculated in Chapter 5.2 where the value for the 
crack spacing is decided. 
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4.1.1.3 Behaviour of the reinforcement 

The yielding condition that is used is the Von Misses criterion. The behaviour of the 
steel is showed in the next figure: 

 

Figure 4.5 Stress-strain relationship steel diagrams. DIANA manual 

Hence, the values that are needed to introduce as an input in the program are: (0, fyk), 
(εuk- fyk/Ε, ks · fyk) and (εuk,0). See figure 4.6. 

 

 

Figure 4.6 Values that define the behaviour of the reinforcement 

It can be appreciated the strain hardening after the elastic behaviour and the value εuk- 
fyk/E is an approximation.  

 

4.1.1.4 Bond-slip behaviour 

The bond mechanism consists of the contact of the concrete and the steel. Some times 
(like in the analytical calculations) it is usually assumed that the steel and the concrete 
have the same deformation. But this idealisation is not true, see chapter 3.3 about 

fyk 

0 εuk ε ≅εuk- fyk/Ε 

k · fyk  
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crack spacing. There are many factors that should be taken into account to obtain the 
most approximate solution. 

DIANA allows considering the bond-slip but it is necessary to create another interface 
element (like in the cracking zone). The laws which are proposed in DIANA are based 
on the total deformation theory that consists on obtaining the relationship between the 
traction force and the relative total displacement. The figure 4.7 shows the options 
that DIANA gives. 

 

Figure 4.7 Bond-slip models. DIANA manual 

The model which is chosen is the last one (c). It is necessary to have an expression 
describing the relationship between bond and slip, in this thesis the model according 
to Model Code 1990 was used. The equation that gives the bond stress for each 
displacement is the equation (4.1). 

β
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1
max S

Si
bond                   (4.1) 

Where: 

cmf5.2max =τ                   (4.2) 

Si=relative displacement between reinforcement and concrete 

S1=1(Good conditions) 

β=0.4 

It is also possible to calculate the final stress (limit when the displacement is very 
high) as max4.0 ττ ⋅=final . There is therefore a curve for each compressive strength 
value and this expression is only valid if the reinforcement is confined. The final 
curve for a fcm=30MPa concrete is showed in figure 4.8. The rest of the curves and the 
values can be seen in appendix B. 

It is also needed the dummy interface stiffness. It can be calculated following the next 
expression: 
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Where 05.0τ is the stress when the relative displacement is 0.05mm. 

 

Figure 4.8 Bond-slip curve for fcm=30MPa 

4.1.2 The σ−ε approach 

4.1.2.1 Behaviour of concrete 

This approach will not have a distinction between cracked and non-cracked zone, i.e. 
all elements are allowed to crack. Furthermore, it is assumed that the deformation of 
one crack can be smeared out over the element. The compressive behaviour of the 
concrete is the same as in the other approach, see 4.1.1.1. However, the tensile 
behaviour is different as it is based on a stress-strain relationship; see figure 4.9. 

 

Figure 4.9 Models to define the tension softening behaviour σ−ε. DIANA manual 

Obviously the most appropriate model is (g). Following this model it is necessary to 
define 5 points like is showed in the figure 4.10. Note that it is necessary to add one 
point (σ=0; ε=0.026) in order to specify that the strength after σ3 is reached is zero. 
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Figure 4.10 Tension softening relationship proposed by RILEM TC 162-TDF 
adapted to DIANA 

4.1.2.2 Behaviour of the reinforcement 

For the reinforcement, the same configuration as in the σ−w approach can be applied. 

4.1.2.3 Bond-slip behaviour 

For the bond-slip behaviour, the same configuration as in the σ−w approach can be 
used. 

4.2 Geometrical models and element formulation. Flexural 
tensile load. 

It is also important to define a geometrical model with an appropriate mesh. The 
models for the two approaches are similar but not the same. In both, the load will be 
applied by means of a incremental rotation because it is important not to create a shear 
load that could modify the results because of its influence. For this purpose a dummy 
beam has been created. This dummy beam will be restricted in the gravity direction 
and also its rotation direction (z). The only rotation that is allowed is the incremental 
turn that it is applied in each step. 

It is necessary to maintain the right side of the specimen rigid (plane section remains 
plane) and with the same rotation as the dummy beam. Due to that, the right side of 
the beam will be “tied” to the rotation point by means of a master-slave definition. 
This definition allows maintaining the same relationship in the displacement for both 
(eccentric relationship). 

4.2.1 The σ−w approach 

The basis model consists of a simply supported beam that is being rotated at both 
sides. It generates a pure bending moment. The length of the beam is s (non-linear 
hinge length) because it is the same length analysed in the analytical model.  As a 
crack interface zone has to be defined (with special characteristic), it is placed in the 
centre of the beam because this is the most probably place to crack first. Figure 4.11 
shows the basis model. 

ε 

σ2

σ3

σ1 
σ 

σ=0 
σ=0 ε1 ε2 ε3=0.025 ε=0.026 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

40 

 

 

 

 

  

 

 

 

Figure 4.11 Geometrical model σ−w approach 

For this approach, only half part of the model is needed because the symmetry. The 
model has the shape showed on the figure 4.12. 

 

Figure 4.12 Geometrical model σ−w approach 

The load (rotation) varies from 0 to n·Δload, where n is the number of steps that are 
performed and Δload is the length of the step. These values are showed in chapter 6 
about Results. 

4.2.1.1 Uncracked concrete elements 

The uncracked zone is meshed by using a Q8MEM element. It consists of a four-node 
quadrilateral isoparametric plane stress element, see figure 4.9. Each element is 
defined to have elastic behaviour. 
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Figure 4.13 Q8MEM element. DIANA manual 

4.2.1.2 Interface cracking zone 

This zone has to be defined as an interface element, which permits a good and easy 
measured value of the crack opening. L8IF is a typical interface element which 
consists on two lines in a two dimensional configuration, see figure 4.10. These 
elements are defined with the stress crack-opening relationship. 

 

Figure 4.14 L8IF element. DIANA manual 

It is very important to define correctly the element following the rule showed on the 
figure 4.10.a. The correct order of the nodes is 1-2-3-4. The figure 4.11 shows a 
typical connexion between a Q8MEM and a L8IF element. If this is not correctly 
defined, the result may not be realistic. 

 

Figure 4.15 Typical connexions between Q8MEM and L8IF element. DIANA 
manual 

4.2.1.3 Reinforcement zone 

This zone is meshed by a typical truss element (L2TRU) with the properties of the 
reinforcement. Each element consists on two nodes only defined in the X axis. See 
figure 4.16. 
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Figure 4.16 L2TRU element. DIANA manual 

4.2.1.4 Bond-slip zone 

The configuration is the same as in the interface cracking zone. The difference is that 
this interface element is joined to a L2TRU element and it has different properties like 
stiffness and relationship force-opening of the interface which represents the bond-
slip behaviour of the reinforcement. 

4.2.1.5 Final result 

This is the final meshing result. Logically the interface elements cannot be 
appreciated until a load is applied. 

 

Figure 4.17 DIANA meshing model, sigma-w approach. Beam height 250mm 
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4.2.2 The σ−ε  approach 

The model is very similar to the σ−w model with the difference that the cracking 
interface zone does not exist and, therefore, all the concrete elements have the same 
properties. Due to that the interface element for the cracking zone is not necessary. 
The length of the beam will also be s/2 due to the fact that it is important to have 
models with very similar dimensions to compare the results, see figure 4.11 and 4.19. 
There was found to be a problem in this model due to a concentration of stresses at the 
right side of the beam. The reason is that there is not a weak element than in the other 
model (interface element).  

 

 

 

 

 

 

Figure 4.18 Stress concentrations in the element. Effect in the deformation 

When the rotation is applied, there is a concentration of stress in the zone that is 
showed in figure 4.18. Due to that, this part of the beam will crack before the left part 
and this is not the behaviour desired. To avoid that, it is necessary to introduce a weak 
element showed in figure 4.19. This element is defined as a 25% of the strength of a 
normal element. 

 

 

 

 Figure 4.19 Geometrical model σ−ε  approach 
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4.2.2.1 Meshing elements 

The elements are the same as in the other approach, so it is not necessary to repeat 
them again. The only difference is that the interface of the cracking zone does not 
exist. This is the meshing model that appears the same as the other case: 

 

Figure 4.20 DIANA meshing model, sigma-ε  approach. Beam height 500mm 
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5 Material and geometrical values 
This chapter presents the different values of the constants, material properties and 
geometrical dimensions that are needed to solve the different equations.  

5.1 FRC, the σ−ε approach 

As it was showed in the chapter 2, to know the values of the constants, some tests are 
necessary.  

The test used to determinate the values of the curve is the 3PBT (three-point bending 
test). Figure 5.1 shows the main approximate dimensions and the shape of this test, 
figure 5.2 shows the cross-section specimen. 

 

Figure 5.1 Three-point loading test. RILEM, bending tests and interpretation 

 

 

 

 

 

 

 

 

Figure 5.2 Cross-section specimen. RILEM, bending tests and interpretation 

hsp= 

b= 
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When a load is applied, it is possible to obtain the crack mouth opening displacement 
(CMOD), and the curve which relate them. The curve is essential to get the values of 
the residual flexure strength fR,i.  

As it is defined by RILEM, the values of FR,L, FR,1, and  FR,4 are the load applied 
when the CMOD is equal to 0.05mm (or maximum in the interval 0-0.05), 0.5mm and 
3.5mm. See the figure 5.2. 

 

Figure 5.3 Residual tensile strengths. RILEM, bending tests and interpretation 

Figure 5.4 shows a real test results from 3PBT tests, made for the 5 mixes, that are 
studied in the thesis – see Löfgren et al. (2004) and Löfgren (2005). The values of 
FR,1, FR,4 and FL are presented in the analytical calculations and in table 5.1,  
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Figure 5.4 3PBT tests for 5 different mixes. From Löfgren et al. (2004), see also 
Löfgren (2005). 

Some experimental results from tests conducted at DTU (technical university of 
Denmark) have be used to determine the properties, see Löfgren et al. (2004) and 
Löfgren (2005). Tests were made for five different mixes, table 5.1 shows the value of 
the most important constants: ffcm (see 2.1), w/b ratio (water binder ratio), Vf (volume 
fraction of fibres), aspect ratio/length of the fibres, b (width of the specimen), L 
(length between supports of the beam tested), hsp (distance between the tip of the 
notch and top of cross section). 
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Note that the fibres used in the tests were Hooked-end steel fibres (type 
DramixTM).The typical notation for the fibres are showed in figure 5.5. 

 

Figure 5.5 Notation of fibres. DRAMIX® 

In the first four mixes the type used was RC 65/60-BN, which means that fibre length 
is 60mm and the slenderness class is 65 (diameter of the fibres 0.9mm). The last mix 
had RC 65/35 fibres (diameter 0.55mm). The cement used was CEM II/A-LL 52.5 R, 
with 260 kg/m3 in mix 1 and 2, while mixes 3, 4 and 5 contained 360 kg/m3 together 
with 100 kg/m3 fly ash (with a k-faktor of 0.5). The tensile strength of the wire is 
minimum 1100 N/mm2. 

Note that in mix 4 the height is up the tolerance limit. Anyway it is considered that a 
difference of 3 mm still can be acceptable.  

Table 5.1 Different constants of the mixes tested 

 Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 

fcm[MPa] 30 26 49 44 47 

w/b ratio  0.58 0.58 0.42 0.42 0.42 

Vf  [%] 0.5 1.0 0.5 1.0 1.0 

Aspect ratio/length 65/60 65/60 65/60 65/60 65/35 

Concrete ρ [kg/m3] 2400 2400 2400 2400 2400 

Poisson coefficient (ν) 

[--] 

0.2 0.2 0.2 0.2 0.2 

b     [mm] 151.3 151.8 151.8 151.4 151.3 

L     [mm] 500 500 500 500 500 

hsp    [mm] 124.2 126.13 125.1 128.1 125.7 

FR,1  [kN] 11.34 17.72 17.48 28.50 28.39 

FR,4   [kN] 9.62 15.38 16.67 23.15 19.88 

FL      [kN] 13.43 13.46 17.27 19.84 20.00 
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As it is not possible to include all the mixes in the further analysis, two or three of 
them are chosen. However it is very interesting to show the σ−ε curve for each mix in 
one height (i.e. for h=125mm) and see the difference in function of the different 
properties. Figure 5.6 and 5.7 show this curves. 

In the appendix C, all the calculations for the rest of the heights can be found included 
in the MathCAD analytical process file.  

 

 

 

Figure 5.6 σ−ε relationship for mix 1, mix 2 and mix 3 
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Figure 5.7 σ−ε relationship for mix 5 

Some comments can be made viewing these results: 

• The two first mixes have the same ratio characteristics with the exception of 
the volume of fibres, which is higher in mix 2. As a consequence of this, a 
similar elastic limit and compressive resistance are obtained. But there is a 
considerable difference in the value of σ2 (residual flexural resistance). This 
value is higher in the mix 2 because of the higher quantity of fibres. The same 
effect occurs with σ3. 

• The rest of the mixes have a bigger resistance (in compression) because the 
concrete had less air content and a lower water-cement ratio. 

• Mix 3 and 4 has the same kind of fibres but a different dosage. The effect of 
this is a bigger residual flexural resistance and elastic limit in the case of the 
mix 4.  

• Mix 5 has fibres with a shorter length and a smaller diameter compared to the 
other mixes, but has unexpectedly a higher elastic limit and σ2 value than 
mixes 3 and 4. It means that the increasing of the length and diameter of the 
fibres does not mean a better response in flexural behaviour. Nevertheless in 
the limit of strain (0.025), the stress has a higher value for mix 4. This is a 
result of the shorter fibre used in this mix. 
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Finally the mixes chosen to be introduced in the analysis are mix 1, mix 4 and mix 5 
to have results with different resistance class of concrete, dosage and length of fibre. 
The name will be change in order to avoid confusions. Mix 1=Mix A, Mix 2=Mix B, 
Mix 3=Mix C. 

Table 5.2 Mixes chosen to be compared in the analysis ___ 

 Mix A Mix 2 Mix 3 Mix B Mix C 

ffcm [MPa] 30 26 49 44 47 

w/b ratio  0.58 0.58 0.42 0.42 0.42 

Vf [%] 0.5 1.0 0.5 1.0 1.0 

Aspect 
radio/length 

65/60 65/60 65/60 65/60 65/35 

Fibre diameter 
[mm] 

0.9 0.9 0.9 0.9 0.55 

Fibre length 
[mm] 

60 60 60 60 35 

 

5.2 FRC, the σ−w approach 

The σ-w relationship is based on inverse analyses of the three-point bending tests (the 
same that were used for the σ−ε approach) conducted by Löfgren et al. (2004) and 
(2005). After the tests, inverse analyses were conducted and it was possible to obtain 
bilinear relationships. See figure 5.6 

 

Figure 5.8 σ−w relationship for all the mixes 
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The results of the tests are the bi-linear relationship which can be derived for the 
different mixes. It is also included the dissipated energy in the crack tip (area under 
the curve). This energy can be considered the fracture energy GF, see RILEM TC-162 
TDF. As 3 points are needed to define the curve in DIANA, these values are showed 
under each curve. This approach has not size factor, so the values are the same for 
each height. 

The general expression of the σ−w relationship is the equation (2.8): 
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And due to that, the results for every mix can be derived: 
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Figure 5.9 σ−w relationship for mix 1 and mix 2 
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Figure 5.10 σ−w relationship for mix 3 and mix 4 and crack values for mix2 
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Figure 5.11 σ−w relationship for mix 5 

5.3 Conventional reinforcement 

As it was showed in chapter 3, the model of the steel reinforcement behaviour is taken 
from the latest version of the Eurocode 2.  

There are some values that are needed: 

• Εs is the modulus of elasticity. The design value can be assumed to be 200 
GPa 

• fsyk is the yielding strength.  
• ks is a constant. 
• εsuk is the characteristic limit of strain. 

These values can be found in the annex C of the Eurocode 2. See table 5.4 

However, as all the constants and curves used are based on the characteristic values, 
the curve that is used is like that: 

 

Figure 5.12 Stress-strain diagram of reinforcement to be used in the calculations 

fyk 

εsyk=fyk/Ε
 

εsuk ε 

k·fyk σ 
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Table 5.4 Values to use in the design of reinforcement (II). EC2 

 

The steel chosen for the conventional reinforcement is class B with Characteristic 
yield strength of 500MPa (B500B). Due to this election, the characteristic strain could 
be the minimum (5%), and the recommendation for the k value is 1.08 (minimum). 

Finally the ratio reinforcement/concrete approximately is approximately 0.1%, and the 
initial bar spacing is 150 mm; having these two variables it is possible to obtain the 
bar spacing and the number of bars required. The cover for the reinforcement is 
usually 25 mm (according to EC2). 

Other values that are needed are showed in the table 5.5. 

Table 5.5 Values to use in the design of reinforcement (II). 

Constant Value 

Density (ρ) 7850 kg/m3 

Young modulus (E) 200 x 109 Pa 

Poisson coefficient (ν) 0.3 
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Figure 5.13 Values to be used as input in DIANA 

5.4 Concrete in compression 

The expression for the concrete in compression according to EC2 is 
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The value of 1cε  can be obtained from the next equation taken from the EC2: 
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And, as each mix has its own compressive strength: 
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The modulus of elasticity is chosen according to the Eurocode as it was showed in 
chapter three, see equation (3.6). Numerical values are showed in table 5.6. 

Table 5.6 Values to of the young modulus of the concrete 

 Young modulus GPa 

MIX  A 30.6 

MIX  B 35.4 

MIX  C  35.0 

500MPa 

0 5% 
ε 

1.08· 500MPa =540MPa 

048.0
10200
10500

100
5

9

6

=
⋅
⋅
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5.5 Geometrical parameters 

Some parameters have to be chosen in order to analyse the different effects if some of 
the geometrical values are changed. 

It is considered that a change in the width (b) of the element will not produce an 
important effect and hence it is considered constant and equal to 1m.  

The effects of a change in the height of the element will be taken into account. Three 
different heights will be analysed 125, 250 and 500mm. Hence, the elements studied 
are showed in table 5.7. 

Table 5.7 Different combinations to be analysed 

MIX Height (h)  

h1=125mm 

h2=250mm 

 

Mix A 

h3=500mm 

h1=125mm 

h2=250mm 

 

Mix B 

h3=500mm 

h1=125mm 

h2=250mm 

 

Mix C 

h3=500mm 

 

5.6 Crack distance, non-linear hinge length 

5.6.1 Calculation of crack spacing 

It is important to define the non-linear hinge length in order to obtain a good FEM 
model. 

In chapter 3.2.2, few manners to calculate an approximate crack distance were 
showed. Now a comparison between the results using the different propositions is 
made. However, first it is necessary to define the exact geometry of the reinforcement, 
i.e. a reinforcement ratio of 0.1 % were assumed but this has to be calculated into a 
bar diameter and the number of bars. 
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To obtain the diameter of the bars the following equation can be used: 
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Solving this equation it is possible to obtain a value of φb. This value has to be 
rounded (up or down) to the nearest whole number. Having this value it is possible to 
obtain an approximate number of the number of bars n which also has to be rounded 
to the nearest whole number. It is preferred to use an exact number of bars and 
diameter in order to make possible to corroborate this data with laboratory this tests in 
the future. The whole procedure to calculate the crack spacing can be seen in 
appendix D. 

RILEM rough proposition: 

The first option is quite simple and it depends only on the height of the element. Due 
to that, the three crack spacing values are, using (3.34): 

mmmmh
s RILEMm 5.61

2
125

2
1

1, ===  

mmmmh
s RILEMm 125

2
250

2
2

2, ===  

mmmmh
s RILEMm 250

2
500

2
3

3, ===  

Eurocode 2 proposition and variations: 

Eurocode 2 proposition without fibre factor 

The version of the EC2 for plane concrete does not consider the effect of the fibres. 
Due to this reason its value is constant for each mix. However, as the parameters that 
are used in the approaches is the ratio between steel and effective concrete area 
(normal reinforcement ratio) and the bar diameter. The equation that has to be used is 
(3.47): 

)(25.050 212, mmkks
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8.01 =k  high bond bars 

5.02 =k  for pure bending 
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⋅⋅
==  

Note that one of the expressions to evaluate in order to calculate the effective area of 
the concrete element depends on the position of the neutral axis that is unknown and 
also depends on the load that is applied. The whole procedure to calculate the crack 
spacing can be seen in appendix D. 

Table 5.8 Results for the crack spacing using EC2 proposition (no fibre effect) 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 315mm 239mm 160mm 

MIX  B 315mm 239mm 160mm 

MIX  C 315mm 239mm 160mm 

 

It could be seen in this results that the crack spacing decreases with the height if all 
the parameters have a constant value (except the numbers of bars that also change due 
to the change of the concrete area). 

Eurocode 2 alternative proposition with fibre factor 

Now the EC2 taking into account the fibre bridging effect is analysed. In this proposal 
the value of fct and σw are needed. The value of the tensile strength of the concrete can 
be taken from the laboratory tests carried out by Löfgren et al. (2004) that provide fct, 
see figures 5.9, 5.10 and 5.11. The value of the bridging stress providing by fibres 
obviously depends on the crack opening and due to that also depends on the height. 
However, a realistic value, which can be assumed, is the minimum bridging stress in 
the crack opening interval 0.2 ≤ w ≤ 0.4mm. These values can be taken from the tests 
and are showed in table 5.9. 
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Table 5.9 Results for the crack spacing using alternative EC2 proposition (fibre 
effect) 

 σw [MPa] 

MIX  A  1.31 

MIX  B 3.16 

MIX  C 3.17 

 

The equation that has to be used is (3.46): 

eff
FECm kkkcs

ρ
φφ ⋅⋅⋅⋅++⋅= 3212, 25.03  
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All the details can be seen in appendix D. The results for the crack spacing using this 
formula are showed in table 5.10 

Table 5.10 Results for the crack spacing using alternative EC2 proposition (fibre 
effect) 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 166 mm 136 mm 104 mm 

MIX  B 65 mm 64 mm 62 mm 

MIX  C 65 mm 63 mm 62 mm 

 

If the results are analysed it can be noticed that when quantity of fibres and 
compressive strength of the concrete is increased, the crack spacing decreases 
considerably. Also it can be seen that if the fibre length is decreased but the fibre 
slenderness factor is maintained the crack spacing does not increase so much. At last 
if the height of the beam is increased the crack spacing decreases as it was showed in 
table 5.6 using the EC2 proposition without fibre effect. 
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Eurocode 2 Vandewalle proposition with fibre factor 

Finally the Vandewalle (2000) proposition is analysed. As it was explained in chapter 
3, the only variation in this approach is changing the k3 term by other term that takes 
into account the fibre slenderness factor. The equation to be used is (3.48): 

)(5025.050 21. mm
L

kks

fib

fibeff
VANDEm

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅⋅+=

φ
ρ
φ  

The results can be seen in table 5.11. 

Table 5.11 Results for the crack spacing using Vandewalle EC2 proposition (fibre 
effect) 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 236 mm 179 mm 120 mm 

MIX  B 236 mm 179 mm 120 mm 

MIX  C 247 mm 188 mm 126 mm 

 

Although the mix A and B have the same fibre slenderness factor as mix C, there is a 
difference in the value of the crack spacing. This is due to the fact that the values of 
the diameter and length have been approximated to realistic values without too many 
numbers. Anyway the difference is not so considerable. 

It important to underline that as all the mixes has the same slenderness factor, this 
formula does not predict differences between them. This formula is based on 
laboratory tests carried out by Vandewalle (2000). The problem is that the size 
variation was not considered since the tested beams had the same size (height 
305mm). Four specimens were tested, see table 5.12 

Table 5.12 Mixes tested by Vandewalle (2000) 

 Vf [%] Class 

MIX  1 0.38 RC 65/35 BN 

MIX  2 0.56 RC 65/35 BN 

MIX  3 0.38 RC 80/50 BN 

MIX  4 0.56 RC 80/50 BN 
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The results obtained comparing laboratory tests with the proposed formula are showed 
in table 5.13. 

Table 5.13 Results of laboratory tests and numerical approach. Vandewalle (2000) 

 Test Equation 

MIX  1 102.4 93.5 

MIX  2 91.2 93.5 

MIX  3 73.1 76.2 

MIX  4 80.4 76.2 

 

The test results show that the fibre volume as well as the slenderness factor has an 
influence in the crack spacing. When the size factor is increased the crack spacing is 
decreased. Also when more fibres are added, crack spacing is generally decreasing. 
Although mix 3 and 4 does not follow this rule, other tests carried out by RILEM 
agree with this general rule, see figure 5.14. 

 

 Figure 5.14 RILEM tests to check Vandewalle expression, from Vandewalle and 
Dupont (2003). L.Vandewalle & D.Dupont  

Hence, the Vandewalle expression does not take into account the volume of fibres and 
this approximation does not seem realistic considering the test results.   
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Ibrahim and Luxmoore proposition: 

The Ibrahim and Luxmoore expression is the equation (3.44): 

eff

b
serspaceLI KKuuKs

ρ
φ

η⋅⋅+= 32cov1& '),(  

Some new values are needed in order to calculate this expression: 

 ucover is the cover of the concrete and it is 25mm for the analysis carried off in this 
thesis. 

τ
κbm ctf=

⋅
⋅

3
2 1

; Where κ1 is 0.8 for high bonded bars 

τd is the average sliding friction bond strength of fibres and it is assumed to be the 
same than τbm because there are not technical specifications for this value. 

The results using this approach can be seen in table 5.14. For the whole calculations 
see appendix D. 

Table 5.14 Results for the crack spacing using I&L  proposition (no fibre effect) 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 80mm 69mm 96mm 

MIX  B 46mm 43mm 87mm 

MIX  C 76mm 55mm 89mm 

 

These results have not been checked against laboratory tests and they are quite 
different to the rest of the approaches but closer to the alternative formula to EC2 
including the fibre effect. Also is quite strange that the effect of the height is not 
always increasing or decreasing crack spacing. In conclusion this formula is not used 
for the calculations although it would be good to check if the results are the same in 
the reality. 

5.6.2 Discussion 

After analysing all the possible approaches, the conclusion is that the most realistic is 
the correction in the derivation of the EC2 expression. Although there are no 
experimental data to corroborate the expression because it was not possible to find the 
sigma-epsilon curves for the materials used in the conducted tests, the expression 
could be a good approximation. However, further studies are required to derive a good 
formula for the crack spacing for structural elements made of FRC. Table 5.15 shows 
the input data to be used as crack spacing or non linear hinge length. All the values 
have been rounded of the nearest 5 mm to simplify the process of modelling in FEM. 
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To conclude, the total number of models is 9 for each approach. A total number of 18 
models are made. 

Table 5.15 Non linear hinge length 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 165 mm 135 mm 105 mm 

MIX  B 65 mm 65 mm 65 mm 

MIX  C 65 mm 65 mm 65 mm 

 

Also the diameter of bars, number of them and stiffness of the dummy interface are 
showed in tables 5.16 and 5.17 and 5.18 

Table 5.16 Diameter of bars 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 5 mm 7 mm 9 mm 

MIX  B 5 mm 7 mm 9 mm 

MIX  C 5 mm 7 mm 9 mm 

 

Table 5.17 number of bars 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 6 6 8 

MIX  B 6 6 8 

MIX  C 6 6 8 

 

Table 5.14 Values for the stiffness of the interface 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 3.708E+14 4.532E+14 5.826E+14 

MIX  B 9.412E+14 9.412E+14 9.412E+14 

MIX  C 9.412E+14 9.412E+14 9.412E+14 
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6 Results 

6.1 Analytical Results 

6.1.1 Crack spacing 

As it was explained in the last chapter, there are many alternatives to calculate values 
for the spacing between cracks when a beam/slab element is loaded in flexural. 

The model chosen is a variation of the Eurocode 2 formula which tries to take into 
account the effect of the fibres in the formula proposed based on the concept of 
transmission length. 

To use this formula it is necessary to calculate the effective area as it was explained 
before. The expression to calculate this value proposed by the EC2 is the lesser of the 
values: 

bdhA effc ⋅−⋅= )(5.2, ; bhA effc ⋅=
2, or b

yh
A effc ⋅

−
=

3
)( 0

,  

Normally when the height is quite high (about 250 mm and higher) it is normally the 
first one that is governing, this can also be expressed as buA ereffc ⋅⋅= )(5.2 cov, . More 
or less the effective concrete area just depends on the cover of the concrete because is 
considered as the area that surrounds the concrete.  

But the problem begins when the height is lesser than these values. For these heights 
the third expression is the lesser and to determine it is necessary the value of the 
position of the neutral axis. 

The position of the neutral axis is one of the unknowns that are necessary to determine 
in each approach, and the crack spacing value is an input that is necessary to obtain 
the position of the neutral axis. The position of the neutral axis also depends on the 
turn (step of load) and has to be introduce in the formula of the crack spacing and it is 
necessary to know what its position is just before the reinforcements begins to yield. 
So it would be necessary to begin an iterative process which gives the correct value of 
both variables.  

The first analysis has been made for a beam with a height 125 mm and the mix chosen 
was the mix A. The approach chosen is the σ−w approach because is the only that 
uses the crack spacing to determine the position of the neutral axis. 

The preliminary value of the crack spacing is (for further information see appendix 
D): 

S mEC2F 166.263 mm=  
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If this value is introduced (rounded to 165mm) in the equilibrium equation the 
position of the neutral axis has the representation showed in figure 6.1. 

Position of the neutral axis

0

10

20

30

40

50

60

70

0,00E+00 1,00E-03 2,00E-03 3,00E-03 4,00E-03 5,00E-03 6,00E-03 7,00E-03 8,00E-03

Turn

Neutral Axis (mm)

 

Figure 6.1 Neutral axis when rotation is varied 

Then, the next step consists in identifying what turn is equivalent to the stress of the 
reinforcement just before yielding. It is hence necessary to analyse figure 6.2. 
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Figure 6.2 Stress in the reinforcement 

The yielding process begins just when the elastic limit of the steel is reached. That is 
for this case when the applied rotation is 5.21·10-3 and the position of the neutral axis 
for this value is 21.33 mm measured from the top. Then if this figure is introduced in 
the third expression to calculate the effective area and then the crack spacing are 
calculated the results are: 

y0 21.133mm:=

Acef2
h y0−

3

⎛
⎜
⎝

⎞
⎟
⎠

b⋅:= Acef2 0.035 m2
=

  

If this value of the crack spacing (rounded to 110 mm) is introduced again in the 
analytical calculations the yielding begins when the applied rotation is 3.47·10-3 and 
this turn produces the same position of the neutral axis that the previous one. Hence, 
the final crack spacing for the mix A height 1 is 110 mm. 

 

S mEC2F 109.944mm=
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If the same process is done for the mix B and mix C (same height 1=125 mm) the 
results are for the mix B: 

• The initial value for the crack spacing is 65 mm. 

• Yielding of reinforcement occurs when the position of the neutral axis is 26 
mm. 

• The new crack spacing using the third expression of the effective tension area 
of the concrete is 53.605 (rounded to 55 mm) 

• With this new value of the crack spacing the position of the neutral axis is 
again 26 mm, hence the result of 55 mm is right. 

And for the mix C: 

• The initial value of the crack spacing is 65 mm. 

• The final value of the crack spacing doing the iterative process is again 55 
mm. 

So it can be appreciated that this size effect has a strong influence with the mix which 
has less quantity of fibres (and less compressive resistance). These are the final values 
for the crack spacing.  

Table 6.1New non linear hinge length 

 Height-1  125mm Height-2  250mm Height-3  500mm 

MIX  A 110mm 135mm 105mm 

MIX  B 55mm 65mm 65mm 

MIX  C 55mm 65mm 65mm 

 

It can be appreciated now that the size effects in the elements are smaller than before. 

It is also possible to do a comparison between the results if the crack spacing varies. 
The moment-turn graph is compared for 5 values of the crack spacing in the σ−w 
approach. The mix chosen is mix A and two heights are studied. The results can be 
observed in figure 6.3. 
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Figure 6.3 Moment versus turn for different values of the crack spacing 

In the results it can be seen that the maximum moment is not influenced so much 
when the crack spacing value changes. However, there are differences regarding the 
peak moment and the turn that provides the maximum moment (and, hence, the 
maximum moment curvature). The conclusion is that the crack spacing is not so 
important when the ultimate limit state is studied but when other factors like cracking 
or maximum deformation are studied it is important to have a good accuracy in this 
value. The results for a beam of 250mm high are showed in figure 6.4 where the trend 
is the same as with the 125mm high element. 

 

Figure 6.4 Moment versus turn for different values of the crack spacing 
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6.1.2 σ−ε approach 

6.1.2.1 General results 

 Now the results obtained for mix A height 1 are showed. As it was explained in 
chapter 3 (analytical approach), once the equilibrium equations are completely 
defined it is possible to calculate the position of the neutral axis. If the strain in the 
reinforcement is increased, the next graph showing the position of the neutral axis is 
obtained. See figure 6.5. 
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Figure 6.5 Position of the neutral axis versus strain of the reinforcement 

The position of the neutral axis decreases with increasing strain in the reinforcement 
(and therefore with increasing rotation and curvature). Due to this decreasing, the 
stresses reached in concrete in compression have to be higher in order to maintain the 
equilibrium because the length of the compressive zone is also decreasing. Figure 6.6 
and 6.7 show the stress-strain diagram at the position of the reinforcement of the steel 
bars and the concrete surrounding the steel. 
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Figure 6.6 Stress of the reinforcement versus strain in the reinforcement 
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Stress in Concrete at the level of the Reinforcement
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Figure 6.7 Stress of the concrete at the level of reinforcement versus strain in the 
reinforcement 

Observing these pictures it can be seen that the concrete at this level has almost all the 
time the so called “residual flexural resistance” that is about 1.5 MPa. The 
reinforcement has exactly the behaviour that has been defined in the corresponding 
chapter. It is also possible to see that the stress-strain diagram in the top concrete also 
follows the model described before. This can be seen in figure 6.8. 
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Figure 6.8 Stress of the top concrete versus strain in the reinforcement 
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Figure 6.9 Sum of forces to corroborate the equilibrium 

Another important issue is to corroborate that the force equilibrium is satisfied. The 
graph represented in figure 6.9 check it. 

When the position of the neutral axis is calculated and checked, it is possible to obtain 
the moment that is supported by the cross section for each load step. If the moment 
versus the strain in the reinforcement is represented, the graph represented in figure 
6.10 is obtained. In the first part of the graph there is a quick increase because the 
elastic behaviour of the concrete. Then there is a small drop due to cracking and then 
the moment starts again to increase due to yielding in the reinforcement until the 
maximum value is reached. Finally the moment decreases slowly until failure. 
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Figure 6.10 Moment versus strain in reinforcement 

The maximum moment is about 16.55 kN·m and it is reached when the strain in the 
reinforcement is about 5%. 

It also can be useful to analyse the relationship between the real moment and the 
moment that exits when the elastic limit at the bottom of the section is reached. To 
calculate it, it is necessary to calculate the equivalent constants of the section (in state 
I before cracking): 

s
c

s
ef A

E
E

hbA ⋅⎟⎟
⎠

⎞
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⎝

⎛
+⋅=                   (6.1) 
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Where efA is the area of the transformed cross-section (in state I before cracking), 

efy is the position of the effective gravity centre, efI  is the effective moment of inertia 
and crM is the moment when a crack is initiated. If the moment divided by this new 
value (normalised moment) is represented versus the strain, the result can be seen in 
figure 6.11. 

Moment/Momentcr

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 2 4 6 8 10 12 14 16 18 20

Strain in reinforcement (‰)

Moment/Momentcr 

 

Figure 6.11 Normalised moment versus strain in reinforcement 

It is also important to represent the moment versus the curvature and the rotation that 
exist in the section. The curvature can be calculated by means of equation (3.14). 

ryd
s 1

0

=
−

=
ε

κ ; and then the rotation applied is obtained as: 

s⋅= κϕ                    (6.5) 

The relationship between the strain in reinforcement and the curvature is linear as it 
can be seen in figure 6.12. This means that the shape of the curves is the same when 
Strain in reinforcement is represented in the x-axis as if the curvature is represented. 
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Figure 6.12 Strain in reinforcement versus curvature 

And the moment versus curvature and turn is represented in figure 6.13 
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Figure 6.13 Moment versus curvature (a) and turn (b) 

Finally there is a representation of the concrete stress in the cross section. Each of 
these lines represents stress of a load case. It can be appreciated that the length of the 
compressive zone decreases with the load and the length of the tensile zone increases 
with it. See figure 6.14 
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Figure 6.14 Stress in the concrete. Cross sectional analysis 

6.1.3 σ−w approach 

6.1.3.1 General results 

The results for the σ−w approach are very similar regarding the shape and the 
different parts of the curves to the results obtained for the σ−ε approach. In next 
figures, the curves that were analysed in the σ−ε approach are represented. 
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Figure 6.15 (a) Position of the neutral axis. (b) Stress-Strain in reinforcement 
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Figure 6.16 Stress-Strain reinforcement (a) at the level of reinforcement (b) top 
position 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 
75

Moment

0

2

4

6

8

10

12

14

16

0 0,005 0,01 0,015 0,02 0,025

Turn

Moment (kN·m)

 

Figure 6.17 Moment versus turn 
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   (a)     (b) 

Figure 6.18 (a) Relative moment and (b) Moment versus Curvature 

In this approach there are some more variables which are possible to study according 
to its. The length of the crack opening (or crack extension) a, and the maximum crack 
opening (at the bottom of the section), which is called WCMOD (value of the crack 
mouth opening displacement), can be studied. Figure 6.18 (a) represents the increases 
of WCMOD when the rotation of the section is also increased. It can be appreciated 
that the relationship between both variables is a linear relation. Figure 6.18 (b) 
represent the increase of the crack length. The growth of the crack is very quick for 
the first values of the load (rotation) but is quite slow for the last values. Hence, there 
is a maximum crack length that is not possible to exceed before failure. This is due to 
the fact that for the last values of the turn the position of the neutral axis is almost 
constant and the maximum value of the crack length is until the compression zone is 
reached. 
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Figure 6.19 (a) Relative moment and (b) Moment versus Curvature 

If the moment is represented versus the crack opening in the top, it is obtained a graph 
with a similar shape as the moment vs. turn graph. However, if the moment is 
represented versus the crack extension, the graph showed in figure 6.19 is obtained. 
The first decrease of the curve occurs when the first drop in the moment happens 
(after a general crack initiation). Then there is a big increase due to yielding of the 
reinforcement. Hence, is important to underline that the crack extension increases 
very quickly at the beginning (almost half of the height of the beam for very low load 
cases). 
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Figure 6.20 Crack length versus moment in the cross section 
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Finally figure 6.21 represents the stress in the concrete in the whole cross-section. 
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Figure 6.21 Stress in concrete (cross-sectional analysis) 
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6.1.4 Comparisons 

6.1.4.1 Mix A 

In this section, a comparison between different approaches using mix A is made. 
Three different heights are also used to study the possible existence of a size factor or 
if it exists (as the σ−ε approach), corroborate if is it correct or not. 

First of all the position of the neutral axis is studied when the rotation is increased. 
The rotation can be calculated as ϕi /2. For further information see figure 4.11 and 
4.19 and chapter 3. 
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Figure 6.22 Position of the neutral axis. Beam 125mm high 
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Figure 6.23 Position of the neutral axis, (a) 250 mm high (b) 500 mm high 

The position of the neutral axis is very similar in both approaches. It means that, as 
the compressive zone is defined the same for both approaches; it could be a difference 
in the tensional zone. However, when the height is increased it can be noticed that the 
difference, which is minimum in the 250 mm high beam changes and could be 
considerable for some heights.  
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If the moment is studied the results are more different between both options. 
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Figure 6.24 Moment versus rotation of the section. Beam 125 mm high 
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Figure 6.25 Moment versus rotation of the section. Beam 250 mm high 
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Figure 6.26 Moment versus rotation of the section. Beam 500 mm high 

These results are very interesting and some conclusions can be extracted from them. 
The first peak moment is considerably higher in the sigma-epsilon approach than in 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

80 

the sigma-crack opening approach. This behaviour is because in the RILEM definition 
of the curve factors, the value of the elastic limit of the concrete in tension is quite 
higher than the obtained in the tests (σ−w approach) and it means that the behaviour 
while the elastic limit is not reached in all the section will be different. 

Barros et al. (2004) conducted some studies in order to corroborate the validity of the 
parameters introduced by RILEM in the definitions of the σ−ε approach and the sense 
of the size factor. Furthermore, Barros et al. (2004) propose new values to calculate 
these constants. The new constants would be calculated as: 

( ) clfctm Edf /     m)in  (d   6.152.0 11,1 σεσ =−⋅=                          (6.6) 

‰1.0                           36.0 121,2 +=⋅⋅= εεκσ hRf               (6.7) 

‰25                           27.0 34,3 =⋅⋅= εκσ hRf               (6.8) 

            

If these constants are used, the result obtained for the first height (not using any size 
factor) can be observed in next figure: 
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Figure 6.27 Comparison between approaches. Beam 125 mm high 

It can be seen that the results for the σ−w approach and σ−ε approach (Barros 
approach) are closer than using the RILEM constants. Also both peak values (first 
peak and maximum moment) are very similar. The only different part is regarding the 
post peak moment resistance that is considerably less in the case of σ−ε approach 
(both approaches) 

For the 125 mm height the size factor is 1, as the height studied is the same as the one 
that RILEM uses to determine the size factor. Barros et al. (2004) did not study the 
effect of the size factor and only this height was analysed. If these constants are 
maintained as well as the size factor k(h). The results for the rest of the heights are as 
follows (see Figure 6.28): 
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Figure 6.28 Comparison between approaches. Beam 250 mm and 500 mm high 

It easy to notice that except in the case (height of 125 mm) when the Barros et al. 
(2004) approach is in agreement with the stress-crack opening approach, the size 
factor defined by RILEM TC 162-TDF (2003) cannot be used. Furthermore, if this 
size factor is eliminated for all heights, the approaches get closer but there is still a 
disagreement in values around the first peak. It should be pointed out that the size 
factor is not completely understood by RILEM and these graphs suggest that maybe it 
is not necessary. However, a comparison between this analytical results and another 
source (like FEM analysis or laboratory tests) is necessary in order to corroborate that 
the analytical results using σ−w approach can be used as a reference. It is important to 
remember that the σ−w approach does not use any size factor. 
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Figure 6.29 Comparison between approaches. Beam 250 mm and 500 mm high 
without any size factor 

6.1.4.2 Mix B  

It is also interesting to analyse if this disagreement between both approaches changes 
if a mix with different properties is analysed. The position of the neutral axis has the 
same trend as mix A.  
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Figure 6.30 Position of neutral axis 125 mm high beam 
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Figure 6.31Position of neutral axis 250 and 500 mm high beam 

There is a different behaviour regarding the moment. See figure 6.32. 
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Figure 6.32 Moment versus rotation for mix B beams 
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If these results for the moment are compared to those obtained in mix A some 
conclusions can be extracted: 

• The post peak response has change due the inclusions of a higher quantity of 
fibres. In the σ−w approach there is no post peak decreasing but in the σ−ε 
approach the response depends on the height (there is no decreasing in the 
moment for the 125 high beam and there is a similar response as the mix A for 
the 500 mm high beam). It is important to underline that something similar 
also occurs in mix A (the proportional post-peak drop is deeper in the 500 mm 
high beam than in the 125 mm high beam). This can be caused by the effect of 
the size factor. 

• After the second peak (maximum moment), the moment decreases more 
quickly in the σ−ε approach than in the σ−w approach. 

Next figures show the results for the moment in the section using Barros et al. (2004) 
values for the constants in the σ−ε curve.  
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Figure 6.33 Comparison between approaches. Beam 125 mm, 250 mm and 500 mm 
high without any size factor and Mix B 
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With these results, the Barros approximation seems not so good if the concrete has a 
higher compressive strength and a higher quantity of fibres. Anyway as it was said for 
the results regarding mix A, it is important to compare these results with other 
sources.  

Barros et al. (2004) also has defined other values for the constants based on inverse 
analysis using the σ−w approach method. The values are defined as follows: 

( ) clfctm Edf /     m)in  (d   6.15.0 11,1 σεσ =−⋅=                          (6.9) 

‰1.0                           35.0 121,2 +=⋅⋅= εεκσ hRf             (6.10) 

‰25                           32.0 34,3 =⋅⋅= εκσ hRf             (6.11) 

As it can be noticed the values are quite similar as in the previous ones so the results 
are also expected quite similar. However, it can be appreciated a slightly better fit 
between σ−ε approach and σ−w approach especially in the post-maximum decreasing 
part (see figure 6.34). Anyway the conclusions are basically the same. 
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Figure 6.34 Comparison between approaches. Beam 125 mm using both Barros 
proposals for the value of the RILEM constants 

6.1.4.3 Mix C  

Mix C has similar properties as mix B so similar results are expected. Only the 
comparison between the values of the moment of both approaches is made, see figure 
6.35. 
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Figure 6.35 Comparison between approaches. Beam 125 mm, 250 mm and 500 mm 
high without any size factor and Mix C 

The results are very similar to those obtained for mix B because the similar properties 
of the concrete in mix B and C.  Hence, the conclusions that can be obtained are the 
same. 

6.2 Finite element method results 

Now the results obtained using the finite element method are presented. Firstly, as it 
was presented in 6.1 dealing analytical analysis, the general results are presented. 
However, in this chapter all the graphs are presented together with the  results 
belonging to the analytical analysis in order to more easily understand the differences 
between both methods. Finally a comparison between both approaches is made. 

The load applied to get a deformation is a rotation that is defined as ϕ/2. In the finite 
element method software it is necessary to chose a basis value for the load step, then, 
in each step, the load, can be calculated as ns·Δload. Both values are chosen in order 
to achieve realistic values for the different variables and the values used in the 
analytical calculations can be used as a guideline. In appendix E the complete 
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procedure to define a model (mix A height 1) in Diana can be found for both 
approaches. 

6.2.1 σ−ε approach 

6.2.1.1 General results 

This approach does not define a crack surface. As it was explained in chapter 4, it was 
necessary to introduce a weak element in order to facilitate a realistic behaviour. 

The general results showed below belong to a mix A height 125 mm beam element. 
Some results are not easy to determinate in DIANA, so not all the graphs that were 
showed for the analytical results can be represented here.  

Firstly figure 6.36 shows the deformation of the beam when a load is applied. This 
deformation is enlarged by multiplying by a factor. Note that the introduction of the 
weak element allows obtaining this shape. 

 

Figure 6.36 Undeformed and deformed beam. σ−ε approach  

Figure 6.37 shows the stress-strain relationship in the reinforcement in the cracked 
cross section. Yielding occurs and the model is following correctly. The differences 
between both methods are almost negligible. 
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Figure 6.37 Stress-strain reinforcement diagram in σ−ε approach   
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The stress in the concrete at the level of the reinforcement can also be plotted 
choosing the cracked element at the height 27.5 mm (element 102 or 112). See figure 
6.38. The values does not seem exactly the same as in the analytical results but this is 
mainly caused by the fact that not all load steps were saved in DIANA. Due to that if 
the peak is situated between two iteration values the results will be not the same as in 
MathCAD. This is the cause for the different situation of the peak stress. Note also 
that it was necessary to introduce an artificial drop because it was not possible to have 
a vertical drop in the stress. 

Stress in Concrete at the level of the Reinforcement

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 5 10 15 20 25

Strain in concrete at the level of the reinforcement (‰)

Stress in Concrete (Mpa)

FEM Calculations
Analytical Calculations

 

Figure 6.38 Stress-strain concrete at the level of the reinforcement diagram in σ−ε 
approach   

The model used to define the behaviour of the concrete in compression in DIANA is 
giving points and is based on the same model that is used for the MathCAD 
(analytical) calculations. The results for the stress-strain relationship in the top of the 
beam (element 452) are showed in figure 6.39. The results adjust very well to the 
original graph. 
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Figure 6.39 Stress-strain in top concrete, σ−ε approach 

Figure 6.40 shows the stress in the concrete for the load step 300 (rotation about 
0,001). It can be observed that the results are quite realistic. 
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Figure 6.40 Stress in the concrete. Step 300 

Now the moment versus rotation is analysed and a big disagreement between both 
methods is found. It is appreciated that the behaviour regarding the moment has few 
points in common with the analytical calculations. The only part that is common is the 
elastic part at the beginning. The crack moment is reached before and is considerably 
less than the analytical calculations (about 20% less). The behaviour after the cracking 
point is exceeded shows a very short post-cracking part. Then there is a increasing in 
the stiffness due to the presence of the fibres but then this stiffness decreases when 
most of the concrete has exceed its strain limit (25 ‰ ) and at this time yielding starts. 
This behaviour is very different to the obtained in the analytical calculations and it 
cannot be considered a good approach. 
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Figure 6.41 Moment versus rotation, σ−ε approach 

It is also possible to obtain a graph showing the concrete stress in a vertical line 
(cross-section) for one load case. This result is showed in figure 6.42 for three load 
cases.  
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Figure 6.42 Stress in the concrete. Cross sectional analysis 

The profile for the stress in the concrete is quite similar to the profile obtained in the 
analytical calculations for these values of the rotation. In load case 400 almost all the 
concrete has lost its strength. The reason for this is that almost all the deformation 
occurs in one element row and which thus gives a result that is mesh –size dependent. 

Finally is important to explain that one of the hypothesis that had to be fulfilled 
(Bernoulli hypothesis) that says that plane sections remain plane, is not fulfilled if the 
deformed shape is observed. If the bad results regarding the moment are added, it can 
be concluded that this approach seems not suitable to be used when finite element 
method analysis are required. 
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6.2.1.2 Mix A comparisons 

As it was seen before, this approach does not seem good to be used in FEM analysis. 
However the effect of the size variation was also check it and the results regarding the 
moment are showed in next graphs.  

Again the effect for the 250 mm high beam is the same as in the 125 mm high beam. 
The elastic part is the same in both methods but cracking occurs before in FEM 
calculations. Then yielding in FEM analysis has a less influence in the behaviour as in 
the analytical calculations due to the fact that almost all the strength in the concrete is 
lost when yielding starts. 
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Figure 6.43 Moment versus rotation 250 mm high beam, σ−ε approach 

The same can be applied for the 500 mm beam. The percentage of the difference 
between both methods is more or less constant, so the size effect is not so important. 
The only problem is that is a little more difficult to obtain the convergence in a high 
beam than in a short one. 
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Figure 6.44 Moment versus rotation 500 mm high beam, σ−ε approach 
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6.2.1.3 Mix B and mix C comparisons 

If the mix B is studied, more or less the same effects can be observed regarding the 
moment. The approximation is also good in the first rotation values. However it is 
important to underline that the analytical calculations about the moment using the 
RILEM constants is not the same as using the σ−w approach. Hence, it would be 
better to use the correct constants in order to have a good approximation as a 
reference, but as it is seen that the post-cracking behaviour is anyway different in both 
approaches, that is not considered. 

For this mix there are a little more differences between the analytical calculations and 
FEM calculations, but basically these differences are based on the same origin. One 
important thing is that at least the post-cracking behaviour in FEM calculations has 
more or less the same shape as the analytical calculation. In another words, the effect 
of increasing the amount of fibres is traduces in a no existence of a post-peak 
decreases as in mix A. This decreasing does not also exist in 500 mm beam but it 
exists for this beam in the analytical calculations. As it was commented in last chapter 
this could be caused by the RILEM size factor effect that is too small for a 500 mm 
beam. 
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Figure 6.45 Moment versus rotation, mix B 
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The comparisons for mix C is not represented as the graphs are very similar to the mix 
B graphs. The conclusions that can be obtained are the same. 

6.2.2 σ−w approach 

6.2.2.1 General results 

Now, following the same procedure that the one used for the σ−ε approach, the 
analysis of a 125 mm high beam using mix A is made. The deformed shaped obtained 
when a rotation is applied to the section is showed in figure 6.46. 

 

Figure 6.46 Undeformed and deformed beam. σ−w approach 

This shape seems more realistic than the one obtained for the previous approach. The 
first important conclusion that can be obtained is that the crack side seems to remain 
plane (as one of the Pedersen hypotheses says). This can be appreciated in figure 6.47. 
The values for the crack opening are very similar in both approaches and the slope of 
the curve is also more or less the same. 
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The stress-strain diagram of the reinforcement is showed in figure 6.48. As well as in 
the σ−ε approach the model is following correctly and yielding occurs in a certain 
load value. 
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Figure 6.48 Stress-strain reinforcement diagram in σ−w approach 

The stress-strain relationship at the level of the reinforcement is not possible to be 
obtained because DIANA does not permit this feature for the interface elements. 
Anyway no problems are expected due to the definition of the relationship crack-
opening stress is well supported by the software. 

Regarding the concrete in compression the behaviour of the element (452) situated in 
the top of the cracked section is showed in figure 6.49. The behaviour here is also 
different from the analytical calculations that do not predict the failure of the concrete 
in compression (compressive concrete strain reached) before the crack opening limit 
is reached. However there is no other way to define the material without entering in 
convergence problems. 
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Figure 6.49 Stress-strain in top concrete, σ−w approach  
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The moment graph is now represented in figure 6.50. The behaviour is very similar 
using both calculation methods. The maximum moment is 15.6 kN·m for the FEM 
calculations and 14.8 kN·m for the analytical results so the proportional difference is 
quite low. Also the crack initiation phase is the same for both. The yielding phase is a 
little different but it can be caused by some behaviours like bond slip that are not 
taken into account in the analytical calculations. 

0

2

4

6

8

10

12

14

16

18

0 0,0005 0,001 0,0015 0,002 0,0025 0,003 0,0035 0,004 0,0045 0,005

Rotation (‰)

Moment (kN·m)

FEM Calculations
Analytical Calculations

Moment 

 

Figure 6.50 Moment versus rotation, σ−w approach 

It is not possible to represent the variation of the stress in the concrete when the 
distance to the top of the section is varied. The reason is the same as the concrete in 
tension. Interface elements do not allow stress-strain diagrams and tabulation in 
DIANA. This feature is only possible in the elastic zone but it is not so much 
interesting. 

At last it is possible to represent the crack length (a) representing the displacement of 
the crack interface and choosing the first element that is different than zero in each 
step. The graph resulting is represented in figure 6.51. The accuracy of the FEM 
results are quite good but is necessary to realise that there are only 45 elements in the 
height of the cross section, so only 45 values of the crack length are available. 
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Figure 6.51 Crack length  
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6.2.2.2 Mix A comparisons 

The effect of increasing the height of the beam in the maximum moment supported is 
studied now. Figure 6.52 shows the moment versus rotation in a 250 mm beam. The 
conclusions are the same as for the 125 mm beam. There is a good crack initiation and 
the maximum moment is very similar although it is a little bigger. This can be caused 
by the assumptions that are not taken into account in the analytical calculations. 
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Figure 6.52 Moment versus rotation 250 mm high beam, σ−w approach 

It is found when the beam has a considerably height the analytical calculations and the 
FEM calculations fit better than for the other heights. The approach is really very 
good and because the moment is so high, the differences between the methods is 
unnoticeable.  
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Figure 6.53 Moment versus rotation 500 mm high beam, σ−w approach 
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6.2.2.3 Mix B and mix C comparisons 

Figure 6.54 shows the moment versus rotation when mix B is used. The differences 
are very small and the behaviour (even crack and yielding phases) occurs at the same 
time for both methods. 
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Figure 6.54 Moment versus rotation, mix B, σ−w approach 

With these diagrams it can be concluded that the σ−w approach is a really good 
approach and no size or mix differences are appreciated. The basic model is the same 
for all the variations and it works more or less similar whatever the characteristics of 
the section are. 

Mix C results are quite similar to mix B results. Hence the graphs are not analysed 
because no extra conclusions can be extracted. 
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7 Conclusions  

7.1 Summary 

Design of FRC elements introduces a change into the conventional design processes. 
As the concrete response in tension is improving it is necessary to include this effect 
in the design procedure or corresponding code. 

RILEM TC 162-TDF has proposed two approaches to explain the behaviour of a FRC 
element when subjected to a tensional or flexural load. The σ−ε approach is based on 
the classic concept of the stress-strain relationship. When a FRC element is loaded, 
the tensile strength causes a change in the traditional diagram, which just considers 
the elastic behaviour of plane concrete and neglects the tension-softening. This 
change is taken into account developing new equilibrium equations. The σ−w 
approach develops the existent relationship between the crack opening and the stress 
that can be carried by the concrete in the cracked zone. To use this method it is 
necessary to know what the average crack spacing is. The crack spacing governs the 
number of cracks (non-linear hinges) that exists when a general structure is loaded. 
The analytical equations using this approach are also presented. 

Some approaches have been studied to obtain the most realistic crack spacing value 
and a new suggestion based on the classic EC2 crack spacing formula has been 
presented. 

To check the validity of the assumptions and the simplifications made in the analytical 
calculations FEM analyses have also been conducted. Two models (one for each 
approach) were developed in order to obtain the most possible similarities between 
the simulated model and the real behaviour. 

Also as one of the approaches considers the existence of a size factor (high depending 
coefficient) that decreases the RILEM TC 162-TDF stress values. To analyse the 
validity of this factor three different heights were studied. Also to check the effect in 
the results of a change in some FRC variables (e.g. dosage of fibres or concrete 
strength), three different mixes were also considered. 

7.2 General conclusions 

The first conclusion that can be extracted from this thesis is the difficulty to obtain the 
correct values that are needed in the design. Most of these values have to be taken 
from a very specific laboratory tests. When a design of a conventional concrete 
element is being carried out it is not normally possible to have the exact values for the 
material constants. However, this issue is more important in the case of FRC. FRC has 
special characteristics, which makes it quite complicated to know the exact amount of 
fibres that will be in a generic cross section and the material properties resulting from 
their presence. It is also essential to improve the fibre performance to ensure a 
minimum quantity of fibres in a section. Then it would be very interesting to tabulate 
these values in order to provide the designers with good tools to facilitate their work.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 
99

With regard to the analytical approaches, the σ−ε approach probably is easier to 
understand by a designer as it is closer to the traditional plane concrete approach. The 
σ−w approach, on the other hand, needs a deeper theoretical basis and it has the main 
problem on the crack spacing value although, with it, it is possible to obtain directly 
the values for the crack length and crack opening. 

The crack spacing value is difficult to obtain and most of the propositions that exists 
at the moment are concentrated on plane concrete. It very is important that to facilitate 
the use of the σ−w approach a valid formula to calculate the crack spacing is 
provided. This thesis shows that most of the expressions available to calculate the 
crack spacing yield very different values. It is necessary that an expression take into 
account all the parameters that are proved to have an influence on the crack spacing 
value. The expression proposed in this thesis is an extension of the derivation that is 
also used in the EC2 formula (based on the transfer length concept).  

When the analytical results are compared it is notice an almost total disagreement 
between σ−ε and σ−w approach. However, in this thesis it is shown that it can be 
fixed if the RILEM TC 162-TDF constants used to calculate the stress values are 
replaced with new suitable values. Barros et al. (2004) proposes new values for these 
constants and they seems to give better agreement with the σ−w approach analytical 
results. Barros et al. (2004) only consider one height (125 mm) in their studies. 
However, if their values are used for the other heights it can be appreciated that no 
size factor is really need. This suggests that the RILEM TC 162-TDF constants should 
be replaced and the origin of the size factor has to be studied. The Barros et al. (2004) 
values also show a much better behaviour in comparison with the RILEM TC 162-
TDF ones if the quantity of fibres and the concrete strength is increasing although the 
accuracy of this approach decreases.  

Finally, if the FEM results are analysed it is noticed that σ−ε approach is not suitable 
to be used in this kind of analysis. The results obtained are very different compared 
with the analytical ones and the assumptions were not fulfilled. However, the σ−w 
approach gives very good results for all of the cases studied, that prove that it is a 
good approach to be used in FEM analysis. Also, it gives good agreement between the 
FEM analysis and the analytical calculations, even though the effect of bond-slip is 
neglected in the analytical calculations. It is necessary to emphasize the good 
behaviour regarding crack initiation that was obtained. Therefore it is recommended 
that σ−w approach is to be used in the design if it is necessary to make a verification 
of some parts using FEM software (DIANA in the case of this thesis).  

In conclusion, it seems that both approaches can be used in the design if the required 
changes in the values of the σ−ε approach are made. The σ−ε approach seems easier 
to apply but σ−w approach has some advantages regarding the cracking study and the 
use in FEM analysis. Moreover, if the value of the crack spacing is known only 
analytical calculations are needed in order to obtain a good approximation and if only 
ULS is studied the influence of the crack spacing is not so important. 

7.3 Further investigations 

This thesis reveals the necessity of more research investigations about different issues. 
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• More laboratory tests are needed to corroborate the validity of the crack 
spacing formulas when a fibre reinforced concrete element is analysed. Also it 
could be interesting to check the validity of the expression used in this thesis 

• As it was commented it would be interesting to create a document including 
the characteristic values to use in the design for the most common fibre 
dosage. This is a basic issue in order to facilitate the introduction of FRC as a 
conventional construction material.  

• It is important to check the results obtained in analytical analysis as well as in 
FEM analysis by means of laboratory tests. These test would prove the validity 
of the assumptions that both method uses and maybe it would be possible to 
investigate if there is any size effect.  

• It could be interesting to introduce time dependent effects in the analytical 
calculations as well as other effects like bond-slip that FEM calculations 
consider. 

• More studies regarding the service limit state needs to be carried out. Cracking 
behaviour using FRC elements is improved so it is important to have accurate 
values of the crack width. 

• Structures loaded also by a normal force (as well as by flexural moment) can 
be studied. Walls are a good example of this kind of load case. 

• Shear behaviour have also to be studied in order to corroborate the RILEM 
assumptions regarding that. 

• General design expressions have to be developed to facilitate the work of the 
designers who wants to use FRC in their designs. 
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Appendix A 

A.1 Derivation of the cross-sectional analysis equations in 
σ−ε approach 

This appendix shows the derivation of the equilibrium equations step by step in order 
to make easier to follow the process. 

A.1.1 σ−ε approach. Failure occurs at the same time in concrete as 
in reinforcement 

Figure C.1 shows the cross-section and the diagrams of stress and strain which 
RILEM TC 162-TDF proposes for the design if both limits are reached as the same 
time. 

 

Figure C.1 Stress and strain diagram (σ−ε approach) 

From this diagram it is possible to write the equilibrium equation: 
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From this point, it is necessary to obtain the different stress equations, which depend 
on the strain and the y dimension. 

The first stress relationship is ),( ycc εσ .The Eurocode proposes to use the next 
equation to analyse non-linear problems, see 3.1. Note that the strain has to be taken 
positive to be introduced in the equation. 
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It is needed to obtain the relationship between ε and y. This relationship is based on 
the strain diagram: 
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And if (C.3) is introduced in (C.2), the result is: 

 

( )
 

121

11
))((

0
1

2

0
1

0
1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅

−=

y
yk

y
y

y
yk

fy

cu

cucu

cmcc

εη

εηεη
εσ             (C.4) 

Or if it is included the value of 
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The second relationship is ),( yfct εσ . The stress-strain relationship proposed by 
RILEM TC 162-TDF is base don the curve which is showed in the figure C.2. 
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Figure C.2 Stress and strain diagram (σ−ε approach) 

This relationship consists of three parts. The first part is: 
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And at last the third part: 
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Hence, the global equation is:  
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But, as the compressive equation, it has to be changed by means of y. The equation of 
)(yε  below the neutral axis is: 
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And if (C.7) is introduced in (C.6): 
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And the limits have also to be changed: 
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That finally yields the final equation which depends on y: 
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Finally the equation of the steel is based in the diagram of the figure C.3: 

 

Figure C.3 Stress-strain diagram of reinforcement 

The firs part is obvious: 
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And the second one is derived from the curve: 
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And of course if the stress is higher than sukε , the stress will be zero. The final 
equation is, due to the derivation showed above: 
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The value of sε  is always known. For this reason it is not necessary to transform the 
equation by means of y.  

A.1.2 σ−ε approach.  Alternative diagram 

The alternative diagram is very similar but the difference of the neutral axis is not 
predefined. Giving values to the strain at the reinforcement height, it is possible to 
follow the process from the beginning until the failure of the section. See figure C.4. 
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ccmε is the compressive strain in the top concrete when the strain limit at the position 
of the reinforcement is reached, maxε is the maximum tensile strain at the level of the 

reinforcement, and
0yd

s

−
=

ε
κ .                                                                     (C.13) 

 

 

 

Figure C.4 cross-sectional stress diagram. Alternative model from the beginning 
until failure 

Due to this variation, the equations change. The relationship between stress and strain 
in FRC in compression will be the same as in the RILEM TC 162-TDF: 
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But the new relation between strain and y is: 
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Hence, the new equation is: 

Intermediate steps Final state 
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Or: 
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The equation for FRC in tension is basically the same, but it is necessary to change 
the last limit. This is due to the fact that tensile strength of the concrete is different 
from when dy > while the strain is less than max3 ctεε = . So the maximum height 
which can carry tensile load is: 
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As it can be observed, this height depends on sε . When 3εε =s , the height is logically 
d. Finally, when maxyy > , the tensile load is zero. 
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The equation to explain the behaviour of the steel is (C.13) as in the first option. 

A.2 Derivation of the cross-sectional analysis equations in 
σ−w  approach 

Figure C.5 shows the diagram which is necessary to implement in order to obtain the 
equations: 
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Figure C.5 Non-linear hinge model 1, stress distribution 

 

The forces equilibrium equation is: 
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The relationship between the strain and the height is: 

(C.19) 
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Figure C.6 strain-height relationship 

The relationship between stress and strain in concrete in compression is the same than 
in the σ−ε approach: 
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And if it is changed ε  by ε(y), with the condition that the strain must be positive to be 
introduced into the formula: 
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Or: 
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The elastic zone has a very simple expression for the stress-height relationship. 
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Where a is the height of the crack: 
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So it yields: 
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The equations of the cracked zone are: 
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The relationship between w and y can be easily determined. The opening of the crack 
is the absolute strain in a height y reduced by the elastic absolute strain (deformation 
which already exists before the tip of the crack) and strain due to the normal load: 
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So the complete equation is: 
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The equation of the steel stress can be considered the same than in the σ−ε approach, 
but the difference of the strain of the steel is not an input. As it was explained in C.1, 
the steel stress equation is: 
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When sε  is calculated using the equation (C.23) 
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Hence the equation is: 
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Appendix B 

B.1 Bond-Slip Curves 

MIX A     Dstiff = 8,26E+10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s τ 

0,00 0,00 

0,0500 4,13 
0,10 5,45 
0,20 7,19 
0,30 8,46 
0,40 9,49 
0,50 10,38 
0,60 11,16 
0,80 12,52 
1,00 13,69 
3,00 13,69 
3,50 9,59 
4,00 5,48 
10,00 5,48 

Concrete 
Strength: 30 
Confined 
Concrete Bond 
Conditions Good 

S1 1,00 
β 0,40 

τmax 13,69 
τf 5,48 
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MIX B                Dstiff =1E+11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s τ 

0,00 0,00 

0,0500 5,00 

0,10 6,60 

0,20 8,71 

0,30 10,25 

0,40 11,49 

0,50 12,57 

0,60 13,52 

0,80 15,17 

1,00 16,58 

3,00 16,58 

3,50 11,61 

4,00 6,63 

10,00 6,63 

Concrete 
Strength: 44 
Confined 
Concrete Bond 
Conditions Good 

S1 1,00 

β 0,40 

τmax 
16,58 

τf 
6,63 
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MIX C                        Dstiff =1.03E+11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s τ 

0,00 0,00 

0,0500 5,17 

0,10 6,82 

0,20 9,00 

0,30 10,59 

0,40 11,88 

0,50 12,99 

0,60 13,97 

0,80 15,68 

1,00 17,14 

3,00 17,14 

3,50 12,00 

4,00 6,86 

10,00 6,86 

Concrete 
Strength: 47
Confined 
Concrete Bond 
Conditions Good 

S1 1,00 

β 0,40 

τmax 
17,14 

τf 
6,86 
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Appendix C 
C.1.1 Sigma-crack opening relationship, analytical analysis. Mix A  

MATERIAL PROPERTIES
Reinforcing steel:

Young modulus Steel: Es 200 GPa⋅:= Ultimate strain: εsuk
50

1000
:=

Yielding strength: fyk 500 MPa⋅:= ks 1.08:=

Yielding strain: Ultimate strength: fuk ks fyk⋅:=
εsyk

fyk
Es

:=

fuk 540MPa=

εsyk 2.5 10 3−
×=

Reinforcement stress: σs εs( ) Es εs⋅ εs εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs
fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs< εsuk≤if

0 MPa⋅ εs εsuk>if

:=

0 1 2 3 4 5

200

400

600

Strain

St
re

ss σs εs( )
MPa

εs

%

DIANA input strain: εdiana
5

100
⎛⎜
⎝

⎞⎟
⎠

fyk
Es

−:= εdiana 0.048=
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Concrete in compression:

Mean compressive strength: fcm 30MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 30.589GPa=

εcu1
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.21 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu1−

100
, εcu1−..:=

4 3.5 3 2.5 2 1.5 1 0.5 0

30

20

10

Strain

St
re

ss σc εc( )
MPa

εc 1000⋅
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Concrete in tension:

Bi-linear Stress-Crack Opening Relationship MIX A:

Tensional strength fct 2.5 MPa⋅:=

Cracking strain εct.cr
fct
Ec

:= εct.cr 8.173 10 5−×=

Curve constants:

a1 10
1

mm
⋅:= a2 0.065

1
mm

⋅:=

b1 1:= b2 0.55:=

w1
b1 b2−

a1 a2−
:= w1 0.045mm= wc

b2
a2

:=

wc 8.4615mm=

g w( ) b1 a1 w⋅− 0 w≤ w1<if

b2 a2 w( )⋅− w1 w≤ wc≤if

:=

Fracture energy: GF
0 mm⋅

wc
wfct g w( )⋅

⌠
⎮
⌡

d:= GF 5843
N m⋅

m2
=

0 1 2 3 4 5 6 7 8 9

0.5

1

1.5

2

2.5

Crack-Opening

St
re

ss g w( ) fct⋅

MPa

w

mm
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SECTIONAL ANALYSIS 

Height of beam: h 125 mm⋅:=

Width of beam: b 1000mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars:nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.73mm=

Inertia Moment: Ief
b h3⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2⋅+:= Ief 1.63837 108
× mm4

=

Critical moment (moment
just before cracking) Mcr

Ief fct⋅

h xef−
:= Mcr 6.578kN m⋅=

 

HEIGHT 1.- 125 mm 
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Width of non-linear zone (crack spacing),
see appendix D:

s 110mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 1.444 10 4−

×= Critical curvature: κcr
γcr
s

:=

κcr 1.3125014 10 3−
×

1
m

=Number of
steps: n 700:= i 0 n..:=

Values of the turn: γi γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=

Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η
γi

s
y0ini y−( )⋅

⎡
⎢
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⎤
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⎦

⋅ η
γi

s
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⎥
⎦

2

−

1 k 2−( ) η
γi

s
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⎢
⎣

⎤
⎥
⎦

⋅+

⋅
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⎢
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⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d

y0ini

fct

Ec

s

γi
⋅ y0ini+

y
γi

s
y y0ini−( ) Ec⋅⎡⎣ ⎤⎦⋅

⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d+

...

fct

Ec

s

γi
⋅ y0ini+

h

yfct b1 a1 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ y0ini+ y≤

w1
γi

fct
Ec γi⋅

s⋅+ y0ini+<if

b2 a2 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ y0ini+ y≤
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d+

...

As Es
γi

s
⋅ d1 y0ini−( )⋅

γi d1 y0ini−( )⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γi d1 y0ini−( )⋅

s

fyk
Es

−
⎡
⎢
⎣

⎤
⎥
⎦

fyk+ εsyk
γi d1 y0ini−( )⋅

s
< εsuk<if

0 MPa⋅
γi d1 y0ini−( )⋅

s
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
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ϕ/2 ϕ/2 

s 

ϕ∗ 
a 

wcmod 

Crack extension: ai h
fct
Ec

s
γi

⋅ Y0i
+

⎛
⎜
⎝

⎞
⎟
⎠

−:=

Maximum crack opening:

wCMODi
γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0 γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc≤if

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

General expression for the crack opening:

w i y,( ) γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm<if

γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc<if

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

Position of the neutral axis when turn is increasing:
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Stress and Strain STEEL:

Strain in reinforcement steel:

Bottom steel

εs.1 i

γ i−

s
Y0i

⋅

Y0i
d1−

Y0i

⋅:=

Stress in reinforcement steel :

Bottom steel

σs.1 i
Es

γ i

s
⋅ d1 Y0i

−⎛
⎝

⎞
⎠

⋅

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s

fyk
Es

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

fyk+ εsyk

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
< εsuk<if

0 MPa⋅

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsuk>if

:=
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Stress and Strain CONCRETE:

Concrete strain: εcc i y,( )
γ i−

s
Y0i

⋅

Y0i
y−

Y0i

⋅:=

Concrete stress:

σcc i y,( ) fcm−

k η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅:=
Concrete in compresion:
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Concrete in elastic behaviour:
σct i y,( )

γi

s
y Y0i

−⎛
⎝

⎞
⎠

Ec⋅⎡
⎣

⎤
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

:=

Cracked concrete: σcf i y,( ) fct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y<

fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+≤if

σcf i y,( )
fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+ y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement
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ss σc i d1,( )
MPa

εcc i d1,( ) 1000⋅

Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i

yfcm−

k η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮⌡

d:=
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Concrete in tension force
(elastic zone):

Fcti
Y0i

fct

Ec

s

γi
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
⎝

⎞
⎠

⋅ Ec⋅
⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d:=

Cracked concrete
force:

Ffti

fct

Ec

s

γi
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=
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ELASTIC CONCRETE CRACKED CONCRETE

Moment :

MRi

0

Y0i

yfcm−

k η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅ y( )⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮⌡

d

Y0i

fct

Ec

s

γ i
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
⎝

⎞
⎠

⋅ Ec⋅
⎡
⎢
⎣

⎤
⎥
⎦

b⋅ y⋅

⌠
⎮
⎮
⎮
⌡

d+

...

fct

Ec

s

γ i
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅ y⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d+

...

Fsi
d1( )⋅+

...

:=
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Stress Diagram of the cross section:
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SECTIONAL ANALYSIS  

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

A c ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6 mm=

Total steel area: A s n A s.i⋅:= A s 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.252 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 125.6 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.31709 109

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 26.469 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 135mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 8.869 10 5−

×= Critical curvature: κ cr
γcr
s

:=

κ cr 6.5699422 10 4−
×

1
m

=Number of
steps: n 700:= i 0 n..:=

Values of the turn: γ i γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=
 

 HEIGHT 2.- 250 mm 
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Position of the neutral axis when turn is increasing:
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Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:
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SUM OF FORCES=0 GRAPH
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MOMENT-CURVATURE GRAPH κ i
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STRESS DIAGRAM OF THE CROSS SECTION:
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SECTIONAL ANALYSIS  

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: u cover 25 mm⋅:=

Initial spacing of reinforcement: u spaci 150 mm⋅:= d 1 h u cover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b u spaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

A c ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 9.317 mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: n ap

A c ρ⋅

A s.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= u spac 125.429 mm=

Total steel area: A s n A s.i⋅:= A s 5.089 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.503 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 251.488 mm=

Inertia Moment: Ief
b h 3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.0584 1010

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 106.474 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 105mm:=

Critical turn: γ cr
s

h xef−
εct.cr⋅:= γ cr 3.453 10 5−

×= Critical curvature: κ cr
γ cr
s

:=

κ cr 3.2887645 10 4−
×

1
m

=Number of
steps: n 700:= i 0 n..:=

Values of the turn: γ i γ cr
γ cr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γ cr
5

i⋅+:=

Initial value position of neutral axis: y 0ini
h
20

:=

 

HEIGHT 3.- 500 mm 
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Position of the neutral axis when turn is increasing:
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300
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Maximum crack opening when turn is increasing:
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Stress Strain Reinforcement Diagram:
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Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:
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SUM OF FORCES=0 GRAPH
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MOMENT-TURN GRAPH
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MOMENT-CURVATURE GRAPH κ i
γ i

s
:=
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STRESS DIAGRAM OF THE CROSS SECTION:

 

h= 500 mm 
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C.1.2 Sigma-crack opening relationship, analytical analysis. Mix B  

 

MATERIAL PROPERTIES 

Concrete in compression:

Mean compressive strength: fcm 44MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 34.313GPa=

εcu
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.23 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu−

100
, εcu−..:=

4 3.5 3 2.5 2 1.5 1 0.5 0
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ss σc εc( )
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εc 1000⋅
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Concrete in tension:

Bi-linear Stress-Crack Opening Relationship MIX B:

Tensional strength fct 3.5 MPa⋅:=

Cracking strain εct.cr
fct
Ec

:= εct.cr 1.02 10 4−
×=

Curve constants:

a1 16
1

mm
⋅:= a2 0.14

1
mm

⋅:=

b1 1:= b2 0.96:=

w1
b1 b2−

a1 a2−
:= w1 2.522 10 3−× mm= wc

b2
a2

:=

wc 6.8571mm=

g w( ) b1 a1 w⋅− 0 w≤ w1<if

b2 a2 w( )⋅− w1 w≤ wc≤if

:=

Fracture energy: GF
0 mm⋅

wc
wfct g w( )⋅

⌠
⎮
⌡

d:= GF 11520
N m⋅

m2
=

0 1 2 3 4 5 6 7

1
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3

4

Crack-Opening

St
re

ss g w( ) fct⋅

MPa

w

mm
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SECTIONAL ANALYSIS 

Height of beam: h 125 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars:nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.705mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.63721 108

× mm4
=

Critical moment (moment
just before cracking) Mcr

Ief fct⋅

h xef−
:= Mcr 9.199kN m⋅=

 

 

HEIGHT 1.- 125 mm 
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Width of non-linear zone (crack spacing),
see appendix D:

s 55mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 9.006 10 5−

×= Critical curvature: κcr
γcr
s

:=

κcr 1.6374028 10 3−
×

1
m

=Number of
steps: n 700:= i 0 n..:=

Values of the turn: γi γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=

Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d

y0ini

fct

Ec

s

γi
⋅ y0ini+

y
γi

s
y y0ini−( ) Ec⋅⎡⎣ ⎤⎦⋅

⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d+

...

fct

Ec

s

γi
⋅ y0ini+

h

yfct b1 a1 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ y0ini+ y≤

w1
γi

fct
Ec γi⋅

s⋅+ y0ini+<if

b2 a2 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ y0ini+ y≤
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d+

...

As Es
γi

s
⋅ d1 y0ini−( )⋅

γi d1 y0ini−( )⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γi d1 y0ini−( )⋅

s

fyk
Es

−
⎡
⎢
⎣

⎤
⎥
⎦

fyk+ εsyk
γi d1 y0ini−( )⋅

s
< εsuk<if

0 MPa⋅
γi d1 y0ini−( )⋅

s
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
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ϕ/2 ϕ/2 

s 

ϕ∗ 
a 

wcmod 

Crack extension: ai h
fct
Ec

s
γi

⋅ Y0i
+

⎛
⎜
⎝

⎞
⎟
⎠

−:=

Maximum crack opening:

wCMODi
γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0 γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc≤if

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

General expression for the crack opening:

w i y,( ) γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm<if

γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc<if

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

Position of the neutral axis when turn is increasing:

0 2 4 6 8 10 12 14

20

40

60

80

Position neutral axis

Tu
rn Y0i

mm

γi 103⋅

Maximum crack opening when turn is increasing:

0 5 10 15
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M
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 c
ra

ck
 o

pe
ni

ng

wCMODi

mm

γi 103⋅
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Stress and Strain STEEL:

Strain in reinforcement steel:

Bottom steel

εs.1 i

γ i−

s
Y0i

⋅

Y0i
d1−

Y0i

⋅:=

Stress in reinforcement steel :

Bottom steel

σs.1 i
Es

γ i

s
⋅ d1 Y0i

−⎛
⎝

⎞
⎠

⋅

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s

fyk
Es

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

fyk+ εsyk

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
< εsuk<if

0 MPa⋅

γ i d1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsuk>if

:=

0 5 10 15 20 25

200

400

600

Steel Strain

St
ee

l S
tre

ss

σs.1 i

MPa

εs.1 i
10 3⋅

Stress and Strain CONCRETE:

Concrete strain: εcc i y,( )
γ i−

s
Y0i

⋅

Y0i
y−

Y0i

⋅:=

Concrete stress:

σcc i y,( ) fcm−

k η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅:=
Concrete in compresion:
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Concrete in elastic behaviour: σct i y,( )
γi

s
y Y0i

−⎛
⎝

⎞
⎠

Ec⋅⎡
⎣

⎤
⎦

⋅:=

Cracked concrete: σcf i y,( ) fct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y<

fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+≤if

σcf i y,( )
fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+ y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement

0.003 0.002 0.001 0

40

20

Strain

St
re

ss σc i 0m,( )

MPa

εcc i 0m,( )

0 5 10 15 20 25

2

4

Strain

St
re

ss σc i d1,( )
MPa

εcc i d1,( ) 1000⋅

Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i

yfcm−

k η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮⌡

d:=
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Concrete in tension force
(elastic zone):

Fcti
Y0i

fct

Ec

s

γi
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
⎝

⎞
⎠

⋅ Ec⋅
⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d:=

Cracked concrete
force:

Ffti

fct

Ec

s

γi
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
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⎣
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⎥
⎦
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fct
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⎠
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Graphs of forces:
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k η
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⎝
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⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦
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−

1 k 2−( ) η
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⎞
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⋅
⎡
⎢
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⎦
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⎡
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⎥
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⎮
⎮⌡
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γ i
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
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⎠
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⎡
⎢
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⎤
⎥
⎦
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⌠
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⎮
⌡

d+

...

fct
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s

γ i
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
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b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−
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s⋅+

⎡
⎢
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⎤
⎥
⎦
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⋅
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⎢
⎢
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⎢
⎢
⎣
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⎥
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⎮
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MOMENT-MAXIMUM OPENING GRAPH
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Stress Diagram of the cross section:
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SECTIONAL ANALYSIS  

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6 mm=

Total steel area: A s n A s.i⋅:= A s 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.251 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 125.535 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.31547 109

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 36.992 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 5.327 10 5−

×= Critical curvature: κ cr
γcr
s

:=

κ cr 8.1952832 10 4−
×

1
m

=Number of
steps: n 400:= i 0 n..:=

Values of the turn: γ i γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=
 

HEIGHT 2.- 250 mm 
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Position of the neutral axis when turn is increasing:
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Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:
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SUM OF FORCES=0 GRAPH
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MOMENT-CURVATURE GRAPH κ i
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STRESS DIAGRAM OF THE CROSS SECTION:
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SECTIONAL ANALYSIS  

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

A c ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 9.317 mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 125.429 mm=

Total steel area: A s n A s.i⋅:= A s 5.089 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.503 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 251.327 mm=

Inertia Moment: Ief
b h 3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.0566 1010

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 148.713 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 2.666 10 5−

×= Critical curvature: κ cr
γcr
s

:=
E

κ cr 4.1018613 10 4−
×

1
m

=Number of
steps: n 400:= i 0 n..:=

Values of the turn: γ i γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
10

:=
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Position of the neutral axis when turn is increasing:
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Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:
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MOMENT-CURVATURE GRAPH κ i
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STRESS DIAGRAM OF THE CROSS SECTION:
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C.1.3 Sigma-crack opening relationship, analytical analysis. Mix C 

MATERIAL PROPERTIES 

Concrete in compression:

Mean compressive strength: fcm 47MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 34.999GPa=

εcu
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.24 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu−

100
, εcu−..:=
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Concrete in tension:

Bi-linear Stress-Crack Opening Relationship MIX C:

Tensional strength fct 3.5 MPa⋅:=

Cracking strain εct.cr
fct
Ec

:= εct.cr 1 10 4−
×=

Curve constants:

a1 16
1

mm
⋅:= a2 0.2

1
mm

⋅:=

b1 1:= b2 0.985:=

w1
b1 b2−

a1 a2−
:= w1 9.494 10 4−× mm= wc

b2
a2

:=

wc 4.925mm=

g w( ) b1 a1 w⋅− 0 w≤ w1<if

b2 a2 w( )⋅− w1 w≤ wc≤if

:=

Fracture energy: GF
0 mm⋅

wc
wfct g w( )⋅

⌠
⎮
⌡

d:= GF 8489
N m⋅

m2
=

0 1 2 3 4 5
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SECTIONAL ANALYSIS 

Height of beam: h 125 mm⋅:=

Width of beam: b 1000mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars:nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.701mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.63702 108

× mm4
=

Critical moment (moment
just before cracking) Mcr

Ief fct⋅

h xef−
:= Mcr 9.197kN m⋅=

 

 

HEIGHT 1.- 125 mm 
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Width of non-linear zone (crack spacing),
see appendix D:

s 55mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 8.829 10 5−

×= Critical curvature: κcr
γcr
s

:=

κcr 1.6052184 10 3−
×

1
m

=Number of
steps: n 400:= i 0 n..:=

Values of the turn: γi γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=

Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
y0ini y−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d

y0ini

fct

Ec

s

γi
⋅ y0ini+

y
γi

s
y y0ini−( ) Ec⋅⎡⎣ ⎤⎦⋅

⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d+

...

fct

Ec

s

γi
⋅ y0ini+

h

yfct b1 a1 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ y0ini+ y≤

w1
γi

fct
Ec γi⋅

s⋅+ y0ini+<if

b2 a2 γi y y0ini−( )⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ y0ini+ y≤
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ y0ini+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d+

...

As Es
γi

s
⋅ d1 y0ini−( )⋅

γi d1 y0ini−( )⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γi d1 y0ini−( )⋅

s

fyk
Es

−
⎡
⎢
⎣

⎤
⎥
⎦

fyk+ εsyk
γi d1 y0ini−( )⋅

s
< εsuk<if

0 MPa⋅
γi d1 y0ini−( )⋅

s
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
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ϕ/2 ϕ/2 

s 

ϕ∗ 
a 

wcmod 

Crack extension: ai h
fct
Ec

s
γi

⋅ Y0i
+

⎛
⎜
⎝

⎞
⎟
⎠

−:=

Maximum crack opening:

wCMODi
γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0 γi h Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc≤if

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

h Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

General expression for the crack opening:

w i y,( ) γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm<if

γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+ 0mm γi y Y0i

−⎛
⎝

⎞
⎠

⋅
fct−

Ec
s⋅+≤ wc<if

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1

y Y0i
−⎛

⎝
⎞
⎠

γi⋅

1
wc>if

:=

Position of the neutral axis when turn is increasing:

0 1 2 3 4 5 6 7 8

20

40

60

80

Position neutral axis

Tu
rn Y0i

mm

γi 103⋅

Maximum crack opening when turn is increasing:

0 2 4 6 8

0.5

1

Turn

M
ax

im
um

 c
ra

ck
 o

pe
ni

ng

wCMODi

mm

γi 103⋅
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Stress and Strain STEEL:

Strain in reinforcement steel:

Bottom steel

εs.1 i

γ i−

s
Y0i

⋅

Y0i
d 1−

Y0i

⋅:=

Stress in reinforcement steel :

Bottom steel

σs.1 i
Es

γ i

s
⋅ d 1 Y0i

−⎛
⎝

⎞
⎠

⋅

γ i d 1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

γ i d 1 Y0i
−⎛

⎝
⎞
⎠

⋅

s

fyk
Es

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

fyk+ εsyk

γ i d 1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
< εsuk<if

0 MPa⋅

γ i d 1 Y0i
−⎛

⎝
⎞
⎠

⋅

s
εsuk>if

:=

0 2 4 6 8 10 12

200

400

600

Steel Strain

St
ee

l S
tre

ss

σs.1 i

MPa

εs.1 i
10 3⋅

Stress and Strain CONCRETE:

Concrete strain: εcc i y,( )
γ i−

s
Y0i

⋅

Y0i
y−

Y0i

⋅:=

Concrete stress:

σcc i y,( ) fcm−

k η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γ i

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅:=
Concrete in compresion:
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Concrete in elastic behaviour: σct i y,( )
γi

s
y Y0i

−⎛
⎝

⎞
⎠

Ec⋅⎡
⎣

⎤
⎦

⋅:=

Cracked concrete: σcf i y,( ) fct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y<

fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+≤if

σcf i y,( )
fct
Ec

s
γi

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Y0i
+ y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement

0.003 0.002 0.001 0

40

20

Strain

St
re

ss σc i 0m,( )

MPa

εcc i 0m,( )

0 5 10 15

2

4

Strain

St
re

ss σc i d1,( )
MPa

εcc i d1,( ) 1000⋅

Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i

yfcm−

k η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮⌡

d:=
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Concrete in tension force
(elastic zone):

Fcti
Y0i

fct

Ec

s

γi
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
⎝

⎞
⎠

⋅ Ec⋅
⎡
⎢
⎣

⎤
⎥
⎦

b⋅

⌠
⎮
⎮
⎮
⌡

d:=

Cracked concrete
force:

Ffti

fct

Ec

s

γi
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

1 .10 10

2 .10 10

Turn

Su
m
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s

Fcci
Fcti

+ Ffti
+ Fsi

+
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Graphs of forces:
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γ i
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γ i
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γ i

ELASTIC CONCRETE CRACKED CONCRETE

Moment :

MRi

0

Y0i

yfcm−

k η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

2

−

1 k 2−( ) η
γi

s
Y0i

y−⎛
⎝

⎞
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

b⋅ y( )⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮⌡

d

Y0i

fct

Ec

s

γ i
⋅ Y0i

+

y
γi

s
y Y0i

−⎛
⎝

⎞
⎠

⋅ Ec⋅
⎡
⎢
⎣

⎤
⎥
⎦

b⋅ y⋅

⌠
⎮
⎮
⎮
⌡

d+

...

fct

Ec

s

γ i
⋅ Y0i

+

h

yfct b1 a1 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
fct

Ec γi⋅
s⋅ Y0i

+ y≤
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+<if

b2 a2 γi y Y0i
−⎛

⎝
⎞
⎠

⋅
fct−

Ec
s⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
w1
γi

fct
Ec γi⋅

s⋅+ Y0i
+ y≤

wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+≤if

0 y
wc
γi

fct
Ec γi⋅

s⋅+ Y0i
+>if

⋅
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅ y⋅
⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d+

...

Fsi
d1( )⋅+

...

:=
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MOMENT-TURN GRAPH

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

10

20

30

Turn

M
om

en
t

MRi

kN m⋅

γ i

NORMALISED MOMENT-TURN GRAPH

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

1

2

3

4

Turn

M
om

en
t MRi

Mcr

γ i

MOMENT-CURVATURE GRAPH κi
γi

s
:=

0 0.02 0.04 0.06 0.08 0.1 0.12

10

20

30

Curvature

M
om

en
t

MRi

kN m⋅

κ i

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

174 

MOMENT-MAXIMUM CRACK OPENING GRAPH
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Stress Diagram of the cross section:
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SECTIONAL ANALYSIS  

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

A c ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6 mm=

Total steel area: A s n A s.i⋅:= A s 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.251 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 125.525 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.31521 109

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 36.981 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 5.222 10 5−

×= Critical curvature: κ cr
γcr
s

:=

κ cr 8.0340401 10 4−
×

1
m

=Number of
steps: n 400:= i 0 n..:=

Values of the turn: γ i γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=
 

HEIGHT 2.- 250 mm 
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Position of the neutral axis when turn is increasing:

0 1 2 3 4 5

50

100

150

Position neutral axis

Tu
rn Y 0 i

mm

γ i 10 3⋅

Maximum crack opening when turn is increasing:

0 1 2 3 4 5

0.5

1

Turn

M
ax

im
um

 c
ra

ck
 o
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ng

w CMOD i

mm

γ i 10 3⋅

Stress Strain Reinforcement Diagram:

0 5 10 15

200

400

600

Steel Strain

St
ee

l S
tre

ss

σ s.1 i

MPa

ε s.1 i
10 3⋅

 

Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:
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SUM OF FORCES=0 GRAPH
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MOMENT-TURN GRAPH
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MOMENT-CURVATURE GRAPH κ i
γ i

s
:=

0 0.01 0.02 0.03 0.04 0.05 0.06
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MOMENT-MAXIMUM CRACK OPENING GRAPH
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STRESS DIAGRAM OF THE CROSS SECTION:

 

h= 250 mm 
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SECTIONAL ANALYSIS  

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 9.317 mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 125.429 mm=

Total steel area: A s n A s.i⋅:= A s 5.089 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.503 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 251.301 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.0563 1010

× mm4
=

Critical moment (moment
just before cracking) M cr

Ief fct⋅

h xef−
:= M cr 148.656 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Critical turn: γcr
s

h xef−
εct.cr⋅:= γcr 2.614 10 5−

×= Critical curvature: κ cr
γcr
s

:=

κ cr 4.021076 10 4−
×

1
m

=Number of
steps: n 400:= i 0 n..:=

Values of the turn: γ i γcr
γcr
20

+
⎛
⎜
⎝

⎞
⎟
⎠

γcr
5

i⋅+:=

Initial value position of neutral axis: y0ini
h
20

:=

 

HEIGHT 3.- 500 mm 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

182 

Position of the neutral axis when turn is increasing:
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Stress Strain Reinforcement Diagram:

0 5 10 15

200

400

600

Steel Strain

St
ee

l S
tre

ss

σ s.1 i

MPa

ε s.1 i
10 3⋅

 

 

Stress-Strain diagram of the top concrete: Stress-Strain relationship at the level of reinforcement:

0.003 0.002 0.001 0

40

20

Strain

St
re

ss σc i 0m,( )

MPa

εcc i 0m,( )

0 5 10 15

2

4

Strain

St
re

ss σc i d1,( )
MPa

εcc i d1,( ) 1000⋅

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 
183

SUM OF FORCES=0 GRAPH
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MOMENT-CURVATURE GRAPH κ i
γ i
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STRESS DIAGRAM OF THE CROSS SECTION:
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C.2.1 Sigma-epsilon relationship, analytical analysis. Mix A 

MATERIAL PROPERTIES
Reinforcing steel:

Young modulus Steel: Es 200 GPa⋅:= Ultimate strain: εsuk
50

1000
:=

Yielding strength: fyk 500 MPa⋅:= ks 1.08:=

Yielding strain: Ultimate strength: fuk ks fyk⋅:=
εsyk

fyk
Es

:=

fuk 540MPa=

εsyk 2.5 10 3−
×=

Reinforcement stress: σs εs( ) Es εs⋅ εs εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs
fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs< εsuk≤if

0 MPa⋅ εs εsuk>if

:=

0 1 2 3 4 5

200

400

600

Strain

St
re

ss σs εs( )
MPa

εs

%

DIANA input strain: εdiana
5

100
⎛⎜
⎝

⎞⎟
⎠

fyk
Es

−:= εdiana 0.048=
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Concrete in compression:

Mean compressive strength: fcm 30MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 30.589GPa=

εcu
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.21 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu−

100
, εcu−..:=

4 3.5 3 2.5 2 1.5 1 0.5 0

30

20

10

Strain

St
re

ss σc εc( )
MPa

εc 1000⋅
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Concrete in tension:

Tri-linear Stress-Crack Opening Relationship:

MIX A
TEXT SPECIMEN VALUES: REAL BEAM VALUES:

hsp 124.15mm:= Leng 500mm:= b 151.26mm:= ucover 25mm:=

h 125mm:=fcm 30MPa:= FR1 11.335kN:= FR4 9.619kN:= FL 13.431kN:=
d1 h ucover−:=

Values of the RILEM constants:

fr1
3 FR1⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= fr4

3 FR4⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= ffctL

3 FL⋅ Leng⋅

2 b⋅ hsp
2

⋅
:=

fr1 3.646MPa= fr4 3.094MPa= ffctL 4.321MPa=

kh h( ) 1 0.6

h
mm10⋅

12.5−

47.5
⋅−:= kh h( ) 1= EcRILEM 9500

fcm
MPa

⎛
⎜
⎝

⎞
⎟
⎠

1

3

MPa⋅:= EcRILEM 29.519GPa=

Final Values for the curve:

σ1 0.7 ffctL⋅ 1.6
d1

mm1000⋅
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

:= ε1
σ1

EcRILEM
:= σ1 4.537 106

× Pa= ε1 1.537 10 4−
×=

σ2 0.45 fr1⋅ kh h( )⋅:= ε2 ε1
0.1

1000
+:= σ2 1.641 106× Pa= ε2 2.537 10 4−×=

σ3 0.37 fr4⋅ kh h( )⋅:=
ε3

25
1000

:= σ3 1.145 106
× Pa= ε3 0.025=

Final expression for the curve:
fct σ1:=

σ εct( )
σ1
ε1

εct⋅ 0 εct≤ ε1≤if

σ1 σ2−

ε1 ε2−
εct ε1−( )⋅ σ1+ ε1 εct< ε2≤if

σ2 σ3−

ε2 ε3−
εct ε3−( )⋅ σ3+ ε2 εct≤ ε3≤if

:=
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Sigma-Epsilon relationship (Stress-Strain)

0 5 10 15 20 25

2

4

6

Strain

St
re

ss σ εct( )
MPa

εct 1000⋅

SECTIONAL ANALYSIS 

Height of beam: h 125 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspac 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspac
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 4.659mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars: nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094 m=
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Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.73 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.63837 108

× mm4
=

Critical moment (moment
just before cracking) Mcr

Ief fct⋅

h xef−
:= Mcr 11.936 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 110mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1 i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
20

:=
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Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d

y0ini

h

y
σ1
ε1

εs.1i
y y0ini−( )⋅

d1 y0ini−
⋅ y0ini y≤

ε1 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ1 σ2−

ε1 ε2−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε1−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ1+
ε1 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε3−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ3+
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+≤if

0 MPa⋅
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+ y<if

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d+

...

As Es εs.1i
⋅ εs.1i

εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1i
< εsuk≤if

0 MPa⋅ εs.1i
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎦
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Stress and Strain STEEL:

Strain in reinforcement steel: Stress in reinforcement steel :

Bottom steel Bottom steel

σs.1i
Es εs.1i

⋅ εs.1i
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1i
< εsuk≤if

0 MPa⋅ εs.1i
εsuk>if

:=
εs.1i
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Stress and Strain CONCRETE:

εcc i y,( )
εs.1i

d1 Y0i
−

y Y0i
−⎛

⎝
⎞
⎠

⋅:=Concrete strain:

Concrete stress:

Concrete in compresion: σcc i y,( ) fcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅:=

Concrete in tension:

σct i y,( )
σ1
ε1

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+ y<if

:=
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Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement
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Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i
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k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
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y−⎛
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⋅

d1 Y0i
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⎡
⎢
⎢
⎣

⎤
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⎥
⎦
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−
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⎠
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⎡
⎢
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⎥
⎥⎦

b⋅

⌠
⎮
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⎮
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⎮
⎮
⌡

d:=

Concrete in
tension:
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−⎛

⎝
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⎠
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⎠
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⎥
⎦
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ε2 d1 Y0i
−⎛

⎝
⎞
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⋅
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+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
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d1 Y0i
−⎛
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⎞
⎠

ε3⋅

εs.1i
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⎥
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⎥⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡
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Moment :

MRi

0

Y0i

yfcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
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⎣
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⎥
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⋅ η
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y−⎛
⎝

⎞
⎠

⋅
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⎢
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⎥
⎦
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1 k 2−( ) η
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⎠

⋅
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⎢
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⎮
⌡
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⎠
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⎥
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⎠
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⎥
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−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛
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⎠
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⎠
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⎥
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NORMALISED MOMENT-REINFORCEMENT STRAIN GRAPH
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SECTIONAL ANALYSIS 

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars: nap

Ac ρ⋅

As.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6mm=

Total steel area: As n As.i⋅:= As 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.252 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 125.6mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.31709 109× mm4=

Critical moment (moment
just before cracking) fct σ1:= Mcr

Ief fct⋅

h xef−
:= Mcr 44.03kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 135mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=

 

HEIGHT 2.- 250 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:
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Stress-Strain diagram of the top concrete: Stress-Strain diagram at the level of reinforcement:
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MOMENT-REINFORCEMENT STRAIN GRAPH
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STRESS DIAGRAM OF THE CROSS SECTION:
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SECTIONAL ANALYSIS 

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 9.317mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars: nap

Ac ρ⋅

As.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 125.429mm=

Total steel area: As n As.i⋅:= As 5.089 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.503 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 251.488mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.0584 1010× mm4=

Critical moment (moment
just before cracking) fct σ1:= Mcr

Ief fct⋅

h xef−
:= Mcr 144.912kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 105mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
15

:=

 

HEIGHT 3.- 500 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:
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Stress-Strain diagram of the top concrete: Stress-Strain diagram at the level of reinforcement:
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MOMENT-REINFORCEMENT STRAIN GRAPH
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25 20 15 10 5 0 5
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step 20
step 40
step 80
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σc 80 y,( )
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,

σc 200 y,( )
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,

σc 400 y,( )

MPa
,

STRESS DIAGRAM OF THE CROSS SECTION:

 

 

 

h= 500 mm 
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C.2.2 Sigma-epsilon relationship, analytical analysis. Mix B 

MATERIAL PROPERTIES 

Concrete in compression:

Mean compressive strength: fcm 44MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 34.313GPa=

εcu
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.23 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu−

100
, εcu−..:=

4 3.5 3 2.5 2 1.5 1 0.5 0

50

40

30

20

10

Strain

St
re

ss σc εc( )
MPa

εc 1000⋅
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Concrete in tension:

Tri-linear Stress-Crack Opening Relationship:

MIX B
TEXT SPECIMEN VALUES: REAL BEAM VALUES:

hsp 128.07mm:= Leng 500mm:= b 151.44mm:= ucover 25mm:=

h 125mm:=fcm 44MPa:= FR1 28.502kN:= FR4 23.145kN:= FL 19.837kN:=
d1 h ucover−:=

Values of the RILEM constants:

fr1
3 FR1⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= fr4

3 FR4⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= ffctL

3 FL⋅ Leng⋅

2 b⋅ hsp
2

⋅
:=

fr1 8.606MPa= fr4 6.988MPa= ffctL 5.99MPa=

kh h( ) 1 0.6

h
mm 10⋅

12.5−

47.5
⋅−:= kh h( ) 1= EcRILEM 9500

fcm
MPa

⎛
⎜
⎝

⎞
⎟
⎠

1

3

MPa⋅:= EcRILEM 33.538GPa=

Final Values for the curve:

σ1 0.7 ffctL⋅ 1.6
d1

mm 1000⋅
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

:= ε1
σ1

EcRILEM
:= σ1 6.289 106× Pa= ε1 1.875 10 4−×=

σ2 0.45 fr1⋅ kh h( )⋅:=
ε2 ε1

0.1
1000

+:= σ2 3.873 106
× Pa= ε2 2.875 10 4−

×=

σ3 0.37 fr4⋅ kh h( )⋅:=
ε3

25
1000

:= σ3 2.586 106
× Pa= ε3 0.025=

Final expression for the curve:

σ εct( )
σ1
ε1

εct⋅ 0 εct≤ ε1≤if

σ1 σ2−

ε1 ε2−
εct ε1−( )⋅ σ1+ ε1 εct< ε2≤if

σ2 σ3−

ε2 ε3−
εct ε3−( )⋅ σ3+ ε2 εct≤ ε3≤if

:=
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Sigma-Epsilon relationship (Stress-Strain)

0 5 10 15 20 25

5

10

Strain

St
re

ss σ εct( )
MPa

εct 1000⋅

SECTIONAL ANALYSIS 

Height of beam: h 125mm⋅:=

Width of beam: b 1000mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspac 150mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspac
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars:nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars:n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094m=
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Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126 m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.705mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.63721 108

× mm4
=

Critical moment (moment
just before cracking) fct σ1:= Mcr

Ief fct⋅

h xef−
:= Mcr 16.529kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 55mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=
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Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d

y0ini

h

y
σ1
ε1

εs.1i
y y0ini−( )⋅

d1 y0ini−
⋅ y0ini y≤

ε1 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ1 σ2−

ε1 ε2−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε1−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ1+
ε1 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε3−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ3+
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+≤if

0 MPa⋅
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+ y<if

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d+

...

As Es εs.1i
⋅ εs.1i

εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1i
< εsuk≤if

0 MPa⋅ εs.1i
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
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Position of the neutral axis when steel strain is increasing:
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Stress and Strain STEEL:

Strain in reinforcement steel: Stress in reinforcement steel :

Bottom steel Bottom steel

σs.1i
Es εs.1i

⋅ εs.1i
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1i
< εsuk≤if

0 MPa⋅ εs.1i
εsuk>if

:=
εs.1i

0 5 10 15 20

200

400

600

Steel Strain

St
ee

l S
tre

ss

σs.1i

MPa

εs.1i
103⋅

Stress and Strain CONCRETE:

εcc i y,( )
εs.1i

d1 Y0i
−

y Y0i
−⎛

⎝
⎞
⎠

⋅:=Concrete strain:

Concrete stress:

Concrete in compresion: σcc i y,( ) fcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅:=

Concrete in tension:

σct i y,( )
σ1
ε1

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+ y<if

:=
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Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement
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Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i

yfcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

Concrete in
tension:

Fcti

Y0i

h

y
σ1
ε1

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+ y<if

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 
213

0 5 10 15 20

2 .10 9

4 .10 9

Turn

Su
m

 o
f f

or
ce

s

Fcci
Fcti

+ Fsi
+

εs.1i
1000⋅

0 0.005 0.01 0.015 0.02

100

Turn

St
re

ss Fsi

kN

εs.1i

0 0.005 0.01 0.015 0.02

600

400

200

Turn

St
re

ss Fcci

kN

εs.1i

STEEL CONCRETE IN COMPRESSION

0 0.005 0.01 0.015 0.02

200

400

Turn

St
re

ss Fcti
kN

εs.1i

CONCRETE IN TENSION

 

 

 

 

 

 

 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

214 

Moment :

MRi

0

Y0i

yfcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
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⋅
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⎥
⎦
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⎥
⎦
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y−⎛
⎝

⎞
⎠
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⎢
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⎮
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⎠
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⎠
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⎠
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⎥
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⎠
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⎥
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NORMALISED MOMENT-REINFORCEMENT STRAIN GRAPH
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SECTIONAL ANALYSIS 

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars: nap

Ac ρ⋅

As.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6mm=

Total steel area: As n As.i⋅:= As 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.251 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 125.535mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.31547 109× mm4=

Critical moment (moment
just before cracking)

fct σ1:= Mcr
Ief fct⋅

h xef−
:= Mcr 60.931kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=

 

Height 2.- 250 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:
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SECTIONAL ANALYSIS  

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 9.317 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 125.429 mm=

Total steel area: A s n A s.i⋅:= A s 5.089 10 4−× m2= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.503 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 251.327 mm=

Inertia Moment: Ief
b h3⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2⋅+:= Ief 1.0566 1010× mm4=

Critical moment (moment
just before cracking) fct σ1:= M cr

Ief fct⋅

h xef−
:= M cr 200.416 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1 i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=
 

Height 3.- 500 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:
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Stress-Strain diagram of the top concrete: Stress-Strain diagram at the level of reinforcement:
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C.2.3 Sigma-epsilon relationship, analytical analysis. Mix C 

MATERIAL PROPERTIES 

Concrete in compression:

Mean compressive strength: fcm 47MPa:=

Modulus of Elasticity: Ec 22

fcm

MPa

10

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.3

GPa⋅:= Ec 34.999GPa=

εcu
3.5

1000
:=Ultimate strain

Stress block factors: εc1 0.24 %⋅:= η εc( )
εc
εc1

:= k 1.1
Ec εc1⋅

fcm
⋅:=

Concrete stress: σc εc( ) fcm−
k η εc( )⋅ η εc( )2

−

1 k 2−( ) η εc( )⋅+
⋅:= εc 0

εcu−

100
, εcu−..:=
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Concrete in tension:

Tri-linear Stress-Crack Opening Relationship:

MIX C
TEXT SPECIMEN VALUES: REAL BEAM VALUES:

hsp 125.65mm:= Leng 500mm:= b 151.28mm:= ucover 25mm:=

h 125mm:=fcm 47MPa:= FR1 28.392kN:= FR4 19.876kN:= FL 19.998kN:=
d1 h ucover−:=

Values of the RILEM constants:

fr1
3 FR1⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= fr4

3 FR4⋅ Leng⋅

2 b⋅ hsp
2

⋅
:= ffctL

3 FL⋅ Leng⋅

2 b⋅ hsp
2

⋅
:=

fr1 8.916MPa= fr4 6.241MPa= ffctL 6.28MPa=

kh h( ) 1 0.6

h
mm10⋅

12.5−

47.5
⋅−:= kh h( ) 1= EcRILEM 9500

fcm
MPa

⎛
⎜
⎝

⎞
⎟
⎠

1

3

MPa⋅:= EcRILEM 34.284GPa=

Final Values for the curve:

σ1 0.7 ffctL⋅ 1.6
d1

mm1000⋅
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

:= ε1
σ1

EcRILEM
:= σ1 6.594 106

× Pa= ε1 1.923 10 4−
×=

σ2 0.45 fr1⋅ kh h( )⋅:= ε2 ε1
0.1

1000
+:= σ2 4.012 106× Pa= ε2 2.923 10 4−×=

σ3 0.37 fr4⋅ kh h( )⋅:=
ε3

25
1000

:= σ3 2.309 106
× Pa= ε3 0.025=

Final expression for the curve:

σ εct( )
σ1
ε1

εct⋅ 0 εct≤ ε1≤if

σ1 σ2−

ε1 ε2−
εct ε1−( )⋅ σ1+ ε1 εct< ε2≤if

σ2 σ3−

ε2 ε3−
εct ε3−( )⋅ σ3+ ε2 εct≤ ε3≤if

:=
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Sigma-Epsilon relationship (Stress-Strain)

0 5 10 15 20 25

5

10

Strain

St
re

ss σ εct( )
MPa

εct 1000⋅

SECTIONAL ANALYSIS 

Height of beam: h 125mm⋅:=

Width of beam: b 1000mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspac 150mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspac
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 5mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars:nap

Ac ρ⋅

As.i
:= nap 6.366=

Final number of bars:n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 184mm=

Total steel area: As n As.i⋅:= As 1.178 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.094m=
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Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.126m2
=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 62.701mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.63702 108

× mm4
=

Critical moment (moment
just before cracking) fct σ1:= Mcr

Ief fct⋅

h xef−
:= Mcr 17.326kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 55mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=
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Equilibrium equation to find the position of the neutral axis:

Y0i
root

0

y0ini

yfcm−

k η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
y0ini y−( )⋅

d1 y0ini−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅+

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d

y0ini

h

y
σ1
ε1

εs.1i
y y0ini−( )⋅

d1 y0ini−
⋅ y0ini y≤

ε1 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ1 σ2−

ε1 ε2−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε1−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ1+
ε1 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y y0ini−( )⋅

d1 y0ini−
ε3−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ σ3+
ε2 d1 y0ini−( )⋅

εs.1i

y0ini+ y<
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+≤if

0 MPa⋅
d1 y0ini−( ) ε3⋅

εs.1i

y0ini+ y<if

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b⋅

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮⌡

d+

...

As Es εs.1i
⋅ εs.1i

εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1i
< εsuk≤if

0 MPa⋅ εs.1i
εsuk>if

⋅+

...

y0ini,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

0 5 10 15 20

20

40

60

80

Strain of reinforcement

Po
si

tio
n 

of
 n

eu
tra

l a
xi

s

Y0i

mm

εs.1i
1000⋅

Position of the neutral axis when steel strain is increasing:
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Stress and Strain STEEL:

Strain in reinforcement steel: Stress in reinforcement steel :

Bottom steel Bottom steel

σs.1 i
Es εs.1 i

⋅ εs.1 i
εsyk≤if

fyk ks 1−( )⋅

εsuk
fyk
Es

−

εs.1 i

fyk
Es

−
⎛
⎜
⎝

⎞
⎟
⎠

fyk+ εsyk εs.1 i
< εsuk≤if

0 MPa⋅ εs.1 i
εsuk>if

:=
εs.1 i

0 5 10 15 20

200

400

600

Steel Strain

St
ee

l S
tre

ss

σs.1 i

MPa

εs.1 i
103⋅

Stress and Strain CONCRETE:

εcc i y,( )
εs.1 i

d1 Y0i
−

y Y0i
−⎛

⎝
⎞
⎠

⋅:=Concrete strain:

Concrete stress:

Concrete in compresion: σcc i y,( ) fcm−

k η

εs.1 i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1 i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1 i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅:=

Concrete in tension:

σct i y,( )
σ1
ε1

εs.1 i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1 i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1 i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1 i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1 i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1 i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1 i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1 i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1 i

Y0i
+ y<if

:=
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Final expression:

σc i y,( ) σcc i y,( ) 0mm y≤ Y0i
≤if

σct i y,( ) Y0i
y< h≤if

:=

Stress-Strain relationship in the top concrete: Stress-Strain relationship at the level of reinforcement

0.003 0.002 0.001 0

40

20

Strain

St
re

ss σc i 0m,( )

MPa

εcc i 0m,( )

0 5 10 15 20 25

2

4

6

8

Strain
St

re
ss σc i d1,( )

MPa

εcc i d1,( ) 1000⋅

Check force equilibrium:        Fcc+ Fft+Fct+Fs=0

Steel force: Fsi
As σs.1i

⋅:=

Concrete in
compression force: Fcci

0

Y0i

yfcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=

Concrete in
tension:

Fcti

Y0i

h

y
σ1
ε1

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+ y<if

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d:=
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Moment :

MRi

0

Y0i

yfcm−

k η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

−

1 k 2−( ) η

εs.1i
Y0i

y−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+

⋅

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅ y⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d

Y0i

h

y
σ1
ε1

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

⋅ Y0i
y≤

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+<if

σ1 σ2−

ε1 ε2−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ1+

ε1 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+≤if

σ2 σ3−

ε2 ε3−

εs.1i
y Y0i

−⎛
⎝

⎞
⎠

⋅

d1 Y0i
−

ε3−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ σ3+

ε2 d1 Y0i
−⎛

⎝
⎞
⎠

⋅

εs.1i

Y0i
+ y<

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+≤if

0 MPa⋅

d1 Y0i
−⎛

⎝
⎞
⎠

ε3⋅

εs.1i

Y0i
+ y<if

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

b⋅ y⋅

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d Fsi
d1( )⋅++

...:=
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NORMALISED MOMENT-REINFORCEMENT STRAIN GRAPH
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Stress Diagram of the cross section:
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SECTIONAL ANALYSIS  

Height of beam: h 250 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: Ac b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 6.588 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 7 mm=

Steel one bar Area: As.i π
φb

2

4
:= Approximate number of bars: nap

Ac ρ⋅

As.i
:= nap 6.496=

Final number of bars: n round nap 0,( ):= n 6= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 181.6 mm=

Total steel area: As n As.i⋅:= As 2.309 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.132 m=

Effective area:
Aef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅+:= Aef 0.251 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1⋅+

Aef
:= xef 125.525 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

As⋅ d1 xef−( )2
⋅+:= Ief 1.31521 109× mm4=

Critical moment (moment
just before cracking) fct σ1:= Mcr

Ief fct⋅

h xef−
:= Mcr 63.864 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1 i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=

 

Height 2.- 250 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:
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Stress-Strain diagram of the top concrete: Stress-Strain diagram at the level of reinforcement:
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MOMENT-REINFORCEMENT STRAIN GRAPH
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STRESS DIAGRAM OF THE CROSS SECTION:
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SECTIONAL ANALYSIS  

Height of beam: h 500 mm⋅:=

Width of beam: b 1000 mm⋅:=

Depth of concrete cover: ucover 25 mm⋅:=

Initial spacing of reinforcement: uspaci 150 mm⋅:= d1 h ucover−:=

Initial spacing reinforcement ratio: ρ 0.1%:=

Inicial diameter: φbi 7mm:=

Concrete Area: A c b h⋅:=Approximate bar diameter (withour rounding):

φbap root

b uspaci
A c ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

A c ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= φbap 9.317 mm= φb round
φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= Final bar
diameter:

φb 9 mm=

Steel one bar Area: A s.i π
φb

2

4
:= Approximate number of bars: nap

A c ρ⋅

A s.i
:= nap 7.86=

Final number of bars: n round nap 0,( ):= n 8= Final bar spacing: uspac
b 2 ucover⋅− n φb⋅−

n 1−
:= uspac 125.429 mm=

Total steel area: A s n A s.i⋅:= A s 5.089 10 4−
× m2

= Total perimeter of bars: perim 2 π⋅
φb
2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ n⋅:= perim 0.226 m=

Effective area:
A ef b h⋅

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅+:= A ef 0.503 m2=

Position of effective
gravity centre: xef

b h⋅
h
2

⋅
Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1⋅+

A ef
:= xef 251.301 mm=

Inertia Moment: Ief
b h3

⋅

12
b h⋅

h
2

xef−⎛⎜
⎝

⎞⎟
⎠

2
⋅+

Es
Ec

⎛
⎜
⎝

⎞
⎟
⎠

A s⋅ d1 xef−( )2
⋅+:= Ief 1.0563 1010× mm4=

Critical moment (moment
just before cracking) fct σ1:= M cr

Ief fct⋅

h xef−
:= M cr 210.043 kN m⋅=

Width of non-linear zone (crack spacing),
see appendix D:

s 65mm:=

Number of
steps: nstep 375:= i 1 nstep..:=

Values of the strain in reinforcement: εs.1 i

0.05 i⋅
1000

:=

Initial value position of neutral axis: y0ini
h
10

:=

 

Height 3.- 500 mm 
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Position of the neutral axis when steel strain is increasing: Stress Strain Reinforcement Diagram:

0 5 10 15 20

100

200

300

Strain of reinforcement

Po
si

tio
n 

of
 n

eu
tra

l a
xi

s

Y0i

mm

εs.1 i
1000⋅

0 5 10 15 20

200

400

600

Steel Strain

St
ee

l S
tre

ss

σs.1 i

MPa

εs.1 i
103⋅

Stress-Strain diagram of the top concrete: Stress-Strain diagram at the level of reinforcement:
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MOMENT-REINFORCEMENT STRAIN GRAPH
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STRESS DIAGRAM OF THE CROSS SECTION:
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C.2.4 Sigma-epsilon relationship, analytical analysis. RILEM 
CONSTANTS 

Now the different values for the RILEM constants (σi and εi) are presented as well as 
the value for the size factor: 

MIX A σ1 (MPa) σ2 (MPa) σ3 (MPa) ε1(‰) ε2(‰) ε3(‰) k(h) 

HEIGHT 1 4.537 1.641 1.145 0.15 0.25 25 1 

HEIGHT 2 4.159 1.382 0.964 0.14 0.24 25 0.842 

HEIGHT 3 3.403 0.863 0.602 0.115 0.215 25 0.526 

 

 

MIX B σ1 (MPa) σ2 (MPa) σ3 (MPa) ε1(‰) ε2(‰) ε3(‰) k(h) 

HEIGHT 1 6.289 3.873 2.586 0.19 0.29 25 1 

HEIGHT 2 5.765 3.261 2.177 0.17 0.27 25 0.842 

HEIGHT 3 4.717 2.038 1.361 0.14 0.24 25 0.526 

 

 

MIX C σ1 (MPa) σ2 (MPa) σ3 (MPa) ε1(‰) ε2(‰) ε3(‰) k(h) 

HEIGHT 1 6.594 4.012 2.309 0.19 0.29 25 1 

HEIGHT 2 6.044 3.379 1.945 0.18 0.28 25 0.842 

HEIGHT 3 4.945 2.112 1.215 0.14 0.24 25 0.526 
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Appendix D Crack spacing. Calculations with 
different approaches 

CRACK SPACING 
MATERIAL PROPERTIES HEIGHT 1-MIX A
h 125mm:= ρ 0.1%:= Lfib 60mm:= φfib 0.9mm:= Vf 0.5%:= σw 1.31106Pa⋅:= fct 2.5 106Pa⋅:=

ucover 25mm:= d h ucover−:= φbi 7mm:=k1 0.8:=

k2 0.5:= b 1000mm:= Ac b h⋅:= aap 150mm:=

φbap root

b aap
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= φb 5mm=

As.i π
φb

2

4
:= nap

Ac ρ⋅

As.i
:= nap 6.366= n round nap 0,( ):= a

b 2 ucover⋅− n φb⋅−

n 1−
:= a 184mm=

n 6=
As n As.i⋅:=

Acef 2.5 h d−( )⋅ b⋅ 2.5 h d−( )⋅ b⋅
h b⋅
2

≤if

h b⋅
2

2.5 h d−( )⋅ b⋅
h b⋅
2

>if

:=

Acef 6.25 104× mm2= ρ ef
As

Acef
:= ρ ef 1.885 10 3−×=

Acef2
h 0.063m−

3
⎛⎜
⎝

⎞⎟
⎠

b⋅:= Acef2 0.021m2=RILEM ROUGH PROPOSITION

SmRILEM
h
2

:= SmRILEM 62.5mm=
ρ ef2

As
Acef2

:= ρ ef2 5.7 10 3−
×=

EUROCODE 2 PROPOSITION

SmEC2 50 0.25 k1⋅ k2⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2 315.258mm=
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EUROCODE 2 ALTERNATIVE WITH FIBRES

k3 1
σw
fct

−
⎛
⎜
⎝

⎞
⎟
⎠

:=

SmEC2F
ucover

mm
3 φb⋅

1
mm

⋅+ 0.25 k1⋅ k2⋅ k3⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2F 166.263mm=

EUROCODE 2 ALTERNATIVE VANDEWALLE AND RILEM

SmVANDE 50 0.25 k1⋅ k2⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

50
Lfib

φfib

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅ mm⋅:= SmVANDE 236.444mm=

IBRAHIM AND LUXMOORE PROPOSITION

τbm
3

2 k1⋅
⎛
⎜
⎝

⎞
⎟
⎠

fct⋅:=

K1 1.2 ucover⋅ a 2 ucover⋅≤if

1.2 ucover
a 2 ucover⋅−

4
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 14 φb⋅ a≥ 2 ucover⋅>if

:=

K1 0 m= K2 0.4:=

Pfpull
Vf τbm⋅ Lfib⋅

2 φb⋅
:=

γ 1
Vf

0.01
0.4⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

:= K2f
K2
γ

:= γ 1.2=

Pfpull 1.406 105
× Pa=

K3 0.125:=

ηs

200
N

mm2
⋅ As⋅

200 As⋅
N

mm2
⋅ Pfpull Acef⋅+

:=

SIξL K1 K2f K3⋅ ηs⋅
φb
ρ ef

⋅+:= SIξL 80.497mm=
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MATERIAL PROPERTIES HEIGHT 1-MIX B

h 125mm:= ρ 0.1%:= Lfib 60mm:= φfib 0.9mm:= Vf 1%:= σw 3.16106Pa⋅:= fct 3.5106Pa⋅:=

ucover 25mm:= d h ucover−:= φbi 7mm:=k1 0.8:=

k2 0.5:= b 1000mm:= Ac b h⋅:= aap 150mm:=

φbap root

b aap
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= φb 5mm=

As.i π
φb

2

4
:= nap

Ac ρ⋅

As.i
:= nap 6.366= n round nap 0,( ):= a

b 2 ucover⋅− n φb⋅−

n 1−
:= a 184mm=

As n As.i⋅:=

Acef 2.5 h d−( )⋅ b⋅ 2.5 h d−( )⋅ b⋅
h b⋅
2

≤if

h b⋅
2

2.5 h d−( )⋅ b⋅
h b⋅
2

>if

:=
Acef 6.25 104× mm2

= ρef
As

Acef
:=

RILEM ROUGH PROPOSITION

SmRILEM
h
2

:= SmRILEM 62.5mm=

EUROCODE 2 PROPOSITION

SmEC2 50 0.25k1⋅ k2⋅

φb
1

mm
⋅

ρef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2 315.258mm=
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EUROCODE 2 ALTERNATIVE WITH FIBRES

k3 1
σw
fct

−
⎛
⎜
⎝

⎞
⎟
⎠

:=

SmEC2F
ucover

mm
3 φb⋅

1
mm

⋅+ 0.25 k1⋅ k2⋅ k3⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2F 65.768mm=

EUROCODE 2 ALTERNATIVE VANDEWALLE AND RILEM

SmVANDE 50 0.25 k1⋅ k2⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

50
Lfib

φfib

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅ mm⋅:= SmVANDE 236.444mm=

IBRAHIM AND LUXMOORE PROPOSITION

τbm
3

2 k1⋅
⎛
⎜
⎝

⎞
⎟
⎠

fct⋅:=

K1 1.2 ucover⋅ a 2 ucover⋅≤if

1.2 ucover
a 2 ucover⋅−

4
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 14 φb⋅ a≥ 2 ucover⋅>if

:=

K1 0 m= K2 0.4:=

Pfpull
Vf τbm⋅ Lfib⋅

2 φb⋅
:=

γ 1
Vf

0.01
0.4⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

:= K2f
K2
γ

:= γ 1.4=

Pfpull 3.938 105
× Pa=

K3 0.125:=

ηs

200
N

mm2
⋅ As⋅

200 As⋅
N

mm2
⋅ Pfpull Acef⋅+

:=

SIξL K1 K2f K3⋅ ηs⋅
φb
ρ ef

⋅+:= SIξL 46.338mm=
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MATERIAL PROPERTIES HEIGHT 1-MIX C
h 125mm:= ρ 0.1%:= Lfib 35mm:= φfib 0.55mm:= Vf 1%:= σw 3.17106Pa⋅:= fct 3.5 106Pa⋅:=

ucover 25mm:= d h ucover−:= φbi 7mm:=k1 0.8:=

k2 0.5:= b 1000mm:= Ac b h⋅:= aap 150mm:=

φbap root

b aap
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 4.659mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= φb 5mm=

As.i π
φb

2

4
:= nap

Ac ρ⋅

As.i
:= nap 6.366= n round nap 0,( ):= a

b 2 ucover⋅− n φb⋅−

n 1−
:= a 184mm=

As n As.i⋅:=

Acef 2.5 h d−( )⋅ b⋅ 2.5 h d−( )⋅ b⋅
h b⋅
2

≤if

h b⋅
2

2.5 h d−( )⋅ b⋅
h b⋅
2

>if

:=
Acef 6.25 104

× mm2
= ρ ef

As
Acef

:=

RILEM ROUGH PROPOSITION

SmRILEM
h
2

:= SmRILEM 62.5mm=

EUROCODE 2 PROPOSITION

SmEC2 50 0.25 k1⋅ k2⋅

φb
1

mm
⋅

ρef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2 315.258mm=
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EUROCODE 2 ALTERNATIVE WITH FIBRES

k3 1
σw
fct

−
⎛
⎜
⎝

⎞
⎟
⎠

:=

SmEC2F
ucover

mm
3 φb⋅

1
mm

⋅+ 0.25 k1⋅ k2⋅ k3⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

mm⋅:= SmEC2F 65.01 mm=

EUROCODE 2 ALTERNATIVE VANDEWALLE AND RILEM

SmVANDE 50 0.25 k1⋅ k2⋅

φb
1

mm
⋅

ρ ef
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

50
Lfib

φfib

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅ mm⋅:= SmVANDE 247.703 mm=

IBRAHIM AND LUXMOORE PROPOSITION

τbm
3

2 k1⋅
⎛
⎜
⎝

⎞
⎟
⎠

fct⋅:=

K1 1.2 ucover⋅ a 2 ucover⋅≤if

1.2 ucover
a 2 ucover⋅−

4
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 14 φb⋅ a≥ 2 ucover⋅>if

:=

K1 0 m= K2 0.4:=

Pfpull
Vf τbm⋅ Lfib⋅

2 φb⋅
:=

γ 1
Vf

0.01
0.4⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

:= K2f
K2
γ

:= γ 1.4=

Pfpull 2.297 105
× Pa=

K3 0.125:=

η s

200
N

mm2
⋅ A s⋅

200 A s⋅
N

mm2
⋅ Pfpull A cef⋅+

:=

SIξL K1 K2f K3⋅ η s⋅
φb

ρ ef
⋅+:= SIξL 58.869 mm=
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MATERIAL PROPERTIES HEIGHT 2-MIX A

h 250mm:= ρ 0.1%:= Lfib 60mm:= φfib 0.9mm:= Vf 0.5%:= σw 1.31106Pa⋅:= fct 2.5 106Pa⋅:=

ucover 25mm:= d h ucover−:= φbi 7mm:=k1 0.8:=

k2 0.5:= b 1000mm:= Ac b h⋅:= aap 150mm:=

φbap root

b aap
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 6.588mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= φb 7mm=

As.i π
φb

2

4
:= nap

Ac ρ⋅

As.i
:= nap 6.496= n round nap 0,( ):= a

b 2 ucover⋅− n φb⋅−

n 1−
:= a 181.6mm=

n 6=As n As.i⋅:=

Acef 2.5 h d−( )⋅ b⋅ 2.5 h d−( )⋅ b⋅
h b⋅
2

≤if

h b⋅
2

2.5 h d−( )⋅ b⋅
h b⋅
2

>if

:=
Acef 6.25 104

× mm2
= ρef

As
Acef

:=

 

SmRILEM 125mm= SmEC2 239.47mm=

SmEC2F 136.188mm= SmVANDE 179.603mm=SIξL 69.498mm=
 

MATERIAL PROPERTIES HEIGHT 2-MIX B  

SmRILEM 125mm= SmEC2 239.47mm=

SmEC2F 64.406mm= SmVANDE 179.603mm=SIξL 49.012mm=
 

MATERIAL PROPERTIES HEIGHT 2-MIX C  

SmRILEM 125mm= SmEC2 239.47mm=

SmEC2F 63.864mm= SmVANDE 188.155mm=SIξL 55.373mm=
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MATERIAL PROPERTIES HEIGHT 3-MIX A
h 500mm:= ρ 0.1%:= Lfib 60mm:= φfib 0.9mm:= Vf 0.5%:= σw 1.31 106Pa⋅:= fct 2.5 106Pa⋅:=

ucover 25mm:= d h ucover−:= φbi 7mm:=k1 0.8:=

k2 0.5:= b 1000mm:= Ac b h⋅:= aap 150mm:=

φbap root

b aap
Ac ρ⋅

π
φbi

2

4

1−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅− 2 ucover⋅−

Ac ρ⋅

π
φbi

2

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φbi,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=
φbap 9.317mm= φb round

φbap
mm

⎛
⎜
⎝

⎞
⎟
⎠

0,
⎡
⎢
⎣

⎤
⎥
⎦

mm⋅:= φb 9mm=

As.i π
φb

2

4
:= nap

Ac ρ⋅

As.i
:= nap 7.86= n round nap 0,( ):= a

b 2 ucover⋅− n φb⋅−

n 1−
:= a 125.429mm=

n 8=
As n As.i⋅:=

2.5 h d−( )⋅ b⋅ 6.25 104
× mm2

=

Acef 2.5 h d−( )⋅ b⋅ 2.5 h d−( )⋅ b⋅
h b⋅
2

≤if

h b⋅
2

2.5 h d−( )⋅ b⋅
h b⋅
2

>if

:=

Acef 6.25 104
× mm2

= ρ ef
As

Acef
:=

 

SmRILEM 250mm= SmEC2 160.524mm=

SmEC2F 104.61mm= SmVANDE 120.393mm=SIξL 96.572mm=
 

MATERIAL PROPERTIES HEIGHT 3-MIX B  

SmRILEM 250mm= SmEC2 160.524mm=

SmEC2F 62.737mm= SmVANDE 120.393mm=SIξL 87.427mm=
 

MATERIAL PROPERTIES HEIGHT 3-MIX C  

SmRILEM 250mm= SmEC2 160.524mm=

SmEC2F 62.421mm= SmVANDE 126.126mm=SIξL 89.233mm=
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Appendix E   DIANA data files 
In this appendix one example of the DIANA data file in each approach is represented. 
The comments explain how the data have to be introduced. 

E.1.1 Sigma-epsilon relationship Mix A 
FEMGEN MODEL      : MOD_MIXA_H1_V2 

ANALYSIS TYPE     : Structural 2D 

MODEL DESCRIPTION : Sigma-opening mix A height 1 

'UNITS' 

LENGTH   M 

TIME     SEC 

TEMPER   KELVIN 

FORCE    N 

'COORDINATES' DI=2 : It defines the geometry of the body 

    1     -5.000000E-02     2.750000E-02 

    2     -4.450000E-02     2.750000E-02 

    3     -3.900000E-02     2.750000E-02 

    4     -3.350000E-02     2.750000E-02 

................ 

  561     -5.000000E-02     1.156250E-01 

  562     -5.000000E-02     1.187500E-01 

  563     -5.000000E-02     1.218750E-01 

  564     -5.000000E-02     1.250000E-01 

'ELEMENTS' 

CONNECTIVITY : It defines the characteristics of the elements 

    1 L2TRU  1 2 

   11 L6BEN  12 13     

   12 Q8MEM  14 15 26 25 

.................. 

  513 L8IF   130 131 7 8 

  514 L8IF   131 132 8 9 

  515 L8IF   132 133 9 10 

  516 L8IF   133 134 10 11 

 

MATERIALS  :Elements 

:Concrete elastic 

/ 12-461 / 1 

:Concrete crack 

/ 462-506 / 2 

:Reinforcement 

/ 1-10 / 3 
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:Bond-slip 

/ 507-516 / 4 

:Dummy beam 

/ 11 / 5 

 

GEOMETRY  :Elements   

:Concrete elastic 

/ 12-461 / 1 

:Concrete crack 

/ 462-506 / 2 

:Reinforcement 

/ 1-10 / 3 

:Bond-slip 

/ 507-516 / 4 

:Dummy beam 

/ 11 / 5 

 

'GROUPS' 

ELEMEN 

   1 CONCR / 12-461 / 

ELEMEN 

   2 CRACK / 462-506 / 

ELEMEN 

   3 REBAR / 1-10 / 

ELEMEN 

   4 BONDS / 507-516 / 

ELEMEN 

   5 DUMMY / 11 / 

 

'MATERIALS' 

    1 DENSIT 2.4E+03  

:   Density of the uncracked concrete                                         

      TOTCRK ROTATE   

:   Rotating axis (total strain model)                                        

      POISON 0.2     

:   Poisson coefficient 

      YOUNG  30.589E+09   

:   Young modulus 

      COMSTR 30E+06   

:   Compressive strength                                 

      COMCRV MULTLN   

:   Multilinear approach in compression and values 

      COMPAR 0E+0 0E+0 
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             -9.42E+6  -3.15E-4 

             -1.74E+7  -6.65E-4 

             -2.32E+7  -1.02E-3 

             -2.70E+7  -1.37E-3 

             -2.92E+7  -1.72E-3 

             -3.00E+7  -2.07E-3 

             -2.95E+7  -2.42E-3 

             -2.80E+7  -2.77E-3 

             -2.54E+7  -3.12E-3 

             -2.16E+7  -3.50E-3 

      TENCRV ELASTI   

:   Elastic behaviour in tension 

    2 DSTIF  5.562E+14 5.562E+14   

:   Values of the stiffnes chosen appropiately  

      DISCRA 1   

:   Discrete crack initiation criterion of normal traction 

      DCRVAL 2.50E+06   

:   Tensile strength 

      MODE1  3   

:   Crack-opening Stress relationship (bilinear) but half 
values of the crack opening are needed 

      MO1VAL 2.50E+6 0   

             1.368E+6 2.265E-5  

             0.00E+6 4.231E-3 

      UNLO1  2   

:   Secant unloading: a straight line back to the origin (no 
so important here) 

      MODE2  1   

:   Constant shear modulus after cracking 

      MO2VAL 10.0E+06   

:   Value of the shear modulus 

    3 DENSIT 7.85E+03   

:   Density of steel                                                          

      YOUNG  200E+09 

:   Young modulus of steel                                                    

      POISON 0.3   

:   Poisson coefficient                                                      

      YIELD  VMISES   

:   Yielding criteria (Von Mises)                                             

      HARDEN STRAIN   

:   Hardening hypothesis (work hardening) and values                          

      HARDIA 500.0E+06  0.0                                                          

             540.0E+06  0.048 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2006:38 
 

256 

             200.0E+06  0.05   

             0.0E+06    0.1   

    4 DSTIF  8.26E+10  8.26E+10   

:   Values of the stiffnes chosen appropiately ! 

      BONDSL 3   

:   Model chosen for the bond-slip  

      SLPVAL 0 0 

             4.13E+06 0.050E-3 

             5.45E+06 0.1E-3 

             7.19E+06 0.200E-3 

             8.46E+06 0.300E-3 

             9.49E+06 0.400E-3 

             10.38E+06 0.500E-3 

             11.16E+06 0.600E-3 

             12.52E+06 0.800E-3 

             13.69E+06 1.000E-3 

             13.69E+06 3.000E-3 

             9.59E+06 3.500E-3 

             5.48E+06  4.00E-3 

             5.48E+06  1.00E-2 

    5 YOUNG  200E+09 

:   Young modulus of dummy beam     

 

'GEOMETRY' 

    1 THICK  1.0 

:   Thickness of the concrete element 

    2 THICK  1.0 

:   Thickness of the crack interface 

      CONFIG MEMBRA   

:   Configuration of the crack interface (plane stress) 

    3 CROSSE 1.178E-04   

:   Total cross area (reinforcement) 

    4 CONFIG  BONDSL   

:   Configuration of the interface (bond slip) 

      THICK  0.094  

:   Sum of the Perimeter of reinforcement bars 

    5 RECTAN 0.125 1   

:   Dimensions of a filled rectangle (dummy beam) 

 

 

 

 

'SUPPORTS' 
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 / 1 519-564 /   TR     1 

 / 12 /   TR     2 

 / 12 /   RO     3 

 

 'TYINGS'  

ECCENT TR 1 

 / 13 24 35 46 57 68 79 90 101 112 123 134 145 156 167 178  

 189 200 211 222 233 244 255 266 277 288 309 320 331 342  

 353 364 375 386 397 408 419 430 441 452 463 474 485 496  

 507 518 / 12  

: The whole rigth side and the dummy beam has the same X displacements as 
the master node 

ECCENT TR 2 

 / 11 24 35 46 57 68 79 90 101 112 123 134 145 156 167 178  

 189 200 211 222 233 244 255 266 277 288 309 320 331 342  

 353 364 375 386 397 408 419 430 441 452 463 474 485 496  

 507 518 / 12  

: The whole rigth side and the dummy beam has the same Y displacements as 
the master node 

'LOADS' 

CASE 1 

DEFORM  

  12  RO 3 1.0E-03   

:   Load applied 

'DIRECTIONS' 

    1   1.000000E+00   0.000000E+00   0.000000E+00 

    2   0.000000E+00   1.000000E+00   0.000000E+00 

    3   0.000000E+00   0.000000E+00   1.000000E+00 

'END' 

 

E.2.1 Sigma-crack opening relationship Mix B 

 
FEMGEN MODEL      : MOD_MIXB_H1_V2 

ANALYSIS TYPE     : Structural 2D 

MODEL DESCRIPTION : Model sigma-opening Mix B height 1 

'UNITS' 

LENGTH   M 

TIME     SEC 

TEMPER   KELVIN 

FORCE    N 

'COORDINATES' DI=2 

    1     -5.000000E-02     2.750000E-02 
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    2     -4.725000E-02     2.750000E-02 

    3     -4.450000E-02     2.750000E-02 

    4     -4.175000E-02     2.750000E-02 

    5     -3.900000E-02     2.750000E-02 

    6     -3.625000E-02     2.750000E-02 

.................... 

  559     -5.000000E-02     1.093750E-01 

  560     -5.000000E-02     1.125000E-01 

  561     -5.000000E-02     1.156250E-01 

  562     -5.000000E-02     1.187500E-01 

  563     -5.000000E-02     1.218750E-01 

  564     -5.000000E-02     1.250000E-01 

'ELEMENTS' 

CONNECTIVITY 

    1 L2TRU  1 2 

   11 L6BEN  12 13     

   12 Q8MEM  14 15 26 25 

.................... 

514 L8IF   127 126 4 3 

  515 L8IF   126 125 3 2 

  516 L8IF   125 124 2 1 

 

MATERIALS  :Elements 

:Concrete elastic 

/ 12-461 / 1 

:Concrete crack 

/ 462-506 / 2 

:Reinforcement 

/ 1-10 / 3 

:Bond-slip 

/ 507-516 / 4 

:Dummy beam 

/ 11 / 5 

 

GEOMETRY  :Elements   

:Concrete elastic 

/ 12-461 / 1 

:Concrete crack 

/ 462-506 / 2 

:Reinforcement 

/ 1-10 / 3 

:Bond-slip 

/ 507-516 / 4 
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:Dummy beam 

/ 11 / 5 

 

'GROUPS' 

ELEMEN 

   1 CONCR / 12-461 / 

ELEMEN 

   2 CRACK / 462-506 / 

ELEMEN 

   3 BONDS / 1-10 507-516 / 

ELEMEN 

   4 REBAR / 1-10 / 

ELEMEN 

   5 DUMMY / 11 / 

 

 

'MATERIALS' 

    1 DENSIT 2.4E+03  

:   Density of the uncracked concrete                                         

      TOTCRK ROTATE   

:   Rotating axis (total strain model)                                       

      POISON 0.2     

:   Poisson coefficient 

      YOUNG  34.313E+09   

:   Young modulus 

      COMSTR 44E+06   

:   Compressive strength                                 

      COMCRV MULTLN   

:   Multilinear approach in compression and values 

      COMPAR 0E+0 0E+0 

             -1.11E+7  -3.15E-4 

             -2.16E+7  -6.65E-4 

             -3.01E+7  -1.02E-3 

             -3.66E+7  -1.37E-3 

             -4.11E+7  -1.72E-3 

             -4.35E+7  -2.07E-3 

             -4.39E+7  -2.42E-3 

             -4.21E+7  -2.77E-3 

             -3.83E+7  -3.12E-3 

             -3.15E+7  -3.50E-3  

      TENCRV ELASTI   

:   Elastic behaviour in tension 

    2 DSTIF  1.112E+15 1.112E+15   
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:   Values of the stiffnes chosen appropiately  

      DISCRA 1   

:   Discrete crack initiation criterion of normal traction 

      DCRVAL 3.50E+06   

:   Tensile strength 

      MODE1  3   

:   Crack-opening Stress relationship (bilinear) but half 
values of the crack opening are needed 

      MO1VAL 3.50E+6 0   

             3.359E+6 1.261E-6  

             0.00E+6 3.429E-3 

      UNLO1  2   

:   Secant unloading: a straight line back to the origin (no 
so important here) 

      MODE2  1   

:   Constant shear modulus after cracking 

      MO2VAL 10.0E+06   

:   Value of the shear modulus 

    3 DENSIT 7.85E+03   

:   Density of steel                                                          

      YOUNG  200E+09 

:   Young modulus of steel                                                    

      POISON 0.3   

:   Poisson coefficient                                                      

      YIELD  VMISES   

:   Yielding criteria (Von Mises)                                             

      HARDEN STRAIN   

:   Hardening hypothesis (work hardening) and values                          

      HARDIA 500.0E+06  0.0                                                          

             540.0E+06  0.048 

             200.0E+06  0.05   

             0.0E+06    0.1   

    4 DSTIF  1.06E+11  1.06E+11   

:   Values of the stiffnes chosen appropiately ! 

      BONDSL 3   

:   Model chosen for the bond-slip  

      SLPVAL 0 0 

             5.00E+06 0.050E-3 

             6.60E+06 0.1E-3 

             8.71E+06 0.200E-3 

             10.25E+06 0.300E-3 

             11.49E+06 0.400E-3 

             12.57E+06 0.500E-3 

             13.52E+06 0.600E-3 
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             15.17E+06 0.800E-3 

             16.58E+06 1.000E-3 

             16.58E+06 3.000E-3 

             11.61E+06 3.500E-3 

             6.63E+06  4.00E-3 

             6.63E+06  1.00E-2 

    5 YOUNG  200E+09 

:   Young modulus of dummy beam     

 

'GEOMETRY' 

    1 THICK  1.0 

:   Thickness of the concrete element 

    2 THICK  1.0 

:   Thickness of the crack interface 

      CONFIG MEMBRA   

:   Configuration of the crack interface (plane stress) 

    3 CROSSE 1.178E-04   

:   Total cross area (reinforcement) 

    4 CONFIG BONDSL   

:   Configuration of the interface (bond slip) 

      THICK  0.094  

:   Sum of the Perimeter of reinforcement bars 

    5 RECTAN 0.125 1   

:   Dimensions of a filled rectangle (dummy beam) 

 

'SUPPORTS' 

 / 1 519-564 /   TR     1 

 / 12 /   TR     2 

 / 12 /   RO     3 

  'TYINGS'  

ECCENT TR 1 

 / 11 24 35 46 57 68 79 90 101 112 123 134 145 156 167 178  

 189 200 211 222 233 244 255 266 277 288 309 320 331 342  

 353 364 375 386 397 408 419 430 441 452 463 474 485 496  

 507 518 / 12  

: The whole rigth side and the dummy beam has the same X displacements as 
the master node 

ECCENT TR 2 

 / 11 24 35 46 57 68 79 90 101 112 123 134 145 156 167 178  

 189 200 211 222 233 244 255 266 277 288 309 320 331 342  

 353 364 375 386 397 408 419 430 441 452 463 474 485 496  

 507 518 / 12  
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: The whole rigth side and the dummy beam has the same Y displacements as 
the master node 

 

'LOADS' 

CASE 1 

DEFORM  

  12  RO 3 1.0E-03   

:   Load applied 

'DIRECTIONS' 

    1   1.000000E+00   0.000000E+00   0.000000E+00 

    2   0.000000E+00   1.000000E+00   0.000000E+00 

    3   0.000000E+00   0.000000E+00   1.000000E+00 

'END' 


