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Prioritized 2D-3D Matching for Visual Localization Revisited
Earl Fernando Panimayam Fernando
Department of Electrical Engineering
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Abstract
Determining the position and orientation of the camera from which an image was
taken with respect to a scene representation both accurately and time efficiently
is a bottleneck for many applications of Computer Vision like Augmented Reality
and Autonomous Driving. Recent developments in Structure from Motion help us to
reconstruct large scale 3D models which could be used for the camera pose estimation
of an image, by matching its 2D image features with the 3D points in the model.
Matching these 2D image features with all the 3D points is time consuming. For a
good camera pose estimation only a few number of matches are required. The time
taken for 2D-3D matching could be reduced by prioritizing the 2D image features for
2D-3D matching and once a certain number of matches are found, the camera pose
could be estimated using the matched 2D-3D features. This thesis proposes a novel
method to prioritize the 2D features from the image in a effective manner for 2D-3D
matching by using the probabilities of these 2D image features to be in 3D model
and the search costs for matching these 2D image features with the 3D points. The
probabilities of the 2D image features are computed using a random forest classifier
and the search costs of the 2D image features are the number of 3D points features
which are having similar visual appearance to the query image feature. Through
extensive evaluation with different datasets, I show that the proposed prioritization
functions could be used for a time efficient visual localization.

Keywords: Prioritized feature matching, Random forest, Structure for Motion, K-
means clustering, Knapsack.
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1
Introduction

One of the classic topics in the field of Computer Vision is Visual Localization, which
is the problem of determining the camera position and orientation of an image taken
with respect to some scene representation. Visual localization is the fundamental
requirement behind many applications like Robotics [49], Autonomous driving [48],
Augmented Virtual Reality [50], Navigation systems [51] and Location recognition
systems [52].

One of the methods used for estimating the camera pose for a given image is by
using image retrieval techniques to match similar images in the database and use
the GPS locations of the matched images in the database to estimate the camera
position of the query image [8, 9, 10, 11]. Though image retrieval based methods are
fast, the estimated camera pose is not accurate which is not viable for applications
like Autonomous Driving and Robotics. Another alternative method for visual lo-
calization is by using deep convolutional neural networks [58] to regress the camera
pose [12] or the 3D scene coordinates [53, 54]. Though the methods proposed by
[53, 54] gives a reasonably accurate camera pose estimation, they are limited to the
scale of the scene considered for localization.

Most of the state-of-the-art techniques for large-scale visual localization reconstruct
the 3D representation of a scene using Structure from Motion techniques [2, 28, 3]
to estimate the camera pose of the query image. In general, 3D Structure-based
visual localization techniques [4, 5, 6, 7] match the 2D local features extracted from
the query image with all the features associated with the 3D points. The camera
pose of the query image is later computed using RANSAC or DSAC [55, 54, 53]
using the found 2D-3D matches. The time taken for matching all the 2D feature in
the image and all the features corresponding to the 3D model becomes a bottleneck
for 3D structure based visual localization algorithms as the size of the 3D model
increases. To reduce the time taken for matching the 2D points with the 3D points
and camera pose estimation, it would be ideal to reduce the number of features
used for matching and use only the features which would have a higher chance of
matching with a 3D point. [13] proposes to use only the query image features which
are predicted by a classifier to be matchable during 2D-2D feature matching. This
approach resulted in reducing the number of image features used for matching. [14]
proposes to arrange the features based on the search costs in a ascending order and
when N features are matched, the camera pose was estimated. [14] clustered the 2D
image features of all the 3D points in descriptor feature space where each cluster is
called as a visual word and the collection of all the visual words is called as a visual
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1. Introduction

vocabulary. [14] assumed that the search cost for every query image feature is the
number of 3D points features in the visual which it had the shortest Euclidean dis-
tance with. Though this method reduces the time taken for matching, there might
be some image features that might not have a corresponding 3D point but these
features would be used for 2D-3D matching because of their low search cost.

Motivated by the approaches proposed by [13] and [14] to reduce the time taken for
2D-3D feature matching and to improve accuracy of the camera pose. In this thesis,
I present a novel method to prioritize the 2D query image features to reduce the time
taken for 2D-3D feature matching while maximizing the number of 2D-3D feature
matches found for camera pose estimation. To determine the prioritization order of
the 2D features in the query image, I estimate the probabilities for the 2D image
features to have a corresponding 3D point, using a random forest classifier. The
computed probabilities along with the cost for searching these 2D image features in
the 3D model, computed by using the method proposed by [14] is used for prioritizing
the 2D image features for matching.

1.1 Related Work
In this section, I explain about the various research papers that are closely related
with the visual localization problem and the motivation for this thesis. I also discuss
about the various researches on the techniques adopted for this thesis.

1.1.1 Visual Localization
One of the earliest localization methods was proposed by [40]. The authors of [40]
proposed a robot navigation system which uses the scale invariant features [19]
detected from the images taken from a stereo mounted camera on the robot to si-
multaneously reconstruct a 3D reconstruction of the real-world environment. The
robot used this 3D reconstruction to determine its position. In contrast to the earlier
method [35] proposed to retrieve the location of a query image related to a set of
facades that were registered in a city map. Similar to this approach [36] used SIFT
features [19] for matching with the image dataset with known GPS coordinates and
triangulated the pose using the best two matches. [37] developed city scale visual
localization using image retrieval using a vocabulary tree as suggested by [38]. [39]
clustered the images with similar features to scene maps thereby reducing the num-
ber of images that were used for feature matching. But in most of all the above
mentioned methods, the accuracy of the images were on a GPS coordinate system
level, where as most of the real-world problems require more accurate camera posi-
tions.

To determine a higher quality of the camera position, [41] proposed to develop a
3D model of the scene using structure for motion [28]. They created new synthetic
views of the 3D model and increased the size of their database. This database
was later compressed into a set of original and synthetic views which efficiently
covered all the 3D points that were relevant for camera pose estimation. They
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1. Introduction

adopted a vocabulary tree based approach a proposed by [37] to retrieve images
which are similar to the query image. The features associated with the 3D points
in the retrieved images were used for 2D-3D feature matching. The matched 2D-3D
correspondences were later used to determine the camera position using a 3-point
pose estimation algorithm [20]. The paper by [34] proposed to use a regression forest
to classify every pixel in the query image to its corresponding 3D point which are
later used to estimate the camera pose of the query image. [34] used RGB-D images
for training their classifier. The estimated camera pose was not as accurate as the
state-of-the-art 3D structure based localization pipelines. [26] proposed to train a
convolution neural network to regress the camera pose of the input query image.
This method still had a few shortcomings in terms of accuracy of the camera pose
estimated when compared with the 3D structure based localization technique. [54]
proposed to use a convolutional neural network to predict the 3D points associated
with 2D query image features, which where later used to estimate the camera pose.
[54] implementation of a end-to-end pipeline using convolutional neural networks to
estimate camera pose without 3D construction had better camera pose estimation
compared to traditional 3D Structure based localization when the scene used for
localization was small but this method does not scale well with large-scale 3D models.

1.1.2 Prioritized 3D Structure based localization
To reduce the time taken for 2D-3D feature matching in 3D structure based local-
ization, the 2D image features used for matching needs prioritized. [13] proposed
to develop a classifier that predicts if a 2D image point would be matchable during
2D-2D feature matching or not. The 2D image features which were predicted by the
classifier to be matchable were only used for 2D-2D feature matching. This ensures
the probability of finding a match, thereby reducing the time taken for matching
when compared with the traditional 3D structure based localization methods. Later,
[14] proposed an appearance based strategy to prioritize the image features. They
clustered the 2D image features belonging to all the 3D points in the descriptor fea-
ture space. Each cluster was called as a visual word. The search costs for an query
image feature is proportional to the number of 3D points features in the visual word
with which the query image feature had the shortest Euclidean distance. They pri-
oritized the 2D image descriptors based on the search cost in an ascending order for
2D-3D feature matching. While all the above methods of searching corresponded to
2D-3D searches, [43] proposes to search 3D-2D in the reverse manner. They priori-
tize the 3D points used for matching depending on the number of images that were
used for its reconstruction thereby covering the entirety of 3D model space. Once a
matching 3D point is found, they propose to increase the priorities of the 3D points
found in the same image along with the matched 3D point during 3D reconstruction.
They stopped their search once N number of 2D-3D matches were found and the
camera poses are estimated. [4] proposes to combine the techniques of prioritization
based on appearance [14] and co-visibility [43] of the 3D points once a 3D match
was established. [4] also proposes the strategy of actively searching for co-visible 3D
points during 3D reconstruction and prioritizing then 2D image feature proposals
for 3D matches and the 3D matches for 2D image feature matching together.

3



1. Introduction

The idea of this thesis is to develop a prioritization function to reduce the time
taken for matching 2D features with the all the features associated with the 3D
points while the number of 2D-3D feature matches found is maximized. In this
thesis, I propose to use the techniques used by [13] but instead of only using the 2D
image points which are predicted to be matchable during 2D-2D feature matching,
I propose to train a classifier to predict the probabilities of each 2D query image
features to having a corresponding 3D point. These probabilities along with the
appearance strategy of [14] is used to prioritize the 2D features for 3D matching.

1.2 Thesis Outline
The report for this thesis is divided into five chapters. The second chapter Theory
gives an overall view of the problem behind the thesis and the main concepts used
to attest this issue. In the next chapter Methods, a description of the strategies
adopted to reduce the time take 2D-3D feature matching in 3D structure based
localization while maximizing the number of 2D-3D matches found. The Results
section consists of the experimental setup, evaluation methods and a discussion on
the results. In the Conclusion an overall outcome of the thesis is given along with
suggestions for future work.

4
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Theory

Image-based local visualization can be defined as the problem of determining the
position and orientation of the camera for a given query image. One of the most
traditional strategies adopted to solve this problem is by creating a 3D scene using
Structure from Motion. Using this 3D reconstruction, one could try to match all
the 2D image features associated with the 3D points in the 3D scene with all the 2D
image features in the input query image. But the problem with this method is the
time taken for matching all the 2D image features with all the features associated
with the 3D points. This time taken could be reduced if the 2D images features
are prioritized using a prioritization function which maximizes the number of 2D-
3D matches found while minimizing the time taken for 2D-3D feature matching
and once N matches are found, they could be used for camera pose estimation. In
this thesis, I propose to predict the probabilities of the 2D features in the query
image to have corresponding 3D point using a random forest classifier [13]. These
probabilities along with the search costs of the 2D image features [14] in the 3D
model for matching, could be used to prioritize the 2D query image features. In
this section, I discuss in detail about the concepts used for 3D construction using
Structure from Motion, predicting the probabilities of the 2D image features to have
a 3D point and calculating the search costs of the 2D image features.

5



2. Theory

2.1 Structure From Motion

Figure 2.1: An example of 3D construction using Structure from Motion. (This
is a 3D reconstruction of the St.Mary’s College in Cambridge. The model was

developed using the dataset provided in [26].)

To estimate the camera pose of the input query image in 3D-Structure based local-
ization method, it necessary to develop the 3D representation of the scene. Structure
from motion [3] is a method used to re-construct a 3D scene from a set of un-ordered
images. In general, the following steps are involved in constructing a 3D scene using
Structure from motion.

1. Feature Extraction
2. Feature Matching
3. Geometric Verification
4. Initialization for a reconstruction
5. Incremental SFM
6. Bundle Adjustment

2.1.1 Feature Extraction

To develop a 3D model from a bunch of un-ordered images, it is necessary to establish
the relationship between the images. These relationships could be established by
extracting different features in the images. The features extracted from the image
should be invariant to geometric and to radiometric changes, so it would be possible
to uniquely detect these features from other images which might be in a different
orientation and position. Though there are many types of feature extractors like
SURF [17] and learned descriptors [18], SIFT [19] and its derivatives [16] are few of
the most widely used methods for feature extraction.

6



2. Theory

2.1.1.1 Scale Invariant Feature Transform

The interesting features detected in an image have to be invariant to scale and
rotation, so that we could detect the same features in other images for feature
matching. The matched features are later used for 3D scene construction. To
obtain these interesting features which are supposed to be scale invariant, a Laplace
of Gaussian is applied for different values of the scale parameter σ in the Gaussian
Blur operator for the same image in different sizes. This Laplace of Gaussian acts as
a blob detector to detect the local maximas and minimas across the scale and space.
Applying a Laplace of Gaussian is computationally expensive. So [19] proposes to
determine the Difference in Gaussian for a image which is an approximation for
the Laplace of Gaussian, in different scales and spaces to detect the local maximas
and minimas (a visual representation of this is shown in figure 2.2). The difference
between the Gaussian blurring of an image with two different scale parameters gives
the Difference of Gaussians. The detected local extremas in the images over scale
and spaces are defined as the key locations for keypoints.

Figure 2.2: For each octave of the scale space, the images are convolved to give a
set Gaussian blurred images for different values of σ. Images next to each other are
subtracted to give a Difference of Gaussians. These Gaussian images are downsized

by a factor and the same process is repeated. This image was taken from [19].

Figure 2.3: The image in the left shows the direction and magnitude of a
gradients around an interesting point. The image in the right shows the

accumulated orientation histogram of the gradients from the image in the left.
This image was taken from [19].

To improve the accuracy of the keypoints locations [19] proposes to use a Taylor
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series expansion of the scale space. The extremas were rejected if the intensity
at that point was less than a threshold value of 0.03. Since the DoG have high
response to edges, [19] proposes to use a concept similar to Harris corner detector
to eliminate the edges. [19] proposes to give an orientation to every keypoints to
achieve an invariance to rotation of the image. [19] also proposes to compute the
gradients around the keypoints based on its scale. An orientation histogram of
36 bins for 360 degrees is used to determine its highest peak and any peak above
80% of the highest peak. These peaks are used to compute the orientation of the
keypoints. The description needs to be robust to changes in appearance. So [19]
proposes to create keypoint descriptor by first computing the gradient magnitude
and orientation at each image sample point in a 16 × 16 neighbourhood around
the keypoint location. The gradient magnitudes are then down weighted using a
Gaussian. The 16 × 16 neighbourhood then is divided in 16 sub-blocks of size 4 ×
4 and for each sub-block a 8 bin histogram is created. There are a total of 128 bins
to represent each SIFT features.

2.1.2 Feature Matching
To represent a real-world scene in a 3D model, the features representing a point in
the real world should also represent the same point in the 3D model. Therefore all
the features representing a point in the 3D model should be matched to develop
a 3D model. But matching all the SIFT features in the images with each other
is time consuming. So [19] proposes to use a variation of the nearest neighbour
algorithm [57] to determine the closest neighbour in the database of keypoints. But
the problem with this method is that there might be a large number of points with
almost comparable distances, so the 2D points might not be matched correctly. [19]
suggests to find the top two best matches d1, d2 for a feature. If the ratio of distances
d!
d2
> 0.8, the candidate will be rejected. The output of feature matching will be a set

of image pairs with each image pair containing a set of feature matches. Since the
matched features represents the same scene in every image, these matched features
would represent the same point in 3D model. The matched features will be later
used for the estimation of the camera pose in the 3D model construction. The figure
2.4 is an example of the feature matching process.

Figure 2.4: This figure shows feature matching between two images of the same
building with different camera positions. The red dots in two overlapping images
show their corresponding SIFT features and the green lines highlight the matches.
The images used in this figure were taken from the Cambridge landmark dataset

[26].
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2.1.3 Geometric Verification and Pose Estimation
The matched image features in the previous section might not be always correct, so
these matches needs to be verified. If a 3D point has two matched 2D features in
two different images, these points could be geometrically transformed using projec-
tive geometry [2]. If sufficient number of features could be mapped using projective
geometry, then the image pairs are overlapping [31, 32]. A Random Sample Consen-
sus type sampling algorithm [20] is used to eliminate outlier correspondences while
matching and to determine the geometric transformation. The estimated geometric
transformations (Fundamental matrix) is used to estimate the Essential matrices.
And the camera poses of the images can be computed from the essential matrices
as proposed in [2] and by performing the Cheirality condition for triangulation.

2.1.4 Incremental Structure From Motion
Once the camera positions of the images and features matches are obtained. It is
possible to construct the 3D model by triangulating all the matched features in the
images using the camera poses of the images. All the matched 2D features should
represent the same 3D point in the 3D model. To reconstruct the scenes in the images
to a 3D model, [3] uses the pairs of images that were obtained from feature matching.
The images chosen for 3D structure initialization are very carefully selected from a
set of images which have many overlapping matched features [30]. The robustness,
performance and the accuracy of the model depends on this initialization [3]. New
images are registered to the model and their camera parameters are calculated using
Perspective n point problem on the new image 2D features and the triangulated 3D
points. A new 3D point is added to the list of already know 3D points once a pair
of images having the same 3D correspondences is registered. The newly registered
3D points and the camera poses have high level of uncertainties as they are highly
correlated. To improve the quality of the newly registered points and the camera
poses of the images, [3] proposes to perform bundle adjustment on these newly
registered 3D points and camera pose estimates.

2.2 3D structure based localization
For a query image similar to all the images that were used for 3D reconstruction,
there might be few 2D features in the image which would have a corresponding 3D
points. By establishing these set of 2D-3D correspondences, the camera pose of the
given query image can be found using RANSAC [20]. To obtain these 2D-3D feature
correspondences, the most naive approach that could be followed is by matching all
the 2D image features with all the features that were used to triangulate a 3D point.
If the viewpoints of the query image is similar to the viewpoints of the images used
to build the SFM model and if the size of the 3D model is small, it is be possible
to find the 2D-3D matches. But as the size of the model increases, the time taken
for matching also increases. To overcome this bottleneck, it is necessary to reduce
the number of 3D points used for matching. In general to overcome this bottleneck,
a vocabulary tree based search approach is used to retrieve the 3D points that are

9



2. Theory

closely related with all the input image features. These 3D points are later used for
2D-3D feature matching [41]. [13] proposes another method to reduce the number
of input features that are used for feature matching. They propose to use a classifier
which predicts whether a 2D query image features would be used for 2D-2D feature
matching or not and use only the features which were predicted as matchable for
2D-2D feature matching. Alternatively, [14] clustered the descriptor space based
on the visual appearance of the 2D image features in the descriptor space. These
clusters are called visual words. The input images features are then prioritized for
2D-3D feature matching depending on the number of 3D point features in the visual
word having the shortest euclidean distance with the 2D input image feature. They
propose to stop the 2D-3D feature matching once N number of matches were found.
Motivated by [13] and [14], I propose an improvised way of prioritizing the features
using the probabilities of the the 2D image features to be in a 3D model and the
costs for searching these 2D features in the 3D model for matching [14] and stop the
matching once N matches are found.

2.3 Predicting Probabilities

The probability of finding a 3D point for a given 2D query image feature can be
computed using by training a classifier to predict if the 2D query image feature
would have a corresponding 3D point or not.

2.3.1 Decision Trees

A decision tree is a classifier which works on tree like decision graph with a root
node, internal nodes, branches and final end nodes or leaf nodes. Unlike trees, a
decision tree classifier grows from the root node to the leaf nodes. The leaf node
represents all the classes of the classifier. At every node, except the leaf node a
decision is taken by randomly testing an attribute. Based on the decision, the nodes
are split into branches and at the end of the branches there is either another internal
node or a leaf node to determine the class. The figure 2.5 shows an example of how
a decision tree works.
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Figure 2.5: The image shows an example of how decision tree works. At every
node a random attribute is test to determine whether to go for grocery shopping or

not.

2.3.2 Decision Tree Learning
The decision tree algorithm uses the strategy of decision trees to predict the outcome
of an observation [21]. A decision tree learning algorithm selects the best variable
for splitting of the items at each node using many types of metrics [22]. The two
commonly used type of metrics are Gini Index and Information Gain.

2.3.2.1 Gini Index

Gini index or Gini impurity measures the probability of an randomly chosen element
from a set, to be miss-classified. This is also a measure of the purity of the node
that is, if the Gini index at a node is 0, then all the elements in the node belong to
the same class. The Gini impurity can be expressed as the sum over the product of
the probability (pi) of an item of the class i and the probability (1 − pi) for miss-
classifying the same item belonging to the class i [22]. In general, when there are K
number of classes in a set and pi is the distribution of the class i in the set, the Gini
Index can be simplified and expressed as

Gi =
K∑
i=1

pi
K∑
i=1

(1− pi) = 1−
K∑
i=1

p2
i where i ∈ {1, 2, ....K} (2.1)

The best splitting decision variable is the variable with the maximum Gini gain.

G(T, a) = Gi(T )−Gi(T, a) (2.2)

Here G(T,a) is the Gini gain for splitting the current node using a decision variable
a, Gi(T ) is the Gini Index of the current node and Gi(T, a) is the weighted sum of
the Gini indexes in the child nodes when the splitting decision is based on a decision
criteria a. The weight for a child node while calculating Gi(T, a) is the ratio between
the number of items in that child node and the total number of items in the node
which has been split based on the decision variable a (parent node).
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2.3.2.2 Information Gain

Information Gain is based on the concept of the entropy at a particular node and
the change in entropy if a decision to divide the node using an attribute or a feature.
Entropy H(T) can be defined as

H(T ) = −
K∑
i=1

pi log2 pi (2.3)

Here pi are the percentage of each class i and i is the number of classes∈ {1, 2, ....K}
present in a child node from a branch in the tree. The best splitting decision variable
is the decision variable which has the maximum information gain.

IG(T, a) = H(T )−H(T, a) (2.4)

Here IG(T, a) is the information gained for making a decision split using the decision
variable a, H(T) is the entropy in the parent node and H(T,a) is the weighted sum
of the entropies in the child nodes when the the splitting decision is based on the
decision variable a. The weight for a child node while calculating IG(T, a) is the
ratio between the number of items in that child node and the total number of items
in the node which has been split based on the decision variable a (parent node).

2.4 Random Forest
A random forest is a ensemble of decision trees and the output of the model is based
on the majority of votes for particular class (an example of a random forest model
is given in the figure 2.6).

Figure 2.6: Example of how a random forest classifier works.

[24] proposes to grow each decision tree on a set of randomly selected features,
whereas [23] proposed to grow each decision tree on set of randomly selected features
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and randomly selected observations. This method of training on randomly selected
features is called feature bagging. The decision splits at the nodes in this type of
forests are along one particular feature. For this thesis, I have used the random
forest model as proposed by [23].

2.5 Calculating Search Costs

+

Figure 2.7: Shows the structure of the 3D structure based visual localization
pipeline proposed by [14]. At first, a 3D model is reconstructed using a set of
images of a location. The descriptor space of the image features used for 3D
reconstruction is later clustered into visual words by training a clustering

algorithm. For the localization of a given query image, all the interesting images
features in the query are extracted first. The search costs of the extracted features
are calculated in the next stage based on the number of descriptors in the visual
word which has the shortest Euclidean distance with the query image feature. In

the next stage, the query image features are prioritized for 2D-3D feature
matching based on their search costs. Once N number of 2D-3D features have been

found, the camera pose is estimated.

[14] proposes a visual vocabulary based search where they clustered the descriptor
feature space containing all the 2D image descriptors belonging to all the 3D points
into clusters called visual words. [14] computed the search cost for an query image
feature as the number of 3D point features in the visual word with which the query
image feature has the shortest Euclidean distance. An example of the 3D structure
based visual localization pipeline proposed by [14] is given in the figure 2.7. By this
method we can reduce the number features that needs to matched to determine a
matching 3D point thereby reducing the time taken for 2D-3D matching.
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2.5.1 K-means Clustering

Figure 2.8: The different colours represents the different visual words and the
points inside each partition represents the 3D point descriptors, the plus sign

indicates the cluster centers of the visual words. This image was taken from https:
//plot.ly/~MariaKu/97/voronoi-polygons-and-k-means-clustering/#plot.

The descriptor space of the 3D points can be clustered different visual words by
training a K-means clustering algorithm using the descriptors corresponding to the
3D points. The K-means clustering algorithm is an iterative unsupervised learning
algorithm. The idea of K-means clustering algorithm is to divide the n observa-
tions (x1, x2, ...xn) having the same dimension, into K clusters C = C1, C2, ..CK by
minimizing the sum of squares of the distances between the mean point of the obser-
vations in a cluster (cluster center) and the points in the cluster for all the clusters.
For our task, the number of clusters K is the number of visual words in the visual
vocabulary. The objective function for a K-means clustering problem can be viewed
as:

argmin
C

K∑
i=1

∑
x∈Ci
||x− νi||2 (2.5)

Here νi is the cluster center in Ci. The steps involved in a K-means clustering
algorithm [25] is explained below :

1. Initially K number of cluster centroids are assigned randomly throughout the
input data dimensions.

2. All the input observations are assigned to different cluster based on the dis-
tance between observation and the cluster center.

3. The cluster centroids are moved to the new means of the clusters
4. Step 2 and 3 are repeated in a sequence until the cluster centers no longer

changes
The figure 2.8 is an example of the clustered descriptor space with visual words and
their respective cluster centers. The search cost for an input query image feature
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can be determined by using the number of 3D point descriptors in the visual word
with the shortest Euclidean distance to the query image feature.

2.6 Prioritization Function
The main aim of this thesis work is to reduce the time taken for matching the 2D
query image features with the 3D points for 3D-Structure based localization. My
proposal in thesis is to prioritize the 2D query image features using a prioritization
function which minimizes the search cost for searching the 3D model under the
constraint of maximizing the probability of find a matching 3D point. To understand
the approach used in this thesis, it necessary to know about the knapsack problem.

2.6.1 Knapsack
Let us consider if there are n objects of different weights wi and each item has values
vi. The objective of a knapsack problem is to determine the best combination of
items that can be fit into a bag (knapsack) with a weight constraint of L while
maximizing the value of the items in the bag. A pictorial representation of the
knapsack problem is given in the figure 2.9. The objective function of a knapsack
problem could be expressed as :

max
n∑
i=1

vixi (2.6)

Subject to ∑n
i=1 wixi ≤ Land xi ≥ 0.Here xi represents the number of copies of the

items that were made.
A knapsack problem is called as a 0/1 knapsack problem if there can be no copies of
the items can be made. The then the objective function of a 0/1 knapsack problem
can be expressed as :

max
n∑
i=1

vixi (2.7)

Subject to ∑n
i=1 wixi ≤ Land xi ∈ {0, 1}. Here xi is either 0 or 1 depending if the

the item i is included or not.
The number of combinations that needs to be checked to find the best fit for the
bag increases exponentially as the number of items in the problem increases and this
problem is considered as an NP-complete problem [60]. The 0/1 knapsack problem
is similar to our problem of developing a prioritization function which minimizes the
search costs of searching the 3D model and also maximize the probability of find a
3D point match.
In our problem, the weights are the search costs and the probabilities are the values.
The time complexity of an algorithm represents the time taken by an algorithm so
solve a given problem. The time taken by an recursive algorithm to determine the
solution for a knapsack problem is O(n2n) [64]. A problem is solvable in polynomial
time if the running time of the algorithm is bound by some polynomial of the input
size for the problem. Through bottom-up dynamic programming, the the time
complexity of a knapsack problem can be reduced to O(nL) where n is the number
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of items and L is the capacity constraint [62]. O(nL) is also called psuedo-polynomial
because when L is small, the algorithm is quick to find a solution but as L increases
the time complexity also increases drastically. The search cost constraint for the
prioritization problem cannot be greater than nP where P is the maximum search
cost of all the n items for prioritization. The time complexity using bottom-up
dynamic programming can be expressed as O(n2P ) [61].

Figure 2.9: The image shows an example of the knapsack problem where the
objective is to fit items into a bag of the weight constraint of 7 kilograms while

maximizing the value of the items in the bag.
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The main objective of this thesis is to prioritize the 2D image features of the query
images in an order that minimizes the search costs for searching the 3D model and
also maximizes their probability of finding their corresponding 3D points. To fulfill
this objective, the following steps were done.

1. Develop a 3D model of the test images using Structure for Motion.

2. Obtain the probabilities of matching the 2D query image features in the 3D
model.

3. Obtain the search cost for every 2D query image features in the 3D model.

4. Combine the search cost and the probabilities of the query 2D image features
and develop a prioritization function

In this chapter, I discuss about how the above mentioned steps were performed and
I also explain about the various methods used to prioritize the 2D query image fea-
tures.

3.1 Outline

The figure 3.1 gives an overall outline of the method proposed in this thesis. Initially
the 3D reconstruction of the scene could be obtained using Structure from Motion.
Using the images features in the 3D model and features not in the 3D model, a
random forest classifier is trained to predict the probabilities of the 2D query image
features for having a 3D point. Along with this a K-means clustering algorithm
is trained to cluster the 2D image features of the 3D model to different visual
words as proposed by [14]. For a given query image, the probabilities of the query
image features having a 3D point and the search costs of query image features for
searching the 3D model, can be computed using the random forest classifier and
visual vocabulary. Later these probabilities and search costs could be combined
using a prioritization function which minimizes the search costs while maximizing
the matchability. Once N number of 2D-3D matches have been found, these matches
could be used for camera pose estimation.
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Figure 3.1: This image gives an overview of the method proposed in this thesis
for visual localization. At first, a 3D model is reconstructed using a set of images

of a location. The descriptor space of the image features used for 3D
reconstruction is later clustered into visual words by training a clustering

algorithm. A classifier is also trained to predict the probabilities of the query
image features to have a 3D point. For the localization of a given query image, all
the interesting images features in the query are extracted first. The search costs of
the extracted features are calculated in the next stage based on the number of

descriptors in the visual word which has the shortest Euclidean distance with the
query image feature along with their probabilities to have a 3D point. In the next
stage, the query image features are prioritized for 2D-3D feature matching based
on their search costs and probabilities . Once N number of 2D-3D features have

been found, the camera pose is estimated.

3.2 3D Reconstruction

For 3D structure based localization, it is necessary to develop the 3D model to
determine the camera pose of the query image. The first step in the reconstruction
of a 3D scene using structure for motion [28] is the extraction of all the interesting
features (SIFT features [19]) from all the training images. Once all features are
extracted, the images are paired with each other for feature matching based on the
camera distances between the images and the rotation between the cameras of the
images. With these image pairs, one could reconstruct the 3D structure using [3].
An example of the 3D reconstruction using SFM is shown in the figure 3.2.

18



3. Methods

Figure 3.2: 3D Reconstruction of the Shop Facade Dataset [26], the red points
represents represents the cameras.

3.3 Computing Probabilities

To determine the camera position of a query image feature, every feature in the
2D query image needs to be matched with all the 3D points. Matching all the 2D
query image features with all the 3D points is time consuming. To overcome this
bottleneck, [13] proposed to use 2D query image features which were predicted by a
classifier to be matchable during 2D-2D feature matching. Similar to [13] a classifier
is trained to predict if the 2D query image features would have a 3D point or not.
From here on the 2D features which have a 3D point are called as positive class
and the 2D features which do not have a 3D point is called a negative class. A
random forest model is trained to classify the 2D features in the images those were
used construct the 3D model and the 2D features that were not used for 3D model
construction. The classifier works based on a probability bases and the class which
has the highest probability is predicted as the output of the classifier. From the
classifier, I obtained the probabilities of all the features to belong to the positive
class for the prioritization function.

3.3.1 Computing Search Costs

[14] clustered the descriptor space containing all the 2D image descriptors used for
3D reconstruction into clusters called visual words. The search cost of a 2D query
image feature is the total number of 2D feature descriptors of 3D points that are
in the visual word which has the shortest Euclidean distance with 2D query image
feature [14]. A K-means clustering algorithm [25] with the number of clusters equal
to the number of visual words, is trained to cluster all the 2D descriptors used for
3D reconstruction and the search costs for all the 2D query image features were
computed as proposed by [14].
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3.4 Prioritization Function
To improve the time taken for 2D-3D feature matching, [13] proposed to use 2D
query image features which were classified to have a 3D point for feature matching.
[14] proposed to prioritize the 2D images features based on the search costs for
searching with a 3D point. In this thesis I propose to combine the probabilities of
all the 2D images features to have a 3D point along with the cost for searching the
2D query image feature. By this method, one could minimize the search cost for
searching in the 3D model under the constraint of maximizing the probability of
3D point match I propose three different methods for prioritizing the query image
features to reduce the time taken for 2D-3D feature matching. As explained in the
theory section, the 0/1 knapsack problem is similar to the our problem of developing
a prioritization function where the weights are the search costs and the probabilities
are the values. But the problem is the time complexity to find the best solution. To
overcome this problem, I have adopted three approximation schemes of the knapsack
problem to develop a prioritization function for the query image features.

3.4.1 Greedy Approximation Method
This method is an approximation scheme for the knapsack proposed by [59] where
the items for the knapsack problem are sorted in a descending order based on their
value per weight vi

wi
, here wi represents the weights and vi represents the values. This

method reduces the computational complexity of the knapsack problem drastically
as to O(n log n) [61]. The top N items that satisfy the weight constraints is the result
for this method of prioritizing the items in a knapsack problem. For our problem
of prioritizing the query image features, the search costs are the considered to be
the weights and the probabilities are the values. For a query image of i features
with v1....vi probabilities and w1....wi search costs, the prioritization function as be
expressed as:

Gi = vi
wi

(3.1)

G1 > G2 > G3.... > Gi (3.2)

The top N image features that satisfies the weight constraint can be later used for
feature matching and camera pose estimation.

3.4.2 Average Ranking Method
In this method for approximating a knapsack problem, items are ranked indepen-
dently based on the weights in an ascending order and values in an descending order.
Later the items are prioritized based on the average rank between the weights and
the values. Since the items are sorted three times,this method also has a computa-
tional complexity of O(n log n). The top N items that satisfy the weight constraint
is the result for this method of prioritizing the items in a knapsack problem. For our
problem of prioritizing the query image feature, the search costs are the considered
to be the weights and are arranged in an ascending order. And the probabilities are
the values which is arranged in an descending order. The average rank between the
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search costs and the probabilities is used to prioritize the query image features. For
a query image of i features with v1....vi probabilities and w1....wi search costs, the
prioritization function as be expressed as:

v1 > v2 > v3.... > vi (3.3)

w1 < w2 < w3.... < wi (3.4)

Ri = wi + ri
2 (3.5)

R1 < R2 < R3....Ri (3.6)

The top N image features that satisfies the weight constraint can be later used for
feature matching and camera pose estimation.

3.4.2.1 Fully Polynomial Time Approximation Scheme

An alternative method to overcome the time complexity to solve the Knapsack
problem is by using a Fully Polynomial Time Approximation Scheme. [63] proposes
to scale profit values vi by a polynomial bounded in (1

ε
) and n, where ε is the scaling

factor. By this method the time complexity of the FTPAS algorithm to solve the
knapsack problem could be reduced to polynomial time with respect to n and 1

ε
.

Motivated by this method, I have adopted a variation of this method, by dividing
the search cost constraint by a factor of epsilon and the search of all the items were
approximated by bwi

ε
c. The time complexity is thus reduced to O(n2b n

K
c). Here K

is nε
P

where P is the maximum search cost. The approximation factor determines
the degree of correctness of the solution found using the FPTAS algorithm when
compared to the best solution for the knapsack problem. The top N prioritized
query image features using the prioritization function could be later used for 2D-3D
feature matching and once N matches are found, they can used for camera pose
estimation.
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4
Results

In this section, a detailed description on the experimental set up, evaluation meth-
ods and quality of the results obtained from the random forest classifier and the
prioritization function is given.

4.1 Experimental Setup
The images from the Cambridge landmark dataset [26] was used to evaluate the per-
formance of the proposed method. The 3D model was reconstructed using the library
colmap https://github.com/colmap/colmap [3]. But for the 3D reconstruction of
the scene, the images in the dataset have to be matched. In the next section, I
explain criterias that were used to match the images for 3D reconstructions.

4.1.1 Image Matching for SFM
The images were paired for feature matching based on the distances between the
camera positions of the images and rotational angle between the cameras of the im-
ages. The distances between the cameras were measured in the 3D scene coordinate
system of the Cambridge Landmark dataset (which is in meters). The maximum
distance between the images used for feature matching was 10 meters and the max-
imum angle of rotation between cameras of the images was set to 30 degrees.

4.1.2 Training Dataset
To develop the training dataset, the training images were used to reconstruct a
3D model. For the training the random forest, all 2D image descriptors that were
used for 3D reconstruction were labeled as positive class and the remaining 2D
image descriptors of the training images which were not used for 3D reconstruction
were labeled to the negative class. The number positive and negative classes used
for training the classifier were balanced by randomly adding positive and negative
samples. A random set of 100000 descriptors from the positive class were used for
training the K-means clustering algorithm.

4.1.3 Testing Dataset
To test the results of the random forest classifier and the prioritization functions,
all the training and the testing images were used to reconstruct a 3D model. For
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testing the random forest classifier, all the descriptors in the test images which had
a 3D point that was triangulated by using two or more image features in the training
dataset were classified as positive class. All the remaining 2D test image descriptors
were labelled as class negative. The testing dataset for the prioritization function
consisted of all the descriptors from the test images.

4.2 Evaluation Methods
In this section, I discuss about the various evaluation methods used to determine
the quality of the results from the classifier and the prioritization functions.

4.2.1 Quality of the Random Forest Predictions
We evaluate only the probabilities of the positive class since we are only interested
in the probabilities of the 2D features being in the 3D model (positive case). The
probabilities of the positive class is evaluated based the number of positive and
negative matches found. A plot is made between the number of positive and negative
matches found based on the probabilities of the positive class, is used to evaluate
the classifier.

4.2.2 Quality of the Prioritization Function
The idea of this thesis is to minimize the time taken for 2D image feature matching
with the features associated with 3D points while maximizing the number of 2D-3D
matches for camera pose estimation in a 3D structure based localization. The prior-
itization function was evaluated based on the time take for matching (Search costs)
and the number of 2D-3D feature matches found.
Using the 3D model reconstruction with all the testing and training images, a set
of 2D-3D matches could be found. The 2D features in the test images that have a
corresponding 3D point is the ground truth i.e., the features that have a correspond-
ing 3D point. The prioritization functions were evaluated based on the number of
ground truth features available in the prioritized list. This method of evaluation
shows how many prioritized 2D image features would be matched with a 3D point.
Another method to evaluate the prioritization function is by computing the search
costs for only the top N prioritized features in every image. This method gives an
overview on how much would be the overall search cost for a image when only the
top N features were considered for matching.

4.3 Classifier Results
I trained the different random forest classifiers by varying the number of trees used
to grow the random forest model, the maximum depth of the forest trees and the
minimum number of leaf nodes or final nodes in each tree. The number of trees
parameter in the random forest was varied between 100, 500, 1000 and 1500 for all
the datasets used for evaluation in this thesis except for the Shop Facade dataset.
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For the Shop Facade dataset, the number of trees was varied between 10, 50 ,100
and 500. The maximum depth of the random forest was varied between 10, 100,
300 and 1000 and the the minimum number of leaf nodes in the random forest was
varied between 1, 3, 10 and 20, for all the datasets used for evaluation in this thesis.

(a) Time vs Accuracy of Different
Classifiers for the Shop facade dataset.

(b) Probability vs Percentage of matches
for a classifier with N = 50, maximum
depth = 1000 and minimum number of
leaves = 1, Number of features = 128.

Figure 4.1: 4.1b shows the classification results for the positive and negative
descriptors of the best classifier for the Shop Facade dataset.
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(a) Time vs Accuracy of Different
Classifiers for the Kings College dataset.

(b) Probability vs Percentage of matches
for a classifier with N = 100, maximum
depth = 4000 and minimum number of
leaves = 10, Number of features = 128.

Figure 4.2: 4.2b shows the classification results for the positive and negative
descriptors of the best classifier for the Kings College dataset.

(a) Time vs Accuracy of Different
Classifiers for the Old Hospital dataset.

(b) Probability vs Percentage of matches
for a classifier with N = 100, maximum
depth = 1000 and minimum number of
leaves = 10, Number of features = 128.

Figure 4.3: 4.3b shows the classification results for the positive and negative
descriptors of the best classifier for the Old Hospital dataset.
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4. Results

(a) Time vs Accuracy of Different
Classifiers for St. Mary’s College dataset.

(b) Probability vs Percentage of matches
for a classifier with N = 100, maximum
depth = 300 and minimum number of
leaves = 1, Number of features = 128.

Figure 4.4: 4.4b shows the classification results for the positive and negative
descriptors of the best classifier for St. Mary’s College dataset.

(a) Time vs Accuracy of Different
Classifiers for the Trinity Great Court

dataset.

(b) Probability vs Percentage of matches
for a classifier with N = 100, maximum
depth = 10000 and minimum number of
leaves =1 0, Number of features = 128.

Figure 4.5: 4.5b shows the classification results for the positive and negative
descriptors of the best classifier for the Trinity Great Court dataset.
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4. Results

4.4 Prioritization Function Results

In this section, I show the resulting plots of the prioritization function. The pri-
oritization functions were evaluated based on two methods. The first method was
using the resulting search costs when only the top N prioritized features were used
to compute the search costs. The second method was evaluated by using the number
of descriptors that had a 3D corresponding point in the prioritized features, when
the search costs was fixed.

4.4.1 Performance with Top N Fixed Features

In this section, the plots (figures 4.6, 4.7, 4.8, 4.9 and 4.10) represents the cumulative
frequency of the computed search costs in different images when the number of pri-
oritized features was restricted to N. In the frequency plots (figures 4.6, 4.7, 4.8, 4.9
and 4.10) the legend pareto optimal represents the optimal solution of the prioriti-
zation function, the legend Average Ranking represents the average ranking method
for prioritizing the features (section 3.4.2), the legend Search cost ranking represents
the search cost based prioritization function [14] and the legend Greedy Approach
represents the prioritization function using the greedy approximation method (sec-
tion 3.4.1).
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4. Results

(a) Number of prioritized features = 500. (b) Number of prioritized features = 700.

(c) Number of prioritized features = 1000. (d) Number of prioritized features = 1500.

Figure 4.6: Cumulative histogram of Search costs over the percentage of images
for the Greedy, Average Ranking prioritization function along with the optimal

solution when the number of descriptors is fixed - Shop Facade dataset.
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(a) Number of prioritized features = 500. (b) Number of prioritized features = 700.

(c) Number of prioritized features = 1000. (d) Number of prioritized features = 1500.

Figure 4.7: Cumulative histogram of Search costs over the percentage of images
for the Greedy, Average Ranking prioritization function along with the optimal

solution when the number of descriptors is fixed - Kings College dataset.
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(a) Number of prioritized features = 500. (b) Number of prioritized features = 700.

(c) Number of prioritized features = 1000. (d) Number of prioritized features = 1500.

Figure 4.8: Cumulative histogram of Search costs over the percentage of images
for the Greedy, Average Ranking prioritization function along with the optimal

solution when the number of descriptors is fixed - Old Hospital dataset.
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(a) Number of prioritized features = 500. (b) Number of prioritized features = 700.

(c) Number of prioritized features = 1000. (d) Number of prioritized features = 1500.

Figure 4.9: Cumulative histogram of Search costs over the percentage of images
for the Greedy, Average Ranking prioritization function along with the optimal
solution when the number of descriptors is fixed - St. Mary’s College dataset.
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(a) Number of prioritized features = 500. (b) Number of prioritized features = 700.

(c) Number of prioritized features = 1000. (d) Number of prioritized features = 1500.

Figure 4.10: Cumulative histogram of Search costs over the percentage of images
for the Greedy, Average Ranking prioritization function along with the optimal
solution when the number of descriptors is fixed - Trinity Great Court dataset.

4.4.2 Performance on Fixed Search Costs
The top N features that satisfy the search cost constraint were used for the evaluation
of the prioritization function. The plots in the figures 4.15, 4.13, 4.14, 4.12 and 4.11
in this section represent the cumulative distribution over the number of correct
2D-3D feature matches in a test image (section 4.2.2) against the percentage of test
images. The scaling factor ε for the prioritization function based on FPTAS (section
3.4.3) knapsack was set to 2. In the figures 4.15, 4.13, 4.14, 4.12 and 4.11 the legend
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Prob Rank refers to a prioritization function which ranks the 2D features of the
test image based on their probabilities to have a 3D point in a descending order.
The legend Ranking Average refers to the average ranking prioritization function
(section 3.4.2), the legend FPTAS refers to the fully polynomial time approximation
scheme prioritization function (section 3.4.3), the legend Greedy refers to the greedy
approximation method for prioritizing the features (section 3.4.1) and the legend
Search Cost refers to the prioritization based on search costs [14].

(a) Search cost limit =100. (b) Search cost limit =1000.

(c) Search cost limit =5000. (d) Search cost limit =10000.

Figure 4.11: Performance of all the prioritization functions on the Shop Facade
Dataset with fixed search costs
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4. Results

(a) Search cost limit =100. (b) Search cost limit =1000.

(c) Search cost limit =5000. (d) Search cost limit =10000.

Figure 4.12: Performance of all the prioritization functions on the Kings College
Dataset with fixed search costs.
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(a) Search cost limit =100. (b) Search cost limit =1000.

(c) Search cost limit =5000. (d) Search cost limit =10000.

Figure 4.13: Performance of all the prioritization functions on the Old Hospital
Dataset with fixed search costs.
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4. Results

(a) Search cost limit =100. (b) Search cost limit =1000.

(c) Search cost limit =5000. (d) Search cost limit =10000.

Figure 4.14: Performance of all the prioritization functions on the St. Mary’s
College Dataset with fixed search costs.
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(a) Search cost limit =100. (b) Search cost limit =1000.

(c) Search cost limit =5000. (d) Search cost limit =10000.

Figure 4.15: Performance of all the prioritization functions on the Trinity Great
Court Dataset with fixed search costs.

4.4.3 Discussions
In this section a detailed discussion on the results of the classifier and the prioriti-
zation functions is given.

4.4.3.1 Prediction Accuracy

The best classifier was chosen based on the time taken for making the prediction and
the accuracy with the test dataset. The classifier which had the highest accuracy
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but with the lowest time to classify the test image descriptors was chosen as the
best classifier. The figures 4.1b, 4.4b, 4.2b, 4.5b show that the classifier does not
correctly predict any descriptor with 100 % accuracy with a probability of 1 except
for the classifier for the Old Hospital dataset (figure 4.3). When the probabilities
of all the features were viewed, the classifier had 0 2D image features which had 1
or 0 probability. An ideal classifier will have a probability of 1 for all the positive
descriptors and a probability of 0 for all the negative descriptors. But this is not the
case in neither of the best classifiers for the datasets used in this thesis. Though the
results of the classifiers are not optimal, the classifiers are still able to predict with
an accuracy greater than 60% which would be useful for prioritizing the features.

4.4.3.2 Prioritization function

From the figures 4.6, 4.7, 4.8, 4.9 and 4.10, it could be seen that the search cost
based prioritization function has the lowest search cost for the top N prioritized
features, which is expected as the points are just prioritized using the search costs.
But the reason for the greedy prioritization function (section 3.4.1) to have a lower
search cost when compared to the average ranking method (section 3.1.2) is quite
unclear.

From the figures 4.15, 4.13, 4.14, 4.12 and 4.11, it could be seen that number of
matches found by the fully polynomial time approximation scheme based prioriti-
zation function (section 3.4.3) is low. This because of the scaling factor (ε) used
to reduce the time taken for prioritizing. As the limit on the search cost increases
the significance of ε (scaling factor) reduces, therefore the time taken to prioritize
the features increases. The limited performance of all the proposed prioritization
under limited search costs when compared with the search cost based prioritization
function may be due to the accuracy of the classifier. That is, the classifier might
suggest points with a greater probability but these point may not have a 3D point.
This would make the prioritization functions to prioritize these miss-classified points
at the top of the prioritization list. Therefore, a certain amount of time is being
spent for searching for corresponding 3D points for image points which might not
have a 3D point. It could be also seen from the figures 4.15, 4.13, 4.14, 4.12 and
4.11, the average ranking method (section 3.4.2) continues to improve with respect
to the search cost based prioritization function. As the limit on the search cost
increases, the average ranking method (section 3.4.2) outperforms the search cost
based method in the Shop Facade dataset (figure 4.11d). In the other datasets when
the search costs limit is maximum, the performance of the average ranking method
(section 3.4.2) is almost similar to the search cost based method which could be
seen in the figures 4.12d, 4.14d, 4.13d, 4.15d. The reason behind such reduction in
the performance of the search cost based prioritization function as the search cost
increases when compared with the average ranking prioritization function (section
3.4.2), may due to the fact that the average ranking method (section 3.4.2) is being
assisted by the classifier to prioritize the points. But the down-side of the average
ranking method (section 3.4.2) for prioritization is the time taken for prioritization,
since the query image features are sorted three times.
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4. Results

In practical application, one would have to choose between two constraints, either
the time taken for prioritization function or the number of correct matches found
using a prioritization function. If the time taken for the prioritization function is a
constraint, it is better to use the search cost based prioritization function. But if
maximizing the number of correct matches found is important than the time taken
for prioritization, then average ranking prioritization function (section 3.4.2) would
be the better approach.
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5
Conclusion

In this thesis, I have developed different methods to prioritize the query 2D image
features by using their probabilities to have a 3D point and their search costs, for
2D-3D feature matching in a 3D structure based visual localization. The probabili-
ties of the image features to have a 3D point were predicted using a random forest
classifier and the search costs of image features was the number of 3D point features
in the visual word with which the image feature had shortest euclidean distance with.
Through extensive evaluation, I show that the proposed average ranking based pri-
oritization (section 3.4.2) performs on-par with the search cost based prioritization
technique proposed by [14], when there is a lower constraint on the time taken for
prioritization.

5.1 Future Work
The efficiency of the proposed prioritization functions should be evaluated in a 3D
structure based localization pipeline and also compared with other state-of-the-art
techniques like [4].
The random forest classifier used to predict the probabilities was not able completely
to learn the patterns of the 2D image features that have a 3D point and the 2D image
features that do not have a 3D point. An alternative approach would be to use a
neural network [58] for predicting the probabilities of the 2D image features that
have a 3D point.
The efficiency of the proposed prioritization functions could be improved by using
a 3D structure based localization pipeline which actively prioritizes the 3D points
along with the 2D input image features based on the visual appearance once a
matching 3D point is found [4].
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