
Graph drawing strategies for large
UML State Machine diagrams
Improving graph drawings usability

Master’s thesis in Computer Science — Algorithms, languages and logic

Juan Pablo Contreras Franco

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Graph drawing strategies for large
UML State Machine diagrams

Improving graph drawings usability.

Juan Pablo Contreras Franco

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Graph drawing strategies for large
UML State Machine diagrams
Improving graph drawings usability.
Juan Pablo Contreras Franco

© Juan Pablo Contreras Franco, 2017.

Supervisor: Marco Fratarcangeli, Department of Computer Science
Examiner: Carlo A. Furia, Department of Computer Science

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Graph drawing strategies for large
UML State Machine diagrams
Improving graph drawings usability

Juan Pablo Contreras Franco
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
As systems grow in complexity, their development and maintainability cost increase
since there is a cognitive effort involved in the process of understanding their state
and the relationships of their parts. This report describes how two graph drawing
strategies can improve the depictions of UML state machines from a particular
business case. The intention is to show new options to improve the readability
and overall quality of the outcome produced by an in-house graph drawing solution.
This project address the features of the problem that are concerned about the graph
quality of the software modeling tools in use. These features relate to how the user
perceives the state machine drawings. An implementation of a proof of concept is
the base to explore an alternative graph drawing framework with the purpose of
motivating a discussion about the feasibility of migrating the current graph drawing
engine into a new one.
The work concludes that it is possible to customize an existing framework to fulfill
the usability standards for UML state machine layouts. Further improvements on
the proof of concept are required. Mainly, the geometric information must get
involved in realistic scenarios.

Keywords: Graph Drawing, UML 2, State Machines, Graph Algorithms, OGDF

v

Acknowledgements
Dedicated to Clemencia and Judith for their generous and unrelenting commitment
to support my efforts toward the actualization of my potentialities.
In addition, I want to thank Tomas Nilsson, Martin Lanzén and Marco Fratarcangeli
for the opportunity they gave me.

Juan Pablo Contreras Franco, Gothenburg, August 2017

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Background . 1

1.1.1 Large state machines as layout challenges:
the Ericsson’s experience . 2

1.1.2 Enhancing Unified Modeling Language (UML) drawing strate-
gies . 4

1.1.3 The Easy StateChart Language 4
1.2 Problem Formulation . 6

1.2.1 State machines in Unified Modeling Language 2 (UML2) . . . 6
1.2.1.1 Shapes for state machine diagrams 7
1.2.1.2 Layout quality . 7

1.3 Project’s scope . 8
1.4 Report’s scope boundaries . 8
1.5 Outline of this work . 9

2 Theory 11
2.1 Definitions and notation . 11

2.1.1 Graph Theory required notions 11
2.2 Graph aesthetics . 13

2.2.1 Aesthetical considerations about UML diagrams rendering . . 13
2.2.1.1 Graph metrics . 14

2.3 Drawing graphs: the algorithmic perspective 18
2.3.1 Layout strategies . 19

2.3.1.1 Sugiyama strategy 19
2.3.1.2 Heuristics in cross reduction 22
2.3.1.3 Orthogonal strategy 22

2.4 Graph Drawing software tools in this project 23
2.4.1 Open Graph Drawing Framework 23

2.4.1.1 Open Graph Drawing Framework (OGDF)’s Graph
drawing functionality, infrastructure and implemen-
tation . 23

2.4.1.2 Other graph software libraries and open formats . . . 24
2.4.2 Scalable Vector Graphics (SVG) object manipulation 26

ix

Contents

3 Methods 27
3.1 Extracting data from the current SVG files 27

3.1.1 The Graph Usability Benchmarking Tool 27
3.1.1.1 Extracting meaningful entities from the SVG 28

3.1.2 Yet Another Graph Tool . 29
3.1.2.1 The pipeline module 30
3.1.2.2 The layout engine module 30

3.2 Strategy implementation . 31
3.2.1 Sugiyama strategy implementation 31
3.2.2 Orthogonal strategy implementation 31

4 Results 33
4.1 Sugiyama strategy outcomes . 33

4.1.1 Experiment 1: Median heuristic 34
4.1.2 Experiment 2: Barycenter Heuristic 34
4.1.3 Experiment 3: Barycenter heuristic plus node ranking 34

4.2 Orthogonal strategy outcome . 36
4.3 Failed experiments . 36

5 Discussion 37
5.1 Remarks . 37
5.2 Suggestions . 37
5.3 Future work . 37

Bibliography 39

x

List of Figures

1.1 Current toolchain. 2
1.2 Current graph generation pipeline. 2
1.3 Unsatisfactory layout example . 3
1.4 Satisfactory layout example . 4
1.5 Undesirable layout example . 5

2.1 Bent promotion . 16
2.2 Minimum angle . 17
2.3 Sugiyama strategy process . 19
2.4 Cycle removal stage . 20
2.5 Layer assignment stage . 21
2.6 Crossing reduction stage . 22
2.7 Orthogonal shapes distribution . 23

3.1 A simple state machine . 28
3.2 Yet Another Graph Tool (YAGT) workflow 29

4.1 PdsClient state machine. 33
4.2 Experiment 1 - Median Heuristic . 34
4.3 Experiment 2 - Barycenter Heuristic 34
4.4 Experiment 3 - First ranking . 35
4.5 Experiment 3 - Second ranking . 35
4.6 Experiment 3 - Third ranking . 35
4.7 Experiment 3 - Orthogonal example 36

5.1 Complete pipeline . 38

xi

List of Figures

xii

List of Figures

List of Acronyms
AGD Algorithms for Graph Drawing
API Application Programming Interface
EPG Evolved Package Gateway
ESC Easy StateChart
GDT Graph Drawing Toolkit
GEXG Graph Exchange XML Format
GML Graph Modeling/Markup Language
GPLv2 GNU General Public License v2.0
GPLv3 GNU General Public License v3.0
GUBT Graph Usability Benchmarking Tool
JPEG Joint Photographic Experts Group
MSAGL Microsoft Automatic Graph Layout
OGDF Open Graph Drawing Framework
PNG Portable Network Graphics
SVG Scalable Vector Graphics
UML2 Unified Modeling Language 2
UML Unified Modeling Language
XML eXtensible Markup Language
YAGT Yet Another Graph Tool

xiii

List of Figures

xiv

1
Introduction

1.1 Background

The business market in which Ericsson operates is mainly oriented to the imple-
mentation and operation of packed-switched networks. The business model thriving
around these networks depends upon data flow auditing, live package inspection and
the interaction of a manifold of devices and software applications.
Evolved Package Gateway (EPG) is the infrastructure solution developed at Ericsson
to look after those telecommunication business requirements. The size of the system,
measured in terms of the number of states and quantity of involved assets, compels
system administrators to find ways that reduce the amount of effort required to
understand the system and its state.
Managing the complexity required a development effort from Ericsson whose result
is a software product to interact and ameliorate network’s governance by reducing
the cognitive overload burdening its operators. Even though the system can be
modeled as a collection of well-defined state machines, it is not easy to grasp for its
operators. EPG eases system’s comprehension by allowing the user to interpret the
system by representing it as UML compliant state machines.
Previous efforts at Ericsson accomplished the objective by implementing a graphical
tool to draw the state machines. The preceding tool was meant to be an Eclipse
plugin that transforms a state machine text description into an SVG image [1].
Those tools follow the scheme shown at Figure 1.1
The graph depicted in the SVG image complies with most of the UML2 standard
extended with some modifications. The results were good enough to guarantee the
fulfillment of the primary goal; however, some software pieces that were used as
intermediate steps have limitations impacting the overall usability of the drawing.
The output obtained from the previous approach can be enhanced if, instead of using
the old intermediate steps (e.g., heavily dependent on Graphviz1, as it is shown in
the figure 1.2), a new procedure that uses libraries explicitly tuned for UML layout
generation. Also, it becomes necessary to be able to classify what is a good state
machine layout in order to decide if there has been a definite improvement.

1 Graphviz is a software tool to generate graph drawings from a textual specification. See 2.4.1.2
for a detailed explanation

1

1. Introduction

Figure 1.1: Current toolchain.

1.1.1 Large state machines as layout challenges:
the Ericsson’s experience

The company has developed a tool called Easy StateChart (ESC) meant to draw
UML2 compliant state machines (also known as statecharts) from a homegrown
language to denote state machines.
The use case’s flow starts when the user generates a description of the state machine
as a text file containing the state machine’s description (a .esc file.) This description
is the input both for the generation of further software artifacts and also for the
drawing of UML2 State Machine diagrams.
The company has tried two different approaches, each one focusing on the possi-
bilities of the previously mentioned tools. The first approach is to use Graphviz’
dot language in such way that it is possible to produce UML state machine diagram

Figure 1.2: Current graph generation pipeline.

2

1. Introduction

shapes by composing the default Graphviz shapes into UML resemblant forms. The
second one is to use PlantUML2 since it has the default UML forms and its language
to denote state machine diagrams. It is important to mention that PlantUML uses
Graphviz as its engine, so the potential and actual shortcomings of Graphviz are
propagated to PlantUML.
Both approaches are not entirely satisfying in different ways. For some state ma-
chine sizes, the readability of the state machine diagram is heavily impaired by the
geometric characteristics in the shapes. From figure 1.5, it is possible to enumerate
the following undesirable characteristics:

• Most of the edges are candidates to simplification since they can fuse into a
single line. At only one point of that line, it divides to show that the transition
is triggered by a different event (referenced by the label.)

• Edges contain unnecessary bends.
• Each edge’s label break its flow.
• States appearing at the same height are not aligned.

As previously mentioned, Graphviz does not possess the concept of a UML shape
as a basic drawing object: the language it uses to describe the graphs is not fit for
the representation of the UML state diagram entities by default.
The lack of primitive UML shapes in Graphviz begets layout drawing problems,
that is, images are drawn either incorrectly or aesthetically flawed (i.e. asymmetrical
shape arrangement) without a reasonable or evident cause. Another example is the
absence of a consistent layout for edge labels (i.e. edge labels are described in the
dot language as fine-tuned nodes having a translucent boundary.)

Figure 1.3: This figure shows some
of the existing layout improvement
opportunities in a small region of a
larger diagram (see figure 1.5). The
edge endpoints on the topmost state
are drawn asymetrically. Similarly,
other states are placed asymetri-
cally and their corresponding edges
are either broken or bent. Edge
labels have that undesirable place-
ment because ESC process the la-
bels as nodes with translucent bor-
ders.

These shortcomings suggest that there is room for improvement for Graphviz by
finding a way to make it UML friendly: this could be achieved if its algorithms are
tuned to process the UML standard shapes. As for PlantUML, the shortcomings
are not entirely related to the graph’s layout drawing, but to the impact of model’s
2 PlantUML is a software tool based on Graphviz to generate UML graph drawings. See 2.4.1.2
for further reference

3

1. Introduction

shape quantity in the final depiction layout quality. From the company’s experience
dealing with the processing of its typical state machines, it was that PlantUML was
inadequate to draw large state machine diagrams.

1.1.2 Enhancing UML drawing strategies
The previous discussion is an offshoot of the Ericsson’s use case and ongoing sit-
uation. It drives the inquiry about graph drawing enhancement into the topic of
Information Visualization given that ESC users require apprehending the sense of
large data amounts through abstracting the relevant issues from the context and
dismissing negligible data.
Information Visualization comes as a field that, by fostering user’s interaction with
widgets, “enable users to explore patterns, test hypotheses, discover exceptions, and
explain what they find to others. . . [and by] interacting with the dataset gives users
the chance to rapidly gain an overview. . . ” (Bederson and Shneiderman 2, preface)
and is a “communication enhancer.” [3, ch. 1]
Graph Drawing is the branch of Information Visualization dealing with the study of
graph rendering for the purpose of human appreciation and analysis. Graph Drawing
is applicable whenever the information elements being represented have significant
relations between them [4] given the representation’s relation to the knowledge field
it belongs (e.g.,d̃ata is structured).

1.1.3 The Easy StateChart Language
As per Ericsson’s technical documentation about ESC defines,

ESC is a language for specifying state machines (known as statecharts),
as well as a suite of tools for working with them. ([5])

A toolchain including code generators, parsers, and executable files provides the
language implementation. The common use case starts when the user executes the
code generator to produce C++ code implementing the behavior on the state chart.
The structure of an .esc file consists of textual declarations, states, and transitions.
The tool suite supports two language variants: Uml and Simplified. The Uml vari-
ant is meant to support the UML2 standard completely while the Simplified vari-

Figure 1.4: An enhanced version of fig-
ure 1.3. Here, the edge endpoints on the
topmost state are drawn on the top of
the shape without being merged in a sin-
gle arrow, since they come from differ-
ent transitions. The other states are dis-
tributed equitably with continuous, sym-
metric and straight edges. Edge labels
are placed gracefully at the sides of their
transition arrows.

4

1. Introduction

Figure 1.5: State machine embodying some of the undesirable traits enumerated
at 1.1.1.

5

1. Introduction

ant is not exhaustive but generates optimal code in comparison: “Junction points,”
“Choice points,” “History Sates” and a few other shapes belong to the Uml variant.
As an example, the following fragment shows how to denote an event in the ESC
language:

Events
evA
evB(int x)
evC(std::string y, std::auto_ptr<Imsi> z)

From this language, the toolchain can generate the following C++ code:
class evA {

public:
};

class evB {
public:
evB(int x) : this->x(x) {}
int x;

};

class evC {
public:
evB(std::string y, std::auto_ptr<Imsi> z) : this->y(y), this->z(z) {}
std::string y;
std::auto_ptr<Imsi> z;

};
The language enforces naming conventions to relate state machine entities into lan-
guage constructs. For instance, event names shall start with “ev” followed by any
number of alphanumerical characters. Another relevant example is illustrated on
the state transition signification:

Red
evChangeColor -> Green
Green
evChangeColor -> Red

The toolchain can produce SVG files. The files that function as the sources for the
SVGs share the same structure.

1.2 Problem Formulation
This section introduces the different facets of the problem to be solved. The main
topics are reviewed in such way that the expectations and limitations are made
evident.

1.2.1 State machines in UML2
As it has been shown in Section 2.3, there are many graph rendering approaches.
Some of them are unsuitable for certain problems (e.g.,d̃rawing a tree might use
techniques that are meaningless for class diagram rendering); still, others are ad-
vantageous within an application domain. Thereupon, for the sake of restricting the
thesis scope, it is necessary to define accurately which UML state machine features
are going to be implemented and which ones are going to be left behind.

6

1. Introduction

In this fashion, a formal version of the problem statement is to find a drawing of
a graph that optimizes the graph usability. For this purpose, the usability must be
objectively measurable by thoughtfully defined metrics, as Section 2.2 will explain
in more detail.
As a starting point, the state machine specification to be rendered is taken from
the UML2 standard, as referred to earlier. The purpose of the state machine is
thoroughly captured by the diagram’s specification:

The state machine view describes the dynamic behavior of objects over
time by modeling the lifecycles of objects of each class. Each object
is treated as an isolated entity that communicates with the rest of the
world by detecting events and responding to them. ([6, ch. 7, p. 81,
Overview])

Also, the meaning implicit in the product’s diagram must fit the UML formal defi-
nition for state machine:

A specification of the sequences of states that an object or an interac-
tion goes through in response to events during its life, together with its
responsive effects (action and activity). ([6, ch. 14, p. 604, Dictionary
of terms])

These definitions are relevant because they confine the types of possible layouts to
work with; consequently, they are helpful for the candidate approach evaluation.

1.2.1.1 Shapes for state machine diagrams

The UML standard sets up a variety of symbols to signify the understanding of the
behavior conveyed in a machine state.
The official definition refers to them as “graphs containing states and transitions”
as well as the “response of an instance of the class to events.” They model possible
life histories of an object and concurrency [6].
The previous definitions are relevant in as much as the nouns they contain classify
and summarize the pertinent state machine’s concepts and related shapes, including
their varieties. They also suggest the outline for the relevant UML concepts to be
implemented on this project:

• Events (‘Call’, ‘Change’, ‘Signal’ and ‘Time’)
• State (‘Simple’, ‘Orthogonal’, ‘Nonorthogonal’, ‘Initial’, ‘Final’, ‘Terminate’,

‘Junction’, ‘Choice’, ‘History’, ‘Submachine’, ‘Entry point’ and ‘Exit point’)
• Nested states (A state that groups many substates)
• Composite states (including ‘orthogonal compositions’ meant for the represen-

tation of concurrent executions.)
• Transition (‘entry’, ‘exit’, ‘external’, ‘internal’)

1.2.1.2 Layout quality

Besides the seminal work made by Purchase, there is recent work playing its part in
the development of readability quality measures. Other authors that have treated

7

1. Introduction

the problem of UML layout quality are Wong and Sun, Störrle and Galapov and
Nikiforova. As mentioned in Störrle [9, §3], there are four level of design principles:

• General graphical design and visualization principles.
• Gestalt [11] principles have to be respected.
• Careful color use.
• Text readability by tuning the font, style, size, alignment, etc.

These principles are an example of the guides to decide on the necessary requirements
of usability criteria.
UML state machines do not follow, by standard, any given layout recommendation.
Also, even though there are general design conventions not yet mentioned in this
document, Wong and Sun [8], Fuhrmann and von Hanxleden [12] and other authors
have recommended layout parameters and investigated about their suitability for
drawing’s readability improvement.
The prevailing Ericsson’s standards define that the state machines must be depicted
from top to bottom and from left to right. Similarly, current diagrams tend to have
edges with many irregular bends, as it is possible to notice in the figure 1.5.

1.3 Project’s scope
This project address the features of the problem that are concerned about the graph
quality of the software modeling tools in use. These features relate to how the user
perceives the state machine drawings since there is a correlation to the usability
of the graph with the cognitive workload when using software modeling tools and
overall productivity.
This work explores an alternative graph drawing framework with the final goal to
motivate a discussion about the feasibility of migrating the current graph drawing
engine into a new one.
This work concludes that it is possible to customize an existing framework to fulfill
the usability standards for UML state machine layouts.
Further improvements on the proof of concept are required. Mainly, the geometric
information must get involved in realistic scenarios (e.g., real SVG outputs.) This
outcome is not included in the final proof of concept because the primary focus was
the evaluation of the layout strategies.

1.4 Report’s scope boundaries
As a graph related problem, the amount of information conveyed ordinarily on an
.esc file limits the size of the input. This work does not consider algorithmic
problems on general graphs since the data’s size for the business case never grows
beyond tractable limits (i.e. edge and node set cardinality is seldom greater than
fifty elements).
Likewise, the blending of the improved layout geometric data inside the old SVG
documents has been left aside since the post processing task was not relevant to the

8

1. Introduction

chief objective. However, the current Graphviz engine might become remarkably
irrelevant after the completion of such endeavor.
Finally, a quantitative comparison between the data from the original graphs and
their improved counterparts is absent because geometric information scraping from
the prototype’s output is not a priority.

1.5 Outline of this work
The first part of this work will cover simple graph theory notions side to side with
providing some context regarding the technical details of the company’s business
case.
Subsequently, a discussion on the relation between the quantitative and qualitative
characteristics in a graph will show the relevancy of the topic as well as introduce
the notion of an aesthetic metric.
A short survey on graph drawing techniques, with a particular focus on UML draw-
ing strategies, motivates the technical exposition.
A review of software tools precedes the discussion of the methods to tackle the
problem at hand.
Finally, the results are discussed, and some conclusions with additional suggestions
close the document.

9

1. Introduction

10

2
Theory

As Purchase et al. [13] mentions, two factors are encompassing the challenges of
graph representation: computational efficiency and conformance to measurable aes-
thetic criteria; hence, the study of Graph Drawing requires the blending of the
Graph Theory and Information Visualization subfields. Graph compliance to mini-
mum aesthetic thresholds subdues the implementation of algorithmic approaches to
the possibilities of finding a reasonable computational efficient solution.
The following subsections will provide an overview of the concepts behind graph
aesthetics, graph algorithms and how the aesthetic criteria impose efficiency goals
to the algorithms. These ideas come mostly from the bibliography and are mentioned
for the purpose of assisting the reader in the understanding of the ensuing sections.
Subsequently, an itemized summary of tentative frameworks that can be helpful to
close the requirement will conclude the subsection.

2.1 Definitions and notation
It is necessary to introduce basic definitions and notation related to graph theory
to understand the subsequent discussion. Some of these definitions are standard
knowledge in the field; however, graph drawing methodologies literature (e.g., [14,
15]) introduce some items that focus on this particular domain.

2.1.1 Graph Theory required notions
Since UML state machines are complicated geometric drawings involving text, lines,
and many other shapes together with the concept of directionality, it becomes a
necessity to abstract their basic properties for the sake of simplifying the analysis.
This fact validates the introduction of simple vertex-edge undirected graphs as a
practical model for further discussion.

Definition 1 (Graph) A graph G is a pair composed of a set of vertices V and a
set of edges E. Each edge e ∈ E has a set of one or two elements from V known as
its endpoints.[16]

Some theorems regarding planar graphs (to be introduced at definition 8) and other
meaningful observations rely on the concept of number of edges incident to a node.

Definition 2 (Node degree) The degree of a node, degree(ui), is the number of
edges incident on the node ui.

11

2. Theory

As the topic at hand is the display of state machines in a two-dimensional surface,
it is necessary to introduce the notion of the drawing belonging to a graph.

Definition 3 (Graph drawing) A drawing D(G) (also known as an embedding [14])
is a map that assigns vi ∈ V into distinct co-ordinate pairs (xi, yi). A graph drawing
also includes a map of the edges (u, v) for u, v ∈ V into finite sequences of distinct
co-ordinate pairs representing the bends of the polylines for the edges in D(G).

Notice that the notion of graph drawing implies that any given graph has many
possible drawings.
Sometimes it becomes necessary to simplify a graph model as much as possible.
That motivates the definition of the auxiliary graph as it is given by Purchase [15].
Its relevance will become evident in later sections.

Definition 4 (Auxiliary Graph) A drawing D′(G) is the graph obtained after trans-
forming the bends on each polyline of the drawing D(G) into distinct nodes. Such
transformation implies that the edges of D′(G) are straight lines. The name for this
transformation is ‘bend promotion.’

An auxiliary graph is a representation whose usefulness is not limited to edge bend
counting. Just as edge bents change into nodes inside the auxiliary graph, the
process of crossing counting also requires the definition of cross promotion. That
process is the reinterpretation of each crossing as a node inside the new auxiliary
graph.
Since the business requirement focuses only on state machines, the notion of con-
nected graph limits the scope of the analysis on this document.

Definition 5 (Walk) In a graph G, a walk from vertex v0 to vertex vn is an alter-
nating sequence

W = 〈v0, e1, v1, e2, . . . , vn−1, en, vn〉

of vertices and edges such that the ei are the shared endpoints of the vertices that
precede or follow it in the sequence [16].

Definition 6 (Connected Graph) A graph is connected if for every pair of vertices
u and v there is a walk from u to v

Planarity is an interesting graph property, mainly because of its relationship with the
number of crossings in a drawing since there is a correlation between the planarity
of its subgraphs and the overall crossings metric [14].

Definition 7 (Planar drawing) A planar drawing of a graph is a drawing of the
graph in the plane without edge-crossings [16].

Definition 8 (Planar graph) A graph is said to be planar if there exist a planar
drawing for it[16].

12

2. Theory

2.2 Graph aesthetics

Alongside with the minutiae of the algorithms that solve graph theory problems
(i.e. finding structures with distinctive characteristics within the graph), the new
quantifiable aesthetical parameters require further treatment. The introduction of
these parameters, as Di Battista et al. [14] declare, allow to ascribe the subjective
qualification of a graph rendering to quantifiable parameters; thus, graph rendering
requirements are unequivocally settled.
An obvious requirement for graph drawing is computational efficiency as a guarantee
of responsiveness; besides this, there are other relevant parameters:

Drawing convention “A drawing convention is a basic rule that the drawing must
satisfy to be admissible.” [14, ch. 2] For instance, in the application domain of
state machines, the chosen shapes to be rendered as the meaningful represen-
tations are those defined by the UML convention (e.g.,̃solid circles representing
initial states, etc.)

Aesthetics “Aesthetics specify graphic properties. . . to achieve readability.” [14]
Constraints The constraints refer to the specific drawing conventions and aesthet-

ical requirements of subgraphs and subdrawings. [14]

As mentioned previously, representation’s usability (e.g.,̃to render consistent and
meaningful graphs) brings about the need to outline further properties about the
presented objects. Purchase [17] and Kaufmann and Wagner [18] list a catalog
of quantifiable graph properties whose relationship to the subjective perception of
quality has been systematically evaluated on users. These features are called “Aes-
thetic criteria,” (aesthetics) and encompass measurable characteristics like “crossing
minimization,” “bend minimization,” “display symmetry” and “clustering” etc.
Given that Graph Drawing relies on the possibility of implementing feasible algorith-
mic solutions to common graph problems, it is clear that optimizing the rendering
under the constraints imposed by the potential conflicts between aesthetics is a
formidable endeavor [14, sec. 2.2]; for this reason, it is a necessity to set priorities
on the constraints and make suitable tradeoffs.
Another possible use for graph metrics is to define the objective function for the
families of algorithms that make use of such procedures. An example of this method
is the application of similar techniques in simulated annealing algorithms [19–21].

2.2.1 Aesthetical considerations about UML diagrams ren-
dering

Being UML diagram rendering a subset of the generic problem of graph drawing,
some authors have made experimental studies about the impact of different aesthetic
prioritization and enforcement within the Model-driven software development com-
munity.
Purchase et al. [13] elaborate on various criteria mostly relevant for the UML’s
application domain (e.g., “font type,” “layout’s width,” “orthogonality,” etc.) Even

13

2. Theory

though this study is only related to UML class diagrams and collaboration diagrams,
the conclusions are suitable to be extrapolated to other UML diagram types.
On a similar stance, Galapov and Nikiforova [10] advocate for the application of
“general layout principles” (e.g.,̃laws of object perceptual organization: the law of
similarity, the law of continuation, the law of proximity, etc.) by quoting previous
work about those topics from Boff et al. [22]. Among many other authors, they
cite1 Wong and Sun [8] to substantiate their advocacy for UML layout general
principles. Their work’s value is the restriction of universal aesthetic criteria to the
narrower field of UML layout.

2.2.1.1 Graph metrics

Purchase [17] has done comprehensive experimental studies involving real users and
measuring the cognitive impact of graph layout. Besides these studies, the outcomes
shown in her extensive work2 are the result of the efforts towards building a method-
ological framework to relate the quantitative aspects of the aesthetic criteria with
the user’s qualitative perception. Her work shows that it is possible to correlate and
prioritize the criteria based on the statistical analysis by carefully setting up surveys
analyzing user’s impressions and cognitive improvements.
Defining graph metrics pursues, as it leading goal, the measurability of the geometric
characteristics of a graph drawing by disregarding uninteresting information and, in
general, any information impeding the comparison between two drawings without
consideration for their structural peculiarities.
By taking aside the irrelevant information, it becomes possible to compare the qual-
ity of two graphs by disregarding the cardinalities of their vertices and edges sets
and any other possible structural characteristics they may possess.
The design of these metrics additionally purports to define the quantities as re-
stricted, dimensionless numbers. That is, every metric is a number in the interval
0 ≤ x ≤ 1. Also, by design, values at the interval’s rightmost extreme refer to a
better aesthetic value.
Besides Purchase approach, there have been innovative efforts toward the simplifi-
cation of metric gathering by the aggregation of geometric information into simpler
figures. Huang et al. [24] encourage the use of aesthetic aggregation by designing a
metric that gathers the geometric information into an overall score. Although this
idea seems compelling, it has not been widely adopted in the field’s literature at the
time of writing this report and it is out of consideration for its purposes.
The next paragraphs are meant to introduce Purchase’s approach to graph metrics.
For the purposes of the following discussion, n′ will stand for the number of nodes
in a drawing and m′ be the number of edges as well.

Edge crosses The aesthetic goal for the edge crossings (ℵc) metric is to reduce
it as much as possible. Almost all experts agree on the desirability edge crossing
reduction, in consequence, the metric considers the proportionality of the quantity
goodness by subtracting the main quotient from 1.
1 “Requirements set for layout diagram elements” 2 Further reference at Purchase [7], Purchase
et al. [13], Purchase [15] and Purchase [23].

14

2. Theory

The central problem to overcome is the absence of an unambiguous upper bound
for the number of crosses that could potentially be part of a drawing.

Definition 9 (Crossings) A cross promotion is applied to D(G): every cross on the
drawing becomes a node producing a drawing D′(G). For the purposes of generating
the upper bound, it is assumed that every segment from D′(G) will intersect every
other edge. call fulfills that role:

call = m′(m′ − 1)
2

In addition, there are impossible crossings given the existence of adjacent edges.
cimpossible counts the number of such events:

cimpossible = 1
2

m′∑
i=1

degree(vi)(degree(wi)− 1)

where wi and vi are the nodes of the ith edge. This leads to the formulation of the
upper bound cmx:

cmx = call − cimpossible

Finally, the metric is defined as a quotient and reinterpreted in such way that greater
values of ℵc represent the absence of crossings between edges:

ℵc = 1−

c

cmx
, if cmx > 0

0, otherwise

Edge bends Intuitively, edge bends (ℵb) are the amount of points of the polyline
connecting two nodes in the drawing that do not belong to an hypothetical straight
line connecting them.
As with the Edge Crosses metric, the problem of scaling appears. This is a calling
to attempt the finding of an upper bound as explained in the following definition.

Definition 10 (Bends) After bent promotion, the number of bends is:

b = n′ − n
= m′ −m

To avoid the problem of having to compare the number of bents to the possibility of
having an infinite number of bends, the scaling is taken from the number of segments
in the promoted drawing:

bavg = m′ −m
m′

Finally, the metric is reinterpreted:

ℵb = 1− bavg

The Figure 2.1 shows the meaning of converting the bends into pseudonodes.

15

2. Theory

Figure 2.1: Bent promotion

Minimum angle The foundation for this metric (ℵm) resides on defining the
existence of an optimal angle ϑi that relates the degree of each singular node to
congruent segments of a complete circular arc. Once ϑi is defined, the procedure is
to measure and normalize the amount of deviation for each of the nodes.

Definition 11 (Minimum angle) First, define the nature of an optimal angle:

ϑi = 360°
degree(vi)

Then, define θi min as the minimum angle between the incident edges of a node ni.
This is enough to calculate the overall deviation of the edge’s angles:

d = 1
n

n∑
i=1

∣∣∣∣∣ϑi − θi min

ϑi

∣∣∣∣∣
Finally, the metric is normalized.

ℵm = 1− d

As an example, suppose the existence of a drawing in which each node has the
perfect measure (e.g., θi min = ϑi for every node ni). Then, the deviation is d = 0
and consequently ℵm = 1 (i.e. that drawing has the best possible angle setting.)
The Figure 2.2 shows on the left the perfect angle distribution for the drawing at
hand in comparison to an uneven angle distribution in a different representation of
the same graph.

Other metrics The following metrics are defined in Purchase [17]. They are
not given relevance in this report either because they had no meaning for its final
purpose or because their implementation was outside the scope of this work for the
reason of their complexity.

16

2. Theory

Figure 2.2: Minimum angle

Symmetry The calculation of this metric (ℵs) may involve comparing the shapes
and their possible congruences along the viewport axes. Purchase [17] appeals
to a holistic approach that not only cares for a plain contour congruence in-
terpretation based on the its reflection around the classic cartesian axes but
also for the rotational symmetry around potential axes.
Purchase [17] suggests an algorithm that takes as an input a drawing. From
this input, the algorithm determines new axes (related to the node positions),
determining if there is ‘enough symmetry’ to infer the existence of a subgraph,
calculate a symmetry value for each of the subgraphs and finally doing an
aggregative operation that normalizes the overall metric to the interval 0 ≤
ℵs ≤ 1.
Evidently, the motivation supporting the approach is intuitively valid, but
its implementation is cumbersome. Computing ℵs, as Purchase [17] admits,
requires the implementation of algorithms having best case execution com-
plexities on the order of O(n5) and O(n7) at worst.

Edge orthogonality This metric, ℵeo, deals with the angular deviation between
the edges and an imaginary cartesian grid. Since each edge has an angle with
relation to the horizontal axis, the metric is calculated as the average deviation
of these angles. As an instance, edges that parallel to the horizontal axis do
not contribute to the average deviation. As this deviation is subtracted from
1, a theoretical graph in which the edges are collinear with any line parallel to
the axis must have the perfect edge orthogonality metric, namely ℵeo = 1.

Node orthogonality The principle of alignment to a grid is also involved in the
node orthogonality metric definition ℵno. An assumptive cartesian grid layer is
aligned upon the original drawing plane. The size of the grid’s cells is tuned to
the position of the nodes in the drawing and its bounding box fits the drawing
area. Then, the metric’s calculation takes quotient between the number of

17

2. Theory

nodes and the bounding box.
Upward flow The flow metric, ℵf , measures the edges overall directional consis-

tency. Edges of a drawing containing segments whose direction alternates are
penalized; edges that flow evenly do not alter the visual path meant by the
edge’s arrow. Undirected graphs are not in the consideration for this metric.

2.3 Drawing graphs: the algorithmic perspective

As a problem of algorithm design, graph rendering approaches are classified accord-
ing to the priority given to the relevant aesthetics3. Di Battista et al. [14] categorize
the methods using the following convention:

Topology-Shape-Metrics Approach A graph has three properties: the Topol-
ogy, Shape and Metrics; the processing of each property takes a sequence of
definite steps. These properties induce equivalence classes on the possible
drawings of a graph. The Topology relation considers two drawings as equiv-
alent if there exist a continuous transformation between them. The Shape
relation is a stronger version of the Topology relation enforcing the transfor-
mation just on the edge segment length. Finally, the Metrics relation is a plain
congruence up to translation and rotation [14].

Hierarchical Approach It is another step-wise method that processes graph’s
vertices by classifying them in layers depending on the direction of the edges.
Then, further processing is done aiming to optimize the aesthetics. Good
examples of this approach are the Sugiyama’s method [25] and the Topological
Feature-Based Layout [26].

Visibility Approach Prioritizes crossing reduction and tries to render edge draw-
ing as a polygon chain.

Augmentation Approach Graph’s building method operate by adding one node
at a time.

Force Directed Approach Eades [27] and Dwyer [28] give a physical interpre-
tation4 to the shapes on a model, in consequence, the rendering becomes a
problem of solving the equations of a physical system.

The aforementioned techniques rely heavily on the manipulation of custom data
structures and the algorithmic knowledge about graph planarization and many other
algorithms solving classic graph problems.
Another important feature is that the techniques are applied in a stage-wise fash-
ion. This feature, described in more detail at Section 2.4.1.1, is relevant to the
implementation of graph drawing frameworks.

3 “number of bends”, “symmetry”, etc. See Section 2.2. 4 i.e. One of the classic examples of
this approach is called the Spring Layout Algorithm.

18

2. Theory

2.3.1 Layout strategies
As this project deals with strategies to improve UML drawings, the suggestion is to
use either the Sugiyama strategy or the Orthogonal strategy. This suggestion has
its basis in the recommendations given by the literature surveyed at Section 2.2.1;
a brief enumeration of those recommendations, in Galapov and Nikiforova [10] is:

Perceptual organization Location and geometric relation of the perceived ob-
jects between each other.

Perceptual segregation Being able to determine the difference between the shapes
and their background.

Other guidelines Bend minimization, overlapping avoidance, enforce shape prox-
imity etc.

The Sugiyama strategy and the Orthogonal strategy are natural choices since they
enforce some of the recommendations within their algorithmic limitations.
The following subsections intend to introduce both strategies and other related con-
cepts.

2.3.1.1 Sugiyama strategy

Figure 2.3: Sugiyama strategy process

The Figure 2.3 shows the waterfall structure of the steps involved in the Sugiyama
strategy. The Sugiyama strategy prioritizes the following criteria [18, 29]:

• Even node distribution on the viewport.
• Edge flow uniformity.
• Prioritize straight edges.

19

2. Theory

• Short edge length.
• Minimize edge crossings.

This strategy belongs to a class of layout methods whose main characteristic is to
separate the viewport into stripes or layers. The strategy divides the main algorithm
goal into the following strictly sequential stages:

1. Cycle removal
2. Layer assignment
3. Crossing reduction
4. X-Coordinate assignment

Cycle removal This step is a preprocessing phase. All the cycles in the graph
are removed by reversing as few edges as possible so that the edges point in one
direction. The resulting graph directed and free of cycles. Particular cases such as
cycles involving just two vertices are noticed at this step and taken care of in later
stages.
The phase does not destroy edge directionality information; the cycle removal step
preserves it. Later stages will use the stored information to reconstruct the direc-
tionality once the pipeline has finished processing the input.
At the completion of this phase, the input for the Layer Assignment step is ready
for the consumption of the layer assignment stage.

Figure 2.4: Cycle removal stage

Layer assignment A layering process defines the viewport as a collection of adja-
cent horizontal layers (also known as levels.) Then, the goal is to partition the vertex
set by assigning subsets of its elements into layers. The condition inducing the layer
partitioning is that two vertices belonging to the same layer cannot be neighbors.

20

2. Theory

The partitioning must also enforce the directionality between the nodes from differ-
ent layers. Nodes belonging to upper layers must have edges pointing toward nodes
in lower layers, causing the nodes to point downwards.
Some algorithms in further stages might require that the edges do not traverse more
than one layer. A proper layering is a layering in which all edges cross only one
layer. Achieving a proper layering may require adding dummy nodes.

Figure 2.5: Layer assignment stage

Crossing reduction After a successful layer assignment, the vertices within each
layer are ordered focusing on reducing the number of edge crossings.
On a first glance, it seems fruitful to sweep each layer hoping to reorder the vertices
having in mind the crossing reduction goals. A Layer-by-Layer sweep consists of
fixing the ordering of the nodes of a layer while rearranging nodes on other layers
until an acceptable threshold for number of crosses if found. This approach, as
mentioned by Kaufmann and Wagner [18] is not optimal; hence the technique is to
iterate the process many times while picking a random layer on each opportunity.
Notice that the random layer selection technique for each note yields an indetermin-
istic result. OGDF’s developers suggest forcing a deterministic behavior by setting
up a fixed seed for the random number generator before each call5.

X-Coordinate assignment Assigning the horizontal coordinates to each vertex
must obey the premise of bend minimization. The fake nodes introduced in previous
phases appear in this state as bends. A simple heuristic for node positioning is to
infer the positions from the information given by the crossing minimization step.

5 See http://www.ogdf.net/doku.php/ogdf:faq

21

http://www.ogdf.net/doku.php/ogdf:faq

2. Theory

Figure 2.6: Crossing reduction stage

2.3.1.2 Heuristics in cross reduction

Barycenter heuristic Originally proposed by Sugiyama [25], this cross mini-
mization heuristic is based on the assumption of the proportionality between node
adjacency and number of crosses (i.e. if two nodes are near, their potential crosses
are reduced.) After measuring this metric on each of the vertices of a layer, its
corresponding partition is sorting using the barycenter as primary criteria. This
method generates drawings free of crossings if the original graph structure permits
that possibility.

Median heuristic The innovation from Eades and Wormald [30] resides in sug-
gesting a sort order on the layers that depends on a particular definition of the
median x-coordinate of each vertex about the x-coordinates of its neighbors.

2.3.1.3 Orthogonal strategy

A prevalent recommendation for layouts involving UML models (surveyed in detail
on Section 1.2.1.2) is to render the shapes into an orthogonal grid. This rendering
is called an embedding and motivates the following definition:

Definition 12 (Orthogonal Embedding [18]) An orthogonal grid embedding Γ of a
graph G = (V,E) is a map between v ∈ V and integer grid points Γ(v) on the plane.
The grid embedding also maps edges into sequences of non-overlapping paths on the
plane.

The Figure 2.7 shows an embedding (e.g., set up every node in a crossing of an
imaginary grid and set the edges along the imaginary lines of such grid) of the edges
and nodes into a grid. This is the main idea behind the orthogonal strategy.

22

2. Theory

Figure 2.7: Orthogonal shapes distribution

2.4 Graph Drawing software tools in this project

2.4.1 Open Graph Drawing Framework
The OGDF is a library containing reusable data structures and graph algorithms.
Its development did not start from scratch on account of Algorithms for Graph
Drawing (AGD)’s (Algorithms for Graph Drawing, a project of the Max-Planck
Institute [31]) legacy source being its precedent codebase.
The evolution of the graph drawing theory has as an outcome a theoretical frame-
work that characterizes both graphs and algorithms in a taxonomy. Di Battista
et al. [14] mentions as a justification for that taxonomy two observations:

• Graphs can be classified (e.g.,ãssigning directions to an undirected graph gen-
erates a directed graph); and those classes are subject to a natural hierarchiza-
tion. Hence, some of the algorithms applicable to graphs of a class can also
be useful for similar problems.

• It is common to discretize a graph drawing methodology as a pipeline of steps.
A direct consequence is a possibility of analyzing each of the steps indepen-
dently.

These considerations influenced OGDF’s architecture, and are adopted well beyond
into the mainstream design trend as it is noticeable in other frameworks.

2.4.1.1 OGDF’s Graph drawing functionality, infrastructure and imple-
mentation

OGDF’s main contributions belong to the following categories [32]:

Basic Data Structures Lists, hash tables, etc. implementations focused on the
project’s requirements.

23

2. Theory

Graph representation support The class Graph, CombinatorialEmbedding,
PlanRep (for planar representations) etc.

Layout Algorithms Implementations for the PlanarizationLayout,
ModularMultilevelMixer etc.

Modules Planarity-based algorithms require the modules PlanarSubgraphModule,
EdgeInsertionModule among other implementations.

These contributions are implemented in a modular fashion, following the guidelines
from the aforementioned observations [29]. As a result, the framework’s modularity
allows testing new algorithmic approaches by replacing some of the stages in the
classical graph drawing pipelines.
As a final remark about OGDF’s implementation, a definite design goal is to make
the library as self-contained as possible. Except for the linear programming solver
(COIN-OR [33]) and the branch-and-cut framework (ABACUS [34]), the library
lacks on external dependencies.

2.4.1.2 Other graph software libraries and open formats

It is almost certain that, during the past 20 years, the Graph Drawing community
has noticed tacitly the benefits of incorporating all the research experience into
reusable software artifacts. This conjecture becomes substantiated by the abundant
assortment of libraries and open formats. In fact, some of the libraries have been
adopted by the community and grow further along with its necessities.
The main benefit the existence of these libraries provide is that most of the low-level
issues have been solved and proven during the last years. Libraries like TULIP and
OGDF have already got to the point of being platforms allowing experimentation
with new layout approaches since they have been designed using a plug-in architec-
ture. Evidently, reaching this level of maturity requires having gone through the
development of stable data structures and other well-defined solutions that can be
taken as standards for the field.

Graph modeling languages and image formats Side to side with the prolif-
eration of libraries, there is also an extensive variety of languages whose purpose is
to standardize graph information interchange.
Libraries can interact using the traditional formats (i.e. Comma Separated Value
files) or more specialized formats like Graph Modeling/Markup Language (GML)
(one of the many standards supported by TULIP), dot (Graphviz), Graph Exchange
XML Format (GEXG)6 or NET/PAJ (Pajek). It is common in these frameworks
to allow image information exporting to standards like Portable Network Graphics
(PNG), Joint Photographic Experts Group (JPEG), and SVG.
A remarkable example of a successful graph drawing is TULIP. This library is a 20-
year-old information visualization framework offering techniques and tools to solve
domain specific problems. It has a Python layer and C++ Application Programming
Interface (API) providing tools for the development of interactive widgets, teaching
tasks and other graph related activities [35].
6 Gephi’s format

24

2. Theory

TULIP has an architecture supporting extensibility by the use of plugins. The plugin
architectural design is particularly useful for the free replacement of algorithms by
the enforcement of the framework’s interfaces; hence, that architecture is a tradi-
tional development pattern used among many other libraries. TULIP’s modularity
is also resourceful to import and to export information using multiple graphs and
image formats.
The most well-known libraries given their historical value and their current pop-
ularity are “AGD-library” [36] and “Graphviz.” [35, 37] Other important libraries
worthy of being mentioned are gdLibrary [38, 39] and Pajek. [18]
Along with the open source community, private efforts have grown into patents
like the Microsoft Automatic Graph Layout (MSAGL) [40] and Graph Drawing
Toolkit (GDT). [18]
There have also been efforts toward drawing UML; in particular, class diagrams.
One open sourced popular package for such ends is PlantUML [41]. This software
can interpret a text encoding of an UML diagram (understandable by a human) and
draw the corresponding graphical representation.

On the adoption of OGDF Considering that this is a project for a for-profit
company, it is necessary to choose a library whose code can be freely reused. It
is relevant to mention that the software products linking to the library are part of
an internal software modeling tool (e.g., it is not for the use of external clients.)
Therefore, there is no obstacle to its use concerning its GNU General Public License
v2.0 (GPLv2)7 license.
From the viewpoint of the development, the selected library has to have some of
the previously mentioned characteristics regarding maturity8, and the input/output
formats should be as standard as possible.
Originally, the chosen library for the task at hand was TULIP. This library allows to
build complete graphical interfaces and provides out-of-the-box functionality cover-
ing the requirements for this project. In particular, TULIP allowed the development
of shape templates (i.e. generating a reusable primitive mold for a state); hence, the
framework can manage the geometric shape data seamlessly. It also provides fur-
ther functionality to embrace the graph exportation into different formats, a typical
business scenario at Ericsson.
Unfortunately, TULIP’s development philosophy does not give priority to component
self-containment. For instance, compiling the library required references to outdated
versions of the Qt framework9; that made OGDF a better option even though it does
not provide as much out-of-the-box functionality as TULIP does.

7 From the GPLv2, one of the OGDF licensing schemes (besides GNU General Public License v3.0
(GPLv3)) referenced in the project’s code repository: “Activities other than copying, distribution
and modification are not covered by this License; they are outside its scope.” 8 Most of the classic
algorithms and primitive data structures should not be implemented since the scope of this project
is not to develop what has been already built and tested. 9 Provided by the Qt Company [42]

25

2. Theory

2.4.2 SVG object manipulation
The aesthetic metric computation requires knowledge about the geometric charac-
teristics of the shapes inside an SVG; therefore, it is necessary to extract the raw
geometric data from its XML structure.
Undertaking the geometric data scraping calls for the use of two libraries focused
on SVG specifics:

svgpathtools Includes a complete set of functions to operate on SVG path objects,
general parsing for SVG shape properties (e.g.,k̃inks along a path), analysis of
line differentiability in a real domain, conversion of a form into its equivalent
path, path smoothing, intersection detection, path representation and bezier
curves among other functionalities Port [43]. This library uses a Python pack-
age as its main distribution channel.

svgo Offers a functionality focused on SVG file structure simplification and opti-
mization. Merging different paths sharing the same endpoints is an example of
the possible simplifications an SVG can be subject [44]. The library requires
nodejs [45] as it is written to be interpreted by a JavaScript runtime.

NetworkX As it is necessary to operate on graphs in late stages of layout’s analysis,
NetworkX is the Python solution allowing graph representation and some In-
put/Output related activities. Its description, as summarized at Hagberg [46],
is:

NetworkX is a Python package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks.

The specifics regarding SVG manipulation in the library will be reviewed carefully
in Section 3.1.1.

26

3
Methods

Introducing new strategies adds the concern of how to benchmark the present output
generated by the toolchain in comparison with the results provided by the new
implementation.
For the sake of making evident the changes brought by the observation, it became
a necessity to extract geometric information from the original SVG files created by
the toolchain.
The following sections explore, in an approximately sequential fashion, the devel-
opment of the proof of concept. As it is a requirement to extract the geometric
data, the chapter starts by motivating and describing Graph Usability Benchmarking
Tool (GUBT). Then, YAGT comes naturally as the second step towards generating
a new layout.

3.1 Extracting data from the current SVG files
As it was mentioned on Section 1.1.1, after the execution of the Python scripts,
the toolchain produced SVG files. Given that the SVG standard prescribes rules
regarding the geometric disposition of images in a viewport, it was natural to obtain
the data to feed the metrics after processing these files as input.
The accomplishment of the data extraction goal suggested the development of single
software tool capable metrics gathering: GUBT. Along with this tool, testing new
graph layouts was a call for the construction of a different mechanism feeding on
the geometric output from GUBT and producing streamlined blueprints encoded as
geometric data. YAGT’s intention is to embody that goal.

3.1.1 The Graph Usability Benchmarking Tool
The gist of the metric analysis for the SVGs resides in the possibility of extracting
geometric data from the SVG content. Its primary task is to retrieve the bounding
boxes of every state and, more generally, every <g/> group that could be singled out
as belonging to the state machine. The second function is to distinguish the paths
forming the edges and the relationships connecting the nodes based on the specifics
of the SVG structure.
Analyzing each SVG file independently required the implementation of a command-
line tool to filter out xml fragments representing the graphic entities. As it can be
seen from the fragments describing the entities (e.g., 3.2), the toolchain groups the
graphic elements using the <g/> tag provided by the SVG specification. This tag

27

3. Methods

allows to operate on the discrete elements it groups both for the purpose of changing
their geometric properties or to allow the identification of the group as a whole.
Generating the small details seen on the shapes can be done by breaking the com-
plexity of the path into simpler subpaths that are visually undetected. (e.g., the
round corners of the WaitForResponse state in figure 3.1.1)

Figure 3.1: Here, the Start state
(represented as a small dot at the
top) has the same XML structure as
the other two states. The graph’s
edges are a composition of two uncon-
nected SVG paths. Label’s depiction
requires to draw them as nodes whose
boundaries are transparent lines.

Listing 3.1: XML description for the edge going from the Start state into the
WaitForResponse state
<!-- StartState->WaitForResponse -->
<g id="edge3" class="edge">

<title>StartState->WaitForResponse</title>
<path fill="none" stroke="firebrick" stroke-width="2"

d="M271-302.354C271,-291.959 271,-261.433 271,-238.298"/>
<polygon fill="firebrick" stroke="firebrick"

points="274.5,-238.286271,-228.286 267.5, -238.286 274.5,-238.286"/>
</g>

Listing 3.2: XML description for the shape of the state WaitForResponse
<!-- WaitForResponse -->
<g id="Agent::PendingReq.WaitForResponse" class="node">

<title>WaitForResponse</title>
<a xlink:href="#81:4-18" xlink:title="WaitForResponse">

<polyline fill="none" stroke="black" points="324,-228 218,-228 "/>
<path fill="none" stroke="black" d="M218,-228C212,-228 206,-222 206-216"/>
<polyline fill="none" stroke="black" points="206,-216 206,-204 "/>
<path fill="none" stroke="black" d="M206,-204C206,-198 212,-192 218-192"/>
<polyline fill="none" stroke="black" points="218,-192 324,-192 "/>
<path fill="none" stroke="black" d="M324,-192C330,-192 336,-198 336-204"/>
<polyline fill="none" stroke="black" points="336,-204 336,-216 "/>
<path fill="none" stroke="black" d="M336,-216C336,-222 330,-228 324-228"/>
<text text-anchor="middle" x="271" y="-205.4"

font-family="Arial"font-size="14.00" fill="darkgreen">WaitForResponse</text>

</g>

3.1.1.1 Extracting meaningful entities from the SVG

Determining the entities is an XML scraping task involving the parsing of the SVG.
Entity data was stored inside dictionaries whose key was the content of the title
element inside their groups.

Extracting States There are as many different structures for the string as pos-
sible shapes for the states. As it was seen at figure 3.1.1, there are ‘start states’,
‘normal states’ etc.

28

3. Methods

Filtering the SVG for states required to choose the entities that did not contain
the substrings ->, _To_ or Sm and to explicitly take those containing the substring
cluster.
Usually, the shapes are complex, and they can be classified depending on the visual
function they fulfill. Standard states in a machine are a good example of the naming
complexity as per the shape is built from two different groups. One of them is the
external group of the paths forming the boundary. The other group is the inner box
representing the internal content of the shape.
After the shapes are extracted, the next step is to infer their bounding boxes and
associate that information to the shape’s data.
The groups forming the boundary line are a collection of disjoint paths. Over-
coming this obstacle requires to extract the bounding boxes of each path using
svgpathtools and then finding the most extreme points representing opposite cor-
ners of the shape’s bounding box.

Extracting Transitions As with the state extraction, filtering out the transitions
is challenging. Visually, the transitions between states are shown as paths that are
suddenly broken by the transition’s label.
The toolchain has a limited functionality regarding transition’s labeling. Rendering
the transition’s label consists of making a customized node with transparent bound-
aries including other exclusive features and then interpolating it between two paths
that connect the label to the real states.

3.1.2 Yet Another Graph Tool
The purpose of YAGT is to enable the experimentation with different strategies
upon the data obtained from the layouts extracted by GUBT.

Figure 3.2: YAGT workflow

29

3. Methods

As shown in figure 3.2, YAGT’s construction is a composition of pipelined steps
written in Python whose purpose is to orchestrate the flow of information coming
from GUBT into a layout engine.

3.1.2.1 The pipeline module

Shape extraction The objective of this step is to extract the geometric informa-
tion of the bounding boxes contained in an SVG. Another output from this step
is a data structure containing the graphs’ node relationship information (i.e., node
predecessors and successors, etc.)
This step makes extensive use of NetworkX library, as it builds a graph in its default
data structure. NetworkX’s graph data structure can generate GML structured text
files. As expected, those files will contain identifiers for the nodes, the edges, the
edge relationships between the nodes and the state’s bounding boxes that can be
recognized as such.

Prepare engine’s input data The graph data is not yet ready for the consump-
tion of the engine. As the engine depends on OGDF’s GML reading capabilities,
the data requires to be enriched with extra information.
Also, OGDF’s GML writer overlook the node identifier information from the input.
This causes shape identifier information loss after the library has done successful
reads and writes.
As it is required to be able to recover the identity of each shape after its layout
has been modified, preparing the data has the responsibility of marking each GML
entity with the identifier of the shape as it comes from the SVG.

Use the engine The engine accepts a GML input together with a switch that
allows to choose between the Sugiyama or the Orthogonal strategy. From the input,
it generates a GML output as well as an SVG representation of that output.
The GML output contains the same bounding boxes as the input had, but the
coordinates are now updated. It also includes the edge relationship enriched with
the coordinates of the points belonging the polyline created after the strategy’s
application.

3.1.2.2 The layout engine module

The layout engine module is a command line program written in CPP that feeds from
a GML file and, depending on the value of the strategy switch, generates either an
orthogonal layout or a Sugiyama arrangement.
The program uses OGDF library extensively. It reads the GML representation into
an OGDF data structure and then proceeds to apply the strategies depending on
their customized parameters. An undocumented undesirable characteristic of the
library’s Input/Output system is that it does not have a uniform criteria regarding
the information that must come inside the input GML. This implies that using
different strategies require the manual tuning of the common data structures even
thought there is not real reason supporting the need.

30

3. Methods

3.2 Strategy implementation

3.2.1 Sugiyama strategy implementation
Applying the Sugiyama layout is easy since it is ready for instantiation just after
the source code has a reference to OGDF. Yet, the algorithm’s execution is open for
further tailoring (and even adding improvements) as the object exposes the following
parameters for modification:

Predefined ranking It is possible to assign fixed layers for each node. This comes
in handy when the requirement wants to have the control over the shape’s
vertical locations in the viewport.

Number of cross minimization runs As mentioned on the discussion about cross
minimization (2.3.1.1), OGDF makes possible to try different assignments until
the amount of crosses reach an optimal bound. The tradeoff for having this
characteristic is that the layout becomes nondeterministic.

Cross minimization heuristics As per modular design, the heuristics can be in-
stantiated and assigned to the strategy’s object prior to the layout generation

Layout setup The subclasses of HierarchyLayoutModule1 are suitable options to
set up the strategy layout.

3.2.2 Orthogonal strategy implementation
The orthogonal strategy implementation involves setting up a planarization layout
and then allows to customize the node embedding strategy.
The details concerning the geometric distribution of the objects in the grid are
established by setting up the parameters of the Orthogonal Layout object. This
object is then assigned as the chosen layout mechanism on the Orthogonal Strategy
object.

1 e.g., OptimalHierarchyLayout or FastHierarchyLayout

31

3. Methods

32

4
Results

For the purposes of evaluating the results, this chapter presents an example of YAGT
on a simple state machine: the PdsClient.

Figure 4.1: PdsClient state machine.

Each one of the following experiments tries different parameters for each given strat-
egy. Notice that the strategies also produce a placing for the edges. Although label-
ing is also a problem contributing to the overall graph usability, this work assigns a
higher priority for the shapes and edges distribution.

4.1 Sugiyama strategy outcomes

OGDF’s Sugiyama strategy implementation has the interesting property of allowing
to set up the node ranking. As it sequentially processes the nodes, it assigns user
predefined layers to them. This property requires further investigation since it is
not clear from OGDF’s documentation if the node sequence is nondeterministic for
sequential executions of the algorithm.
The experiments will show the application of two heuristics for cross minimization
on an unranked input. The layer distance is fixed but slightly modified given because
the lack of edge orthogonality may force a edge segment to be rendered below an
state.

33

4. Results

4.1.1 Experiment 1: Median heuristic
This result avoids the crossings. It is noticeable that the ordering of the nodes does
not respect the intention conveyed in the original drawing.

Figure 4.2: Experiment 1 - Median Heuristic

4.1.2 Experiment 2: Barycenter Heuristic
Again, the result avoids the crossings. The ordering, however, breaks the intended
direction flow.

Figure 4.3: Experiment 2 - Barycenter Heuristic

4.1.3 Experiment 3: Barycenter heuristic plus node ranking
Layer distance has been slightly increased.

Ranking option 1 (fig. 4.4)
The sequential definition of the ranking is [0, 0, 1, 1, 2, 2]. This ranking defines three
layers and two nodes per layer.

34

4. Results

Figure 4.4: Experiment 3 - First ranking

Ranking option 2 (fig. 4.5)
The sequential definition of the ranking is [2, 2, 1, 1, 0, 0]. This ranking defines three
layers and two nodes per layer but gives a different arrangement for each layer.

Figure 4.5: Experiment 3 - Second ranking

Ranking option 3 (fig. 4.6) The sequential definition of the ranking is [1, 2, 1, 2, 1, 2].
This ranking defines two layers and three nodes per layer.

Figure 4.6: Experiment 3 - Third ranking

35

4. Results

Comments The graph usability improves greatly after forcing a ranking order on
the nodes.

4.2 Orthogonal strategy outcome
For the orthogonal layout results the parameters are:

• Maximum bound on admitted bents: 10.
• Margin: 10px.
• The edges are not allowed to scale (change their length.)
• The separation between shapes is set to 50px.

This approach is promising as it respects the directionality of the graph. The lack
of control on node ordering might affect negatively larger graph inputs.

Figure 4.7: Experiment 3 - Orthogonal example

4.3 Failed experiments
The library made acceptable outputs for small input graphs like the one on the
figure 4.1. However, larger state machines made evident unexpected instabilities in
OGDF’s implementation of the strategies.
Mainly, the failed outcomes can be classified as:

1. The algorithm spends ever increasing amounts of memory.
2. The output is worst than the input, or it is completely scrambled.
3. The algorithm does not stop in a reasonable execution time.

The first and third failures are related to unchecked stack overflows. It could be
also the case that the algorithm implementation do not take into account some edge
cases that might be present on the input. It might be also possible that the input,
the GML file, has not been correctly extracted.
An experimental setup must be created to systematically debug the library.

36

5
Discussion

This report covered basic concepts of graph theory, and, upon them, it surveyed
notions of graph aesthetics concerning UML diagrams. The report, following along
the primary goals, showed the driving ideas behind the implementation to address
the intended goal. Finally, this section expects to make obvious remarkable issues,
suggest guidelines and propose possible new relevant tasks.

5.1 Remarks
As an overall observation, the methods are promising. However, designing a new
strategy, or even tuning an existing one, requires careful experimentation. Also,
OGDF is a promising framework, but it is necessary to take into estimation the
time and effort that must be invested to make it production ready or at least to
limit the bound of critical undetected bugs.
Open frameworks ease most of the already mastered knowledge in the graph drawing
field as well as the SVG geometric manipulation. That maturity is an asset whose
utility is more than optimal for solving specific problems like the one addressed in
this work.

5.2 Suggestions
The main suggestion is to replace the Graphviz engine for an in-house solution.
This work shows that OGDF is mature enough to be embedded in the toolchain
provided that its architecture does not generate undesired couplings. Also, being
OGDF an open source library complying with minimum code readability standards,
makes it a good candidate to be further improved.
Another recommendation is to avoid delegating the layout responsibilities too early
in the process of converting the ESC files into SVGs. Instead of using the dot
language to feed Graphviz, the geometric data coming from the primitive (and pre-
computed) SVG shapes in the input can be feed to an OGDF layout engine. After
the engine produces the output, the final step is to merge the geometric data and
the pre-computed information directly on the final SVG output.

5.3 Future work
The possibilities lying ahead will probably relate to the following problems:

37

5. Discussion

Merging the results As mentioned on the suggestions, external geometric layout
providers should be integrated in the solution either by pushing their contents in
the final SVGs or by providing the layouts during the SVG generation process.

Experiment with other strategies Most of the requirements for UML layout
readability are not taken care of by default by the libraries mentioned in the
theory. Therefore, a careful tailoring from the functionalities into the UML
readability guidelines is the best option to improve readability

Edge labeling Edge labeling is a problem as complex as the graph layout problem.
As YAGT shows, the output of a layout engine is suitable to further geometric
enhancements. A proposal for edge labeling is, perhaps, to process the polylines
from the output of YAGT and then decide where the labels should go. A
theoretical pipeline would then add the pre-computed labels into the final SVG
drawing.

Figure 5.1: Complete pipeline

A possible complete pipeline could be implemented following the guidelines of fig-
ure 5.1.

38

5. Discussion

Bibliography
[1] H. Sörensson and V. Mazetti, “Visualisation of state machines using the

Sugiyama framework Master of Science Thesis in Computer Science,” no. June,
2012.

[2] B. B. Bederson and B. Shneiderman, The craft of information visualization:
readings and reflections. Morgan Kaufmann, 2003.

[3] R. Mazza, Introduction to Information Visualization. London: Springer
London, 2009, vol. 1, no. 978-1-84800-218-0. [Online]. Available: http:
//link.springer.com/10.1007/978-1-84800-219-7

[4] I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions on
Visualization and Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000. [Online].
Available: http://ieeexplore.ieee.org/document/841119/

[5] Ericsson, “The Easy StateChart Language,” 2009.

[6] G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified Modeling Language
Reference Manual,” 1999.

[7] H. C. Purchase, Experimental Human-Computer Interaction. Cambridge:
Cambridge University Press, 2012. [Online]. Available: http://ebooks.
cambridge.org/ref/id/CBO9780511844522

[8] K. Wong and D. Sun, “On evaluating the layout of UML diagrams for program
comprehension,” Software Quality Journal, vol. 14, no. 3, pp. 233–259, 2006.

[9] H. Störrle, “On the impact of layout quality to understanding UML diagrams:
size matters,” in International Conference on Model Driven Engineering Lan-
guages and Systems. Springer, 2014, pp. 518–534.

[10] A. Galapov and O. Nikiforova, “UML Diagram Layouting: the State of
the Art,” Scientific Journal of Riga Technical University. Computer Sciences,
vol. 44, no. 1, jan 2011. [Online]. Available: http://www.degruyter.com/view/
j/acss.2011.44.issue--1/v10143-011-0027-0/v10143-011-0027-0.xml

[11] K. Koffka, Principles of Gestalt psychology. Routledge, 2013, vol. 44.

[12] H. Fuhrmann and R. von Hanxleden, On the pragmatics of Model-Based
Design, 1998. [Online]. Available: www.informatik.uni-kiel.de/rtsys/

[13] H. C. Purchase, J.-A. Allder, and D. Carrington, “User Preference
of Graph Layout Aesthetics: A UML Study,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2001, pp. 5–18. [Online]. Available:
http://link.springer.com/10.1007/3-540-44541-2{_}2

[14] G. Di Battista, P. Eades, I. G. Tollis, and R. Tamassia, Graph drawing: algo-
rithms for the visualization of graphs, 1999.

39

http://link.springer.com/10.1007/978-1-84800-219-7
http://link.springer.com/10.1007/978-1-84800-219-7
http://ieeexplore.ieee.org/document/841119/
http://ebooks.cambridge.org/ref/id/CBO9780511844522
http://ebooks.cambridge.org/ref/id/CBO9780511844522
http://www.degruyter.com/view/j/acss.2011.44.issue--1/v10143-011-0027-0/v10143-011-0027-0.xml
http://www.degruyter.com/view/j/acss.2011.44.issue--1/v10143-011-0027-0/v10143-011-0027-0.xml
www.informatik.uni-kiel.de/rtsys/
http://link.springer.com/10.1007/3-540-44541-2{_}2

5. Discussion

[15] H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal of Visual Lan-
guages & Computing, vol. 13, no. 5, pp. 501–516, 2002.

[16] J. L. Gross and J. Yellen, Graph theory and its applications. CRC press, 2005.

[17] H. C. Purchase, “Which aesthetic has the greatest effect on human understand-
ing?” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1353, pp. 248–
261, 1997.

[18] M. Kaufmann and D. Wagner, Drawing graphs: methods and models. Springer,
2003, vol. 2025.

[19] M. Jünger and P. Mutzel, Eds., Graph Drawing Software, ser. Mathematics
and Visualization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-18638-7

[20] D. M. Spönemann, Graph Layout Support for Model-Driven Engineering, 2015.

[21] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for drawing
graphs: an annotated bibliography,” Computational Geometry, vol. 4, no. 5, pp.
235–282, 1994.

[22] K. R. Boff, L. Kaufman, and J. P. Thomas, Handbook of perception and human
performance. Wiley New York, 1986, vol. 2.

[23] H. C. Purchase, “A healthy critical attitude: Revisiting the results of a graph
drawing study,” Journal of Graph Algorithms and Applications, vol. 18, no. 2,
pp. 281–311, 2014. [Online]. Available: http://jgaa.info/getPaper?id=323

[24] W. Huang, M. L. Huang, and C.-C. Lin, “Evaluating overall quality of graph
visualizations based on aesthetics aggregation,” Information Sciences, vol.
330, pp. 444 – 454, 2016, sI Visual Info Communication. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025515003874

[25] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[26] D. Archambault, T. Munzner, and D. Auber, “Topolayout: Multilevel graph
layout by topological features,” IEEE transactions on visualization and com-
puter graphics, vol. 13, no. 2, 2007.

[27] P. Eades, “A Heuristics for Graph Drawing,” Congressus Numerantium,
vol. 42, pp. 146–160, 1984. [Online]. Available: http://ci.nii.ac.jp/naid/
10000075358/en/

[28] T. Dwyer, “Three dimensional UML using force directed layout,” in Proceedings
of the 2001 Asia-Pacific symposium on Information visualisation-Volume 9.
Australian Computer Society, Inc., 2001, pp. 77–85.

[29] R. Tamassia, Handbook of graph drawing and visualization. CRC press, 2013.

40

http://link.springer.com/10.1007/978-3-642-18638-7
http://jgaa.info/getPaper?id=323
http://www.sciencedirect.com/science/article/pii/S0020025515003874
http://ci.nii.ac.jp/naid/10000075358/en/
http://ci.nii.ac.jp/naid/10000075358/en/

5. Discussion

[30] P. Eades and N. C. Wormald, “Edge crossings in drawings of bipartite graphs,”
Algorithmica, vol. 11, no. 4, pp. 379–403, 1994.

[31] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel,
“The Open Graph Drawing Framework (OGDF).” Handbook of Graph Drawing
and Visualization, vol. 2011, pp. 543–569, 2013.

[32] M. Chimani, “OGDF Official Website.” [Online]. Available: http://www.ogdf.
net/

[33] K. Martin, “Tutorial: Coin-or: Software for the or community,” Interfaces,
vol. 40, no. 6, pp. 465–476, 2010.

[34] M. Jünger and S. Thienel, “The abacus system for branch-and-cut-and-price
algorithms in integer programming and combinatorial optimization,” Softw.,
Pract. Exper., vol. 30, no. 11, pp. 1325–1352, 2000.

[35] D. Auber, R. Bourqui, M. Delest, A. Lambert, P. Mary, G. Melançon,
B. Pinaud, B. Renoust, and J. Vallet, “TULIP 4,” LaBRI - Laboratoire
Bordelais de Recherche en Informatique, Research Report, sep 2016. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01359308

[36] M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher, “AGD — A Library
of Algorithms for Graph Drawing,” 2004, pp. 149–172. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-18638-7{_}7

[37] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz— Open Source Graph Drawing Tools,” 2002, pp. 483–484. [Online].
Available: http://link.springer.com/10.1007/3-540-45848-4{_}57

[38] T. Boutell, “GD graphics library,” 2002. [Online]. Available: www.boutell.
com/gd

[39] P. Joye, “gdLibrary Official Website.” [Online]. Available: https://libgd.github.
io/

[40] L. Nachmanson, G. Robertson, and B. Lee, “Layered graph layouts with
a given aspect ratio,” 2011. [Online]. Available: http://www.google.com/
patents/US7932907

[41] A. Roques, “PlantUML.” [Online]. Available: http://plantuml.com

[42] Qt, “Qt - UI design.” [Online]. Available: https://www.qt.io/ui/

[43] A. Port, “svgpathtools - A collection of tools for manipulating and
analyzing SVG Path objects and Bezier curves.” [Online]. Available:
https://github.com/mathandy/svgpathtools/

[44] K. Belevich, “Nodejs-based tool for optimizing SVG vector graphics files.”
[Online]. Available: https://github.com/svg/svgo

[45] N. Foundation, “Node.js.” [Online]. Available: https://nodejs.org/en/

41

http://www.ogdf.net/
http://www.ogdf.net/
https://hal.archives-ouvertes.fr/hal-01359308
http://link.springer.com/10.1007/978-3-642-18638-7{_}7
http://link.springer.com/10.1007/3-540-45848-4{_}57
www.boutell.com/gd
www.boutell.com/gd
https://libgd.github.io/
https://libgd.github.io/
http://www.google.com/patents/US7932907
http://www.google.com/patents/US7932907
http://plantuml.com
https://www.qt.io/ui/
https://github.com/mathandy/svgpathtools/
https://github.com/svg/svgo
https://nodejs.org/en/

5. Discussion

[46] A. Hagberg, “NetworkX: Python software for complex networks.” [Online].
Available: https://networkx.github.io

42

https://networkx.github.io

	List of Figures
	Introduction
	Background
	Large state machines as layout challenges: the Ericsson's experience
	Enhancing UML drawing strategies
	The Easy StateChart Language

	Problem Formulation
	State machines in UML2
	Shapes for state machine diagrams
	Layout quality

	Project's scope
	Report's scope boundaries
	Outline of this work

	Theory
	Definitions and notation
	Graph Theory required notions

	Graph aesthetics
	Aesthetical considerations about UML diagrams rendering
	Graph metrics

	Drawing graphs: the algorithmic perspective
	Layout strategies
	Sugiyama strategy
	Heuristics in cross reduction
	Orthogonal strategy

	Graph Drawing software tools in this project
	Open Graph Drawing Framework
	OGDF's Graph drawing functionality, infrastructure and implementation
	Other graph software libraries and open formats

	SVG object manipulation

	Methods
	Extracting data from the current SVG files
	The Graph Usability Benchmarking Tool
	Extracting meaningful entities from the SVG

	Yet Another Graph Tool
	The pipeline module
	The layout engine module

	Strategy implementation
	Sugiyama strategy implementation
	Orthogonal strategy implementation

	Results
	Sugiyama strategy outcomes
	Experiment 1: Median heuristic
	Experiment 2: Barycenter Heuristic
	Experiment 3: Barycenter heuristic plus node ranking

	Orthogonal strategy outcome
	Failed experiments

	Discussion
	Remarks
	Suggestions
	Future work

	Bibliography

