
Towards the Desired Experience for Cus-
tom Applications in Analytical Software
Supporting application builders who use analytical software to
create custom applications

Master’s thesis in Interaction Design and Technologies

Matilda Sjöblom and Kevin Brunström

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Towards the Desired Experience for Custom
Applications in Analytical Software

Supporting application builders who use analytical software to create
custom applications

Matilda Sjöblom and Kevin Brunström

Department of Computer Science and Engineering
Division of Interaction Design and Technologies

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2021

Towards the Desired Experience for Custom Applications in Analytical
Software

Supporting application builders who use analytical software to create custom appli-
cations

MATILDA SJÖBLOM, KEVIN BRUNSTRÖM

© MATILDA SJÖBLOM 2021.
© KEVIN BRUNSTRÖM 2021.

Supervisor: Staffan Björk, Department of Computer Science and Engineering
Advisor: Maria Redström, The Company
Examiner: Josef Wideström , Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Division of Interaction Design and Technologies
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A print screen from the prototype styled as a puzzle.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Towards the Desired Experience for Custom Applications in Analytical
Software
Supporting application builders who use analytical software to create custom appli-
cations

MATILDA SJÖBLOM, KEVIN BRUNSTRÖM

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Today, virtually all fields of industry and research use data analysis: Formula One
teams, clinical research studies and many more. The ability to create customised
analytical applications is an approach analytical software can employ in an attempt
to met the needs of all these groups. This thesis examined how analytical software
can support analytical application builders. And how the software can help them
accomplish the desired user experience in an application. The research resulted in
twelve formative guidelines and an interactive prototype; demonstrating the concept
of analytical workflows. Theory about end user development influenced the design
process. In total, the process had three iterations. During each, the prototype
was used to evaluate the guidelines and vice versa. User research was mainly done
through interviews, a design workshop and affinity diagrams. The intention with the
guidelines and the prototype is to support future development of analytical software.

Keywords: analytical software, application building, information visualisation, end-
user development

v

Acknowledgements
We would like to thank our supervisor, Staffan Björk, for all guidance and support
throughout this thesis. We would also like to express our appreciation to our Company
mentors Maria and Gustaf.

vii

Contents

List of Figures xiii

Glossary xvii

1 Introduction 1
1.1 Purpose . 2
1.2 Delimitations . 3
1.3 Ethical Issues . 3

2 Background 5
2.1 The Company . 5
2.2 The Product . 5

2.2.1 Developing Custom Applications in The Product 6
2.3 The Product’s Users . 6
2.4 Competitors . 7

2.4.1 Tableau . 7
2.4.2 Qlik . 8
2.4.3 Microstrategy . 8

3 Theory 11
3.1 Wicked Problems . 11
3.2 Information Visualisation and Visual Analytics 12
3.3 User Experience . 13

3.3.1 Developer Experience . 15
3.4 End-User Development . 16

3.4.1 The Gentle Slope of Complexity 17
3.5 Design Systems . 18

3.5.1 Designing a Design System . 19
3.5.2 Existing Design Systems . 19

3.6 Customisable Software . 21
3.7 Information Architecture . 22
3.8 Desktop Applications . 23

4 Methodology 25
4.1 Design Research . 25

ix

Contents

4.1.1 Research Through Design . 26
4.2 Design Frameworks . 26

4.2.1 User-Centred Design and Participatory Design 27
4.3 Design Process . 28

4.3.1 Understand . 29
4.3.2 Define . 30

4.3.2.1 Personas . 30
4.3.3 Sketch . 30

4.3.3.1 Sketching . 31
4.3.4 Decide . 31
4.3.5 Prototype . 32
4.3.6 Validate . 33

4.3.6.1 Walkthroughs . 33
4.3.6.2 Remote Usability Testing 34

4.4 Software Tools . 34

5 Process 37
5.1 Planning and Preparation . 37

5.1.1 Understanding The Product and Its Users 39
5.1.2 Study of Interviews Conducted by The Company 39
5.1.3 Literature Review . 40
5.1.4 Reflections based on the Literature Review 40
5.1.5 Workflows . 41
5.1.6 Guidelines v.0 . 42

5.2 Iteration One: User Research and Exploration 47
5.2.1 User Interviews . 47
5.2.2 Internal Stakeholder Interviews 47
5.2.3 Analysing Both of the Interviews 48
5.2.4 Ideation Workshop . 49
5.2.5 Sketching . 52
5.2.6 Guidelines v.1 . 56

5.3 Iteration Two: Sketching and Prototyping 59
5.3.1 Compiling Identified Issues . 59
5.3.2 Low-Fidelity sketch of Workflow and Components 61
5.3.3 High-Fidelity Prototyping . 65
5.3.4 Design Critique with a Data Scientist 71
5.3.5 Guidelines v. 2 . 71

5.4 Iteration Three: Create a Coherent Concept 74
5.4.1 High-Fidelity Prototype of the Workflow Mode 75
5.4.2 Usability Tests . 82
5.4.3 Takeaways from the Usability Tests 83
5.4.4 Design Critique . 83
5.4.5 Guidelines v. 3 . 84

6 Results 87
6.1 Workflows . 87
6.2 Prototype . 91

x

Contents

6.2.1 Entering Workflow Mode . 91
6.2.2 Constructing a Visualisation Flow 93
6.2.3 Editing an Analysis Flow . 97
6.2.4 Testing and Using a Workflow 98

6.3 Guidelines . 100

7 Discussion 121
7.1 Process . 121
7.2 Result . 122
7.3 Ethical Issues . 124
7.4 Future Work . 124

8 Conclusion 127

Bibliography 129

A Interview Questions I

B Ideation Workshop V

C Guidelines v. 2 VII

D User Test Questions IX

xi

Contents

xii

List of Figures

2.1 Product-user relationship . 6
2.2 The Company and common customers 7
2.3 A printscreen of Tableau Desktop . 8
2.4 A printscreen of Qlik Sense . 9
2.5 A printscreen of MicroStrategy Web 9

3.1 User Experience and related fields. 14
3.2 A concept figure of developer experience 15
3.3 The spectrum of users from a EUD perspective. 17
3.4 How partitioning of software functions can lower the slope inclination. 18
3.5 A compression between a couple of public design systems 21
3.6 An overview of navigation in an application 23

4.1 Sanders map of the relation between different design fields 26
4.2 Google’s triple diamond process, they have named it Design Sprint. . 28
4.3 Design Council’s double diamond process, called Design Sprint. 28

5.1 Gantt charts showing the planned process, each square represents a
week. 38

5.2 A print screen from The Company’s data science product and its canvas. 42
5.3 The first set of guidelines - with its tag system - during development

in Miro . 46
5.4 Affinity mapping from one of the interviews. 48
5.5 The virtual mural board after the workshop was done. 50
5.6 An introductory slide from the ideation workshop. 51
5.7 The first topic of the workshop. 52
5.8 Sketches from different crazy-8 sessions. 54
5.9 Solution sketches for workflows. 55
5.10 The first attempt at a mapping of the identified issues related to

application building in The Product. 60
5.11 A mapping of the identified issues related to application building in

The Product. 60
5.12 The component wireframes made in Balsamiq, starting at the top. . . 62
5.13 An early sketch of the workflow concept. 64
5.14 An early sketch of the workflow concept with an open panel on the

right-side. 65

xiii

List of Figures

5.15 The beginning of the workflow connected to a visualisation. The
workflow menu can be opened by clicking on the “A” at the top right
of the bar chart. 67

5.16 The menu containing workflows that appears after pressing the “A”
in fig 5.15. 67

5.17 The content of the menu in fig 5.16 has changed to the actual workflow
that can be performed on the visualisation. 68

5.18 A workflow that spans over several pages. 69
5.19 An overview of workflows. 70
5.20 When the application builder enters the workflow mode for the first

time. 75
5.21 A visualisation is chosen as a context for the workflow. 76
5.22 The workflow creation view. 76
5.23 A “Heading”-component has been added to the visualisation flow. . . 77
5.24 More components have been added to the visualisation flow. 78
5.25 More components have been added to the visualisation flow and their

structure are reflected in the left panel. 78
5.26 The visualisation flow is set to be, by the panel to the left, inside the

menu at the top right of the visualisation (the light bulb icon). 79
5.27 Setting the placement of visualisation flows 80
5.28 The application builder is hovering over the visualisation that is inside

the analysis flow. This is the same overview as in fig 5.21, but with
an analysis flow added. 81

5.29 The edit mode of the visualisation flow when it is within an analysis
flow. 82

6.1 The ontology of an application and the relations between pages, visu-
alisations, visualisation flows and analysis flows. 88

6.2 An analysis flow for a call centre. 89
6.3 The steps required to continue the analysis flow are completed and

the application user is allowed to proceed. 89
6.4 The menu containing all the visualisation flows is open. 90
6.5 The chosen visualisation flow is “Edit source data” and the user has

selected one point to comment on. 91
6.6 A page in an application. The button at the bottom-left is the button

for the workflow mode. 92
6.7 The workflow creation overview, entered for the first time. 93
6.8 Different contexts are dragged and dropped onto the canvas. 93
6.9 The first view when creating a visualisation flow. 94
6.10 Step one of the workflow is pressed. 94
6.11 A “Heading”-component has been dropped onto the canvas. 95
6.12 The visualisation flow placed inside the visualisation. 96
6.13 Placement of visualisation flows . 96
6.14 The visualisation flow in edit mode when it is a part of an analysis flow. 97

xiv

List of Figures

6.15 The overview of a complete analysis flow. The application builder
hovers over the visualisation flow, which makes the eye and pen icon
appear. 97

6.16 The application builder has entered the preview mode of an analysis
flow. This window reminds the application builder that no changes
will be saved. 98

6.17 The analysis flow in preview mode with both panels open. 99
6.18 The steps required to continue the analysis flow are completed and

the application user is allowed to proceed. 99
6.19 Webaim’s contrast checker - one of many online tool available for

evaluation of text and background colour combinations. 102
6.20 An example from the prototype, demonstrating how the GUI could

contain entry points to contextual help without becoming cluttered. . 103
6.21 An example showing how users could receive information about work-

flows. 104
6.22 Pre-made components that are provided by the software and can be

instantly utilised by an application builder. 105
6.23 Build web applications by pre-made components, this example is from

WebFlow. 105
6.24 A draft of The Product’s slope. It shows that most users stop learning

when they need HTML / CSS to increase their adaptability. 106
6.25 An example showing how Firefox applied Hick’s Law in one of the

browser’s right-click menus. 107
6.26 Scripts created by an application builder are gathered in a side panel. 108
6.27 A screenshot from The Product: HTML editing. 108
6.28 The application builder can decide whether the visualisation flow

should be placed inside the visualisation or hidden in a menu. 110
6.29 A collapsible side panel in an analysis flow. 110
6.30 The application builder is provided with pre-made components in the

side menu. 112
6.31 An example of a WYSIWYG interface in Miro. 112
6.32 A panel for managing components in an application. The components

can be grouped and their hierarchy is reflected in the list by indentations.114
6.33 How different layers can be grouped and collapsed in Adobe Photoshop.114
6.34 Workflows user view with bottom panel 115
6.35 Different examples of collaboration features in Miro 116
6.36 The application user selects a data point and writes metadata back

as a comment on that point to the source database. 118
6.37 The user has selected a data point to comment on in a Tableau Extension.119

B.1 Workshop: first topic . V
B.2 Workshop: second topic . VI
B.3 Workshop: third topic . VI

C.1 The second version of the guidelines in progress. VIII

xv

List of Figures

xvi

Glossary

Analysis A file that is created by The Product. An analysis may consist of one or
more pages. 49

Application An application that is developed and run inside The Product. xvii,
43, 44, 48, 56, 65, 68, 73, 75, 86

BI Business Intelligence. 12

EUD End-User Development. 16, 41, 44, 56, 64

Page A page inside an analysis. A page may consist of zero or more visualisations,
texts, components, images. 39, 43, 52, 65, 68

The Company A Gothenburg based company where this thesis is conducted. 5, 6,
39, 44, 52, 56, 59, 65, 72, 74, 84, 124, VII

The Product The analysis platform developed and owned by The Company. xiii,
xv, 5, 6, 7, 37, 39, 41, 44, 45, 48, 52, 53, 56, 57, 58, 60, 65, 69, 70, 72, 74, 75,
83, 84, 86, 91, 108, 122, 123, 124

Workflow A task in an application, performed by the user. 39, 56

WYSIWYG A What You See Is What You Get interface style. 63, 76, 77, 81, 85

xvii

Glossary

xviii

1
Introduction

In 2017, The Economist stated that data replaced oil as the planet’s most valuable
resource [1]. While oil and data’s inherent properties do not have much in common,
they share the fact that there is value in simply owning and analysing them. Still, the
availability of oil is decreasing, and organisations have more data than ever before.
To find valuable information in these vast quantities of digital information, the usage
of analytical software is a must.

The exponential growth in data analysis [1], particularly in big data analysis, echoes
the consensus about data analysis as valuable activity. In essence, Big Data is
both a research field - and a general concept - about the organisation, handling and
sense-making of the large data sets many organisations accumulate nowadays [2].
A survey by IDG (n=800) showed that 78 % of IT decision-makers, i.e. project
managers and similar, strongly agree that big data analysis will be beneficial for their
organisations [3]. Further, a qualified majority of the respondents believed findings
from data analysis could fundamentally change how their companies operate in the
coming years.

Modern data analytics does not have a single point of origin, it builds upon knowledge
from several domains. The usage of staticstics can be traced all the way back to the
construction of the pyramids [4]. Analytical then continued to evolve throughout
history. A giant leap forward came in the middle of the 20th century with the
advent of computers systems. This innovation prompted pushed the development
development of many modern analytical domains. As computers gradually became
more available, a market for commercial analytical software spawned. Though
developing analytical software is no easy feat. First of all, analytics is by itself a
complex and diverse field [5]. Moreover, the data analysts who use analytical software
are present in all major industry sectors and fields of research. And while there is
universal analytical knowledge, each domain also comes with its niches. Analysts also
have diverse skills and interests, some can have extensive programming knowledge,
while others are novices. Thus, designers of analytical software face a diverse set
of users. At a glance, ’the user’ is someone who wants to modify, understand and
visualise data of any nature, and in any quantity. Catering to such a user might be
a slightly complex design challenge.

1

1. Introduction

One way vendors of analytical software can support the users’ many needs is by
offering software that supports the creation of custom analysis applications. This
approach allows users to create an environment where they can uncover insights from
data analyses and use them when making decisions through the applications GUI.
External systems can also be connected to an application, giving it the possibility
to become a digital hub within an organisation. In a sense, the analytical software
provides a sandbox. A place where the user is responsible for building what she
desires. From the user’s perspective, the vendor becomes someone who primarily
supplies the required building blocks and tools. Other sectors catering to a diverse
crowd also use this approach. Two examples are: the game industry, with game
engines like Unity [6], and web development with applications like Wix [7].

With the shift in construction responsibility, the user experience during application
construction becomes key. Aiming to give application builders the experience they
desire comes with many new challenges. Firstly, as they are not the equivalence of pure
end-users, they might not get as much attention as the pure-end users do. Secondly,
most data analysts are not professional software developers. How can analytical
software help them construct the applications they desire? Besides them, some
analysts use programming and others get help from professional developers. These
two groups also desire a certain user experience while building custom applications.
And who to consider does not end there: an application also has users. Giving them
useful applications is in the interest of platform providers and application developers.

This thesis is carried out in cooperation with a company that provides data analysis
software with the ability to create custom applications. The Company will be
anonymous in this thesis, they will simply be referred to as The Company. Hence,
references regarding them or their product will not be included. The background
chapter provides more information about them and their product. The authors
of this thesis are two students attending the master’s program Interaction Design
and Technologies at Chalmers University of Technology. Both are interested in user
experience and data science, which this thesis combines.

1.1 Purpose
This thesis mainly considers three parties: (The) Product developers, application
builders who work at The Company’s customers, and application users, who also are
known as end-users. Their relationship can be regarded as a hierarchy, where the
work an upper level does affect lower level (s). At the top are Product developers
who develop the software used by Application builders. As a group, the application
builders have a varying professional software-development and user-experience knowl-
edge. Some could be complete novices within both fields. Still, the application’s
users and its stakeholders both value usability. Hence, the goal is to understand
what support each developer group needs to support its target audience. Ideally, the
outcome of this thesis increases the satisfaction for everyone in the hierarchy. In
conclusion, the thesis aims to answer the following research question:

2

1. Introduction

What should be considered when supporting application builders who aim to fulfil
their end-users’ desired experience in analytic software?

To answer this research question, a suggested set of design guidelines will be created.
These guidelines will be based on adequate research in the area, best practices in the
field, and our own experiences when developing a prototype for application builders.

1.2 Delimitations
As mentioned, this thesis focuses on the user experience during application building
in analytical software. The aim is to provide knowledge that can be of use for anyone
who develops analytical software with this feature. Company competitors will be
examined, but The Product will be the only software we use to evaluate our design.
Working with multiple environments is beyond the scope of this thesis.

Security, software integrity, application programming interface (API) design or other
software properties are excluded from the scope of this thesis. Furthermore, issues
may arise when vendors enable custom ad-hoc applications. A possible issue is
compromised security, since the platform owner cannot guarantee the developers’
experience regarding software integrity. Even if ’to feel safe’ is a fundamental human
need, and the lack of it may damage the user experience, security in applications
does not lie within the scope of this thesis.

Developing advanced graphical visualisations may require a significant amount
of hardware resources, and an unresponsive program with a low frame rate may
negatively inflict the user experience. This could be a problem when developing
applications on top of an analytical platform, but managing hardware resources will
not be covered in this thesis.

1.3 Ethical Issues
As mentioned, this thesis and The Company’s platform connect several parties.
The hierarchy and relation between these groups have to be considered to uncover
possible ethical issues. To start with, application builders at customer companies
can become information gatekeepers, like newspaper editors. Both parties in a
sense have a medium and a ’story’ to tell, and it is always possible to tell a story
in a thousand different ways. Furthermore, seemingly trivial design decisions by
application builders, such as colour and placement of elements, could have a profound
effect on what conclusions application users draw.

In close relationship with application design is data visualisation. The choice of
visualisation can affect application users due to how they decode the visual structure.
Even the tweaking of individual diagrams components, such as axis values, can
affect.

3

1. Introduction

4

2
Background

This chapter introduces related work. It also contains an overview of the company
where this thesis will be carried out, and the product of this company. The Company
has requested to be anonymous, and are referred to as The Company. Their product
is referred to as The Product. Due to the anonymity, no reference regarding The
Company will be included. Competing companies whose software is useful for this
thesis will also be presented.

2.1 The Company
The Company where this thesis will be conducted is a software company founded
in 1997. They offers a range of specialised software products data analysis and its
related fields. They have offices in North America, Europe, Asia, Africa and South
America, and have approximately 4,200 employees. This thesis is done with support
from their office in Gothenburg.

2.2 The Product
In the mid-1990s, The Company launched The Product, and it has been available on
the market since then. It is one of the products offered by The Company for data
analysis. There are primarily two types of customers who use the product, those who
use it only within the organisation, and those who use it for business with external
customers (but they could also use it internally for other tasks). Some use it for both
purposes. In essence, The Product is used for data analytics, and it has also built-in
support for data visualisations. The last major update of The Product was in 2018,
and included natural language query-based searches, AI-driven recommendations,
and model-based processing. Another key feature is The Product’s extensive support
for the creation of custom applications. Users of the software are present in many
data-processing fields of work and research: medicine, trade and transport are some
examples of these sectors. In addition, even customers in the same sector use it
differently due to the often complex use cases.

5

2. Background

Figure 2.1: A simplified visualisation of the relationship applications have with
The Product.

2.2.1 Developing Custom Applications in The Product
The Company’s product is, as mentioned, designed to support extensive customisa-
tion by users. One way The Product supports customisation is by offering built-in
functionality for creating custom applications. Developers can build custom ap-
plications for niched requirements. These applications exist within The Product
environment (2.1), it is still possible to connect them with external systems. An
application could also be integrated within a separate system. For example, an
application can be embedded in a web page. The Product would then power the
application ‘under the hood’, even though it appears powered by the web page.

Another way of customising The Product is to utilise the ‘’Visualization Mods”
framework. Visualization mods enable users of The Product to create their own
visualisation using web technologies like JavaScript or TypeScript. The newly created
visualisation behaves like a built-in visualisation of The Product, as it functions
within it and is powered by its framework. These visualisation mods can later be
shared and distributed via cloud-driven channels provided by The Company.

2.3 The Product’s Users
Knowing who the user is and what she needs can be a challenge for any organisation,
and it is particularly challenging for The Company. They often have many indirect
customers. It could be people who come into contact with the software, as colleagues
use it or similar. Users at each layer are also likely to have different unique needs.
Figure 2.2 shows the most common user groups and their relationship with The
Product, according to The Company. This representation also excludes many
relationships with The Product, e.g. The Company’s employees who use The
Product when they help customers, or the external auditors who inspect some

6

2. Background

customer applications. An individual could also be both a user and a builder, like a
smartphone application developer who builds an application for personal usage.

Figure 2.2: An overview of common user groups and their relationship with The
Product.

In relationship A a partner company uses The Product to sell their customers a
custom application. Usually the customer is an organisation that eventually has an
intended group of users.

In relationship B a customer uses The Product to build custom applications. The
customer could be a single individual or an organisation that plans to let multiple
employees use it.

The relationship in focus of this thesis is relationship B.

2.4 Competitors
Numerous companies compete with The Company, below are those who offer their
users some kind of extension development. Besides this selection, other competitors
include: Birst [8] and Microsoft BI [9].

2.4.1 Tableau
Tableau is a software company which develops products that support data analytics
and visualisations [10]. Tableau offers a service they call Developer Tools which,
among other several capabilities, enables the user to extend the existing platform
by adding third-party functionalities [11]. This is available via the “Extensions
API”, which makes it possible for the user to, for example, modify the source data

7

2. Background

directly in a visualisation. The dashboard extensions are web applications that have
two-way communication with the Tableau software [12]. To give users who create
extensions with a pleasant user experience, Tableau provides design guidelines [13].
They are also offering samples of extensions and ”Tableau UI”, which is pre-made
React components that have implemented the look and feel of Tableau [14]. React
components can be described as independent, reusable pieces of code [15]. An
overview of Tableau Desktop can be seen in fig 2.3

Figure 2.3: A printscreen of Tableau Desktop [10].

2.4.2 Qlik
A software company that provides different data analytics tools for business in-
telligence [16]. In their analytics platform Qlik Sense, the users can extend their
dashboard applications via “Embedded analytics”, whose key concept is to access
data from daily workflows without any disruptions. This is possible by providing an
application programming interface, API, for their users [17]. An overview of Qlik
Sense can be seen in fig 2.4.

2.4.3 Microstrategy
Business intelligence software suitable for both mobile and desktop platforms, is what
MicroStragies provides its customers [18]. They allow customisation and extensions
of their software through several different software development kits, SDKs, and
REST APIs [19]. A printscreen of MicroStrategy’s software MicroStrategy Web can
be seen in fig 2.5.

8

2. Background

Figure 2.4: A printscreen of Qlik Sense [16].

Figure 2.5: A printscreen of MicroStrategy Web [20].

9

2. Background

10

3
Theory

This chapter covers theory about wicked problems, user experience, developer experi-
ence, end-user development, design systems, customizable software, and information
architecture. Also included is an overview of data analytics and information visuali-
sation, since The Product relates closely to those two fields.

3.1 Wicked Problems
Design is an ever expanding field, and it overlaps with several other domains.
Design problems can be often unique and complex. The proposed solutions to such
problems often combine expert knowledge from several fields. The multidisciplinary
entanglement has led to difficulties in communication between designers and domain
experts [21]. Designers are specialists in the area of design, whereas the scientists
are experts in their domains and each domain has its separate vocabulary.

These tangled problems are commonly called Wicked problems, and they are de-
scribed as “that class of social system problems which are ill-formulated, where the
information is confusing, where there are many clients and decision makers with
conflicting values, and where the ramifications in the whole system are thoroughly
confusing” [22]. As Buchanan states, this description of wicked problems points out
the relationship between determinacy and indeterminacy in design problems.

A linear model of problem solving, where the problem is first defined and then solved,
can be proposed. This model implies that the problem, the design problem in this
case, can be divided into phases. These problems are called determined problems.
Another approach to solving design problems views all of them, except the most
trivial ones, as wicked problems. This indicates that the problem has an underlying
indeterminacy, which implies that “there are no definitive conditions or limits to
design problems” [21].

11

3. Theory

3.2 Information Visualisation and Visual Analyt-
ics

The word visualisation has several definitions, and this thesis uses the following
definition: “a graphical representation of data or concepts” [23]. As scientific
field visualisation can be divided into two categories, scientific visualisations and
information visualisations [5]. Scientific visualisations are “visual displays and
realistic renderings of spatial data associated with scientific processes”. In other
words, they are graphical representations of numerical data. The other group is
information visualisations; visual representations of abstract, non-spatial data. This
type of data does not define the relationship an entity has with a space, e.g. its
position or shape. However, a spatial data entity, like a 2D-coordinate, acknowledges
where it belongs within a coordinate system. Still, both groups have a common goal.
They communicate meaning through a graphical interpretation of the underlying
data [5].

Data analysis can be considered an activity, and when you look at the field from that
perspective, it is about data modelling and exploration. The result from data analysis
- new information - can be used in related decision-making processes. Furthermore,
the two main sub-fields of data analysis are confirmatory data analysis (CDA) and
exploratory data analysis (EDA) [5]. In CDA, analysts use statistical processes to
evaluate hypotheses on existing data through a statistical hypothesis test. Generally,
this field favours more traditional statistical tools as confidence and inference. In
contrast, EDA is used when no hypothesis exists, to discover unknown patterns, and
features in a data-set. This area is mostly taking advantage of visual methods to sum
characteristics in data, and is also much more intractable than CDA [5]. Regarding
their history, EDA is a newer field than CDA, and EDA also emerged from it. Before
EDA was recognised in the world of statistics “data analysis techniques including
statistics and data mining developed independently of visualisation and interaction
techniques” [5].

The combination of CDA and EDA form the multidisciplinary research visual analytics.
When researchers work with complex data sets, visual analytics offers knowledge about
how visualisations and interactions can help humans understand data. Ultimately, it
supports the researcher’s knowledge discovery and nurtures the possibility of data
giving valuable insights [5]. In summary, visual analytics combines data analysis
(visualisations) and interaction techniques. This combination together with a domain
expert - who is creative - can promote a well-informed decision-making process.

Closely related to visual analysis is the area of Business Intelligence (BI). Business
intelligence aims to support business decision through data, facts and statistics it
harbours. Business intelligence is defined by Negash and Gray [24] as a system that
combines:

• Data gathering

12

3. Theory

• Data storage

• Knowledge management

Gray also explains that the areas listed above are combined with analysis to evaluate
complex corporate and competitive information. In the end, planners use the
aggregated information as a means which support them and contribute towards the
completion of their goals [24]. One could say that business intelligence is utilising
visual analysis to accomplish its goals of aiding the decision process.

3.3 User Experience
In the white paper published after the Dagstuhl Seminar on Demarcating User
Experience [25], the editors describe the outcome from a collected effort to define
User Experience (UX). A glance at the attendance list reflects the degree of difficulty
in this task. About 30 academic and industry experts from several continents
were summoned. In the end, the gathering did not produce a universally accepted
definition, but the paper still contains a concise description. This thesis will use it
as the primary definition of User Experience:

“The field of UX deals with studying, designing for and evaluating the
experiences that people have through the use of (or encounter with) a
system.” [25]

Meanwhile, there exist an abundance of other definitions offered by organisations,
researchers and industry experts [26]. Below are some additional ones:

UX is a momentary, primarily evaluative feeling (good-bad) while inter-
acting with a product or service.

– Hassenzahl (2008)

The value derived from interaction(s) [or anticipated interaction(s)] with
a product or service and the supporting cast in the context of use (e.g.,
time, location, and user disposition).

– Sward & MacArthur (2007)

All aspects of the end-user’s interaction with the company, its services,
and its products. The first requirement for an exemplary user experience
is to meet the exact needs of the customer, without fuss or bother. Next
comes simplicity and elegance that produce products that are a joy to
own, a joy to use. True user experience goes far beyond giving customers
what they say they want, or providing checklist features. In order to
achieve high-quality user experience in a company’s offerings there must
be a seamless merging of the services of multiple disciplines, including

13

3. Theory

engineering, marketing, graphical and industrial design, and interface
design.

– Nielsen-Norman Group

Dagstuhl concluded that the multidisciplinary usage of UX has spawned many
viewpoints which all view UX differently from one another. Besides the wide-spread
usage, UX knowledge often relates and overlaps, with other disciplines. In figure
3.1 Dan Saffer offers a visual representation of UX and it’s ‘relatives’ [27]. Cooper
expresses some criticism towards this “umbrella” state, as he frames it [Cooper, xxii].
In summary, he believes that the field of Interaction Design better captures the
challenges of designing specific software behaviour. The effort to combine the design
considerations for a physical vending machine, and a day-trading program, might
fail to capture some unique aspects of each venture harbours, according to Cooper.

Figure 3.1: User Experience and related fields.

To create order, Dagstuhl lists three ways to relate to UX [25]. It can be viewed
as a phenomenon, field of study or practice. The last perspective puts the user in
the centre of a design and emphasises the need to consider user experience factors.
Evaluation criteria, stakeholder valuation, representation of UX ideas are some of the
many factors a designer might need to consider with-in a project, and in connection
to it. As with multi-factor problems in general, a solution for one factor might
negatively impact another. The situation is truly a ball of yarn that constantly seeks
to entangle itself. To untangle it designers have to use their expertise and tools to
identify the key criteria that - during that moment - contribute the most towards a
successful (UX) design.

14

3. Theory

3.3.1 Developer Experience
Developer experience, DX, is highly influenced by the concepts of UX. According
to Münch and Fagerholm, DX differs from UX in a way that it “abstracts from
the broad properties of human characteristics without ignoring either” [28]. DX
attempts to satisfy the needs of users that also act as developers. An important
notice is that UX considers the context of use, while DX, however, considers the
context of development. In this context, developers are considered people engaged in
the activity of developing software [28].

The concept of the mind is often divided into three parts by psychologists; cognition,
affect and conation. DX covers the affective factors of experiences, which are shown
to be important, as the emotions of developers influence their programming tasks
[29]. Moreover, the conative and cognitive elements of the mind are also covered.
The cognitive part covers use of skill and certain techniques in the development
process, while the conative part considers the intrinsic feeling about the task itself
[28]. These three elements, combined with the social and technical environment,
forms the framework of DX. This framework can be seen in fig 3.2.

Figure 3.2: A concept figure of developer experience [29].

In Kuusinen’s paper, she finds that DX regarding graphical user interface (GUI)
development is highly influenced by the developer’s intrinsic motivation and feeling
of experienced flow [29]. Flow has been described by Csikszentmihalyi as a state
where a person is completely absorbed and focused on its current task, a feeling
of being unimpeded [30]. To reach a state of flow, it is important to understand
intrinsic and extrinsic motivations. Extrinsic motivation is derived from external
rewards that are the result of accomplishing the task. If this reward is removed,
the task is likely to stop being executed. In contrast, intrinsic motivation is derived
from the inherent satisfaction of performing the task, to just do the task for its own
sake. The flow state is possible to reach if the task is performed with, at least partly,
intrinsic motivations. With that said, a task can be performed with both extrinsic
and intrinsic motivations simultaneously [30].

15

3. Theory

To reach the flow state, Mihaly Csikszentmihalyi means that the task must fulfil
these three conditions [31]:

• The goals have to be clearly stated. If the goals are clear, the person performing
the task can reach a structured consciousness and focus the psychic energy.

• There must be a balance of difficulty. The person has to feel capable of
accomplish what is in front of them without it being too easy.

• Immediate feedback or response must be present. This could be intrinsic
rewards as well as external feedback.

Kuusinen points out that the most commonly stated motivation of developers is
“The work itself”, a seemingly extrinsic motivator. What is inadequately documented
though, is what aspects of the work that are motivational. It can therefore not be
completely discarded that there is something about the work that is intrinsically
motivated. At last, she suggests for improving DX, the focus should lie on getting
the developers interest, offering rewards throughout the process of creating GUIs
and to get a balance in the perceived challenge [29].

3.4 End-User Development
End-user development (EUD) has a working definition as "a set of methods, tech-
niques, and tools that allow users of software systems, who are acting as non-
professional software developers, at some point to create, modify, or extend a
software artefact" [32]. In this field, as the definition states, the "users of software
systems" are assumed to have limited or no experience as software developers.

The idea behind EUD is that end-users know their domain best. This domain
knowledge may be too difficult to acquire or to understand enough for a software
developer to meet the requirements of the desired product. In the end, the final
product may be either too general to fit the needs of all users, or too narrow to fit the
needs of most users. Therefore, enabling users to extend their product themselves
can be beneficial for everyone. Use of this can be seen in e-mail inboxes with filtering
features, ad-blocks in web browsers and setting up spreadsheet calculations. It is
also widely used in game development environments, with the emergence of game
engines [33]. The spectrum of computer users in the context of EUD is broad. This is
visualised in fig 3.3, to the right there are the users that use computers for developing
software, and to the left the ones who are only using computers for running existing
software.

16

3. Theory

Figure 3.3: The spectrum of users from a EUD perspective. The line between
“pure end-users” and users who develop own software has become blurred, which this
figure illustrates. [34]

Designing and creating software is a complex task. In EUD, the required knowledge
tend to be distributed among several specialised individuals in a team [34]. Some
individuals may be more capable and interested in creating software, while others
are more specialised in the domain. Hence, studies show that EUD as an activity is
facilitated by allowing users to work together as a group.

Besides working together, EUD tools have to balance the appeared difficulty for
novice users while still accommodating the more experienced ones [33]. Novice users
have to be instantly gratified when completing a task, while experienced users can
create the level of sophistication and completeness they require. A more elaborate
description of this balance can be found in 3.4.1.

3.4.1 The Gentle Slope of Complexity
Any mechanism in a software system has an inherent degree of complexity that users
must understand before they can use it. The gentle slope of complexity is a theory
about how a system’s total complexity can be distributed efficiently into different
mechanisms or tools [35]. The definition of a tool depends on the nature of the
system: it could be paintbrush in a drawing program or the possibility to attach
custom scripts to components in a graphical user interface (GUI). The goal with
the distribution is to have a system with tools that together strengthen each other’s
degree of adaptability by forming a ‘gentle slope’ as seen in figure 3.4.

Ludwig et al. wrote that when novice application builders create applications for
the first time they “begin to climb the tailorability mountain” [36]. As seen in
figure 3.4 the ability to tailor increases as builders climb higher and learn new tools.
Meanwhile, it is possible that some builders have existing knowledge and therefore
climb the first bit quickly - though it cannot be assumed. When the threshold is
to step, builders could stop learning. As the left diagram in figure 3.4 shows, the
threshold between drag-and-drop tools to scripting might introduce too much for
some users to overcome.

17

3. Theory

Figure 3.4: How partitioning of software functions can lower the slope inclination.

The transition can be eased by dividing complex functionality into tools. The right
diagram in figure 3.4 shows a simplified example of how more tools can lower the
steepness. Learning becomes even easier if knowledge from a previous tool can be
used to understand the next one.

Any mechanism in a software system has an inherent degree of complexity that
users must understand before they can use it. The gentle slope of complexity is
a theory about how a system’s total complexity can be distributed efficiently into
different mechanisms or tools. The purpose with the distribution is to offer users
understanding The definition of a tool depends on the nature of the system: it could
be paintbrush in a drawing program or the possibility to attach custom scripts to
components in a GUI.

3.5 Design Systems
New software development processes, primarily component-based architecture and
agile development, have amplified the need for design systems [37] . Khalmatova
defines them in the following way:

”...a set of interconnected patterns and shared practices coherently organ-
ised to serve the purpose of a digital product.” [38]

Vesselov and Davis have a similar definition, and they emphasise the “shared practices”
and “principles” that the system builds upon [37]. Regardless of variations in how it
is defined, design systems strive to bring order and consistency to software design.

18

3. Theory

Having “one source” for design information also benefits others than designers.
Software developers, marketers, product owners and more all benefit from using a
single source of truth, as Kholmatova frames it [38]. Having to constantly recreate
material for others is time-consuming for designers and developers parties. From
a designer’s perspective, it functions as a FAQ (frequently asked questions). In
summary, the system contributes towards a better experience for the most important
group - users. When a design system is woven into a program on all levels, users
experience increased efficiency. Besides swiftness, users can also think of the software
as harmonious and meaningful to use [38].

3.5.1 Designing a Design System
Another question is how a design system should be organised, and what should it
should contain. This question does not have a single answer in the form of a checkbox
list. The orchestration depends on who the intended users are, and the intended use
is. Vesselov and Davis, each suggest a high-level categories for content structure.
Kholmatova refrains from offering a similar suggestion. According to her, designers
should instead consider three system characteristics, by considering where the system
will position itself on the spectrum of each trait.

Kholmatova

Rules

Strict ———– Lose

Parts

Modular ———– Integrated

Organisation

Centralised ———– Distributed

Vesslov and Davis

Layout, Styles, Components, Region, Content and Usability

Vesselov and Davis write the categories are connected, and they should be used
together. For example, All groups should consider Usability, and Components need
to follow the guidelines Layout and Style stipulate.

3.5.2 Existing Design Systems
To understand how this translates into industry practice, the principles can be
viewed in comparison with existing guidelines offered by software companies. Adobe
and Microsoft are two prominent actors in the software industry, and each have

19

3. Theory

publicly available a design system. Figure 3.5 provides an overview of content in
some additional design systems, many more exist [39]. These corporations have the
financial, intellectual and manpower needed for developing comprehensive guidelines.
Their level of resources means that they are able to contribute with new design
innovations that relate to Design Systems. New design patterns or recommendations
for system language are some examples of new design content In summary, the
development of design systems is thus shaped by both academia and industry.

Adobe Spectrum In 2018 Adobe launched their design system Spectrum [40], it is
published as a website [41]. It has the following sections:

• Spectrum (entry page) Core principles and new content

• Foundation An extensive list that explains a range of principles and design
elements. Color, typography, International design, to mention a few.

• Content Language recommendations

• Components Graphical elements and how they collaborate. Button design,
systems status etc.

• Patterns Descriptions of Adobe’s fundamental graphical components: cards,
tables and headers, and their respective sub-components.

• Tools and resources Fonts and other premade design material.

Microsoft’s Fluid Design Microsoft’s Design System is called Fluid Design [42].
To cater for different software-related roles, Microsoft offers information about the
system in many formats. The design system is presented as a resource for the
construction of Microsoft applications. In contrast to Adobe, Microsoft also includes
technical information with each design element. Readers are given code-snippets and
brief technical information that helps them translate the principles into functional
software. The main sections are:

What’s new, Get started, Design and UI, Overview, Design basics,
Layout, Style, Motion, Shell, Input and interactions, Devices, Usability

20

3. Theory

Figure 3.5: A compression between a couple of public design systems [37].

3.6 Customisable Software
For many years, the trend has been that companies require increasingly niched
software for their business [43] [44]. One way software providers attempt to meet the
demand, while maintaining a manageable business model, is by offering increasingly
customisable software. To offer each customer a unique product, is no longer a
feasible business model for many providers [43]. Still, as a term customisable
software encompasses a spectrum of different solutions, which part of the spectrum
usage refers to depends on context [43]. Also, a concept that sounds similar is

21

3. Theory

custom software, and it often refers to when the vendors create bespoke software for
a customer [43]. There is also a distinction between configuration and customisation,
the former is when a user adjusts only a pre-existing program functionality, offered
by the software as is [44]. It should also be noted: customisation is not about
offering users the option to tweak and define every possible aspect of a program.
This approach will likely fail [45]. When software users are given too much freedom
they easily become disoriented and overwhelmed, integrating beneficial customisation
capabilities requires extensive work [45]. How customisation and application building
is supported in The Product is described in section 2.2.1.

3.7 Information Architecture
Information architecture (IA) is described by Rosenfeld et al. as a way of “making
information findable and understandable”. Moreover, they claim that there are many
ways of attempting to define it, but that the following bullet points summarise the
core of the topic [46]:

1. The structural design of shared information environments

2. The synthesis of organization, labelling, search, and navigation systems within
digital, physical, and cross-channel ecosystems

3. The art and science of shaping information products and experiences to support
usability, findability, and understanding

4. An emerging discipline and community of practice focused on bringing principles
of design and architecture to the digital landscape

IA is concerned with the structure and relationship between software non-data objects
[46]. Information granularity is one example of a factor it examines, i.e. what are the
smallest possible ‘atoms’ in a system? Socks and jackets could be the smallest atom
for an online fashion retailer. The items in the system have to be findable, and to
understand what is findable, the information-seeking behaviour of the system’s users
must be discovered. Visitors to the fashion site would probably find “blue socks”
or “blue socks for children” a more useful atom. In summary, IA covers everything
from deciding what the information consists of to studying the behaviour of the
information seekers.

Getting lost in an application can be both scary and frustrating for the users. In
an attempt to solve this, the users are provided with a navigation system [46]. The
basic parts of a navigation system are local, contextual, and global navigation. While
global and local navigation is about learning the users where they are and how they
can navigate, contextual navigation is about conveying how the current objects on
the screen are related . Moreover, a digital system does not naturally provide the
user with clues about where they are. In the real world, directions like north and
south always exist, but in a digital system, the creators have to mediate contextual

22

3. Theory

clues to the user by themselves. An overview of the navigational cornerstones can be
seen in fig 3.6.

Figure 3.6: An overview of the global, local and contextual navigational in an
application [47].

3.8 Desktop Applications
According to Cooper et al., all products have a posture: how the product represents
itself for its users. When compared to humans, a generalised posture of a guard may
be stiff and stern, while for a child carer it would be warm and loving. Desktop
applications have three types of postures: sovereign, transient and daemonic.

Applications that do not occupy most of the user’s workflow is a transient application
[48]. This type of application ’comes and goes’ and is usually specified on one certain
task. An example of such an application is widgets in mobile phones. Daemonic
applications are even more silent than the transient ones. They act in the background,
and they do not need any human interventions. One example is printer drivers.

Sovereign applications, however, are applications that users spend a lot of continuous
time in [48]. They are the main point of a user’s daily workflow. As the users
spend several hours in these applications, they tend to evolve from a novice user
to an intermediate one quick. Compared to the total time the user spends in the
application, the novice time is brief. Therefore, the target of such applications should
be intermediate users.

A consideration when developing sovereign applications is the screen real estate. As
these types of applications have their users’ full attention, they are mostly used full
screen [48]. Hence, making the amount of available screen real estate large. That
allows providing rich visual feedback and lots of tools. Do not clutter the screen
though, as the users stay in the application for lengthy periods, the application
should have a conservative interface with subdued colours.

23

3. Theory

24

4
Methodology

In this chapter, the field of design research along with design processes is presented.
This thesis is implementing an iterative design process, hence methods suitable for
each step of the iterations are also described.

4.1 Design Research
Gustav Frayling wrote that research might be the most important nourishment for
design. The remark came from his paper Research in Art and Design, where Frayling
reasoned about how design research, as an activity, had evolved [49]. There is Picasso
who describes himself studying photos, books and more before painting. On the
other end we have a strict scientist who uses scientific methodology to improve a
design process. Both are concerned with design, and use research to improve it.
And while there are similarities in their approach, few would likely argue that they
are totally equal. To create a distinction, while remembering that there is common
ground, Frayling introduced three new kinds of design research: research into, for,
and through design [49]. According to Frayling each branch is about the following:

Research into design

When we study design itself, it’s history and the different theoretical
perspectives associated with design.

Research for design

When we do research to inform a design.

Research through design

When we use design as a means to do research.

Introducing these new sub-domains helps us to evolve our understanding of design
research. And in the end, we humans want to systematise our surroundings.

25

4. Methodology

4.1.1 Research Through Design
Although it has been almost three decades since Freyling presented research through
design (RtD) [49], there is still no exact definition of what it is. Today, the common
understanding is that research through design refers to when design activities are used
to create new scientific knowledge [26]. Moreover, although not a requirement, this
research often includes prototypes. In a scientific context, RtD usually aims to apply
design in such a way that any new knowledge also becomes sharable. Being sharable
means that the knowledge is generalised enough to potentially be of value to other
research. John Zimmerman is generally acknowledged for bringing RtD thinking
to Human-Computer Interaction (HCI). Integrating an RtD into a traditional HCI
process is by John considered an act with only benefits for everyone involved [50].
This thinking could enable teams to tackle wicked problems. A set of problems
which traditional scientific or engineering methods cannot solve to a satisfactory
degree - the problems are seldom possible to completely solve. It also strengthens
designers’ role in product development, since it brings out what designers do best -
they reframe problems. Finally, the likelihood that design knowledge can successfully
spread increases. The chance of spread is likely when prototypes, or design artefacts,
are created, since they, as Zimmerman explains it, are the “currency” of design
communication [50]. In other words, design artefacts allow designers to embody their
ideas. When an idea can be represented by an artefact, it becomes easier for the
designer, and his or her peers, to evaluate and refine the artefact, and the idea itself.

4.2 Design Frameworks

Figure 4.1: Sanders map of the relation between different design fields [51].

In 2008, as an attempt to understand the lay of the ‘design land’, Sanders published
the Design Research map, shown in figure 4.1 [52]. The map was an attempt by

26

4. Methodology

her to understand how different approaches to design relate. The placement of each
approach (bubble) depends on its relationship to the two axes. The horizontal axis
represents mindset, and the vertical approach. According to Sanders, the two biggest
groups with opposing views are expert mindset (left side) and participant mindset
(right side). To the left, designers act in a culture where they view themselves as
the experts who help users, they design for users. Participatory design, however,
views users as equal partners, designers in this culture design with users. To clarify,
the opposing views do not relate to organisational or work-life relationships between
designers and users. Both sides do expect designers and users to treat each other
with professional respect.

4.2.1 User-Centred Design and Participatory Design
Today, the design framework User-centred design (UCD) is characterised by its view
of the user as the central subject, or participant, in connection to the development of
a design [53]. Commenting on the beginning of philosophy, during the 1970s, Sanders
wrote that designers were then considered experts who helped the users (subjects)
[51]. Observation of the passive user was considered the best way for designers to
gain information that could be valuable for the design process. Throughout the years,
UCD evolved, and it came to value increased user inclusion during design processes,
while simultaneously softening the belief that only designers have enough authority
to actively shape a design. Still, far from everyone in the design community believed
that the teachings of UCD embrace an optimal relationship between the design
process, designers and users. For example, Participatory Design (PD) grew from the
increasing wish, among some designers, to include users as active participants or co-
creators during a design process. Followers of PD did not want to exclude users in the
same way they believed UCD did. The main worry was that insufficient involvement
could stop designers from fully understanding the users’ needs. Ultimately and
unknowingly leaving users with poorly informed designs [51].

Meanwhile, Professor Don Norman, who is credited with popularising UCD, has
argued that being “a fly on the wall” during users’ interaction with a system - can
have tremendous value for designers [54]. The value in observation comes from the
difficulty recalling past events, for users and humans in general. It is even more
challenging for designers when users offer misleading information about the issues
during an experience. For example, is it hard for a user to work with data, or does
the import menu fail to support a correct import? It is not a guarantee that a user
would notice this cause and effect, but an observant designer might catch it.

In the end, it is hard to tell exactly where the border between user-centred and
participatory design lays - there is no strict line drawn in the sand. Despite the fussy
borders, there still exists a distinction between the two. Nowadays there is also much
prestige in being an organisation, or designer who works closely with its users. The
general desire to have high user involvement might lead designers to overestimate
the amount of knowledge they have. Finally, this error could lead to inferior designs
and possibly hinder designers from reflecting clearly about how future processes can

27

4. Methodology

improve.

4.3 Design Process
A design process is the journey from start to finish for a particular design. Chris
Jones said it consists of every action a designer takes during that time [55]. By
this, he did not mean going for coffee or sharpening a pencil, rather the methods
used, still being energised and having the correct tools, can of course be wise. In
his book Design Methods, Jones discussed what designers should consider when
they construct or choose their design process. In essence, designers should reflect on
what, when and how methods are used. Continuous reflection and changing methods
during the process is a positive sign. If the design process does not change during
the process, designers could have stopped taking into account new information that
emerges during the process. Unforeseeable insights arising during a project are also
why designers should refrain from working towards an initially fixed goal. In the
beginning of a process, the goal state is merely designers and stakeholders hypotheses,
and could be proven false.

Figure 4.2: Google’s triple diamond process, they have named it Design Sprint.

Figure 4.3: Design Council’s double diamond process, called Design Sprint.

28

4. Methodology

Today there exist a myriad of different design processes, and virtually all are iterative.
A popular set are the diamond-processes, see figure 4.2 [56] for Google’s version of
it - a triple diamond. In general, scanning one of the shapes from left-to-right, the
first half represents an exploratory phase, and the last half represents narrowing and
decision-making. In its entirety, each diamond represents a phase and together they
form the process. Google’s UX team offer their process as a template for designers
to customise according to their needs and timeframe [56]. The Design Council chain
together two diamonds and suggest a double diamond process, see figure 4.3. The
blue arrows in the figure also represent that a (digital) design “is never finished”,
i.e. many products or services require continuous improvement. Moreover, the
arrows also echo Jones’ view of the process and its ability to find information that
fundamentally changes the goal and sends designers back to the drawing board.

In summary, when designers start constructing their process, they should consider
the possible solutions, but there are other important factors to consider. One of them
is change, with regard to the temporal dimension and new requests from stakeholders.
Also, Jones emphasises that having a well-planned process demystifies the work of
designers, and allows for better communication between designers and non-designers.
A robust process can also act as a counterweight towards all the uncertainty that
comes with design work. Since design work entails uncertainty, a clear process can
act as a confidence booster.

The following sections describe one possible composition of phases and methods
for a triple-diamond process. The usage of six phases is with inspiration from the
previously mentioned Design Sprint by Google [56]. Although not explicitly shown
in the sections structure below, we would like to stress that many methods are
applicable during several phases. For example, Harrington and Martin suggest -
when writing about their five phase process - that interviews give value during phase
2, 3 and 4. To provide a clear structure below each method described is under a
phase were it commonly occurs.

4.3.1 Understand
As indicated by the shape of the diamond - expanding from the left towards the
mid-line - this initial phase is categorised as being expansive or divergent [57]. Google
wrote that the goal of the exploration should be to establish a common foundation of
knowledge among process participants [57]. Knowledge acquisition is also intertwined
with iterating the problem definition. In other words, besides giving designers
contextual knowledge, this phase also informs designers, and help them to refine, or
re-frame, their perspective on the design problem [55].

Methods used during this phase should help the designer gather relevant information.
User Interviews, User Journey Mapping, Affinity Clustering are some ex-
amples of divergent methods designers could use [57]. Hanington and Martin call
their equivalent of this phase ”Planning, Scoping and Definition” [58]. Sometimes a
design is iterated several times, then it could be that this phase is disregarded or

29

4. Methodology

given less time. Though, during a later phase, the perception of valuable information
’around the corner’ may also motivate a return to this phase for more extensive
probing.

4.3.2 Define
The define phase of the triple diamond design process is when the information
gathered in the understand phase is summarised and analysed. Here, the problem’s
context is defined and the desired outcomes of potential solutions are set [59]. Several
design processes include a define phase, such as in the earlier mentioned double
diamond process [60], as well as in the “Design Process” [61]. In both of these, this
phase serves the same purpose as in the triple diamond process.

One applicable method in this phase is The Golden Path, also referred to as The
Key User Journey. This method’s purpose is to define the ideal path that a user
has when performing a task in the product. If a product not yet exists, the ideal
path of a future product should be formulated [62]. During the creation of this path,
errors and exceptions are meant to be ignored, since the purpose of the method is to
focus on the main problem.

4.3.2.1 Personas

A way of summarising information gathered about users is to create personas. Cooper
et al. describes personas as “user models that are represented as specific, individual
human beings” [63]. Personas are intended to be the product of ethnographic studies,
such as user interviews. The collected data is then interpreted by the designers and
translated into personas. Personas encapsulate behavioural patterns of specific users
of a specific product, and are not meant to be generalisations and stereotypes of the
user group. One could say that a persona is a synthesis of a user group into a fictive
person [63].

A design that attempts to fit every user’s needs could, according to Cooper, increase
the cognitive load and navigational overhead for the users. This is because accommo-
dating some users’ needs may interfere with other users’ needs. To utilise personas
can, as Cooper describes it, help designers avoid typical pitfalls like self-referential
design, designing for edge cases and designing ’for everyone’ [63].

4.3.3 Sketch
During this phase designers begin to shape the knowledge they gained from the
precious stages. As the name of the phase indicates, designers begin to sketch, and
doing it has two main benefits at this stage. First of all, transitioning the idea from
mind to paper helps define the essence of an idea - what is this idea really about?
[64] Also, the sketch itself communicates information that is hard, if not impossible,
to convey only via talking. For example, to orally explain all the interface details
of new a new program view to someone else, and expect to them to see the same
vision, would be poor judgement.

30

4. Methodology

As in other phases, the design work in this step can also be addressed using structured
methods [65] [66]. Crazy 8 can be applied to ideate solutions for a theme [67]. A
couple of team members, as suggested by the methods name, begins by drawing
eight sketches. A common approach is to divide a paper into eight equal sections
and sketch one solution in each section. A session usually lasts about an hour. After
completion, participants can choose to develop a few of the ideas further. Solution
sketching is one method that can be applied after period of quantitative sketching.
If a sketch seems extra valuable, the method suggests some rules for how designers
can develop it. User sketching, or stakeholders sketching is another participatory
approach, suggested by IDEO [66].

4.3.3.1 Sketching

Sketching, or even doodling, is a fundamental design activity that can support
designers throughout their work with, and communication of, everything from
abstract process parts to concrete design elements. When is is done as a team activity
cooperation between members can improve, by for example literally sketching a
common image of the design processes and it’s components [64]. As mentioned in the
section Sketch, it can also support the communication of concrete design elements.
It is also important to remember that the visual vocabulary of a sketch - as Bill
Buxton calls it - affects the viewer. This vocabulary is the style or meta-design of
a sketch: formed by the fidelity, composition, level of details and so forth. Buxton
emphasises that sketches are not drawings, and that the distinction is important to
remember. Sketches are incomplete and unrestrained in nature, and for the beholder
these qualities evoke uncertainty - and that is almost always a positive state. Looking
at it, spectators become naturally inclined to iron out the blank-spots: “Would you
have a radio group here?”, “Is this where users a directed after login”. All this ’blank
filling’ could be valuable knowledge for the person behind the sketch. Lastly, an
important reminder: you do not need to be an artist to sketch - everyone can and
should sketch their design ideas.

4.3.4 Decide
Sketching, or even doodling, is a fundamental design activity that can support
designers throughout their work with, and communication of, everything from
abstract process parts to concrete design elements. When it is done as a team activity
cooperation between members can improve, by for example literally sketching a
common image of the design processes and it’s components [64]. As mentioned in the
section Sketch, it can also support the communication of concrete design elements. It
is also important to remember that the visual vocabulary of a sketch - as Bill Buxton
calls it - affects the viewer. This vocabulary is the style or meta-design of a sketch:
formed by the fidelity, composition, level of details and so forth. Buxton emphasised
that sketches are not drawings, and that the distinction is important to remember.
Sketches are incomplete and unrestrained in nature, and evoke uncertainty in the
beholder. When the spectators look at them, they naturally try to fill in the blanks:
“Would you have a radio group here?” “Is this where the users are directed after the
login?”. All this ’blank filling’ could give the designer behind the sketch valuable

31

4. Methodology

knowledge. Finally, an important reminder: you do not have to be an artist to sketch.
Everyone can and should sketch their design ideas.

Decisions have to be done continuously throughout the design process; which colours
to use, where to place a menu or whom to interview. In the Decide phase of the
triple diamond process, decisions regarding the direction or concept of the design is
what the name refers to [68]. Here is where the team comes to consensus about a
single idea to continue working on in the current sprint. This phase is, for example,
also included as a part of the Define phase of the Double Diamond [60].

Some applicable methods for reaching a decision are Present Solution Sketches
and Dot Vote [69] [70]. Present solution sketches is a method where each team
member gets to present their sketch from the previous phase, to help the team gain
understanding and discuss its features. The team can also discuss similarities from
other ideas and make comparisons. To make the method more time efficient, it is
recommended to give each team member a time limit on their presentation. This
method is often combined with other ones that include voting.

A team can use the dot vote method to find an agreement regarding which idea
to focus on during the design sprint [70]. By applying it, all participants see each
other’s ideas, each participant can pin their sketches on a wall or similar. Then,
everyone gets to present and explain their ideas for a few minutes. During the
presentation, the rest of the team can ask questions and discuss details. After that,
it is recommended to review the criteria upon which an idea should be chosen. Each
member is then given a couple of votes, dots to put on the ideas. The idea that has
received the most votes will be further developed in the coming phases.

4.3.5 Prototype
In the design phase of a project, design and prototyping are often intertwined. To
create a prototype as early as possible is often beneficial, as it can act as a proof-of-
concept of the design idea [71]. It is often more manageable to adjust design flaws
in an early prototype than it is in a programmatically implemented design. In this
section, two levels of prototypes will be discussed, low-fidelity and high-fidelity.

Low-fidelity prototypes are prototypes which are intended to give an abstract idea
about the intended design of the eventual product. These kinds of prototypes can,
for example, be constructed on physical paper or cardboard [71]. They should not
include a high level of detail, only convey a look and feel. Moreover, they should not
include any navigation nor system functionalities.

Low-fidelity prototyping have several advantages, they are quick to create and
therefore also cost-effective [72]. However, insufficient detail can be a disadvantage.
It could be tough to use these prototypes in communication with non-designers.
Software developers would have to make their own decisions about details [72].

32

4. Methodology

High-fidelity prototypes are intended to give the user a detailed view of the design.
These kinds of prototypes give the possibility to test and evaluate detailed interactions
and design decisions before the final implementation. Even though the prototype may
consume much more time and effort than a low-fidelity version, it is still beneficial
to adjust design decisions at this phase rather than in a complete implementation
[71]. Among these advantages, high fidelity prototypes can also be suitable for sales
demos of a future product. One disadvantage of the method is that radical changes
in the design become time-consuming [72].

4.3.6 Validate
In the validation phase, designers let users test the design. Feedback regarding
interactions with the design is gathered to evaluate the concept. The data can be
used to improve the design during future iteration [73]. A validation, or evaluation,
phase is present in several design processes. In Hartson and Pyla’s design process
“The Wheel” it is called “Evaluation” [74] and in the double diamond process, it is
called “Deliver” [60]. In both of these, it serves the same purpose as in the triple
diamond process.

When discussing evaluation in design, commonly used terms are formative and
summative evaluation. Formative evaluation is about “collecting qualitative data to
identify and fix UX problems and their causes in the design”. Summative evaluation,
in contrast, is about “collecting quantitative data for assessing a level of quality
due to a design, especially for assessing improvement in the user experience due to
formative evaluation”. [75]. The following are methods applicable in the validate
phase.

4.3.6.1 Walkthroughs

One especially effective method in at an early stage of a design is design walk-
throughs [76]. This method is quick, and even though it may be most effective in
the early stages, it can be applied in any stage of the design. It works in a way that
a group is collaborating with a leader that guides the group through the design. This
group can consist of, for example, the design team, customer representatives, and
UX analysts. Together, they strive to explore the design on behalf of users and try
to anticipate what problems might arise.

A variant of design walkthroughs is cognitive walkthroughs, where the most
frequent tasks made by new or infrequent users are explored [77]. Throughout every
step of the task, the performers of the method ask themselves: “Will the user know
what to do at this step?” and “If the user does the right thing, will they know they
did the right thing and are they making progress toward their goal?” [77]. The
purpose is to evaluate the workflow of the product on a detailed level.

Another popular walkthrough method is heuristic evaluation [76]. This method is
an analytical inspection of the design, performed by an UX designer. Sometimes it
can be beneficial if the performer of the evaluation is a person outside of the design

33

4. Methodology

team, to get a new perspective. Heuristic evaluations and cognitive walkthoughs
have similarities, both require a specialist who tests the design and tries to predict
problems that could affect users. The difference with heuristic walkthroughs is that
the entire design is tested, and that generalised design guidelines drive the inspection.
Originally, these generalised design guidelines are the ten heuristics, created by Jakob
Nielsen [76]. This method is both cost effective and intuitive to perform.

4.3.6.2 Remote Usability Testing

Another way of validating the design is by conducting remote usability tests. These
tests utilise an application to record the screen and perhaps the voice of the tester,
as they interact with the product or prototype remotely [78]. To execute the tests
remotely lowers the resource costs and enables the testers to perform the tasks in
their natural environment. There are two types of usability tests, moderated and
unmoderated.

Moderated usability tests have a moderator that observes a user who interacts
with a design [79]. Often the user is asked to complete a set of predefined tasks. The
moderator is supposed to provide guidance and answer any questions that may arise.
The advantages of moderated tests are that the prototype or product tested may
lack functionality and be complex, as a moderator guides the tester through the test.
It is also possible to acquire a deeper understanding of the user journey, as the test
is almost an interview between the tester and the moderator. The disadvantages are
that, as they involve both a moderator as well as a tester, they require scheduling and
coordination, and are more time-consuming. Therefore, they may be more expensive
to conduct.

Unmoderated usability testing does not involve anyone except the person testing
the product or prototype [79]. The tester completes all the tasks by themselves, and
therefore this method may be faster than the moderated version. This method is
feasible for validating concepts in the design and for observing the tester in their
natural habitat, while not getting affected by another person. A benefit with this
test is that it requires little time and thus enables a large sample size. One limitation
is that the moderator cannot ask any questions, and therefore the tasks must be
clearly articulated in advance.

4.4 Software Tools
In the following chapter, a description of each software tool used to develop the
prototype is presented. Software used for organisation, communication or other
activities is not included.

Miro is a collaborative, online, whiteboard [80]. It can be used for creating wire-
frames, taking notes, conducting workshops and more. Users create and store their
content on an expandable canvas.

34

4. Methodology

Balsamiq is a tool for creating low-fidelity prototypes [81]. It mimics sketching on
real paper by only offering black and white components for wireframing. This allows
for rapid creation of wireframes with a focus on structure instead of details.

Adobe XD is a collaborative tool for high-fidelity prototyping [41]. The user can
create wireframes, animations, and runnable prototypes without the need to code,
which makes the prototypes behave similar to a regular program.

35

4. Methodology

36

5
Process

This chapter describes the preparation and execution of the design process. A four-
week literature study was conducted before the process began. We examined The
Product and other Company resources in parallel with the study. The design process
mainly consisted of three iterations. During all of them, both the prototype and
the guidelines were iterated. All three iterations consisted of the following phases:
understand, define, sketch, decide, prototype, validate, section 4.3.1 to 4.3.6 covers
the theory behind them. Continuously collecting and analysing user data was a key
motivation to this approach. The users this thesis concerned are described in section
2.3.

5.1 Planning and Preparation
Work with this thesis began 2021-01-08 and lasted about 20 weeks. It was carried out
at the Chalmers University of Technology and at The Company during the spring of
2021. The thesis was created in three steps: preparation, execution, and writing.

A thesis proposal was created before work began in January. It included a first
version of the design process and a week by week plan for the execution of this thesis.
The plan was summarised in a Gantt chart, and can be seen in fig 5.1a. After the
thesis proposal was approved, a planning report was started. This planning report
included three weeks of literature study and a study of The Product. At the end
of the preparation phase, the original plan in fig 5.1a was revised. This was done
as a consequence of new findings about The Company and the work this thesis
would include. Hence, the revised plan contains more details about each iteration
of the design work. The revised plan can be seen in fig 5.1b. A more detailed
description of the earlier mentioned literature review can be found in section 5.1.3,
but to summarise, the outcomes became this thesis theoretical framework.

37

5. Process

Start
2020-01-18 (mon) Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20

Setup / Admin.
work

Litterature study

Write planning
report

Write project diary

Recruit interviewees
and prep. for

interview

Pre-study
Interview

Create design
product v.1

Evaluation of
pre-study findings

Refine design
product

User testing of
design product

Analysis of user
tests

Thesis writing

Legend: Phase
one

Phase
two

Phase
three

(a) The first version of the Gantt chart showing the execution plan of this thesis.

(b) The refined version of the Gantt chart showing the execution plan of this thesis.

Figure 5.1: Gantt charts showing the planned process, each square represents a
week.

38

5. Process

5.1.1 Understanding The Product and Its Users
Significant time was spent exploring the The Product and learning about its users.
The company did two in-depth interviews with representatives from company cus-
tomers to provide some initial data. Besides them, understanding how The Products
works was a time-consuming process, data science and visualisations themselves are
complex fields. Furthermore, there exist many kinds of user-company relationships,
as written in 2.3. Another layer of complexity comes from the fact that users are
found in all major industrial sectors. Information from The Company and research
showed that every sector can apply data science differently. Hence, users often request
functions that only address issues unique to the sector they operate in. Moreover,
’the user’ can refer to a single individual, or a large team with professional software
developers, data scientists and many more, whom all collaborate. The epithet Data
Scientist also denotes individuals with diverse skills and goals. Some have extensive
software development knowledge, and appreciate using it, others do not. In summary,
there has been some research on data scientists, although much remains to be done
[82].

Many of the initial guidelines are based on insights we got while familiarising ourselves
with The Product and studying The Company’s data about their users. Managing
the navigation, especially in larger applications, emerged as a possible pain point.
The Company also received much feedback regarding The Products support for
scripting. Users complained about having to use it and the experience while using
it. We explored what design patterns the GUI uses, and not. A tricky question,
related to the GUI, is how much information the software itself should present
automatically. It should show relevant information without drawing too much of
the users’ attention away from the visualisations. From our initial probe and the
interviews, some information about system status was unnecessarily challenging to
find.

5.1.2 Study of Interviews Conducted by The Company
During the literature review, we examined two interviews that The Company had
conducted. The aim was to understand what applications are and how the process
of creating them works. It was discovered applications can have over 50 different
pages. Thus, be large and complex. In large applications, it can become challenging
for application builders to manage the navigation structure, and the struggle can
affect the application’s user experience. It was also discovered that application
users regularly perform various tasks that depend on the information conveyed by
visualisations. We came to call these tasks workflows, further described in section
5.1.5. One important condition of workflows is the clear difference between business
areas in terms of how strict and controlled they must be. Some areas value strict
workflows in which the user can only view one page at a time. These processes could
also be subject to audits by external organisations and government agencies. Other
application builders needed to build a more exploratory workflow.

39

5. Process

5.1.3 Literature Review
As mentioned in the beginning of this section, data from The Company about their
users influenced the literature review. The company suggested some books regarding
user experience and information visualisation from their private collection. By
studying this literature and company data about users, a couple of initial keywords
emerged. Some of them were Information visualisation, User Experience (UX) and
User Research. In addition to these domains, theory about design systems and
industry examples of it was examined. The main goal was to find UX research, or
related knowledge, about data scientists. It was considered preferable if the research
involved activities comparable to application building.

Google scholar [83] and the databases IEEE Xplore [84] and ACM Digital Library [85]
were frequently used to find relevant research. Google’s search engine [86] was used
to find industry resources, new keywords and inspiration. We considered industry
practice, as it has a considerable impact on design development.

Early in the research, it seemed like application building inside software was a rather
unexplored field, particularly in the world of analytical software. Yet, the term
End-User Development [32] was discovered, together with Developer Experience
[28], and Customisable Software [44]. Section 3.3.1 describes Kari Kuusinen’s work
with developer experience and software developers. As part of her work, Kuusinen
developed a set of categories to measure what software qualities the developers
appreciate. From these categories, the first guidelines came to include a set of tags.
The purpose with them was to achieve a mapping between different guidelines and
users’ needs. The needs of developers can still differ from the ones data scientists
have. However, we deemed her work to be useful, since this thesis was concerned
with data scientists who, by some means, create software.

While both user and developer experience are interested in users who create or extend
software, neither appeared to have extensive information about the software’s user
experience. In conclusion, likely, there has not been much previous research closely
related to this thesis.

In addition to the search for a theoretical framework, the literature review also
influenced the methodology. Another source of influence was literature from previous
courses that the authors of this thesis had attended. Some of these courses were
Interaction Design and Methodology, Interaction Design and Prototyping, and
Information Visualisation. As the planned result of this thesis were design guidelines
and a high-fidelity prototype, the field of Research Through Design was explored.
The outcome of the methodology research, the design process and chosen methods,
are presented in section 4.

5.1.4 Reflections based on the Literature Review
A goal with the literature review was to narrow the scope of this thesis, to formulate
guidelines for application building without any limitations, was not feasible. The

40

5. Process

intention was to review the discovered literature and select the most suitable theories.
By making this choice, the scope would naturally become narrower. Attempts to find
literature regarding application building inside an analytics platform were done, but
nothing was found. In our opinion, end-user-development and developer experience
was the most suitable literature. Our initial data about data scientists also supported
this selection. As mentioned, many scientists disliked when they had to include
custom code in their applications.

As mentioned, End-User Development theory was discovered, and it appeared valu-
able. Research within the domain was concerned with the user experience end-users
have when they create software. In EUD literature, an end-user is someone who is
a non-professional software developer and develops software, often by other means
than traditional programming. End-users were an ambiguous name, since we viewed
application users as the ’end user’. We made an attempt to find literature about those
who use software built by end-users. Nothing of true relevance was found. But since
there are other, more general methods to improve user experience in applications,
they were instead explored. One example of a more common approach is to employ
a design system. These help designers and developers achieve a consistent design,
which many data scientists want to achieve.

In summary, about 70 papers and books were collected. The most related topics for
this thesis appeared to be EUD and developer experience. We had also found many
unconnected theories within these domains. In a sense, the review still managed to
narrow our scope. However, our sources still lacked a clear connection to application
building in analytical software. The current process of application building in The
Product had to be explored thoroughly. To evaluate the potential value of our sources
and to obtain more specific guidelines.

5.1.5 Workflows
Early in the process, the term workflows became part of discussions and appeared
during interviews, see section 5.1.2, with The Company. What workflows refer to is
highly dependent on domain and industry. Our interpretation of the term is: a set
of tasks performed inside an analytical application. The tasks are performed either
on data rows, visualisations, or in one or more pages. This interpretation has been
developed throughout the process, but it was established at this point. Another,
more general, definition is “a workflow is the organisation of steps into a sequential
order” [87]. A step can be an activity or a resource. Many scientific disciplines have
developed versions that are specific to their domain. We discovered, via the interviews
described in section 5.1.2 and 5.2.3, that a flexible degree of strictness is important
in the world of analytics. In a strict workflow, users can only visit predetermined
locations in the application. During the opposite scenario, users explore contexts to
complete a task. The level of strictness often depends on the business domain. For
example, clinical studies require very strict workflows with external audits, due to
regulations by law. Hence, the employee has limited access to pages at steps in the
workflow. However, some business domains encourage exploratory workflows where

41

5. Process

the employees can wander more freely in the application.

Usually, analytical workflows refer to a set of instructions that analytical software
performs [88]. The analyst or scientist creates the content of each sequence and
defines conditions for when the software should execute it. And while a sequence in
this context likely represents a mathematical model, it could represent something
completely different in another domain. In summary, the core structure of workflows
remain similar between different domains. It is primarily the content and operators
that could differ.

The Company has another product for the construction of data science workflows,
figure 5.2 shows its canvas. Among many features, program users can connect data
sources and apply conditional step-by-step processes to them. It can also be used
to create machine learning and data preparation pipelines. In general, people who
work with data science often use workflow concepts to organise their work [88]. This
tool was discovered during user interviews in iteration one, which can be read more
about in 5.2.1.

Figure 5.2: A print screen from The Company’s data science product and its
canvas.

5.1.6 Guidelines v.0
Multiple sources influenced the first set of guidelines. The interviews described in
section 5.1.2 had a substantial impact. At this point, they hinted about the various
struggles some applications builders experience with scripting. By studying the
software, we also noted some questionable software behaviour, with respect to, e.g.
how it conveys information about its current state. Still, most influence came from
existing research and industry work described in 5.1.3. It should also be noted that
all three sources affected each other since work with them was done in parallel.

42

5. Process

Theory about design systems and industry examples of them were used as a source
of inspiration for the guidelines format. Miro was used to create the guidelines and
to store most process resources, a description about the program is found in section
4.4. The guidelines used a tag system, this can be seen in fig 5.3. The tags were
based on Kuusinen’s paper regarding developer experience, described in section 3.3.1,
and were stated as follows:

Informative, Efficiency, Flexibility, Application Design, Reliability and Advanced
Usage

The first set of guidelines contained eight guidelines, labelled G1 to G8, their tag
system can be seen in fig 5.3):

G1 Provide a curated set of default components for application building,
and allow developers to create their own

Default components should be customisable and help developers create the desired
user experience.

From the interviews described in section 5.1.2, it was discovered that application
development requires extensive use of code that is not related to the data and
visualisations. According to end-user development theory, section 3.4, non-
professional software developers are more likely to reach their development
goals by using other methods than text-based programming.

G2 Provide developers with flexible and informative functionality that
supports the creation of the desired navigation structure within an
application

– Users should feel able to explore with ease.

– Developers should have extensive software support for the creation of
predefined and restricted navigational paths.

During the interviews described in section 5.1.2, it discovered that applications
can contain over 50 pages. Without sufficient navigational support, there is a
risk that applications users become lost.

G3 The Product and its applications should provide developers and
users with modeless feedback.

Follow best practice for different load times.

One topic in the interviews described in section 5.1.2 was that users of an

43

5. Process

application do not know the status of scripts with long loading times. To
show system status is also a part of Nielsen’s ten heuristics for a better user
experience [89], and encouraged in desktop applications, see section 3.8.

G4 Provide an approachable API of The Product

Make on-boarding to the API smoother by providing examples of how parts of
the API can be used, provide instructional material with how-to examples

The mentors of The Company mentioned that the API of The Product appeared
to have a steep learning curve. Those who could use it believed it greatly
improved their ability to customise. Therefore, a proposal is to offer new
application builders a more approachable API. A paper on how to construct
APIs more user-friendly was studied. It concluded that, for example, APIs
with thorough examples and how-to:s were appreciated by users [90].

G5 Ease the cognitive load when developers perform complex tasks

– The Product should provide a visual preview of visible application com-
ponents, e.g. for buttons, links, checkboxes, lists.

– The cognitive load for developers should be minimal. When possible it
should be replaced with visual and motor load: especially during complex
tasks.

– Follow developers and users mental models.

– (High-level) naming should capture the essence of what it represents.

Applications studied in the interviews in section 5.1.2 gave a messy impression.
In the current version of The Product, there are no instant previews of com-
ponents not related to visualisations. Therefore, cognitive load according to
Lightbown was studied.

G6 Customisation functionality should consider The Gentle Slope of
Complexity.

See section 3.4.1 for a description of The Gentle Slope of Complexity.

G7 Support development collaboration

Large applications, those with tens of pages, often have several developers. One
point of discussion during the interviews, in section 5.1.2, was that application
developers could not collaborate, as they wished, when creating an application.
Support for collaboration should be considered according to EUD, section 3.4.

44

5. Process

G8 Provide flexible styling capabilities for applications and their ele-
ments

– Provide default themes.

– Offer functionality for hierarchical styling of elements.

This was added as the users of The Product values a high level of customisation.

45

5. Process

Figure 5.3: The first set of guidelines - with its tag system - during development
in Miro [80].

46

5. Process

5.2 Iteration One: User Research and
Exploration

During iteration one, the goal was to deepen the understanding of The Product’s
user and the problem space. To continue having an informed prototyping process.
Feedback from long-term users of The Product and product managers was collected
by conducting semi-structured interviews, described in section 5.2.3. Videos of each
interview were transcribed and later analysed by affinity mapping.

After the analysis of the interviews, several topics emerged. We designed and led
an ideation workshop based on these topics, together with The Company’s UX
department. This workshop generated many possible solutions for issues that may
appear during application building in The Product. Afterwards, we identified themes
among the ideas and used them during the first sketch phase. Finally, the initial
guidelines were evaluated against the sketches, and many were reformulated.

5.2.1 User Interviews
After studying the interviews in section 5.1.2, a deeper understanding of the general
application creation process was needed. To achieve this, two user interviews were
held. The interviewees were two data scientists who work at The Company. As
part of their role, they build applications for marketing and information resources.
Besides that, they also support company customers in building the applications they
require. Prior to joining The Company, one of the scientists used the software on a
daily basis as a customer. The interviews were held remotely via a video conference
call and followed a semi-structured approach.

As mentioned, the goal of the interviews was to get a better understanding of
the application building process in The Product. Questions regarding findings in
the previously described interviews were asked, like how they view The Product’s
support for navigation in an application. We also asked what they view as the
biggest challenges with application building. Another topic was examples of common
workflow use cases they are asked to implement for customers. All questions can be
found in Appendix A.

5.2.2 Internal Stakeholder Interviews
Two interviews with product managers of The Product were conducted to get a
deeper understanding of The Company’s customers. The questions were about what
needs managers had identified, related to application development of The Product.
The product managers had two different areas of responsibility; The Product, and its
API. As the interviewees have different expertise, the questions asked were adjusted
accordingly. Both interviews followed a semi-structured approach and were held
remotely.

The product manager with a general product responsibility was asked to reflect on his

47

5. Process

application building experience. Furthermore, customers’ needs and The Product’s
future were discussed. For the product manager with the API focus, questions were
asked about feature requests and the most common complaints from customers. Lists
containing all questions in both interviews can be found in the Appendix A.

5.2.3 Analysing Both of the Interviews
Notes were placed on a virtual whiteboard to summarise the interviews and their
topics. These notes were later categorised using affinity mapping, which can be seen
in fig 5.4. A deeper understanding of applications inside The Product was gained
from the interviews. The main takeaways were that the application development
process in The Product appeared to lack sufficient support from The Product. There
are several community discussions and blog posts with guides and tips, but there is
insufficient integrated support for common tasks, such as building a global navigation
panel. The lack of support has led to applications with script-based ‘hacks’, along
with the need to use duplicate code in many pages. Ultimately, applications can
become difficult to maintain.

Figure 5.4: Affinity mapping from one of the interviews.

Nearly all business areas use visual analytics. Consequently, The Product has users
from different backgrounds and with different expertise. Users therefore need The
Product to offer a high degree of customisation. Currently, almost any software
behaviour can be achieved by using the ability to invoke external systems via user-
created scripts, in combination with API calls to The Product. However, this
approach requires substantial experience in programming.

Other conclusions from the interviews were:

• Applications with a guided workflow are common. In this context, a workflow
refers to a complex analytics process that has been divided into several steps.

48

5. Process

• Many users want default components, for example, accordions, global menus,
fly-out menus, and ones that support. As of now, these components have to be
manually built through HTML, CSS and JavaScript.

• Some sectors require strict workflows, others exploratory. This need was
discovered during the interviews described in section 5.1.2, it was also a topic
during the interviews in this iteration. Pharmaceutics is an industry that often
requires strict flows to ensure that work is in accordance with all laws and
regulations. Section 5.1.5 has more information about workflows.

• Improved collaboration functionality would ease work with applications that
have tens of pages.

• On an application page, non-visualisation content should occupy as little screen
space as possible. The purpose of an applications, and its pages, is usually to
let the data (visualisations) speak.

5.2.4 Ideation Workshop
The ideation workshop was to be the last step before the sketch phase began. Its topics
were based on the previous interviews, and the goal with them was to generate ideas
for sketching. Twelve designers from The Companies UX department participated by
remote. During an hour, participants switched between ideation in breakout rooms
and brief presentations in the main room. For each topic, there were eight minutes to
discuss, then each group presented for two minutes. Both of us acted as facilitators
of the ideation workshop. We prepared a virtual mural board with sticky notes, for
the attendants to use, and it can be seen in fig 5.5.

The workshop included a fictional data scientist named Bosse, and he used The
Product on a daily basis. Bosse must - preferably with a minimum of custom scripts
- build and later maintain a large application in The Product. Together, the topics’
scope was from the smallest element, data rows in a visualisation, up to an entire
analysis. A slide from the introduction of the workshop can be seen in fig 5.6.

Guided workflows were the first topic. Bosse wants to create an informative, guided
workflow for application users, but information must not occlude page content. The
entire description is shown in figure 5.7, slides for the other topics are found in the
Appendix B. Every slide with a topic had the same layout. Most ideas generated in
the breakout rooms were noted on sticky notes in the workshop environment. All of
them, more or less incomplete, are listed below:

• To have a workflow wizard that guides the user through a workflow.

• To have a floating area on analysis level containing objects relevant for the
current page, populated by the author of the application.

49

5. Process

Figure 5.5: The virtual mural board after the workshop was done.

• An audio guide that guides the user through a workflow.

• To be able to test-run a workflow to see it from a user perspective.

• Select some data points in some visualisation and get a wizard that is related
to the selection.

• A panel or flyout that is pre-populated with, for example, pages for navigation.

The second topic covered User Interface (UI) components. Bosse wanted to create
highly customisable UI components, by other means than scripting. The slide
presenting this topic can be found in Appendix B.

• Templates for certain types of dashboards, “if you want to build a finance
dashboard, maybe use these visualisations and these components...”.

• Reusable components.

• A standardised pattern in components that are encouraging the creator to be
consistent.

• General navigational components, common for many types of applications, for
example, a global menu.

50

5. Process

Figure 5.6: An introductory slide from the ideation workshop.

The final topic was about how rapid application growth could be easier to manage.
One of Bosses’ applications had experienced a surge in numbers of features to include.
More and more applications users are becoming lost and confused while using it.
The slide that presented this topic can be found in Appendix B. Some suggested
ideas, more or less complete, were:

• Having an overview of what is built that shows how different pages interact.

• Suggestions and recommendations that analyses the application and suggests
how it should be changed.

• Step by step guides on how to use an application.

• Show other large applications and explain how they solved similar issues.

In summary, the workshop served both a validating and ideating role. Many of the
ideas brought to the table during the workshop shared similarities with ideas that we
had considered before the workshop. This overlap might strengthen their significance.
Still, many ideas from the workshop were new and would have been interesting to
explore further, for example, to start a workflow from a selection of data. In general,
many ideas described the need for a more zoomed-out perspective, mainly in terms
of resources during application development. In conclusion, the workshop generated
many ideas and significant inspiration for the sketch phase.

51

5. Process

Figure 5.7: The first topic of the workshop.

5.2.5 Sketching
Themes for the first sketch phase, built upon the literature, ideation workshop, and
conducted interviews. Below is a summary of each theme:

Offer help/information closer to the workspace. Users sometimes request
features that already are provided or possible to create in The Product, according to
internal stakeholder interviews (section 5.2.2). The Companies community website
already contains instructional material and how-to guides related to application
building. Bringing this information into the workspace could help users become more
aware of its existence.

Recommendations at context(s). One guideline of The Product written by The
Company is to create context-aware recommendations and suggestions. Hence, several
ideas in the ideation workshop included ideas related to it. This was something that
had not been thought of previously, and an exciting area to explore.

Overview of the relationship between objects. In the current version of The
Product, there are no overviews of pages or all visualisations in an application.
Several ideas from the workshop related to this topic.

Workflow construction. In the current version of The Product, there is no dedi-
cated mode for creating workflows. This was something discussed during interviews
as well as ideated during the workshop, and many of those ideas seemed to have the
potential to explore further.

No-code components. An issue discovered during the interviews was that many

52

5. Process

application builders lack programming knowledge. This theme was tested during the
ideation workshop as well, and as workflow construction, it needed more exploration.

Documentation/guidance about how the application works to end-users.
This was highlighted as an issue during interviews. Sometimes it can be difficult to
mediate what has been done in an application or to convey how it even works. To
offer functionality for this in The Product could help solve that.

A crazy-8 session (described in section 4.3.3) about each topic was then conducted.
Examples of results from such a session can be seen in fig 5.8.

53

5. Process

(a) Workflow construction. (b) No-code components.

(c) Overview of the relationship between objects.

Figure 5.8: Sketches from different crazy-8 sessions.

After these crazy-8 sessions, the outcomes were discussed. It was decided that
some topics may benefit from being combined, and that some topics already are
implemented in other products, and would be alike if realised here. Hence, spending
time exploring them further would not yield substantially different results. After
crazy-8, solution sketching was performed. The topic chosen for solution sketching
was “Workflow construction”, which was later abstracted to be simply “Workflows”.
The term workflow can be read more about in section 5.1.5. An example of a solution

54

5. Process

sketch can be seen in fig 5.9.

(a) How to put actions related to visualisations in a ”workflow-panel”, which is
placed at the left side of the screen.

(b) Overviews of construction and execution of workflows

Figure 5.9: Solution sketches for workflows.

55

5. Process

5.2.6 Guidelines v.1
After iteration one and feedback from the mentors at The Company, the direction
of the thesis had a slight change towards the workflows of an application, and
how these can be constructed by an application builder. The purpose with the
shift was to narrow the focus of the thesis. With this said, we still considered the
entire application building process, but the prototypes and the guidelines relating
to workflows would be tested more extensively. An important note is that in these
early guidelines, “User” can refer to both application builders and the users of their
applications. The new guidelines were stated as follows, with indifferent numbering
from G1 to G11.

G1 The user should not feel lost in an application

The interviews studied in section 5.1.2, showed that applications can suffer
from feature creep and contain more than 50 pages. As the application grows,
it can become hard for application builders to maintain the desired navigation.
This guideline aimed to provide recommendations that simply the creation
and usage of navigational components. According to information architecture,
for example, a ”You are here”-marker and letting the application contain an
overview section can help the user navigate.

– Provide a ”Your are here”-marker.

– Provide an overview of the application.

G2 The user should be able to achieve a desired look and feel

It was discovered from the interviews that some design alterations require quite
a bit of custom code. According to end-user development (EUD), section 3.4,
developing an application as a user becomes more approachable when it does
not involve direct programming. It was also discovered from the interviews
conducted during iteration one (see section 5.2.3), that the users of The Product
highly values customisation. To combine these aspects, the guideline emphasises
design functionality that does not require a lot of custom code.

– Provide a curated set of default application (non-visualisation) compo-
nents.

– Allow application builders to create their own components.

– Styling actions should be available at many levels.

– Offer previews for visual changes.

– Integrate Web Content Accessibility Guidelines (WCAG) for improved
readability.

56

5. Process

G3 For the design of the applications structure: keep the required
amount of non-domain coding to a minimum

As mentioned in G2, the application building process becomes more approach-
able for some users when they have to write less code. It was also highlighted
during one of the interviews conducted during iteration one, that companies
want to hire data scientists to work with data science, not to program other
artefacts.

G4 The Product should support collaboration

The examined literature shows that the degree of collaboration needed in data
science work continues to rise [82]. Building and using custom applications
can involve many different domain experts. Analytical software should have
extensive support for collaboration since it is a key activity. Besides the need to
share insights efficiently, possibly through recorded work sessions, this product
is also concerned with how changes by others are conveyed. In the UI, a user
should directly see what

Kept from the initial set of guidelines see ”G7 Support development collab-
oration”. It was highlighted during one of the user interviews that there are
several use cases where an application builder has built something and want to
share the process to a colleague, which is not supported today.

G5 The user should able to create custom workflows without the need
to code

The Product should have graphical user interface (GUI) functionality which
supports the creation of workflows.

From the interviews, it was discovered that to construct a workflow is a common
use case today. This functionality is not supported in the current version of
The Product, but it can be made by different workarounds, often referred to
as ’hacks’.

G6 The Product’s ontology must be designed with consideration to the
user

The ontology describes the objects in a system, their ”size” and their relationship
with each other. For example: for a clothing site the smallest object could be
Women clothing, or it could be split into ”women’s blue socks, women’s red
socks” and so forth. Consider the mapping between actions and objects, for
example a button could have the following hierarchy: a button - all buttons on
a page - all buttons in an application. Most likely the user wants to do certain
actions at all the different levels.

57

5. Process

This guideline was added as the course of the thesis shifted towards workflows.
With that shift, information architecture as a topic was discovered and studied.
Ontology is a part of information architecture, which can be read more about
in section 3.7.

G7 Identify the different scopes that users want to apply an action to
and offer the opportunity to apply actions to each scope, including
a single instance

The user should be able to apply changes at group-level, for related objects.

This guideline was discussed during the interviews, see section 5.2.1. When it
comes to application building, the current version of The Product lacks this
kind of support.

G8 The dashboard screen estate is precious, it should primarily contain
visualisations

Allow users to store information about the dashboard in collapsible panels
beside the dashboard.

It was discovered during the interviews in section 5.2.1 that the screen real-
estate of an application is precious. The application builder wants to emphasise
the visualisations in the application the most. Therefore, functionality not
directly related to the visualisations should be able place somewhere it can be
hidden.

G9 Some users will always want to code: follow best practices for code
development environments

Kept from the initial set of guidelines but reformulated, see ”G4 Provide an
approachable API of The Product”. It was reformulated to not only focus on
the API. Creating a user-friendly API is a large topic that concerns software
engineering more than interaction design, at least in the context of this thesis.
Therefore, focusing on the API was put out of scope.

G10 The distance between program functions that are often used to-
gether should be short

– If the user clicks on an application object, styling objects should be in
close proximity, floating beside the object.

– Avoid having users to navigate frequently between related workspaces.

G11 The user should be able to navigate, with ease, within and between
program contexts and in The Product

58

5. Process

– Provide the ability to search globally and in local content-rich contexts.

– The different ways ”backwards and forward” (BaF) navigation in a digital
system is behaving should be considered.

– The BaF navigation should be implemented consistently throughout The
Product.

– Allow the user to generate a table of content: or indexes of all included
pages inside an application.

Kept from the initial set of guidelines but reformulated, see ”G2 Provide
developers with flexible and informative functionality that supports the creation
of the desired navigation structure within an application”. It was reformulated
to put more focus on how the user can navigate, than that it should be possible
to create a good navigational structure.

5.3 Iteration Two: Sketching and Prototyping
The goal of iteration two was to continue exploring the ideas from the solution
sketching session. As a first step, different low-fidelity prototypes were created using
Balsamiq and Miro. These tools can be read more about in section 4.4. The mentors
at The Company gave feedback regarding the prototypes. Afterwards, high-fidelity
prototyping in Adobe XD began. These prototypes were the topic of a design
critique session with a data scientist at The Company. To conclude the iteration,
the prototypes were tested against the guidelines from iteration one, which can be
found in section 5.2.6. A heuristic evaluation on the prototype was performed with
the guidelines as heuristics. A description of a heuristic evaluation can be found in
section 4.3.6.1. That evaluation led to reformulations of the guidelines, and the new
version can be read more about in section 5.3.5.

5.3.1 Compiling Identified Issues
At this part of the process, multiple software issues and user-needs had been identified.
We wanted to merge insights from literature research, interviews, and our studies
of The Product, to find new patterns in the data. We tried to create a mind map
to organise the data. The first attempt failed, it can be seen in 5.11. We could
not identify distinct themes. The second version used a tree structure, it made
organisation easier. These mind maps served as support when constructing the
guidelines in this iteration, described in section 5.3.5.

59

5. Process

Figure 5.10: The first attempt at a mapping of the identified issues related to
application building in The Product.

Figure 5.11: A mapping of the identified issues related to application building in
The Product.

60

5. Process

5.3.2 Low-Fidelity sketch of Workflow and Components
For the low-fidelity prototyping in iteration two, the tools Balsamiq and Miro
(described in section 4.4) were used. Balsamiq was chosen as it only offers black
and white wireframes, which attempt to mimic a sketch drawn by hand. When
interpreting such wireframes, it is simpler to focus on the structure and the concept
behind the wireframes, not details like colours. Similar wireframes were created in
Miro, but with colour to get a more vivid feeling. The concepts in focus were initially
workflow creation and to create application components without code.

The component-based concept. The idea behind this concept is that application
building becomes more approachable if the application builder does not have to
program their application, but to create the application components with a graphical
user interface (GUI). The wireframes can be seen in fig 5.12.

61

5. Process

Figure 5.12: The component wireframes made in Balsamiq, starting at the top.

62

5. Process

The top-most wireframe in fig 5.12 is the beginning of the component-based concept.
The application builder is provided with a side panel to the left, which contains
different components. The components can be everything from navigational com-
ponents, like different types of menus, to simple text. They can be dragged and
dropped onto the application where they act along with the visualisations.

In this example, the application builder chooses the global menu component and
drags and drops it to the top of the dashboard (the middle wireframe in fig 5.12).
As this is a global navigational component, the idea is this component will be placed
at the same position throughout the application. When the global menu is placed
and selected, its settings, which are placed in a side panel to the right of the screen,
are visible. The application builder can only configure these settings.

In the nethermost wireframe in fig 5.12, the application builder can configure specific
parts of the global menu by double-clicking them. Here, the application builder has
double-clicked the “New nav item”-button that has a dotted outline in the middle
wireframe in fig 5.12. As can be seen in the nethermost wireframe, the left side
panel’s content changes, as it is the chosen tab’s settings, not the whole menu’s. This
was performed as a way of accommodating the application builders’ customisation
requirements.

This concept manages to encapsulate several guidelines but from different angles.
The following are the guidelines considered during the construction:

• G1 The user should not feel lost in an application. The global menu that the
application builder can create in this prototype creates an application that is
navigated easier. The idea is that the global menu should be able to indicate
where the user currently is in the application. Consequently, acting like a ”You
are here”-marker for the application user.

• G2 The user should be able to achieve a desired look and feel. The global
menu is highly customisable in both behaviour and appearance, see the right
panel in the middle and lowest wireframe in fig 5.12.

• G3 For the design of the application’s structure: keep the required amount of
non-domain coding to a minimum. The global menu is created in a WYSIWYG
style. Hence, limiting the required amount of code to a minimum.

• G8 The dashboard screen estate is precious, it should primarily contain visual-
isations. The global menu is small, and it can be set to be invisible on some
pages in the settings.

• G11 The user should be able to navigate, with ease, within and between
program contexts and in The Product. As mentioned, having a global menu in
an application facilitates the navigation for the application user.

63

5. Process

The workflow builder concept.

Figure 5.13: An early sketch of the workflow concept.

As previously mentioned, The Company had already identified a possible need for
workflow functionality before the creation of this workflow concept (fig. 5.13). Their
idea was still at a highly conceptual level. In essence, they informed us that the
possibility to create sequenced processes in an analysis could be of use for many
users and that it had to be flexible. It also seemed likely that a workflow concept
could demonstrate and support many of the guidelines at the time. A more elaborate
description about the workflow concept can be found in section 5.1.5.

The most influential source of inspiration for our concept was one of the data scientists
we interviewed during iteration one, described in section 5.2.1. He briefly showed us
the workflow-similar functionality in another product that The Company offers, as
an example of he enjoys working. In this builder, users placed connectors between
blocks on the canvas sequential processes. Each block represented a script or a
function. A screenshot of the data science tool can be found in section 5.1.5.

A quick probe confirmed that Data Scientists generally use custom workflows fre-
quently in their work. EUD research also found that end-user development is easier
when the user finds the development environment familiar. This conclusion, in
combination with the inherent flexibility, led us to explore a workflow builder concept.
This concept clearly supported G5, but it also included additional guidelines. G1
and navigational support would be considered in multiple ways, the canvas top-down
perspective would be one example. The canvas environment would be low code, as
G3 recommends. To let others use the flows would follow what G4 recommends.
Finally, G4 was also included, and fig 5.14 shows one of the first tests with function
placement.

64

5. Process

Figure 5.14: An early sketch of the workflow concept with an open panel on the
right-side.

5.3.3 High-Fidelity Prototyping
The concept chosen to explore further with high-fidelity prototyping was the workflow
concept. It was chosen as it encapsulates many parts of the application building
process, and it can take place in The Product in several ways. For example, the
component concept can be realised within the workflow concept as well, by making
the workflow creation process component based. Moreover, the component-based
concept described in section 5.3.2, is implemented in other applications like WebFlow
[92]. Thus, already well-proven.

Adobe XD was chosen as a tool for high-fidelity wireframes, a description of that
tool can be found in section 4.4. This tool was chosen, as we are already familiar
with it since previous design projects, and it offers collaborative real-time editing.

After feedback from the mentors at The Company, the focus of the workflow concept
shifted. It shifted from how the workflows are constructed to how they are manifested
for the application user. It was easy to get caught in the details of the workflow
creation process. And, as the purpose of this prototype is more about proof-of-concept
rather than a complete idea, the prototype benefited from the focus shift.

For the application user perspective of workflows, two different scenarios were created.
One scenario has a workflow directly connected to a visualisation, and the other has
a workflow that spans over several pages in an application. In both scenarios, the
application builder has already built an application in The Product, and created the
workflows. They have also decided whether the workflows will be connected to one
visualisation or the whole application.

Connected to a visualisation. In this scenario, the application builder has created
a workflow that can be performed on a visualisation. They have decided which

65

5. Process

visualisation it is connected to, as well as what it does. The workflow can be found
by pressing the “A” above the bar chart in fig 5.15. By pressing the “A”-button, a
menu that contains several workflows appears, see fig 5.16. A workflow can either
act on all of the data in the visualisation, or just a selection.

For this scenario, the chosen workflow is “Monitor value”. By pressing that alternative,
the menus’ content changes to the actual workflow, see fig 5.17. All this content is
created by an application builder, and cannot be changed by an application user.
For this workflow, the application builder has made it possible for the application
user to monitor the value in the visualisation and execute different actions based
on a condition. In this iteration, it was not yet decided whether a workflow always
should be called a workflow or an “action”. Therefore, in these figures, the title is
“New action”.

66

5. Process

Figure 5.15: The beginning of the workflow connected to a visualisation. The
workflow menu can be opened by clicking on the “A” at the top right of the bar
chart.

Figure 5.16: The menu containing workflows that appears after pressing the “A”
in fig 5.15.

67

5. Process

Figure 5.17: The content of the menu in fig 5.16 has changed to the actual workflow
that can be performed on the visualisation.

When constructing these wireframes, the following guidelines were considered:

• G7 Identify the different scopes that users want to apply an action to and offer
the opportunity to apply actions to each scope, including a single instance. In
this case, the application user can choose to act on the whole visualisation or
just some data points. See fig 5.17.

• G8 The dashboard screen estate is precious, it should primarily contain visual-
isations. The workflows that can be applied to a visualisation are placed in a
hidden menu to not occlude any space.

• G11 The user should be able to navigate, with ease, within and between
program contexts and in The Product.

Including several pages. In this scenario, the workflow spans over several pages in
the application. That means that the workflow has a set of tasks that the application
user should, or have to, do. These tasks are spread over one or more pages in the
application, and in this case, there are several pages. The application user can always
view the right-side and the bottom panel throughout the workflow. This can be
seen in fig 5.18. To acquire as little screen real-estate as possible, the panels can be
hidden by pressing the arrows.

The bottom panel shows where in the workflow the application user currently is. In
this example they are currently on step seven, indicated by both a progress indicator
and a text. The current step in the process can include several pages. Therefore, a

68

5. Process

list of the relevant pages for this step is listed to the left of the previous and next
buttons. When the step is completed, the user is allowed to press next and proceed
with step eight.

The right-side panel contains information about the current step, see fig 5.18. In
this panel, the application user can attach or fill in the required information for the
current step. This panel is created by the application builder.

Figure 5.18: A workflow that spans over several pages.

In this scenario, the following guidelines were considered:

• G1 The user should not feel lost in an application. As can be seen at the
bottom of fig 5.18, there is a marker placed where the user is in the process.
There is also a text that tells where the user is with numbers beside.

• G8 The dashboard screen estate is precious, it should primarily contain visual-
isations. The panels that belong to the workflow are collapsible, indicated by
the arrows on the edges of the panels.

• G11 The user should be able to navigate, with ease, within and between
program contexts and in The Product. The bottom panel shows pages that
the user is allowed to go to in the current step. There is also a previous and
next button, that takes the user to the previous and next step in the workflow
respectively.

Finally, how to set whether a workflow is going to be a workflow that spans over
several pages in an application, or if it is attached to a visualisation, was ideated.
The lack of overview in an application building perspective in the current version of
The Product was perceived as an issue. That, combined with the existing successful

69

5. Process

data canvas in The Product, led to an idea of providing an overview of all the existing
workflows. This overview has a similar appearance as the data canvas to make it
familiar to users and stakeholders. This wireframe feeds two purposes; it is the
beginning of creating a workflow, and it provides an overview of all the workflows.
The wireframe can be seen in fig 5.19.

Figure 5.19: An overview of workflows.

As there is currently a clear distinction between two different kinds of workflows, and
they are acting on the same overview, they had to be named. The workflow attached
to a visualisation is called a Visualisation Flow, and the workflow that spans over
several pages an Analysis Flow.

As mentioned, how to set whether a workflow will be an analysis flow or a visualisation
flow can be set in this wireframe. At the left of the screen, there is a panel with
different contexts (see fig 5.19). At the top of the panel, the application builder can
choose to create an analysis flow. Below, all the visualisations that are a part of the
application created earlier are shown. These are all the contexts where a workflow
can act.

These contexts can be dragged and dropped onto the canvas to the right of the
screen. When a context is dropped onto the canvas, the application builder can start
creating the workflow by pressing the button with a plus sign beneath or beside the
context.

The guidelines that were considered during the development of this wireframe was:

• G1 The user should not feel lost in an application. By providing the application

70

5. Process

builder with an overview of all the workflows and pages in the application, the
risk of feeling lost is lower. The “F” symbol at the low left of the screen, see
fig 5.19 is also highlighted during the workflow overview mode, acting like a
“You are here”-marker for the application builder.

• G11 The user should be able to navigate, with ease, within and between
program contexts and in The Product. By providing the application builder
with a set of contexts that has a clear distinction, the application builder can
easily switch between the visualisation and application context.

To summarise the prototyping phase, the workflow concept has been developed
further and from different perspectives. The parts that have been explored are how
it can look and behave for the application users, and how the application builders
can set the type of workflow.

5.3.4 Design Critique with a Data Scientist
The main purpose of this interview was to receive feedback about the usefulness of
workflows as a feature in The Product. Currently, the interviewed data scientist
works as a consultant at The Company and builds applications. Prior to this position,
he used The Product on a daily basis as a customer. His past and current experiences
allowed him to provide rich feedback.

The interviewee stressed that the workflow concept had to be flexible. According
to him, this characteristic is important since it is impossible to foresee all possible
use-cases for a concept of this size. Worksflows must be customisable, rather than
solving specific use-cases. We showed him how the workflow canvas with the drag and
drop blocks works. He was positive about it and recognised it from other software
he had used in his role as a data scientist. According to him, most data scientists
have used a canvas with blocks and connectors in their work. Besides the inherent
flexibility in this approach, he found it crucial to include flexibility in all aspects
of the design. When asked if he preferred visualisation flow panels to be inline or
floating, the essence of this answer was: Let users decide. In addition, he said that
the entire experience seems visual. He appreciated this since he often visualises
workflows when thinking about them. In summary, the prototype aligned with his
mental model of workflows.

The interview influenced coming work with the prototype. We decided to let the
application builder choose if the panel should be inline or insight. Until work with
the prototype was finished, we reminded ourselves that users should decide.

5.3.5 Guidelines v. 2
At the end of iteration two, the guidelines from iteration one were tested and evaluated
against the newly created prototypes. This was performed as a heuristic walkthrough,
with the guidelines as heuristics. A description of heuristic walkthroughs can be
found in section 4.3.6.1. As the main focus of iteration two was workflows, the

71

5. Process

guidelines were adjusted and reformulated to better fit workflows. They are still
concerning applications as a whole, but they are more thoughtful in the context
of workflows. In this iteration there is still ambiguity regarding the term “user”,
meaning that “user” can refer to both the application builder and the application
user. When the guidelines were created in Miro, an attempt of creating tags that
were either directed towards The Company or the application builders was made.
The guidelines from Miro can be seen in Appendix C. The reformulations in these
guidelines were made as a way of clarifying the purpose of the guideline. The new
guidelines were stated as follows:

G1 Consider existing guidelines for User Experience. Follow Nielsen’s 10
heuristics [89] and consider publishing The Products existing principles.

This guideline was added as an attempt to not write other guidelines regarding
user experience that are not specific for applications that are built in an
analytics platform.

G2 Strive to empower domain experts as much as possible without re-
quiring them to write custom code. The Product should consider incre-
mental learning.

This guideline is based on “G3 For the design of the applications structure:
keep the required amount of non-domain coding to a minimum.” from guidelines
v.1 and “G6 Customisation functionality should consider The Gentle Slope of
Complexity” from guidelines v.0. It was reformulated to cover more cases of
supporting the users that do not write custom code.

G3 Some desired behaviours will always require coding to be accom-
plished. Consider making it possible to integrate external systems inside The
Product / connect to external systems. Consider to make pre-made components
customisable through code.

This guideline was kept from guidelines v.1 but reformulated, see “G9 Some
users will always want to code: follow best practices for code development
environments.” It was reformulated

G4 ‘Offer features on demand’ / Different sections with functionality
should be flexible (resize, hide/collapse). Hick’s law: the time it takes
for a person to make a decision as a result of the possible choices he or she has:
increasing the number of choices will increase the decision time logarithmically.
Consider enabling the users to put their content both integrated in visualisations
and dashboards, as in collapsible menus.

This guideline was kept from guidelines v.1 but reformulated, see “G8 The
dashboard screen estate is precious, it should primarily contain visualisations.”
It was reformulated to focus more on how screen real-estate can be saved,

72

5. Process

rather than conveying that it should be saved “somehow”.

G5 The system should strive to always keep the user (passively) in-
formed. Analytical software is often large and feature rich. Useful information
during a use case should be kept as close as possible to the current workspace.
Offer modeless confirmations after an action (Saved etc.) Communicate a users
position within process and its status.

This guideline was kept from guidelines v.1 but reformulated, see “G11 The user
should be able to navigate, with ease, within and between program contexts and
in The Product.” It was reformulated to cover more cases than just navigation.
This guideline emphasises the importance of keeping the user informed in every
way, rather than just in the navigational aspects.

G6 Consider the behaviour of objects and the information presented
about them (reusability).

This guideline was kept from guidelines v.1, see “G7 Identify the different
scopes that users want to apply an action to and offer the opportunity to apply
actions to each scope, including a single instance.” It was reformulated to cover
all the information that users get about objects, not just what actions can be
applied and in which scopes.

G7 Consider the relationship between tools and objects.

This guideline was kept from guidelines v.1 but reformulated, see “G6 The
Product’s ontology must be designed with consideration to the user.” It was
reformulated to focus more on the relationship between tools and objects and
not what the tools and objects are.

G8 Consider keeping relevant actions as close as possible to an object.

This guideline was kept from guidelines v.1 but reformulated, see “G10 The
distance between program functions that are often used together should be
short.” It was rewritten for clarity.

G9 Consider to support the possibility to replicate and record activities
done in relation to an analyses.

This guideline was kept from guidelines v.1 but reformulated, see “G5 The
user should able to create custom workflows without the need to code.” It was
reformulated to not only focus on workflows. It was discussed during the user
interviews in section 5.2.1 that it is sometimes hard to convey to others what
has been done in an application and why. Therefore, being able to do that in
some way is covered in this guideline, besides just workflows.

73

5. Process

G10 Program users seldom work alone, consider the needs users have as
a group

This guideline was kept from guidelines v.1 but reformulated, see “G4 The
Product should support collaboration”. It was reformulated to focus on the
users as a group, rather than to support collaboration in The Product in “some
way”.

G11 Change by others should not come as a surprise for a users, com-
municate changes by default. As an application grows, change should be
visible from many levels, and especially from an overview perspective (summary
of changes since last usage etc.)

This guideline was added in this iteration as a consequence of the guidelines
regarding collaboration.

G12 Many users are not professional designers and could benefit from
context aware help (with design). To avoid crowding applications with
features, consider to provide pre-made templates and suggestions on how to
structure large applications. Offer help in close proximity to where the user
currently works. When offering help, avoid having users feel incompetent.
Consider language such as “a suggestion to find out more” etc.

This guideline was kept from guidelines v.1 but reformulated, see “G2 The
user should be able to achieve a desired look and feel.” It was reformulated as
we got feedback from The Company that the users already can achieve their
desired appearance. This puts more focus on the fact that many users are not
professional interaction designers, and would benefit from support in those
manners.

5.4 Iteration Three: Create a Coherent Concept
The purpose of the final iteration was to finalise the concept of workflows while
also incorporating most of the guidelines into the final prototype. At this point,
the workflow concept had been worked on from several different perspectives. The
missing pieces were how all the perspectives act together in a final prototype. The
last perspective that ties all the previous prototypes together is how a workflow can
be constructed, which is described in section 5.4.1.

After the last perspective of the workflow concept had been constructed, the prototype
was tested with users, described in section 5.4.2. After that, a design critique session
with a product manager and an interaction designer was conducted, described in
section 5.4.4. All the feedback and takeaways from the mentors at The Company,
user tests, and design critique were taken into account when creating the last version
of the guidelines, see section 5.4.4.

74

5. Process

5.4.1 High-Fidelity Prototype of the Workflow Mode
In the last iteration of the prototypes, there was a need to create a coherent scenario
for creating and performing a workflow. The missing pieces were how the process of
creating a workflow is manifested. At this stage, how the workflows can be executed
by an application user and how the application builder can manage and set what
kind of workflow they want have been explored. This last prototype was meant to
glue the pieces together. In this final scenario, the application builder has already
built an application in The Product but not created any workflows yet.

The creation of a workflow starts at the overview of workflows, which can be seen in
fig 5.20. When the application builder enters the workflow mode for the first time,
they are prompted with a dialog that contains information about how to use the
canvas. If the application builder chooses to press “Show me”, an animation that
drags a context block from the side panel onto the canvas is executed. If they press
“Got it”, the dialog will disappear.

Figure 5.20: When the application builder enters the workflow mode for the first
time.

To start building a workflow, a context from the left panel is dragged onto the canvas.
When the context is dropped, a plus sign will appear beneath or beside the context,
see fig 5.21. When the plus sign is pressed, the application builder gets redirected to
the edit mode of a workflow, see fig 5.22. An important notice is that the left panel
changes when changing mode in the workflow mode. For example, in this change of
mode, the icon that is emphasised changed from the overview to the pen, see fig 5.21
and 5.22.

75

5. Process

Figure 5.21: A visualisation is chosen as a context for the workflow.

Figure 5.22: The workflow creation view.

The idea is that the application builder should be able to create a visualisation flow
through a WYSIWYG interface. The left-side panel seen in fig 5.22 contains two tabs;
one for information related to the currently chosen visualisation flow, and one for
adding new components in the visualisation flow. The currently chosen visualisation
flow can be changed via a drop-down menu.

76

5. Process

When adding components to the visualisation flow, the desired component is first
chosen from the panel and then dragged and dropped onto the blank canvas. This
can be seen in fig 5.23, where a “Heading”-component has been chosen. The idea is
that some default components should be provided by default, as text and buttons. If
the application builder requires more specific or specialised components, they can
create them by themselves. This has not been explored in the prototypes though,
but one idea was to provide a WYSIWYG interface for that as well. In fig 5.24,
the application builder has continued the visualisation flow and created some own
components, which is reflected in the left-side panel. All the custom components can
be shared via the library to avoid repetition and duplication. In fig 5.25, one can see
that the components that have been placed in the visualisation flow are reflected in
the hierarchical list in the left panel. If the application builder wants to dry-run the
visualisation flow as an application user, they can press the eye beneath the pen in
the left-most panel.

Figure 5.23: A “Heading”-component has been added to the visualisation flow.

77

5. Process

Figure 5.24: More components have been added to the visualisation flow.

Figure 5.25: More components have been added to the visualisation flow and their
structure are reflected in the left panel.

78

5. Process

To manage screen real-estate has been an important consideration throughout the the-
sis. In the design critique session described in section 5.3.4, the data scientist stressed
that sometimes visualisation flows are the purpose of an application. Therefore, it is
required to be able to emphasise them more than placing them in a hidden menu. To
accommodate this, the application builder can now decide whether the visualisation
flow should be placed in the hidden menu, inside the visualisation or both. This can
be seen in fig 5.26 and 5.27. In fig 5.26, the application builder has decided that the
visualisation flow can be placed in both ways. When doing so, setting the initial
position is required as well. If this is the case for the application user, they can drag
and drop and “dock” the visualisation flow inside the visualisation.

Figure 5.26: The visualisation flow is set to be, by the panel to the left, inside the
menu at the top right of the visualisation (the light bulb icon).

79

5. Process

Figure 5.27: The visualisation flow is set, by the panel to the left, to be able to be
set both in the menu at the top right of the visualisation, and inside the visualisation.
The initial position is set to be inside the visualisation.

A thought during this iteration was: “What if a visualisation with its visualisation
flows is a part of both an application and an analysis flow?”. We thought that some-
times the things that are applicable to do with a visualisation changes depending on
the context. Therefore, the visualisation flows that are associated with a visualisation
can be configured differently when the visualisation is a part of an analysis flow and
just by itself in an application.

In fig 5.28, the application builder is hovering over the visualisation in the analysis
flow. Edit and preview buttons get visible, and the edit button is pressed. In fig
5.29, the application builder has been redirected to the edit view of the visualisation
flow when it is a part of the analysis flow. The arrow at the bottom opens up the
bottom panel of the analysis flow. To the right, there is a panel for the step where
this visualisation flow exists within the analysis flow. This panel can be edited in
the same way as the visualisation flow, by pressing the “Edit panel” in the top right
corner.

80

5. Process

Figure 5.28: The application builder is hovering over the visualisation that is inside
the analysis flow. This is the same overview as in fig 5.21, but with an analysis flow
added.

Several guidelines were considered during this prototyping phase. As this was the
last iteration, the guidelines and the prototype were updated simultaneously. Hence,
they inspired each other during their development process. This will be clear in the
final set of guidelines, described thoroughly in section 6.3. However, the considered
guidelines from version two were:

• “G2 Strive to empower domain experts as much as possible without requiring
them to write custom code”. This guideline is the core of the whole workflow
mode. An example of this can be seen in fig 5.23, where components can be
dragged and dropped via a WYSIWYG interface.

• “G3 Some desired behaviours will always require coding to be accomplished”.
This guideline is considered in fig 5.25, where the application builder is provided
with an overview of all the scripts that are active in the current visualisation
flow. These scripts can be attached to the components or the whole visualisation
flow. Hence, making it possible to execute calls to external systems from within
a visualisation flow.

• “G4 ‘Offer features on demand’ / Different sections with functionality should
be flexible (resize, hide/collapse)”. All the workflows are possible to resize and
hide. In fig 5.26, for example, the visualisation flow can be chosen to be either
inside the visualisation or placed in the menu.

• “G5 The system should strive to always keep the user (passively) informed”.
Where the application builder currently is in the workflow mode is communi-

81

5. Process

Figure 5.29: The edit mode of the visualisation flow when it is within an analysis
flow.

cated by the left-most panel. In fig 5.28, for example, the application builder
is in the overview mode. Information regarding how to use the workflow mode
is communicated by the dialog in fig 5.20.

• “G6 Consider the behaviour of objects and the information presented about
them (reusability)”. This guideline is considered mainly in fig 5.24. In the
left panel, information regarding the current step in the visualisation flow is
presented for the user. The components in that figure can be reused by saving
them to the library.

• “G9 Consider to support the possibility to replicate and record activities done
in relation to an analyses”. This is the workflow concept per se an example of.

• “G12 Many users are not professional designers and could benefit from context
aware help (with design)”. By providing the application builder with premade
default components, they get supported with the design. This can be seen in
fig 5.23.

5.4.2 Usability Tests
As it was difficult to acquire experienced users of The Product to perform moderated
user testing with, user tests on relatives and friends were conducted instead. The
participants’ backgrounds differed, but none of them had any prior experience with
The Product at all, nor similar software. Two of the participants are students of the
master’s program Interaction Design and Technologies at the Chalmers University of
Technology. The test was conducted on five persons.

82

5. Process

The test followed a moderated usability test structure. As the participants had
no experience of The Product, they were introduced to it before the tests started.
Also, because of the lack of experience, the questions were mostly related to how the
participants felt at certain stages and how they thought some interactions would be
performed. The questions can be found in Appendix D.

5.4.3 Takeaways from the Usability Tests
The main takeaway from the usability tests was that the concept of workflows is
difficult to grasp for a user with no experience of The Product. Therefore, during
the tests, it was sometimes hard to differ between poor design choices and just
uncertainty of the concept and its intentions over all.

Something that could be verified during the tests was design choices regarding
guideline “G5 The system should strive to always keep the user (passively) informed”.
As the users were new to The Product, they required guidance to get an idea of the
intention of some views. For example, the dialog containing information on how to
use the flow canvas and its corresponding side-panel seen in fig 5.20, were proven
to be useful in all of the tests. This was also the case with the modeless feedback
regarding saving, seen in fig 5.18. Design choices regarding the same guideline were
also verified from a different perspective in the same wireframe. The users felt secure
about where they were, which objects were related to which, and where they could go.
An example of such a case can be seen in the progress indicator in fig 5.18. Moreover,
design choices regarding “G4 ‘Offer features on demand’ / Different sections with
functionality should be flexible (resize, hide/collapse)” were also verified to be of
value for the users. Examples of those design choices can be seen in fig 5.26, where
the application builder can decide where a visualisation flow should be placed.

Some design choices that were to be considered for the future were some colours of
the progress indicator in fig 5.18. Some participants thought they were too alike,
which confused them. Additionally, the preview and edit buttons, see fig 5.22, took
some time to find and should be considered placing in a different order.

5.4.4 Design Critique
The final prototype was presented for both a product manager and an interaction
design working at The Company for a design critique session. The main purpose was
to get feedback on the concept of workflows as it is constructed in this prototype,
and whether it has a place in The Product for the future. As it is a completely new
“mode” in The Product, feedback on how well it is understood by someone with
experience in The Product was also welcomed.

Overall, both participants thought that the low-code style of the concept felt modern.
They both expressed that it has a place in The Product, but there is a long way to
get there. One idea that was presented was that, if the workflow mode would be
implemented in The Product, it would initially only be supported by the API. That

83

5. Process

would test the concept on the more experienced users of The Product first. Then, it
could maybe be realised in a GUI fashion.

Another thing that was discussed was the reusability aspects of workflows. As the
workflows are currently created, the context of the workflow is decided first. This
makes the workflows very specific and bound to a visualisation. Even though they
would be sharable in theory, it may not be any value in sharing them.

In summary, both participants liked the concept. But, as it is just a concept, several
areas still causes questions if implemented in a real product.

5.4.5 Guidelines v. 3
In this iteration, the guidelines address the ones who are supporting application
builders. In the context of this thesis, this is The Company. They are all reformulated
as an exhortation towards The Company, and they all strive to support the application
builder in creating applications with their desired user experience. A final, more
descriptive version of the guidelines, can be found in section 6.3.

G1 Help application builders to follow fundamental design principles by
offering good defaults, templates and automatic recommendations

This guideline was kept from guidelines v. 2 but tweaked and reformulated.
See “G1 Consider existing guidelines for User Experience”. It was reformulated
to be more precise and to give more context on when and how.

G2 Let the workspace contain unobtrusive contextual help with clear
entry points to external company resources

This guideline was kept from guidelines v.2 but reformulated, see “G5 The
system should strive to always keep the user (passively) informed”. It was also
separated into two guidelines, this one and “G9 Applications should have a
default navigation structure”. It was reformulated as it was discussed in the
interviews in section 5.2.2 that The Company has many external resources and
often gets requests about features that are already existing.

G3 Make application development less dependent on custom code by
providing no-code development tools

This guideline was kept from guidelines v. 2 but reformulated, see “G2 Strive
to empower domain experts as much as possible without requiring them to
write custom code”. That guideline was separated into two guidelines, this one
and the guideline below. This guideline was reformulated to put focus on the
application building process, not overall usage of The Product.

G4 Together, the tools for application building should adhere to The

84

5. Process

Gentle Slope of Complexity

This guideline was kept from guidelines v.2 but reformulated, see “G2 Strive to
empower domain experts as much as possible without requiring them to write
custom code”. That guideline was separated into two guidelines, this and the
one above. This guideline was reformulated and taken back from the initial set
of guidelines, as it focuses on how the tools of the application building process
should be, not what they are.

G5 Support application builders who customise through code

This guideline was kept from guidelines v.2 but reformulated, see “G3 Some
desired behaviours will always require coding to be accomplished”. That guide-
line was separated into two guidelines, this one and “G12 Support applications’
ability to communicate with external systems”. This guideline was reformulated
to put more focus on the customisation capabilities in general of custom code.

G6 Provide application builders with an adaptable workspace

This guideline was kept from guidelines v.2 but reformulated, see “G4 ‘Offer
features on demand’ / Different sections with functionality should be flexible
(resize, hide/collapse)”. It was rewritten for clarity purposes.

G7 Allow when users create application components, the process should
follow What You See Is What You Get

This guideline has its origins in “G2 Strive to empower domain experts as much
as possible without requiring them to write custom code”, which got separated
into two guidelines. This one and “G3 Make application development less
dependent on custom code by providing no-code development tools”. This
guideline was added to emphasise that the low code tools should follow the
WYSIWYG principle.

G8 Have designated locations in the GUI where application builders can
view and manage related groups of elements in an application

This guideline was kept from guidelines v.2 but reformulated, see “G6 Con-
sider the behaviour of objects and the information presented about them
(reusability)”. It was reformulated to clarify the purpose of the guideline.

G9 Applications should have a default navigation structure

This guideline was partly kept from guidelines v.2, see “G5 The system should
strive to always keep the user (passively) informed”. That guideline was
separated into two, this one and “G2 Let the workspace contain unobtrusive
contextual help with clear entry points to external company resources”. This

85

5. Process

was made as both the navigational parts and the supportive parts of the original
guideline felt equally important, and not directly related.

G10 Offer visual and system support for collaborative application build-
ing

This guideline was kept from guidelines v.2 but reformulated, see “G10 Program
users seldom work alone, consider the needs users have as a group”. It was
reformulated to clarify when collaboration should be supported.

G11 Allow application builders to create, store and share custom work-
flows in multiple application layers

This guideline was taken back from guidelines v.1 but reformulated, see “G5
The user should able to create custom workflows without the need to code”.
It was reformulated to emphasise that the workflows should be able to act in
different contexts. “Create, store and share” were added to focus on the whole
workflow activity, not only the creation.

G12 Support applications’ ability to communicate with external systems

This guideline has its origins in “G3 Some desired behaviours will always
require coding to be accomplished”, which got separated into two guidelines.
This one and “G5 Support application builders who customise through code”.
This guideline was added to emphasise that the application should be able to
communicate with external systems. This is currently done via custom scripts
in The Product, which may not be the general case.

86

6
Results

An interactive prototype and a set of twelve guidelines are the result of this thesis
and its iterative design process. Both products received minor adjustments after the
final iteration to clarify their purpose further. Their intention is to be a source of
valuable information in future development of analytical software.

6.1 Workflows
When users develop custom analytical applications, the ability to create workflows
helps them implement an applications desired experience. Conceptually, workflows
capture the frequent need to led application users through a sequential paths. Flows,
short for workflows, become become an additional layer of interaction, on top of the
default graphical user interface (GUI). This concept uses two kinds of workflows:
Analysis flows and Visualisation Flows. How workflows exist in an application and
relates to the application’s ontology is illustrated in fig 6.1. In essence, Analysis
workflows can span multiple application pages. A visualisation workflow can be
connected to one or more visualisations and they can also be part of analysis workflows.
Each analysis flow runs as a separate instance in an applications and the application
builder decides which flows the included visualisations contain. The behaviour of
both workflows is affected by changes to visualisations, their linked data, and vice
versa.

As a general concept, workflows have many possible use cases. The prototype used
an insurance company as a potential user. From now on, this section will refer to a
figurative clinical study to explain how the concept works. Healthcare staff could use
a workflow to record patient data and monitor their health. An application builder
would add suitable conditions to the workflow. Additional sequence can be triggered
if a staff member inputs an alarming value, possibly below the accepted minimum.
An alert telling staff to not administer any additional medication could appear. The
flow would then guide the nurse through a series of appropriate instructions. An
entry in the patient journal would likely be required, or contacting a doctor. All
this interaction can happen inside an application since it connected external systems.
Generally, analysis workflows can span several pages, be linear or not, and have
optional and required steps.

87

6. Results

Figure 6.1: The ontology of an application and the relations between pages,
visualisations, visualisation flows and analysis flows.

Later during the study, a nurse examined a visualisation showing patients’ heart rate
during the study. The nurse observes a decline by 170 beats, an unlikely reading.
The workflow asks the nurse to mark the possible error in the chart. As required,
the value gets a written comment, the nurse believes the value is an incorrect entry.
The workflow adds the comment as metadata in the source database. This scenario
is an example of how a Visualisation Flow can be used in analysis flow, where an
action can be performed directly on the source data used by a visualisation.

Each analysis workflow can modify an application’s default GUI and its content:
active visualisation flows or any user-made elements, such as paragraphs or buttons.
The inclusion of elements in the workflow sections also leaves more space on the pages
for visualisations to use. An application can be layered with an arbitrary number of
workflows, and application builders can place components and information inside
the workflows as they wish.

As previously mentioned, analysis flows can span over several pages in an application
and be both linear and non-linear. Figure 6.2 demonstrates an example of how a
sequence in an analysis flow could look and behave for a user. In this example, the
application is for an insurance company’s call centre. The person using the workflow
is supposed to check the customer support queue and report findings to the manager
via the panel to the right. Reporting the queue length is required, and the person
cannot proceed until it’s done. In figure 6.3, the person has reported the current
length and can proceed. The bottom and the right panel are collapsible, and follow
the user throughout the flow. The bottom one shows available pages for the current
step (non-linearity) and where the user is in the analysis flow. Further explanation
of all the interactions with this screen can be found in 6.2.4.

88

6. Results

Figure 6.2: An analysis flow for a call centre.

Figure 6.3: The steps required to continue the analysis flow are completed and the
application user is allowed to proceed.

Figure 6.3 also shows a visualisation flow, attached to the visualisation “Live data:
Calls in queue to customer support”. A user selects an condition, and tells the flow
what script to execute when a condition is met. In this example, the condition is
evaluated against the length of the queue. Above the title of the section, the user
can return to the start page, it has all the flows that are available for use with this

89

6. Results

visualisation.

An alternative access point for visualisation flows is shown in figure 6.4. Here the
flows are placed in an existing menu called “The insight menu,” opened via the light
bulb at the top right of the visualisation. All data in the visualisation is selected
by default. Users can select specific values, in fig 6.5, a user wants to write back
metadata to the visualisation’s source data and selects the appropriate visualisation
flow “Edit source data”. The user selects a single data point, possibly a deviation,
and attaches a comment.

Figure 6.4: The menu containing all the visualisation flows is open.

90

6. Results

Figure 6.5: The chosen visualisation flow is “Edit source data” and the user has
selected one point to comment on.

6.2 Prototype
The final concepts demonstrate how application builders would construct workflows
without having to write scripts. Workflows can either be part of visualisation or span
across multiple application pages; these two levels are referred to as Visualisation
Flows and Analysis Flows. A more detailed description of both can be found in 6.1.

As a whole, the prototype intends to show that software can support both end-user
development and traditional software development - while remaining user-friendly
for both groups. As reflected in the guidelines, the prototype also acts as an example
of how the guidelines can be translated into GUI functionality. The secondary goal
of the prototype is to be a source of inspiration in future developments in analytical
software. Patterns and approaches, like block-based building, could likely be helpful
in additional contexts.

Adobe XD was used to create the design, from low-fidelity to an interactive high-
fidelity version. The design developed during three iterations and details about each
iterations are described in chapter 5.

6.2.1 Entering Workflow Mode
Figure 6.6 shows one page of an application built inside The Product. At the bottom
left, there is a button with a stylised “f” and users access the workflow canvas by
pressing it. In figure 6.7, the application builder has entered the workflow mode. A
panel with introductory information about the workflows on top of the blank canvas,

91

6. Results

if it is the first time a user accesses the environment. The left panel shows where the
application builder is currently. At this moment, the overview mode is selected.

Figure 6.6: A page in an application. The button at the bottom-left is the button
for the workflow mode.

The collapsible side panel with the heading “New flow” contains various context
blocks from which a workflow can start. The top block is used to begin an analysis
flow (application-level), others to work with a visualisation. Application builders
can drag and drop these blocks onto the canvas, they can be placed anywhere on the
scrollable canvas. It can also hold several workflows. In figure 6.8a, the visualisation
named “Live data: Calls in queue to customer support” is selected, and in figure
6.8b, the entire analysis After the context block has been dropped onto the canvas,
a plus sign appears next to it. If the application builder presses the plus sign, they
will be redirected to the flow creation view.

92

6. Results

Figure 6.7: The workflow creation overview, entered for the first time.

(a) A visualisation is chosen as
the context an dropped onto the
canvas.

(b) The whole application is cho-
sen as the context an dropped onto
the canvas.

Figure 6.8: Different contexts are dragged and dropped onto the canvas.

6.2.2 Constructing a Visualisation Flow
When the application builder presses the plus sign on the chosen context, they get
redirected to the flow construction view, and the button with a pen is in an active
state, see fig 6.9. The controls for the selected workflow in the chosen visualisation are
shown in the left panel. The top heading shows the currently selected visualisation,
users simply click on another one to switch. The current workflow can be changed
by pressing the drop-down menu with the text “Conditional action”, also the name
of the current workflow.

93

6. Results

Figure 6.9: The first view when creating a visualisation flow.

The workflow editing panel has two tabs, one for behavioural and content adjustments
in the current step, and one for adding components to its GUI. In figure 6.10, step
one is selected. The panel is updated automatically and displays information about
this step: included components and their relation.

Figure 6.10: Step one of the workflow is pressed.

When pressing the “Add components” tab in the side panel, new components can be
added to the canvas. In figure 6.10, the content of the side panel has changed to show

94

6. Results

all available components. There are default components and custom components.
Application builders can create custom components and use them in other applications
via The Product’s cloud-based file system, commonly called the library. Besides
custom components, other components used in this page and in the application are
shown as well. Adding components follows the What You See Is What You Get
(WYSIWYG) interface style: components are dragged from the side panel and then
dropped onto the canvas. This approach is demonstrated in figure 6.11, where a
“Heading”-component has been dropped onto the canvas.

Figure 6.11: A “Heading”-component has been dropped onto the canvas.

The application builder can decide how a visualisation flow positions itself in an
application page. In figure 6.12, the visualisation “Customer claims during a week”
is placed next to the visualisation, this is referred to as inline placement. The
application builder can edit placement in the side panels “Behaviour” section. In
figure 6.13, the application builder wants the visualisation to be available both
inline, as in fig 6.12, and floating (right-most icon). When both modes are selected,
application users decide how it appears. This approach lets application users switch
freely between the two placement modes. When float mode is active, applications
users access flows via the light bulb menu at the top-right of the visualisation.
Consequently, users can hide the flow panel.

95

6. Results

Figure 6.12: The visualisation flow placed inside the visualisation.

Figure 6.13: The visualisation flow can be positioned both besides the visualisation
and in the light bulb menu, accessed via light bulb icon in the top-right corner of
the visualisation.

Besides changing the placement of the visualisation flow and viewing the components
used in a step, builder can also access custom scripts. They are placed under the
“Scripts” title and shown at the bottom left of fig 6.13. The scripts can either be
attached to components in the visualisation flow or be used to set the behaviour of
the flow itself.

96

6. Results

6.2.3 Editing an Analysis Flow
Visualisation flows belong to visualisations, and visualisations are placed in pages.
An analysis consists of at least one page. Therefore, visualisation flows can exist
within an analysis flow, section 6.1 provides a more comprehensive explanation.
Figure 6.14 shows the editing of a visualisation flow that is part of an analysis flow.
To get to this view, the application builder has first created an analysis flow in
the canvas. One step of this analysis flow, which can be viewed from an overview
perspective in fig 6.15, contains a page where the visualisation flow exists. However,
details regarding the creation of each step of an analysis flow are excluded from this
prototype. To edit the visualisation flow in step “Analyse customer support” of the
analysis flow, the application builder presses the pen beneath the visualisation flow,
shown in fig 6.15.

Figure 6.14: The visualisation flow in edit mode when it is a part of an analysis
flow.

Figure 6.15: The overview of a complete analysis flow. The application builder
hovers over the visualisation flow, which makes the eye and pen icon appear.

97

6. Results

Multiple contexts can be changed during the editing of an analysis flow. The builder
can edit visualisation flows that are part of the analysis flow, and the collapsible
side panels with information about the current step. Switching to edit is done by
pressing the “Edit panel” text at the top right. The panel would then be edited
similarly to the visualisation flow, described in section 6.2.2. The right-side panel is
always available for an application user when performing an analysis flow, and is
collapsible in the same way as in fig 6.14. If the application builder would like to
test their workflows, they can press the “eye”-icon in the left-most side panel. They
can also skip the edit mode and test the workflow directly by pressing the “eye”-icon
in fig 6.15.

6.2.4 Testing and Using a Workflow
There are two ways to activate a workflow. It can be done either by pressing the
“eye”-icon in the left-most panel in fig 6.16 or by starting it directly in the application.
When running the workflow from the “eye”-icon, it triggers a test version. No actions
are saved, this is indicated by the window in fig 6.16. Application builder can
test how their workflow will look and behave, from an application user perspective,
without any consequences.

Figure 6.16: The application builder has entered the preview mode of an analysis
flow. This window reminds the application builder that no changes will be saved.

The application builder has, in preview mode, opened both panels belonging to the
analysis flow in fig 6.17. The bottom panel shows the application user: the name
of the analysis flow, the name of the current step, how many steps there are and
how many left. Progress is also communicated visually by the progress indicator. In
fig 6.17, the current step is not completed, indicated by “Next” buttons disabled
state and the empty rectangle in the progress indicator. Available pages enables the
analysis flow to not be completely linear. Section 6.1 describes their role in more
detail.

98

6. Results

Figure 6.17: The analysis flow in preview mode with both panels open.

During some steps, application users have to complete the required tasks before
proceeding. Figure 6.18 shows how the application uses modeless feedback when
users have completed a step. The “Next” button switches from grey to green after
completion.

Figure 6.18: The steps required to continue the analysis flow are completed and
the application user is allowed to proceed.

99

6. Results

6.3 Guidelines
Those who develop analytical software with the possibility to create custom applica-
tions are the intended audience for these guidelines. The users who create applications
are referred to as application builders, or builders for short. Usually, this person
works as a data scientist or a similar position. When analytical software applies
these guidelines, it becomes more likely that builders will have the user experience
they desire. An additional intention is to increase the likelihood that builders can
achieve their goals regarding user experience in their custom applications.

These guidelines have been influenced by captured insights from users and experts,
multiple End-user development perspectives, theory from Information Architecture
and more.

Guidelines

1 Help application builders to follow fundamental design principles

2 Let the workspace contain unobtrusive contextual help

3 Provide no-code development tools

4 Consider The Gentle Slope of Complexity

5 Support application builders who customise through code

6 Provide application builders with an adaptable workspace

7 Display a GUI component’s final state during editing

8 Provide places that show all related application elements

9 Applications should have a default navigation structure

10 Offer visual and system support for collaborative application building

11 Allow application builders to create, store and share custom workflows in
multiple application layers

12 Support applications’ ability to communicate with external systems

100

6. Results

Guideline 1

Help application builders to follow fundamental design
principles

Offer good defaults, templates and automatic recommendations.

This guideline suggests two kinds of software support that could support application
builders with design. Preventive support could stop users from making undesired
design decisions. Reviewing support could help users improve existing application
design. The support could be packaged into optional plugins/optional modifications.
This approach allows builders to decide what type of design support they need.
Design support as an integrated part of the product would probably be more tedious
to develop, compared to separate modifications.

While some applications builders have design knowledge, many lack it. As a conse-
quence, many struggle to follow essential principles, such as Nielsen’s 10 heuristics
[89] or the Gestalt Laws [93]. Builders may not have the tools to cope with grow-
ing applications, and as a result, dashboards can become crowded. The intended
navigation within an application could also become hard to maintain. Moreover,
applications sometimes lack a visual hierarchy and consequently become disorganised.
How this category of support could be expressed in The Product has already been
examined by a previous master thesis [94]. Custom components, such as complex
menus or filters, might fail to comply with common design conventions. In summary,
this guideline recommends two kinds of design support: preventive and reviewing.

Preventive support could keep the application builder from including poor design
decisions. One way to implement this support is by offering individual components
with suitable defaults, and to offer templates for their behaviour as a group. By
promoting an active community, it would also be possible to let customers create,
share and use templates. Reviewing would be support that aims to correct poor
design choices after they happened.

To offer software-based design feedback will be hard for some dimensions of design.
Still, many tools for evaluation already exist. Many use simple mathematical
equations to, for example, assess the accessibility of a GUI. Readability, colour
contrast and colour-blindness are some these dimensions.

How to achieve it

Consider to publish a design system or a having single location for design
resources. An example of this can be seen in Tableau’s extension page, where they
are providing design principles and guidelines for creating extensions that are similar
to Tableau [14].

Offer optional design support plugins. An example of a function can be seen

101

6. Results

in figure 6.19.

Figure 6.19: Webaim’s contrast checker - one of many online tool available for
evaluation of text and background colour combinations [95].

Guideline 2

Let the workspace contain unobtrusive contextual help

Provide rich help and clear entry points to external company resources in the
workspace.

Since many application builders are not professional software developers, they need
support with development. Regarding the help a program could offer, Brewer et al.
writes that help systems, e.g. tool-tips and an FAQ, should be available at multiple
levels. She also describes a correlation between the amount of information a system
contains and the level of effort required by users to access it. Furthermore, sovereign
desktop applications, described in section 3.8, should contain extensive modeless
feedback. To conclude, accessing the information inline as, for instance, a tool-tip is
easier than visiting an online community.

Many programs include direct access points to extensive help in brief help systems,
to decrease the effort needed to obtain more information. By including a low effort to
possibly read more, users do not have to begin a separate web search. Having to start

102

6. Results

a separate activity could break the user’s flow within The Product. When viewing
the users who build applications as developers, flow is shown to be a particularly
contributing factor to their experience. This can be read more about in section 3.3.1.

How to achieve it

Provide contextually relevant information with entry points to external
resources provided by The Company. By bringing existing information into
the workspace, users are more likely to know where they can look for help.

Do not frame the support directly as help, rather as information. Many
users avoid information strongly labelled as help since it makes them feel stupid [96].

Sometimes show first-time users large modeless help panels A large modeless
panel can, with minimal interruption, suggest a variation of resources directly in the
workspace.

Include a lot of visual elements to make information more appealing Let
informative material reflect The Product’s visual nature.

Rich in-line help

Figure 6.20: An example from the prototype, demonstrating how the GUI could
contain entry points to contextual help without becoming cluttered.

Large introduction panels These panels would appear automatically when the
user encounters a new mechanism in the software. Having a large visual element
could be beneficial. Its message would likely reach those who are quickly closes the
panel. Users who read it more thoroughly could learn the location of suitable official
resources about the mechanism.

103

6. Results

Figure 6.21: An example showing how users could receive information about
workflows.

Guideline 3

Provide no-code development tools

To make application development less dependent on custom code.

Some users of analytical software are unable to use programming as a tool for
application development due to insufficient technical knowledge. Others have the
knowledge, but want to avoid application development through code. This opinion
was discovered in the user interviews, see section 5.2.1. It can also be recognised in
the general programming community, among novice programmers or people with no
programming experience at all, according to end-user development (EUD) research
[33].

Another subject in the previously mentioned interviews was that some company
customers believe they should not let their data scientists program something unre-
lated to pure data analysis. In addition, custom code in some business areas requires
approval from external agencies before use. This leads to inefficiency, since the
approval process can be lengthy.

This guideline conflicts with G5 “Support application builders who customise through
code”, but G5 could be viewed as an complement of this guideline.

104

6. Results

How to achieve it

Allowing the application builders to create applications without having to program
the components is a way of realising this guideline. Default components like buttons
and menus could be provided, an example of this can be seen in fig 6.22 and in
fig 6.23. Providing this could reduce the copy and paste of eventual code snippets
between pages, and the applications would be easier to maintain in the long term.

Component-based building

Figure 6.22: Pre-made components that are provided by the software and can be
instantly utilised by an application builder.

Figure 6.23: Build web applications by pre-made components, this example is from
WebFlow [97].

105

6. Results

Guideline 4

Consider The Gentle Slope of Complexity

All together, the tools for application building should adhere to The Gentle Slope of
Complexity

The purpose of a gentle slope is to increase the users’ ability to adapt the software
they use, section 3.4.1 describes The Gentle Slope of Complexity in more detail.
Software with a smooth slope will allow more users to transition from novice to
experts adaptors. In the context of analytical applications, it means users first
create applications by ’clicking’ or drag and drop. In the end, they could grow to be
comfortable with scripting. This transition is made possible by offering a sequential
path towards the most complex adaption mechanisms/tools. Each point in the path
represents an increasingly complex mechanism. Adaption through drag and drop
could be the initial mechanism. Somewhere in the middle of the slope, users begin
to write simple CSS code. Finally, application builders could become able to use
scripting extensively.

When application builders have a goal that requires a mechanism they do not
understand, such as scripting, they often delegate the task to an appropriate expert.
Having to create the design through an external party will likely have a negative
impact on the quality of the end result and result in increased costs [35].

How to achieve it

Define the software’s slope. The slope represents the journey from novice to
expert for a core function in a program.

Figure 6.24: A draft of The Product’s slope. It shows that most users stop learning
when they need HTML / CSS to increase their adaptability.

106

6. Results

Consider Hick’s law

While working with an application, using the analytical software should require the
smallest possible mental load. Hick’s law [98] is a reminder of how easily options can
become straining. Application builders can focus their energy on the application,
when adjustments in The Product are straightforward. This consideration pairs well
with guideline “G5 Support application builders who customise through code”.

A curated set of options

Figure 6.25: An example showing how Firefox applied Hick’s Law in one of the
browser’s right-click menus [99].

Guideline 5

Support application builders who customise through code

Provide the possibility to edit and add custom code in applications.

Visual analytics is performed in several business sectors. Hence, the user group of
analytics software is diverse. The diversity of such a user group produces various needs
and requirements. A way of accommodating this is to provide highly customisable
software, which allows the users to set the desired appearance and behaviour that
their software needs. Customisable software is described in more detail in section 3.6.
The need for highly customisable software was highlighted during the user interviews
as well, see section 5.2.1.

This guideline is conflicting with “G3 Provide no-code development tools”. The idea
with this guideline is that every desired way of customisation is not predictable. To
still accommodate the customisation requirements, providing the application builders
with the ability to program the desired behaviours themselves is an option.

How to achieve it

107

6. Results

There are several ways of constructing customisable software. One way is to allow
the application builders to create their own scripts that can be executed by the
software. This, in combination with an API of the software that can be utilised in the
user-created scripts, makes it possible for the users to create almost any functionality
they want. An example of this can be seen in fig 6.26. Letting application builders
create scripts was emphasised as important during the interviews, especially by more
advanced users (see section 5.2.1). One could also allow the application builder to
edit pre-made components, as in “G7 Display a GUI component’s final state during
editing”, as HTML. An example of this can be seen in fig 6.27.

Keeping scripts available

Figure 6.26: Scripts created by an application builder are gathered in a side panel.

Allow pre-made components to be edited via code

Figure 6.27: A screenshot from The Product: HTML editing.

108

6. Results

Guideline 6

Provide application builders with an adaptable workspace

Provide the possibility to hide elements unrelated to visualisations.

In a visual analytics custom application, the objects in focus should be visualisations.
Therefore, it should be possible to place objects not directly related to visualisations
in hidden menus, collapsible menus, side panels etc. Sometimes the purpose of
an application may be the actions users take based on the visualisations though,
causing the action itself to be as important as the visualisation. To decide this as
an application builder was discovered to be of importance during user interviews,
see section 5.2.1. As the purpose of an application may vary, letting the application
builder decide what should be emphasised and where it should be placed is to consider.
Also, Brewer et al. wrote that when allowing users to create artefacts, they should
be provided with split-screen functionality. This is because users will resize their
windows to work on several tasks simultaneously, even though it is not supported.
Hence, it should be considered to support it natively.

How to achieve it

As above-mentioned, the application builders should be able to decide where to place
objects and the size of those objects. The objects could be allowed to be placed in, for
example, side panels and hidden menus, but also directly inside a visualisation. An
example of when an application builder can decide this is shown in fig 6.28. Another
example of when information that application users may want to hide to view the
visualisations in full screen can be seen in fig 6.29.

Collapsible panels

109

6. Results

Figure 6.28: The application builder can decide whether the visualisation flow
should be placed inside the visualisation or hidden in a menu.

Figure 6.29: A collapsible side panel in an analysis flow.

Guideline 7

110

6. Results

Display a GUI component’s final state during editing

The process of customising application components should follow What You See Is
What You Get.

What You See Is What You Get (WYSIWYG) is “a display generated by word-
processing or desktop-publishing software that exactly reflects the document as it
would appear in its finished state” [100]. In the context of application building, the
intention is that the application builder can see how the application will look like while
constructing it. Providing this interface style adds another layer of abstraction to the
application building process. Hence, making application building more approachable
to users with little or no programming knowledge [33]. A WYSIWYG interface
also decreases the cognitive load of the application builder, as they do not have to
imagine how the final result will look [91]. This interface style would be of particular
value when objects on a dashboard resize, which was discovered during interviews in
section 5.2.1 to be a common issue.

How to achieve it

When enabling WYSIWYG, it is important to consider “G6 Provide application
builders with an adaptable workspace”. Application builders should be allowed to
decide the placement and size of objects. The WYSIWYG interface style can be
seen in several applications, one example is in the web application builder Wix [7].
Other examples can be seen in fig 6.30 and from Miro [80] in fig 6.31.

111

6. Results

Figure 6.30: The application builder is provided with pre-made components in the
side menu.

Figure 6.31: An example of a WYSIWYG interface in Miro [80]. A shape can be
selected from the left menu and the shape’s properties are configured in a menu that
appears above the object when it is selected.

112

6. Results

Guideline 8

Provide places that show all related application elements

Have designated locations in the GUI where application builders can view and
manage related application elements.

When users build applications, they have to manage many different groups of objects,
it could be buttons, scripts or visualisations. The amount in each group can also vary,
and the functionality for managing them should be able to handle a fairly substantial
increase in size. In other words, if most applications contain 20 buttons, there will
still be some with more than a hundred. This issue with an unmanageable amount
of components was recognised in applications studied in user interviews conducted
by The Company, see section 5.1.2.

The program should also allow users to set the behaviour on different levels of objects.
A level could be a single instance, all items on a page or within the application, it
depends on the object’s relationship with the program.

For some larger applications, even changing objects page by page could become
tedious. For instance, many companies use design systems, described in section 3.5.
If all components of a sort would have to change due to this system, the process would
be facilitated by this type of overview functionality. As such, to avoid repetitive
excise, the program should consider providing sections in the GUI where users can
view all objects. Often it is likely wise to let such sections follow “G7 Display a
GUI component’s final state during editing”. Being able to view the object’s current
appearance or at least part of it, makes it easier to achieve a consistent design.

Scripts can also be seen as objects, and users should be able to manage them similarly
to GUI objects.

When the GUI offers a comprehensive set of tools for the customisation or configu-
ration of objects, it should consider Hick’s law [98]. Displaying all options at once
could overwhelm the users. It might be better to provide a few by default, and offer
clear paths to other ones. For tools not visible by default, the program distance
should also be as short as possible.

How to achieve it

Figure 6.32 shows an example of application elements, components, are grouped and
visualised in a hierarchy. This list also acts as an overview of the objects in the
current canvas. Figure 6.33 shows hoe layers can be grouped and collapsed in Adobe
Photoshop [101].

113

6. Results

Figure 6.32: A panel for managing components in an application. The components
can be grouped and their hierarchy is reflected in the list by indentations.

Figure 6.33: How different layers can be grouped and collapsed in Adobe Photoshop
[102].

114

6. Results

Guideline 9

Applications should have a default navigation structure

Provide tools and visual support that simply work with an application’s navigation.

The feeling of being lost in an application is associated with an unpleasant user
experience [103]. If the users do not know where they are, where they can go and
what objects are related, the application quickly becomes complicated to use. In
large applications, the navigational aspects become even more important to consider.
This issue was discovered in the applications studied in the user interviews conducted
by The Company, see section 5.1.2.

Interviews conducted during the thesis (see section 5.2.2) indicated that guided
analyses are a common use case. Guided analyses are something in an application
that is meant to guide the user step by step through a complex data analytics task.
Depending on the size of the guide and the application, the user would be facilitated
by both global, local and contextual navigation. This can be read more about in
section 3.7.

How to achieve it

Navigational components could be utilised in not just guided analyses, but in any
application that contains more than one page. Such navigational components could
be a part of what is described in “G3 Provide no-code development tools”. An
important consideration with the components is to make them adaptable to the
workspace, described more in “G6 Provide application builders with an adaptable
workspace”.

Examples of navigational components that would facilitate application builders are
global menus, fly-out panels, and back and forward buttons. Figure 6.34 shows how
progress indicators and back and forth buttons could facilitate the navigation.

Figure 6.34: A bottom panel with a progress indicator and back and forth buttons.
This shows the application user where they are and where they will go next.

Guideline 10

Offer visual and system support for collaborative
application building

115

6. Results

Consider enabling real-time, simultaneous collaboration.

Data analysis is often about telling a story or conveying a message [5]. This naturally
involves a person alone or a group building such a story, and a person or group
as the recipient. In other words, data analysis is by nature a collaborative and
social activity. Further, solving complex tasks is facilitated by working together,
and building an application can be an example of such a complex task, according to
end-user development [33]. It was discovered when studying interviews described in
section 5.1.2 that building applications as a group was highly requested. Moreover,
this was recognised in the design critique session described in section 5.4.4.

How to achieve it

To support collaboration when constructing applications can be realised in several
ways. One way familiar for software developers is version control. To not cause the
application building process seem like a code development project, this could be
supported as in, for example, Adobe XD and Miro. How Miro enables collaboration
can be seen in fig 6.35. Several application builders can be invited to an application
building project and collaborate by dragging and dropping components onto canvases.

(a) A user can temporarily high-
light the pointers of other users in
a Miro canvas.

(b) If a member has changed an
object in a canvas, other users see
it highlighted when they log in.
This example is from Miro.

Figure 6.35: Different examples of collaboration features in Miro [80].

Guideline 11

Allow application builders to create, store and share custom

116

6. Results

workflows in multiple application layers

It should be possible to include them at several application layers.

As a function, the workflow prototype found in section 6.1, incorporates and sup-
ports many of the other guidelines. In summary, both the examined literature and
interviews have detected this sort of functionality as beneficial. For instance, both
the user interviews described in section 5.2.1 and the internal stakeholder interviews
described in section 5.2.2 described guided workflows as a common use case. Further-
more, being able to create workflows brings value, since data analysis is increasingly
becoming more and more of a collaborative activity [82]. The possible roles analytical
applications could have is also growing. Application users can already analyse data,
possibly in real time, and then affect external systems with a single click. Since the
possibilities are nearly endless, the workflows have to be highly customisable, and be
able to include numerous functionalities.

Most analysts are not professional software developers, and many also wish to
minimise the amount of custom code in their application. This was discussed in both
the earlier mentioned interviews. Enabling them to create workflows without having
to write custom code thus supports them in their work.

How to achieve it

Workflows could be realised in analytical software in several ways. It could, for
instance, be manifested as a simple to-do list incorporated in the application and
ticked off by the application user. A more elaborate and detailed example of how
workflows can be realised can be seen in section 6.2.

Guideline 12

Support applications’ ability to communicate with external
systems

Consider to support interactions with common external system via GUI functionality.

As described in “G5 Support application builders who customise through code”, visual
analytics is performed in several business domains. As a consequence, customers
may not use the same types of systems in their work. Besides the analytics software,
they may all use one system for time reporting, another for email, one more for
putting content on a website, and so on. Being able to affect external systems was
discovered during interviews (see section 5.2.2) to be highly valued by users, as
switching between different systems disrupts their daily workflows. For example, if
an application is showing comments from a website, and a user of the application
detects a comment with offensive language, they may want to block the person that

117

6. Results

commented directly in the application.

How to achieve it

If the application builder would like to integrate an external call that affects their
other systems, a way of achieving that could be by API calls in a custom script,
executed by the analytics software. In the example in fig 6.36, the application user
wants to select a data point and write back metadata as a comment on that point
to the source database. An example of when this is realised in an actual product
is Tableau. In figure 6.37, a comment can be submitted on a data point, via an
extension built with Tableau’s extensions API [12].

Figure 6.36: The application user selects a data point and writes metadata back
as a comment on that point to the source database.

118

6. Results

Figure 6.37: The user has selected a data point to comment on in a Tableau
Extension [104].

119

6. Results

120

7
Discussion

This chapter discusses the outcome of this thesis in relation to the initial expectations.
Also addressed is what effect the reviewed literature, chosen methodology, and process
had on the result.

Due to the research question’s broad nature our work needed to find a specific focus,
in the end it became end-user development (EUD) research. A broad answer would
likely have resulted in a superficial knowledge contribution. Still, it is possible that a
different focus would have provided a more satisfying answer to our research question.
Besides this limitation, additional factors influence UX in general. Some factors not
considered are, for example, organisational ones, hardware or events in a user’s life.
There is no reason to assume that these factors do not affect the experience during
application building in analytical software.

Understanding whom users of analytical software are proved to be a complex topic.
The line between user and developer of custom analytical applications is becoming
increasingly blurred. While writing this thesis, The Company addressed this trend
and replaced their personas with scenarios. Meanwhile, almost all EUD literature
covered in this thesis distinguishes between developers and users. The situation is
further complicated, as many application builders also use the applications they have
built. To build and use is an iterative process, and few applications will reach a state
of permanent completion.

7.1 Process
An early goal of the process was to decide from which perspective(s) the research
question would be answered. During the first iteration, about three to four weeks
were spent answering this question. As the whole execution period of this thesis was
twelve weeks, one could argue this exploratory phase should have been shorter. If so,
more time could have been spent testing and iterating the prototype and guidelines.

New perspectives that could answer the research question arose throughout the
process, due to its highly exploratory nature. It was a time-consuming process to
evaluate their potential value for the prototype and guidelines. Meanwhile, early

121

7. Discussion

discoveries, such as end-user development, also required time for refinement during
each iteration. An example of a new perspective was navigation in applications, it
got an increased focus during iteration two. We believed this perspective could be
of value for the workflow concept. Consequently, work with the prototype often
became a priority. This focus likely had a negative impact on the quality of the
guidelines, even though findings from the prototype helped fuel their development.
Allocating more time for the guidelines could have produced a better result. Mainly
since guideline development requires empathy with application builder and analytical
software developers.

Additional user tests, in particular evaluation tests, would have been beneficial.
The conducted user tests were done with users who lack experience in analytical
software and The Product. We did not do any summative evaluation of the prototype,
partly since it was still at conceptual level. The intention with the prototype was
to evaluate the guidelines and inspire future development of analytical software. A
separate concept like workflows was not initially planned. Nevertheless, one could
question the validity of the workflow concept and guidelines when considering the
lack of summative evaluation. Therefore, the result should be regarded as possible
considerations and suggestions.

7.2 Result
At first glance, the prototyp’s fidelity appears high. Still, the concept of workflows is
merely a concept. The fidelity of the prototypes could have been lower, to emphasize
this in discussions with stakeholders and other designers. A lower fidelity could have
removed some focus on details in the design. Also, more time could have been spent
on developing the concept and primary parts of its interactions with application
builders and users. For example, one issue for application builders discovered early in
the process was the shareability of application components. Currently, there are no
such components, but several application builders have requested them. Therefore,
providing shareable and reproducible application components were considered early
in the process. We imagined that the workflows could be shared via The Product’s
library, but realised workflows are currently bound to specific data and visualisation.
The whole visualisation could of course be shared, but the actual visualisation flow
with its canvas and steps is likely the parts application builders want to share. The
same goes for the analysis flows. It is probably the side panel and progress steps
that application builders wish to share, unbound to an application.

Another aspect of the prototype that lacks exploration is the programming aspect.
The idea is that scripts can be attached to components and workflows, but how it
can be achieved was not examined. Therefore, the prototype does not provide much
value for the application builders who wish to code their applications. There are
two reasons for this. One is that The Product targeted initially people who want
to create visualisations of some data without code. The other reason is that those
application builders who program applications are today the ones who can build
applications at all. At least, that was our perception when researching the users

122

7. Discussion

who build applications. With that said, when discussing a possible place in The
Product’s future, a product manager said it would probably first be provided via the
application programming interface (API). Hence, probably enabling the workflow
concept for programming application builders.

When work began with the guidelines, the primary audience was yet to be decided.
This thesis had three main stakeholders; vendors of analytics software, application
builders, and application users. Only in the last iteration was it decided whether the
guidelines should target suppliers of analytical software or application builders. The
final guidelines are directed towards the vendors of analytics software and suggest
how they can support the application builder’s experience. We chose them since
the research question focuses on improving the applications’ users’ experience. And
application builders need support from the provider and its software to improve the
experience. Another possibility would have been: one for the vendors and one for the
application builders. However, to some degree, the presented guidelines do contain
more direct advice for application builders. It should also be mentioned that all
guidelines are based on the identified needs of application builders.

Producing generalisable guidelines was another goal with this thesis, and this trait
has not been evaluated after the guidelines were completed. It would have been
beneficial to learn how other vendors of analytical software value these guidelines.
Nevertheless, generalisability was taken into account throughout the development
process. Some existing solutions in The Product were included in the guidelines,
even though they already exist. The solutions included can be described as larger
mechanisms and concepts, their descriptions do not reveal any trade secrets. In our
opinion, this approach strengthens the guidelines’ generalisability.

In connection with discussions about the primary audience, there were discussions
about the scope of each guideline. One could find some guidelines universal and
applicable for software in general, not only application building analytics software.
However, as mentioned earlier, each guideline connects to one or more needs that
builders have. The guideline regarding collaboration, for instance, might apply to
nearly all sovereign desktop applications. Still, application builders viewed extensive
software support for collaboration as essential. EUD literature also stressed its
importance.

The guidelines could also have been presented in a different format. If the purpose
had been to have a strong impact on the world of analysts, they would probably
have been presented differently. They could have been more graphic, concise and
powerful. That would have made them easier to remember. As of now, they adhere
to academic rigour. While some might consider them lengthy, many others will
hopefully find them inspiring and reliable.

123

7. Discussion

7.3 Ethical Issues
An application builder could theoretically build any application they want in The
Product. This includes applications to unethical monitoring of employees, maximising
profits from online casinos, mapping minorities in cities, and the list is growing long.
As long as data is collected on the subject, you could create an application in this
respect. The question here is who you allow building analytical applications, not the
enabling of building them per se.

Other issues with end-user development arise when the development is performed
through code. The code could be malicious, either by accident or not. Who’s fault
is it when code in an application accidentally shuts down a whole system? This
was something we did not focus on, as security with all its aspects is probably a
whole thesis alone. To avoid the most obvious security problems in terms of code,
our solutions rely mainly on no- or low-code.

7.4 Future Work
After evaluating the iterations, it becomes clear that each iteration examined different
parts of the workflow, not with consideration to the whole concept. Each part of the
concept would have benefited from further research in terms of both interaction and
design options. Much effort was spent with how workflows could function, after they
became the prototype’s main theme. It was not feasible to define all details of their
behaviour: there had to be some uncertainty. Sometimes it caused stress and led us
to spend too much effort on minor details. The purpose of the design was to examine
how workflows can be manifested in an application from the perspective of the user.
To overlook how workflows are created and to focus only on the user experience of
the application led to more ideas that are visible in the final prototype. Hence, how
the workflows are controlled and executed from an application user perspective is the
more thoughtful part of the concept. Letting application builders build applications
and exclude those applications’ users’ experiences is probably a whole master’s thesis
alone.

Besides not iterating every part of the workflow concept enough, more user tests
would have been beneficial. The Company attempted with no luck to get us in
contact with company customers’ employees for interviews. Therefore, the validations
of the prototype have either been on employees at The Company or persons with
no experience of analytical software and The Product at all. To evaluate the actual
value of the workflow concept or the interactions of creating workflows, it would have
been interesting to interview an experienced but not employed person.

Something out of scope yet almost explored is visual scripting. Visual scripting
has been implemented in, for example, Scratch [105]. Visual scripting was touched
upon during the exploration of visualisation flows. One visualisation flow allows the
application user to set a conditional action depending on the visualised data. The

124

7. Discussion

actions are executed by "if, then" statements, but with text and drop-downs instead
of pure code (see fig 6.3). The Company saw potential in these kinds of visualisation
flows, and they would have been interesting to explore further as they capture the
low-code approach of applications.

125

7. Discussion

126

8
Conclusion

This thesis has, together with a company, explored the application building process
inside an analytics platform. Also covered was the user experience within such
applications. The following research question has been answered:

What should be considered when supporting application builders who aim to fulfil
their end-users’ desired experience in analytic software?

The thesis followed an iterative design process, which included research through
design. Each iteration explored application building inside analytics software while
simultaneously creating guidelines for providing such features in such software. Each
iteration ended with a formative evaluation of the prototype and updated guidelines.
Through this approach, the thesis aimed to produce practical design suggestions and
research contributions. The produced guidelines are stated as follows:

1 Help application builders to follow fundamental design principles

2 Let the workspace contain unobtrusive contextual help

3 Provide no-code development tools

4 Consider The Gentle Slope of Complexity

5 Support application builders who customise through code

6 Provide application builders with an adaptable workspace

7 Display a GUI component’s final state during editing

8 Provide places that show all related application elements

9 Applications should have a default navigation structure

10 Offer visual and system support for collaborative application building

11 Allow application builders to create, store and share custom workflows in
multiple application layers

12 Support applications’ ability to communicate with external systems

127

8. Conclusion

To conclude, the guidelines aim to support application builders in achieving their
goals based on their prerequisites, rather than solving specific use case. This can be
solved by providing the application builders with sufficient tools that support their
building process.

128

Bibliography

[1] The Economist, “Fuel of the future, data is giving rise to a new econ-
omy,” [Online]. Available: https://www.economist.com/briefing/2017/05/06/
data-is-giving-rise-to-a-new-economy, 2017, accessed: 2021-12-10.

[2] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods,
and analytics,” International Journal of Information Management, vol. 35,
no. 2, pp. 137–144, 2015. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0268401214001066

[3] IDG, “Data and analytics survey,” [Online] Available: https:
//cdn2.hubspot.net/hubfs/1624046/IDGE_Data_Analysis_2016_final.
pdf?t=1492090430059, 2016, accessed: 2021-11-23.

[4] Keith D. Foote, “A brief history of analytics,” [Online]. Available: https:
//www.dataversity.net/brief-history-analytics/, 2018, accessed: 2021-05-18.

[5] W. Cui, “Visual analytics: A comprehensive overview,” IEEE Access, vol. 7,
pp. 81 555–81 573, 2019.

[6] Unity, “Unity for all,” [Online]. Available: https://unity.com/, 2021, accessed:
2021-12-09.

[7] Wix, “Skapa en professionell hemsida,” [Online]. Available: https://sv.wix.
com/, 2021, accessed: 2021-12-09.

[8] Infor, “Infor birst,” [Online]. Available: https://www.infor.com/solutions/
advanced-analytics/business-intelligence/birst, 2021, accessed: 2021-02-11.

[9] Microsoft, “Hitta klarhet när du behöver det,” [Online]. Available: https:
//powerbi.microsoft.com/sv-se/, 2021, accessed: 2021-02-11.

[10] Tableau Software, “Answer questions at the speed of thought with tableau
desktop,” [Online]. Available: https://www.tableau.com/products/desktop,
2021, accessed: 2021-02-01.

[11] ——, “Tableau developer tools,” [Online]. Available: https://www.tableau.
com/developer/tools, 2021, accessed: 2021-02-01.

129

https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy
https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy
https://www.sciencedirect.com/science/article/pii/S0268401214001066
https://www.sciencedirect.com/science/article/pii/S0268401214001066
https://cdn2.hubspot.net/hubfs/1624046/IDGE_Data_Analysis_2016_final.pdf?t=1492090430059
https://cdn2.hubspot.net/hubfs/1624046/IDGE_Data_Analysis_2016_final.pdf?t=1492090430059
https://cdn2.hubspot.net/hubfs/1624046/IDGE_Data_Analysis_2016_final.pdf?t=1492090430059
https://www.dataversity.net/brief-history-analytics/
https://www.dataversity.net/brief-history-analytics/
https://unity.com/
https://sv.wix.com/
https://sv.wix.com/
https://www.infor.com/solutions/advanced-analytics/business-intelligence/birst
https://www.infor.com/solutions/advanced-analytics/business-intelligence/birst
https://powerbi.microsoft.com/sv-se/
https://powerbi.microsoft.com/sv-se/
https://www.tableau.com/products/desktop
https://www.tableau.com/developer/tools
https://www.tableau.com/developer/tools

Bibliography

[12] ——, “Tableau dashboard extensions api,” [Online]. Available: https://tableau.
github.io/extensions-api/, 2021, accessed: 2021-02-09.

[13] ——, “Design guidelines for dashboard extensions,” [Online]. Available: https:
//tableau.github.io/extensions-api/docs/ux_design.html, 2021, accessed: 2021-
02-01.

[14] ——, “Tableau ui,” [Online]. Available: https://tableau.github.io/tableau-ui/,
2021, accessed: 2021-02-09.

[15] Facebook Inc., “Components and props,” [Online]. Available: https://reactjs.
org/docs/components-and-props.html, 2021, accessed: 2021-02-09.

[16] QlikTech International AB, “Agent of transformation,” [Online]. Available:
https://www.qlik.com/us/products/qlik-sense, 2021, accessed: 2021-02-01.

[17] ——, “Get started,” [Online]. Available: https://qlik.dev/, 2021, accessed:
2021-02-01.

[18] MicroStrategy Inc, “Join us at microstrategy world.now: our first virtual,
interactive global conference,” [Online]. Available: https://www.microstrategy.
com/en, 2021, accessed: 2021-02-01.

[19] ——, “Sdk,” [Online]. Available: https://community.microstrategy.com/s/
topic/0TO44000000FliLGAS/sdk?language=en_US&lc_version=2021, 2021,
accessed: 2021-02-01.

[20] ——, “Dossier authoring,” [Online]. Available: https://doc-archives.
microstrategy.com/producthelp/10.11/Dossier_Authoring/WebHelp/Lang_
1033/Content/About_MicroStrategy_Desktop.htm, 2021, accessed: 2021-02-
11.

[21] R. Buchanan, “Wicked problems in design thinking,” Design Issues, vol. 8, p.
5–21, 1992.

[22] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of
planning,” 1973. [Online]. Available: https://link.springer.com/article/10.
1007/BF01405730#citeas

[23] C. Ware, Information Visualization: Perception for Design. Morgan Kaufmann
Publishers Inc., 2004.

[24] F. Burstein, C. Holsapple, S. Negash, and P. Gray, “Chapter 45 business
intelligence,” in Handbook on Decision Support Systems 2 Variations. Springer-
Verlag, 2008, p. 175–195.

[25] D. Seminsar, 2010. [Online]. Available: http://www.allaboutux.org/files/
UX-WhitePaper.pdf

130

https://tableau.github.io/extensions-api/
https://tableau.github.io/extensions-api/
https://tableau.github.io/extensions-api/docs/ux_design.html
https://tableau.github.io/extensions-api/docs/ux_design.html
https://tableau.github.io/tableau-ui/
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://www.qlik.com/us/products/qlik-sense
https://qlik.dev/
https://www.microstrategy.com/en
https://www.microstrategy.com/en
https://community.microstrategy.com/s/topic/0TO44000000FliLGAS/sdk?language=en_US&lc_version=2021
https://community.microstrategy.com/s/topic/0TO44000000FliLGAS/sdk?language=en_US&lc_version=2021
https://doc-archives.microstrategy.com/producthelp/10.11/Dossier_Authoring/WebHelp/Lang_1033/Content/About_MicroStrategy_Desktop.htm
https://doc-archives.microstrategy.com/producthelp/10.11/Dossier_Authoring/WebHelp/Lang_1033/Content/About_MicroStrategy_Desktop.htm
https://doc-archives.microstrategy.com/producthelp/10.11/Dossier_Authoring/WebHelp/Lang_1033/Content/About_MicroStrategy_Desktop.htm
https://link.springer.com/article/10.1007/BF01405730#citeas
https://link.springer.com/article/10.1007/BF01405730#citeas
http://www.allaboutux.org/files/UX-WhitePaper.pdf
http://www.allaboutux.org/files/UX-WhitePaper.pdf

Bibliography

[26] Allaboutux.org, “User experience definitions,” [Online]. Avail-
able: https://community.microstrategy.com/s/topic/0TO44000000FliLGAS/
sdk?language=en_US&lc_version=2020, 2012, accessed: 2021-01-29. [Online].
Available: http://www.allaboutux.org/ux-definitions

[27] D. Saffer, Designing for interaction : creating innovative applications and
devices., ser. Voices that matter. New Riders Pub, 2010.

[28] F. Fagerholm and J. Münch, “Developer experience: Concept and definition,”
in 2012 International Conference on Software and System Process (ICSSP),
2012, pp. 73–77.

[29] K. Kuusinen, “Are software developers just users of development tools? assess-
ing developer experience of a graphical user interface designer,” [Online] Avail-
able: https://link.springer.com/chapter/10.1007%2F978-3-319-44902-9_14,
Aug 2016, accessed: 2021-11-23.

[30] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience. Harper
& Row, 1990.

[31] N. J. Mihaly Csikszentmihalyi, Abuhamdeh S, “Flow,” in Handbook of Compe-
tence and Motivation, 2005, pp. 596–608.

[32] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-user development:
An emerging paradigm,” SpringerLink, vol. 9, Jan 2006.

[33] F. Paternò, “End user development: Survey of an emerging field for empowering
people,” ISRN Software Engineering, Jun 2013.

[34] G. Fischer, K. Nakakoji, and Y. Ye, “Metadesign: Guidelines for supporting
domain experts in software development,” IEEE Software, vol. 26, no. 5, pp.
37–44, 2009.

[35] M. Spahn, C. Dörner, and V. Wulf, “End user development: Approaches
towards a flexible software design,” 2007. [Online]. Available: http:
//www.cs.cmu.edu/~./cdoerner/slides/EUD_Literatur_ECIS2008.pdf

[36] T. Ludwig, J. Dax, V. Pipek, and V. Wulf, “A practice-oriented paradigm for
end-user development,” in New Perspectives in End-User Development, 2017.

[37] S. Vesselov and T. Davis, Introducing Design Systems. Apress, 2019. [Online].
Available: https://doi.org/10.1007/978-1-4842-4514-9_2

[38] A. Kholmatova, Design Systems: A Practical Guide to Creating Design
Languages for Digital Products. Smashing Media AG, 2017. [Online]. Available:
https://books.google.se/books?id=UWhMswEACAAJ

[39] Jad Limcaco, “Design systems gallery,” [Online]. Available at: https://
designsystemsrepo.com/design-systems, 2021, accessed: 2021-01-19.

131

https://community.microstrategy.com/s/topic/0TO44000000FliLGAS/sdk?language=en_US&lc_version=2020
https://community.microstrategy.com/s/topic/0TO44000000FliLGAS/sdk?language=en_US&lc_version=2020
http://www.allaboutux.org/ux-definitions
https://link.springer.com/chapter/10.1007%2F978-3-319-44902-9_14
http://www.cs.cmu.edu/~./cdoerner/slides/EUD_Literatur_ECIS2008.pdf
http://www.cs.cmu.edu/~./cdoerner/slides/EUD_Literatur_ECIS2008.pdf
https://doi.org/10.1007/978-1-4842-4514-9_2
https://books.google.se/books?id=UWhMswEACAAJ
https://designsystemsrepo.com/design-systems
https://designsystemsrepo.com/design-systems

Bibliography

[40] Adobe, “What’s new,” [Online]. Available: https://spectrum.adobe.com/page/
whats-new/, 2021, accessed: 2021-02-08.

[41] ——, “Spectrum, adobe’s design system,” [Online]. Available: https://spectrum.
adobe.com/, 2021, accessed: 2021-02-08.

[42] Microsoft, “Fluent design system,” [Online]. Available: https://www.microsoft.
com/design/fluent/#/, 2021, accessed: 2021-02-08.

[43] T. Kuo, “Mass customization and personalization software development: A case
study eco-design product service system,” Journal of Intelligent Manufacturing,
vol. 24, 2013.

[44] M. Kratochvíl and C. Carson, Growing modular: Mass customization of complex
products, services and software. Springer-Verlag Berlin Heidelberg, 01 2005.

[45] B. Hui, S. Liaskos, and J. Mylopoulos, “Requirements analysis for customizable
software: a goals-skills-preferences framework,” in Proceedings. 11th IEEE
International Requirements Engineering Conference, 2003., 2003, pp. 117–126.

[46] L. Rosenfeld, P. Morville, and J. Arango, “Defining information architecture,”
in Information architecture for the World Wide Web. O’Reilly, 2015, pp.
23–39. [Online]. Available: https://www.vlebooks.com/vleweb/Product/Index/
629255?page=0

[47] ——, “Defining information architecture,” in Information architecture
for the World Wide Web. O’Reilly, 2015, p. 177. [Online]. Available:
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0

[48] A. Cooper, D. Cronin, C. Noessel, R. Reimann, and A. Cooper, “About face:
The essentials of interaction design,” in About face: the essentials of interaction
design. John Wiley and Sons, 2014, p. 205–237.

[49] C. Frayling and R. C. of Art (Great Britain), Research in Art and Design, ser.
Royal College of Art research papers. Royal College of Art, 1993.

[50] J. Zimmerman, J. Forlizzi, and S. Evenson, “Research through design as
a method for interaction design research in hci,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’07.
Association for Computing Machinery, 2007, p. 493–502. [Online]. Available:
https://doi.org/10.1145/1240624.1240704

[51] E. B.-N. Sanders and P. J. Stappers, “Co-creation and the new landscapes
of design,” CoDesign, vol. 4, no. 1, pp. 5–18, 2008. [Online]. Available:
https://doi.org/10.1080/15710880701875068

[52] L. Sanders, “On modeling an evolving map of design practice and design
research,” Interactions, vol. 15, no. 6, p. 13–17, 2008.

[53] A. Pratt and J. Nunes, Interactive Design: An Introduction to the Theory and
Application of User-centered Design. Rockport Publishers, 2012.

132

https://spectrum.adobe.com/page/whats-new/
https://spectrum.adobe.com/page/whats-new/
https://spectrum.adobe.com/
https://spectrum.adobe.com/
https://www.microsoft.com/design/fluent/#/
https://www.microsoft.com/design/fluent/#/
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0
https://doi.org/10.1145/1240624.1240704
https://doi.org/10.1080/15710880701875068

Bibliography

[54] D. Norman and J. Euchner, “Design for use,” Research-Technology
Management, vol. 59, no. 1, pp. 15–20, 2016. [Online]. Available:
https://doi.org/10.1080/08956308.2016.1117315

[55] J. Jones, Design Methods, ser. A VNR book. Wiley, 1992.

[56] Google LLC, “Transform the way your team works,” [Online]. Available: https:
//designsprintkit.withgoogle.com/, 2021, accessed: 2021-12-10.

[57] ——, “Phase 1: Understand,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase1-understand, 2021, accessed: 2021-02-08.

[58] B. Hanington and B. Martin, Universal Methods of Design: 100 Ways to
Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Rockport Publishers, 2012.

[59] Google LLC, “Share and engage with the design sprint community,” [Online].
Available: https://designsprintkit.withgoogle.com/methodology/phase2-define,
2021, accessed: 2021-02-04.

[60] Design Council, “What is the framework for innova-
tion? design council’s evolved double diamond,” [Online].
Available: https://www.designcouncil.org.uk/news-opinion/
what-framework-innovation-design-councils-evolved-double-diamond, 2021,
accessed: 2021-02-04.

[61] The Interaction Design Foundation, “What is design thinking?” [Online]. Avail-
able: https://www.interaction-design.org/literature/topics/design-thinking,
2021, accessed: 2021-02-04.

[62] Google LLC, “The golden path,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase2-define/golden-path, 2021, accessed: 2021-
02-04.

[63] A. Cooper, R. Reimann, D. Cronin, C. Noessel, and A. Cooper, “Chapter
3 modeling users: Personas and goals,” in About Face, the Essentials of
Interaction Design, 4th ed. Wiley, 2014, p. 61–99.

[64] C. Gray and M. Siegel, “Sketching design thinking: Representations of design
in education and practice,” Design and Technology Education: an International
Journal, vol. 19, no. 1, 2014.

[65] Google LLC, “Phase 3: Sketch,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase2-define, 2021, accessed: 2021-01-29.

[66] IDEO, “Methods,” [Online]. Available: https://www.designkit.org/methods,
2021, accessed: 2021-01-29.

[67] Google LLC, “Crazy 8’s,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase3-sketch/crazy-8s, 2021, accessed: 2021-
05-13.

133

https://doi.org/10.1080/08956308.2016.1117315
https://designsprintkit.withgoogle.com/
https://designsprintkit.withgoogle.com/
https://designsprintkit.withgoogle.com/methodology/phase1-understand
https://designsprintkit.withgoogle.com/methodology/phase1-understand
https://designsprintkit.withgoogle.com/methodology/phase2-define
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.interaction-design.org/literature/topics/design-thinking
https://designsprintkit.withgoogle.com/methodology/phase2-define/golden-path
https://designsprintkit.withgoogle.com/methodology/phase2-define/golden-path
https://designsprintkit.withgoogle.com/methodology/phase2-define
https://designsprintkit.withgoogle.com/methodology/phase2-define
https://www.designkit.org/methods
https://designsprintkit.withgoogle.com/methodology/phase3-sketch/crazy-8s
https://designsprintkit.withgoogle.com/methodology/phase3-sketch/crazy-8s

Bibliography

[68] ——, “Phase 4: Decide,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase4-decide, 2021, accessed: 2021-02-08.

[69] ——, “Present solution sketches,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase4-decide/present-solution-sketches, 2021,
accessed: 2021-02-08.

[70] ——, “Dot vote,” [Online]. Available: https://designsprintkit.withgoogle.com/
methodology/phase4-decide/dot-vote, 2021, accessed: 2021-02-08.

[71] P. S. P. Rex Hartson, “Chapter 11 prototyping,” in The UX Book Process and
Guidelines for Ensuring a Quality User Experience. Elsevier, 2012, p. 391–427.

[72] J. Rudd, K. Stern, and S. Isensee, “Low vs. high-fidelity prototyping
debate,” Interactions, vol. 3, no. 1, p. 76–85, 1996. [Online]. Available:
https://doi.org/10.1145/223500.223514

[73] Google LLC, “Phase 6: Validate,” [Online]. Available: https://designsprintkit.
withgoogle.com/methodology/phase6-validate, 2021, accessed: 2021-02-05.

[74] P. S. P. Rex Hartson, “Chapter 2 the wheel: A lifecycle template,” in The UX
Book Process and Guidelines for Ensuring a Quality User Experience. Elsevier,
2012, p. 47–75.

[75] ——, “Chapter 12 ux evaluation introduction,” in The UX Book Process
and Guidelines for Ensuring a Quality User Experience. Elsevier, 2012, pp.
427–467.

[76] ——, “Chapter 13: Rapid evaluation methods,” in The UX Book Process
and Guidelines for Ensuring a Quality User Experience. Elsevier, 2012, pp.
467–503.

[77] Google LLC, “Cognitive walkthroughs,” [Online]. Available:
https://designsprintkit.withgoogle.com/methodology/phase6-validate/
cognitive-walkthroughs, 2021, accessed: 2021-02-05.

[78] S. Carr, “What is remote usability testing?” [Online]. Available: https://
www.usertesting.com/blog/what-is-remote-usability-testing, 2021, accessed:
2021-02-05.

[79] ——, “Moderated vs. unmoderated usability testing: the pros
and cons,” [Online]. Available: https://www.usertesting.com/blog/
moderated-vs-unmoderated-usability-testing, 2021, accessed: 2021-02-
05.

[80] Miro, “Where telecommuting teams get work done,” [Online]. Available: https:
//miro.com/, 2021, accessed: 2021-04-12.

[81] Balsamiq Studios, LLC, “Quick and easy wireframing tool,” [Online]. Available:
https://balsamiq.com/wireframes/, 2021, accessed: 2021-04-12.

134

https://designsprintkit.withgoogle.com/methodology/phase4-decide
https://designsprintkit.withgoogle.com/methodology/phase4-decide
https://designsprintkit.withgoogle.com/methodology/phase4-decide/present-solution-sketches
https://designsprintkit.withgoogle.com/methodology/phase4-decide/present-solution-sketches
https://designsprintkit.withgoogle.com/methodology/phase4-decide/dot-vote
https://designsprintkit.withgoogle.com/methodology/phase4-decide/dot-vote
https://doi.org/10.1145/223500.223514
https://designsprintkit.withgoogle.com/methodology/phase6-validate
https://designsprintkit.withgoogle.com/methodology/phase6-validate
https://designsprintkit.withgoogle.com/methodology/phase6-validate/cognitive-walkthroughs
https://designsprintkit.withgoogle.com/methodology/phase6-validate/cognitive-walkthroughs
https://www.usertesting.com/blog/what-is-remote-usability-testing
https://www.usertesting.com/blog/what-is-remote-usability-testing
https://www.usertesting.com/blog/moderated-vs-unmoderated-usability-testing
https://www.usertesting.com/blog/moderated-vs-unmoderated-usability-testing
https://miro.com/
https://miro.com/
https://balsamiq.com/wireframes/

Bibliography

[82] A. Crisan, “Reflecting on a decade of data science and the future of
visualization tools,” 2021. [Online]. Available: https://www.tableau.com/
about/blog/2021/2/data-science-and-future-visualization-tools-reflection

[83] Google LLC, “Google scholar,” [Online]. Available: https://scholar.google.com/,
2021, accessed: 2021-03-18.

[84] IEEE, “Advancing technology for humanity,” [Online]. Available: https://
ieeexplore.ieee.org/Xplore/home.jsp, 2021, accessed: 2021-03-18.

[85] ACM, Inc., “Acm digital library,” [Online]. Available: https://dl.acm.org/,
2021, accessed: 2021-03-18.

[86] Google LLC, “Google,” [Online]. Available: https://google.com/, 2021, ac-
cessed: 2021-03-18.

[87] A. Tiwari and A. K. Sekhar, “Workflow based framework for life science
informatics,” Computational Biology and Chemistry, vol. 31, no. 5, pp.
305–319, 2007. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1476927107001107

[88] W. v. d. Aalst and E. Damiani, “Processes meet big data: Connecting data
science with process science,” IEEE Transactions on Services Computing, vol. 8,
no. 6, pp. 810–819, 2015.

[89] J. Nielsen, “10 usability heuristics for user interface design,” [Online]. Available:
https://www.nngroup.com/articles/ten-usability-heuristics/, 2020, accessed:
2021-05-03.

[90] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers, “Api
designers in the field: Design practices and challenges for creating usable apis,”
in 2018 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2018, pp. 249–258.

[91] D. Lightbown, Designing the user experience of game development tools. CRC
Press, 2017.

[92] Webflow, Inc., “The modern way to build for the web,” [Online]. Available:
https://webflow.com/, 2021, accessed: 2021-05-07.

[93] Interaction Design Foundation, “Gestalt principles,” [Online]. Available:
https://www.interaction-design.org/literature/topics/gestalt-principles, 2021,
accessed: 2021-05-10.

[94] A. Dhareshwar, “Make it easy to make analyses look good,” [Online]. Available:
https://hdl.handle.net/20.500.12380/255507, 2018, accessed: 2021-05-12.

[95] Webaim, “Contrast checker,” [Online]. Available: https://webaim.org/
resources/contrastchecker/, 2021, accessed: 2020-05-07.

135

https://www.tableau.com/about/blog/2021/2/data-science-and-future-visualization-tools-reflection
https://www.tableau.com/about/blog/2021/2/data-science-and-future-visualization-tools-reflection
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://google.com/
https://www.sciencedirect.com/science/article/pii/S1476927107001107
https://www.sciencedirect.com/science/article/pii/S1476927107001107
https://www.nngroup.com/articles/ten-usability-heuristics/
https://webflow.com/
https://www.interaction-design.org/literature/topics/gestalt-principles
https://hdl.handle.net/20.500.12380/255507
https://webaim.org/resources/contrastchecker/
https://webaim.org/resources/contrastchecker/

Bibliography

[96] C. Brewer, J. Tidwell, and A. Valencia-Brooks, Designing Interfaces,
3rd Edition. O’Reilly Media, Incorporated, 2019. [Online]. Available:
https://books.google.se/books?id=pMw8zQEACAAJ

[97] Webflow, Inc., “Case study: How zestful built its marketing site —
and web app — with webflow,” [Online]. Available: https://webflow.com/
blog/how-zestful-built-its-marketing-site-and-web-app-with-webflow, 2021, ac-
cessed: 2021-05-07.

[98] Interaction Design Foundation, “Hick’s law: Making the choice easier for
users,” [Online]. Available: https://www.interaction-design.org/literature/
article/hick-s-law-making-the-choice-easier-for-users, 2020, accessed: 2021-
05-13.

[99] J. Wein, “Flow: The psychology of optimal experience,” [On-
line]. Available: https://msujaws.wordpress.com/2012/07/23/
applying-hicks-law-to-the-firefox-context-menus/, 2012, accessed: 2021-
05-10.

[100] Merriam-Webster Inc., “Wysiwyg,” [Online]. Available: https://www.
merriam-webster.com/dictionary/WYSIWYG, 2021, accessed: 2021-05-04.

[101] Adobe Inc., “Skapa. omskapa. med photoshop.” [Online]. Available: https:
//www.adobe.com/se/products/photoshop.html, 2021, accessed: 2021-05-17.

[102] J. Kost, “Displaying layer group and artboard contents in the lay-
ers panel,” [Online]. Available: https://jkost.com/blog/2015/11/
displaying-layer-group-and-artboard-contents-in-the-layers-panel.html,
2015, accessed: 2021-05-17.

[103] L. Rosenfeld, P. Morville, and J. Arango, “Defining information architecture,”
in Information architecture for the World Wide Web. O’Reilly, 2015, pp.
175–211. [Online]. Available: https://www.vlebooks.com/vleweb/Product/
Index/629255?page=0

[104] Tableaufans com, “Tableau commenting extension,” [Online]. Available: https:
//www.youtube.com/watch?v=ekfXBI2qnZs, 2018, accessed: 2021-05-11.

[105] Scratch Foundation, “Create stories, games, and animations. share with others
around the world.” [Online]. Available: https://scratch.mit.edu/, 2021, accessed:
2021-05-07.

136

https://books.google.se/books?id=pMw8zQEACAAJ
https://webflow.com/blog/how-zestful-built-its-marketing-site-and-web-app-with-webflow
https://webflow.com/blog/how-zestful-built-its-marketing-site-and-web-app-with-webflow
https://www.interaction-design.org/literature/article/hick-s-law-making-the-choice-easier-for-users
https://www.interaction-design.org/literature/article/hick-s-law-making-the-choice-easier-for-users
https://msujaws.wordpress.com/2012/07/23/applying-hicks-law-to-the-firefox-context-menus/
https://msujaws.wordpress.com/2012/07/23/applying-hicks-law-to-the-firefox-context-menus/
https://www.merriam-webster.com/dictionary/WYSIWYG
https://www.merriam-webster.com/dictionary/WYSIWYG
https://www.adobe.com/se/products/photoshop.html
https://www.adobe.com/se/products/photoshop.html
https://jkost.com/blog/2015/11/displaying-layer-group-and-artboard-contents-in-the-layers-panel.html
https://jkost.com/blog/2015/11/displaying-layer-group-and-artboard-contents-in-the-layers-panel.html
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0
https://www.vlebooks.com/vleweb/Product/Index/629255?page=0
https://www.youtube.com/watch?v=ekfXBI2qnZs
https://www.youtube.com/watch?v=ekfXBI2qnZs
https://scratch.mit.edu/

A
Interview Questions

Interview questions from the user interviews described in section 5.2.1.

• Could you describe how you consider navigation for users during the develop-
ment process for an application? Great if you have examples!

– Does the size of an application have an impact on how you consider
navigation? E.g. 5 pages vs 60 pages.

– When you follow a step-by-step process or explore data, how do you avoid
having users feeling “lost” or not knowing what they should do next?

• We would like to hear your view on possible challenges when implementing
navigation for users in applications.

– In general, what do you view as the biggest challenges when implementing
navigation in applications? Are some use cases particularly challenging?

– And to be a bit more specific: Have you seen or done any kind of “work-
around” to achieve the desired navigation functionality in an analysis?

• Can you think of any particular workflows / restricted flows that are valuable
to customers, but challenging to implement? Or ones you would like to be able
to build with ease?

– When do you do that? How do you typically create it? Great if you have
an example or could show us the steps needed!

One of the interviewees has worked with a rather new feature called Visualization
Mods, described in 2.2.1. Therefore, a question regarding those was added:

• We also understood that you work with mods, how do you think it would be
for users to use mods as a tool to create workflows?

Interview questions for the internal stakeholders, described in section 5.2.2.

I

A. Interview Questions

Questions for the interview with the product manager whose focus is The
Product as a whole:

• (The interviewee has built a demo application in The Product where the users
can, for example, view comments from their website and block IP addresses
of spam comments.) Can you describe the process of building the demo
application?

– Generally, what are you most uncertain of during the application devel-
opment process? Is there something typical? If not, think of a certain
case.

• We have got the impression that many who use applications want to share
more than direct insights. For example, an analyst who wants to reproduce
the complicated changes he has done in recent hours to a manager, colleague
or similar. What kind of support does The Product give them today, and what
kind of functionality do you think could have made it even easier?

• How do you experience the customers’ attitude towards writing code in The
Product?

– Can you describe a common use case where customers wish that they did
not have to code?

• What kind of support do new customers of The Product get today? Is there a
difference between different customers? In that case, how?

• When it comes to building applications or big analyses in The Product, what
development do you see that The Product has to have to continue attracting
customers?

• The developers of applications in The Product is a diverse group, how do you
relate to that?

Questions for the interview with the product manager whose focus is The
Product’s API:

• How do you experience the application building process in The Product? What
is working and not?

• What kind of functionality do customers request regarding application devel-
opment?

– What is your experience of how customers experience application develop-
ment in The Product?

II

A. Interview Questions

• We have got the impression that there is a desire among some users to be able
to write and manage a lot of their own code - to get the application they want.
While others - so to speak - do not want to code a line (HTML / CSS) when
building applications. How are you / the product management team trying to
meet these different needs?

• Do you think users would have appreciated if some common use cases with the
API could also be done using a graphical user interface in The Product?

• Is there a particular use case regarding Visualization Mods that would be
interesting to highlight?

• We understand that you worked on building the community section to extend
The Product. How do you see the role and place of the community, today some
programs choose to integrate the help into The Product, closer to the work
itself, so to speak. Is that something you think The Product’s customers would
have appreciated?

• When it comes to building applications or big analyses in The Product, what
development do you see that The Product has to have to continue attracting
customers?

• Could you tell us about what kind of workflows that customers need to be able
to do?

III

A. Interview Questions

IV

B
Ideation Workshop

The following figures the main slides that were presented during the ideation workshop,
described in section 5.2.4. Figure B.1 describes the firs topic, figure B.2 the second,
and figure B.3 the third.

Figure B.1: The first topic of the workshop. It was about guided workflows in
applications.

V

B. Ideation Workshop

Figure B.2: The second topic of the workshop. It was about creating application
components without code.

Figure B.3: The third topic of the workshop. It was about managing rapid
application growth, and applications that suffer from feature creep.

VI

C
Guidelines v. 2

In this version of the guidelines, there is still ambiguity regarding the term "user",
meaning that "user" can refer to both the application builder and the application
user. When the guidelines were created in Miro, an attempt of creating tags either
directed towards The Company or the application builders was made. The second
version of the guidelines can be seen in fig C.1.

VII

C. Guidelines v. 2

Figure C.1: The second version of the guidelines in progress.

VIII

D
User Test Questions

The following are the questions that were asked during the user tests described in
5.4.2. An important notice is that these questions were written in connection to the
prototype. Hence, they are tightly coupled with the prototype’s state at the time.

• (On canvas without things on) How would you use this panel?

• Did the window help you understand the panel?

• (On stepping through analysis flow as a user) Do you understand where you
are in the process?

• (On edit in analysis flow vis flow) Where would you press to see this as a user?

• (On the preview for analysis flow as a user) Do you need to do anything to
save what you have entered here?

• How would you change the value here? (1900)

• In what ways do you think you can change?

• (After got it in edit mode) What visualization can we change now?

• (On flow that is not inline) Here the flow is not inline, where would you look
for it?

• What data are you acting on now?

• If you want to change what data is affected, what would you like to do then?

• How do you do for 1 point and 3?

• As a user, did you want to choose whether it "flows freely" or is inline?

IX

	List of Figures
	Glossary
	Introduction
	Purpose
	Delimitations
	Ethical Issues

	Background
	The Company
	The Product
	Developing Custom Applications in The Product

	The Product's Users
	Competitors
	Tableau
	Qlik
	Microstrategy

	Theory
	Wicked Problems
	Information Visualisation and Visual Analytics
	User Experience
	Developer Experience

	End-User Development
	The Gentle Slope of Complexity

	Design Systems
	Designing a Design System
	Existing Design Systems

	Customisable Software
	Information Architecture
	Desktop Applications

	Methodology
	Design Research
	Research Through Design

	Design Frameworks
	User-Centred Design and Participatory Design

	Design Process
	Understand
	Define
	Personas

	Sketch
	Sketching

	Decide
	Prototype
	Validate
	Walkthroughs
	Remote Usability Testing

	Software Tools

	Process
	Planning and Preparation
	Understanding The Product and Its Users
	Study of Interviews Conducted by The Company
	Literature Review
	Reflections based on the Literature Review
	Workflows
	Guidelines v.0

	Iteration One: User Research and Exploration
	User Interviews
	Internal Stakeholder Interviews
	Analysing Both of the Interviews
	Ideation Workshop
	Sketching
	Guidelines v.1

	Iteration Two: Sketching and Prototyping
	Compiling Identified Issues
	Low-Fidelity sketch of Workflow and Components
	High-Fidelity Prototyping
	Design Critique with a Data Scientist
	Guidelines v. 2

	Iteration Three: Create a Coherent Concept
	High-Fidelity Prototype of the Workflow Mode
	Usability Tests
	Takeaways from the Usability Tests
	Design Critique
	Guidelines v. 3

	Results
	Workflows
	Prototype
	Entering Workflow Mode
	Constructing a Visualisation Flow
	Editing an Analysis Flow
	Testing and Using a Workflow

	Guidelines

	Discussion
	Process
	Result
	Ethical Issues
	Future Work

	Conclusion
	Bibliography
	Interview Questions
	Ideation Workshop
	Guidelines v. 2
	User Test Questions

