

An Investigation of Testing Environments
for Backend/Cloud-Services
Increasing Efficiency of Testing in the Automotive Industry

Computer Science Algorithms, Languages and Logic

Denise Glansholm
Patrik Ingmarsson

Department of Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

An Investigation of Testing Evironments
for Backend/Cloud-Services

Denise Glansholm
Patrik Ingmarsson

Department of Computer Science and Engineering
Division of Computer Science

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2016

An Investigation of Testing Environments for Backend/Cloud-Services
Denise Glansholm
Patrik Ingmarsson

© Denise Glansholm, 2016.
© Patrik Ingmarsson, 2016.

Supervisor: Koen Claessen, Department of Computer Science and Engineering
Supervisor: Jörgen Börjesson, Delphi Automotive
Examiner: Mary Sheeran, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Division of Computer Science
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Department of Computer Science and Engineering
Gothenburg, Sweden 2016

iii

An Investigation of Testing Environments for Backend/Cloud-Services
Denise Glansholm
Patrik Ingmarsson
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
Products using cloud services are often problematic to prove correctness and qual-
ity of. In automotive industries specifically, the clouds are commonly developed
alongside the products and controlled by separate companies. If the clouds are inac-
cessible or uncontrollable, efficient testing using both positive and negative testing
is impossible.

This Master’s Thesis strives, in cooperation with Delphi Automotive, to improve the
testing efficiency in the automotive industry by designing a testing environment for
communication from an application to back end/cloud-services. To resolve the issue
with non-thorough testing, a cloud simulation environment was to be developed.
Furthermore, to enable portability to different projects, the simulation should have
complete configurability.

The result was a general testing environment that can be applied to almost any
product using HTTP/HTTPS-communication. An evaluation of efficiency of the
new testing procedure was performed and the efficiency was found to increase due
to the overall higher thoroughness of the testing. However, the time to write tests
and configure the environment was found to increase, as a result of the open and
general nature of the testing environment. Worth mentioning is that this setup time
is predicted to decrease in a real-world project. The testing environment created
a time consumption overhead of 1-2 hours. By writing targeted test cases, several
previously undiscovered bugs were found relating to retry-handling.

Overall, spending some time developing a general testing environment seems to be
profitable. Furthermore, extending the project with an easier configuration interface
might be worthwile to further mitigate the setup time.

Keywords: Test , Testing, Mock, Cloud, Back end, Services, Automotive.

iv

Acknowledgements
We would like to thank Delphi for the opportunity to perform the Master’s Thesis
work in cooperation with them, and carry out the project in their offices. We highly
appreciate the Delphi personnel for all the technical guidance and social support we
received. Furthermore, we would specifically like to express our gratitude towards
our supervisor at Delphi, Jörgen Börjesson, for helping us plan and prioritise during
the different phases of the projects, as well as continuously providing feedback and
helping keeping our spirits up. We would also like to thank our Chalmers supervisor,
Koen Claessen, and our Examiner, Mary Sheeran, for keeping us on track at all times
and giving helpful advice and tips throughout the thesis work.

Denise Glansholm, Gothenburg, August 2016
Patrik Ingmarsson, Gothenburg, August 2016

vi

Glossary

Back-end The part of a system that indirectly supports the front-end application
by, e.g., performing heavy operations and accessing remote resources.

Cloud A Distributed System that provides some service, e.g., storage.
Cloud Service A resource that is provided over the Internet.

Front-end The part of a system that users (humans or other programs) directly
interact with.

HTTP Hyper Text Transfer Protocol.
HTTPS Hyper Text Transfer Protocol Secure.
HU Head Unit.

JSON JavaScript Object Notation.

LTS Long Time Support.

NUC Next Unit of Computing. A small-form-factor PC designed by Intel.

OEM Original Equipment Manufacturer.

SSL Secure Sockets Layer. An older standard protocol, now often replaced with
TLS.

TLS Transport Layer Security. A newer standard security protocol, often replacing
SSL.

Vertical Slice A milestone in a software management project, focusing on demon-
strating functionality across all components of the project.

XML Extensible Markup Language.

viii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Problem Statement . 3
1.4 Related Work . 4
1.5 Limitations . 4

2 Method 5
2.1 Implementation . 5
2.2 Testing the Testing Environment . 5
2.3 Evaluation of Efficiency . 6

2.3.1 Similarity to Native Environment 6
2.3.2 Code and Input Coverage . 6
2.3.3 Time Consumption . 7

3 Testing Theory 8
3.1 The View of Testing Through History 8
3.2 Types of Testing . 9

3.2.1 Static and Dynamic Testing 9
3.2.2 White Box and Black Box Testing 10
3.2.3 Positive and Negative Testing 12

3.3 Testing Methods . 13
3.3.1 Unit, Component and Integration Testing 13
3.3.2 Regression Testing . 15
3.3.3 System Testing . 15
3.3.4 Acceptance Testing . 16

4 Testing Environment 17
4.1 Modularity . 17

4.1.1 Identifying components/entities of a testing environment . . . 18
4.1.2 General and Project Specific Modules 20

4.2 Configurability . 21
4.2.1 Main Specification of Behaviour 21
4.2.2 Rule Specification . 22
4.2.3 Stateless and Stateful Environment 23
4.2.4 Additional Actions . 24

x

Contents

4.2.5 Optional Communication Through SSL/TLS 25
4.2.6 Configuring Different Testing Types and Methods 26

4.3 Current Testing in Volvo Project . 26
4.4 Integration with Delphi . 27

4.4.1 Manual Testing . 27
4.4.2 Automatic Testing . 28

4.5 Exceeding Current Testing Efficiency 28
4.5.1 Similarity to Native Environment 29
4.5.2 Code and Input Coverage . 29
4.5.3 Time Consumption . 29

5 Results and Discussion 30
5.1 Using the Testing Environment . 30

5.1.1 NUC Instead of Target . 30
5.1.2 Manual Testing . 30
5.1.3 Automatic Testing . 31

5.2 Modularity . 31
5.3 Configurability . 32

5.3.1 Stateless Mode . 32
5.3.1.1 Rules Set . 34

5.3.2 Stateful Mode . 36
5.3.2.1 Scenarios . 37

5.3.3 Choosing secure or unsecure connection 38
5.4 Efficiency . 39

5.4.1 Similarity to Native Environment 40
5.4.2 Code and Input Coverage . 40

5.4.2.1 Code Coverage . 41
5.4.2.2 Input Coverage . 41

5.4.3 Time consumption . 41

6 Conclusion 43
6.1 Future Work . 44

Bibliography 48

A The Delphi Work Flow I

B Website Simulation III

xi

1
Introduction

In this chapter, an introduction to the Master’s Thesis is given. Section 1.1 provides
background and context, as well as a description of a practical and academic void
that exists today. In Section 1.2, the purpose of this thesis is given. A problem
statement is defined in Section 1.3 and under Section 1.4 related work are discussed.
Lastly, Section 1.5 details the limitations of the thesis.

1.1 Background

The testing phase often accounts for about half the time and cost when developing
a system [1]. Despite this, software testing is still far from a refined science and the
gap between the industrial and academic world is still noticeable [2].

One of the industries where this scientific gap is prominent is the automotive indus-
try. There, many premium original equipment manufacturers (OEMs) now make
use of back-end/cloud services for several in-car functions. These services include,
but are not limited to, booking car service, over-the-air software updates and route
planning. The cloud services are often developed alongside the head unit (HU),
the centrepiece of a car’s multimedia system and the unit that utilises these cloud
services.

Figure 1.1 shows an example of the HU booking a car service and the interaction
between the HU, cloud and driver. Here it might, for instance, be important to test
that the HU only notifies the driver and presents time slots (step 4) when it is safe
(for example when the car is stationary). However, in order to do this, a cloud is
necessary to perform steps 2 and 3. This clearly shows the importance of having
access to a cloud during testing.

During the development of the cloud, its services may not be available for testing
the HU, and thus delaying the testing until later stages in the development process.
Furthermore, when the cloud service is available, it still only offers the possibility of
Positive Testing, that is, testing to verify that the HU acts as intended when given
valid data, which does not help produce fault tolerant systems.

1

1. Introduction

Figure 1.1: The interaction between Driver, HU and Cloud when booking car
service.

Statistics show that the cost of correcting code defects increases exponentially with
time as the software project moves on to later development stages [3]. Furthermore,
research indicates that when returning to previously written code, one has trouble
achieving the same level of immersion [4]. Therefore, supporting testing of smaller
parts of a system on earlier stages in the development process should make the
debugging cheaper and more efficient. Moreover, allowing Negative Testing should
produce more fault tolerant systems, an important criteria in the automotive indus-
try.

1.2 Purpose

The purpose of this Master’s Thesis is to investigate the testing procedures in the au-
tomotive industry, with focus on the parts where communication with backend/cloud-
services are handled. The project concentrates on implementing a fully controllable
cloud simulation that is able to simulate an arbitrary online service. It also analyses
how to integrate it into a testing procedure and how to evaluate the efficiency of it,
in relation to the currently existing testing.

2

1. Introduction

Thorough testing is meaningful in most systems, but can be considered absolutely
critical in the Automotive Industry. This project seeks to improve testing in the
following five ways:

• The ability to perform testing on an environment similar to the environment
the end product should be run on. This creates more thorough testing, as it
can show bugs that might not otherwise appear.

• Complete control of the cloud, which results in easy Error Injection testing (in
other words, Negative Testing, explained in Section 3.2.3).

• Decoupling of the development teams. Smaller, independent teams are more
manageable and mitigate the planning and syncing time between the teams.

• Automated testing on code changes that affect cloud services. A consequence
of this is that more thorough testing will be performed, which generates more
robust systems.

• Mitigate the time to configure the test environment and write tests. Leav-
ing tests out due to time consumption allows for more bugs and longer time
debugging which in turn yields even less time to write proper tests

1.3 Problem Statement

Questions connected to the purpose of this project include:

Q1 Is it possible to create a testing service for client-server communication that
is easily adaptable to different products?

Q2 Can such a service be efficient? Or rather, does it allow a testing procedure
that is more efficient than the procedure currently adopted by Delphi Auto-
motive?

Sub-questions to elaborate the two above:

Q3 Is it possible at all to simulate a cloud that satisfies the testing needs of the
cloud services used in the automotive industry?

Q4 Can the new simulation service be incorporated in existing testing frameworks?

3

1. Introduction

1.4 Related Work

Many have found that Clouds are useful to test applications by simulating real-
world environments and traffic [5, 6, 7], however, these tests and simulations are
often targeted for back end applications and services. Many others have studied
how to test the Clouds themselves in an efficient and correct way [8, 9].

However, simulation of the back end and cloud services themselves, in order to
properly test front end clients, seems to be largely left out in academia.

MockServer is the only project found having capabilities nearly fitting the demands
of this paper. It is a configurable server for testing services using HTTP and HTTPS
communication [10]. One major difference is that the MockServer is still a remote
server, whereas the test server for this project will be run locally, allowing even
more control. Furthermore, this project’s server supports several special actions not
accepted in the MockServer (or HTTP/HTTP communication in general), such as
waiting, easy repeating, closing connections etc. The full list of actions supported
can be found in Table 5.2. Lastly, the MockServer is written in Java, while this
project is written in C++, according to the limitations set in Section 1.5.

1.5 Limitations

Due to a limited time frame, only a part of the new testing environment was imple-
mented as a proof of concept. The focus was on testing the component foundation
services in the Volvo project at Delphi.

Furthermore, as a request from Delphi, the new testing environment runs on a Linux
machine running Ubuntu 14.04 LTS and developed in C++; Exploration of other
Operating System and Code Language combinations has been left out.

The testing environment will be exclusive to services using the HTTP or HTTPS
protocol for communication.

4

2
Method

This chapter describes the methods used to fulfil the project aim. In Section 2.1,
the methods used for the implementation of the environment are detailed. How the
testing of the environment was performed is described in Section 2.2, and how the
evaluation of success was defined is detailed in Section 2.3.

2.1 Implementation

As described in section 1.5, only a proof of concept was implemented. This was
done using the method of Vertical Slicing [11]. This means that support for only
one function is implemented to prove that the goal can be achieved and how. In this
case, this means that the testing environment only connects to one single project,
namely the Volvo infotainment project at Delphi. It also only supports testing of a
few services in the project.

The process of implementing the design was divided into different parts. The first
goal was to implement the software to work manually, meaning that a user excites
a testing suite. When that was done, the work of incorporating the testing software
into the current automated testing service at Delphi was assessed and if it was
deemed too great, it was to be left out of the project.

The software was implemented according to scrum with biweekly sprints. Informal
meetings between the project members was held daily, and in the end of each sprint
a meeting was held with the supervisor from Delphi.

2.2 Testing the Testing Environment

Testing a product using a testing environment, such as the one described in this
Master’s Thesis, is helpful to facilitate the testing process. However, this requires
that the testing environment in question behaves correctly as well.

5

2. Method

Naturally, an option would be to write another intricate test environment to test
the environment in this project’s scope. However, this means that the need for
testing just propagates. For example, how does one know that the code that tests
the testing environment is correct. In order to avoid this problem, a very simple
testing program, highly unlikely to contain bugs, was implemented. This consists of
a dummy client that connects to the testing server, exhausts the rule set and checks
for "correct" response from the server. This "correct" response might in fact be
invalid to a real client, but may be implemented in the rule set to enforce Negative
Testing (see Section 4.2.6), and is therefore considered desired behaviour from the
testing server.

2.3 Evaluation of Efficiency

With the new environment and procedure, an evaluation, as well as a comparison to
the old method, was performed. The aspects which define efficiency in this project
and how to compare the two procedures is described in the sections below.

2.3.1 Similarity to Native Environment

As mentioned in Section 1.2, it is desired to perform testing in an environment
similar to the environment that the end product should be run within. This factor
is divided into the following categories, in order of increasing superiority:

1. Testing the software in an environment different than target environment.

2. Testing the software in a simulation of target environment.

3. Testing the software in target environment.

2.3.2 Code and Input Coverage

The code and input coverage is measured in three different ways:

Firstly, the thoroughness of the testing performed is determined by running both
the new and the existing testing environment on the same software version, and
counting how many bugs that can be found by each. Instinctively, finding a higher
number of bugs yields a higher score.

Secondly, the diversity of tests that are supported is a factor. Supporting both
positive and negative tests is more valuable than only being able to perform one or
the other.

6

2. Method

Thirdly, being able to perform the same tests on a developer PC and in an automated
testing service is preferable due to consistency.

2.3.3 Time Consumption

An estimation of the time consumption of both the current and the new test envi-
ronment should be made. This estimation should include the time consumption of
setting up the environment, writing test cases and implementing necessary support
components. Naturally, the lower time is more efficient in this aspect.

Another important aspect of time consumption is when testing can be performed. As
mentioned earlier, it is highly beneficial to find bugs as early on in the development
phase as possible. Therefore, a list sorted by increasing priority is constructed as
follows:

1. Ability to perform tests only on a developer PC, or only on a remote server.

2. Ability to perform some tests on a developer PC and some on a remote server.

3. Ability to perform all tests on a developer PC and on a remote server.

7

3
Testing Theory

The first part of this chapter gives some basic knowledge of testing. Section3.1 gives
a short look-back on the views of testing. Fundamental testing types are presented
in Section 3.2 followed by methods using them in Section 3.3.

3.1 The View of Testing Through History

In the early days (1950s) testing and debugging were the same thing. Back then,
much of the testing was done by hand, and was not as much Dynamic Testing
(Section 3.2.1) as it was studying information flow and scrutinising code, in other
words, highly manual Static Testing (also Section 3.2.1).

In the mid 1980s, the art of testing was still not a strict science. For example, the
belief in crystals and energies of that time allowed paid software designers to search
for bugs in their programs by dangling crystals over source listings [12]. Although
this may not have been common practice, the anecdote divulges the attitude towards
testing in this time period.

Today, software testers may not put as much faith in bohemian powers, but despite
this, software testing still has a long way to go before it is a refined science [12].
Although software development seems to have its roots in mathematics [13], testing
appears to exist only as a necessary evil in the industry, which might explain the
historically slow advancement of the field.

It seems as if the percentage of time used for testing has been constant, at about
50%, through history. Despite this it was not until 1975 that it was proposed to
actually plan for this amount of testing [14]. The same proportion of testing is used
even today [1], although modern tools have made the testing overall more efficient.

8

3. Testing Theory

3.2 Types of Testing

Today, there exists different types of testing to ensure desired behaviour and ro-
bustness of software. The sections below (3.2.1, 3.2.2 and 3.2.3) explain some major
testing concepts and how they relate to each other.

In order to exemplify different testing methods, first consider a simple program,
whose only function is to calculate the sum of two integers. Once started, it should
prompt the user to enter two integers. When provided with two integers it should
return the sum. In Figure 3.1, the user enters the two integers 4 and 5, and the
program returns 9, which is the sum of the two. An example code that would
produce the behaviour from Figure 3.1 can be seen in Listing 3.1. In the following
sections, this program will be tested in a variety of ways.

Please enter two integers to be summed.
> 4 5
9

Figure 3.1: An example of a successful run of a simple summation program.

1#include <iostream>
2 using namespace std ;
3
4 int main ()
5 {
6 unsigned int a , b ;
7 cout << " Please ente r two i n t e g e r s to be summed .\n> " ;
8 c in >> a >> b ;
9 cout << a + b << " \n " ;
10 return 0 ;
11 }

Listing 3.1: Code version 1 of a simple summation program in C++.

3.2.1 Static and Dynamic Testing

Dynamic and Static Testing (or Static Analysis) are the two main ways to test
software. The dynamic approach entails execution of the program to be tested.
Generally, the tester gives the program some test input, executes it and records its
behaviour and response [15].

Static Testing involves analysing the code without execution, either manually (which
can also be called program understanding) or using an automatic tool to create, for
example, a data-flow graph [16]. Unlike with Static Testing, Dynamic Testing does
not necessarily require insight into the code and can be performed automatically,
saving precious time for developers and testers.

9

3. Testing Theory

The advantage of using Static Testing is that it can be performed very early in
the code life-cycle, which leads to lower rework-costs. Furthermore, some types of
defects may be easier to find using static testing. These include: deviation from
standards, missing requirements, design defects, inconsistent interface specifications
and non-maintainable code [17].

An observant reader may have noted that the code in Listing 3.1 makes use of
unsigned integers. The specification of the program in Section 3.2 allows negative
integers; however, using unsigned integers to represent negative integers may result
in undesired behaviour. This is an error which could be found by only inspecting
the code, and, in other words, an example of Static testing.

An ambitious reader may have compiled the code, tested various inputs and ob-
served incorrect behaviour, as in Figure 3.2. They have then performed Dynamic
Testing and have stumbled, maybe mindlessly, upon some deviation from the pro-
gram specification. However, where the error occurs is still unknown. To find and
correct the error, one might resort to selective Static testing or debugging.

Please enter two integers to be summed.
> -2 1
4294967295

Figure 3.2: An example of an unsuccessful run of a simple summation program.

3.2.2 White Box and Black Box Testing

Two versions of Dynamic Testing (mentioned in Section 3.2.1) are White Box and
Black Box Testing. In White Box testing, one can observe the organisation of the
software and maybe even the code. With this knowledge, a tester might be able
to figure out a combination of inputs, that exercises every part of the software
and, ideally, exhausts every possible path in the software. This can be very time
consuming for complex software.

Table 3.1: White Box test cases for exhausting the code of a simple summation
program.

Input Expected Output Generated Output
1 1 2 2

When testing the software as a black box, one does not know anything about the
internal functions. The only knowledge a tester possesses is what output the software
should produce given some input. In order to guarantee correct implementation, the
tester must exhaust all possible inputs, both valid and invalid, that is, both positive
and negative testing (Section 3.2.3). To avoid an infinite number of test cases, one
can categorise the input into a finite number of categories and select a few cases out
of each category.

10

3. Testing Theory

Table 3.2: Black Box positive test cases of the input of a simple summation
program.

Input Expected Output Generated Output
-1 -3 -4 4294967292
-1 0 -1 4294967295
0 -3 -3 4294967293
0 0 0 0
1 0 1 1
0 3 3 3
1 3 4 4
1 -3 -2 4294967294
43 106 149 149

73499 -314 73185 73185
1398 -4921 -3523 4294965171

4294967295 1 0 0

Often, both White and Black Box testing are performed to a certain degree. A
developer might perform some White Box testing to check basic functionality and
a few special cases before sending the product to a designated tester, performing
quantitative Black Box Testing.

In the previous section, an error in the code was pointed out, and it was explained
how one could find it using Dynamic Testing. Now, using a more structured ap-
proach, the White Box test cases in Table 3.1 are first used to exhaust the code.
Seeing that the test is successful, Black Box testing can now be used to further test
the software.

Since there are an infinite amount of integers, the set of possible input is infinite
(not accounting the restrictions of integer representations in computer systems).
A limitation of the input is a must. The extreme cases are those which must be
tested most thoroughly. Here, they are combinations where the two integers and the
result have a negative sign or different signs, or when the capabilities of the type
representing the integers is surpassed. Observe, only valid test cases are tested here,
invalid test cases are the subject of Section 3.2.3. In Table 3.2 a collection of tests
and their results are shown.

1#include <iostream>
2 using namespace std ;
3
4 int main ()
5 {
6 int a , b ;
7 cout << " Please ente r two i n t e g e r s to be summed .\n> " ;
8 c in >> a >> b ;
9 cout << a + b << " \n " ;
10 return 0 ;

11

3. Testing Theory

11 }

Listing 3.2: Code version 2 of a simple summation program in C++.

It is observed that the software does not behave as desired, more specifically, the
software seems not to be able to correctly represent negative results. The origin of
the issue is located to the use of unsigned int instead of signed int, and has been
corrected in Listing 3.2. The test cases for Black Box testing are revised to contain
relevant extreme cases. The new test results in Table 3.3 are successful.

Table 3.3: Black Box positive test cases of the input of a revised simple
summation program.

Input Expected Output Generated Output
-1 -3 -4 -4
-1 0 -1 -1
0 -3 -3 -3
0 0 0 0
1 0 1 1
0 3 3 3
1 3 4 4
1 -3 -2 -2
43 106 149 149

73499 -314 73185 73185
1398 -4921 -3523 -3523

2147483647 1 -2147483648 -2147483648

3.2.3 Positive and Negative Testing

In the previous Section, examples of White and Black box testing using only valid
input data were shown. They are examples of Positive Testing. More formally
defined, Positive Testing is a testing process where a system is validated against
a valid input data set. This is generally the absolute first type of testing that a
developer/tester resorts to.

It may be trivial to see the importance of a system working as intended with valid
input; however, it is equally, if not more, important that a system can handle in-
valid input as well. Of course, the simple summation program cannot have serious
consequences, but consider a brake system in a car: if the driver in a moment of
panic steps on both the brake and the gas pedal at the same time, which can be
considered as invalid input, it is crucial that the brake system starts braking and
not crashing.

In Negative Testing, the tester studies the behaviour of the program when it is
given incorrect or invalid data. The goal is to ensure that it raises errors when it is

12

3. Testing Theory

supposed to and handles faults quietly when it is appropriate. Only the imagination
of the tester sets the limits to what is tested. This is an important step in creating
a stable program [18].

The description of the simple summation program does not mention any desired
behaviour when faced with invalid input; however, it may still be interesting to
study. In Table 3.4 a small collection of negative test cases are seen together with
their respective generated output. The only entries that make somewhat sense are
the first and the last; the rest do not produce anything useful. It might be wise
to consider to validate the user input and prompt instructions how the summation
program is used properly.

Table 3.4: Black Box negative test cases of the input of a revised simple
summation program.

Input Generated Output
1 1 1 2
a a 32765
! < 32767
103.212 12 103
Hello World 32764
3, 2 3
3 + 4 3
1 [Enter] 3 4

3.3 Testing Methods

This section presents some testing methods and how they relate to the types of
testing in Section 3.2. It starts by introducing three fundamental methods of testing.
In the other sections, other common testing methods are briefly explained.

3.3.1 Unit, Component and Integration Testing

As seen in Figure 3.3, a software entity can have both incoming dependencies, which
call or trigger the entity, and outgoing dependencies, which are called or triggered by
the entity. A software entity must be triggered in order to test it. When triggering
the entity under test (EUT) from another entity, they are forced to be tested as one,
since there is no possibility to precisely distinguish where an error originated. Simi-
larly, if the EUT has outgoing dependencies which are needed to execute properly, it
might be impossible to construct tests where the origin of an error is located. Such
dependencies might result in that the entire project must be tested as a whole.

13

3. Testing Theory

Figure 3.3: An entity to be tested in its "natural" environment.

To avoid revisiting old code, it is desirable to thoroughly test each new piece of code
before moving on to the next. However, these dependencies also prevent testing
since testing an entity requires having all its dependencies already implemented.
The solution is to isolate the EUT by substituting all incoming dependencies with
drivers and mocking all outgoing dependencies, see Figure 3.4. Substituting de-
pendencies allows for test construction for arbitrary large entities and entities with
unimplemented dependencies.

Drivers are entities that triggers execution of the EUT, so that it can be analysed.
A mocked entity contains minimal functionalities to allow execution of the EUT and
can assert if called correctly [19].

Figure 3.4: An entity under test in a mocked environment.

14

3. Testing Theory

Commonly, there are three levels of entity sizes. Indivisible software components are
called units and testing of such a unit is simply called Unit Testing [20]. In C++,
methods and simple classes can be considered units. Unit testing is often made by
programmers and seeks to ensure that newly developed code works as intended [21].
Furthermore, 100% test coverage of code is optimal to lessen debugging time when
finding undesired behaviour on higher levels of testing.

Closely related to unit testing is component testing. A component consists of several
units and forms a module or program [22]. When each component has been tested in
isolation, integration testing is performed to verify that the components can operate
correctly together. Integration tests are done on systems or subsystems and aim to
exhaust the interfaces between components [23].

3.3.2 Regression Testing

Typically, unit, component and integration tests are written and run when new
functionality has been added. As important as it is to verify new behaviour, it is
equally important to verify that old behavior is not broken by introduced code. This
is called Regression Testing [24]. Generally, regression testing consists of unit tests,
component tests and integration tests, and in its simplest form, it is the collection
of all tests written in a project [25]. However, running all previously written tests
becomes time consuming. For example, running all tests in a large project might
take up to 7 weeks [26].

There are several techniques that try to increase the efficiency of regression testing.
Regression Test Selection is a group of techniques which strive to select test suites
for only the affected parts [27]. Test Suite Minimisation techniques have a slightly
different approach and try to have complete coverage with a minimal number of
tests [28]. A third category is Test Case Prioritisation, which ultimately runs all
tests but runs prioritised tests first [29].

3.3.3 System Testing

The purpose of system testing is to validate that a system fulfils the given require-
ment specification and to provide a quality assurance [30]. This quality assurance
consists of the following:

15

3. Testing Theory

Load Testing Measures the performance under normal circum-
stances [31].

Scalability Testing Measures the performance when a system is deployed
in a larger scale [32].

Reliability Testing Measures how fault tolerant a system is [33].
Stress Testing Measures how a system performs under extreme condi-

tions [34].
Interoperability Testing Measures how well a system can operate with other

systems [35].
Localisation Testing Measures how well a system can operate with different

languages [36].

These tests must be performed by an unbiased party and, therefore, are often per-
formed by independent test teams [37]. This is important to avoid compromising
the integrity of the tests if an conflict of interest arises.

System testing can put high demand on resources, especially during stress testing
and load testing of large scale web applications. As stated in Section 1.4, clouds are
used for testing applications and it is often system testing that is performed. The
massive computational potential of clouds is able to simulate for example a high
number of users to load test a web application [38].

3.3.4 Acceptance Testing

These tests are carried out by a customers themselves or hired representatives of a
customer and are performed to map the capabilities of a system and if it can satisfy
the current needs of the customer [39]. However, they are also executed in order
for the customer to determine of they are ready for this system. For instance, the
customer might need a specific type of infrastructure and users of the system might
need training [40].

16

4
Testing Environment

To be able to use the testing environment explained in this thesis in several differ-
ent projects (with different communications), one might produce a highly modular
software, with modules coded specifically for each project. This would yield easy
to use software, as long as the client-server communication looks the same. If some
requirements differ, one would need to either modify or create a new module, and
depending on how large the differences are it can be very troublesome to get familiar
with the code again and time consuming to implement new and/or different func-
tionality. Section 4.1 addresses the modularity theory of the testing environment in
more detail.

To avoid the trouble of implementing new and/or different functionality, one can try
to generalise. That way one might use the software in different environments without
creating huge amounts of new modules. The price to pay, however, is to provide
more information to the system in order to configure it the right way. The testing
environment in this Master’s Thesis aims to be general in order to minimise the effort
to port it to other projects. Furthermore, with the high need of configuration, the
goal was to encourage understanding and inspection of client-server communication
which could reveal weaknesses in the specification. The details of the configurability
theory are found in Section 4.2.

Furthermore, Section 4.3 presents the testing procedures currently adopted in the
Volvo project at Delphi and the integration of the new testing environment into the
Delphi project is discussed in Section 4.4, along with how the new environment is
hoped to exceed the old in efficiency in Section 4.5.

4.1 Modularity

The design of the Test Environment must be fairly easy to modify in order to port
it to other projects. To achieve this one can try to categorise and collect project
specific functions into modules which can be swapped when the Test Environment
is ported [41].

17

4. Testing Environment

4.1.1 Identifying components/entities of a testing environ-
ment

It is a necessity to control an entity when testing it, in order to get the entity to
actually execute something. This controller could be either a programmed unit,
for instance, a driver in component testing, or a human doing some manual system
testing.

Moreover, the entity under test may have dependencies to other entities, such as
other classes, components or services, and it is therefore necessary to create an
environment where the entity can execute. In more complex tests there may be
a need to configure or control the environment, for example, if the behaviour of
process A, during communication with process B, is to be tested, a simulation of
process B must be configured.

There must also be a controller of some kind to excite tests and collect the results.
In total, five separate entities are identified:

• Test Target - The entity to be tested. Could be either an unit, a component
or a complete system.

• Target Control - The entity which can excite some functions of the Test
Target and record the results.

• Environment Simulation - The entity that simulates the cloud/back-end
service and communicates with the test target.

• Environment Control - Configures the Environment Simulation and then
validates the communication after the test is run.

• Test Control - The entity which synchronises actions of the Target Control
and configurations of the Cloud Simulation in order to run tests.

A schema of a generic test environment can be seen in Figure 4.1. The steps in the
process of performing a test in this environment are the following:

1. When the test control is directed to start testing, it provides the Environment
Control with configuration instructions suitable to the pending test.

2. The Environment Control initiates the Environment Simulation with given
configurations.

3. The Test Control provides instructions to the Target Control, stating what
the Test Target is expected to do.

4. The Test Control excites the Test Target according to the provided instruc-
tions.

18

4. Testing Environment

Figure 4.1: Schema of a Test Target and the components in a test environment.

5. The Test Target interacts with the Environment Simulation.

6. The Target Control reads the state of the Test Target.

7. The Target Control returns the relevant data to the Test Control.

8. The Environment Simulation returns test data to the Environment Control.

9. The Environment Control returns the test result to the Test Control.

10. The Test Control examines the results, evaluates the test and presents a com-
plete test result.

Now, imagine that it is desired to test step 2 and 3 of Figure 1.1 using this modular
testing environment. Then the process above translates to the following:

1. When the Test Control is directed to start testing, it provides the Environment
Control with instructions to reply with a specific list of time slots when the

19

4. Testing Environment

HU sends a request of available time slots, according to Figure 1.1. Here,
the HU wants to have a secure connection, so the Test Control also provides
certificate and key information (according to Section 4.2.5).

2. The Environment Control initiates the Environment Simulation with the given
instructions. Since security information was provided in the previous step,
the Environment Control will initiate the Environment Simulation with, for
instance, SSL.

3. The Test Control provides instructions to the Target Control, stating that the
Test Target (HU, in this case) should send a time slot list request.

4. The Test Control forces the HU to send a time slot list request.

5. The HU sends a time slot list request. The Environment Simulation analyses
its instructions, confirms that it got a time slot list request and sends a list of
time slots in response.

6. The communication is finished and Target Control reads the state of the Test
Target. It can check, for example, that the HU accepted the response and did
not crash.

7. The Target Control returns the result to the Test Control.

8. The Environment Simulation returns the test data to the Environment Con-
trol.

9. The Environment Control checks that the Environment Simulation accepted
the communication and returns the test result to the Test Control.

10. The Test Control examines the results from the Target Control and the En-
vironment Control. If both are OK with the communication, the test was
successful.

4.1.2 General and Project Specific Modules

If the Environment Control and Simulation are configurable enough and able to not
contain any project specific functionality, they do not need to be altered when port-
ing the Test Environment. It is therefore desirable to create a Simulation Module
that is able to be configured to simulate any HTTP communication.

Target Control is highly dependable on the Test Target and is therefore an entity
that must be changed or swapped when porting.

Test Control may be generalised if the Target Control conforms to a specified API
and if one is able to configure the Test Control in a manner that specifies what and
how tests should be run. However, Target Control can be contained in a single Bash

20

4. Testing Environment

Shell script, and therefore, it is not a large component and can be written for each
new project.

4.2 Configurability

This section details the many different configuration options that were implemented
for the testing server in order to make it diverse and easily portable to different
projects.

4.2.1 Main Specification of Behaviour

The server needs to have a set of rules to match against incoming requests and
create appropriate responses to send to the client. In order to create configurability,
this rule set was chosen to consist of a stand-alone file, written in some markup
language.

Research showed that the two most popular markup languages applicable to this task
were JSON and XML. In Listings 4.1 and 4.2, an example of a simple phone book
can be seen in XML and JSON, respectively. It demonstrates that XML is more
verbose, taking longer for a human to both write and read. A drawback stemming
from JSON’s clearer notation is that only a handful of data types are supported.

Considering that the only data that will be stored is HTTP messages, which can be
stored as simple strings, JSON seemed like an appropriate choice. Furthermore, the
simplicity of JSON offers light weight and self-contained serialisers and deserialisers,
which is desirable since that means that the binary, executable, file of the testing
environment has no outgoing dependencies and can be run anywhere.

1<Contacts>
2 <Contact>
3 <FirstName>John</FirstName>
4 <LastName>Smith</LastName>
5 <PhoneNumber>(020)−6378−2583</PhoneNumber>
6 </Contact>
7 <Contact>
8 <FirstName>Jane</FirstName>
9 <LastName>Lewis</LastName>
10 <PhoneNumber>(029)−5423−8634</PhoneNumber>
11 </Contact>
12 <Contact>
13 <FirstName>Robert</FirstName>
14 <LastName>Jones</LastName>
15 <PhoneNumber>(0131)−368−8426</PhoneNumber>

21

4. Testing Environment

16 </Contact>
17</Contacts>

Listing 4.1: An example of a phone book markup in XML.

1 " Contacts " : [
2 {
3 " FirstName " : " John " ,
4 " LastName " : " Smith " ,
5 "PhoneNumber " : "(020)−6378−2583"
6 } ,
7 {
8 " FirstName " : " Jane " ,
9 " LastName " : " Lewis " ,
10 "PhoneNumber " : "(029)−5423−8634"
11 } ,
12 {
13 " FirstName " : " Robert " ,
14 " LastName " : " Jones " ,
15 "PhoneNumber " : "(0131)−368−8426"
16 }
17]

Listing 4.2: An example of a phone book markup in JSON.

A visualisation of the server workflow between an incoming request to an outgoing
response can be seen in Figure 4.2. The system allows the user to easily modify,
remove or add rules to test the specific needs of their service.

Figure 4.2: Schema of the flow from an incoming request to an outgoing response.

4.2.2 Rule Specification

As mentioned in 4.2.1, the server must have a set of rules to match against in order
to create an appropriate response to incoming requests. The rules should be able to
be added, modified or removed by the user to configure the behaviour of the server.

22

4. Testing Environment

The server should designed to only expect requests that can be matched to at least
one of the rules provided in the rule set. If no matching rule is found, the server
should view it as incorrect behaviour from the client. This produces a very strict
predetermined behaviour from the server and the developer has complete control of
and responsibility for what is considered correct behaviour of the client.

However, such strict behaviour can be hard to predict when values of fields in the
header or data are produced at run time, for example dates and process IDs. Even
so, the format of such values can often be predicted, and using regular expressions
when configuring a rule in the rule set can accommodate this. Additionally, with
regular expressions the strictness of rules can be alleviated by matching requests by
pattern instead of exact values.

Furthermore, the user can choose to put the body of a request or response in a
separate file, to save space in the JSON file and ease modification of server behaviour.
The user provides the path to the document containing the body instead of typing
out the actual data body in the JSON file.

4.2.3 Stateless and Stateful Environment

Software architecture can be either stateless or stateful and thus, in order to create
a testing environment that can be used with any HTTP service, both a stateful and
a stateless environment should be implemented.

In the case of the stateless environment, no attention should be paid to the order of
incoming requests and a specific request should always trigger the same response.
If no matching rule can be found, an error is reported.

In Figure 4.3, an example of a stateless workflow can be seen. This is useful, for in-
stance, when wanting to test a website without having to press buttons and navigate
through it in a certain order.

Sometimes, a stateful environment might be preferable. It is stricter in the sense that
the environment will expect everything to happen in a certain order, but less strict
in the sense that different responses can be given to the same request, depending on
the current state. An error is reported if the client sends a request that the server
did not expect.

An example of a stateful workflow can be seen in Figure 4.4. This could be useful
when order is important, for example, when a HTTP application should send initial
requests upon startup.

23

4. Testing Environment

Figure 4.3: An example of a stateless workflow.

4.2.4 Additional Actions

Occasionally, the functionality or configuration of the application to be tested might
make it close the current connection (possibly to open a new one) or wait a finite
amount of time (that could cause a timeout in the cloud).

Creating a general testing environment should involve an implementation handling
this type of special action. It should be able to expect that the client closes the
connection and/or opens another connection. It should also be able to wait a certain
amount of time before expecting anything. Furthermore, a timeout in the testing
sever should be possible to avoid by specifying the desired time before timeout upon
startup.

Another functionality that should be supported by the server is the possibility to re-

24

4. Testing Environment

Figure 4.4: An example of a stateful workflow.

ceive a message without creating a response, in contrast to the regular rules detailed
in Sections 4.2.1 and 4.2.2. Likewise, the server should be able to send a message
without expecting a response from the client.

Furthermore, a HTTP application might sometimes expect the server to close the
connection, so functionality for this should also be implemented.

In order to uphold consistency, and make configuration easy, this type of special
action should be able to be specified analogously to regular rules, in the JSON
document described in Section 4.2.1.

4.2.5 Optional Communication Through SSL/TLS

Most services incorporate security measures in their communications with the cloud.
This means that the cloud needs to handle authentication using certificates and keys.

The standard at Delphi is to use the toolkit “openSSL”. It is a popular option and
provides services using both SSL (Secure Socket Layer) and TLS (Transport Layer

25

4. Testing Environment

Security). Furthermore, it is easily incorporated with C++, and thus, seemed like
a clear choice.

In order to be configurable and generic, the cloud should also be able to handle a
connection without security, to support services that do not want or need security,
or simply have yet to implement it.

4.2.6 Configuring Different Testing Types and Methods

Since the testing environment requires execution of the client, it falls under the
category of Dynamic Testing, as opposed to Static Testing mentioned in Section
3.2.1. Using the configurable rules described in Section 4.2.1, both Black Box and
White Box Testing (Section 3.2.2), as well as Positive and Negative Testing (Section
3.2.3), can be performed.

Black Box Testing can be performed by writing many (ideally all possible) rules
in the rule set and looping through them. In White Box Testing, fewer rules are
needed, but instead it requires knowledge of the client code. The goal would be to
write very diverse rules in the rule set, in order to exhaust the client code.

By writing rules with a valid request format (that is, a request that the client could
actually send) and a corresponding valid response, Positive Testing is performed.
If instead Negative Testing is desired, only the response needs to be changed into
something that the client might not be expecting (that is, some invalid response).

In addition to these different testing types, the environment has support for a variety
of testing methods (see Section 3.3). By performing tests using different Target
Controls, the target can trigger units, components or the whole system, and thus
performing Unit, Component and System tests (explained in Section 3.3.1). Since
Regression Testing, Section 3.3.2, is a collection of the mentioned testing methods,
it can be performed as well.

This way, the configurability of the testing environment enables diverse testing pos-
sibilities, to satisfy different tester and client needs.

4.3 Current Testing in Volvo Project

Currently, unit tests are performed automatically in the Gerrit/Jenkins system,
described in Appendix A. However, the tests contain external dependencies and can
therefore not be run on target, but are instead run directly on a Test Slave. They
use a cloud provided by Volvo.

Component tests are currently only performed manually on the developer PC and,

26

4. Testing Environment

like unit tests, they are executed without a target. Additionally, these tests are
performed using an existing test environment to simulate the cloud, which enables
negative testing. This environment, however, is outdated and cannot be used in
the Gerrit/Jenkins system or on a target. Furthermore, it lacks modularity and
generality, making it inconvenient to port to any other project.

Integration testing can be performed on a simulation of the target, for example, a
NUC (Next Unit of Computing). An image of the software to be tested is installed
on the NUC, and the tester can then use a graphical interface to manually test
different parts of the software.

4.4 Integration with Delphi

The new testing environment will need to be integrated with the current system
at Delphi. The test should be runnable in a manual context, explained in Section
4.4.1, as well as in an automatic context, explained in Section 4.4.2.

4.4.1 Manual Testing

The new testing environment should be run directly on a target, connected to the
developer PC. Figure 4.5 shows the theoretical workflow that should be performed
manually by the developer.

Figure 4.5: Schema of the manual testing procedure.

27

4. Testing Environment

4.4.2 Automatic Testing

Delphi already has a system for automatic testing that can be studied closely in
Appendix A. Figure 4.6 shows how the testing environment of this thesis should be
incorporated into the existing routine.

Figure 4.6: Schema of the automatic testing procedure.

The procedure is analogous to the manual testing, shown in Figure 4.5, except that
everything is handled automatically when a developer tries to push software changes
to Git.

4.5 Exceeding Current Testing Efficiency

This section details how the new testing environment, explained in Section 4.4, in
theory, should outperform the old one in terms of the factors of efficiency listed
under Section 2.3.

28

4. Testing Environment

4.5.1 Similarity to Native Environment

As mentioned in Section 4.3, no testing is performed on an actual target. However,
integration testing can be performed manually on a simulation of the target , which
falls into category 2 according to the specifications in Section 2.3.1. On the other
hand, all other testing types are performed on a environment different from the
target environment, in other words, category 1 in the specification.

The testing environment in this thesis should be performed directly on a target,
linked to either a test slave or developer PC. This means that it falls into category
3 of the above mentioned specification for all testing types.

A higher category number means that the testing is performed in a more similar
context, and thus, the testing procedure detailed in this thesis should outrank the
current one.

4.5.2 Code and Input Coverage

The current testing at Delphi only supports positive testing, except in the case of
component testing that could possibly be written to perform negative tests. How-
ever, no such tests are performed today. Furthermore, unit testing is the only testing
method that can be performed automatically.

The new testing environment should allow any dynamic tests, both positive and
negative. Additionally, all tests should be runnable in both an automatic and manual
fashion.

This means that, according to the specifications in 2.3.2, the new testing should
outrank the old in this category.

4.5.3 Time Consumption

As mentioned in Section 4.3, the only tests that currently can be performed au-
tomatically are the unit tests, although all tests can be run manually in different
manners.

The new testing environment should support automatic and manual tests for any
testing method.

According to the specifications in 2.3.3, providing both manual and automatic test-
ing gives an advantage in this category of efficiency, meaning that the new testing
environment is favorable over the old. However, configuring the new environment
and writing tests might prove to consume more time than with the old method.

29

5
Results and Discussion

The results of this project will be explained in this chapter, along with accompany-
ing discussions. The outcome of the manual and automatic testing goals are detailed
in Section 5.1. The modularity aspect of the result is described in relation to the
previous theory on the subject (Section 4.1) in Section 5.2. In Section 5.3, the con-
figuration functionalities are portrayed, also in relation to previous theory (Section
4.2).

5.1 Using the Testing Environment

This section describes an overview of how the resulting testing environment is used.
Section 5.1.1 describes the target, while Sections 5.1.2 and 5.1.3 details how the
testing could be integrated at Delphi.

5.1.1 NUC Instead of Target

The Volvo project at Delphi was still early in development, and no actual HU was
available for testing yet. Instead, a NUC that simulated the hardware and software
environment of a HU was used. However, since a NUC and a HU behave the same
from the testing environments point of view, there should be no issue simply running
the tests directly on HU, when one is available.

5.1.2 Manual Testing

The manual test suite was implemented as a script that runs the implemented tests
and returns a green “OK” for each successful test. If the test was run but the target
did not behave according to specifications, an orange “NOK” (Not OK) is returned.
Furthermore, in case of total failure (the target crashed, the JSON specification is
invalid etc.), a red “FATAL ERROR” is returned. In both the case of NOK and
FATAL ERROR, an error message is also returned, explaining what went wrong.

30

5. Results and Discussion

5.1.3 Automatic Testing

Due to security issues and absent key personnel, the integration with the automated
testing service (Jenkins) at Delphi failed. However, the only task of this service is
to run scripts, something that can easily be done locally on a PC as well.

Considering this, a script was written to simulate the automated testing service.
Since, there is no difference between this and the real one from the testing envi-
ronment’s point of view, there should be no problem integrating the new testing
environment into the automated testing service.

5.2 Modularity

The new testing environment consists of three components:

• Target Control

• Simulation Module

• Test Control

The relationship between these components can be seen in Figure 5.1. Comparing
this with the theoretical modularity in Figure 4.1, one will notice that they are
similar, but not completely identical.

Target Control and Test Control work the same as shown in Figure 4.1 and, as
explained in Section 4.1.2, they are specific for the Volvo Project. In the proof
of concept, the Target is a component and, therefore, Target Control is a driver
component. Test Control is a simple bash script, which starts the simulation with
a configuration file, asks Target Control to excite the Target and then collect test
results from Target Control and the Simulation Module.

The Simulation Module is designed to be reusable by configuring it with configu-
ration files. It is divided into two sub-modules: an Environment Control and an
Environment Simulation, much like in Figure 4.1. However, unlike in that figure,
the Environment Simulation is divided into three “subsub-modules”. There is one
type of module for each of the two modes (more about simulation modes in Sec-
tion 5.3) that the program can be executed in. These two modules are the ones
that handle all the communication between the simulation and the client, and since
the two modes are quite different it was decided to keep them apart in separate
“sub-modules”. The third “subsub-module” consists of a library containing all the
classes used in the two modes, as well as the Environment Control. This adds even
more modularity and mitigates code repitition.

This quite high level of modularity should enable easy replacement of modules,

31

5. Results and Discussion

should the need arise. For example, if OpenSSL, or anything regarding the HTTP(S)
protocol, should need to be replaced, then only the Stateful and Stateless modules
would need replacement or configuration.

Figure 5.1: Test environment call hierarchy.

5.3 Configurability

This begins by describing the results of the Stateless and Stateful modes portrayed
in Section 4.2.3. This is done in Sections 5.3.1 and 5.3.2. The outcome of the option
to open a secure connection (detailed in Section 4.2.5), is explained in Section 5.3.3.

5.3.1 Stateless Mode

In Stateless mode, the simulation receives, in the provided configuration file, a list of
rules. These rules describe a request and a response. When the simulation receives
a request, it searches the rules to match a request, and if one is found, it returns its
corresponding response.

32

5. Results and Discussion

This mode is useful, for example, when a developer has implemented several sim-
ple functionalities and want to test them in any order using the same cloud, for
simplicity. Figure 5.2 shows such a case.

However, the restriction with the stateless mode is that is unable to have different
responses to the same request. This is demonstrated in Figure 5.3, using a car service
booking example. Since the requests in steps 1 and 9 of the figure is the same, it
maps to the same response, even though the HU has actually already booked one
of the time slots. Clearly, this type of workflow would be more suited to a stateful
environment.

Figure 5.2: An example of a stateless use case, showing the usefulness of the
mode.

33

5. Results and Discussion

Figure 5.3: An example of a stateless use case, showing its restriction of write
operations.

5.3.1.1 Rules Set

A set of rules describing a simple web server can be seen in Listing B.1. These
requests and responses can be of three types, see Table 5.1.

Listing 5.1 shows an example of a message of type ’full’. It is strict and contains the
whole message. If the data to be sent in the message becomes large, the readability
of the file is compromised. To accommodate this, the message type ’dataRead’ was
created. This type takes a path to a data file rather than the data itself. This
also provides the possibility to easily use the same data in multiple messages. An
example of a ’dataRead’ message can be seen in Listing 5.2. This is the same message
as in Listing 5.1, except that the body is contained in a file called “start.html”. This
demonstrates the enhanced readability of this type of message. There is also a
’regex’ type. The type uses POSIX Extended Regular Expression [42]. An example
of a regex type can be seen in Listing 5.3.

Moreover, another functionality is that if the fields ’Date’ and ’Content-Length’ are
absent, the Simulation will add them dynamically. This is because ’Date’ should be

34

5. Results and Discussion

Table 5.1: The different types of messages in a rule.

Type Description

full This message is fully contained by the JSON object

dataRead The header of this message is contained by the JSON
object, but the data must be read from the path given
in the JSON bject

regex This message has some part(s) of it described with reg-
ular expressions. It is not meant to be sent, only to be
matched against

raw Sometimes, for instance in negative testing, it is useful to
be able to describe raw messages. In other words, create
the possibility to send messages that doesn’t conform to
HTTP protocol.

the actual date when the message is sent and ’Content-Length’ might be tricky to
calculate.

Listing 5.1: An example of a message of the type ’full’
1 " r e sponse " : {
2 "msg−type " : " f u l l " ,
3 "msg " : {
4 " v e r s i on " : "HTTP/1 . 1 " ,
5 " code " : " 200 " ,
6 " s t a tu s " : "OK" ,
7 " f i e l d s " : {
8 " Content−Type " : " t ex t /html ; cha r s e t=UTF−8" ,
9 " Content−Encoding " : "UTF−8"
10 } ,
11 " data " : "<html><head><t i t l e >This i s \"/ post \".</

t i t l e ></head><body>Hel lo World , This i s \"/ post
\ " . <a h r e f =\"http : //127 .0 . 0 . 1 : 30000\ " > Return to
s ta r t </body></html>"

12 }
13 }

Listing 5.2: An example of a message of the type ’dataRead’
1 " re sponse " : {
2 "msg−type " : " dataRead " ,
3 "msg " : {
4 " v e r s i on " : "HTTP/1 . 1 " ,
5 " code " : " 200 " ,
6 " s t a tu s " : "OK" ,
7 " f i e l d s " : {

35

5. Results and Discussion

8 " Content−Type " : " t ex t /html ; cha r s e t=UTF−8" ,
9 " Content−Encoding " : "UTF−8"
10 } ,
11 " dataPath " : " s t a r t . html "
12 }
13 }

Listing 5.3: An example of a message of the type ’regex’
1 " r eque s t " : {
2 "msg−type " : " regex " ,
3 "msg " : {
4 " type " : "GET" ,
5 " v e r s i on " : "HTTP/1 . 1 " ,
6 " path " : " / " ,
7 " f i e l d s " : {
8 " Host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
9 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
10 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
11 }
12 }
13 }

5.3.2 Stateful Mode

The Stateful mode has a bit more functionality. In its configuration file, it receives a
list of Actions. This list of actions determines how and when the simulation should
act, in other words, a scenario. If the simulation cannot act as specified due to the
client not doing as expected, it terminates and reports an error.

Figure 5.4 shows the same use case as in Figure 5.3, but used in the stateful mode
instead. This demonstrates that the same request can map to different responses,
which is useful in this test case. Another use of being able to respond differently
to the same request can be seen in Figure 5.5. First, the simulation responds with
"Bad Request" when the HU tries to access the available time slots. The HU will
retry for the same resource after some internal timer, and this time the simulation
will send a positive response.

The stateful also expands the space of negative testing. Figure 5.6 shows a test
case using most of the functionality of the stateful mode. See Table 5.2 for the
complete list of actions. The test case begins with the simulation sending a request
for the resource "/start.html" (1-3), which is typical behaviour of a web browser.
Obviously, since the HU is a client, it should simply discard this request (4). Then,

36

5. Results and Discussion

Figure 5.4: A diagram of the same test case as in Figure 5.3 but using the
stateful mode which has better support for write operations.

the cloud expects a request for available time slots but it will not respond (5-6).
When the HU sends its requests it will wait until it suspects that something went
wrong and retry the request (7-8, 11). Now, the cloud responds by deviating from
the HTTP-protocol and sends 10 messages only containing the word "spam" (12).
The HU should discard also these messages and retry one last time for the available
time slots (13). This time the cloud simply closes the connection (14-15, 17) and
the HU should decide that the current entry point of the cloud is corrupted and try
an other (18).

5.3.2.1 Scenarios

A simple scenario can be constructed by picking and arranging rules from a rule
set in the order a user is expected to communicate with the back end. However,
a communication entails more than just exchange of data and therefore, the addi-
tional actions, previously described in Section 4.2.4, are implemented. They are also
presented in Table 5.2. A scenario using the rules for the stateless web server (in
Listing B.1), along with some of these additional rules, can be seen in Listing B.2.

37

5. Results and Discussion

Figure 5.5: A diagram showing other uses of the ability to respond differently on
the same request that comes with the stateful mode.

These scenarios can also simulate statefulness. Actions 2-4 in Listing B.2 show a
part of the scenario where an example of statefulness can be observed. The user is
expected to access a web page, which says "Hello World", and send a POST-request
containing their name (dave) to that URL. When the user then request the web
page again, it will say "Hello Dave".

Actions 5-11 start to challenge the user with abnormal behaviour from the server.
Actions 5-7 simulate a scenario with high latency between the user and the back
end service. Examples of negative testing can be seen in actions 8-11, where action
10 returns a malformed response and action 11 spams the client with nonsense.

5.3.3 Choosing secure or unsecure connection

As mentioned in Section 4.2.5, the server should be configurable to use SSL/TLS or
simply have an unsecure connection.

The test environment manages this by accepting, but not demanding, the path to
a server key and certificate as input upon start up. The server then automatically
sets up a secure server, using openSSL and HTTPS, if security information was
provided. Otherwise, a standard HTTP server is started.

Note that if a secure server is set up, and the client tries to connect without security
information, it will not work, nor will a server configured without certificate and

38

5. Results and Discussion

Figure 5.6: A diagram showing a negative test case using the stateful mode.

key accept a client supplying security information. This design choice was made
considering that the user of this testing environment should know what type of
connection they want their client to have. Thus, strictness in this area might reveal
unwanted behaviour by the client.

5.4 Efficiency

This section describes the evaluation of efficiency, detailed in Section 2.3, in relation
to the results. It compares the old testing procedure at Delphi with the one in this
thesis in terms of each of the efficiency categories.

39

5. Results and Discussion

Table 5.2: The different types of Actions

Action Description Usage

rule Wait for given request and send the given response.

{
"action": "rule",
"request": { ... },
"response": { ... }
}

receiveMsg Receive a message.

{
"action": "receiveMsg",
"request"/"response"/"msg": { ... }
}

sendMsg Send a message

{
"action": "sendMsg",
"request"/"response"/"msg": { ... }
}

wait wait for i seconds

{
"action": "wait",
"time": i
}

closeConnection Wait for client to close connection. { "action": "closeConnection" }
openConnection Wait for client to open a connection. { "action": "openConnection" }
serverCloseConnection Close the connection with the client. { "action": "serverCloseConnection" }

repeat Repeat the given actions i number of times.

{
"action": "repeat",
"repetitions": i,
"actions": [...]
}

5.4.1 Similarity to Native Environment

As explained in Section 4.3, the only testing in the old environment that can be
performed on a target simulation is integration testing. All other testing can only be
performed on the developer PC, since it has dependencies on packages and libraries
that do not exist on a target (simulation).

The new test environment has one external dependency, namely OpenSSL. However,
this is a very common program and is often installed on target anyway. So, provided
that OpenSSL is installed, the test environment can run on the target simulation,
and could most likely be easily run on a HU as well. This enables testing closer
to the native environment for the foundation services. As of now, only component
tests are written, but there is no foreseeable problem to implement other tests such
as unit tests and integration tests.

5.4.2 Code and Input Coverage

This section describes the evaluation of the Code and Input Coverage separately.

40

5. Results and Discussion

5.4.2.1 Code Coverage

Due to the fact that the current test environment mostly relies on a remote cloud
provided by Volvo, which cannot be (easily) configured, it is troublesome to test
the parts of the component that handle unsuccessful requests. With the introduc-
tion of negative tests in the new testing environment, the code coverage, naturally,
increased.

Furthermore, new capabilities of the environment, such as denying the client re-
quests, as seen in Figure 5.5, revealed previously undiscovered bugs related to retry-
handling. It was found that the software did not retry at all for some resources,
while it waited longer than expected to retry for other resources.

5.4.2.2 Input Coverage

With negative testing, the possible input data set grew, and with it came the possi-
bility to verify desired behaviour of the component that otherwise did not exist. In
some XML data transfers the new test environment could send faulty data, such as
excessive tags or empty tags, and the component did what was expected. This is a
behaviour that could not have been confirmed with the old test environment.

5.4.3 Time consumption

Construction of JSON-files is necessary in order to use the new test environment and
is a bit time consuming. One of the authors of this Master’s Thesis spent 1-2 hours
on each test configuration file, which each contains 2-10 actions, and in addition, 8
hours were spent on writing scripts executing test suites. The last piece of the test
environment is the Target Control and it took roughly 16 hours to complete. In
total, the construction of a test suite containing 10 tests took 40 hours.

These are rough estimations and probably do not translate well into a "live" project.
Some of the tests were previously constructed for the current testing environment
and only had to be ported, which lowered the time consumption somewhat. However,
the construction time of the test suite script includes research of bash scripts and the
implementation time of the target control includes study of the test target, both of
which would be lowered in a “real life” project. Furthermore, many of the scenarios
can be reused between different testing type (UT, CT, IT) which cause very little
overhead. With this in mind, the new environment would be equally time consuming
in this regard, or at least not much more than the current.

The new environment can be run manually on a developer PC and automatically
through Jenkins/Gerrit. Furthermore, it can run on both target system and "ordi-
nary" systems, which is beneficial for the closeness to the developer. The developer

41

5. Results and Discussion

can build and test the new changes on their own computer and if it passes that,
they can build and test it in target, which will increase the thoroughness of testing
on an earlier stage. These are functionalities not provided by the old testing envi-
ronment, where each type of testing is restricted to either manual/automatic testing
and target/PC testing.

Therefore, it scores higher than the old environment, according to the specifications
in Section 2.3.3.

42

6
Conclusion

We believe that a simulation tool such as the one described in this thesis answers
the questions in Section 1.3 in a positive manner. This is mainly because of the high
level of configurability but also the modular architecture of the software.

The high level of configurability satisfiesQ2,Q3 and mostlyQ1. In the results of the
evaluation of efficiency, in Section 5.4, the new environment clearly outperforms the
current in the first two categories. In the case of “Time Consumption”, the results
are a little more ambiguous, although the ultimate verdict, in consideration to the
discussion in Section 5.4.3, is that the new testing environment triumphs also in this
regard. All though it is difficult to say whether the tool can successfully simulate
every possible cloud, we can determine that the modes in Section 5.3 provides the
functionality to simulate the cloud used in the project we worked with.

The architecture satisfies Q4 and solves the remaining issues of Q1. In Section 5.1,
it is shown that the simulation tool can be incorporated in the existing testing
framework currently adopted at Delphi. If the framework is updated or replaced in
such a way that it becomes incompatible with the simulation tool, the modularity
of the architecture, described in Section 5.2, assists in locating and updating or
replacing functionality.

One can argue that MockServer, described in Section 1.4, already provides suffi-
ciently good answers to these questions. And indeed, the simulation tool in this
thesis has similar capabilities as MockServer in its stateless mode. However, by
accepting that input that does not conform to the HTTP/HTTPS standards, the
input coverage is increased in the tool described in this thesis. Furthermore, with
the introduction of the stateful mode even more functionality is supported, further
increasing the set of possible positive and negative test cases.

All in all, it can be concluded that the efficiency increased with the new testing
environment, and the configurability should satisfy the testing needs of the cloud
services and provide support for most projects using HTTP/HTTPS, while the mod-
ular architecture permits easier modification of the tool in order to add even more
support.

43

6. Conclusion

6.1 Future Work

Mitigating the time needed to configure the environment and writing tests would
be beneficial. One way of achieving this could be to implement a support program
with a graphical user interface that can help with the construction of JSON-files.
It could enable a more “human” notation of the rules and actions, making it less
verbose, and eliminating the requirement of insight into the JSON notation.

Another possible extension of this project could be to implement a program with
the capability to generate negative tests, given a positive testing JSON-file. Since
humans may not be very apt to construct "every possible" fault, computer generated
negative tests would probably increase fault tolerance and mitigate time spent on
brainstorming and writing negative tests.

Furthermore, the Test Control component in this testing environment is project
specific. But, as briefly discussed in Section 4.1.2, one could create an API that the
Target Control conforms to. If the Test Control is then made highly configurable
by the user, for example, by accepting different input data, it would make the Test
Control general, which could lower the time to setup the test environment for a new
project. However, it adds a requirement on the developer/tester to study the API
instead, so it might not mitigate the time by much.

44

Bibliography

[1] Myers GJ, Badgett T, Sandler C. The art of software testing. 3rd ed. Hoboken,
N.J: Wiley; 2012.

[2] Chauhan N, Knovel. Software Testing: Principles and Practices. Oxford: Ox-
ford University Press; 2010;2015;.

[3] McConnell S. Software Quality at Top Speed. Software Development. 1996;.

[4] Leeds HD, Spicer JaC, Weinberg GM. Computer programming fundamentals.
New York: McGraw-Hill; 1961.

[5] Riungu-Kalliosaari L, Taipale O, Smolander K. Testing in the Cloud: Exploring
the Practice. IEEE Software. 2012;29(2):46–51.

[6] Batra R, Sharma N. Cloud Testing: A Review Article. International Journal
of Computer Science and Mobile Computing. 2014;3(6):314–319.

[7] Yu L, Tsai WT, Chen X, Liu L, Zhao Y, Tang L, et al. Testing As a Service
over Cloud. In: Proceedings of the 2010 Fifth IEEE International Symposium
on Service Oriented System Engineering. SOSE ’10. Washington, DC, USA:
IEEE Computer Society; 2010. p. 181–188. Available from: http://dx.doi.
org/10.1109/SOSE.2010.36.

[8] Sivapathi A, Karthikeyan M, Saravanan K, Prakash V. Cloud testing: The
cloud and our testing practices. Research Journal of Applied Sciences, Engi-
neering and Technology. 2014;7(23):4940–4944.

[9] Nachiyappan S, Justus S. Cloud testing tools and its challenges: A comparative
study. Procedia Computer Science. 2015;50:482–489.

[10] Bloom JD. MockServer. 2016;Available from: http://www.mock-server.com/.

[11] Clay B. Vertical Slicing; 2013. Available from: http://www.slideshare.net/
skydiver34275/vertical-slicing-v2.

[12] Jorgensen P. Software testing: a craftman’s approach. 4th ed. Boca Raton,
Florida: Auerbach; 2013.

45

http://dx.doi.org/10.1109/SOSE.2010.36
http://dx.doi.org/10.1109/SOSE.2010.36
http://www.mock-server.com/
http://www.slideshare.net/skydiver34275/vertical-slicing-v2
http://www.slideshare.net/skydiver34275/vertical-slicing-v2

Bibliography

[13] Mahoney MS. The Roots of Software Engineering. CWI Quarterly 3. 1990;p.
325–334.

[14] Brooks FP. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, Inc.; 1975.

[15] Butterfield A, Ngondi GE. Dynamic Testing. A dictionary of computer science.
2016;.

[16] Butterfield A, Ngondi GE. Static Analysis. A dictionary of computer science.
2016;.

[17] Wichmann Ba, Canning Aa, Marsh Dwr, Clutterbuck Dl, Winsbor-
row La, Ward Nj. Industrial perspective on static analysis. Softw
Eng J UK Software Engineering Journal. 1995;10(2):69–75. Available
from: https://web.archive.org/web/20110927010304/http://www.ida.
liu.se/~tddc90/papers/industrial95.pdf.

[18] Nadig S. What is Negative Testing and How to Write Negative Test
Cases? Software Testing Help. 2016 May;Available from: http://www.
softwaretestinghelp.com/what-is-negative-testing/.

[19] Freeman S, Pryce N. Growing object-oriented software, guided by tests. Addi-
son Wesley; 2010.

[20] ISO/IEC. unit test. Systems and software engineering: vocabulary. 2010;p.
386.

[21] Link J, Frölich P, Books24x7 I. Unit testing in Java: how tests drive the code.
San Francisco, Calif: Morgan Kaufmann; 2003.

[22] What is Component Testing. ISTQB Exam Certification;Available from: http:
//istqbexamcertification.com/what-is-component-testing/.

[23] Butterfield A, Ngondi GE. testing (dynamic testing). A dictionary of computer
science. 2016;.

[24] Leung Hkn, White L. Insights into regression testing (software testing). Pro-
ceedings Conference on Software Maintenance. 1989;p. 60–69.

[25] Collofello JS, Buck JJ. Software Quality Assurance for Maintenance. IEEE
Software. 1987;4(5):46–51.

[26] Rothermel G, Untch RH, Chu C, Harrold MJ. Prioritizing test cases for regres-
sion testing. IEEE Transactions on Software Engineering. 2001;27(10):929–948.

[27] Rothermel G, Harrold MJ. Selecting Tests and Identifying Test Coverage
Requirements for Modified Software. In: Proceedings of the 1994 ACM
SIGSOFT International Symposium on Software Testing and Analysis. IS-

46

https://web.archive.org/web/20110927010304/http://www.ida.liu.se/~tddc90/papers/industrial95.pdf
https://web.archive.org/web/20110927010304/http://www.ida.liu.se/~tddc90/papers/industrial95.pdf
http://www.softwaretestinghelp.com/what-is-negative-testing/
http://www.softwaretestinghelp.com/what-is-negative-testing/
http://istqbexamcertification.com/what-is-component-testing/
http://istqbexamcertification.com/what-is-component-testing/

Bibliography

STA ’94. New York, NY, USA: ACM; 1994. p. 169–184. Available from:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/186258.187171.

[28] Chen TY, Lau MF. Dividing strategies for the optimization of a test suite.
Information Processing Letters. 1996;60(3):135–141.

[29] Falah B, Marghabi S. Towards Regression Testing Constraints. International
Journal of Modeling and Optimization. 2014;4(6):504.

[30] Desikan S, Ramesh G. Software testing: principles and practice. Dorling
Kindersley (India); 2008.

[31] Wescott B. The every computer performace book. Fraser Publishing Company;
2013.

[32] Chen Y, Sun XH. STAS: A Scalability Testing and Analysis System. In: 2006
IEEE International Conference on Cluster Computing. IEEE; 2006. p. 1–10.

[33] Elsayed EA. Overview of Reliability Testing. IEEE Transactions on Reliability.
2012;61(2):282–291.

[34] Meier JD, Farre C, Bansode P, Barber S, Rea D. Chapter 18 – Stress
Testing Web Applications. Chapter 18 – Stress Testing Web Applications.
2007 Sep;Available from: https://msdn.microsoft.com/en-us/library/
bb924374.aspx.

[35] Kindrick JD, Sauter JA, Matthews RS. Improving Conformance and Inter-
operability Testing. StandardView. 1996 Mar;4(1):61–68. Available from:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/230871.230883.

[36] Ping TP, Chan CP, Sharbini H, Julaihi AA. Integration of cultural dimen-
sions into software localisation testing of assistive technology for deaf children.
Software Engineering (MySEC), 2011 5th Malaysian Conference in. 2011;p.
136–140.

[37] Naik K, Tripathy P. Software testing and quality assurance: theory and prac-
tice. 1st ed. Hoboken, N.J: John Wiley & Sons; 2008;2011;.

[38] Kumar R, Singh S. Cloud Testing: Perspectives and Challenges. International
Journal of Computer Applications. 2014;106(17).

[39] USER ACCEPTANCE TESTING (UAT) GUIDES & CONCEPTS. Test-
ingBrain; 2011. Available from: http://www.testingbrain.com/blackbox/
user-acceptance-testing.html.

[40] Hambling B, van Goathem P. User Acceptance Testing: A Step-By-step Guide.
1st ed. Biggleswade;Swindon;: BCS, The Chartered Institute for IT [Imprint];
2013.

47

http://doi.acm.org.proxy.lib.chalmers.se/10.1145/186258.187171
https://msdn.microsoft.com/en-us/library/bb924374.aspx
https://msdn.microsoft.com/en-us/library/bb924374.aspx
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/230871.230883
http://www.testingbrain.com/blackbox/user-acceptance-testing.html
http://www.testingbrain.com/blackbox/user-acceptance-testing.html

Bibliography

[41] Boudreau T, Tulach J, Wielenga G. Rich Client Programming: Plugging into
the Netbeans™Platform. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall
Press; 2007.

[42] The Open Group Base Specifications Issue 7, 2013 Edition. The Open
Group; 2013. Available from: http://pubs.opengroup.org/onlinepubs/
9699919799/.

48

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

A
The Delphi Work Flow

The work flow adopted by Delphi uses Gerrit and Jenkins. Gerrit is a free web-based
team code collaboration tool in which the team members review each others’s code
changes. It also features close integration with git, a distributed version control
system. Jenkins is a Continuous Integration tool which automatically builds and
tests source code.

A high-level view of the typical work flow of a developer at Delphi can be seen in
Figure A.1. First they (1) clone the repository of the project of interest, hereby
referred to as project A, and (2) create a new branch on the local copy. They then
make some changes to the code and proceed by (3) pushing them to Gerrit for
review.

In Gerrit, other developers review the code and vote to accept or reject the proposed
changes. Jenkins act as one of these users. When a change in project A is pushed
to Gerrit, Jenkins automatically (4) starts testing by (5) running the testing scripts
for project A. These scripts allocate and order test slaves to (6) start testing.

When a test slave receives an order to start testing, it clones project A, builds an
image of it and installs the image on a Head Unit (HU). Then, it (7) runs the test
by (8) initiating actions on the HU and (9) measures the response, e.g., the new
state of the HU. When the test is finished, the test slave (10) returns the result to
Jenkins.

Jenkins final job is then to collect all test results and (11) return the overall result
to Gerrit, i.e., if the tests went well Jenkins will accept the changes, otherwise they
will be rejected. Lastly, if no user as rejected the changes to the code, the developer
is able to (12) commit them to the master branch of project A.

I

A. The Delphi Work Flow

Figure A.1: Work flow using Gerrit and Jenkins.

II

B
Website Simulation

For demonstration purposes we wrote a rule set for a simple web site, see Listing B.1.
This web site is a couple of pages and a form to post data to the server. All the
requests are of type ’regex’ to be able to serve most web browsers. The responses
are of type ’full’ or ’dataRead’. The path leads to the HTML file seen in Listing B.3.

In B.2 we have created a manuscript to test how a web browser’s actions. First,
we expect the web browser to request the start page of the web site, and then to
navigate to /path. Secondly, we expect the browser to navigate to the start page
again, but this time the server will wait for 60 seconds before replying. Thirdly, the
browser is expected to close the connection and then to retry for the start page, this
time, we reply immediately.

Listing B.1: Rule set for a simple web site
1 {
2 " rootDataPath " : " webs i te " ,
3 " r u l e s " : [
4 {
5 " r eque s t " : {
6 "msg−type " : " regex " ,
7 "msg " : {
8 " type " : "GET" ,
9 " v e r s i on " : "HTTP/1 . 1 " ,
10 " path " : " / " ,
11 " f i e l d s " : {
12 " Host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
13 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
14 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
15 }
16 }
17 } ,
18 " re sponse " : {
19 "msg−type " : " dataRead " ,
20 "msg " : {

III

B. Website Simulation

21 " v e r s i on " : "HTTP/1 . 1 " ,
22 " code " : " 200 " ,
23 " s t a tu s " : "OK" ,
24 " f i e l d s " : {
25 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
26 " Content−Encoding " : "UTF−8"
27 } ,
28 " dataPath " : " s t a r t . html "
29 }
30 }
31 } ,
32 {
33 " r eque s t " : {
34 "msg−type " : " regex " ,
35 "msg " : {
36 " type " : "GET" ,
37 " v e r s i on " : "HTTP/1 . 1 " ,
38 " path " : "/ path " ,
39 " f i e l d s " : {
40 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
41 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
42 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
43 }
44 }
45 } ,
46 " re sponse " : {
47 "msg−type " : " f u l l " ,
48 "msg " : {
49 " v e r s i on " : "HTTP/1 . 1 " ,
50 " code " : " 200 " ,
51 " s t a tu s " : "OK" ,
52 " f i e l d s " : {
53 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
54 " Content−Encoding " : "UTF−8"
55 } ,
56 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>Hel lo
World , This i s \"/ post \ " . <a h r e f =\"
http : //127 .0 . 0 . 1 : 30000\ " > Return to
s ta r t </body></html>"

57 }
58 }

IV

B. Website Simulation

59 } ,
60 {
61 " r eque s t " : {
62 "msg−type " : " regex " ,
63 "msg " : {
64 " type " : "POST" ,
65 " v e r s i on " : "HTTP/1 . 1 " ,
66 " path " : "/ post " ,
67 " f i e l d s " : {
68 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
69 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
70 } ,
71 " data " : " f i r s tname = ([[: alpha :]]) ∗&lastname = ([[:

alpha :]]) ∗ "
72 }
73 } ,
74 " re sponse " : {
75 "msg−type " : " f u l l " ,
76 "msg " : {
77 " v e r s i on " : "HTTP/1 . 1 " ,
78 " code " : " 200 " ,
79 " s t a tu s " : "OK" ,
80 " f i e l d s " : {
81 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
82 " Content−Encoding " : "UTF−8"
83 } ,
84 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>Hel lo
World , This i s \"/ post \ " . <a h r e f =\"
http : //127 .0 . 0 . 1 : 30000\ " > Return to
s ta r t </body></html>"

85 }
86 }
87 } ,
88 {
89 " r eque s t " : {
90 "msg−type " : " regex " ,
91 "msg " : {
92 " type " : "POST" ,
93 " v e r s i on " : "HTTP/1 . 1 " ,
94 " path " : "/ post " ,
95 " f i e l d s " : {
96 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
97 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

V

B. Website Simulation

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
98 } ,
99 " data " : " f i r s tname = ([[: alnum :]]) ∗&lastname = ([[:

alnum :]]) ∗ "
100 }
101 } ,
102 " re sponse " : {
103 "msg−type " : " f u l l " ,
104 "msg " : {
105 " v e r s i on " : "HTTP/1 . 1 " ,
106 " code " : " 200 " ,
107 " s t a tu s " : "OK" ,
108 " f i e l d s " : {
109 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
110 " Content−Encoding " : "UTF−8"
111 } ,
112 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>Hel lo
World , This i s \"/ post \ " . Form had
number in va lue s . <a h r e f =\"http
: //127 .0 . 0 . 1 : 30000\ " > Return to s ta r t
</body></html>"

113 }
114 }
115 } ,
116 {
117 " r eque s t " : {
118 "msg−type " : " regex " ,
119 "msg " : {
120 " type " : "GET" ,
121 " v e r s i on " : "HTTP/1 . 1 " ,
122 " path " : " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " ,
123 " f i e l d s " : {
124 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
125 }
126 }
127 } ,
128 " re sponse " : {
129 "msg−type " : " f u l l " ,
130 "msg " : {
131 " v e r s i on " : "HTTP/1 . 1 " ,
132 " code " : " 400 " ,
133 " s t a tu s " : "BAD REQUEST" ,
134 " f i e l d s " : {

VI

B. Website Simulation

135 " Content−Type " : " t ex t /html ;
cha r s e t=UTF−8" ,

136 " Content−Encoding " : "UTF−8"
137 } ,
138 " data " : "<html><head><t i t l e >This i s

\"/ t e s t \".</ t i t l e ></head><body>Nope .
Not a va l i d path . <a h r e f =\"http
: //127 .0 . 0 . 1 : 30000\ " > Return to s ta r t
 </body></html>"

139 }
140 }
141 }
142]
143 }

Listing B.2: Action set to test a simple web site
1 {
2 " rootDataPath " : " webs i te " ,
3 " a c t i on s " : [
4 { /∗ Action 1 : User r eque s t s s t a r t page ∗/
5 " ac t i on " : " r u l e " ,
6 " r eque s t " : {
7 "msg−type " : " regex " ,
8 "msg " : {
9 " type " : "GET" ,
10 " v e r s i on " : "HTTP/1 . 1 " ,
11 " path " : " / " ,
12 " f i e l d s " : {
13 " Host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
14 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
15 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
16 }
17 }
18 } ,
19 " re sponse " : {
20 "msg−type " : " dataRead " ,
21 "msg " : {
22 " v e r s i on " : "HTTP/1 . 1 " ,
23 " code " : " 200 " ,
24 " s t a tu s " : "OK" ,
25 " f i e l d s " : {
26 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
27 " Content−Encoding " : "UTF−8"

VII

B. Website Simulation

28 } ,
29 " dataPath " : " s t a r t . html "
30 }
31 }
32 } ,
33 { /∗ Action 2 : user nav iga te s to /path ∗/
34 " ac t i on " : " r u l e " ,
35 " r eque s t " : {
36 "msg−type " : " regex " ,
37 "msg " : {
38 " type " : "GET" ,
39 " v e r s i on " : "HTTP/1 . 1 " ,
40 " path " : "/ path " ,
41 " f i e l d s " : {
42 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
43 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
44 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
45 }
46 }
47 } ,
48 " re sponse " : {
49 "msg−type " : " f u l l " ,
50 "msg " : {
51 " v e r s i on " : "HTTP/1 . 1 " ,
52 " code " : " 200 " ,
53 " s t a tu s " : "OK" ,
54 " f i e l d s " : {
55 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
56 " Content−Encoding " : "UTF−8"
57 } ,
58 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>Hel lo
World , This i s \"/ post \ " . <a h r e f =\"
http : //127 .0 . 0 . 1 : 30000\ " > Return to
s ta r t </body></html>"

59 }
60 }
61 } ,
62 { /∗ Action 3 : user pos t s i t s name (Dave) to /path ∗/
63 " ac t i on " : " r u l e " ,
64 " r eque s t " : {
65 "msg−type " : " regex " ,
66 "msg " : {

VIII

B. Website Simulation

67 " type " : "POST" ,
68 " v e r s i on " : "HTTP/1 . 1 " ,
69 " path " : "/ path " ,
70 " f i e l d s " : {
71 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
72 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
73 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
74 } ,
75 " data " : "name=Dave "
76 }
77 } ,
78 " re sponse " : {
79 "msg−type " : " f u l l " ,
80 "msg " : {
81 " v e r s i on " : "HTTP/1 . 1 " ,
82 " code " : " 200 " ,
83 " s t a tu s " : "OK" ,
84 " f i e l d s " : {
85 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
86 " Content−Encoding " : "UTF−8"
87 } ,
88 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>POST
accepted . <a h r e f =\"http
: //127 .0 . 0 . 1 : 30000\ " > Return to s ta r t
</body></html>"

89 }
90 }
91 } ,
92 { /∗ Action 4 : user r eque s t s / post again . Now the body

says " He l lo Dave " ∗/
93 " ac t i on " : " r u l e " ,
94 " r eque s t " : {
95 "msg−type " : " regex " ,
96 "msg " : {
97 " type " : "GET" ,
98 " v e r s i on " : "HTTP/1 . 1 " ,
99 " path " : "/ path " ,
100 " f i e l d s " : {
101 " host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
102 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
103 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

IX

B. Website Simulation

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
104 }
105 }
106 } ,
107 " re sponse " : {
108 "msg−type " : " f u l l " ,
109 "msg " : {
110 " v e r s i on " : "HTTP/1 . 1 " ,
111 " code " : " 200 " ,
112 " s t a tu s " : "OK" ,
113 " f i e l d s " : {
114 " Content−Type " : " t ex t /html ;

cha r s e t=UTF−8" ,
115 " Content−Encoding " : "UTF−8"
116 } ,
117 " data " : "<html><head><t i t l e >This i s

\"/ post \".</ t i t l e ></head><body>Hel lo
Dave , This i s \"/ post \ " . <a h r e f =\"
http : //127 .0 . 0 . 1 : 30000\ " > Return to
s ta r t </body></html>"

118 }
119 }
120 } ,
121 { /∗ Action 5 : User r eque s t s t a r t page again , but s e r v e r

does not r ep ly ∗/
122 " ac t i on " : " rece iveMsg " ,
123 " r eque s t " : {
124 "msg−type " : " regex " ,
125 "msg " : {
126 " type " : "GET" ,
127 " v e r s i on " : "HTTP/1 . 1 " ,
128 " path " : " / " ,
129 " f i e l d s " : {
130 " Host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
131 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
132 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
133 }
134 }
135 }
136 } ,
137 { /∗ Action 6 : Server wai t s f o r 60 seconds ∗/
138 " ac t i on " : " wait " ,
139 " time " : 60
140 } ,

X

B. Website Simulation

141 { /∗ Action 7 : Now the s e r v e r r e p l i e s with the s t a r t
page ∗/

142 " ac t i on " : " sendMsg " ,
143 " re sponse " : {
144 "msg−type " : " dataRead " ,
145 "msg " : {
146 " v e r s i on " : "HTTP/1 . 1 " ,
147 " code " : " 200 " ,
148 " s t a tu s " : "OK" ,
149 " f i e l d s " : {
150 " Content−Type " : " t ex t /html ; cha r s e t=UTF

−8" ,
151 " Content−Encoding " : "UTF−8"
152 } ,
153 " dataPath " : " s t a r t . html "
154 }
155 }
156 } ,
157 { " ac t i on " : " c lo seConnect ion " } , /∗ Action 8 : Server

expect s user to c l o s e connect ion ∗/
158 { " ac t i on " : " openConnection " } , /∗ Action 9 : Server

expect s user to open connect ion ∗/
159 { /∗ Action 10 : user r eque s t s s t a r t page . The s e r v e r

responds with g i bb e r i s h in head and body∗/
160 " ac t i on " : " r u l e " ,
161 " r eque s t " : {
162 "msg−type " : " regex " ,
163 "msg " : {
164 " type " : "GET" ,
165 " v e r s i on " : "HTTP/1 . 1 " ,
166 " path " : " / " ,
167 " f i e l d s " : {
168 " Host " : " 1 2 7 . 0 . 0 . 1 : 3 0 0 0 0 " ,
169 " Accept " : " ([[: alnum :]] | [[: punct :]] | [[: space :]])

∗ " ,
170 " ([[: alnum :]] | [[: punct :]] | [[: space :]]) ∗ " : " ([[:

alnum :]] | [[: punct :]] | [[: space :]]) ∗ "
171 }
172 }
173 } ,
174 " re sponse " : {
175 "msg−type " : " f u l l " ,
176 "msg " : {
177 " v e r s i on " : "HTTP/1 . 1 " ,
178 " code " : " 666 " ,
179 " s t a tu s " : "GIBBERISH" ,

XI

B. Website Simulation

180 " f i e l d s " : {
181 " Content−Type " : " t ex t /html ; cha r s e t=UTF

−8" ,
182 " Content−Encoding " : "UTF−8"
183 } ,
184 " data " : "GIBBERISH"
185 }
186 }
187 } ,
188 { /∗ Action 11 : The s e r v e r w i l l send 20 messages only

conta in ing spam to the user . ∗/
189 " ac t i on " : " r epeat " ,
190 " r e p e t i t i o n s " : 20 ,
191 " a c t i on s " : [
192 {
193 " ac t i on " : " sendMsg " ,
194 "msg " : " spam"
195 }
196]
197 } ,
198 { " ac t i on " : " s e rverCloseConnect ion " } /∗ Server c l o s e s

the connect ion ∗/
199 { " ac t i on " : " openConnection " } /∗ Server expect s user to

reconnect ∗/
200]
201 }

Listing B.3: The read HTML file of the web site.
1
2<html><head><t i t l e>An Example Page</ t i t l e></head>
3<body>
4 <p>Hel lo World , t h i s i s a very s imple HTML document .

</p>
5
6 < l i>An other path</ l i>
7 < l i> <p> A POST reques t : </p>
8 <form action=" post " method=" post ">
9 F i r s t name :

10 <input type=" text " name="

f i r s tname " value="Dan"><
br>

11 Last name :

12 <input type=" text " name="

lastname " value=" Smith "><
br>

13 <input type=" submit " value="

XII

B. Website Simulation

Submit ">
14 </form> </ l i>
15 < l i>place ho lder adhaspi d</ l i>
16</body></html>

XIII

	Introduction
	Background
	Purpose
	Problem Statement
	Related Work
	Limitations

	Method
	Implementation
	Testing the Testing Environment
	Evaluation of Efficiency
	Similarity to Native Environment
	Code and Input Coverage
	Time Consumption

	Testing Theory
	The View of Testing Through History
	Types of Testing
	Static and Dynamic Testing
	White Box and Black Box Testing
	Positive and Negative Testing

	Testing Methods
	Unit, Component and Integration Testing
	Regression Testing
	System Testing
	Acceptance Testing

	Testing Environment
	Modularity
	Identifying components/entities of a testing environment
	General and Project Specific Modules

	Configurability
	Main Specification of Behaviour
	Rule Specification
	Stateless and Stateful Environment
	Additional Actions
	Optional Communication Through SSL/TLS
	Configuring Different Testing Types and Methods

	Current Testing in Volvo Project
	Integration with Delphi
	Manual Testing
	Automatic Testing

	Exceeding Current Testing Efficiency
	Similarity to Native Environment
	Code and Input Coverage
	Time Consumption

	Results and Discussion
	Using the Testing Environment
	NUC Instead of Target
	Manual Testing
	Automatic Testing

	Modularity
	Configurability
	Stateless Mode
	Rules Set

	Stateful Mode
	Scenarios

	Choosing secure or unsecure connection

	Efficiency
	Similarity to Native Environment
	Code and Input Coverage
	Code Coverage
	Input Coverage

	Time consumption

	Conclusion
	Future Work

	Bibliography
	The Delphi Work Flow
	Website Simulation

