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ABSTRACT

The purpose of this thesis is to study the possibility of adding an Electric
vehicle (EV) fleet to the existing Fossil free Energy District (FED) system
and reap the benefits of using Vehicle to Grid (V2G) services. The thesis
presents a theoretical perspective of the participation of EV fleet in V2G as
well as ancillary services (frequency regulation in this thesis). The optimiza-
tion tool General Algebraic Modelling System (GAMS) was used to perform
a load dispatch based on the dispatch model determining the charging and
discharging patterns of the electric vehicles. The objective of the optimiza-
tion was to minimize the net cost of the system while still satisfying the grid
constraints. In addition to the optimization, sensitivity analysis on different
parameters of the model was performed, namely charging facility, fleet size
and, EV model.

The study found out that using EV fleet for V2G services without any an-
cillary services is not beneficial. In fact, it is worse than the fleet charging
from the grid. However, with the addition of frequency regulation, the fleet
achieves a lower net cost than the case where the fleet was charging from the
grid.

Keywords: Vehicle to Grid; Fossil free Energy District system; Electric
Vehicle fleet; frequency regulation: load dispatch
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1

INTRODUCTION

This master thesis is going to deal with the potential of introducing Vehi-
cle to Grid (V2G) interactive systems to provide support to the Electrical
grid in the Fossil free Energy District (FED) system. The FED system is
a joint venture between the city of Gothenburg, Johanneberg Science Park,
Göteborg Energi, Business region Göteborg, Ericsson, Research Institutes of
Sweden (RISE), Akademiska Hus, Chalmersfastigheter and Chalmers Uni-
versity of Technology with each partner contributing with their expertise
and knowledge to make FED attractive for other European cities as well
[1]. The support would be in the form of ancillary services which is further
explained in detail in the following sections.

1.1 Background

In the present day world, fossil fuels dominate the energy sector. The power
sector was responsible for 30% of the Green House Gases (GHG) emissions
in EU-27 for the year 2011 compared to 20.3 % for the transportation Sector
[2]. The impetus should be laid on reducing the emissions from these two
sectors as they are the major contributors of emissions. The other emissions
contributing sectors are beyond the scope of this thesis.

To reduce the GHG emissions from Power sector more Renewable Energy
Sources (RES) like wind, solar, biomass etc. is being introduced into the
generation system. The trend in the transportation sector is to introduce
more Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle
(PHEV) with their number surging each year around the globe. The Plug-in
Electric Vehicle (PEV) require electricity from the electrical distribution sys-
tem which links the power and transportation sectors together. A massive
introduction of PEV can cause grid instabilities like congestion, overloads

1



2 Section. 1.1

amongst other problems wreaking havoc in weak distribution systems or in
areas with high penetration rates [3].

Most cars stay put in a position for majority of the day, sometimes up to
90-95 % of the daytime. This leaves ample charging time for the PEV and
for the remainder of the time, the battery remains idle. This idle time can
be utilised for exchange of power between the grid and the vehicle and still
leaving the vehicle with ample charge to be driven when required and we
get a chance for the Vehicle to Grid (V2G) electricity supply. V2G is bidi-
rectional charging meaning that the vehicle can charge and discharge from
the grid. V2G can be used for several purposes like peak load levelling i.e.
the EV batteries can provide electricity back to the grid when the electricity
demand reaches its peak value during the day. Thus, the EV owner can gen-
erate an income from their parked vehicle. Another purpose served by V2G
is to provide backup power to buildings and homes in case of a power failure.
V2G can also provide ancillary services like frequency regulation, spinning
reserve and non-spinning reserve [4].

A brief introduction about the Swedish Electricity system is essential as to
fully appreciate the work done in this thesis. The market consists of several
independent actors, namely [5]:

• Electricity Generators.

• Network Owners or Distribution System Operators (DSO’s).

• Transmission System Operator (TSO) i.e. Svenska Kraftnät.

• Consumers.

• Traders as electricity suppliers and balance providers.

• Marketplaces, primarily Nord Pool - the leading power market in Eu-
rope.

The Electricity generators generates power and feeds it into the network.
The Network Owners are responsible for transmitting the electrical energy
from the producer to the consumer. This takes place via the national, re-
gional and local grid, all owned by different network companies. Svenska
Kraftnät owns the national grid and has the role of TSO. This means ensur-
ing that the plants of the Swedish electricity system are working together in
an operationally-reliable way and that production and import corresponds to
consumption and export. The regional networks transmit electricity from the
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grid to the local networks, and in some cases to large-scale consumers, for in-
stance industries. The local networks distribute electricity to the consumers
within a certain geographical area. The consumers, everyone from industries
to households, take electricity from the electricity network and consume it.
The consumer must have an agreement with an electricity trader to be able
to buy electricity. The consumer also has an agreement with the network
owner in order to be connected to his network. For connection and transmis-
sion, the consumer pays a network fee (network account).

The power trading company sells electricity to the final customers. The
power trader can have the role of electricity supplier and balance provider.
Both roles can exist within the same or different companies. The electricity
supplier has a supply agreement with the consumer. The balance provider
is financially responsible for the electricity that the trader sells always being
in balance with the electricity purchased to cover consumption. Organised
marketplaces, for example the power exchange Nord Pool, as well as brokers,
provide standard agreements which make it easier for the players on the mar-
ket to do business with each other. The bulk of the trade in electricity on
the market takes place via bilateral agreements between electricity producers
and electricity traders.

1.2 AIM

The aim of this thesis is to study the potential benefits of adding an EV fleet
to the FED system. The study is carried out by presenting a load dispatch
model for the EV fleet comprised entirely of cars with V2G capacity. The
EV fleet is owned by the Fleet Operator (FO) and is also used as a car
rental service. The Fleet Operator exchanges electricity to and from the
FED system, and thus can be assumed as an extension of the FED system,
as shown in figure 1.1.

FED system Fleet Operator
Electricity

Figure 1.1: Exchange of Electricity

To carry out the load dispatch, firstly the electricity demand of the
FED system has to be obtained using forecast methods from historical data.
Then the driving data is used in the SOC model to determine the charg-
ing/discharging pattern, which is optimized using the optimization tool Gen-
eral Algebraic Modelling Systems(GAMS) with the objective of minimizing
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the net cost of the system keeping grid constraints in mind. The net cost
comprises of electricity cost of the FED system and, the revenue and costs
associated with V2G and ancillary services.

1.3 Limitations

• A car rental service is considered in this thesis for simplicity and to
avoid the aggregation process of private vehicles, albeit privately owned
Electric Vehicles are going to form the bulk of the V2G market.

• Only the DC Fast charging methods are being considered in this thesis.
AC charging methods are not being considered.

• The implication of introducing a large number of EV’s on the cost/
revenue of V2G is not considered.

• The Swedish, Nordic or European Union (EU) Grid is not considered,
only the effects on the local FED system is considered.

• The load forecasting includes an exponential smoothing method which
is not 100 percent accurate and will always have error, therefore the load
forecast should not be completely relied upon. Further load forecasting
methods like Artificial Neural Network (ANN) and Auto-Regressive
integrated Moving Average (ARMA) can be studied in future research
work [6].

• The Driving pattern utilises probabilistic methods which are again, not
perfect and will have errors, therefore, the SOC determined will not be
completely accurate.

• No costs for V2G infrastructure and equipment have been included in
this study.

• No taxes or subsidies have been considered while determining the rev-
enue generated by the car rentals. The total rental revenue just provides
an insight in the introduction of V2G car rental service into an system
which only consumes electricity.

1.4 Other Aspects

Every research attempt should be aimed to improve the human life, therefore,
certain United Nations (UN) sustainable development goals [7] are tried to
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be included and followed in this thesis. The sustainable development goals
are shown in table 1.1.

Table 1.1: United Nations (UN) Sustainable Development Goals

Goal
number Goal Description

3 Good Health and Well-
Being

Ensure healthy lives and pro-
mote well-being for all at all
ages

7 Affordable and Clean En-
ergy

Ensure access to affordable, re-
liable, sustainable and modern
energy for all

9 Industry, Innovation and In-
frastructure

Build resilient infrastructure,
promote sustainable industri-
alization and foster innovation

11 Sustainable Cities and
Communities

Make cities inclusive, safe, re-
silient and sustainable

12 Responsible Consumption
and Production

Ensure sustainable consump-
tion and production patterns

13 Climate Action Take urgent action to combat
climate change and its impacts

15 Life on Land

Sustainably manage forests,
combat desertification, halt
and reverse land degradation,
halt biodiversity loss

Societal Aspects

UN sustainability goal number 3 deals with maintaining good health and
well being of all humans. This thesis deals with promoting the growth of
PEV’s in the transportation sector which will directly reduce the local air
pollution in the area and indirectly reduce the GHG emissions by trying
to increase the penetration of RES in the power sector which will reduce
respiratory diseases causing several human deaths each year. V2G will also
give a chance to PEV car owner or the FO to earn an extra income by
providing electricity to the grid. V2G may lead to both reduced cost for
integrating RES and reduced cost for EV owner. Goal number 9 deals with
developing Industry and Infrastructure which leads to empowerment of the
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society. The innovation in V2G system infrastructure will lead to more money
in hand of consumers as customers will also become producers.

Ethical Aspects

UN sustainability goal 12 deal with ethics and morals required to operate the
PEV fleet. The PEV fleet is meant as a support to the electrical grid and not
to replace the power sector as the primary purpose of a PEV should be to
be used as a means of transport with power production being the secondary
purpose. We should not buy a PEV only to trade in the electricity market.

Ecological Aspects

UN sustainability goals 7, 11, 13 and 15 deal with ecological aspects, this
thesis makes PEV’s even more lucrative for consumers and thus, increases
the number of PEV’s in the transportation Sector. More PEV’s replacing
Internal Combustion Engine Vehicles(ICEV) means lesser GHG emissions
which would help in reducing the prevalent global warming. Deforestation
occurs due to petroleum extractions in Amazon forest [8] and other high
biodiversity regions leading to loss of flora and fauna. PEV would reduce
the extent of deforestation as they replace ICEV’s leading to less petroleum
extraction.

1.5 Thesis Outline

This thesis is divided into six chapters including the current Introduction
chapter. The other chapters are divided in the following way:
1. Chapter 2 presenting state of the art infrastructure. Chapter 3 named

Methodology deals with presenting the method followed to carry out
the thesis along with the developed net cost minimization model.

2. Chapter 4 named Case Study Statement presents the case being studied
in this thesis along with its intricacies.

3. Chapter 5 named Results presents the results from the simulation in
different scenarios.

4. Chapter 6 named Discussion presents a detailed explanation of the
results and their relevance. The assumptions and limitations observed
in the thesis are analysed and, alternative paths to achieve better results
are presented.

5. Chapter 7 named Conclusion concludes the thesis work with some final
comments.



2

State of the Art infrastructure

In this chapter, the state of the art technology in charging station and PEV
is reviewed.

2.1 Charging station Infrastructure

The different EV charging levels are shown in table 2.1. The table explains
about the available and under development charging stations for the EV’s.
In this thesis, only DC fast charging is going to be considered.

It is clear from table 2.1, that the DC chargers are less time consuming
than there A.C. counterparts for charging a PEV. In the upcoming future,
we will have DC fast-charging for private or public usage [11] with public DC
superchargers becoming more common with each passing day. The question
arises which charging level to choose between DC level 1 and level 2, the
choice has to be made based on the investment and operational costs and,
also the power capacity.

FED System Grid Fleet Op-
erator Grid

EV 1 EV 2 EV 3

AC

AC/DC AC/DC AC/DC

Figure 2.1: Charging Infrastructure

7



8 Section. 2.2

Table 2.1: AC/DC Charging Level Characteristics as per SAE J1772 standard [9, 10]

Power
Level

Voltage
Level (V)

Current
Capacity
(A)

Power
Capacity
(kW)

Remarks

AC
Level 1 120 V A.C. 12/16 1.4/1.9 Single phase supply-

PHEV: 7h BEV: 17h

AC
Level 2 240 V A.C. up to 80 19.2

1 or 3 phase sup-
ply, 3 kW charger -
PHEV:3h, BEV:7h

AC
Level 3 - - > 20 Under Development

DC
Level 1

200 - 500 V
D.C. < 80 up to 40

3 phase supply, 20 kW
charger - PHEV:22
min, BEV:1.2 h

DC
Level 2

200 - 500 V
D.C. < 200 up to 100

3 phase supply, 45 kW
charger - PHEV:10
min, BEV:20 min

DC
Level 3

200 - 600 V
D.C. < 400 up to 240 Under development

2.2 PEV selection and Fleet Size

The PEV progression through the years is shown in the table 2.2. The first
column denotes the PEV generation, the second column tells about the power
flow exchange capabilities between the vehicle and the grid. The third column
’Communication Characteristic’ gives the communication pathway between
the PEV and the grid. Communication in this sense, means the regulation
of electricity flow between the PEV and the grid. The fourth column of the
table gives us details about the power flow exchange between the PEV and
the grid, and its purpose and usage.

First generation PEV’s form the major portion of the electric vehicles
available today with only charging capabilities from the grid and, these ve-
hicles are expensive to manufacture. The user has the ability to alter and
set the charging window, with no or minimal communication with the grid.
These vehicles have AC level 1 charging for the PHEV’s and AC level 2 for
the BEV’s with a peak power transfer rate of 19.2 kW using standard SAE
J1772 AC coupler between the EV and the wall outlet. The second genera-
tion PEV’s will have improved communications with the aggregator and, will



Section. 2.2 9

Table 2.2: Progression of PEV-Grid Interactions [12]

PEV Gen-
eration

Power
Flow

Communication
Characteristic

PEV-Grid Interaction
Characteristics

First
Grid to
Vehicle
(G2V)

over cell phone (if
any)

G2V with manual
driver programmed
"grid friendly" charge
window

Second G2V

Grid to PEV com-
munications via
aggregator.

Real-time broad-
cast of CO2 and
price information
to PEV

G2V with limited reg-
ulation up and down
ancillary services

G2V with advanced
intelligent charging
aligned with renew-
able generation

Third

G2V +
Vehicle
to Load
(V2L)

Electric Vehicle
Supply Equip-
ment (EVSE)-PEV
communication
only

V2L for construction
site generator

G2V +
Vehicle
to Home
(V2H)

EVSE-PEV com-
munication only

V2H for home backup
generator

G2V +
Vehicle to
Premise
(V2P)

EVSE-PEV com-
munication only

V2P as building
backup generator

G2V +
Vehicle to
Grid - Net
Metered
(V2G-NM)

EVSE-PEV com-
munication only

V2G-NM: Local
generation with re-
verse power flow of
excess energy and
net-metering

Fourth
G2V +
advanced
V2G

Assured secure
two-way Grid-PEV
communication

V2G-advanced: Grid
ancillary services
provided by two-way
power flow of PEV
battery energy and/or
local generation
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be lower in cost than their predecessors. These vehicles will be more efficient
and possess enhanced battery control and, we can see some of the modern
day electric vehicles possessing these qualities. The aggregator can control
the charging process based on real time tracking of energy prices using inter-
net services. This intelligent way of charging will reduce the costs and, also
provide limited frequency regulation grid ancillary services by mostly halting
the charging process. Mostly AC level 2 chargers are used for these vehicles.

The bidirectional charging facility is introduced in the third generation PEV’s
along with the introduction of DC high capacity charging interface, between
the PEV and the charger supporting a maximum power flow of up to 100
kW. This kind of charging is seen in Tesla BEV’s with several superchargers
being placed in the United States of America and other parts of the world
[13]. The Vehicle to load (V2L) reverse power flow configuration will allow
the PEV to act as an construction site generator to an isolated load. In the
Vehicle to Home (V2H) configuration, the PEV helps as a backup to a family
house. In the Vehicle to Premise (V2P) configuration, the PEV can support
a larger isolated building or a command centre or a mobile hospital. There
is no communication or coordination with the grid in these configurations,
communication happens only between the PEV and the load. Basic Vehicle
to Grid (V2G-NM) interaction can help make the PEV as a storage unit
to capture low cost non-peak energy or local generation from photo-voltaic
panels and supply it back to the grid at peak hours.

The fourth generation PEV will possess advanced communication and con-
trol capabilities helping the aggregator to increase their revenue through use
of battery and gasoline generator. PEV’s would have greater abilities to be
used for grid ancillary services in addition to the acting as non-peak hours
energy storage units. All the other facilities characteristic of the previous
generation are also present. Unfortunately, the fourth generation PEV is not
yet available.

Some of the available PEV are listed in table 2.3 with their battery capac-
ity in kWh. Battery capacity is an important parameter in selecting the PEV
for this thesis, considering that the FED system electricity demand varies in
the range of 3500-7500 kWh/h. A PEV with a small battery capacity like
Volvo XC90 or Toyota Prius would not be able to contribute much to the
FED system whereas, a PEV like Nissan Leaf or Tesla Model S with high
battery capacities would be able to supply in exceptional cases, the entire
FED system electricity demand assuming a reasonable fleet size.
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Table 2.3: Battery Capacity of Various PEV

Serial
number Car Model EV type Battery Capacity

(kWh)
1 Nissan Leaf BEV 40 [14]
2 Tesla Model 3 BEV 75 [13]
3 Tesla Model S P100D BEV 100 [15]
4 Volvo XC 90 PHEV 9 [16]
5 Toyota Prius PHEV 8.8 [17]
6 BYD e6 BEV 61.4 [18]
7 Chevrolet Volt 2018 PHEV 18.4 [19]

The fleet size will be decided by the Fleet Operator and mainly depends
on the business opportunity around the Chalmers campus.
Business Opportunity : The most important factor while selecting fleet
size, would be the number of customers willing to use the car rentals. If there
are less customers willing to use the service, the fleet size should be smaller
and vice versa. There are two factors to consider in business opportunity:-
1. V2G services - More revenue would be generated if the fleet size is

greater, especially with large battery capacities.
2. Rental Revenue - Rentals generate more revenue than V2G service

revenue, therefore, a greater percentage of the fleet should be used for
renting out rather than for V2G services.
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Figure 3.1: Flow Chart for Methodology
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In this chapter, the method by which the thesis is carried out is described.
Firstly, the methodology is presented in terms of a flow chart in figure 3.1,
and is explained hereafter. The thesis starts with collection of data namely
generation data and driving data. Generation data is used in the load fore-
casting model to determine the load forecast of the FED system which forms
the input for the dispatch model and is explained in section 3.1. Driving
data is used to develop the driving pattern for the car rental service and is
explained in section 3.2. The driving pattern acts as an input for the SOC
model, helping to determine SOC and, its use in dispatch model is explained
in section 3.3. The other inputs to the dispatch model is the EV, fleet size and
the DC charging level. The dispatch model and optimization is explained in
section 3.5. Battery degradation is also included in the dispatch model and
is explained in section 3.4. The optimization process gives the load dispatch
i.e. the net cost optimal charging and discharging pattern of the electric
vehicles.

3.1 Load Forecasting Model

A method is required to forecast the electricity demand of the FED system
for a short time period. It is seen that univariate methods only require his-
torical load data to forecast electricity demand for short time periods [6] and
can be used in this thesis. Some of the reliable univariate forecasting meth-
ods commonly used are:

1. Holt-Winters exponential smoothing (HWT).
2. Intra-day Cycle exponential smoothing (IC).
3. Singular Value Decomposition based exponential smoothing (SVD).
4. Auto-Regressive integrated Moving Average (ARMA).
5. Artificial Neural Network (ANN).

SVD gives the best result amongst these methods [6] but is complex to apply
and, this is where the HWT method is appealing due to its simplicity and
ease of application, being even more simpler than the IC method. ARMA
and ANN methods are not able to outperform HWT and IC methods, there-
fore, these methods are not going to be considered. Keeping these factors in
mind, only HWT method will be used in this thesis.

The forecast accuracy of the HWT method is measured by using the term
Mean Absolute Error (MAE). Other accuracy measures like Root Mean
Square Error (RMSE) and mean absolute percentage error gave similar values
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as MAE [6]. Here, the time step period used is hourly as the FED electricity
data is hourly. MAE is calculated by using the following expression:

MAE =
1

(ps− k + 1)

h=End of Prediction Period−k∑
h=Start of Prediction Period

|El(h)− y(h)| (3.1)

where ps is the length of the sample period, k is the k-step ahead forecast
from forecast origin, h is the hour of operation, El is the electricity demand
and y is the forecast.

Holt-Winters Method (HWT)

Holt-Winters method (or triple exponential smoothing) is a method to fore-
cast data in a series provided they are seasonal i.e. they are repetitive over a
period of time. This method incorporates hourly, daily and weekly repeating
patterns to forecast data as seen in equation (3.4), (3.5) and (3.6). HWT
method is presented in terms of equations (3.2)-(3.6) [20].

The forecasting method requires sample data which is obtained from FED
demand data. The sample period is from 1st of January, 2016 00:00 hours to
31 st of December, 2016 23:00 hours with 1-hour time period. m1 and m2
are the number of time periods in the day and week, respectively and have
the following values in the thesis m1 = 24 and m2 = 24 * 7 = 168. The
prediction period is from the 1st of January, 2017 00:00 hours to the 28th of
February, 2017 23:00 hours.

yh = lh−1 + dh−m1 + wh−m2 + φeh−1 + εh (3.2)
eh = yh − (lh−1 + dh−m1 + wh−m2) (3.3)

lh = lh−1 + αeh (3.4)
dh = dh−m1 + δeh (3.5)
wh = wh−m2 + ωeh (3.6)

where h is the hour of operation, y is the demand forecast, l is the hourly
state variable, d is the day state variable, w is the weekly state variable, φ
is the Auto Regressive (AR) adjustment parameter for first-order residual
auto-correlation, ε is the error parameter, e is the error term, α is the hourly
smoothing parameter, δ is the daily smoothing parameter and ω is the weekly
smoothing parameter.
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The error term (εh) is modelled as a normal distribution with zero mean
and constant variance σ2, the variance being calculated from the FED elec-
tricity demand data. Equations (3.2) and (3.3) can be rewritten as:-

yh = lh−1 + dh−m1 + wh−m2 + eh (3.7)
eh = φeh−1 + εh (3.8)

The first four weeks of data was used to initialize the state variables, lh, dh
and wh. Forecast was set equal to the electricity demand for the first four
weeks and eh was calculated using equation (3.3). The smoothing parameters
and Auto-Regressive (AR) adjustment parameter α, δ, ω and φ lie in the
range of 0 to 1 and are constrained in this range. To determine the values
of these parameters, we need to minimize the mean of Squared in-Sample
Errors (SSEh) for the sample period which is represented by the expression:

SSEh = (yh − Elh)2 (3.9)

SSEh =
1

8784− 4 ∗ 7 ∗ 24

8784∑
h=4∗7∗24+1

(yh − Elh)2 (3.10)

The procedure involves creating vectors of parameters from a uniform dis-
tribution limited between 0 and 1. The number of vectors depends upon
the available computational facility, in this thesis, 70 thousand vectors were
created with 64 GB RAM but, a lower number of vectors will also give a suf-
ficient result if we reiterate the process. SSE was calculated for each vector
for the entire sample period and the ten vectors having the lowest SSE values
were selected. The ten vectors acted as the initial values in quasi-Newton
algorithm to further reduce the SSE values. Thus, a vector producing the
lowest SSE value was obtained. This vector was found to match the FED
electricity demand but further multiplying factor correction was required
which was implemented by iterative methods, varying the factor between 1
and 2 in a MATLAB program and, calculating the SSE for each value. The
lowest SSE yielding factor was selected. The vector and factor was used to
calculate the forecast in the forecast period. After that, the MAE was cal-
culated using the equation (3.1) in the forecast period, with MAE fixing the
future forecast period:-

MAE =
1

(1416− k + 1)

h=10200−k∑
h=8785

|El(h)− y(h)| (3.11)
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To determine the cumulative error for the entire time period, a new variable
by the name of Average difference is introduced for the forecast period:

Average difference(in percent) =
10224∑

h=10201

100 ∗ |El(h)− y(h)|
24 ∗ El(h)

(3.12)

3.2 Driving Pattern

The EV fleet is assumed to be stationed in the Chalmers parking area, there-
fore, the customers would have to perform a round trip to return the car
back to the facility. The car rentals would be for travel inside the city of
Gothenburg and a driving environment having the following characteristics
are assumed to exist:
1. Gradual acceleration from standstill [21].
2. No harsh braking [22].
3. Maximum speed of 50-60 kmph and a lower average speed.

These factors are important for determining the driving range of the car, also
harsh driving reduces the driving range and is not energy efficient. Driving
range is an important parameter which will be later used in the SOC model
to find the hourly SOC for a EV being driven around Gothenburg. The driv-
ing pattern data was taken from the research paper by Sprei et al. [23], the
paper deals with free-floating car sharing services and has vast data from 32
different cities in both Europe and North America. I have used the rental du-
ration data, Geo distance data and the number of rentals per car per day data
for Stockholm from the research paper. The reason for selecting Stockholm
is obvious to the extent that it is a Swedish city and no comprehensive data
was available for Gothenburg. The data in the research paper was adapted
for round trips in the car rental model.

The geo distance data in the research paper is equivalent to displacement
between source and the destination of the person driving the car and is not
equal to real world distance, but due to the lack of research on difference
between distance and displacement in real world driving, the geo distance is
assumed equal to the distance travelled by the car. The geo distance men-
tioned in the above research paper deals with mostly one way trips but this
thesis has round trips, so to compensate this issue all the geo distance values
have been doubled.

It was observed during the literature review, that the geo distance varied
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according to an Inverse Gaussian (µ, λ) distribution [24, 25] while the
rental duration varied according to Normal (µ, σ) distribution. The rental
duration was modelled according to a normal distribution with mean (µ)
and standard deviation (σ) values from the Stockholm Data [23]. The allo-
cation of rental duration for each car was done at random according to an
Uniform distribution considering the shortest rental duration of 15 minutes
(to be qualified as a trip) and the maximum rental duration according to
the given Stockholm data. The rental duration Probability Density function
(PDF) and Cumulative Density functions (CDF) from Stockholm data are
shown in figures 3.2a and 3.2b.

(a) Rental Duration Probability Density
Function

(b) Rental Duration Cumulative Density
Function

Figure 3.2: Rental Duration

The number of rentals PDF and CDF are shown in figures 3.3a and 3.3b.
These figures represent the number of cars rented out during a time period.
The distance travelled by each car varies as a linear function of the rental
duration. The rental times were determined with the help of a cumulative
density function of the Inverse Gaussian distribution for the number of
rentals per day.

3.3 State of Charge (SOC) Model

State of Charge (SOC) is a measure of the charge retained by the battery at
any instant of time. SOC is determined as the ratio of energy stored in the
battery to the rated battery capacity:-

SOC(i, h) =
E(i, h)

Erated(i)
(3.13)
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(a) Number of Rentals Probability Den-
sity Function

(b) Number of Rentals Cumulative Den-
sity Function

Figure 3.3: Number of Rentals

Here, i denotes the EV number and h denotes the hour of operation and
Erated(i) is the rated battery capacity of the EV i. SOC estimation during
any hour of operation depends upon the availability status of the vehicle.
The influence of availability on SOC is explained in figure 3.4. There are five
modes in which an EV can be operated during a given time period, h [26]:

1. EV charging: EV is plugged to the grid and is being charged,
subject to losses with efficiency, ηch.

2. EV-V2G: EV is injecting power into the grid from the battery,
subject to losses with efficiency, ηdis.

3. EV in reserve capacity: EV is plugged in, but is neither charging
nor is it injecting power into the grid. Keeping the SOC in mind,
the aggregator can call-in the service of the EV for charging or
discharging.

4. Driving Mode: The EV is being driven around, and the energy
in the battery is being consumed.

5. EV unused: EV is plugged in, but the aggregator is not going to
use the service of the vehicle battery.

SOC is limited between 0 and 1, but, according to the Owner’s manual
of Tesla Model S, the battery can get permanently damaged if the State of
Charge reaches 0, so, to avoid permanent damage the SOC would be limited
so as to not go below than 0.05 [27]. The value of minimum SOC (SOCmin)
was set at 20 percent of the battery capacity [28] to make sure that the
battery never discharges below the manufacturer’s recommended SOC value
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of 0.05 during the driving phase.

0.2 6 SOC(i, h) 6 1 (3.14)

EV

SOC(i,h) =
SOC(i,h-1) +
ηch. Ech(i,h)

Erated(i)
-

1
ηdis

.Edis(i,h)
Erated(i)

SOC(i,h) =
SOC(i,h-1)-
distance(i,h)
Range(i)

+
ηch. Ech(i,h)

Erated(i)
-

1
ηdis

.Edis(i,h)
Erated(i)

Input:
SOC(i,h-1)

Input:
SOC(i,h-1)
Range(i)

distance(i,h)

Available

Not Available

Figure 3.4: SOC Determination based on Availability

The Available status in figure 3.4 means that the EV is operating in any
of the modes 1,2,3 or 5 whereas, Not Available status means that the EV
is operating in mode 4 i.e. being rented and driven. The SOC equation can
be generalised as:

SOC(i, h) = SOC(i, h− 1)− distance(i, h)

Range(i)
+ ηch.

Ech(i, h)

Erated(i)

− 1

ηdis
.
Edis(i, h)

Erated(i)
(3.15)

Where distance(i,h) is the distance travelled by the EV ’i ’ in the hour ’h’,
ηch is the charging efficiency, Ech(i, h) is the charging done by the EV ’i ’ in
the hour ’h’, ηdis is the discharging efficiency and Edis(i, h) is the discharging
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done by the EV ’i ’ in the hour ’h’.

The SOC equation would change if we involve frequency regulation in the
system and will be expressed as:

SOC(i, h) = SOC(i, h−1)−distance(i, h)
Range(i)

+ηch
(Ech(i, h) + Ereg,down(i, h))

Erated(i)

− 1

ηdis

(Edis(i, h) + Ereg,up(i, h))

Erated(i)
(3.16)

Ereg,up is the energy supplied by the EV ’i ’ during the hour ’h’ to the grid
to increase the frequency up to its nominal value. Similarly, Ereg,down is the
energy consumed by the EV ’i ’ during the hour ’h’ from the grid to bring
the frequency down to its nominal value.

3.4 Battery Degradation

EV electro-chemical batteries have limited life time due to the fading of active
materials due to charging and discharging cycles [29]. This cycle ageing is
caused by the growth of cracks in the active materials, a process similar to
fatigue in materials subjected to cyclic mechanical loading [30]. This battery
degradation can be quantified in terms of money using the expression [31]
under the assumption that only full discharge cycles are being used:

Df (i) =
B(i)

Cf (i) ∗ Eusable(i)
(3.17)

where Df is the battery degradation cost per unit of energy throughput at
full discharge cycles, B is the battery investment cost, Cf is the number of
full charging cycles possible during the lifetime of the battery and Eusable is
the usable share of the battery. In this case, as the battery can be discharged
from Erated to a SOC of 0.2, Eusable is (1-0.2) = 0.8. The number of full cycles
possible during the lifetime is calculated using the expression:

Cf (i) =
Battery Lifetime Mileage(i)

Range(i)
(3.18)

To calculate the battery degradation cost (in SEK), an assumption can be
made regarding the battery cycle ageing for simplicity, that ageing occurs
only during the discharge stage of the cycle such that a discharging cycle
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causes the same ageing as a full cycle, while a charging cycle does not affect
the battery life.

Battery Degradation Cost =
100∑
i=1

24∑
h=1

Edis(i, h) ∗Df (i) (3.19)

The battery degradation cost changes for the scenario in which frequency
regulation is involved:

BatteryDegradationCost =
100∑
i=1

24∑
h=1

[Edis(i, h)+Ereg,up(i, h)]∗Df (i) (3.20)

3.5 Dispatch Model

The dispatch model is going to be developed for a single day and it entails
the charging/discharging done for each EV. The frequency regulation up and
down performed by each EV is a part of the dispatch model too.

3.5.1 Optimization approach

Unit Commitment (UC) determines the optimal dispatch charging/discharging
schedule for the available EV’s with V2G services [32]. Various Optimization
techniques can be used to solve the UC problems involving the V2G technol-
ogy like:
1. Linear Programming(LP)
2. Mixed Integer Non-Linear Programming (MINLP)
3. Particle Swarm Optimization (PSO)
4. Genetic Algorithm (GA)
5. Quadratic Programming (QCP)

Traditionally, Linear Programming (LP) and Quadratic Programming (QCP)
are used for UC optimization [33]. LP optimization technique is going to be
used for optimizing in this thesis due to having only linear relations between
the variables.

3.5.2 Optimization Objective Function

The objective function of the optimization is to minimize the net cost of the
system, which can be represented by the various costs and revenues depend-
ing on the scenario (described later in case study statement chapter). The
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general net cost expression can be summed as:

Net Cost = Electricity cost+ Peak power cost+ EV charging cost

− EV discharging revenue−Rental Revenue
−Regulation Up Revenue+Regulation Down Cost

+Battery Degradation Cost (3.21)

The costs and revenues which form the net cost and involved in the dispatch
model are stated below:

1. Electricity cost - The FED system consumes electricity from the na-
tional grid and is calculated according to the equation (3.22). The market
hourly electricity price was obtained from the Nord Pool website [34].

Electricity cost =
24∑
h=1

forecast(h) ∗ El. price per hour(h) (3.22)

2. Peak Power Cost - The peak power cost is calculated using the equation
(3.23). Emax is the maximum electricity consumed in a hour during the
entire 24 hour period, whereas power tariff is obtained from the website of
Göteborg Energi [35]. The peak power cost is a monthly cost, so to factor
the daily influence, the cost has been divided by 30.

Power Tariff = 36.2 SEK/kW

Peak power cost =
1

30
∗ Emax ∗ power tariff (3.23)

3. EV charging cost - The EV charging cost can be expressed in the
equation (3.24). Ech is the amount of charging required (in kWh) by an EV
i during the hour h.

EV charging cost =
24∑
h=1

100∑
i=1

Ech(i, h) ∗ El. price per hour(h) (3.24)

4. EV discharging revenue - The EV discharging revenue can be expressed
in the equation (3.25). Edis is the amount of discharging performed (in kWh)
by an EV i during the hour h.

EV discharging revenue =
24∑
h=1

100∑
i=1

Edis(i, h) ∗ El. price per hour(h) (3.25)
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5. Rental Revenue - The EV’s are rented out generating revenue in the
process, and is expressed in the equation (3.26). Many taxi services and car
rental service providers charge the customer based on the time period and
distance of the trip and this pricing scheme is followed in the thesis. The time
factor rate (in SEK per minute) and Distance factor rate (in SEK per km)
are taken from the UBER X service website [36]. These rates were halved
accounting for the factor that no labour costs are involved in rentals. The
Rental Revenue obtained here is indicative at best, and is not completely
accurate.

Rental Revenue =
100∑
i=1

(
Time factor rate ∗Rental Duration(i) +

Distance factor rate ∗Distance travelled(i)
)

(3.26)

6. Regulation Up Revenue - Frequency regulation up generates revenue
and is expressed in equation (3.27). The regulation up price is obtained from
the Nord pool website [37].

Regulation Up Revenue =
24∑
h=1

100∑
i=1

Regulation Up Price(h)∗

Ereg,up(i, h) (3.27)

7. Regulation Down Cost - Frequency regulation down involves a cost
which is less than the electricity brought on the spot market and is expressed
in equation (3.28). The electricity for regulation down is brought on the
regulation market obtained from the Nord pool website [37].

Regulation Down Cost =
24∑
h=1

100∑
i=1

Regulation Down Price(h)∗

Ereg,down(i, h) (3.28)

8. Battery Degradation Cost - Battery degradation cost is calculated
using equations (3.19) or (3.20) depending on whether frequency regulation
is involved or not.

These costs and revenues are essential in determining the net cost of the
system, which is the variable that will be the minimized to achieve the opti-
mal solution. The net cost varies according to the existing scenario and the
different scenarios are explained in the next chapter.
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3.5.3 Optimization Constraints

The constraints faced in optimization are mentioned over here:

1. Grid Congestion or Transmission Line Limits: The load on the
line connecting the FED system and the Fleet must never be greater than
the Grid Congestion limit. The congestion limit was set at 1 MW accounting
for the power transfer between the FED system and the fleet in the possi-
ble future. Assuming an average value for the power, the constraint can be
expressed in terms of energy transfer as:

100∑
i=1

(Ech(i, h) + Edis(i, h) + Ereg,up(i, h)+

Ereg,down(i, h)) 6 Grid Congestion limit (3.29)

2. SOC Limitation: The SOC of each EV battery can vary between 0.2
and 1 as described in section 2.5 with equation (3.14) expressed as:

0.2 6 SOC(i, h) 6 1

3. Maximum Energy Flow Restriction: The energy transfer (including
charging and discharging) between the FED system and an individual EV
in the fleet cannot be greater than the usable share of the battery. Since,
the SOC can vary between 0.2 and 1, the usable share of the battery is 80
percent.

Ech(i, h) + Edis(i, h) + Ereg,up(i, h) + Ereg,down(i, h) 6 0.8 ∗ Erated(i) (3.30)

4. Energy transfer limit: The values of Ech and Edis are limited between
zero and Erated.

0 6 Ech(i, h) 6 Erated(i) (3.31)
0 6 Edis(i, h) 6 Erated(i) (3.32)

5. No Electricity transfer while Driving: It is more of an obvious
condition that no electricity transfer occurs when the EV is being driven.

Ech(i, h) = 0 ∀ distance(i, h) 6= 0

Edis(i, h) = 0 ∀ distance(i, h) 6= 0

Ereg,up(i, h) = 0 ∀ distance(i, h) 6= 0 (3.33)
Ereg,down(i, h) = 0 ∀ distance(i, h) 6= 0 (3.34)



26 Section. 3.5

6. Equal SOC for the beginning and end of the Day: The SOC of
each EV should be the same at the beginning and end of the day.

SOC(i, h = 0) = SOC(i, h = 24) (3.35)

7. Regulation Up and Down limits: In addition to these constraints,
we have the regulation up/down limit constraints (set at 10 percent of the
battery capacity).

0 6 Ereg,up(i, h) 6 0.1 ∗ Erated(i) (3.36)
0 6 Ereg,down(i, h) 6 0.1 ∗ Erated(i) (3.37)
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CASE STUDY STATEMENT

In order to fully understand the benefits and drawbacks of the V2G concept,
four scenarios would have to be considered.

• Scenario 1 : In this scenario, only the FED electrical system is con-
sidered without an EV fleet, consuming electricity from the national
grid.

• Scenario 2 : The fleet operator enters in this scenario with the fleet
having only Grid to Vehicle (G2V) ability. The fleet operator along
with the FED system can be considered as one entity exchanging elec-
tricity between each other while the FED system consumes electricity
from the grid. This scenario has two parts:
A: The fleet EV’s are charged in an uncontrolled manner from the FED
system i.e. the EV charges to its maximum battery capacity as soon
as it is plugged in.
B: The fleet EV’s are charged in a controlled manner from the FED
system i.e. charging when electricity prices are low and providing elec-
tricity back to the FED system when electricity prices are high, so as
to reduce the overall electricity costs of the FED system.

• Scenario 3 : In this scenario, the fleet has V2G capability along with
G2V (bidirectional charging) with the aim of controlled charging.

• Scenario 4 : This scenario differs from the previous scenario as here,
the car fleet also provides frequency regulation up and down.

Before analyzing the separate scenarios, we are going to define the inputs for
the case study.
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4.1 Case Study Inputs

4.1.1 PEV

For the purpose of this thesis, a PEV should be able to exchange electricity
to and from the grid with the capacity of providing ancillary services. These
services are provided by the fourth generation PEV and the third generation
Vehicle to Grid - Net Metered (V2G-NM) facility. As stated in section 2.2,
a fourth generation PEV has yet to be developed, therefore, we assume that
the PEV used in this thesis is third generation (V2G-NM).

The Tesla Model 3 [13] with an anticipated battery capacity of 75 KWh
and range of 220-310 miles (or 350-500 km approx.) can be used for mod-
elling in this thesis accounting for the high battery capacity. A question
might arise here, that why Tesla model S was not considered even though it
has a higher battery capacity? The best explanation can be that model S
is more expensive than model 3, almost twice the cost. The Tesla website
claims that 170 miles worth of charging can be done in 30 minutes at any
supercharger location or the battery can be charged to its full capacity of 75
kWh in a hour. This level of charging is within DC level 2 charging limits
(up to 100 kW power capacity). Tesla Model 3 claims to have an estimated
driving range of 220-310 miles based on usage, but, considering the driving
conditions mentioned in section 3.2 a safe value of 250 miles (or 402 km)
for the driving range can be assumed. This driving range value is then used
in the SOC model to determine hourly SOC of the EV’s in the fleet.

4.1.2 Charging Station

The decision of selecting the DC charging level and the PEV are intertwined.
Due to the selection of Tesla model 3 as the modelling EV in this thesis and,
the condition of charging it within a hour, only DC charging level 2 will
be able to satisfy the charging requirements and thus, will be used for further
analysis in this thesis.

4.1.3 Fleet Size

The fleet size is assumed to be 100 in this thesis due to lack of extensive
business opportunity research around Gothenburg. The fleet size appears to
be arbitrarily chosen, but 100 Tesla model 3 EV’s have a combined capacity
of 7500 kWh which is also the maximum electricity demand of the FED
system for a hour.
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4.2 Scenario 1: FED system

This scenario is the present day reality, without a Fleet Operator. Electricity
cost and the Peak power cost are the costs incurred in this scenario and are
calculated using equations (3.22) and (3.23). The net cost can be expressed
using equation (3.21) as:

Net Cost = Electricity cost+ Peak power cost

4.3 Scenario 2: FED system with Fleet Opera-
tor (only G2V facility)

The Fleet Operator now enters the FED system, only charging the EV’s i.e.
consuming electricity from the FED system.

4.3.1 Scenario 2a: FED system with Fleet Operator
having no V2G facility - Uncontrolled charging

In addition to the Electricity cost and the Peak power cost (calculated us-
ing equations (3.22) and (3.23)), EV charging cost will also be added to the
system (calculated using equation (3.24)). The charging happens in an un-
controlled manner (uncontrolled charging) i.e. the EV charges as soon it is
plugged in to its rated capacity. The initial SOC for all cars is fixed at 1 [38].

SOCinitial(i) = 1 ∀ i ∈ 1 : 100 (4.1)

The cars in the fleet are rented out generating rental revenue according to
the equation (3.26) and the net cost is expressed using equation (3.21):

Net Cost = Electricity cost+ Peak power cost+

EV charging cost−Rental Revenue

4.3.2 Scenario 2b: FED system with Fleet Operator
having no V2G facility - Controlled charging

The charging happens in an controlled manner (controlled charging) in this
scenario, i.e. the EV charges when the electricity prices are low. The initial
SOC is same as in Scenario 2a (mentioned in equation (4.1)). Also, the net
cost is same as in scenario 2a.
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4.4 Scenario 3: FED system with Fleet Opera-
tor having V2G facility

This scenario deals with the Fleet Operator now having V2G facilities. In-
stead of the uncontrolled charging being performed in the scenario 2, here,
the EV’s would be charged in an optimal manner so as to to reduce the
overall cost of the system. In addition to that, EV batteries would discharge
and supply electricity to the FED system at times, when the demand is high
or when the Electricity costs are high. To achieve controlled charging, an
optimization will have to be performed which is described here after.

4.4.1 Optimization Objectives

In addition to the Electricity cost, Peak power cost, EV charging cost and
rental revenue represented in equations (3.22), (3.23), (3.24) and (3.26), we
have the discharging revenue calculated using equation (3.25). The SOC
will be determined using equation (3.15). The charging efficiency (ηch) and
discharging efficiency (ηdis) are set at 0.95 in this thesis. The net cost will
be optimized in GAMS and is expressed using equation (3.21):

Net Cost = Electricity cost+ Peak power cost+ EV charging cost

− EV discharging revenue−Rental Revenue+Battery

Degradation Cost

The optimization objective is to minimize the net cost keeping the constraints
in check.

4.4.2 Optimization Constraints

The optimization constraints 1-6 mentioned in subsection 3.5.3 apply over
here with the Ereg,up and Ereg,down set to zero.

4.5 Scenario 4: FED system with Fleet Oper-
ator providing Regulation Up and Down
Service

The difference between this scenario and scenario 3 is that the car fleet pro-
vides Frequency Regulation ancillary service. The optimization approach
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would remain the same with the addition of regulation up revenue and reg-
ulation down cost to the net cost of the system.

Real time frequency control is needed in all power systems to maintain a
steady grid. In an electric power distribution system, when the generation is
more than the consumption, would result in the frequency going up. In this
situation, regulation down is required which the EV can provide by charging
its battery. Similarly, when the generation is less than the consumption leads
to frequency going down. Here, regulation up is required which the EV can
provide by discharging its battery or halting the ongoing charging process
[31].The aim of these measures is to stabilize the frequency to its nominal
value of 50.00 Hz.

In this thesis, the aim is to have an optimum EV charging/discharging dis-
patch pattern for the specific date of March 1, 2017, so, rather than looking
at real time frequency data which is unavailable, we can utilize the Auto-
matic Activated Reserve (AAR) values available on Nord Pool website [39]
to decide the hour in which regulation up or down is required. AAR is the
primary frequency control method to respond to a frequency deviation, done
automatically within a few seconds after a disturbance occurs between the
load and the generation. Also, capacity bidding is not involved.

4.5.1 Optimization Objective

The addition to Scenario 3 is the regulation up revenue and regulation down
cost and they are calculated using equations (3.27) and (3.28). The SOC
will be evaluated using equation (3.16). The net cost is calculated using
(3.21). The optimization objective is to minimize the net cost keeping the
constraints in check.

4.5.2 Optimization Constraints

The optimization constraints 1-7 mentioned in subsection 3.5.3 apply over
here.





5

RESULTS

5.1 Load Forecasting by HWT method

The following value of the parameters were found to produce the least SSE
(squared-in sample error):

α = 0.9508
δ = 0.0069
ω = 0.0723
φ = 0.5461.

After implementing these factors, the following forecast and Mean Absolute
error (MAE) were achieved as shown in figure 5.1.

(a) Load Forecast without Multiplying
Factor correction

(b) MAE without Multiplying Factor cor-
rection

Figure 5.1: Results without multiplying factor correction
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The forecast is shown to match the actual demand pattern but does not
match it in magnitude. To rectify this magnitude variation, a multiplying
factor is introduced having the following value:

multiplying factor = 1.6125

After implementing the multiplying factor, the following results were achieved
as shown in figure 5.2. The forecast and actual demand for the desired EV
charging/discharging dispatch day of March 1, 2017 is shown in figure 5.3.

(a) Load Forecast with Multiplying Fac-
tor correction

(b) MAE with Multiplying Factor correc-
tion

Figure 5.2: Results with multiplying factor correction

Figure 5.3: Forecast vs. Actual Demand on March 1, 2017

Average difference = 3.2859 percent.
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5.2 Car driving Pattern

Figure 3.2 shows the normal distribution curves of Rental Duration and figure
5.4 shows the variation of distance and the rental duration for each EV.
Figure 3.3 shows the distribution curves for the number of rentals in a day.
It can be understood from figure 3.3b that 30 cars out of the total of 100 are
rented out in a day, therefore, only the values for the first 30 vehicles have
been considered in the analysis for the day. The rental times are shown in
Appendix A.2. Each EV travels a certain distance as shown in figure 5.4a,
but the hourly distance values are required to determine the SOC according
to the equation (3.15) and these values can be seen in Appendix A.1.

(a) Distance travelled by each EV (b) Rental duration of each EV

Figure 5.4: Distance travelled and Rental duration of each EV

5.3 Battery Degradation Cost per unit of En-
ergy

Battery degradation cost is difficult to evaluate even with the simplistic equa-
tions (3.19) and (3.20), especially in a EV like Tesla Model 3 which has been
recently launched. The difficulty is that the full battery life of the vehicle is
still under doubt and only time would provide full disclosure. Tesla provides
a battery warranty of 8 years (or 120,000 miles) [13] but certain forums [40]
state that the battery might last for a lot longer at around 500,000 miles.
These two values of battery lifetime mileage will be used for analysis and are
termed as:
1. Case I - Battery lifetime mileage of 120,000 miles.
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2. Case II - Battery lifetime mileage of 500,000 miles.

The battery lifetime mileage is necessary to determine the number of full
cycles possible during the lifetime of the battery. The two cases give the
following values for the full cycles possible in lifetime for the battery (Cf )
using equation (3.18):

Cf,I =
120, 000

250
= 480

Cf,II =
500, 000

250
= 2000

The battery investment cost is taken to be 150 US dollars/kWh [41] (1 US
dollar = 9 SEK approximately) which gives the following value of Battery
degradation cost per unit of energy (Df ):

Df,I = 3.516 SEK/kWh

Df,II = 0.844 SEK/kWh

It is clear from the Df values that case II will give lower battery degradation
cost and for simplicity, we are going to use this value for further analysis in
the thesis.

5.4 Scenario 1 Results

The electricity cost per hour values are shown in Appendix A.3. These values
along with the forecast gives the Electricity cost according to the equation
(3.22). The Power Tariff obtained from Göteborg Energi [35] and the max
energy consumption gives the peak power cost. The results are presented in
table 5.1.

Table 5.1: Scenario 1 results (All values in SEK unless otherwise stated)

Electricity cost 37893
Emax 6879.3 kWh

Peak power cost 8301
Net cost 46194

5.5 Scenario 2 Results

This section presents the difference in results between controlled charging and
uncontrolled charging for the fleet having only unidirectional G2V facilities.
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5.5.1 Scenario 2A: Uncontrolled Charging

The Electricity cost of the FED system would remain the same in this sce-
nario too i.e. Electricity cost = 37893 SEK. The cost of charging EV’s to
the rated capacity after being plugged in is shown here along with the new
Peak Power Cost. The revenue generated from renting out the cars are also
shown in table 5.2.

Table 5.2: Scenario 2A results (All values in SEK unless otherwise stated)

Electricity cost 37893
EV charging cost 59

Emax 6932.7 kWh
Peak power cost 8365.45
Rental Revenue 13924.45

Net cost 32393

(a) (b)

Figure 5.5: Scenario 2A - SOC variation

The peak power cost increases due to the EV charging done in the peak
hour, yet we see a drastic reduction in net cost due to the rental revenue.
The variation of SOC of each EV over the 24 hour period is shown in the
figure 5.5a and 5.5b. The charging pattern of the EV’s are shown in figure
5.6. The change in electricity demand with the addition of EV’s is shown in
figure 5.7a.
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(a) (b)

Figure 5.6: Scenario 2A - EV Charging pattern during the 24 hour period

(a) Forecast and EV Charging (b) EV Charging done per hour

Figure 5.7: Scenario 2A - EV charging

5.5.2 Scenario 2B: Controlled Charging

The difference in this scenario from scenario 2a is shown below in table 5.3.
Controlled charging reduces the EV charging cost, as charging is done in
the hours with lower electricity cost. Similarly, we see a reduction in peak
demand and the peak power cost associated with it.

The variation of SOC of each EV over the 24 hour period is shown in the
figure 5.8a and 5.8b. The charging pattern of the EV’s are shown in figure 5.9
and change in electricity demand with the addition of EV’s is shown in figure
5.10a. Figure 5.10b shows the hourly charging pattern of the fleet EV’s.



Section. 5.6 39

Table 5.3: Scenario 2B results (All values in SEK unless otherwise stated)

Electricity cost 37893
EV charging cost 55.14

Emax 6879.3 kWh
Peak power cost 8301.02
Rental Revenue 13924.45

Net cost 32324.71

(a) (b)

Figure 5.8: Scenario 2B - SOC variation

(a) (b)

Figure 5.9: Scenario 2B - EV Charging pattern during the 24 hour period
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(a) Forecast and EV Charging (b) EV Charging done per hour

Figure 5.10: Scenario 2B - EV charging

5.6 Scenario 3 Results

The Electricity cost of the FED system would remain the same in this sce-
nario too i.e. Electricity cost = 37893 SEK. The cost of charging and
discharging in a controlled charging manner is also shown over here in table
5.4.

Table 5.4: Scenario 3 results, battery degradation cost not included in the
objective function (All values in SEK unless otherwise stated)

Electricity cost 37893
EV charging cost 1837.53

EV discharging revenue 1674.53
Emax 6049.2 kWh

Peak power cost 7299.38
Battery Degradation cost 9337.62

Rental Revenue 13924.45
Net cost 40768.55

The battery degradation cost is calculated using the battery degradation
cost per unit of energy (Df,II) of 0.844 SEK/kWh. The values listed in table
5.4 were obtained considering the battery degradation cost as not a part of
the objective function.

As the battery degradation is not a part of the objective function, high
V2G participation is observed in terms of EV discharging revenue. Higher
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(a) (b)

Figure 5.11: Scenario 3 - SOC variation

(a) (b)

Figure 5.12: Scenario 3 - EV Charging pattern during the 24 hour period

charging cost is observed to compensate for the increased discharging. The
peak electricity requirement is reduced due to the EV’s providing electricity
back to the FED system during peak hours. It is clear from the results, that
bidirectional charging facilities does not reduce net cost to such an extent to
make V2G feasible.

The variation of SOC of each EV over the 24 hour period is shown in the
figure 5.11a and 5.11b. The charging and discharging pattern of the EV’s
are shown in figures 5.12a, 5.12b, 5.13a and 5.13b. The change in electricity
demand with the addition of EV’s charging and discharging (or controlled
charging) in comparison to the forecast is shown in figure 5.14.
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(a) (b)

Figure 5.13: Scenario 3 - EV Discharging pattern during the 24 hour period

(a) Scenario 3 - Forecast vs. Overall Elec-
tricity Demand (b) Scenario 3 - EV charging/discharging

Figure 5.14: Scenario 3 - EV Charging and Discharging

The optimization in GAMS software gave the following values when the
battery degradation cost was considered as a part of the objective function.
The results are shown in table 5.5.

These values clearly suggest that battery degradation cost per unit of
energy (Df,II) is so high, that the optimization restricts discharging of the
batteries. Furthermore, this leads to only minuscule reduction in peak de-
mand and a similar net cost as scenario 2 is witnessed. It would be safe to
say that no real benefit of using V2G bidirectional charging is observed.
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Table 5.5: Scenario 3 results, battery degradation cost as a variable in the
optimization (All values in SEK unless otherwise stated)

Electricity cost 37893
EV charging cost 49.11

EV discharging revenue 1.88
Emax 6872.9 kWh

Peak power cost 8293.3
Battery Degradation cost 5.4

Rental Revenue 13924.45
Net cost 32314.47

5.7 Scenario 4 Results

Frequency regulation is the differing feature between this scenario and sce-
nario 3. Regulation up and down prices along with the automatic activated
reserves are shown in Appendix A.4. The various cost and revenue values are
shown in table 5.6 (battery degradation cost used as a part of the objective
function).

Table 5.6: Scenario 4 results (All values in SEK unless otherwise stated)

Electricity cost 37893
EV charging cost 6.64

EV discharging revenue 0
Regulation Up revenue 2.11
Regulation Down cost 41.29

Emax 6872.9 kWh
Peak power cost 8293.3

Battery Degradation cost 5.4
Rental Revenue 13924.45

Net cost 32313.07

Here, lower charging cost is observed relative to scenario 3 (when bat-
tery degradation cost is a part of the objective function), which is due to
the facility of frequency regulation and it appears as additional regulation
down cost. Regulation down helps us to charge the EV’s from the grid when
frequency has to be reduced down to the nominal value. Regulation up does
the opposite, discharging the batteries to provide electricity back to the grid
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(a) (b)

Figure 5.15: Scenario 4 - SOC variation

(a) (b)

Figure 5.16: Scenario 4 - Charging Pattern

when the frequency has to be increased to its nominal value. The peak load
demand and the net cost are similar to the previous scenario. Frequency
regulation makes the bidirectional V2G feasible as net cost is comparable to
scenario 2 (where battery degradation cost has not been considered) but no
huge benefits are observed.

The SOC variation over the 24 hour period is shown in figure 5.15, charg-
ing and discharging patterns are shown in figures 5.16 and 5.17. Regulation
up and down are shown in figures 5.18 and 5.19, the change in electricity
demand is shown in figure 5.20a. Hourly charging/discharging patterns and
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(a) (b)

Figure 5.17: Scenario 4 - Discharging Pattern

(a) (b)

Figure 5.18: Scenario 4 - Regulation Up

regulation up/down is shown in figure 5.20b.

5.8 Scenario Comparison

The results from all the four scenarios have been compiled in table 5.7.
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(a) (b)

Figure 5.19: Scenario 4 - Regulation Down

(a) Forecast vs. Overall Electricity De-
mand

(b) EV charging/discharging and Regula-
tion Up/Down

Figure 5.20: Scenario 4 - EV Charging, Discharging and Frequency regulation

Scenario 1 i.e. the base case of the thesis, has the highest net cost and
gave inspiration to introduce bidirectional V2G services. Scenario 2A intro-
duces EV fleet into FED system (uncontrolled charging) and a drop in net
cost is seen due to the revenue generated from renting out cars in the EV
Fleet. Uncontrolled charging increases the peak demand leading to a higher
peak power cost. To counter the rise in peak demand, we introduce con-
trolled charging in scenario 2B which brings peak demand back to the base
case level and reduces the net cost even further.
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Table 5.7: Scenario comparison (3a- Battery degradation not a part of the
objective function, 3b- Battery degradation is a part of the objective func-
tion)

Scenario 1 2A 2B 3a 3b 4
Electricity
cost 37893 37893 37893 37893 37893 37893

EV charg-
ing cost - 59 55.14 1837.53 49.11 6.64

EV dis-
charging
revenue

- - - 1674.53 1.88 0

Emax (in
kWh) 6879.3 6932.7 6879.3 6049.2 6872.9 6872.9

Peak
power
cost

8301.02 8365.45 8301.02 7299.38 8293.3 8293.3

Regulation
up rev-
enue

- - - - - 2.11

Regulation
down cost - - - - - 41.29

Rental
revenue - 13924.45 13924.45 13924.45 13924.45 13924.45

Battery
Degra-
dation
cost

- - - 9337.62 5.4 5.4

Net cost 46194 32393 32324.71 40768.55 32314.47 32313.07

Scenario 3 introduced bidirectional charging (G2V + V2G) in the system
and presented an immensely difficult challenge during modelling. Battery
degradation cost was the factor which presented the most difficulty to be in-
tegrated into the system. Whether the battery degradation should be treated
as a part of the objective function was another challenge in itself. Considering
the battery degradation cost as a part of the objective function limited the
optimization, the model made discharging almost redundant so as to avoid
battery degradation cost due to the high Df value as can be seen in section
5.6. The results are seen in column ’3b’ of table 5.7. Considering battery
degradation as not a part of the objective function (model is not going to
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optimize the degradation cost) gave the model freedom to utilize the V2G
services from the car fleet as shown in table 5.7 column ’3a’. EV fleet dis-
charges in a controlled manner, bringing down the peak demand down and
lowering the peak power cost but the price of using the battery degradation
cost as not a part of the objective function is paid in a very high battery
degradation cost and an increased net cost.

Scenario 4 introduces the ancillary service of frequency regulation to the
bidirectional charging system. Additional revenue stream in terms of regu-
lation up is introduced and yet we see a small decrease in net cost of the
system. The peak demand of the system is only a bit less than the base
case, and yet, not as low as scenario 3 (column 3a) which can be attributed
to the opposing effect of battery degradation cost. Battery degradation cost
increases as V2G services increase, so the model optimizes in such a way to
give the minimum net cost which is evident by the much lower degradation
cost.

5.9 Sensitivity Analysis

In this section, the effect of tweaking various factors on the system is ana-
lyzed.

5.9.1 Change in charging facility

DC Level 2 charging limits have been used in this thesis, therefore, a sensi-
tivity analysis based on charging limits can be performed. Instead of using
the DC level 2 charger, we can use the DC level 1 charger (up to 40 kW
power capacity) to compare the two levels of charging. Due to the SOC limit
of equation (3.14), the EV battery could be charged to a maximum of 80
percent of its rated capacity i.e. 60 kWh in a hour with DC level 2 charger.
With DC level 1 charger, the charging capacity is assumed to essentially
halve to a maximum value of 30 kWh. The difference between the two in
Scenario 4 is tabulated in table 5.8.

No discernible difference could be found while using level 1 and level 2
as seen in figures 5.21 and 5.22. Even the hourly charging/discharging and
frequency regulation pattern is similar for both charging levels. It was found
that DC level 1 charger used more EV’s for charging and discharging than
DC level 2 in such a way that the hourly charging/discharging and frequency
regulation pattern remains the same.
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Table 5.8: Difference between the DC charging levels (All values in SEK
unless otherwise stated)

Charging level DC Level 1 DC Level 2
Electricity Cost 37893 37893
EV charging cost 6.64 6.64

EV discharging revenue 0 0
Emax 6872.9 kWh 6872.9 kWh

Peak Power cost 8293.3 8293.3
Regulation Up revenue 2.11 2.11
Regulation Down cost 41.29 41.29

Battery Degradation cost 5.4 5.4
Rental Revenue 13924.45 13924.45

Net Cost 32313.07 32313.07

(a) DC level 1 (b) DC level 2

Figure 5.21: Charging facility - Overall electricity demand

5.9.2 Changing the number of Electric Vehicles used

In the thesis, a fleet size of 100 cars has been used for analysis as a random
choice due to the lack of business opportunity research. So, the effect of
fleet size on the system has been subdued and not completely understood.
To study the effect of fleet size, different fleet sizes are going to be used to
perform a sensitivity analysis. We are going to see the results for:
1. 100 cars.
2. 50 cars.
3. 25 cars.
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(a) DC level 1 (b) DC level 2

Figure 5.22: Charging facility - Charging/discharging pattern and Frequency
Regulation

The sensitivity analysis is done using Scenario 4 conditions. The difference
between the three fleet sizes is shown in table 5.9.

Table 5.9: Changing the fleet size (All values in SEK unless otherwise stated)

Fleet Size 100 cars 50 cars 25 cars
Electricity Cost 37893 37893 37893
EV charging cost 6.64 6.64 5.51

EV discharging revenue 0 0 0
Emax 6872.9 kWh 6872.9 kWh 6872.9 kWh

Peak Power cost 8293.3 8293.3 8293.3
Regulation Up revenue 2.11 2.11 2.11
Regulation Down cost 41.29 41.29 35.36

Battery Degradation cost 5.4 5.4 5.4
Rental Revenue 13924.45 13924.45 11791.02

Net Cost 32313.07 32313.07 34439.44
Capital cost 31,500,000 15,750,000 7,875,000

No difference in discharging revenue, regulation up revenue and peak
power demand is observed among the three fleet sizes as can be seen in the
table 5.9 and figures 5.23 and 5.24. Regulation down cost decreases when the
fleet size is reduced to 25. The rental revenue remains unchanged between
fleet size of 100 and 50 cars, which is due to the deterministic car driving
pattern in which only 30 cars are rented in a day. This is also the reason
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(a) 100 cars (b) 50 cars

(c) 25 cars

Figure 5.23: Fleet size - Overall electricity demand

for reduction in rental revenue when 25 cars are used in the fleet. Battery
degradation cost remains unchanged among the three fleet sizes due to sim-
ilar discharging and regulation up pattern.

The capital cost mentioned above is the total investment made by the Fleet
Operator in purchasing the cars for the fleet. A Tesla model 3 has an esti-
mated cost of 35,000 US dollars [42] (assuming 1 US dollar = 9 SEK). This
cost is indicative of the amount of investment made and not a determining
factor in selecting the fleet size, as no life cycle assessment was done for the
fleet.

The net cost for the fleet size of 100 and 50 EV’s does not justify the fleet
size of 100 but a significant increase in net cost is observed when the fleet
size is further reduced to 25. The correct fleet size would be somewhere be-
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(a) 100 cars (b) 50 cars

(c) 25 cars

Figure 5.24: Fleet size - Charging/discharging pattern and Frequency regu-
lation

tween 50 and 25 EV’s, which would be determined by appropriate business
opportunity data and a life cycle assessment of the net cost to the system
according to the fleet size. Of course, such an analysis is beyond the scope
of this thesis.

5.9.3 Changing the EV model

This section deals with changing the EV to a Nissan leaf S in place of the
Tesla model 3 used up till now and study the changes. Nissan leaf S has a
driving range of 150 miles [43] as compared to 250 miles for the Tesla model
3. The Nissan leaf S has a lower battery capacity of 40 kWh [14] compared to
75 kWh battery capacity of Tesla model 3. Also, the Nissan leaf S comes at
a cheaper price of 29,900 US dollars [14] compared to the 35,000 US dollars
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price tag of Tesla Model 3. The difference between the two electric vehicles
are shown in table 5.10 and figures 5.25, 5.26.

Table 5.10: Different Electric Vehicles (All values in SEK unless otherwise
stated)

EV model Tesla Model 3 Nissan Leaf S
Number of EV’s 100 100

Range 250 miles 150 miles
Battery Capacity 75 kWh 40 kWh
Electricity Cost 37893 37893
EV charging cost 6.64 0

EV discharging revenue 0 296.24
Emax 6872.9 kWh 6522.15 kWh

Peak Power cost 8293.3 7870.06
Regulation Up revenue 2.11 214.95
Regulation Down cost 41.29 0

Df 0.844 SEK/kWh 0.506 SEK/kWh
Battery Degradation cost 5.4 829.5

Rental Revenue 13924.45 13924.53
Net Cost 32313.07 32156.913

Capital Cost 31,500,000 26,910,000

(a) Tesla model 3 (b) Nissan Leaf S

Figure 5.25: EV model - Overall Electricity Demand

The main difference between the two EV models besides the range and
battery capacity, is the battery degradation cost per unit of energy (Df ).
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(a) Tesla model 3 (b) Nissan Leaf S

Figure 5.26: EV model - Charging/discharging pattern and Frequency regu-
lation

Nissan Leaf S has a lower battery degradation cost per unit of energy at
0.506 SEK/kWh compared to 0.844 SEK/kWh for Tesla model 3. This proves
detrimental for Tesla model 3 as Nissan Leaf S excels in discharging revenue,
regulation up revenue, regulation down cost and net cost despite having
higher a battery degradation cost. Even the peak demand is less for Nissan
Leaf S despite having a smaller battery capacity than Tesla model 3. This
makes Nissan leaf S a superior choice for the EV.

5.9.4 Changing the Battery Degradation Cost per unit
of Energy

A high value of battery degradation cost per unit of energy (Df ) hinders in
V2G services as the optimization limits EV charging, discharging and regu-
lation up on account of high degradation cost. In this section, the effect of
changing the Df values on the system is analyzed. Up till now, Df value of
0.844 SEK/kWh has been used and proven to be high to an extent making
V2G services unworthy, seen especially in scenario 3. Keeping this in mind,
only values lower than 0.844 SEK/kWh are going to be used for sensitivity
analysis as shown below, in scenario 4 conditions:

1. 0.844 SEK/kWh
2. 0.6 SEK/kWh
3. 0.4 SEK/kWh
4. 0.2 SEK/kWh
The results are shown in table 5.11.
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Table 5.11: Varying Df (All values in SEK unless otherwise stated)

Df (in SEK/kWh) 0.844 0.6 0.4 0.2
Electricity Cost 37893 37893 37893 37893
EV charging cost 6.64 6.64 6.64 244.2
EV discharging rev-
enue 0 17.41 42.46 379.77

Emax (in kWh) 6872.9 6813.9 6771.900 6461.7
Peak Power cost 8293.3 8222.11 8171.43 7797.11
Regulation Up rev-
enue 2.11 21.52 35.34 248.02

Regulation Down
cost 41.29 72.33 105.48 345.29

Battery Degradation
cost 5.4 74.64 100.16 402.46

Rental Revenue 13924.45 13924.45 13924.45 13924.45
Net Cost 32313.07 32305.34 32274.45 32129.82

Decreasing Df value to 0.6 SEK/kWh results in the fleet participating
to a higher extent in V2G services, as can be seen by the increase in dis-
charging revenue and regulation up revenue but the higher participation has
a rebound effect on the battery degradation cost and regulation down cost.
Still, a lower net cost is observed partly due to the reduction in peak demand.

Upon further reducing the Df value to 0.4 SEK/kWh, even higher V2G par-
ticipation is observed with lower net cost. The peak power demand decreases
even more but the rebound effect in battery degradation is quite prominent
in this case, thus limiting the decrease in net cost.

When Df value is reduced to 0.2 SEK/kWh, a sudden increase is noticed
in V2G services along with reduction in peak demand. Achieving a Df value
of 0.2 SEK/kWh is not possible with present day technology, as we see that
Nissan Leaf ’S’ could only achieve a value of 0.506 SEK/kWh. The battery
degradation cost is lower than the previous case which is obvious due to the
low Df value.
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DISCUSSION and Future Research
Work

This chapter deals with interpreting the results obtained in the thesis and
state their relevance for the possible introduction of EV fleet into the FED
system. A thorough inspection of the assumptions is done so as to fully
appreciate the effect they have on the results. Furthermore, discourse over
the limitations is presented and alternative paths to achieve better results
are suggested.

• Load Forecasting: Holt-Winters method was used to forecast the
demand and presented accurate results with an average difference of
3.2859 percent (a value below 5 percent is acceptable). The average
difference value and MAE increases as the time period increases, for
a two day period the average difference is 3.2399 percent, three day
period gives a value of 3.4376 percent, on the fourth day the value is
3.9313 percent, fifth day gives 3.7526 percent. On the sixth day, the
value increases to beyond an unacceptable value of 5.6981 percent on
account of the weekend day which is the major fault of HWT method,
it lacks the sensitivity to account for a large drop or increase in the
electricity demand and holidays.

It is one of the major reason the optimization has been limited to
a single day to avoid any major errors in forecast value. The average
difference value could have been much higher if the optimization would
have been performed for some other day or a time period greater than
a single day was used. Future research can introduce ANNs as they
have proven to be attractive for load modelling [6].

• EV: Choosing Tesla Model 3 as the EV for analysis was primarily based
on the high battery capacity it offers. During the analysis, the high
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battery degradation cost per unit of energy (Df ) proved as an opposing
force to the battery capacity, thereby, limiting the participation of the
Tesla in V2G services. The sensitivity analysis performed between
Tesla model 3 and Nissan Leaf S made it apparent that such a high
battery capacity was not necessary in this case study. Nissan leaf S
with a lower battery capacity performed better than Tesla model 3 in
every V2G service because of a lower Df value. In addition to that,
the Nissan costs less than the Tesla making it an even more attractive
option for V2G use. In the future research work, more EV’s can be
analysed to determine the best EV for V2G use.

• Charging facility: The DC level 2 charging station infrastructure was
used for analysis assuming the requirement of the higher power capacity
inherent to DC level 2. The sensitivity analysis performed between DC
level 1 and 2 charging showed no differences between the net cost to
the the system. The question arises on which of the two charging levels
is more suitable for use in the case study, but the answer is out of the
scope of this thesis, a research work based on life cycle assessment of
both the charging levels would be able to answer the question better.

• Fleet size: The fleet size was assumed to be 100 cars strong for sim-
plicity due to the lack of business opportunity data. Later on, the deter-
ministic driving pattern showed that only 30 cars was rented out during
the 24 hour period leaving the remaining 70 cars as reserve capacity
during the period. The sensitivity analysis performed on changing the
fleet size showed no difference in net cost when the fleet size was halved.
A considerable increase in net cost occurs for a quarter fleet size. A
future research work determining the business opportunity around the
Chalmers campus would be essential to implement this model in prac-
tice, finding the number of customers willing to participate regularly
would be quintessential for the project to be a success.

• Driving Pattern: A deterministic driving pattern data was developed
for the thesis due to the lack of relevant car sharing driving pattern
in the city of Göteborg. The problem with the deterministic driving
pattern over here is that it is good for only one day, the pattern would
repeat itself on the second day and so on. This was the top reason for
a one day optimization performed in this thesis. Determining a driving
pattern for a longer period of time is the most important work that
needs to be performed for finding the lifetime benefits of implementing
V2G.
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• Battery degradation affecting the scenarios: Battery degradation
cost is the major reason for the absence or a small presence of V2G in
the electricity market. Many of the previously performed research sug-
gest not implementing V2G services based on the high degradation
costs, ultimately leading to replacement of batteries much before their
actual life ends in usual conditions, when they are not used for V2G
service. Scenario 3 shows a similar trend where high battery degra-
dation cost makes the net cost to the system higher than scenario 2
where V2G services are not introduced. Only when frequency regula-
tion is introduced along with V2G in scenario 4, is when the system
is in a more profitable situation than scenario 2. A lot of research
work is being done on the improvement of battery lifetime and making
the batteries cheaper (involving battery chemistry) and as EV batter-
ies become cheaper, V2G would become much more common in the
electricity market.
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CONCLUSION

This thesis was started with the aim of studying the benefits of V2G ser-
vices for a EV fleet added to the FED system. With the increase of EV’s in
transportation sector, more opportunities are arising for V2G services. Thus,
an EV fleet of 100 cars strength was introduced to the FED system for the
purpose of studying V2G participation of the system.

The thesis started with forecasting the electricity demand of the FED system
for a day based on historical data and using HWT exponential smoothing
method. After that, a decision on the DC charging station infrastructure
was made by analyzing the available technology and simultaneously, the EV
representing the fleet was chosen based on the battery capacity giving maxi-
mum V2G participation ability. Thus, DC level 2 charging and Tesla model
3 were selected. The fleet strength was assumed to be 100 due to the lack of
business opportunity data around the Chalmers campus. The driving pat-
tern data was obtained using a deterministic model based on the data from
the research paper by Sprei et al. A SOC model was developed to deter-
mine the energy stored in an EV battery and also, to establish a relation
between the charging/discharging done and the distance driven by the EV.
All these elements were combined to form a model in the optimization tool
called General Algebraic Modelling System (GAMS). The objective func-
tion of the optimization was to minimize the net cost which comprised of
electricity cost, peak power cost, charging cost, discharging revenue, rental
revenue and frequency regulation revenue. The optimization also accounted
for the battery degradation cost of the EV batteries and the constraints com-
ing along with implementing V2G services and grid usage.

The following are the noteworthy points observed during the analysis:

• V2G services are only worthy to be implemented with ancillary services
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(frequency regulation in this thesis), V2G electricity exchange without
ancillary services would be worse off than simple G2V electricity ex-
change.

• Battery degradation is the major drawback and V2G would prove to be
infeasible until we reduce the battery degradation cost to a level much
lower than today.

• Tesla model 3 is not the best option to use in this thesis due to the
high battery cost. A cheaper Nissan Leaf ’S’ with lower battery cost is
much more suitable for V2G.

• Implementing DC level 2 charging may be not such a good idea in com-
parison to DC level 1, due to the high investment costs but presenting
a clear choice between the two is not in the scope of the thesis. A life
cycle assessment would be able to present a clear situation here.

• The fleet size of 100 proved to be too high for the results put forward by
the deterministic model although, an analysis based on proper business
opportunity research is required.
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A

Tables

A.1 Hourly Distance values

The hourly distance values for each EV is shown over here on March 1, 2017.
There are no rentals during hours 1-6.

Table A.1: Hours 7-12 on March 1, 2017
PPPPPPPPPEV

Hour 7 8 9 10 11 12

1 7.481 17.954 16.757 0 0 0
2 0 9.582 17.067 0 0 0
3 0 0 16.525 18.027 17.426 0
4 0 0 7.794 17.985 9.892 0
5 0 0 0.301 18.085 6.631 0
6 0 0 0 11.406 18.010 18.010
7 0 0 0 5.095 17.982 17.982
8 0 0 0 0 17.440 18.041
9 0 0 0 0 12.034 18.051
10 0 0 0 0 6.624 18.066
11 0 0 0 0 1.189 15.463
12 0 0 0 0 0 14.350
13 0 0 0 0 0 9.285
14 0 0 0 0 0 4.196
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Table A.2: Hours 13-18
PPPPPPPPPEV

Hour 13 14 15 16 17 18

6 12.006 0 0 0 0 0
7 14.685 0 0 0 0 0
8 1.203 0 0 0 0 0
9 10.830 0 0 0 0 0
10 14.152 0 0 0 0 0
12 7.773 0 0 0 0 0
13 17.971 4.792 0 0 0 0
14 13.787 0 0 0 0 0
15 17.066 17.964 17.964 0.898 0 0
16 11.995 3.898 0 0 0 0
17 6.906 10.810 0 0 0 0
18 1.509 12.977 0 0 0 0
19 0 14.194 3.624 0 0 0
20 0 8.397 17.993 3.599 0 0
21 0 2.389 17.921 2.389 0 0
22 0 0 14.104 18.005 18.005 8.403
23 0 0 7.192 17.980 4.495 0
24 0 0 0 17.714 0 0
25 0 0 0 9.322 18.043 18.043
26 0 0 0 0 17.704 18.004
27 0 0 0 0 6.573 17.925
28 0 0 0 0 0 10.109

Table A.3: Hours 19-23
PPPPPPPPPEV

Hour 19 20 21 22 23

25 12.028 0 0 0 0
26 18.004 8.102 0 0 0
27 5.676 0 0 0 0
28 0.892 0 0 0 0
29 7.236 12.361 0 0 0
30 0 0 0.299 17.943 10.168
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A.2 Rental Details

The Rental start and end times along with the rental duration are shown
over here.

Table A.4: Rental Details

Car
Number

Start of Rental
(minutes)

Rental Duration
(minutes)

End of Rental
(minutes)

1 395 141 536
2 448 89 537
3 485 173 658
4 514 119 633
5 539 83 622
6 562 198 760
7 583 186 769
8 602 122 724
9 620 136 756
10 638 129 767
11 656 56 712
12 672 74 746
13 689 107 796
14 706 60 766
15 723 180 903
16 740 53 793
17 757 59 816
18 775 48 823
19 793 59 852
20 812 100 912
21 832 76 908
22 853 195 1048
23 876 99 975
24 901 51 952
25 929 191 1120
26 961 206 1167
27 998 101 1099
28 1046 37 1083
29 1116 65 1181
30 1259 95 1354
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A.3 Hourly Electricity cost from Nord Pool

The hourly Electricity cost are obtained from Nord Pool [34] website.

Table A.5: Hourly Electricity cost on March 1, 2017

Hour Electricity cost (in SEK per MWh)
1 264.10
2 260.28
3 252.43
4 244.20
5 274.15
6 286.88
7 295.59
8 306.59
9 313.86
10 313.10
11 310.04
12 308.12
13 298.74
14 294.15
15 295.01
16 301.42
17 306.50
18 310.80
19 328.70
20 310.04
21 307.45
22 303.15
23 298.17
24 284.20
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A.4 Regulation Up and Down - Volumes and
Prices

The Regulation Up/Down volumes and prices are obtained from the Nord
Pool website on March 1, 2017 [37]. The regulation Up/Down volumes are
the Automatic Activated reserve values [39] i.e. the primary frequency
control values.

Table A.6: Regulation Up and Down - Volumes and Prices on March 1, 2017

Hour
Regulation Up
Price (in SEK
per MWh)

Regulation
Up (in
MWh)

Regulation
Down Price (in
SEK per MWh)

Regulation
Down (in
MWh)

1 265.35 5.7 264.10 0
2 261.62 0 260.28 -1.3
3 252.43 0 237.41 -2.4
4 244.20 3 237.41 0
5 274.15 0 248.22 -10.7
6 286.88 0 248.22 -1.4
7 295.59 2.4 258.94 0
8 306.59 0 269.75 -0.5
9 313.86 2.4 270.04 0
10 313.10 2.4 270.04 0
11 310.04 0.5 270.04 0
12 308.12 0.1 275.11 0
13 329.08 5.9 275.11 0
14 329.08 4.2 294.15 0
15 329.08 0 295.01 -1.3
16 329.08 0 310.42 -6.8
17 306.50 0 275.11 -6.5
18 310.80 1.5 275.11 0
19 328.70 3 275.11 0
20 332.04 1.4 310.04 0
21 339.89 0 307.45 -3.7
22 339.89 0 303.15 -4.5
23 339.89 0 298.17 -5.9
24 322.72 0 284.20 -12.2
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