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Göteborg, Sweden 2017





MASTER’S THESIS IN APPLIED MECHANICS

Heavy Vehicle Braking using Friction Estimation for Controller Optimization

BERNHARD WESTERHOF
DIMITRIOS KALAKOS

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems, Vehicle Dynamics group

CHALMERS UNIVERSITY OF TECHNOLOGY
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Abstract

In this thesis project, brake performance of heavy vehicles is improved by the development of new wheel-based
functions for a longitudinal slip control braking system using novel Fast Acting Braking Valves (FABVs). To
achieve this goal, Volvo Trucks’ vehicle dynamics model has been extended to incorporate the FABV system.
After validating the updated model with experimental data, a slip-slope based recursive least squares friction
estimation algorithm has been implemented. Using information about the tire-road friction coefficient, the
sliding mode slip controller has been made adaptive to different road surfaces by implementing a friction-
dependent reference slip signal and switching gain for the sliding mode controller. This switching gain is further
optimized by means of a novel on-line optimization algorithm. Simulations show that the on-line friction
estimation converges close to the reference friction level within one second for hard braking. Furthermore,
using this information for the optimized controller has resulted in reduction of braking distance on most road
surfaces of up to 20 percent, as well as in most cases a reduction in air usage.

Keywords: Heavy Vehicles, Emergency Braking, Friction Estimation, Controller Optimization, Vehicle Valida-
tion, Slip Control Braking, Vehicle Testing
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Nomenclature

List of Symbols

Symbol Unit Description

A [−] Slip slope proportionality constant
Av [m3] Cross-sectional area of the valve orifice
C [−] Slip slope bias constant
C0 [N ] Longitudinal tire stiffness at zero slip
Cf [−] Valve discharge coefficient
Cs [N ] Slip stiffness
Fx [N ] Longitudinal force
Fz [N ] Normal force or load
Jw [kgm2] Wheel moment of inertia
K [−] Slip slope
KBR [m3] Brake gain
Lx [−] Fraction of the contact patch which is not sliding
Pc [Pa] Brake chamber pressure
Pd [Pa] Downstream pressure
Pdem [Pa] Pressure demand
PSMC [Pa] Sliding mode controller pressure demand
Psup [Pa] Suply pressure
Pu [Pa] Upstream pressure
R [Jkg−1K−1] Specific gas constant of air
RMS [−] Mark-space ratio
Rr [m] Wheel rolling radius
Sv [−] Valve state
T [Nm] Torque
Tb [Nm] Braking torque
Tc [K] Temperature of the brake chamber
Vc [m3] Volume of the brake chamber
Vf [−] Tyre model shaping factor
ax [m/s2] Longitudinal acceleration
cpl [N/m2] Longitudinal bristle stiffness per unit length
dm [m/s2] Mean fully developed deceleration
kpress [Pa−1] Pressure controller proportional gain
ks [Pa] Sliding mode controller switching gain
m [kg] Vehicle mass
ṁv [kg/s] Mass flow rate through the valve plant
ms [kg] Sprung vehicle mass of the quarter car
mu [kg] Unsprung vehicle mass of the quarter car
pcr [−] Critical pressure ratio
r [m] Wheel radius
rb [m] Wheel radius through which the braking force acts
sc [m] Corrected braking distance
ss [−] Sliding mode controller switching surface
sx [−] Longitudinal wheel slip during acceleration
t [s] Time
u [m] Displacement
ur [m/s] Relative moving velocity
vx [m/s] Longitudinal vehicle velocity
z [m] Average deflection of the asperities
γ [−] Ratio of specific heats
δd [−] Hysteresis shape parameter
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δs [−] Sliding mode controller switching surface boundary layer thickness
λ [−] Longitudinal wheel slip, Forgetting factor
λref [−] Reference longitudinal wheel slip
µ [−] Friction coefficient
µ0 [−] Coefficient of static friction
µf [−] Coefficient of sliding friction
ρ N Normalized force
σ0 [N/m] Initial stiffness of the contact patch at velocity reversal
σ1 [Nm/s] Damping coefficient
σ2 [Nm/s] Coefficient for viscous friction
ω [rad/s] Wheel rotational velocity
Φs [Pa] Sliding mode controller proportional gain

List of Abbreviations

ABS Anti-Lock Braking System
CAN Controller Area Network
CoG Center of Gravity
EBS Electronic Brake System
ECU Electronic Control Unit
EWB Electronic Wedge Brake
FABV Fast Actuating Braking Valve
HGV Heavy Goods Vehicle
HV Heavy Vehicle
HiL Hardware in the Loop
LH Left Hand side
MFDD Mean Fully Developed Deceleration
PWM Pulse Width Modulation
RH Right Hand side
RLS Recursive Least Squares
SMC Sliding Mode Controller
UKF Unscented Kalman Filter
VTM Volvo Transportation Models
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1 Introduction

1.1 Project Background

Heavy vehicles (such as trucks and buses) operate an electronically controlled, pneumatically actuated braking
system. This type of system is commonly known as an electronic brake system (EBS). Recent work by Cambridge
University has resulted in the development of a novel fast-acting EBS that enables stopping distances to be
reduced by up to 17% in low friction conditions. Vehicle demonstrations of the prototype Fast-Acting Brake
Valve (FABV) system were shown on the BBC [74]. The novel brake valve installation and the test vehicle
(featured in the BBC footage) are shown in the following two figures.

Figure 1.1: Fast-acting brake valve (FABV) modulators installed on a Volvo FH12 tractor unit for vehicle
testing

Figure 1.2: Test vehicle (fitted with FABVs) carrying out brake-in-turn test on wet basalt surface.

Following on from this work, a next generation version of the FABV system has now been developed. Winter
testing of this new system in extreme braking manoeuvres was carried out in the winter of 2016/2017.

1.2 Motivations

A slip controller has been developed utilizing the control bandwidth of the FABVS that is able to accurately
track longitudinal wheel slip demands during extreme braking manoeuvres which improves greatly on braking
performance of conventional heavy vehicle brakes. The local Electronic Control Units (ECUs), included with
the new FABV design, have additional computing capacity that can be used to carry out other wheel-based
braking functions. These are expected to include: tyre-road friction coefficient estimation, brake torque control,
brake gain estimation and brake capability estimation. It is hoped that some of these functionalities can be
designed and tuned in simulation before being implemented on the available test vehicles. In order to carry out
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the above model based development, an accurate vehicle model including tyre and brake actuator dynamics
need to be developed and validated against test data gathered during winter testing.

1.3 Envisioned Solution

To start, the abovementioned slip controller is to be implemented in Volvo Truck’s existing vehicle models
using MATLAB and Simulink. The test data gathered using the truck with the FABV during the 2016/2017
winter tests will be used to evaluate the truck model with the slip controller. Final validation will be done
using straight line braking and brake-in-turn braking maneuvers. The validated vehicle model will be used
to design novel wheel control systems to improve the active safety of the vehicle. More specifically, a friction
estimation algorithm will be developed. With information about tire-road friction, both the slip controller and
complete vehicle control algorithms can be further improved.

1.4 Objectives

The project objectives are:

• Incorporate the FABV brake actuator and its slip controller in the existing Volvo Truck models and
validate this against test data of both straight-line braking and brake in-turn maneuvers

• Further development of wheel based control algorithms (and required estimation routines) in MATLAB
and Simulink to improve the braking performance of heavy vehicles, potentially incorporating other
vehicle actuators (e.g. steering) for driving scenarios with varying tyre-road friction.

• Design and/or develop friction estimation algorithms for wheel based application.

1.5 Deliverables

The project deliverables include:

• A validated MATLAB Simulink model of a heavy vehicle applicable for both straight-line braking and
brake-in-turn maneuvers.

• Local brake control algorithms (implemented in Simulink) to improve the braking performance of heavy
vehicle in extreme conditions, supplementing the existing slip control routines developed by Cambridge
University.

• A friction estimation algorithm applicable for wheel based brake performance optimization.

1.6 Limitations

The truck used in this thesis project is the Volvo 8x4 FMX Tridem with a tag axle. The development of the
wheel-based functions will be limited to this truck only, but the slip control architecture should be compatible
with different truck configurations. For the validation, only straight-line braking and brake-in-turn maneuvers
will be evaluated. More experiments could be devised in order to validate the truck behavior even further,
especially for the lateral dynamics. To control the wheel slip, the sliding mode controller will be used and
developed further, but no other control methods for will be investigated. The friction estimation will be limited
to longitudinal friction estimation.

1.7 Approach

To achieve the objectives and obtain the deliverables, the following approach is followed. At first, extensive
knowledge about all facets of the project has to be obtained. That includes, but is not limited to, braking
physics and braking on heavy goods vehicles, tire modeling, friction estimation, optimization and vehicle model
validation. An extensive literature review on these subjects is presented in chapter 2.
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The next step is the incorporation of the FABV slip controller into the Volvo Trucks models. In chap-
ter 3, it is described in detail what the models consist of and how integration of both models has been performed.
Furthermore, the results of winter test data are compared to that of the new vehicle model with the incorporated
FABV slip controller serving the purpose of model validation.

With a validated vehicle model, utilizing the FABV slip controller, vehicle wide function development can
be commenced. Chapter 4 shows how an on-line friction estimation algorithm is developed and how the slip
controller is optimized in order to improve vehicle safety and performance.

As a final contribution to this report, appendix E describes how the friction estimation algorithm with
the adaptive reference slip was adapted for use on the real truck. Also, the performance of the friction
estimation algorithm is shown.
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2 Literature Review and Background

Commercial vehicles transport goods and passengers all over the world and they are essential to our way of
living. In 2014, it has been estimated that approximately 330 milion commercial vehicles had been in use
worldwide [61]. Usage of trucks is also still increasing, according to the Bureau of Transportation Statistics
(U.S.). More specifically, a total of 13,955 tonnes of goods has been transported in 2013 in the U.S., which is an
increase of 10 percent with respect to 2007, and it contributes to roughly 70 percent of all transported goods
by trucks, rail, water and other means of transportation [60]. In 2014, large trucks accounted for 8 percent of
the vehicles being involved in fatal crashes in the U.S., while they only accounted for 2.7 percent of the total
number of vehicles [59, 61].

It is suggested that the difference in fatal crashes is caused by the difference in size between large trucks and
passenger vehicles, putting passenger vehicle occupants at higher risk, when involved in a crash with a large
truck [37]. The fact that heavy vehicles are overrepresented in crashes might be explained by their poorer
braking performance, compared to passenger vehicles, although it is difficult to prove direct causality [28].
The usage of Anti-lock Braking Systems (ABS), Electronic Braking Systems (EBS) and disc brakes improved
significantly the braking behaviour of heavy vehicles. However, the braking distances of heavy vehicles are still
higher than the corresponding ones of the passenger vehicles [18], [25]. This problem can be addressed by using
faster braking actuators than the ones used in today’s heavy vehicle configurations. Using these fast actuators
it is possible to confine the slip of the wheels withing the vicinity of the optimal point, and therefore, better
results can be achieved in terms of braking performance, whether the heavy vehicle is performing straight-line
braking or brake-in-turn maneuvers [51]. Furthermore, improved braking performance with fast actuating
braking valves (FABV)s leads not only to the increased active safety of heavy vehicles, but also to their reduced
air consumption which in turn could lead to reduced tank sizes and easier packaging on the vehicle. Hence, it
is important that research will still be going on this particular domain, in order for the development of safer
heavy vehicles to be sustainable.

2.1 Physics of Braking

By applying brakes, a torque is applied at the wheel, where the tire creates a friction force with the road. At
the contact patch of the tire with the road, a relative speed difference exists, known as slip. The slip λ for
braking in longitudinal direction is defined as the ratio of the difference between the longitudinal vehicle speed
vx and the local tire speed ωr at the contact patch, calculated using the rotational velocity ω and the radius of
the tire r in longitudinal direction

λ =
vx − ωr
vx

. (2.1)

Figure 2.1 shows a representation of the different slip-friction curves for different road surfaces [40].

Figure 2.1: Slip-friction curves for different road surfaces for passenger vehicles [40].
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According to figure 2.1, the utilized friction coefficient µ is given by

µutil =
Fx
Fz
, (2.2)

where Fx is the longitudinal force and Fz is the normal force. mu which differs for different road surfaces,
but more importantly, it differs for different values of slip. For example, the maximum friction coefficient is
obtained for slip at an icy road of λ = 0.05 and on a dry road of λ = 0.15. For optimal braking performance, it
can thus be concluded that the brakes should be actuated such that the wheel slip is as close to its optimum
value, as possible. To increase the braking performance of vehicles, Anti-lock Braking Systems (ABS) have been
developed over the years. One of the first mentions of this kind of system dates back to 1908, where J.E. Francis
introduced a ‘Slip Prevention Regulator for Rail Vehicles’, but the first widely used mechanical ABS came about
in the early 1950’s [44]. What ABS tries to achieve is to avoid locking the wheels during hard braking maneuvers.

During the braking process, a truck can be modeled as a point mass, following Newton’s second law of motion∑
Fx = max, (2.3)

where Fx are all the forces acting on the vehicle in longitudinal direction, m is the mass of the vehicle and ax
is the acceleration or deceleration of the vehicle. The forces, acting on the vehicle, can be created by braking or
accelerating, where the torque on the tire gets transferred to the road through the contact patch. The normal
force on each wheel and the friction of each wheel determine the maximum amount of torque that can be
transferred. The dynamics of one wheel can be depicted by

Jwω̇ − rbFx + T = 0, (2.4)

where Jw is the inertia of the wheel, ω̇ is the rotational acceleration of the wheel, rb is the radius of the wheel,
and T is the torque applied on the wheel. Note that other resistances are neglected, but add to the braking
force.

2.2 Brake System Configurations for Heavy Vehicles

Heave Vehicle (HV) braking systems differ significantly from those used on passenger cars and other light
vehicles. One important difference between these systems is the working fluid used to provide braking force;
HVs typically use compressed air, whereas light vehicles use hydraulic fluid [51].

There are several reasons explaining why the air is preferred as working fluid in heavy vehicle configura-
tions. More specifically, considerably high quantities of hydraulic fluid would be required during braking, as a
result of the high number of axles in HVs. Another important reason is that a system, using air as working fluid,
presents some fault-tolerant behavior since, in case of a possible leakage, it will still be able to respond to the
system’s requirements with a slightly degraded performance, before its complete failure. The aforementioned
reason increases significantly the active safety of HVs. In addition, another important reason is that air can be
used to operate other auxiliary systems of HVs, like the suspension, but also the trailer which is easily coupled
with a pneumatic connection. Furthermore, air is environmentally friendly, since it has unlimited availability
and its usage does not cause any kind of environmental pollution [32], [58]. The only drawback of using air,
instead of hydraulic fluid, when it comes to the braking systems of HVs, is that the response time of pneumatic
systems is significantly higher than that of a hydraulic system.

When it comes to the operation of braking systems on HVs, air is compressed and it remains stored in
a tank of the main tractor. When the driver uses the brake pedal, and more specifically, the treadle valve which
is directly connected with the brake pedal, air is distributed from the tank to the brake chambers in order for
the braking process to be initiated [51]. The simple braking system configuration of a HV can be seen in figure
2.2.
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Figure 2.2: Schematic of a basic single-circuit air brake system of an HGV [58]

The brake chambers are equipped with actuators that convert the air pressure, coming from the treadle valve
to braking torque, applied on the wheels. More specifically, the high-pressure air, coming from the tank via the
treadle valve, pushes a piston and a mechanical advantage is created as a result of the piston’s cross sectional
area. A bigger mechanical advantage is also created afterwards, as a result of the push rod’s motion that is
caused by the piston’s motion. Then, a lever, which is attached to this specific push rod, presses the friction
material against the brake disc or drum. There are two areas inside the brake chamber which are separated
by a flexible diaphragm. One area has a very high pressure and the other one has low pressure. When the
pressure inside the chamber is low, a return spring resets the brake chamber. Furthermore, brake chambers
of HVs are also installed with spring brakes, which apply a braking force, when there is no pressure in the
system (for example when the vehicle is parked), or when the pressure in the system is low [51]. A service brake
and spring brake assembly of an HV is illustrated in Figure 2.3 with the parking brake and service brake released.
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Figure 2.3: Schematic of a spring brake chamber (Seddon Atkinson) [58]

Actuators that are mainly used on HVs are either disc brakes or ’S-cam’ drum brakes [32]. There are several
advantages by using disc brakes on HVs. For example, disc brakes are more resistant to brake fade and have
better cooling capabilities, as a result of their superior structural characteristics. They are also more convenient
when it comes to their maintenance and their brake torque is proportional to the pedal force. The major
disadvantage of disc brakes is that they require large application force, which can be quite high, especially on
HVs. On the other hand, drum brakes require low application force, since they can provide large brake factors,
due to their self-amplification. However, drum brakes present hysteresis problems [19]. Hence, it is obvious
that there are substantial reasons, why disc brakes are mainly preferred over drum brakes, when it comes
to the choice of the right actuators on HVs. Figure 2.4 depicts the two different kinds of actuators mainly
implemented on HVs.

Figure 2.4: Schematics of (a) air-operated disc brake [58] and (b) S-cam drum brake [32]

As it has already been said, the main disadvantage of the pneumatic braking system is the longer response time
compared to the one of the hydraulic braking system. More specifically, the delays between the initial pressure
demand from the driver, and the change of the pressure at the brake chamber of the trailer, in the case of
an articulated vehicle, can be up to 300ms [64]. In order to reduce these delays, the air signal, which is sent
by the brake pedal to activate the brakes, can be replaced by an electronic signal, which utilizes electronics
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for the control side of the vehicle’s braking system. The name of this kind of braking system is Electronically
controlled Braking System (EBS) and the schematic is shown if figure 2.5. The implementation of EBS on
heavy vehicles is beneficial, since it provides more predictable braking control, and therefore it contributes to
the reduction of the stopping distances. Moreover, it improves vehicle stability and driver control, as well as
it reduces the number of brake system components and airlines [19]. However, since EBS is an electronically
controlled system, it is possible that it will not be able to operate in case of an electrical failure. For that
reason, it is common practice that an EBS should be installed along with a pneumatically controlled back-up
system [32].

Figure 2.5: Schematic of an electronic braking system circuit of an HGV

2.2.1 Advanced Braking Control Systems

Both passenger and heavy vehicles are equipped with control systems for controlling the motion of the vehicle,
especially during extreme braking maneuvers. More specifically, anti-lock braking systems (ABS) have been
developed to control the relative slip velocity of the wheels, and to prevent their lock-up (i.e. slip is 100
percent), during emergency braking situations. There are many reasons why it is necessary to avoid the wheels’
lock-up during braking. When the wheels of a vehicle are locked-up during braking, they are less able to
generate longitudinal and lateral forces. Therefore, the vehicle presents high levels of driving instability, which
can be further translated to increased stopping distances and loss of its steer-ability. Especially in heavy and
articulated vehicles, the effects of wheel lock-up could be more devastating, since locking-up the wheels may
also lead to jackknifing and rollover incidents [33].

The main function of ABS is to regulate brake pressure by holding, releasing or restoring brake pressure, when
the wheels are about to lock. Furthermore, it is a prerequisite that the ABS allows the brakes to operate in their
normal non-wheel-lock-up mode again, as soon as the possibility of locking up the wheels has been diminished
[65], [58]. ABS works in a similar way for heavy vehicles as it does in passenger vehicles. Nevertheless, there is
one important difference; the working fluid is air, instead of some kind of hydraulic fluid. This difference is the
reason why ABS in heavy vehicles shows pressure cycles in frequencies of 1-2Hz, while in passenger cars ABS
shows pressure cycles in frequencies of 6-8Hz [32], [58] [50] [21].

According to the control logic behind ABS, two main categories of ABS can be distinguished: ”Individual
Control” and ”Axle Control”. Individual control means that the stopping distance is determined by an
individual control system of each wheel. The main limitation, using individual control on each wheel, is that it is
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difficult to determine the reference velocity of each wheel. Furthermore, individual control requires more control
channels to be able to control each wheel independently. In case of split-mu braking, the vehicle’s motion is
influenced by large values of yaw moments caused by differences in pressure per wheel, especially towards areas
with higher friction. In heavy vehicles, such event could be translated to jackknifing [19], [23], [41]. On the
other hand, axle control means that the control system controls each axle individually. Therefore, using wheel
speed sensors at each wheel, the reference velocity signal is transferred to the correspondent wheel speed signal
of each axle, but this signal is not transferred to the other axles of the vehicle. The axle control is separated
into two main subcategories, depending on the velocity, which is fed to each axle’s pressure regulator. The
names of these two subcategories are ”Select-Low Axle Control” and ”Select-High Axle Control”. Select-Low
axle control means that the lowest wheel’s speed of an axle is being fed to the axle’s pressure regulator, and
determines the brake pressure, coming out from the regulator of this specific axle. Using this kind of strategy,
the optimal braking distance is sacrificed in order for the steer-ability and overall stability of the vehicle to
be enhanced. Select-High axle control means that the highest wheel’s speed of an axle is being fed up to the
axle’s pressure regulator and determines the brake pressure, coming out of the regulator of this axle. Using this
strategy, the overall stability of the vehicle can still be reassured, and the braking distance can be decreased
significantly. However, the steer-ability of the vehicle is decreased [19]. Since there are these differences when
it comes to the control logics behind ABS operation, most common vehicles use a combination of individual
control on each wheel, along with select-low control on each axle. In that way, not only the brake torques are
controlled separately, but also the differences, when it comes to the braking forces between the left and right
wheels of the vehicle, are restrained to a specific level [8], [32].

2.2.2 Alternative Advanced Braking Control Systems

As it has already been mentioned in the previous subsection, the purpose of ABS is to control the relative
slip velocity of the wheels, during braking by regulating braking pressure in order to prevent wheels’ lock-up.
However, there are substantial reasons to control the slip of the wheels during braking around its optimal point.
This can be explained thoroughly by taking a look at Figure 2.6, where the range of operation of an ABS can
be seen.

Figure 2.6: Longitudinal and lateral tyre curve for a wet road - ABS [42]

In Figure 2.6, the range of operation of ABS can be seen during braking for different slip values between two
conditions, i.e. free rolling of the wheel (λ = 0) and lock-up of the wheel (λ = 1). Some field tests have shown
that the longitudinal slip during braking, using an ABS algorithm, varies between 0.05 and 1 [42]. The most
interesting feature of Figure 2.6 is the range of either longitudinal (Fx), or lateral (Fy) tire forces. Both
longitudinal and lateral tire forces appear to have a large range when an ABS control algorithm is used for
braking. Furthermore, the frequent locking and unlocking of the wheels, during the operation of the ABS can
cause increased braking distances, as well as large consumption of compressed air. The high demands, when
it comes to air consumption, are caused by the operation of the ABS, since it tries to release brake pressure,
when the wheel is about to lock-up, and reapplies brake pressure when the wheel’s lock-up has been avoided
[42]. Nowadays, the waste of air and increased braking distance make ABS not such an efficient control system,

9



when it comes to braking.

Braking using wheel slip control offers some great advantages, in comparison with the method using ABS
control, since the slip can be controlled around the optimum braking point. Some of the advantages are depicted
in the Figure 2.7, where the longitudinal and lateral tire curves for a wet road, during braking using wheel slip
control are illustrated.

Figure 2.7: Longitudinal and lateral tyre curve for a wet road - Wheel Slip Control [42]

As it can be seen in Figure 2.7, using a wheel slip control method during braking offers great advantages in
terms of the amounts of longitudinal and lateral tire forces. More specifically, the range of both tire forces
is significantly lower than the correspondent one using the ABS control method, during braking. Besides,
using wheel slip control during braking provides decreased braking distances, as well as lower levels of air
consumption [42]. The controller, used for wheel slip control braking, should be able to track the optimum slip
point. Hence, the longitudinal and lateral tire force characteristics should be either known to the controller, or
at least estimated (for instance using a force observer). Limited slip controllers often use a default optimum
slip point around λ = 0.2 for computational reasons [31], [38]. However, the ideal approach would be that the
controller will be able to calculate the optimum slip point, independently on the kind of surfaces, by fitting
adhesion-slip curves in real-time [52], [51].

The main limitation of using a wheel slip control system to track the slip around its optimal point is the delay
of the brake system, next to the difficulty of accurately calculating the reference speed when the wheels are in
deep slip. This delay can be defined as the time between the driver’s push of the brake pedal (production of
the brake signal), and the actual change in brake torque at the wheel, due to this signal [34]. More specifically,
in order for the controller to be able to track the optimum slip point, the brake system delay should be around
5ms. The time delays that occur during braking on a HV are caused for many reasons, such as the long pipe
lengths of the braking system, the compressibility of air and the slow pneumatic control valves [51]. One way to
reduce the brake system delay is to replace the pneumatic actuators that are used in the system. Common ABS
control systems utilizing pneumatic valves with an orifice size of 8mm present delays between 20 and 40ms [32],
[34]. The aforementioned amounts of braking delay are much bigger than the ideal 5ms brake system delay,
needed in order for the controller to track the slip around its optimal point. However, after carrying out some
Hardware-in-the-loop (HiL) braking tests, Miller showed that there is a potential of achieving significant lower
brake system delay, comparable to the ideal one (5ms). In order for this improvement to be achieved, fast-acting
braking modulators with 3ms switch time and 8mm orifice can be used, along with the implementation of the
wheel slip control system [51], [53], [32].
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2.2.3 Advanced Brake Actuators on Heavy Vehicles

The need for developing fast-acting actuators has encouraged companies to replace the common pneumatic and
hydraulic actuators with electrical ones [32]. More specifically, Siemens has developed electric brake actuator
prototypes called wedge brakes. The main difference between the wedge brake and the conventional brake disc
system is that electric motors are responsible for the pad’s turning and pushing onto the brake disc. This
behavior occurs due to the fact that the electric motors are used for pressing the connected-to-a-wedge brake
pad to the disc and the rod. Figure 2.8 illustrates the so-called electric wedge brake, proposed by Siemens [26],
[35].

Figure 2.8: Electronic Wedge Brake actuator (Siemens) [35]

The reason for using a wedge is that power is multiplied with minimal energy expenditure. The concept of
self-energizing brakes offers one tenth of the energy expenditure of the common hydraulic brakes, according
to Siemens. Hence, the braking force will be always increasing, as long as the vehicle is driven faster. The
Electronic Wedge Brake (EWB) can be characterized as a brake-by-wire system, since there is no mechanical
connection between the brake pedal and the brakes. More specifically, there are wheel-speed sensors, which can
measure wheel-speed one hundred times per second, and therefore the brake forces and the wedge position can
be determined with paramount accuracy [26], [35]. It should also be mentioned that in a brake-by-wire system
a fault-tolerant approach is necessary in order to guarantee the operation of the braking system, in case of
possible failures. Therefore, EWB is connected to not only one, but two power supplies (main and backup) to
reassure the vehicle’s safety [26], [35].

Apart from Siemens, Haldex Brake Products Ltd. proposed their own electromechanical brake actuator which
has been implemented on a Heavy Goods Vehicle (HGV). Using their own solution, when it comes to the braking
actuators, and after carrying out straight-line braking tests using a tractor-semitrailer HGV, they achieved
reductions of up to 24% in braking distance on low friction conditions. However, it should be mentioned that
the aforementioned electric braking actuators were using the slip control braking approach, instead of the
common ABS control strategies, in order to achieve these great results in terms of braking performance [32].

Another approach similar to the electric brake actuator designs, in terms of braking performance, has been
proposed and developed by the Cambridge Vehicle Dynamics Consortium (CVDC) [51], [54]. More specifically,
using bi-stable high-speed pneumatic valves in a brake actuator results in a braking system, which is an order
of magnitude faster than the ABS control system with its conventional pneumatic valves [32]. Using these high
speed modulators, the brake system delay could be reduced to up to 6-7 ms [34]. Schematics of these high
speed modulators can be seen in Figure 2.9.
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Figure 2.9: CVDC bi-stable valve, (a) Cross-section of the valve, (b) Picture of the prototype, (c) Cross-section
of the valve in its enclosure [32]

As it can be seen in Figure 2.9, the valve’s cantilevered flexure is located between two permanent magnets.
Switching of the valve between two states (inlet/exhaust) is triggered by electrical pulses, sent to the wire coil.
The valve switches in almost 3ms as a result of the motion of the low mass of the flexure, as well as the flexure’s
high stiffness. The diameter of the valve’s orifice is 8mm and it can therefore directly be used in-line [32].

2.3 Tire modeling

As a result of the development of high performance braking systems, like electronically controlled braking
systems and wheel-slip control braking systems, new ways of estimating friction forces, transferred by the
road via tires have been proposed. More specifically, the research around tire-road friction modeling has
been started almost 40 years ago. Since then, it has become more and more popular to determine the cor-
rect vehicle dynamics characteristics. To reach this goal an adequate tire friction model should be established [46].

The connection between slip ratios and friction forces is determined by the tire-road friction modeling. However,
this relationship is very vague, in terms of vehicle dynamics, since it is influenced by many factors. For example,
these factors could be tire pressure, normal loads, road surface conditions and so on. These factors can have
multiple causes like the condition of the tires (wear), the deformation of the tires and the adhesion limits of
each road surface [55], [27], [24], [75]. Since some of these factors vary stochastically, the precise connection
between slip ratios and friction forces becomes very difficult as well.

A proper tire model can help to incorporate nonlinear tire characteristics, like hysteresis, which can not be
described easily, using mathematical formulas. Therefore, it becomes necessary that data from measurements are
recorded and converted to tire properties. Tire models are also of paramount importance in high performance
braking control systems, since tire properties can be derived as a result of the tire characteristics parameters,
coming from the tire models [46].

From a theoretical point of view, tire models can be separated into two main categories: empirical tire models
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and analytical tire models. One important advantage of the empirical tire models is that they are able to
capture the steady-state characteristics of tire-road friction [5], [7], [62]. On the other hand, empirical tire
models have difficulties in capturing dynamic characteristics of the tires, like hysteresis, as well as it is not
possible to incorporate the influence of specific factors, like tire pressure, or the wetness of the road. For that
reason, analytical tire models have been developed to capture the dynamic characteristics of the tires. In order
for the tire-road friction properties to be described, analytical tire models use differential equations [46].

Next, several tire models are described. As the work in this thesis focuses mainly on longitudinal dynamics and
braking, the main focus will be on longitudinal tire dynamics.

2.3.1 Pacejka Tire Model (Magic Formula)

In 1980, Pacejka developed the empirical Magic Formula in collaboration with Volvo [5], [7], [62]. The Magic
Formula is given by

µ = C1 sin
(
C2 tan−1(C3sx − C4(C3sx − tan−1(C3sx)))

)
, (2.5)

where Ci, i = 1, ..., 4, are determined by fitting experimental data and the longitudinal slip sx, during acceleration,
is defined as

sx =
rω − vx
vx

(2.6)

The Pacejka tire model has been altered a lot in the last three decades, and it is the most popular tire model
today, since it is used for many tire-road friction simulations and for advanced control system design [7], [62].
Nevertheless, as a result of the high number of parameters describing this tire model, it is difficult for this tire
model to be analyzed.

2.3.2 Brush Tire Model

In this tire model, the tread rubber in the contact area is modeled as flexible bristles. Using this tire model, the
force is generated by the deflection of the aforementioned bristles, due to slip. The tire will start sliding, when
the force between the road and the bristle tip becomes too large [19]. In some literature, the brush tire model is
regarded as a dynamic tire model, since it can be used to represent dynamic tire-road friction phenomena [46].

During straight-line acceleration or braking, the longitudinal force increases, as long as the wheel’s angular
velocity is not the same as the wheel’s angular velocity of free rolling. Using the brush tire model under
longitudinal slip during traction, the bristles in touch with the road at the contact area front edge (a,0), will be
displaced more and more, since the velocity difference forces them to move through the contact area (figure:
2.10) [19], [63].
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Figure 2.10: Bristle deformations during traction [19]

According to Figure 2.10, if the velocity at the center of the wheel is vx, then after time ∆t, the coordinate for
a bristle tip at the contact area front edge (a,0) will be:

xt = α− vx∆t. (2.7)

The upper end of the bristle, which moves with velocity rω, will have the coordinate:

xu = α− rω∆t. (2.8)

The bristle longitudinal displacement u thus becomes

u = x1 − xu = rω∆t− vx∆t =
rω − vx
vx

(vx∆t) (2.9)

=
rω − vx
vx

(α− x) = sx(α− x) = −sx(x− α), (2.10)

During braking, the slip varies between 0 (free rolling) and -1 (locked wheel). Hence, it is now possible to
derive the longitudinal force:

Fx = Cssxf(λ1) (2.11)

where:

f(λ1) =

{
λ1(2− λ1), λ1 <= 1

1, λ1 > 1
(2.12)

and

λ1 =
Fzµ

2Cs|sx|
. (2.13)

The longitudinal slip stiffness is defined as:

Cs = [
∂Fx
∂sx

]s=0 = 2α2cpl, (2.14)

where 2α is the contact area length and cpl is the longitudinal bristle stiffness per unit length.
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2.3.3 Fancher Tire Model

The Fancher tire model is based on different assumptions of the brush tire model regarding the vertical pressure
distribution and sliding properties of the rubber [70]. The primary assumptions are [22]:

• The contact patch can be divided into a sliding region and an adhesion region.

• The shear force generated in the adhesion region depends upon elastic properties of the tire.

• The shear force in the sliding region depends upon the frictional properties of the tire-road interface.

The longitudinal force is given by

Fx =
(µFz)

2(1− λ)

4C0λ
+ µFz(1− Lx) (2.15)

where Fz is the tire normal force, C0 is the longitudinal tire stiffness at zero slip and Lx is the fraction of the
contact patch that is not sliding. µ is calculated by

µ = µf + (µ0 − µf )e
vx−ωRr

Vf (2.16)

where µ0 is the coefficient of static friction, µf is the coefficient of sliding friction and Vf is a shaping factor.
Lx is given by

Lx =
µFz(1− λ)

2C0λ
≤ 1 (2.17)

2.3.4 Dahl Tire Model

The analytical Dahl tire-road friction model was developed by Dahl in the 1970s, and in general terms is
a generalization of Coulomb friction. A big advantage of using this tire model is that it can provide a
smooth transition around zero velocity. The hysteresis that it is presented during the period before sliding
can be described by a first order equation of the position, which depends only on the sign of the velocity [14], [15].

The equation that Dahl proposed is given by:

dF

dt
= σ0(1− sgn(ur) ∗

F

Fs
)δdur, (2.18)

where σ0 represents the initial stiffness of the contact at velocity reversal, δd illustrates a model parameter,
determining the shape of the hysteresis, and ur depicts the relative moving velocity [46].

In general, the Dahl model is able to capture many dynamic phenomena, like hysteresis and displacement,
when the slip is zero. On the other hand, it cannot represent the relationship between the friction and the
velocity. Hence, Dahl’s proposal about dynamic modeling triggered the development of other tire models, like
the LuGre tire model and so on [46].

2.3.5 LuGre Tire Model

This analytical tire model was developed by Canudas de Wit and it took its name by the universities, where it
was developed, i.e. University of Lund and University of Grenoble. The LuGre tire model was inspired by the
Dahl tire model, however, the LuGre tire model incorporates other steady-state characteristics [16], [17]. When
a tangential force is applied, the friction force rises, since the bristles will deflect like springs (Figure: 2.11a).
In Figure 2.11b the average deflection of the asperities is represented by the variable z [46].
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Figure 2.11: Bristle model. (a) Friction interface between two surfaces is thought of as a contact between
bristles (b) Average deflection of the asperities [16]

The LuGre tire model for the tire-road friction can be formulated as:

dz

dt
= vx − σ0

|ur|
g(ur)

z (2.19)

ur = ux − rω (2.20)

Fx = (σ0z) + σ1
dz

dt
+ σ2ur (2.21)

where σ0 is the stiffness, σ1 is the damping coefficient, and σ2 is a coefficient proportional to the relative
velocity to account for viscous friction [46].

2.4 Friction Estimation

As it has already been mentioned, optimal braking can be achieved when the wheel slip is close to the maximum
friction coefficient in the slip-friction curve. To obtain this optimal value beforehand, information about the
tire-road friction coefficient need to be known. This information can be obtained by means of friction estimation.

Friction estimation has received a great deal of interest from the academic world. Gustafsson was one of the
first to successfully estimate the tire-road friction coefficient in 1997 by means of wheel slip [29]. Using the non
driven rear wheels as zero slip reference, the slip of the front wheels could be estimated. By means of a Kalman
filter and the magic formula [67], the tire-road friction coefficient was estimated. Around the same time, Ray
used a different approach for friction estimation. Using knowledge about vehicle dynamics and more importantly
about load transfer, he used a Kalman-Bucy filter and Bayesian hypothesis selection to estimate the friction
coefficient. This way, no tire force model is required and tire-modeling can be done off-line. In 1999, Canudas
de Wit proposed a dynamical tire/road friction model, together with a non-linear observer, to estimate the
tire/road characteristics and the slip ratio, using only the rotational wheel velocity and the LuGre tire model [10].

In 2003 Yi stated that using only wheel angular velocity is insufficient to accurately and rapidly estimate the
velocity and relative velocity, and proposed to use observers to estimate several states [76]. Using these states,
an adaptive emergency braking controller was designed, which was able to determine the tire/road friction
conditions under normal traction events. Muller showed in 2004 that it is possible to estimate the friction curve
using low slip levels during braking [71]. In the same year, Lee used observers for the effective wheel radius and
the tire normal force in order to compute the slip ratio from wheel speed and vehicle speed measurements.
Using a tractive force estimator and a brake gain estimator, the friction coefficient could be estimated, as
well [45]. Based on the work, done by Gustafsson [29], Wang proposed a slip-slope based friction estimation
method in 2004, utilizing a nonlinear longitudinal tire model. More specifically, the innovation of his system
in comparison with the research that it had already been done in literature, was that it was able to estimate
the friction coefficient for a variety of vehicle configurations, slip ratios and driving events (acceleration or
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braking) [73]. In 2005, Alvarez proposed an adaptive control scheme for emergency braking, based on the
LuGre tire model, using the wheel angular speed and longitudinal vehicle acceleration [4]. His results looked
very promising, and no information about the tire parameters was needed. Li showed an extensive review of
the state of the art in 2006, expressing the importance of friction estimation, focusing on both longitudinal and
lateral friction modeling [46]. In 2009, Ahn showed a dynamic and algebraic approach to friction estimation,
focusing on the gains of the observers in the dynamical approach, and a linear least squares method in the
algebraic approach [1, 2].

The models for friction estimation are becoming more and more extensive, and in 2010, Cho proposed
to estimate friction using vertical tire force estimation, shaft torque estimation, longitudinal tire-force estima-
tion, based on simplified wheel dynamics, and lateral tire-force estimation and using a random-walk Kalman
filter [13]. Using friction ellipses, in 2011, Hsiao proposed a robust tire force estimator, which was able to
estimate the longitudinal and lateral tire forces for each wheel separately [36]. In 2012, Rajamani proposed
three different observers to estimate the friction coefficients of the individual wheels, using different sensor
data. This method required knowledge of both slip ratio and tire forces in order to give an estimate about the
friction coefficient, using a recursive least-squares parameter identification formulation [66].

With the rise of electric motors, new ways of exciting the vehicle become available, and Albinsson tried
to exploit electric motor torques to estimate the friction in an electric vehicle [3]. In 2015, Long Chen
proposed the use of an Unscented Kalman Filter (UKF) and mean-square-error-weighted fusion in order to
achieve real-time estimation of tire-road friction coefficient [12]. Using load sensing bearings, Madhusudhanan
proposed new methods to estimate the friction, which do not rely on a tire model. Individual tire estima-
tion has become possible with inexpensive algorithms, provided that the wheel forces are directly known [49, 48].

The aforementioned papers stress the importance of friction estimation for vehicle dynamics and traffic
safety. Proper knowledge about the tire-road friction coefficient leads to improved vehicle handling character-
istics, and braking performance. This in turn leads to the development of safer vehicles, since vehicles will
be able to stop faster and with more precision. Resemblance in the proposed methods can be found, when it
comes to the use of different tire models, in combination with different types of observers and filters. Most
papers recognize the Pacejka tire model [6], otherwise known as the magic formula, as a model with very good
properties. The downside of the Pacejka tire model is its complexity and this makes it difficult for on-line
friction estimation. One of the tire models that has gotten a lot of attention is the LuGre tire model. The
simplicity of this model makes it easy to incorporate in different types of estimation algorithms.

In general, most of the abovementioned models make use of either Kalman filters, or observers to esti-
mate the friction coefficient and tire parameters. The reason for this is that the required physical properties
are often unknown. For example, vehicle longitudinal velocity is mostly derived from wheel angular velocity.
The angular wheel velocity needs to be filtered first to give a correct estimation about the vehicle longitudinal
velocity, and a Kalman filter provides this function. Observers are sometimes called virtual sensors, as they use
sensor data from certain physical quantities to estimate other physical quantities. For instance, the normal
loads on the wheels can be estimated from the acceleration of the vehicle, using an appropriate vehicle dynamics
model.

2.5 Optimization Techniques

Optimization plays an important role in many fields of design. In control engineering, optimization can be used
to design multi-criteria controllers, to estimate system parameters and much more [72].

The first step of optimization is defining the cost function or objective function, and/or the constraints.
The second step is the selection of the most efficient optimization algorithm. Finally, the stopping criterion has
to be established. There is a large number of optimization algorithms available, which can roughly be divided
in the following:

• Linear optimization

• Convex optimization
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• Global optimization

Examples of linear optimization algorithms are the simplex method and the interior point method. They are
used for linear optimization problems. For convex optimization problems, which are slightly more complex, the
modified simplex method, cutting plane algorithm and interior point algorithm can be used, among others,
depending on the type of constraints. When there exist multiple local minima, other kinds of optimization
algorithms should be used, such as multi-start local optimization, simulated annealing, Monte Carlo optimiza-
tion, or genetic algorithm. With these algorithms, it is not possible to guarantee finding the global minimum,
but given the correct starting parameters, they should give a good approximation [72].

Identification of the required algorithm is often not trivial and it requires some engineering experience.
A grid-search could help in finding the nature of the optimization problem, regarding complexity and the need
for a local, or global algorithm [72].

2.6 Validation

Simulation models are used to evaluate the functions developed in this thesis. The utilization of models
is favorable in many industries because of the possibility to rapidly test new functions and methods with-
out expensive real life tests. In case of vehicle dynamics, accurate vehicle models can save a lot of time and money.

The development of vehicle models is not trivial and the validation of vehicle models is often difficult. Kutluay
gives a good overview of validation methods in vehicle dynamics [43]. The most forthcoming conclusion is that
there is no such thing, as absolute validation. Furthermore, what might be sufficient for one model, could be
insufficient for another model. It is therefore needed to determine a priori what modes of operation need to be
modeled, and to what extent these modes need to mimic real experimental data.
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3 Volvo Transportation Model Integration and Valida-

tion

The Volvo Transportation Model (VTM) is a MATLAB Simulink based toolbox used throughout Group Trucks
Technology (GTT) for vehicle dynamics modeling and function development. For this thesis project, a quarter
car model, based on the work of Miller [51] is incorporated in the VTM to simulate full vehicle behavior during
braking. The quarter car model uses a slip control architecture with a Fancher tire model. This chapter covers
the quarter car model and VTM integration, as well as the validation using test results obtained during winter
testing by Volvo Trucks in 2017.

3.1 Quarter Car Model

The quarter car model used for slip control braking, and used in this report was created by Henderson, based
on the work of Kienhofer, Miller and Henderson [42, 51, 53, 32]. The quarter car model is a simplified single
wheel setup with suspension, as can be seen in Figure 3.1. The longitudinal motion of the vehicle is given by

Fx = (ms +mu)v̇x = 0, (3.1)

and the tire dynamics during braking are given by equation 2.4, where the torque T is replaced by the braking
torque TB resulting in

Jwω̇ − rbFx + TB = 0. (3.2)

To calculate the forces on the road, the simple tire model based on the brush tire model, called the Fancher tire
model, which has already has been described in subsection: 2.3.3, is used. This tire model has been validated
against HGV tire test data ([22]).

This chapter gives an overview of the systems, used in the quarter car model, and the governing equations
created by the above mentioned authors.

Figure 3.1: Quarter car model using sprung and unsprung mass, connected by spring damper systems representing
the tire and suspension dynamics [32].

The forces and torques on the quarter car model are determined using using a series of controllers, observers
and other models. In this section, these will be discussed briefly, as they play an important role, when it comes
to their integration with the VTM.
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3.1.1 Slip and Slip Error Calculation

First, slip is calculated using data from the quarter car model. The wheel speed ω is conditioned to represent
wheel speed sensor data. Using equation 2.1, wheel slip is calculated. A lookup table is used to create the
reference slip signal λref using information about the vehicle speed vx, as the optimum slip level is dependent
on vehicle speed according to the Fancher tire model. Finally the slip error λref − λ is created.

3.1.2 Force Observer

For the calculation of the required pressure demand, the contact patch force Fx is used. As it is difficult to
measure this force at the contact patch directly, a force observer is used mentioned by [51]. A discrete time
Luenberger Observer with pole placement is used to estimate the unknown variable F̂x, according to equation
3.2. The state-space equation of the tire dynamics is given by equation 3.4, and the Luenberger observer
equation is given by 3.5. Note that it is assumed that Ḟx is constant.

 ω̇Ḟx
F̈x


︸ ︷︷ ︸
ẋ

=

0 −rb/Jw 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

 ωFx
Ḟx


︸ ︷︷ ︸
x

+

−KBR/Jw
0
0


︸ ︷︷ ︸

B

Pc︸︷︷︸
u

(3.3)

y(k) =
[
1 0 0

]︸ ︷︷ ︸
C

Fxω
ω̇


︸ ︷︷ ︸
x

(3.4)

x̂(k + 1) = Ax̂(k) + L[ω(k)−Cx̂(k)] + Bu(k) (3.5)

3.1.3 Sliding Mode Controller

The ’heart’ of slip control braking is the sliding mode controller [69]. A first order sliding surface is defined by

ss = λ− λref , (3.6)

resulting in the expression for the pressure demand

PSMC =
RrrbF̂x − (1− λ)axJw

KBGRr
− ks

(
ss

|ss|+ δs

)
− Φsss, (3.7)

where Rr is the wheel rolling radius, KBG is the brake gain, which will be mentioned later on, and ks, δs and
Φs are tunable controller gains. Figure 3.2— shows a graphical representation of the sliding mode controller
with its inputs and its outputs.

Sliding Mode Controller

F̂x

λ

λref

vx

ax

PSMC

Figure 3.2: Sliding mode controller block representation

3.1.4 Pressure Controller

The required pressure PSMC from the sliding mode controller is passed to the pressure controller. The pressure
controller is a simple proportional controller, producing a pulse-width-modulation (PWM) mark-space ratio
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demand RMS for the inlet and outlet valves connected to the brake chamber given by

RMS = kpress(Pdem − Pc), (3.8)

where the RMS is converted to a PWM signal where one and zero correspond to fully opened and fully closed
valves states respectively. Pc is the pressure in the brake chamber [51]. This pressure is either measured directly,
or it is first fed through a pressure observer. The demand pressure Pdem is either the sliding mode pressure
PSMC , or the pressure demanded by the driver, depending on which pressure is minimum.

3.1.5 Valve and Brake Chamber Plant

The valve plant converts the mark-space ratio to a brake torque [51]. A delay is introduced to simulate the
switching time of the valves, with a value of 3 ms for the bi-stable brake valves, creating the valve state Sv
from RMS . The air mass flow through the orifices is represented by the first order equations

ṁv = SvCfAvC1
Pu√
Tcham

if
Pd
Pu
≤ pcr (chocked) (3.9)

ṁv = SvCfAvC2
Pu√
Tcham

(
Pd
Pu

) 1
γ

√
1−

(
Pd
Pu

) γ−1
γ

if
Pd
Pu

> pcr (non-chocked) (3.10)

where Cf is the valve discharge coefficient, Av is the valve orifice cross-sectional area, Pu is the upstream
pressure, Pd is the downstream pressure, and γ is the heat capacity ratio. C1 and C2 are defined by

C1 =

√
γ

R

(
2

γ + 1

) γ+1
γ−1

(3.11)

and

C2 =

√
2γ

R(γ − 1)
(3.12)

where R is the specific gas constant. pcr is the critical pressure ratio, defined by

pcr =

(
2

γ + 1

) γ
γ−1

≈ 0.5 (for air) (3.13)

The air mass flow is directly fed to the brake chamber, where the brake chamber pressure is described by

αinṁin − αoutṁout =
VcṖc
RTc

+
αcV̇cPc
RTc

. (3.14)

The air within the brake chamber is modeled as a polytropic gas with PV a = constant. Pc is the absolute
chamber pressure, Vc is the absolute chamber volume, Tc is the the brake chamber temperature and α is a
value between 1 and γ, depending whether the process is behaving isothermally or adiabatically.

The brake torque is calculated using a brake gain KBG given by

TB = KBGPc. (3.15)

3.2 Volvo Transporation Models

The VTM used in this thesis is based on an 8x4 (eight wheels, four driven) truck with a tag axle (axle that can
be lifted) to simulate the braking performance using the fast actuating braking valves. For the simulations in
this thesis the tag axle is lifted. Figure 3.3 shows a graphical representation of the vehicle.

21



LH RH

1 2

3 4

5 6

7 8

Front

Drive 1

Drive 2

Tag

vx

Figure 3.3: Graphical representation of the truck used in this thesis. The gray wheels show the tag axle. vx
shows the normal driving direction.

The architecture of the whole VTM can be represented by Figure 3.4.

Vehicle Plant

Controllers and Actuators

vx, ax, ωsT, δ

Figure 3.4: VTM architecture, showing the vehicle plant, controllers and actuators and inputs and outputs used
in this thesis.

3.2.1 Vehicle Plant

The VTM based vehicle plant has the following inputs: steering angles (front axle and tag axle), torques on
each wheel and road roughness. As outputs, various vehicle dynamics data are available of which longitudinal
acceleration and velocity (ax, vx), as well as tire rotational velocity (ωs) are the most interesting signals for
longitudinal braking. For more demanding dynamic situations, pitch, yaw and roll information is available,
along with slip angles and tire forces.

The dynamics of the VTM are modeled by two masses representing the chassis (one front and one rear), and
by a Pacejka tire model including 28 parameters.

3.2.2 Controllers and Actuators

The controllers and actuators determine the behavior of the vehicle. In this thesis project, the reference speed
is created to simulate a braking driving cycle. Figure 3.5 shows the control architecture that is used to either
increase, or decrease the speed of the truck in the simulation.

switch

K1

K2

vref

−
vx

e

e ≥ 0

e < 0 Pdem

Td

Figure 3.5: Control architecture of vehicle speed. K1 and K2 are proportional gains.
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The torque demand Td is converted into a drive torque going to the vehicle plant using a first order transfer
function

T (s) =
1

0.4s+ 1
Td(s). (3.16)

The same pressure demand is sent to all wheels and is converted by a brake plant to a braking torque for each
wheel. This brake plant consists of ABS control logic using wheel slip and brake fade in the original VTM.

3.3 Integration

Integrating Miller’s combined slip controller and brake actuator model with the VTM enables function
development on vehicle wide scale. To do this, the wheel slip control architecture of the quarter car model
presented in section 3.1 is detached from the quarter car vehicle plant. The wheel slip control part then replaces
the ABS control architecture, but it uses the same pressure demand Pdem to create the braking torque Tb. This
control part will be henceforward known as the local brake controller.

3.3.1 Local Brake Controller

The local brake controller takes over the function of the ABS in the VTM. Figure 3.6 shows the block architecture
of the local brake controller.

Local Brake Controller

Pdem

Psup

vx

ax

ωs

Tb

ṁ

Figure 3.6: Local brake controller overview, to the left are the inputs, the outputs are the braking torque Tb and
the air mass flow rate ṁ.

Figure 3.7 shows a block diagram of the local brake control system. Now, inside the local brake controller, slip
is calculated similar to the way that it was calculated in the quarter car model. Using information about the
velocity, the reference slip signal is created. The local brake controller also runs the force observer as mentioned
in 3.1.2. Now, all the inputs for the sliding mode controller are available, and the sliding mode pressure can be
created. This pressure, when it is fed through the pressure controller, using information from the pressure
chamber observer, it is able to create the mark-space ratio RMS . The mark-space ratio is fed through the valve
and brake chamber plant, and the local brake controller block outputs the braking torque.
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Figure 3.7: Schematic overview of the individual local brake controller components. The white circles represent
system inputs, where the black circles represent the outputs.

3.3.2 Parameter Changes

As the VTM and the quarter car model were independently developed, most of the parameters did not match, or
parameters with the same name had different values. This resulted in a discrepancy that was challenging to solve.

The parameters of the VTM differed from both the experimental truck and the quarter car model. For the quar-
ter car model, some parameters had different names or different values. The physical properties of the truck used
in the experiment were also not matching with those used in VTM. Using logged data and measurements from
the experiment, the parameters of the VTM were adapted to match as close as possible to those of the real truck.

The experiments were carried out on ice, snow and dry asphalt. On snow, both straight-line braking and
brake-in-turn maneuvers were tested. Table 3.1 shows the different gains used in the experiment. Consequently,
these gains will be used in the sliding mode controller during simulation.

Another part of the model that had a major influence on the results are the tire models. As mentioned
in 3.2.1, VTM uses a Pacejka tire model with 28 adaptable parameters. Of these, the scale factors for maximum
friction coefficient in both lateral and longitudinal directions had to be changed from surface to surface. As the
truck used in the experiment was not as heavy as the tire model was designed for, also the scale factor for the
nominal rated load has been altered to match more closely to the characteristics of the tire in the experiment.
Please note that it is very difficult, if not impossible, to get the tire parameters of the Pacejka model matched
to the tires, used in the experiment. However, with these parameter changes, the behavior of the model should
be at least similar to the truck of the experiment.

Table 3.1: Controller gains for the four different braking scenarios. Note that Rear captures both the Drive 1
and Drive 2 axle.

Parameter Dry Asphalt
Straight-Line
60km/h

Packed Snow
Straight-Line
80km/h

Polished Ice
Straight-Line
60km/h

Packed Snow
Brake-In-Turn
60km/h

Delta gain SMC δs 0.02 0.02 0.02 0.02

Phi gain SMC Φs 100000 100000 100000 100000

K gain SMC ks 70000 [Front]
75000 [Rear]

60000 [Front]
50000 [Rear]

50000 [Front]
50000 [Rear]

60000 [Front]
60000 [Rear]

Slip Reference Off-
set λref

0.14 [Front]
0.16 [Rear]

0.08 [Front]
0.12 [Rear]

0.05 [Front]
0.10 [Rear]

0.06 [Front]
0.12 [Rear]
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3.4 Validation

With the local brake controller implemented in the VTM and the incorporation of the modified parameters, the
behavior of the model can now be compared to the truck using the wheel slip controller. Data of the vehicle were
collected during winter tests in 2017. These tests included straight line braking and brake-in-turn maneuvers.
Validation means that the model should match the experimental data reasonably well. The validation consists
of two parts: partial validation of the local brake controller and validation of the complete vehicle model. Key
features of the validation entail deceleration, brake pressure and wheel slip. For the brake-in-turn maneuvers,
yaw angle, longitudinal and lateral acceleration and side-slip angle will be compared.

For deceleration, both average deceleration from the start of braking to full stop and Mean Fully Devel-
oped Deceleration (MFDD) are used [20]. The MFDD is given by

dm =
v2b − v2e

25.92(se − sb)
, (3.17)

where dm is the MFDD, vb is the initial speed in km/h, v0 is the vehicle speed at 0.8v0, ve is the vehicle speed
at 0.1v0, sb is the distance traveled between v0 and vb in meters, and se is the distance traveled between v0
and ve in meters.

Furthermore, the distance from the beginning of the braking maneuver to the full stop of the braking
maneuver is used, next to the corrected braking distance to account for small discrepancies in initial vehicle
speed [57], given by

sc =

(
v20,t
v20

)
s, (3.18)

where sc is the corrected stopping distance, v0,t is the target initial speed, v0 is the initial test speed and s is
the actual stopping distance.

Wheel slip will be evaluated as the error between the actual wheel slip and the reference wheel slip. The
absolute mean error will be used for both the experimental and VTM results. These results will be compared
per axle and per experiment.

The figures and plots will show the performance of the VTM with slip control, in comparison with the
experiment. For straight-line braking, the Fancher tire model is also implemented in the VTM replacing the
Pacejka tire model, in order to compare the performance of the Pacejka tire model and the Fancher tire model
(Brush) with respect to the experimental data.

3.4.1 Partial Validation

In order for the complete VTM-integrated local brake controller model to be verified, some kind of partial
validation was done beforehand. Two different kinds of partial validation were done, according to the availability
of the models and available experimental data. The first partial validation is validation of the local brake
controller model using the quarter car model and the second one validation of each of the sub-models of the
local brake controller using the experimental data gathered from winter testing .

Quarter Car Model

The main purpose of this validation was to investigate if the local brake controller block without the VTM inte-
gration works properly, even when it is configured along with a different vehicle plant. More specifically, using
the simplified quarter car model (MIRA 2013 Model) evaluated at the MIRA test track in 2013 [33], it was nec-
essary to investigate the output signals of the local brake controller block. It should be also mentioned that the
timestep of the simulation, the kind of the solver, as well as the tasking and sample time options were changed to
the values that they were used in the MIRA 2013 model, in order for the comparison of the signals to be more fair.

The wheel slip controller (SMC) is the ’core’ of the local brake controller block, since using the error slip signal,
it produces the pressure demand signal (Pdem), which is fed to the proportional pressure controller. Provided
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that the slip signal (input to the SMC) and the pressure demand signal (output of the SMC) are the same for
both the local brake controller integrated with the quarter car model and the complete MIRA 2013 model, it
can be concluded that the local brake controller block works properly.

The plots of wheel slip (input to the SMC) and pressure demand (output of the SMC) for both the local brake
controller with the integrated quarter car model and the MIRA 2013 model are illustrated in Figure 3.8.

Figure 3.8: Comparison of (a) longitudinal slip and (b) pressure demand between the local brake cotroller and
MIRA 2013 model

In figure 3.8a it can be seen that the longitudinal slip being fed to the sliding mode controller is similar for
both the local brake controller model and the MIRA 2013 model. This could be confirmed also by the fact that
the mean error value for these two signals is only 2.25031e-12. When it comes to figure 3.8b, it can be seen
than the output pressure of the sliding mode controller is similar for both models with a very low mean error
value, i.e. -2.7966e-17.

The conclusion of this kind of partial validation is that the local brake controller block works properly, regardless
of the vehicle plant that it is being used each time, given that the simulation properties of the model have been
determined correctly.

Experimental Data

In the partial validation using experimental data, a different approach was used in order to validate the
performance of the local brake controller block. The local brake controller block is comprised of different
sub-blocks, like the force observer block, the sliding mode controller block, the pressure controller block, the
valve plant block, the reference slip block and so on. Each of these blocks has its own inputs and outputs, but
all of them are necessary in order to formulate a complete local brake controller block. The logic behind this
kind of partial validation is to feed the right signals of the experimental data (gathered by the supervisor of
the thesis during winter testing of the same truck) to each of the aforementioned sub-blocks, and to try to
compare their output signals to the correspondent signals of the experimental data. Obviously, this kind of
partial validation requires signals of both the inputs and outputs of each local brake controller sub-block, hence,
due to the nonavailability of some of the signals it was not possible for all the sub-blocks of the local brake
controller to be checked for individual validation. More specifically, the sub-blocks of the local brake controller
which were individually validated are the sliding mode controller sub-block, the force observer sub-block, the
valve plant sub-block and the pressure controller sub-block. When it comes to the kind of test and data that
was used for partial validation, it should be mentioned that winter test data from straight-line braking tests
from 80 - 0 km/h on packed snow surface were used.

As it can be seen in Figure 3.7, the inputs of the sliding mode controller are Fx, λ, λerror, vx, and αx, while
the output is PSMC . By isolating the sliding mode controller block from the rest of figure (3.7) and by feeding
to it the correspondent input signals, taken by the data of the abovementioned experiment, the following plot
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of the output of the sliding mode controller sub-block can be derived.

Figure 3.9: Comparison of the SMC pressure output between the experiment and the model

Figure 3.9 depicts that by looking at the SMC output during the braking event, the behavior of the SMC
pressure output of the model, using the experimental data as inputs, matches the behavior of the SMC pressure
output signal, taken directly by the experiment. For that reason it can be concluded that the sliding mode
controller sub-block works properly and is individually validated against winter test data.

A similar procedure like the one that it had been followed during the partial validation of the sliding mode
controller block is going to be followed again, when it comes to the partial validation of the longitudinal force
(Fx) observer sub-block. The wheel angular speed and the relative chamber pressure (inputs of the Fx observer
sub-block according to figure 3.7) have been taken directly by the winter test data and they are being fed to
the force observer sub-block. At this point it should be mentioned that an offset pressure (Pcrack = 9000Pa)
has been added to the relative chamber pressure signal before its input to the force observer. That happened
because Pcrack appeared in the C-code implemented on the real truck, and hence it was an essential addition
to the partial validation of the force observer sub-block, since it is necessary to have a fair comparison between
the force observer output of the sub-block and the estimated longitudinal force signal, taken directly by the
experimental data. This comparison is illustrated in the figure below.

Figure 3.10: Comparison of the Fx observer output between the experiment and the model

Figure 3.10 illustrates that the trend of the estimated longitudinal force (F̂x) during the braking procedure,
coming out of the force observer sub-block, is comparable to the behavior of the estimated longitudinal force,
taken directly by the experimental data. Therefore, the force observer sub-block is individually validated

27



against winter test data.

The next sub-block of the local brake controller which is going to be validated against winter test data is the
valve plant. According to figure 3.7 the inputs of the valve plant are two, i.e. the supply pressure coming out
from the tank (Psup) and the mark-space ratio (RMS) coming out from the pressure controller sub-block. It
should be mentioned that since the tank supply pressure (Psup) signal was not available from the experimental
data, a constant tank supply pressure signal (Psup = 8.6bar) was fed into the valve plant, in order to mimic
the behavior of this signal. When it comes to the mark-space ratio signal taken by the experimental data,
it should be mentioned that it was divided with 14.7692 because of bit shift operations which were used to
translate the internal valve control states on the vehicle into integer based diagnostic signals for logging. The
next figure illustrates the output of the valve plant, i.e. relative chamber pressure, and it compares it to the
direct relative chamber pressure signal, taken by the experimental data. However, again, like in the case of
the partial validation of the force observer, a pressure offset (Pcrack = 9000Pa) has been added to the output
relative chamber pressure signal, coming out from the valve plant sub-block, in order to be able to be compared
to the relative chamber pressure signal, taken by the experiment.

Figure 3.11: Comparison of the valve plant output between the experiment and the model

As can be seen in Figure 3.11 the behavior of the relative chamber pressure coming out from the valve is
similar to the relative chamber pressure signal, taken by the experiment. However, it is obvious that on average
there is an overestimation of the relative chamber pressure coming out from the valve plant sub-block in
comparison with the one taken directly by the real data. The reason is that on the real truck, the tank pressure
is depleting during the braking maneuvers, and this is something which can not be represented precisely on
the partial validation of the valve plant sub-block. And, since during the partial validation of the valve plant,
the tank supply pressure is constant at 8.6 bars and it is not depleting together with the braking maneuver,
it is reasonable that the relative chamber pressure output of the valve plant sub-block is going to be a bit
overestimated. Nevertheless, as it has already been mentioned, the overall trend of the relative chamber pressure
signal is similar, either for the output of the valve plant or for the correspondent signal, taken directly by
the experiment. Hence it can be concluded that the valve plant is individually validated against winter test data.

The last sub-block of the local brake controller that can be validated against winter test data is the pressure
controller sub-block. As it can be seen in figure 3.7, the pressure controller sub-block has three inputs, i.e. the
pressure demand signal, given by the driver (Pdem), the pressure output signal of the sliding mode controller
(PSMC) and the absolute chamber pressure signal (Pc), coming either from the valve plant, or from the pressure
observer. In this case, it is considered that the pressure controller uses the absolute chamber pressure signal,
taken by the valve plant, instead of the estimated absolute chamber pressure signal, taken by the pressure
observer, since there is no signal from the experiment that can give direct information about the observed
absolute chamber pressure. The output of the pressure controller sub-block is the mark-space ratio (RMS),
according to figure 3.7, and this output is going to be compared with the mark-space ratio signal, taken by the
experimental data, as it can be seen in the following figure. At this point, it should be also mentioned that
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during the determination of either the inlet state, or the outlet state of the valves, inside the pressure controller
block, an additional pressure offset of 1/16 is added every time that each of the valves is open. This action
has been made after comparing the Simulink architecture of the pressure controller sub-block with the C-code
script of the real truck, which was used for winter testing. Furthermore, as it has already been mentioned
earlier during the valve plant partial validation, the experimental mark-space ratio signal has been divided
with 14.7692 in order to be compared with the correspondent mark-space ratio signal of the model’s pressure
controller sub-block, since it is scaled differently in comparison with the mark-space ratio coming out from the
pressure controller output.

Figure 3.12: Comparison of the pressure controller output between the experiment and the model

Figure 3.12 shows that the behavior of the mark-space ratio signal of the model at the output of the pressure
controller matches the behavior of the correspondent mark-space ratio signal, taken directly by the experiment,
either for the inlet, or for the outlet state of the valves. Hence, it can be concluded that the pressure controller
block is individually validated against winter test data.

3.4.2 Complete Model Validation Results

The complete model validation includes both straight-line braking and brake-in-turn maneuvers. First, the
results on polished ice, packed snow and dry asphalt are shown consequently. After that, the brake-in-turn
maneuver is shown. Finally, the metrics for distance and deceleration conclude the results of the validation.
For straight-line braking, results of only the left-hand (LH) side of the vehicle will be shown, as the behavior of
the vehicle is symmetric.

Straight-Line Braking, Polished Ice

Figure 3.13 shows the speed profile of experimental data and simulation data for both models using the Pacejka
and Fancher (brush) tire model. It can be seen that the start of braking is equal for all, and the profile is fairly
similar. Both models and experiment stop around roughly the same point.

Figures 3.14, 3.15 and 3.16 show the wheel slip and brake pressure for all simulations. Note that for braking at
higher speeds, both the wheel slip and brake pressure are very similar. For both brush tire model and Pacejka
tire model, the wheel slip starts having a higher amplitude at the end of the braking procedure compared to the
experiment. The Pacejka tire model has an even higher amplitude than the brush model at these lower speeds.
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Figure 3.13: Vehicle velocity under slip control braking on ice.

Figure 3.14: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 1 is the front axle left hand wheel.
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Figure 3.15: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 3 is the drive 1 axle left hand wheel.
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Figure 3.16: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 5 is the drive 2 axle left hand wheel.

Straight-Line Braking, Packed Snow

Figure 3.17 shows the speed profiles during braking on packed snow. The observed performance seems similar to
that of polished ice, where the speed profile of both simulation brush tire model, as well as simulation Pacejka tire
model are similar to that of the experimental data. Note that at lower speeds, a small discrepancy starts to occur.

Figures 3.18, 3.19 and 3.20 show the wheel slip and braking pressure for the simulations on snow. Simi-
lar to polished ice situation, at high speeds both models match the experimental data well. At the beginning of
the braking cycle, there is however a difference for the Pacejka model simulation, as a peak can be observed in
the slip for both drive 1 and drive 2 axles. Again, at the end of the braking cycle, the amplitude of the wheel
slip of both models increases more than that of the experimental data, where again the increase of the Pacejka
model is even greater.

The brake pressure from both models seems to be slightly lower than that of the experimental data for
all wheels.
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Figure 3.17: Vehicle velocity under slip control braking on snow.

Figure 3.18: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 1 is the front axle left hand wheel.

33



Figure 3.19: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 3 is the drive 1 axle left hand wheel.
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Figure 3.20: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 5 is the drive 2 axle left hand wheel.

Straight-Line Braking, Dry Asphalt

Here, Figure 3.21 shows the speed profiles during braking on packed snow. The observed performance seems to
differ a little from that of ice, showing that the deceleration of both brush and Pacejka tire model simulations
are slightly higher during the first part of the braking maneuver with respect to the experimental data. At
some point however, the speed of the Pacejka model simulation starts to match with the experimental data
again, where that of the brush model does not.

Again, 3.22, 3.23 and 3.24 show the wheel slip and braking pressure for the simulations, but this time
on dry asphalt. However, there is a large discrepancy now between the experimental data and the simulation
results. For example, when looking at wheel 1, it can be seen that the slip of the experiment is not able to track
the reference signal properly. When looking at the models for wheel 1, the brush model seems to track the
reference slip very nicely, but the Pacejka model has a peak in the beginning, and has a rather large amplitude,
not tracking the reference slip properly either. This peak at the beginning of the braking maneuver can be seen
even more clearly for wheel 3 and wheel 5. For both drive axles however, the tracking of the slip after this peak
is better for the Pacejka model.

As a result of the difference in slip, also a difference in brake pressure is present. Since the slip of the
experiment is mostly far off for wheel 1, the pressure is increased, whereas this does not happen for the
simulations, as they are better able to track the slip. For wheel 3 and wheel 5 the brake pressure is still fairly
similar, and even the frequency and the amplitude of the brake pressure signal seem to be comparable.
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Figure 3.21: Vehicle velocity under slip control braking on dry asphalt.

Figure 3.22: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 1 is the front axle left hand wheel.

36



Figure 3.23: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 3 is the drive 1 axle left hand wheel.

37



Figure 3.24: (top) Wheel slip for the Pacejka and Fancher tire model simulation compared to experimental
wheel slip. (bottom) Brake pressure for Pacejka and Fancher tire model simulation compared to the actual
experimental braking pressure. Wheel 5 is the drive 2 axle left hand wheel.

Brake-In-Turn, Packed Snow

Now, the results are shown for the brake in turn maneuver. The lateral dynamics are introduced by inputting
the logged steering signal from the experimental data directly into the VTM. Figure 3.25 shows the velocity
profile of the vehicles during the brake-in-turn maneuver. For the first part of braking, it appears that the
simulation model has slightly higher deceleration compared to the vehicle of the experimental data. On the
other hand, when looking more closely, it seems that the model of the experimental data starts to brake a little
later. The overall trend however shows that the simulation model and the vehicle of the experimental data
match well enough.

For the brake-in-turn maneuver, all wheels are shown regarding wheel slip and brake pressure in Figures 3.26,
3.27, 3.28, 3.29, 3.30 and 3.31, as it cannot be assumed anymore that the behavior is symmetric. However, it
seems that, for every axle, the results of the simulation with the Pacejka tire model matches the experimental
data very well. Again, the simulation results of the model show higher amplitude for the slip signal than the
one that it can be seen from the vehicle of the experimental data. The brake pressure however is very similar.
Both drive 1 and drive 2 axles show excellent resemblance regarding brake pressure and wheel slip. Even a
peak in wheel slip, which is observed at the beginning of braking for the experimental data, can be observed in
the simulation data, as well. Again, at low speed, the amplitude of the slip signal increases. However, this can
also be seen happening especially for the left hand side wheels in the experimental data.

Figure 3.32 shows the lateral acceleration of the simulation and the experiment, where the experimental
data are filtered with a low-pass Butterworth filter at one/tenth of the sampling frequency. Apart from the
harmonics, it can be seen that the signal is fairly similar regarding the trend, but also in magnitude, e.g.
the maximum deceleration. The figure also shows the mean error and the standard deviation between the signals.

Figure 3.33 shows the yaw rate of the experiment and the model. It can be seen that they are fairly
similar, apart from the behavior of the model between 11 and 13 seconds. Figure 3.34 shows the sideslip of
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both the model and the experiment. Here, it can be observed that for both simulation model and vehicle of the
experiment, first positive sideslip occurs, followed by negative sideslip. The difference however, is that positive
sideslip is bigger for the model, and negative sideslip is bigger for the experimental truck. The maxima and
minima between the simulation model and experimental truck are close however with respect to time.

Figure 3.25: Vehicle velocity during the brake-in-turn maneuver on packed snow.

Figure 3.26: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 1 is the front axle left hand wheel.
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Figure 3.27: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 2 is the front axle right hand wheel.
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Figure 3.28: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 3 is the drive 1 axle left hand wheel.
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Figure 3.29: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 4 is the drive 1 axle right hand wheel.
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Figure 3.30: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 5 is the drive 2 axle left hand wheel.
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Figure 3.31: (top) Wheel slip for the Pacejka tire model simulation compared to experimental wheel slip.
(bottom) Brake pressure for the Pacejka tire model simulation compared to the actual experimental braking
pressure. Wheel 6 is the drive 2 axle right hand wheel.

Figure 3.32: Lateral acceleration in the Center of Gravity (CoG) of the model and the experiment (filtered).
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Figure 3.33: Yaw rate of the experiment and the model. Note that the yaw rate model suddenly rises between 11
and 12 seconds.

Figure 3.34: Comparison of the sideslip angles. The squares mark the points where sideslip is maximum. Note
that the maximum sideslip for the model is bigger than that of the experiment, but the minimum sideslip for the
experiment is bigger than that of the model. Here, positive sideslip is associated with oversteer, while negative
sideslip is associated with understeer.

Stopping Distance and Deceleration Results

Tables 3.2 and 3.3 show the performance of the VTM compared to the vehicle of the experimental data with
respect to stopping distance and deceleration for all four driving cycles. The table data were created by
combining the three runs per cycle for all four driving cycles. It can be seen that, except for the deceleration
with the brake-in-turn maneuver, all metrics are within 10 % error. Table 3.4 shows the slip averaged over the
three runs per experiment per axle, compared to the results from the VTM. It can be seen that, except for the
packed snow case, the front axle has a higher error with respect to the experiments.
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Table 3.2: Errors in stopping distance between the experiments and the results of the VTM

Braking Test Condition Results Braking
Distance
[m]

Corrected
Braking
Distance
[m]

Straight-Line
60km/h

Dry Asphalt Model
Experiment
Error [%]

28.1718

29.5619

-4.7

27.9846

29.3588

-4.68
Straight-Line
80km/h

Packed Snow Model
Experiment
Error [%]

79.4983

75.3055

5.57

80.6301

76.3691

5.58
Straight-Line
60km/h

Polished Ice Model
Experiment
Error [%]

92.4545

100.3358

-7.85

101.3139

109.7058

-7.65
Brake-In-Turn
60km/h

Packed Snow Model
Experiment
Error [%]

56.5234

58.3204

-3.08

63.6136

65.6752

-3.14

Table 3.3: Errors in mean deceleration between the experiments and the results of the VTM

Braking Test Condition Results Deceleration
[m/s2]

MFDD
[m/s2]

Straight-Line
60km/h

Dry Asphalt Model
Experiment
Error [%]

4.9622

5.0396

-1.48

5.2261

5.7515

-9.14
Straight-Line
80km/h

Packed Snow Model
Experiment
Error [%]

2.9506

3.2037

-7.90

3.1656

3.3418

-5.27
Straight-Line
60km/h

Polished Ice Model
Experiment
Error [%]

1.2758

1.2780

-0.17

1.3796

1.2964

6.42
Brake-In-Turn
60km/h

Packed Snow Model
Experiment
Error [%]

2.1048

2.3939

-12.08

2.209

2.3628

-6.51

Table 3.4: Errors in slip between the experiments and the results of the VTM for the three different axles.

Braking Test Condition Results Front Drive 1 Drive 2
Straight-Line
60km/h

Dry Asphalt Model
Experiment
Error

0.05

0.22

0.17

0.05

0.13

0.08

0.05

0.12

0.07
Straight-Line
80km/h

Packed Snow Model
Experiment
Error

0.06

0.07

0.01

0.08

0.02

-0.06

0.08

0.2

-0.06
Straight-Line
60km/h

Polished Ice Model
Experiment
Error

0.04

0.09

0.05

0.03

0.04

0.01

0.05

0.04

-0.01
Brake-In-Turn
60km/h

Packed Snow Model
Experiment
Error

0.4

0.12

0.08

0.04

0.05

0.01

0.03

0.05

0.02
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3.4.3 Discussion

The first kind of partial validation showed that the local brake controller block can be configured with a different
vehicle plant, and it can produce reasonable outputs. The second kind of partial validation illustrated that the
sub-blocks that formulate the local brake controller block are individually validated against winter test data.
By taking into account the results of these two kinds of partial validation, it can be said that the local brake
controller block has been constructed correctly.

Knowing that the local brake controller block is correct, the next step is complete vehicle validation. The
results showed overall good similarity of the experimental results to that of the simulation model. There are
however some points that need extra analysis.

In all figures with wheel slip, it could be observed that the wheel slip calculated by the Pacejka tire model and
the Fancher tire model had greater magnitude than the wheel slip from the experimental data, especially at
lower speeds. There are several reasons for this to happen. One of the most obvious reasons is that the tire
models used in the simulation were not set up close enough to the tires used on the real truck. The effects could
have been caused by different relaxation length, cornering stiffness and other less prominent tire characteristics.
Another possibility is that the slip signal from the experimental data is filtered, as it comes from a wheel speed
sensor and it is compared to the vehicle’s actual velocity. On the other hand, the trend that the magnitude of
the slip goes up at lower speeds is observed for both the models and the experimental data, which suggests
that this behavior is at least partly modeled correctly.

For both the polished ice and the packed snow scenario, the wheel slip and brake pressure are very sim-
ilar for the models and the experimental data. Unfortunately, the same cannot be said for the straight-line
braking maneuver on dry asphalt. As a matter of fact, even the experimental data shows that the truck is not
able to follow the reference slip correctly for the front axle. That does not explain however the peak observed
in the brake pressure for the drive 1 and drive 2 axle in the beginning of the braking cycle (Figures 3.23, 3.24).
Even though the Pacejka tire model is probably partly responsible for this behavior, the peak could also be
caused by a combination of the tire model and load transfer. Unfortunately, there is no reliable load transfer
data available from the experiments, so this presumption cannot be tested. For the front axle, both models
have show lower brake pressure than the experimental data. One of the most obvious reasons for this is that
the experimental data shows the slip to be quite far off from the reference slip, hence increasing the brake pressure.

For the brake-in-turn maneuver, an interesting contrast can be seen between the left hand side and right hand
side slip. For wheel 1, the wheel slip of the experimental data increases toward lower speeds, whereas this
almost does not happen for wheel 2. For the Pacejka model, this distinction is not that clear, and the wheel
slip increases for both wheels at the end. For the drive 1 axle however, this effect can also be seen for the
Pacejka model, showing that the effects of lateral load transfer are captured in the VTM. As the wheel slip
of all wheels from experimental data correspond closely to that of the VTM, also the brake pressure is very similar.

Regarding the lateral behavior, the results show good resemblance. The lateral acceleration as shown in
Figure 3.32 shows that both the magnitude and the trend of lateral acceleration are very similar. However,
looking only at acceleration does not give good insights, when it comes to the lateral performance. For this
reason, also the yaw rate and sideslip angle are shown. The yaw rate shows the same magnitude for both
the simulation model and the experiment. There is however a slight discrepancy in the trend when looking
between 11 and 13 seconds. Here, the behavior of the model shows a rapid increase in yaw rate after which
it reverts to behavior similar to that of the experiment again. It is hard to point out what is causing this,
but it seems that this is caused by the transition from oversteer to understeer. In this transitional part, the
vehicle’s dynamic stability is easily influenced, perhaps causing this behavior. The sideslip angle appears
to be quite different between the model and the experiment, but the most important trend is captured, as
both vehicles go through positive sideslip first, followed by negative sideslip, where the peaks of both appear
at roughly the same time. The sideslip angle however is very much dependent on the vehicle parameters,
especially again the tire parameters. It is thus probable that the model parameters allow for similar yaw rate,
while the sideslip angle is slightly different, due to different lateral friction, cornering stiffness and other variables.

The deceleration and stopping distance performance of the model with the Pacejka tire model compared
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to the real vehicle is very good, as most of the metrics are within 10% of error margin. Only the deceleration
of the brake-in turn maneuver on packed snow is slightly different, but that is party because the three sets
of experimental data vary more from each other than any of the other tests. The Mean Fully Developed
Deceleration shows nonetheless that even de deceleration of the brake-in-turn maneuver is not bad at all
compared to the data. Regarding braking distance, all tests are within 8% of error margin, whereas the majority
of them actually underestimates the braking distance except for the packed snow test. If more information
would have been known about the exact friction coefficient of the surface, this error might have been reduced
even further.

The slip error, one of the most important metrics, shows very good results. For polished ice and packed snow,
the slip error is very close to that of the experimental data. This holds especially for the drive 1 and drive 2
axles. Even more, for packed snow straight-line braking, the slip error of the VTM is even smaller than that of
the experiment for the drive 1 and drive 2 axles. This shows that the VTM is able to approximate the slip
with a good enough accuracy.

3.5 Conclusions

In this chapter, the integration of the quarter car model and the VTM has been discussed. Various aspects of
the validation have been explained and the results of integration were shown with respect to the experimental
data. First, it was shown that the local brake controller block works exactly as it is supposed to do, and that
its performance is very similar to the system running on the real truck. Looking at the complete vehicle, when
it comes to wheel slip and brake pressure, the model has proven to be sufficiently similar to the real truck.
The same holds for the results of its braking performance regarding deceleration and braking distance. The
lateral dynamics were also captured reasonably well. However, for development of lateral dynamics functions,
the lateral dynamics need to be evaluated further. Altogether, it can be concluded that the performance
of the vehicle model with the Pacejka tire model is sufficient for further function development and that the
longitudinal dynamics are captured satisfactory.
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4 Function Development

With the validated vehicle model and local brake controller, the possibility arises to create new functions to
improve the performance of the slip controller. This chapter proposes two methods working together to achieve
this goal. First, a method to estimate friction in real-time is described. Using this information, the controller
can be optimized, which is described in the second part of this chapter.

4.1 Online Friction Estimation

After the extended literature review about different friction estimation approaches presented in section 2.4, it
was decided that the slip-slope based friction estimation method is going to be implemented on the Volvo’s
transportation model. This method is described extensively in a book and a paper by Rajamani ([65] and [66]
respectively), but it was firstly proposed by Gustafsson in 1997 [29] and extended by Wang in 2004 [73] in
order to incorporate estimation of the friction coefficient during low-slip and high-slip events.

The main feature of this method is that for the estimation of the tire-road friction coefficient, only longitudinal
vehicle dynamics, such as a non-linear longitudinal tire force model and longitudinal motion measurements, are
utilized. This friction estimation approach can be used for either accelerating or braking events, provided that
the correspondent longitudinal tire force signals, needed for the estimation, are available. In addition, this
method can be used for different kinds of vehicle configurations, such as front-wheel drive, rear-wheel drive
and all-wheel drive vehicles. The main advantage of this method is that it can provide remarkable friction
estimation results for a wide range of slip ratios, and it can be used along with advanced active safety systems,
like electronically brake control systems, collision avoidance systems and wheel-slip control systems. Therefore,
this method is expected to yield promising results in combination with the Volvo’s transportation model, using
wheel-slip control braking.

4.1.1 Method

The forces that are generated by the tires during the vehicle’s motion have a significant function, since they
constitute the only way for the vehicle to obtain information about the ground. Depending on their orientation
towards the tire they are acting on, they are characterized as longitudinal (Fx), lateral (Fy) and normal or
vertical (Fz) forces. In general the normalized tire force is given by the following formula [65]:

ρ =

√
F 2
x + F 2

y

Fz
(4.1)

Since, the friction estimation approach that is implemented on this thesis project utilizes only longitudinal
vehicle dynamics, the correspondent normalized tire force becomes:

ρ =
Fx
Fz

(4.2)

According to equation 4.1 for a specific Fz acting on a tire, the maximum value of the friction coefficient
determines the maximum forces that can be produced by the tire. So, the main purpose of the friction estimation
method is to estimate the maximum value of the friction coefficient that the tires can provide.

Figure 4.1 illustrates the relationship between the normalized longitudinal force and longitudinal slip [73].
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Figure 4.1: Normalized longitudinal force with respect to longitudinal slip [73]

Considering equation 4.2 and figure 4.1, it can be said that as long as the slip increases, the longitudinal tire
force (Fx) is also increasing, for a specific value of normal load (Fz). At the point that the slip value is optimal
for each case, the longitudinal tire force Fx = ρFz. Obviously when the maximum normalized force ρ = 1, then
maximum values of both longitudinal and vertical forces can be generated, and this is happening when the slip
value is optimal for each case independently. However, when the maximum friction coefficient is less than one,
then the maximum longitudinal force that can be generated is considered as a fraction of the normal force [73],
[65], [66].

The slip-slope can be defined as the relationship between normalized force (ρ) and slip (λ) at low values of slip
[65]. The main concept of the slip-slope based friction estimation approach is to collect the data about the
normalized tractive/braking force on the linear part of the slip curve (figure 4.1), and use them in order to
discover the linear connection between slip and tire forces (i.e. slip-slope) at low-slip regions. Afterwards, using
the slip-slope, the maximum value of the friction coefficient can be found for each surface [73]. However, in
literature there is some discrepancy, concerning the opinions of different authors, about the linear relationship
between friction coefficient and slip at very low slip values (λ < 0.005). More specifically, the peak friction
coefficient of the analytical brush tire model which is presented in [56] does not vary with respect to the
slip-slope, and hence, the slip-slope based friction estimation method cannot predict the friction coefficient at
very low-slip regions.

As it has already been explained, independently on the kind of surface and the normal force acting on an
individual tire, at low-slip levels, the normalized longitudinal force of each tire is proportional to its slip. This
linear relationship is illustrated by the following formula:

ρ =
Fx
Fz

= Kλ (4.3)

where K is the slip-slope. The K-values can be used for estimating the tire-road friction coefficient, according
to the road surface conditions.

The slip-slope based friction estimation method has a different implementation on high levels of slip. More
specifically, at high values of slip, the normalized longitudinal force becomes constant and is independent
on the slip. The constant value of the normalized longitudinal force is a function of the friction coefficient.
Therefore, when the tire is modeled at high slip levels, the constant value of the normalized longitudinal force
is independent on the tire-road friction coefficient [65].

The equation 4.3 can be rewritten in a standard parameter identification format as:

y(t) = φT (t)θ(t) (4.4)

where
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y(t) =
Fx
Fz

(system output) (4.5)

θ(t) = K (unknown parameter) (4.6)

φ(t) = λ (system input) (4.7)

As it can be seen by equations 4.5 and 4.7, the system’s input is the longitudinal slip, while the system’s
output is the normalized longitudinal force. The unknown parameter K (equation 4.6) can be estimated using
parameter identification techniques in real time, and afterwards it can be used for the real time estimation
of the friction coefficient. However, this parameter identification format presented by equations 4.4, 4.5, 4.6
and 4.7 is valid only at low-slip regions, where the normalized longitudinal tire force is proportional to the
slip of the tire. On high slip levels of the tire, the slip-slope based friction estimation method cannot provide
reasonable results, concerning the prediction of the friction coefficient. However, during hard braking events,
where the slip levels of the tire are quite high, the normalized longitudinal braking force (ρ) can be used
directly to provide information about the friction coefficient. This can be done by using the standard parameter
identification format, introduced by the equation 4.4, with different variables, when it comes to system inputs,
system outputs and unknown parameters. The new variables to the system are presented below:

y(t) = Fx (system output) (4.8)

θ(t) = µ (unknown parameter) (4.9)

φT (t) = FTz = Fz (system input) (4.10)

As it can be seen by equations 4.8, 4.9 and 4.10, at high levels of slip, the system’s input is the measured
longitudinal tire force, the system’s output is the normal force, while the unknown parameter will be the
estimated friction coefficient.

4.1.2 Recursive Least-Squares (RLS) Identification

The standard parameter identification format introduced by equation 4.4 can be altered to the following slightly
different parameter identification form in order to be used by the RLS algorithm [66]:

y(t) = φT (t)θ(t) + e(t) (4.11)

where, θ(t) is the vector of the estimated parameters, φ(t) is the input regression vector, and e(t) is the
identification error between the measured y(t) and estimated value φT (t)θ(t).

Using the RLS algorithm presented in [39], [30] and [68] on equation 4.11, it is possible to iteratively update the
unknown parameter vector θ(t), at each sampling time, using the past input and output data contained within
the regression vector φ(t). The RLS algorithm updates unknown parameters (K or µ) in order to minimize the
sum of the squares of the modeling errors [66].

Two ways of implementing the RLS method using the System Identification Toolbox software of MatLab were
investigated on this thesis project. One method used the forgetting factor λ adaptation algorithm and the
other the Kalman filter adaptation algorithm.

The steps of the RLS method using the forgetting factor λ adaptation algorithm are illustrated below:

Step 1: Measure the system output y(t) and calculate the regression vector φ(t).

Step 2: Calculate the identification error e(t), which is the difference between system’s actual output at this
sample and the predicted model output obtained from the estimated parameters in previous sample θ(t− 1), i.e.

e(t) = y(t)− φT (t)θ(t− 1) (4.12)
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Step 3: Calculate the update gain vector K(t), i.e.

K(t) =
P (t− 1)φ(t)

λ+ φT (t)P (t− 1)φ(t)
(4.13)

and calculate the covariance matrix P (t), i.e.

P (t) =
1

λ
[P (t− 1)− P (t− 1)φ(t)φT (t)P (t− 1)

λ+ φT (t)P (t− 1)φ(t)
] (4.14)

Step 4: Update the parameter estimate vector θ(t), i.e.

θ(t) = θ(t− 1) +K(t)e(t) (4.15)

The λ parameter of equations 4.13 and 4.14 is called the forgetting factor and it is mainly used in order to
determine the influence of the previewed data to the current estimation (avoid covariance wind-up problem).
The value of λ varies between 0.9 and 1 and it uses a batch of N = 2

1−λ data to update the current estimation
[30]. There is trade-off between the immunity to noise of the RLS algorithm and its ability to detect changes
in parameter values quickly. More specifically, when λ value is close to 0.9 the sensitivity of the estimation
procedure to noise will increase, (the parameters will turn to be more oscillatory), but the convergence will
be fast. On the other hand, when the forgetting factor is close to 1, the convergence will be slow, since the
algorithm will use all the previews data from the initialization of the simulation to update the estimate [65].

The implementation of the RLS method using the Kalman filter adaptation algorithm is slightly different in
comparison with the correspondent method of the forgetting factor, when it comes to the step 3 (i.e. update of
the gain vector K(t) and calculation of the covariance matrix P(t)), mentioned earlier about using RLS method
with the forgetting factor, as well as to its tuning parameter. Nevertheless, the rest of the procedure when it
comes to implementation of the Kalman filter adaptation algorithm is similar to the one using the forgetting
factor algorithm, i.e. same enabling condition, same equations, written in standard parameter identification
format, and same switching condition, when it comes to which method should be chosen by the algorithm,
according to the slip level.

The steps of the RLS method using the Kalman filter adaptation algorithm are illustrated below:

Step 1: Measure the system output y(t) and calculate the regression vector φ(t).

Step 2: Calculate the identification error e(t), which is the difference between system’s actual output at this
sample and the predicted model output obtained from the estimated parameters in previous sample θ(t− 1), i.e.

e(t) = y(t)− φT (t)θ(t− 1) (4.16)

Step 3: Calculate the update gain vector K(t), i.e.

K(t) =
P (t− 1)φ(t)

R2 + φT (t)P (t− 1)φ(t)
(4.17)

and calculate the covariance matrix P (t), i.e.

P (t) = P (t− 1) +R1 −
P (t− 1)φ(t)φT (t)P (t− 1)

R2 + φT (t)P (t− 1)φ(t)
(4.18)

Step 4: Update the parameter estimate vector θ(t), i.e.

θ(t) = θ(t− 1) +K(t)e(t) (4.19)

The Kalman filter adaptation algorithm considers that the true parameters θ(t) are described by a random
walk [11]:

θ(t) = θ(t− 1) + w(t) (4.20)
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where w(t) is the Gaussian white noise with the following covariance matrix:

R1 = E[w(t)wT (t)] (4.21)

R2 is the variance of innovations e(t) in the equation 4.11.

4.1.3 Parameter Initialization and Conditions for the RLS algorithms

As it has already been explained in subsection 4.1.1 and according to [73] the RLS algorithm cannot provide
an accurate friction coefficient estimate if the measured longitudinal acceleration is less than 0.3 m/s2 and
measured slip is less than 0.005. Therefore, the aforementioned conditions have been incorporated to the friction
estimation model architecture of VTM along with two more conditions in order for the enabling of the friction
estimation algorithm to be determined. More specifically, the friction estimation algorithm works only when
the requested pressure demand signal Pdem is higher than 1 bar and the longitudinal force has positive value
(positive values of the longitudinal force mean braking longitudinal forces). The last two enabling conditions of
the RLS algorithm have been set in order to avoid some initial strange behavior of the longitudinal braking
force, coming from the tire model of the VTM.

One important addition that has been made to the RLS algorithm is that when the excitation of the tire forces
are not high enough for the algorithm to give a proper friction coefficient estimate (i.e. some of the enabling
conditions of the RLS algorithm are not satisfied), then the algorithm will keep the previews value of the
estimate in order to avoid abnormalities of its behavior.

As it has already been explained in subsection 4.1.2 the influence of the forgetting factor plays an important
role when it comes to the estimation of the friction coefficient. Hence, according to the needs for precision on
the friction coefficient estimate, when it comes to the Simulink model, along with the suggestions made by [73]
and [66], the forgetting factor was set to be 0.995.

Using the Kalman filter adaptation algorithm, it is assumed that R2P is the covariance matrix of the estimated
parameters, and R1

R2
is the covariance matrix of the parameter changes. R1 is the noise covariance matrix

specified by the user. In this simulation model the noise covariance matrix was chosen to have a very small
value, i.e. 1e− 03, but not zero. Zero value in the noise covariance matrix can be translated to estimation of
constant coefficients, while values larger than zero correspond to time-varying parameters. Large values of the
noise covariance matrix correspond to rapidly changing parameters [47]. It is important to note that during
the implementation of this algorithm the R1 and P (t = 0) matrices are scaled such that R2 = 1, however, this
scaling does not affect the parameter estimates. The forgetting factor algorithm for λ = 1 is equivalent to the
Kalman filter algorithm with R1 = 0 and R2 = 1.

As it has been already explained in subsection 4.1.1, at low-slip region the friction coefficient varies proportionally
with the slip-slope. According to Rajamani [65], [66], this linear relationship was found experimentally and it
can be expressed as:

µ = AK + C (4.22)

where K is the slip-slope, A is the proportionality constant and C is a bias constant. The proportionality
constant A of the equation 4.22 is the same for all different kinds of surfaces, but it is different, when it comes
to the chosen tire model, according to [66]. In the case of the model that it was used for simulation, the
proportionality constant A were found to be 0.025 through trial and error, while there were no bias constant,
hence, C constant was set to be 0.

At this point it should be also mentioned that the switching condition for determining when the algorithm
will estimate the friction coefficient using the method, described for low levels of slip (subsection 4.1.1), or
the method, described for high levels of slip (subsection 4.1.1), has been created according to the measured
slip signal. More specifically, when the longitudinal measured slip is less than 0.025, the algorithm assumes
that there is a linear relationship between the friction coefficient and the longitudinal slip, hence, it uses the
slip-slope based friction estimation method for the estimation of the friction coefficient. On the other hand,
when the slip is higher than 0.025, there is no linear relationship between the longitudinal slip and the friction
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coefficient, and the normalized longitudinal force can be used directly to provide the correct estimate about the
friction coefficient, using the correspondent method.

4.1.4 Input and Output Signals of the Friction Estimator

In order for the friction estimator block to be able to work properly and give reasonable estimates about the
friction coefficient, it has to use proper input signals. The signals that are needed from the friction estimator
are depicted in the figure below:

Friction Estimator

F̂x

F̂z

λ

ax

Pdem

µ̂ff

µ̂kalman

Figure 4.2: Friction Estimaror block diagram

The signal of the estimated longitudinal tire force (F̂x) is coming from the longitudinal force observer, which
has been described in subsection 3.1.2. As it has already been said, the longitudinal tire force has been used
for the enabling condition of both forgetting factor and Kalman filter adaptation algorithms, and positive
longitudinal force is perceived as braking force in the Simulink model.

The signal of the estimated normal force (F̂z) is coming from the normal force observer, which uses sensor signals
of longitudinal and lateral acceleration, as well as a vector of axle mass distribution in order to estimate the
normal force on each wheel. The estimated normal force is calculated using the static normal force distribution
and the dynamic change on normal force due to longitudinal acceleration, dependent on wheelbase and vehicle
configuration. And that is the reason why the dynamic change of the normal force has been tuned due to its
dependence on the vehicle’s wheelbase and configuration. The tuning of the normal force estimator has been
done in order for the behavior of the normal forces per wheel, coming from the normal force estimator block, to
match the behavior of the normal forces per wheel, estimated by VTM. Three different kinds of surface were
tested, i.e. dry asphalt, packed snow and polished ice, during the tuning of the normal force estimator.

The signals of driver demand pressure (Pdem) and longitudinal acceleration (ax) are derived by controllers/users
and the correspondent sensors respectively. Both of them are used for setting the enabling conditions inside
the friction estimator block.

The slip signal is used for many reasons inside the friction estimator block, as it has already been explained
in subsections 4.1.1 - 4.1.3. Therefore, its quality should be paramount in order to be able to give a good
estimate about the friction coefficient when it is used. Unfortunately, the calculated slip signal used during
friction estimation presented some harmonics with a specific frequency, and during hard braking events, the
longitudinal tire slip was too often equal to zero. That phenomenon caused problems during the operation of
the RLS algorithm, since the longitudinal slip is used not only for the enabling condition of the algorithm, but
also as a switching condition, in order to distinguish effectively which friction estimation method is going to be
used according to the slip level, as well as a regression vector for estimating the friction coefficient using the
slip-slope based method. Therefore, in order to improve the signal of the longitudinal tire slip a first-order
filter has been designed, with the goal of removing the harmonics behavior of the signal, given by:

1

τs+ 1
. (4.23)

When it comes to the outputs of the friction estimator, i.e. the estimated friction coefficient using the forgetting
factor adaptation algorithm (µ̂ff ) and the estimated friction coefficient using the Kalman filter adaptation
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algorithm (µ̂kalman), it can be said that both of them can be used for further function development like slip
controller optimization and so on.

4.2 Slip Controller Optimization

With the ability to get information about the tire-road friction coefficient, control systems throughout the
vehicle could be improved, resulting in better vehicle performance. When it comes to the sliding mode controller,
using information about the road-tire friction coefficient can lead to improved braking performance regarding
both braking distance and air usage.

During the winter testing experiments, both the reference slip signal λref and the sliding mode controller
switching gain ks were varied per surface condition as mentioned in table 3.1. This difference per road
surface leads to the assumption that per road condition, different controller parameters are needed for optimal
performance.

4.2.1 Reference Slip

The reference slip is used as control signal by the sliding mode controller. As mentioned in 2.2.2, controlling
around the peak reference slip ensures best braking performance regarding maximum friction utilization. Using
the Pacejka tire model from the VTM, Figure 4.3 shows the friction curves for the front axle of the 8x4 truck
model used in this thesis project.

Figure 4.3: Friction curves for different road surfaces using the Pacejka tire model. The dotted line represents
the slip for the maximum friction coefficients.

The function
λref = f(µ̂) (4.24)

is proposed to solve this optimization. As the tire data is known in advance for the Pacejka tire model in the
VTM, its peak slip values can be used to create a lookup table. This lookup table can also be created using
measured data from the tire on the real truck. If such data is not available, the Pacejka tire model is expected
to represent the real tire sufficiently to give better results using the combination of the above mentioned lookup
table and online friction estimation.

4.2.2 Switching Gain

The switching gain ks plays a major role on the performance of the sliding mode controller. As can be seen
in table 3.1, the value of this parameter varies around 60,000 for different surfaces. The influence of ks on a
specific surface can be seen in Figure 4.4. This figure shows the air usage and braking distance, which both
constitute important braking performance metrics. There appears to be a conflict between braking distance
and air usage. For low values of the switching gain, the controller allows for little extra air usage, increasing the
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braking distance. But for increasing switching gain, more air is used. For the highest region of switching gain,
the control uses a lot of air to minimize the error between slip and reference slip, but the pressure is increased
so much each time that slip just increases more with respect to the reference slip. This last effect is also known
as chatter. A subjective optimal point can be found where both braking distance and air usage are relatively
good. It is however very difficult to define a cost function using these two variables.

Figure 4.4: Conflict plot showing the influence of the controller parameter ks on the braking performance on
dry road regarding stopping distance and air usage.

On the other hand, it is evident that finding an optimal value for ks will result in improved performance of the
slip control braking system. Another way to define the performance of the controller is to find the values which
minimize the control error, defined as λ − λref . Figure 4.5 shows the mean absolute slip error for different
values of ks for the three separate axles. It can be seen that the rear axles achieve the smallest error around
ks = 80, 000. The front axle seems to have the smallest error for lower switching gains.

Figure 4.5: Mean absolute slip error for the three different axles for dry road.

Nonetheless, it is difficult to draw direct conclusions from this figure as the performance of one single axle
influences that of the others. Therefore, a single wheel parameter optimization approach is proposed, applicable
to online gain optimization.

The objective of the gain optimization is minimizing the slip error, defined as

min
λ−λref

f(ks). (4.25)
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Since each surface will have different optimal controller gains, a distinction has to be made during optimization.
This is done by running a separate optimization for each friction bin, defined by table 4.1.

Table 4.1: Friction coefficient bins for controller gain optimization.

Bin 1 2 3 4 5 6
µ 0-0.1 0.1-0.3 0.3-0.5 0.5-0.7 0.7-0.9 0.9-1

The number of bins is chosen to be small enough to represent a reasonable difference of friction coefficient, but
at the same time to be big enough to have some tolerance for incorrect estimation of the friction coefficient.

It has to be possible to obtain a large number of data samples during braking for fast optimization of
the controller gain. Unfortunately, the slip signal shows harmonics caused by the controller with a frequency of
around 0.1-0.15 Hz when it comes to the braking on dry surface. Therefore, a sampling frequency is chosen of
2 Hz to give a good representation of the slip error over one sample for a given controller gain ks.

As can be seen in figures 4.4 and 4.5, the optimization problem is neither convex nor linear. This re-
quires the use of a global optimization algorithm. Adding to the complexity, the function value f(ks) is usually
not equal for same values of ks, making it difficult to implement standard global optimization algorithms like
simulated annealing or genetic algorithm directly. Therefore, a new global optimization method is proposed
using methods found in Monte Carlo optimization and simulated annealing.

Figure 4.6 shows the results for the algorithm for a simple convex optimization problem given by

min
x

1

2
(x− 4)2 − 2. (4.26)

Figure 4.6: The optimum function value of y = 0 is reached for x = 4. It can be seen that this function value is
approached within a finite number of steps.

Here, the optimization parameters are given by

Nmin ks,min,1 ks,max,1 ks,min,2 ks,max,2
20 -20 20 -10 -10

4.3 Updated Local Brake Controller

Figure 4.7 shows the updated local brake controller with the friction estimation and gain optimization in place.
The only new input to the local brake controller block has become the estimated normal load F̂z, coming form
the normal load estimator. For optimization, only the estimated friction coefficient using the recursive least
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squares identification with forgetting factor is used, as this method is slightly faster, and it is expected that its
results do not differ that much.

Since fast estimation about the normal force and longitudinal force is now required for fast friction esti-
mation, the force observer has been updated. This update consists of a higher sampling rate, 1000 Hz instead
of 50 Hz, giving room for more aggressive pole placement. The optimization algorithm still runs at 2 Hz. With
the lower sample rate, the force observer would become unstable with the new poles.
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Figure 4.7: Updated local brake controller. The dashed lines show what has been changed since Figure 3.7. The
white and black circles are system inputs and outputs respectively.
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5 Results

In this chapter the results of the models developed during the progress of this thesis project are going to be pre-
sented. More specifically, in the first subsection of this chapter, the friction estimator block is going to be tested
against winter test data. Subsection 5.2 presents the simulation results of the wheel slip control braking VTM
model with the incorporated friction estimator sub-block for different kinds of driving cycle and surface. The last
subsection of this chapter illustrates the simulation results of the model, described in subsection 5.2, with adap-
tive wheel slip controller gain and slip reference signal, according to the output of the friction estimator block.
Then, a comparison between this model and the validated model, presented in section 3.3, is going to be depicted.

In appendix E, results from both the friction estimation as well as the adaptive reference slip algorithms
implemented on the real truck are shown.

5.1 Friction Estimator Testing

In this section the friction estimator sub-block, created in section 4.1 is going to be individually tested against
winter test data. The procedure of testing the friction estimator sub-block is similar to the one of the partial
validation, described in subsection 3.4.1. More specifically, the input signals of the friction estimator block
are taken by the correspondent available signals from the experimental data. At this point it should be
mentioned that the experimental data did not involve signals about the estimation of the normal forces acting
on the wheels of the vehicle. Therefore, the normal force estimator sub-block, presented in subsection 4.1.4, is
going to be used for the estimation of the necessary normal forces. Obviously, the inputs to the normal force
estimator sub-block are going to be the correspondent necessary signals, taken by the experimental data as
well. Both RLS methods, i.e. forgetting factor and Kalman filter, are going to be tested using winter test
data. The forgetting factor has been tuned to be 0.995 and the noise covariance matrix of the Kalman filter 0.001.

5.1.1 Testing Results

The friction coefficient estimation for all wheels of the friction estimator sub-block using the winter test data,
concerning straight-line braking test from 60-0 km/h on dry asphalt, is presented below.
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Figure 5.1: Friction coefficient estimation using the test data from winter testing - Dry Asphalt. Braking starts
at 7.5 s.

Figure 5.1 presents the friction coefficient estimation individually for the six wheels of the vehicle. Since data
from the real experiment on dry road is being used, the friction coefficient estimation for each individual
wheel is necessary. The friction conditions of the real world vary stochastically, and that is why each of the
wheels presents different trend of the friction estimation curve. It is worth mentioning that both RLS methods,
i.e. forgetting factor and Kalman filter, perform really well, when it comes to the estimation of the friction
coefficient for every wheel. That can be further explained by the fact that the maximum friction coefficient
estimation for the wheels varies between 0.8 and 1, which is something reasonable, since the truck is braking on
a dry asphalt. Moreover, it can be observed that the Kalman filter method is more spiky in comparison with
the forgetting factor method, but that depends mainly on their tuning factors. In addition, when it comes
to the wheels 3 and 4 of the driven axle, there is an overestimation of the maximum friction coefficient (i.e.
µ > 1). That can be explained by the fact that the points where the maximum coefficient is higher than one,
the longitudinal normalized force is higher than one. This is happening because the normal force estimator
signal can not be taken directly by the test data, and it comes indirectly via the normal force estimator block.
For that reason, it could be possible that sometimes the longitudinal force of the test data is higher than the
estimated normal force. For the Drive 1 and 2 wheel, after 9.5 seconds the reference slip is easily tracked, after
which the brake pressure goes down, which play an important role in the force observer. Consequently, the
estimated longitudinal force goes down, which leads to an underestimation of the friction coefficient.

The friction coefficient estimation of each of the wheels of the vehicle, when it comes to the winter test data for
straight-line braking on packed snow from 80-0 km/h, is illustrated below.
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Figure 5.2: Friction coefficient estimation using the test data from winter testing - Packed Snow

Figure 5.2 shows that the friction estimator sub-block performs really good even using the winter test data from
packed snow, since it can be seen that for all the wheels and methods the friction coefficient estimation varies
between 0.4 and 0.6. Again, the behavior of the Kalman filter algorithm is more spiky than the forgetting
factor algorithm, as a result of their tuning factors.

Next figure to be shown is the friction coefficient estimation of the friction estimator block using the data from
straight-braking test from 60-0 km/h on polished ice.
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Figure 5.3: Friction coefficient estimation using the test data from winter testing - Polished Ice

As it can be seen in figure 5.3 the friction coefficient prediction using both RLS methods varies between 0.19
and 0.3. That is really promising, when it comes to the performance of the RLS methods, since both algorithms
produce reasonable friction coefficient estimates for the ice surface as well. Both algorithms have similar curving
behavior for all the wheels using their aforementioned tuning factors.

5.1.2 Discussion - Conclusion

Comparing figures 5.1, 5.2 and 5.3, it can be observed that the average value of the friction coefficient estimation
for each different surface is representative to the kind of surface that the vehicle is assumed to be on. The
strange non-symmetric behavior of the friction estimation curves of the front axle (wheel 1 and wheel 2),
presented in the figure 5.1, is caused due to the behavior of the longitudinal force signal, taken by the test
data of the dry asphalt case. The behavior of both the estimated longitudinal and normal forces, which are
being fed to the friction estimator block, determine the behavior of the RLS methods and the range of the
friction coefficients. The smooth or spiky behavior of the RLS methods depends on their tuning parameters.
The forgetting factor and the noise covariance matrix have been chosen to be 0.995 and 0.001 respectively for
reasons that have been explained in 4.1.3.

To conclude, the friction estimator sub-block seems to perform really good, when it comes to the estimation
of the friction coefficient, provided that the tuning factors have been chosen appropriately. However, the
quality/availability of the input signals plays a paramount role concerning the quality of the prediction of the
friction coefficient.

5.2 Friction Estimation Model Integration

In this section, the friction estimator block has been incorporated to the validated VTM model. Different kinds
of simulations are going to be done in order to illustrate the performance of the friction estimator sub-block.
More specifically, different kinds of driving cycles (i.e. mild and hard braking), along with different kinds of
surfaces have been created, in order to test the response of the friction estimator sub-block.
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5.2.1 Surface with Constant Friction Level

In this subsection, the validated VTM model with the incorporated friction estimator sub-block is going to
be tested for three different kinds of surfaces and two different driving cycles. More specifically, the values
of reference friction coefficient that have been given to the simulation environment in order to correspond to
different kinds of surfaces are µ = 0.63 for dry asphalt, µ = 0.36 for packed snow and µ = 0.18 for polished
ice. The two driving cycles that have been created in order to show the performance of the friction estimator
sub-block on each of the aforementioned three surfaces can be separated into two main categories of straight-line
braking tests. These are a hard braking test and a combined mild and hard braking test.

Hard Braking Simulation

During the straight-line hard braking test the vehicle brakes from 60 km/h to 0 km/h on dry asphalt and on
polished ice, and from 80 km/h to 0 km/h on packed snow, utilizing its maximum braking force. Plots of the
estimated friction coefficient of both RLS methods, longitudinal velocity and filtered slip of the front LH wheel
are going to be depicted for each different kind of surface. The response of the friction estimator sub-block for
the rest of the wheels of the vehicle is illustrated in Appendix D. The tuning factors of the forgetting factor and
Kalman filter methods have been set to be 0.995 and 0.001 respectively, for reasons that have been explained
in subsection 4.1.3.

The response of the friction estimator sub-block of the front LH wheel, when it comes to the straight-line hard
braking test on dry asphalt, is presented in figure 5.4.

Figure 5.4: Friction coefficient estimation of the Front LH wheel of the validated model on dry asphalt

Figure 5.4 shows, as long as the longitudinal velocity of the vehicle is declining and the average filtered slip is
above the threshold level of 0.005, the algorithms work and both RLS methods are able to predict the friction
coefficient. However, as a result of their tuning, the Kalman filter method is faster, more spiky (precise) and
presents higher overshoot than the smoother forgetting factor method. The trend of the behavior of both RLS
methods are not that stable, as a result of the estimated longitudinal and normal forces.
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The response of the friction estimator sub-block of the front LH wheel, when it comes to the straight-line hard
braking test on packed snow, is presented in figure 5.5.

Figure 5.5: Friction coefficient estimation of the Front LH wheel of the validated model on packed snow

Figure 5.5 shows that the reference friction coefficient is captured correctly by both RLS methods. Again, the
behavior of the Kalman filter is more oscillatory and it presents higher overshoot than the forgetting factor
method. It can also be observed that using the forgetting factor method at t = 5.3s the estimated rising µ
drops abruptly from 0.23 to 0.18 and then starts to rise again until its maximum value. This happens due to
the condition that has been set inside the friction estimator block, which states that the way of estimating
the friction will change when the filtered slip is higher than 0.025. Hence, in this case, the forgetting factor
algorithm switches from the slip-slope based friction estimation to the normalized-force based friction estimation.

The response of the friction estimator sub-block of the front LH wheel, when it comes to the straight-line hard
braking test on polished ice, is presented in figure 5.6.
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Figure 5.6: Friction coefficient estimation of the Front LH wheel of the validated model on polished ice

Figure 5.6 shows that both methods perform good and appear to behave the same way like it was described
earlier, when it comes to the dry asphalt and packed snow case. The switching condition of the friction
estimation algorithm is illustrated also in this figure by this sudden decrease of the estimated µ at t = 5.3s.
Overall, both methods are really able to capture the reference µ value.

Discussion - Conclusion

Comparing the results of the friction estimator output, presented in figures 5.4, 5.5 and 5.6, it can be observed
that during straight line braking tests of the front LH wheel and having different initial velocity values, the
estimation of the friction coefficient is really precise. Both RLS methods perform well and can capture the
reference µ. However, as a result of their tuning factors, the Kalman filter response is more spiky than the
forgetting factor response. In addition, the abrupt decrease of the estimated µ, due to the friction estimation
switching condition, is illustrated in all of the aforementioned figures, however it is more clear for the packed
snow and polished ice case. A short conclusion of these hard braking tests on different surfaces could be that
when the braking forces are high enough, then the estimation of the friction coefficient can be really accurate.

Combined Mild and Hard Braking Simulation

During the combined mild and hard braking driving cycle, the vehicle is going to use initially (t = 5s) low and
after 3 seconds high braking forces in order to brake from different initial velocities on three different surfaces.
The tuning factor of the forgetting factor method, the conditions of the friction estimator and the reference
friction coefficients (friction surfaces), along with their correspondent initial velocities have been kept the same,
like the ones that had been set for the hard braking case. Moreover, the plot of the slip slope of the front LH
wheel is going to be presented here, as well, since it is used for the estimation of the friction coefficient during
the procedure of the mild braking. At this point, it should be also mentioned that only the forgetting factor
friction estimation is going to be presented, when it comes to the combined mild and hard braking results. The
reason is that the purpose of this driving cycle is to show that the slip-slope based friction estimation method
works properly, when it uses the already developed and verified against experimental results forgetting factor
method, introduced by [73], [65] and [66].
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The response of the friction estimator sub-block of the front LH wheel, when it comes to the combined mild
and hard straight-line braking test on dry asphalt, is presented in figure 5.7.

Figure 5.7: Friction coefficient and slip slope estimation of the Front LH wheel of the validated model on dry
asphalt

Figure 5.7 shows that during the mild braking driving cycle, where the slip-slope based method is used for the
estimation of the friction coefficient, i.e. 5s < t < 8s, the average slip-slope value is almost 17. The prediction
of the friction coefficient during this period is almost on average 0.3, which means that the estimated friction
coefficient using the slip-slope forgetting factor method is underestimated, in comparison with the reference
friction coefficient of 0.63. This can be explained by comparing the figures 4.1 and 4.3. Figure 4.1 has been used
during the formulation of the friction estimator block of the model. More specifically, a condition that has been
set to the friction estimator block is that the slip-slope based estimation method is used when the slip is lower
than 0.025, according to figure 4.1. It can be easily seen in this figure that for slip values less than 0.025, there is
a clear distinction of the slip-slope. However, the friction curves of the tire model that it used for simulation can
not provide a clear distinction of the slip-slope of the curves, when slip is lower than 0.025, according to figure 4.3.
The slip slope estimation multiplied with the A constant (from equation 4.22), described in subsection 4.1.3, pro-
duces the underestimation of the friction coefficient, when it comes to the period of mild braking. On the other
hand, during the hard braking part of this driving cycle, i.e. t > 8s, the friction coefficient estimation is closer
to the reference µ = 0.63, since in that case the normalized longitudinal force, instead of the slip-slope is utilized.

The response of the friction estimator sub-block of the front LH wheel, when it comes to the combined mild
and hard straight-line braking test on packed snow, is presented in figure 5.8.
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Figure 5.8: Friction coefficient and slip slope estimation of the Front LH wheel of the validated model on packed
snow

Similar results, like the ones of the dry asphalt case can be seen in figure 5.8, which shows that during the mild
braking driving cycle, where the slip-slope based method is used for the estimation of the friction coefficient,
i.e. 5s < t < 8s, the prediction of the friction coefficient during this period is almost on average 0.28, which
means that the estimated friction coefficient using the slip-slope forgetting factor method is underestimated,
in comparison with the reference friction coefficient of 0.36. As it has already been explained earlier, the
underestimation of the friction coefficient occurs, because of the difficulty to distinct the slip-slope of the
friction curves of the tire model for low slip values, used in the simulations (figure 4.3). Hence, the combination
of the estimated slip slope, along with the constant A (from equation 4.22) produce the underestimated value
of the friction coefficient. On the other hand, during the hard braking part of this driving cycle, i.e. t > 8s, the
friction coefficient estimation is closer to the reference µ = 0.36, since in that case the normalized longitudinal
force, instead of the slip-slope is utilized.

The response of the friction estimator sub-block of the front LH wheel, when it comes to the combined mild
and hard straight-line braking test on polished ice, is presented in figure 5.9.
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Figure 5.9: Friction coefficient and slip slope estimation of the Front LH wheel of the validated model on polished
ice

Figure 5.9 shows that during the mild braking driving cycle, where the slip-slope based method is used for the
estimation of the friction coefficient, i.e. 5s < t < 8s, the prediction of the friction coefficient during this period
is almost on average 0.25, which means that the estimated friction coefficient using the slip-slope forgetting
factor method is overestimated, in comparison with the reference friction coefficient of 0.18. The reason behind
this overestimation of the friction coefficient is the same like in the case of mild braking on dry asphalt and
packed snow (i.e. difficulty to get the right slip-slope of the tire model for low slip values, used in simulations).
The trend is different (overestimation of µ instead of underestimation), as a result of the product between the
slip slope estimation 4.3 and A constant (equation 4.22). On the other hand, during the hard braking part of
this driving cycle, i.e. t > 8s, the friction coefficient estimation is closer to the reference µ = 0.18, since in that
case the normalized longitudinal force, instead of the slip-slope is utilized.

Discussion - Conclusion

Comparing the figures 5.7, 5.8 and 5.9, it can be said that the slip-slope based friction estimation method works
during the procedure of mild braking for all the different kinds of surfaces. However, due to the inability of the
tire model to give correct slip-slope estimation values, when slip is lower than 0.025, the friction coefficient
estimation using this method underestimates (dry asphalt, packed snow) or overestimates the friction coefficient
(polished ice). When it comes to the periods of the hard braking (i.e. slip is higher than 0.025), the algorithm
seems to give reasonable friction coefficient estimates (i.e. really close to the correspondent reference friction
coefficient estimates) for all the three different kinds of surfaces. However, this something that it has already
been confirmed by the previous subsection, as well.

5.2.2 Surface with Variable Friction Level

In this subsection surfaces with variable friction levels are going to be examined, in terms of prediction of
the friction coefficient. Three different friction scenarios are presented in this subsection. Step change of the
reference friction coefficient three seconds after the initialization of the braking procedure. More specifically,
the first step change of the reference friction coefficient is from dry asphalt (µ = 0.63) to polished ice (µ = 0.18),
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the second one is from polished ice (µ = 0.18) to packed snow (µ = 0.36) and the third one is from packed
snow (µ = 0.36) to dry asphalt (µ = 0.63). As a result of the conclusion of the previous subsection only
the hard braking driving cycle is going to be used, since in that case the friction estimator sub-block gives
reasonable friction coefficient estimates. The tuning factors of both RLS methods and the conditions of the
friction estimator block, described in previews subsection are going to be kept the same. However, the initial
velocities for all the tests have been set to be 80 km/h. The controller gains, as well as the offsets of the
reference slip levels are going to be determined by the initial surface that the vehicle is braking on. Therefore,
if the vehicle is braking from dry asphalt to polished ice, the controller gains and the offsets of the reference
slip that are going to be used are the ones that are being used for hard braking on dry asphalt (presented on
the table 3.1), and they are not going to change until the end of the simulation. The correspondent friction
estimation plots for all the wheels are attached to Appendix D of this thesis project.

The response of both RLS methods as a result of the step change of the reference friction coefficient from dry
asphalt to polished ice, three seconds after the initialization of the hard braking procedure, is illustrated in
figure 5.10.

Figure 5.10: Friction coefficient estimation of the Front LH wheel of the validated model from dry asphalt to
polished ice

As can be seen in figure 5.10, during the step change of the reference friction coefficient, both RLS methods are
able to keep track of this change. The Kalman filter method appears to change quicker to the new reference µ
value, in comparison with the forgetting factor method. However, as a result of its tuning, it appears to have a
lot of noise. In addition, both methods converge to the same new reference µ value after 9 seconds. The reason
why it takes more than 1 second in order for the two methods to predict the new reference µ value is that the
controller gains and slip reference offset that are used after the step change of the µ value are the same like
the ones of the dry asphalt case (table 3.1). That is also the main reason, why initially (t < 8s) the friction
coefficient estimation is really accurate in comparison with the reference µ, while after the step change of the µ,
where the predicted friction coefficient is slightly lower than the reference one for both RLS methods.

The response of both RLS methods as a result of the step change of the reference friction coefficient from
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polished ice to packed snow, three seconds after the initialization of the hard braking procedure is illustrated in
figure 5.11.

Figure 5.11: Friction coefficient estimation of the Front LH wheel of the validated model from polished ice to
packed snow

As it can be seen in figure 5.11, during the step change of the reference friction coefficient, both RLS methods
are able to keep track of this change. The Kalman filter method appears to change quicker to the new reference
µ value, in comparison with the forgetting factor method. However, as a result of its tuning appears to have a
lot of noise and high overshoot. In addition, both methods converge to the same new reference µ value after 9
seconds, but the forgetting factor method appears smoother behavior in comparison with the Kalman filter one.
Again, the reason why it takes more than 1 second in order for the two methods to predict the new reference µ
value is that the controller gains and slip reference offset that are used after the step change of the µ value are
the same like the ones of the polished ice case (table 3.1). That is also the main reason, why initially (t < 8s)
the friction coefficient estimation is really accurate in comparison with the reference µ, while after the step
change of the µ, where the predicted friction coefficient is slightly lower than the reference one for both RLS
methods.

The response of both RLS methods as a result of the step change of the reference friction coefficient from
packed snow to dry asphalt, three seconds after the initialization of the hard braking procedure is illustrated in
figure 5.12.
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Figure 5.12: Friction coefficient estimation of the Front LH wheel of the validated model from packed snow to
dry asphalt

As it can be seen in figure 5.12, during the step change of the reference friction coefficient, both RLS methods
are able to keep track of this change. The Kalman filter method appears to change quicker to the new reference
µ value, in comparison with the forgetting factor method. However, as a result of its tuning appears to have a
lot of noise. In addition, both methods cannot converge to the same new reference µ value after 9 seconds, but
the forgetting factor method appears smoother behavior in comparison with the Kalman filter one. Again, the
reason why it takes more than 1 second in order for the two methods to predict the new reference µ value is
that the controller gains and slip reference offset that are used after the step change of the µ value are the
same like the ones of the polished ice case (table 3.1). That is also the main reason, why initially (t < 8s) the
friction coefficient estimation is really accurate in comparison with the reference µ, while after the step change
of the µ, where the predicted friction coefficient is slightly lower than the reference one for both RLS methods.
It is worth mentioning that the predicted friction coefficient for both RLS methods after the step change of the
reference µ can not remain stable. That occurs due to the lower controller gains of the packed snow case, as
well as the different slip reference offsets that need tp be used for the dry asphalt case.

Discussion - Conclusion

Comparing the friction estimation plots of the figures 5.10, 5.11 and 5.12, it can be said that both RLS methods
can predict the new reference friction coefficients. Since the controller gains and the slip reference offsets remain
independent on the new conditions (i.e. step change of the µ), it is reasonable that they cannot accurately
estimate the new reference µ value, after the step µ change. The forgetting factor method appears to be
smoother than the Kalman filter method, hence it is an ideal method for using it for controller gain optimization
and slip reference offset adjustment, according to the kind of the braking surface. Provided that the model
could change the controller gains and the slip reference offset in order for them to be adapted to the kind of
the braking surface, then faster response of the forgetting factor method, better prediction of the new reference
friction coefficient, less air usage, less braking distance and less slip error are expected.
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5.3 Gain optimization with friction estimation

Now, since information about the friction coefficient is available, the optimization method described in subsec-
tion 4.2.2 can be used. For all friction bins, the optimization method is run for 500 seconds to collect data.
During this time, the tank pressure will be kept constant at 10 bars as no depletion is assumed. The driving
cycle consists of driving up to speed, followed by heavy braking until 20 percent of the maximum speed, and
then the cycle repeats again. During each heavy braking cycle, data is collected and the optimization is active.

Figure 5.13 shows how the values for ks converge over time. It becomes evident that for the lower fric-
tion bins, more data is collected. This results in the observed convergence for the lower friction bins. At
the higher friction bins, this convergence is not yet observed. It can be seen that the values for ks still vary
erratically as expected, since too little data is available.

An interesting observation can be made about the peaks in the low friction surface bins after a steady
state value is already obtained. These peaks are created due to a guess of ks for a given µ at t− 1, while at t,
it appears that the friction over that period was actually different, and the results for that specific value of ks
are saved for that specific friction bin.

Figure 5.13: Development of the switching gain during optimization.

Figure 5.14 shows the optimized ks for the first four friction bins, as there is not enough data collected during
500 seconds of simulation for the higher friction bins. Put simply, on high friction surface, braking takes too
little time for the optimization running at 2 Hz to collect enough data samples.

It is hard to spot a trend in the optimized switching gains ks as only four friction bins are represented,
but it appears that for all axles the following holds: bin1 > bin2 < bin3 > bin 4. Some caution has to be taken
with respect to the higher friction bins, as also here not many data samples are available and it is very possible
that the optimal value is not yet found.
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Figure 5.14: Optimized switching gains for each axle, for each friction bin.

5.4 Optimized System Results

Four tests are used to compare the performance of the optimized slip controller with respect to the original
system. Similar to the reference slip, the found optimal control gains are used in a lookup table from which
they are extracted according to the friction information. The four tests consist of the following situations:

1 2 3 4
µ = 0.4→ 0.2 µ = 0.2→ 0.4 µ = 0.7→ 0.2 µ = 0.2→ 0.7
Snow to Ice Ice to Snow Asphalt to Ice Asphalt to Snow

For the original system, the used gains were based on the ones of the asphalt case, as can be seen in table 3.1.

Figure 5.15 shows the first two situations, where after three seconds of braking, the surface conditions
change. Figure 5.16 shows the third and fourth situation, where the friction surface changes from ice to
asphalt and vice versa. For all four velocity plots, it can be seen that the optimized model comes to a
standstill before the default model. Only when going from ice to snow, it can be observed that the air us-
age is higher for the optimized model. For all other situations, the air usage is also better for the optimized model.

The performance is further illustrated by table 5.1. It can be seen that for all scenarios, the braking distance is
improved with at minimum six percent and at maximum 20 percent. The slip error and air usage however are
not that unanimous, as only the slip error has increased for driving from ice to asphalt, while the air usage
shows an increase for going from ice to snow.
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Figure 5.15: Vehicle velocity and air usage for the original and optimized model during surface with a change
of surface at 3 seconds into braking. Braking starts at 5 seconds.

Figure 5.16: Vehicle velocity and air usage for the original and optimized model during surface with a change
of surface at 3 seconds into braking. Braking starts at 5 seconds.
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Table 5.1: Performance increase of the optimized (opt.) model with respect to the default (def.) model. The
percentual difference is denoted by (diff.).

µ = 0.4→ 0.2 µ = 0.2→ 0.4 µ = 0.7→ 0.2 µ = 0.2→ 0.7
Def. Opt. Diff. % Def. Opt. Diff. % Def. Opt. Diff. % Def. Opt. Diff. %

Braking
Distance
[m]

133 107 -20 121 106 -12 63 59 -6 97 87 -10

Slip Error
[−]

0.14 0.17 +21 0.08 0.11 +38 0.37 0.42 +14 0.15 0.07 -53

Air Usage
[kg]

0.38 0.37 -3 0.28 0.29 +4 0.29 0.28 -3 0.23 0.22 -4

As the optimization algorithm has tried to minimize the slip error, the results from table 5.1 with respect to
the slip error might seem that good. However, as the controller now obtains a better estimation about the peak
friction reference slip, it might prove harder to exactly control towards this value. The fact that the controller
is closer to the peak reference slip is illustrated by the decrease in braking distance. On the other hand, it
might also be that the values found for the switching gains are not as good as they could be. This has both to
do with the parameters set for the optimization, as well as the amount of available data from the optimization.
Figure 5.13 illustrates that for the higher friction bins, no steady-state value is found yet.

Nevertheless, the most important brake metrics, braking distance and air usage, show improvement with respect
to the default model. Even though the situation from driving from ice to snow shows that the air usage has
gone up with four percent, the braking distance has gone down with twelve percent, which is a very worthwhile
trade off.
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6 Discussion

Using test data acquired during the winter tests, chapter 3 has shown that the integration of the slip controller
in the VTM has succeeded, and that the behavior of the updated VTM is sufficiently similar to the one of
the truck used in the tests. As mentioned however, there are several points for which the VTM presents
different behavior. Especially on dry asphalt and for low speeds, the VTM seems to diverge more with
respect to wheel slip. The lateral dynamics showed good overall performance from the VTM, while here
also differences in wheel slip, yaw rate and sideslip were observed. Either way, in all cases, the Pacejka
tire model is the most probable culprit for discrepancies. With a large number of parameters to tune, and
limited knowledge about the tire parameters of the actual tires used on the truck, it was virtually impossible
to get it exactly right. Nonetheless, a good enough approximation was reached for the goals of this thesis project.

The slip-slope friction estimation algorithm has shown to give good results for different friction surfaces
and driving cycles. With the chosen tuning parameters, it has become evident that the recursive least squares
identification method using the forgetting factor outperformed the Kalman filter. For heavy braking, most
of the time normalized force was used as a measure of the friction surface. For the mild braking however,
slip-slope estimation has been used. Unfortunately, due to the limitations of the Pacejka Tire model, slip-slope
estimation did not show good results for all different surface conditions, as the estimated slip-slope was roughly
the same for every surface. When a change in friction is concerned, the friction estimation algorithm still
showed good results and fast enough convergence.

The optimization algorithm has proven to work properly with the difficult environment it had to work
in. For the lower friction bins, where more data was available, convergence could be observed. It is however
impossible to say whether the found value actually is the optimal point or at least close to the optimal point,
as both the algorithm is relatively untested and the initial conditions might need to be tuned to provide better
results.

Ultimately, using the optimized controller with friction estimation has resulted in a reduction of braking
distance for all four driving tests, and only for one case air consumption has increased. To what extend this
should be contributed to the optimization of the switching gain ks or the reference slip level remains unknown.
As mentioned earlier, it could very well be that the slip level for the peak friction coefficient is approximated
better resulting in the improved stopping distance, where the optimization of the switching gain only limited
the slip error around that point. As it might be harder to control the slip at this slip peak, the increase in slip
error could be explained. Nevertheless, performance of the complete system has been improved.
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7 Conclusion

By improving the brake performance of a truck, both the stopping distance and air-usage can be decreased,
resulting in increased active safety and better fuel consumption due to smaller air tanks and compressors. This
thesis project has set out to increase the performance of the slip control braking even further. By integrating
the VTM, Volvo’s vehicle dynamics model, with a model of FABV braking and slip control, a platform has
been created to develop and test new wheel-based functions using slip control braking. The updated vehicle
model has been validated against test data and has shown to be adequate for further function development.

With the validated vehicle model, three new wheel-based functions have been created to improve the braking
performance. The first and most important function was the on-line friction estimation during braking. Using
recursive least squares algorithms and force observers, it has been shown that the friction can be estimated
quickly and correctly. The second one relied on the friction estimation to produce a reference signal for the ideal
wheel slip using a pre-defined lookup table. The third function was able to optimize the switching gain of the
sliding mode controller during operation to minimize the error between the reference slip and the actual wheel slip.

With the real-time friction estimation and optimization of the controller working in parallel, results of
up to twenty percent in braking distance were obtained, where in most cases, also a reduction in air usage
could be observed.

The FABV braking system with optimized slip control proves to be a great improvement for the active
safety of the vehicle. But not only braking performance can benefit from the information about friction that
has become available. Also other systems could be improved, as well by the knowledge of the friction coefficient.
To conclude, a new step has been set in the realization of slip control braking using FABV on trucks, and the
braking performance of heavy vehicles will be increased drastically.
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8 Future Work

As mentioned in the introduction, some limitations have been set to determine the scope of this thesis work.
With the newly acquired knowledge, some recommendations can be done regarding future work on slip control
braking using the FABV.

From the modeling point of view, the tire model is the key for accurate modeling of the vehicle. The
Pacejka tire model could be improved by better tire parameters, or being updated to a newer version or using a
different tire model which captures the dynamics better. As VTM includes more truck configurations than
the one used in this thesis project, behavior of other trucks with slip control braking could be assessed in
simulation too.

Regarding friction estimation, more complex methods are available which are supposed to capture the tire-road
friction even better, utilizing also lateral dynamics. More complex models have, for example, more tire models
to be estimated. That also requires more sophisticated filtering and identification algorithms to be used. Having
better information about the tire-road friction will not only improve the slip-control braking performance, but
also other systems throughout the vehicle, such as stability control systems, roll-over prevention systems and
collision avoidance systems for autonomous driving.

Next to controller optimization, other wheel-based functions can be incorporated to obtain even better
braking performance. These include brake gain estimation, brake capability monitoring and brake torque
control.

The optimization method used in this thesis could be investigated further on or even replaced by one more
efficient or accurate.

The simulations and test data were limited to straight-line braking and brake-in-turn maneuvers. To validate
the model even further, other tests could be also devised and more data could be gathered. Examples of other
tests could be steady state cornering, step steer test, or the standardized sine-with-dwell. Gathering more test
data like air-usage and wheel normal loads could provide important information for better validation of the
vehicle model.

Finally, with improved braking performance of the local brake controllers, also vehicle wide algorithms
can be improved. Using peak friction for example, AEBS and ACC can be improved. Knowing the optimal
slip, stability control could be improved. This again will lead to increased safety of the vehicle.
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A Vehicle Parameters

The public version of the report does not have this data available.

B Model Modifications

The public version of the report does not have this data available.

C Parameter Changes

The public version of the report does not have this data available.

D Friction Estimation

Figure D.1: Friction coefficient estimation of all wheels of the validated model on dry asphalt
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Figure D.2: Friction coefficient estimation of all wheels of the validated model on packed snow

Figure D.3: Friction coefficient estimation of wheels of the validated model on polished ice
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Figure D.4: Friction coefficient estimation of all wheels of the validated model from dry asphalt to polished ice

Figure D.5: Friction coefficient estimation of all wheels of the validated model from polished ice to packed snow
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Figure D.6: Friction coefficient estimation of all wheels of the validated model from packed snow to dry asphalt
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E Vehicle Testing Addendum

The last part of the thesis consisted of testing the developed functions on a test vehicle. The test vehicle
has a prototype FABV installed at each wheel, controlled by an individual ECU. These individual ECUs are
controlled by a central dSPACE Autobox ECU.

The first step of implementing the functions on the ECU was converting the developed function in MATLAB
and Simulink to C-code which can be compiled for execution on the ECU. Via Matlab’s auto-code generation,
the necessary C-files could be created with ease.

The next step consisted of testing the input and output of the ECU. To reach this goal, the CAN com-
munication protocol is used to send the ECU the required information and receive the ECU’s output. Side by
side simulations in Simulink showed that the output of the ECU corresponded to that of the previously created
models.

The final step of preparations was setting up dSPACE to communicate with the respective ECUs via the
Autobox. Now, during the experiment, parameter changes could be easily made at the ECU. Figure E.1 gives a
graphical representation of the method.

Simulink
Functions

Auto-Generated
Code

Source Code

.run file ECU

ECU
In the Loop

with Simulink

ECU
In the Loop

with Autobox

ECU
On Vehicle

Auto-Code Generation

Create Wrapper Functions

Compile Source Code

Flash ECU

Set up Simulink for
’In the Loop’ Testing

Create Autobox Interface

Install ECU on Vehicle

Figure E.1: Graphical representation of the method for testing the developed functions in Simulink on the ECU
at vehicle wheel base.

The two functions that were tested on the ECU were the friction estimation algorithm and the adaptive reference
slip algorithm. The ECU updated with the two functions was mounted on the drive-1 axle of the 8x4 Volvo
truck on the left hand side. Hence, only results of the left hand wheel of the drive-1 axle are going to be presented.

Tests were performed at the Volvo test track in Hällerad, Sweden. The friction coefficient of this test
track, when it comes to the wet basalt surface, had been estimated to be approximately 0.13 [9] The tests
consisted of:
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• Hard braking on wet basalt

• Mild braking on wet basalt

• Hard braking from wet basalt to dry asphalt

• Hard braking from dry asphalt to wet basalt

E.1 Results

The first test which was carried out with the vehicle was straight-line hard braking on wet basalt from 60-0
km/h. Plots of longitudinal and wheel speed, estimated friction coefficient and wheel slip are illustrated in the
figure below.

In Figure E.2 it can be seen that when the vehicle starts to brake (almost when t = 21s), then the fric-
tion estimation algorithm start to work. More specifically, on the wet basalt the friction estimation algorithm
seems to have fast response and after two seconds it is able to predict a reasonable value of the friction coefficient.

Figure E.2: In the top plot of the figure the longitudinal vehicle speed and wheel speed of the left hand wheel of
the drive-1 axle are presented. In the second plot of the figure the estimated friction coefficient, along with the
reference friction coefficient are illustrated. In the third plot of the figure it is depicted the longitudinal wheel
slip of the the left hand wheel of the drive-1 axle.

The second test which was carried out with the vehicle was straight-line mild braking (brake pressure was
set to be 1.2 bar) on wet basalt from 38-0 km/h. Plots of longitudinal and wheel speed, estimated friction
coefficient and wheel slip are illustrated in the figure below.
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Figure E.3: In the top plot of the figure the longitudinal vehicle speed and wheel speed of the left hand wheel of
the drive-1 axle are presented. In the second plot of the figure the estimated friction coefficient, along with the
reference friction coefficient are illustrated. In the third plot of the figure it is depicted the longitudinal wheel
slip of the the left hand wheel of the drive-1 axle.

In Figure E.3 it can be seen that when the vehicle starts to brake (almost when t = 12.5s), then the fric-
tion estimation algorithm start to work. More specifically, the friction estimation algorithm on wet basalt
seems to have fast response and after one and a half seconds it is able to predict a reasonable value of
the friction coefficient. The interesting part on this kind of test is that the friction estimation algorithm
works properly and produces reasonable friction coefficient values, even when the brake pressure is not that high.

The third test which was carried out with the vehicle was straight-line hard braking on wet basalt from 39-0
km/h. In this test, apart from the operation of the friction estimation algorithm, also the performance of the
reference slip signal algorithm (lookup table) was examined, according to the kind of surface that the vehicle
is braking on. The initial implementation of the lookup table provided a too low reference slip value. Using
global control, an increased reference slip signal using the lookup table was sent to the ECU of the brake valve
of the drive-1 axle on the left-hand wheel. Plots of longitudinal and wheel speed, estimated friction coefficient,
wheel slip and adaptive reference slip signal are illustrated in the figure below.
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Figure E.4: In the top plot of the figure the longitudinal vehicle speed and wheel speed of the left hand wheel of
the drive-1 axle are presented. In the second plot of the figure the estimated friction coefficient, along with the
reference friction coefficient are illustrated. In the third plot of the figure both the longitudinal wheel slip of the
the left hand wheel of the drive-1 axle and the corresponding adaptive reference slip signal are depicted.

In Figure E.4 it can be seen that when the vehicle starts to brake (almost when t = 6.5s), then the friction
estimation algorithm start to work. More specifically, the friction estimation algorithm seems to have fast
response and after one and a half seconds it is able to predict a reasonable value of the friction coefficient.
In the last plot of this figure the performance of the adaptive reference slip signal can be seen. The linear
connection between the friction estimation algorithm and the adaptive reference slip signal algorithm is
clearly illustrated in this figure, observing the general trend of these two signals. In addition, by looking at
the last plot of this figure, it can be seen seen that the wheel slip follows the adaptive reference slip signal properly.

The fourth test which was carried out with the vehicle was straight-line hard braking from wet basalt to
dry asphalt from 50-0 km/h. In this test, apart of the operation of the friction estimation algorithm, and
the performance of the reference slip signal algorithm, also the ability of the friction estimation algorithm to
estimate the friction coefficient was examined for a changing friction surface. Plots of longitudinal and wheel
speed, estimated friction coefficient, wheel slip and adaptive reference slip signal are illustrated in the figure
below.
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Figure E.5: In the top plot of the figure the longitudinal vehicle speed and wheel speed of the left hand wheel
of the drive-1 axle, along with the point of changing of the friction surface (dashed line), are presented. In
the second plot of the figure the estimated friction coefficient, along with the reference friction coefficient are
illustrated. In the third plot of the figure both the longitudinal wheel slip of the the left hand wheel of the drive-1
axle and the corresponding adaptive reference slip signal, along with the point of changing of the friction surface
(dashed line), are depicted.
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Figure E.6: In the top plot of the figure the longitudinal vehicle speed and wheel speed of the left hand wheel
of the drive-1 axle, along with the point of changing of the friction surface (dashed line), are presented. In
the second plot of the figure the estimated friction coefficient, along with the reference friction coefficient are
illustrated. In the third plot of the figure both the longitudinal wheel slip of the the left hand wheel of the drive-1
axle and the corresponding adaptive reference slip signal, along with the point of changing of the friction surface
(dashed line), are depicted.

In Figure E.5, it can be seen that the vehicle starts to brake from 50 km/h on wet basalt at almost t = 16.5s.
The vehicle continues to brake and after one second (i.e. when t = 17.5s), the surface changes from wet basalt
to dry asphalt. At t = 19.5s a wheel lock can be observed. The friction coefficient algorithm is able to give
reasonable friction coefficient estimate on wet basalt. The same also holds for the estimated friction coefficient
on dry asphalt. However, the algorithm can track the change on the friction surface and give a reasonable
estimate after three seconds.

Figure E.6 shows the opposite situation where braking occurs on asphalt first and then on the wet basalt.
Braking starts at roughly t = 10s, and very quickly the surface changes, at t = 11s. The friction estimation
algorithm tries to estimate the level of friction coefficient for the dry asphalt, but before it is able to do so,
the change to wet basalt has been made. Again, after three seconds from changing the surface, the friction
coefficient on wet basalt is estimated correctly.

This slow response of the friction estimation algorithm, as well as the wheel lock that occurs at t = 19.5s for
Figure E.5 and t = 11s for Figure E.6 can be caused due to the controller gains of the sliding mode controller.
More specifically, the controller gains that were used on this test were the ones of the wet basalt surface, which
are less aggressive than the correspondent ones of the dry asphalt surface. Also, the pole placement of the force
observer was set to be not too aggressive. More aggressive pole placement could lead to faster response of the
longitudinal force observer, increasing the response of the friction estimation. In the last plot of this figure, it
can be seen that the reference slip signal is dependent on the estimated friction coefficient, and hence on the
surface that the vehicle is braking on. Therefore, even the wheel slip is able to follow the adaptive reference slip
signal according to the surface on which the vehicle is braking. After t = 19s the wheel slip cannot follow the
reference slip signal due to lower controller gains, and hence it is increasing up to one, where the wheel lock occurs.
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E.2 Discussion and Conclusion

To conclude, the complete vehicle testing showed that the friction estimation algorithm works properly inde-
pendent of the kind of surface that the vehicle is braking on. However, where in the simulation convergence
only took around 1 second, in real life this was closer to three seconds. The importance of having good force
signals as inputs to the friction estimator block shows to be of paramount importance. More specifically, the
estimation of the friction coefficient on surfaces with low friction is more precise and stable in comparison
with the correspondent one on surfaces with high friction. This estimation depends a lot on the trend of
longitudinal and normal forces, where in high friction surfaces the changes of these forces are more severe in
comparison with the correspondent ones on surfaces with low friction. Hence, on surfaces with low friction, the
predictability of the friction estimation algorithm is better without better information about the load transfer.
Another important aspect is the adaptability of the reference slip signal according to the surface which the
vehicle is braking on. The linear relationship between the friction coefficient and the reference slip signal can
influence the performance of the sliding mode controller, in terms of better braking distance and/or better air
usage, as it was showed on this thesis project.

The only function not tested during the vehicle testing is the switching gain optimization, as this would
require a large number of consecutive runs. Testing this function will be needed to confirm the conclusions
made in this report based on the results obtained with the simulations.
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