
Rymd
Distributed Encrypted Peer-To-Peer Storage
Bachelor’s thesis in Computer Science

NIKLAS ANDRÉASSON
ROBIN ANDERSSON
JOHANNES RINGMARK
JOHAN BROOK
ROBERT EDSTRÖM

Department of Computer Science and Engineering
Division of Networks and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2014





BACHELOR’S THESIS IN COMPUTER SCIENCE

Rymd
Distributed Encrypted Peer-To-Peer Storage

NIKLAS ANDRÉASSON
ROBIN ANDERSSON

JOHANNES RINGMARK
JOHAN BROOK

ROBERT EDSTRÖM

Department of Computer Science and Engineering
Division of Networks and Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2014



Rymd
Distributed Encrypted Peer-To-Peer Storage
NIKLAS ANDRÉASSON
ROBIN ANDERSSON
JOHANNES RINGMARK
JOHAN BROOK
ROBERT EDSTRÖM

c© NIKLAS ANDRÉASSON , ROBIN ANDERSSON , JOHANNES RINGMARK ,
JOHAN BROOK , ROBERT EDSTRÖM, 2014

Bachelor’s thesis 2014:01
ISSN 1654-4676
Department of Computer Science and Engineering
Division of Networks and Systems
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Göteborg, Sweden 2014



Abstract

This thesis describes a cryptographically secured decentralized peer-to-peer
file sharing system, bundled as a JavaScript developer library called Rymd.
The thesis also includes an evaluation of current web technologies to determine
if they are sufficient to implement such a system.

The problem domain includes how to make the system secure, decentralized
and modular using web technologies. Such a system would give control of
traditionally centralized services, such as messaging or storage and sharing
of files, back to users. By making the system highly modular, it achieves
satisfying results in reliability and technical agnosticism with regards to
underlying implementations.

Alongside Rymd, a web application called Shuttle is developed, which
injects default implementation modules of the core functionality in Rymd.
IndexedDB is used for persistent data and key storage while peer-to-peer
communication is achieved through WebRTC. Common cryptographic services
such as encryption, decryption, signing are done through the Web Cryptogra-
phy API. The Namecoin blockchain is used for storing user identities mapped
to their public encryption keys, which in turn are used to verify peer identities.

Even though this project succeeds with its goal of creating a client-side
file sharing platform, the technologies used are in such a premature state that
they currently can not fully satisfy security goals and usability. The authors
of this report are confident that standards bodies and browser vendors will
continue their work on bringing open web technologies up to a similar level of
functionality as their native counterparts.

Keywords: peer-to-peer, distributed, cryptography, file sharing, JavaScript,
IndexedDB, WebCrypto, Namecoin

i



Sammanfattning

Detta projekt syftar till ta fram ett modulärt bibliotek i JavaScript som är
avsett för utvecklare och går under namnet Rymd. Biblioteket tillhandahåller
säker filöverföring direkt mellan webbläsare. Projektet innefattar utvärdering
av moderna webbtekniker för att säkerställa de mest lämpade alternativen.

Huvudproblematiken kretsar kring hur systemet kan göras säkert, decentra-
liserat och modulärt med hjälp av moderna webbteknologier. Ett sådant system
kan användas för att öka användares kontroll över traditionellt centraliserade
tjänster, såsom chatt och filsynkning.

Som demonstration av Rymds funktionalitet skapades även en webbappli-
kation vid namn Shuttle, där givna implementationer för kärnfunktionaliteten
i Rymd är givna. För datalagring används IndexedDB medan peer-to-peer-
kommunikationen utnyttjar WebRTC. Vidare används det ej färdigställda Web
Cryptography API för kryptografiska operationer såsom kryptering, dekrypte-
ring, och signering. För att lagra kryptografiska nycklar används kryptovalutan
Namecoins så kallade blockchain där publika nycklar som används för verifiering
av identiteter kan hämtas ut med hjälp av användaralias.

Projektet mynnade i slutändan ut i en fungerande fildelningsplattform,
med vissa brister i säkerheten. Dessa brister kan direkt härledas till det tidiga
utvecklingsstadiet i de webbteknologier som används. Då webben utvecklas
i en rasande takt av både webbläsare och standardiseringsorgan är vi dock
säkra på att detta rättas till så småningom.

ii



Terminology

General terminology and abbreviations

Adobe PhoneGap A software enabling development of cross-platform hybrid
smartphone applications - applications developed using web technologies, but
packaged as native smartphone binaries.

API Application Programming Interface. An interface that software developers
can use to get easy access to data and/or particular functionality for their
software. Typically exposed as a software library or HTTP service.

Bitcoin The first and biggest widespread cryptocurrency.

CA Certificate Authority. A third party that is trusted to verify the validity of
public keys and certificates.

Chrome Apps Similar to Adobe PhoneGap, but for desktop applications running
in a Google Chrome sandbox.

Cloud storage A service that hosts data externally with seamless access over
the internet. (called blockchain) to track transactions. The vast majority of
cryptocurrencies are forks off Bitcoin.

Centralized system A system which has several nodes connecting to and depend-
ing on one or a few central endpoints.

CRUD Create-Read-Update-Delete. A set of actions to be taken on data collec-
tions.

Cryptocurrency A network transaction system that uses a fully distributed
cryptographically secured ledger

Decentralized system A system where responsibilities are shared across the
nodes and does not depend on a single, central endpoint.

DHT Distributed Hash Table. A notion in computer science of a distributed
key-value store.

Firefox OS A smartphone operating system where all applications are web-based.

GUID Globally Unique Identifier. Used as pseudo-unique identifiers, such as keys
in a database. Usually 128-bit values stored as 32 hexadecimal in groups
separated by hyphens.

IETF Internet Engineering Task Force. An organization with the purpose of
improving the internet by creating standards.

JSON JavaScript Object Notation, a lightweight alternative to XML for exchanging
data (often over different APIs). JSON has become a common way for
formatting data, and most languages have native implementations for parsing
and serializing JSON.

NoSQL All database systems which are not modelled in tabular relations. Exam-
ples are graphs, trees, and key-value stores.

OpenPGP A standard for data encryption and signing, originally coming from the
proprietary software Pretty Good Privacy (PGP) and widely spread through
the free implementation GPG.

P2P Peer-to-peer. Distributed, direct communication between clients.

iii



PKCS A group of standards for public-key cryptography devised and published
by RSA Security Inc.

PKCS#8 Private-Key Information Syntax Standard, used to carry private cer-
tificate keypairs and provide a way to construct private key certificates in
ASN1.

PKI Public Key Infrastructure. A system that associates (unique) user identities
with their public keys. Typically implemented as a Web of Trust or with one
or several CAs. Typically, trusted parties use their private keys to sign the
public keys of users to verify the connection between an identity and a public
key.

RDBMS Relational Database Management System, a popular type of database
management system based on the relational model.

REST Representational State Transfer, a style used for structuring data APIs by
putting constraints on the different URL endpoints. If an API uses REST
style, it is often referred to as RESTful.

RSA A widely used public-key cryptosystem. As such, it builds on pairs of private
and public keys where encryption with one can be reversed by decrypting with
the other. This system is asymmetric and the security relies on the practical
difficulty of factoring the product of two large prime numbers.

SPKI Simple Public Key Infrastructure, a successor to X.509. It was designed
with the goal to eliminate overcomplication and scalability problems.

SQL Structured Query Language. A language for managing, querying and manip-
ulating data in relational database systems.

SQL injection A technique for injecting malicious SQL code into the executing
database queries in order to, for instance, dump the contents of the database.

XHR XMLHttpRequest is a web browser JavaScript API used for sending asyn-
chronous HTTP requests directly from the client.

X.509 a standard for a public key infrastructure (PKI) from the International
Telecommunication Union Telecommunication Standardization Sector.

XSS Cross Site Scripting: The technique of injecting client-side scripts into web
pages as an attack method.

W3C World Wide Web Consortium. A standards organization for the World Wide
Web.

Web of Trust A type of distributed PKI that builds on peer-to-peer trust. The
idea is that if Alice trusts Bob, then Bob is trusted introduce new identities
and public keys for Alice.

Terms with specific meaning in the Rymd project

Identity A unique, memorable string identifying a user within the network.

Module A delimited area of interest and functionality in system architecture.

Node A client in the network (such as a web browser).

Resource A file or folder in the network (a thing that can be shared between
nodes).

iv



Rymd The developer library for web based peer-to-peer sharing – the main product.
Is also the Swedish word for space, which encompass the main ideas of the
project.

Shuttle A web based file sharing application implemented using Rymd to demon-
strate the basic capabilities of the project.

v



vi



Contents

Abstract i

Sammanfattning ii

Terminology iii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Decentralization of system logic . . . . . . . . . . . . . . . . . 3
1.3.2 Peer identity verification . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Resource storage . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 Resource identification . . . . . . . . . . . . . . . . . . . . . . 3
1.3.5 Communication flow and transfer initiation . . . . . . . . . . 3

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methodology 5

2.1 Evaluation of technologies . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Technical background 7

3.1 Client-side storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Web Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 WebSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 FileSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 IndexedDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 XMLHttpRequest . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 WebSocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 NAT Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 WebRTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Distributed storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Namecoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Keybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Web Cryptography API . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Advanced Encryption Standard . . . . . . . . . . . . . . . . . 20

4 Related work 21

vii



5 Analysis and System design 23

5.1 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Peer-to-peer communication . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Peer identity verification . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Creation and transfers of resources . . . . . . . . . . . . . . . . . . . 26
5.6 Modules in Rymd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 System implementation 30

6.1 Rymd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Authentication (DHT, DHT Client) . . . . . . . . . . . . . . . . . . 33
6.4 RymdCrypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 IndexedDBStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 PeerJS Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.7 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Results and Discussion 39

7.1 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Decentralizing the system . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.1 Connecting peers using WebRTC . . . . . . . . . . . . . . . . 40
7.2.2 Accessing the Namecoin blockchain from a web client . . . . 40

7.3 Cryptographically securing data . . . . . . . . . . . . . . . . . . . . . 41
7.4 Making the system modular and implementation agnostic . . . . . . 41
7.5 Trusting a distributed web based application . . . . . . . . . . . . . 42
7.6 Ethical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.6.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Conclusion 44

References 45

Appendices 50

A Source code I

B List of external libraries I

viii



1 | Introduction

I n a day and age where people all over the world own more than one digital
device [1] [2], there is a growing need for services which let users easily store,

access, synchronize, and share personal files. The internet makes it possible to store
data in the cloud and access it from a web browser or a designated client. Instead
of storing files on physical media, it is today a common practice to use services such
as Dropbox, Google Drive, or Apple’s iCloud for home and business matters. In
November 2013, Dropbox reached 200 million users [3]. Google Drive is integrated
across a large number of Google’s products. Similarly, Apple’s iCloud stores and
synchronizes personal preferences across devices and applications for iOS and OS X
users [4].

The existing mainstream services mentioned above are centralized, which means
that the files and resources stored with them are placed on central servers somewhere
on the internet. This report describes the results of developing a file sharing
system that runs independently on each participant’s computer and does not rely
on any central server - a decentralized system. The system will build on the
preconception that direct connections are only made between peers that have pre-
existing knowledge of each other. Such networks could still allow friend-to-friend
propagation of data and searches in several steps to connect users to vast networks
of resources through chains of friends of friends. Focus will be on security and open
web standards.

1.1 Background

Most of the existing technologies and protocols that constitute the internet, as
well as the services running on it, are by design decentralized and promote the
design of distributed systems [5]. On the application layer, the hosting of large files
are to a growing extent conducted in a distributed peer-to-peer fashion using the
Bittorrent protocol, to the point where it is becoming the de facto approach for
many use cases and areas. In others, the transition to distributed transfers and
storage of data is still in its infancy. In technology and developer communities,
distributed and decentralized have become buzzwords. The norm today is to use
distributed approaches for things such as source version control, data storage, heavy
computations, and content delivery.

However, users, developers, and businesses alike are moving more and more data
to an arbitrary cloud on the internet. Companies such as Google and Dropbox
provide servers for data storage: An approach that poses several security concerns.
Recent news on government infiltration of these services, as well as Microsoft’s
defense of private investigations in users’ Hotmail inboxes [6], raises the issues
of centralized storage beyond users’ control. The internet itself has always been
decentralized, and by centralizing information one deviates from the fundamental
idea of a decentralized network of nodes that is the internet of today.

Simultaneously, there is currently a clear transition of user-space applications
and services from native binaries to web applications running inside a web browser.
Recent initiatives such as Google Chrome Apps, Adobe PhoneGap, and Mozilla
Firefox OS are starting to bridge the gap between web applications and native appli-
cations even more, both for mobile and desktop environments. These applications
are implemented using what is casually referred to as HTML5 or, more accurately,
the open web stack – an umbrella term for technologies such as HTML, CSS, and
JavaScript, which are defined by open standards. Web applications are becoming
increasingly powerful in areas of software engineering and computer science, even
though many standards are still in their infancy. Browser implementation and
support is still unstable in many areas, leaving much to cover. Even so, technologies

1



for functionality that was earlier exclusively for native applications are now available
for any developer to use in modern, cutting edge web browsers. Notable examples
are peer-to-peer video chat, local file storage, powerful encryption methods, and
real-time full-duplex communication.

Following these trends, a natural consequence is a peer-to-peer distributed data-
syncing protocol implemented purely on the open web stack utilizing cryptographic
keys for access control. This would hopefully act as a stepping stone facilitating
the development of user-friendly and convenient, yet secure and privacy-protecting,
distributed implementations of services such as personal file synchronization, media
sharing, and private communication.

1.2 Purpose

The purpose of this project is a cryptographically secured distributed peer-to-peer
system for storage and communication of data resources (e.g. files). It should
be bundled as a developer library with focus on modularity, decentralization, and
security. The goal is to determine if such a system can be implemented solely with
web technologies and become usable for scenarios such as file sharing between clients.
Such a system should fulfill the following requirements:

Privacy Only users that are given explicit access to a resource should be able to
deduce anything useful about its content. No central entity, such as a server
administrator or network operator, should be able to extract incriminating
information about a client. Users should be able to trust that they know who
they are communicating with. Network operators and server administrators
must not be able to forge identities in a way that cannot be detected by users.

Security Encryption in each step, from resource storage to data transfer. Only
users with explicit access to a resource should be able to read it.

Reliability If any server goes down and cannot be recovered, no damage must be
done to the network as a whole as long as anyone can host a new server using
the same source code.

Modularization and implementation agnosticism The system as a whole must
not depend on particular implementations for resource storage, key storage, or
which protocol to use for data transfer. If a developer wants to, they should
be able to easily plug in their own alternative implementation module.

1.3 Problem

In order to construct a web-based file sharing system with the purpose and re-
quirements stated above, there are a set of concrete problems that need to be
addressed:

• Decentralization of system logic

• Peer identity verification

• Resource storage

• Resource identification

• Communication flow and transfer initiation

2



1.3.1 Decentralization of system logic
In a truly decentralized system it is necessary to avoid having crucial system logic
and data on a central server. The functionality of the system should not rely on the
availability of any specific server. If servers are needed for any reason, they should
not store persistent or sensitive data and be easily replaceable with new servers
running the same software. Temporary downtime can be accepted in this case.
Since clients do not know what software their peers are running, all information
from them must be considered untrusted until verified.

1.3.2 Peer identity verification
The stated requirement of privacy can only be assured if the identities of peers can
be verified. This is generally done with public-key cryptography, where each user is
associated with a pair of asymmetric cryptographic keys. With knowledge of the
public keys of their peers, there are standardized identity verification protocols used
on a session-to-session basis. Regardless of the authentication protocol used, there
is always a chicken-and-egg problem with the distribution of public keys and how
to tie them to identities. In order to trust the validity of the key provided from
another entity, the user puts trust in that entity. Traditionally, there are two types
of Public Key Infrastructures (PKIs) with different ways to address this:

• A Web of Trust, as often utilized in OpenPGP [7]. Here, a user has a list of
peers that they trust - trusted introducers. If they receive a public key and
associated identity signed by one of their trusted introducers, they will know
that the trusted introducer has verified the connection between the identity
and the public key. In this way, an active user will steadily grow their network
of trusted introducers. One needs to have a network of dependable and active
peers in order to successfully participate in a Web of Trust.

• A PKI centered around one or several Certificate Authorities (CAs). Here,
there exists a predefined list of authorities that are trusted to sign participants’
public keys. This creates a centralized network and puts a lot of trust in the
CAs. SSL utilizes this approach and there are several historical examples
of when this trust has been broken (more recently in the Diginotar hack of
2011).

1.3.3 Resource storage
Usability, security and adherence to public web standards are three highly prioritized
properties that make the question of how to locally store resources on clients a
difficult one. The FileSystem API [8] enables access to the local filesystem. Some
browsers have simple implementations in place, but the standard is now considered
dead [9]. Local file access could be very useful – but without cross-platform support
it is considered out of the question. A secure way to store the encryption keys for
encrypted resources also needs to be determined.

1.3.4 Resource identification
It is desirable for resources to have identifiers that are memorable, secure, and
unique. Resource checksums will have to be communicated and verified by peers
before accepting a transfer of resource data.

1.3.5 Communication flow and transfer initiation
In order for nodes to be able to share data, they need a way to connect to each other.
They also need to do this in a secure manner in order to prevent potential vicious
third parties listening on a connection from making any sense of retrieved data. In

3



other words, critical parts should not be sent in raw form but rather be encrypted.
When also considering security aspects there are essentially three questions that
need to be answered regarding the issue of connecting nodes:

• How can a node find another node to begin with (peer discovery)?

• When a node has been found, how can a connection be established?

• What data needs to be encrypted in order to ensure the system’s integrity?

1.4 Scope

The project has developed two end products: Rymd and Shuttle:

Rymd is the main outcome and end goal of the project. It solves authentication
and data transfer between nodes, while providing encryption and storage of
resources locally. It should be usable as a drop-in module by any web client-
side code, such as a regular front-end web application, browser extension, or
widget.

Shuttle is a proof-of-concept prototype using Rymd to show its functionality. It
can be seen as an executable evaluation of Rymd and will be briefly discussed
in this report. Shuttle is a working example of a peer-to-peer file sharing
application that leverages Rymd.

The system will not deal with version management, synchronization, merging
resources, or history. Neither will the issue of leaking of certain kinds of metadata
be addressed. This includes information on who is communicating with whom, since
this is a very difficult issue far beyond the scope of this project. Unfortunately,
network operators will likely be able to make a rough estimate of the size of a
single resource based on the amount of data transferred. This is considered a
reasonable privacy-performance tradeoff as long as transfers are padded enough so
that estimations can not be really accurate.

Rymd will only handle connections and transfers of data between peers with
pre-existing knowledge of each other, and the issue of searching for files hosted by
unknown peers will therefore not be within the scope of this project. The system
should, however, leave the door open for implementing applications to construct
propagating search to allow peers connected through some degrees of separation to
exchange files.

Some of the technologies involved in this project have been developed quite
recently, meaning that even some of the latest browsers lack support for some
functionalities. The final product will therefore not yet work on all types of devices
and browsers.

1.5 Structure

Chapter 2 describes the different parts of this project methodology wise. The main
part of this report can be viewed as a three-step process: a theoretical background;
a design, evaluation and analysis chapter; and an implementation chapter.

In chapter 3, fundamental information about relevant theories and technologies
is given in order to supply the reader an understanding of the field. Chapter 4
surveys the current landscape and positions this project among other related work.
An analysis and overall system design is described in chapter 5, which concludes in
a specification of the underlying modules. The low-level implementations of these
are described in chapter 6.

The final part of this report involves discussion and conclusion in chapters 7 and 8,
where the results of the project are presented and discussed.

4



2 | Methodology
This chapter describes the division of the project into two parts: an evaluation
phase and an implementation phase. During the evaluation, research was made
regarding relevant technologies. Evaluation also included rapid prototyping to
quickly test the technologies for the project’s use cases. Finally, the methodologies
and modularization of the final implementation are briefly presented.

2.1 Evaluation of technologies

The goal of the evaluation phase was to map out the landscape of relevant technolo-
gies. Different options were compared with each other in order to analyze strengths
and weaknesses in regards to a set of given parameters:

Suitability How well does the technology suit the needs and demands of the job?
Are there any technical limitations?

Maintenance Is the technology actively maintained? If not, does it pose an issue?
What are the future scenarios?

Industry support Are some unsupported browsers negligible? What are the
industry’s current opinions?

Research was done concerning open web technologies, mainly those belonging to
the HTML5 standard. The use of open web technologies was a requirement of the
project’s end product, Rymd, which meant that no native code could be written
as part of the system and that the quality of the product would be completely
dependent on the state of existing APIs and tools for web development. Thus
research was done in order to survey the landscape of existing technologies in order
to determine which, if any, fulfilled the requirements and made a good fit for the end
product. The technologies surveyed are presented in chapter 3 with the resulting
analysis and discussion in chapter 5.

A set of areas was created, with each area connected to one or several core
problems stated within the project. In each area, evaluation and comparisons
were made, which included researching APIs and prototyping actual test cases
implementing isolated forms of future system features. The research areas were
divided as follows:

Data Storage How to store data locally on the client.

Communication Possibilities for communicating and sending data with peer-to-
peer technology between two nodes.

Authentication and Permissions How to solve authentication between nodes.

Prototyping The development of a rough test case for sending a file from one
node to another.

2.1.1 Prototyping
The aim of the prototyping phase was to quickly decide if it was in any way
possible to achieve the requirements with the technologies chosen. Therefore a
rough prototype of Rymd and Shuttle was created, which implemented two basic
test cases: storing a file in the chosen data storage implementation and sending
that file to another node where it was stored in that node’s local data storage.
The prototype worked successfully, which validated the choice of the particular
technologies used. The choices that proved successful were carried over to the next
step.

5



2.2 Implementation

At an early stage it was decided that the implementation process would apply
light agile methodologies. For this project, this included having a Product Backlog
with User Stories, working in sprints, and having bi-weekly Scrum-meetings where
current state and eventual problems were brought up.

All source code was managed by the distributed source versioning system git1
and hosted at the online service GitHub2 (links to all source code is available in
appendice A).

2.2.1 Modularity
As stated in section 1.2, developers should be able to easily incorporate their own
preferred implementations of the system’s core functionality. For modularity to
be properly fulfilled, features that could have alternative implementations had to
be clearly identified and separated into individual code repositories referred to as
modules.

Accomplishing this would allow developers to not only supply more fitting
modules to their own end products but also easily exchange existing ones if better
alternatives were to be released. This has been particularly important in Rymd
since it utilizes technologies at the web’s furthest frontier; unfinished drafts in
constant change.

1http://git-scm.com/
2https://github.com/rymdjs

6



3 | Technical background
This chapter gives a theoretical foundation and an overview of the current state
of the field for the technical domains that are of relevance for this project: client-
side storage, distributed storage, communication, and cryptography. In all fields,
standards and technologies for web applications are being rapidly developed and the
boundaries for what is possible to achieve in a web application are being continuously
pushed by browser vendors and standardization groups. The goals of Rymd has
indeed become technically viable in a web environment as of very recently.

The development of client-side data storage in HTML5 is an area that has
become more stable and supported across browsers and vendors. Web applications
can utilize offline storage such as databases (WebSQL and IndexedDB), key-value
stores (Web Storage), and even access to the local file system (FileSystem). Under
section 3.1, all of these technologies are presented.

In section 3.2, technologies regarding data communication are presented. There
has been a steady progression in the development of communication protocols
available for web applications, via traditional client-server HTTP requests (used by
XMLHttpRequest) and client-server full-duplex TCP connections (available with
WebSockets). Peer-to-peer communication has recently become possible on the web
with WebRTC. Issues with NAT traversal in peer-to-peer communication and how
they are addressed in WebRTC are explained.

Some of the new cryptocurrencies derived from the Bitcoin project can be utilized
for distributed storage of data such as cryptographic keys. Namecoin and Ethereum
are notable examples. In section 3.3, they are presented together with Keybase,
a service specialized for this purpose that uses a different approach of verifying
identities through links at social media accounts.

Also of interest, the still unfinalized WebCrypto API [10] has become available
in an experimental stage in recent months. In section 3.4, the basics of public-key
cryptography and certificates are explained, together with the Web Cryptography
API and the Advanced Encryption Standard as part of a symmetric encryption
scheme.

3.1 Client-side storage

Client-side storage is how arbitrary data can be persisted on disk, accessible through
an API, by a web browser. This is a general term for several separate but related
APIs:

Web Storage [11] is a simple key-value store in the HTML5 specification.

WebSQL Database [12] is an embedded SQL relational database.

FileSystem [8] is an API providing direct file system access.

Indexed Database [13], or IndexedDB, is a NoSQL asynchronous data store.

All of these technologies offer ways of storing data on the user’s hard drive instead
of on a remote server. There are three main reasons for this: to make applications
available offline, to improve performance (fewer server requests and local caching
of data) and to preserve privacy. Older storage techniques include cookies, plugin
based storage (Java Applets, Flash, Google Gears), and browser-specific features.

All four APIs tie data to a single origin, a practice referred to as Same Origin
Policy. An origin is defined by the transfer protocol, the domain, and the port
number of a website. Thus every data store is associated with an origin, which
implicates certain security aspects: an application in http://domain.com/subdir
may retrieve data from http://domain.com/subdir/dir since they have the same

7



origin, but cannot retrieve data from https://domain.com:3000 due to the different
protocol and port number. This is a layer of protection against Cross Site Scripting
attacks (XSS). XSS is a general term for when a middleman injects malicious code
in a web page viewed by others. Note that the Same Origin Policy in the data
storage layer is no prevention against XSS holes in the other parts of the application,
since a user might be attacked from malicious scripts injected elsewhere in the
application.

In order to prevent malicious flooding of users’ hard drives, browsers impose
limits on storage capacity. If the application exceeds that limit, the browser typically
shows a dialog in the interface to let the user increase the limit. This quota is
separated for each origin and storage mechanism. For instance, sub.domain.com
may be allowed to store 5MB of Web Storage and 25MB of IndexedDB data, while
sub2.domain.com may have other restrictions.

Both of the database-centered technologies, IndexedDB and WebSQL, support
transactions. This ensures the integrity of the database by prevention of race
conditions, a phenomenon where two sequences of operations are applied at the
same time, leading to unpredictable results and a database state of dubious accuracy.
This is done by locking the database for writing until a sequence of commands are
finished.

Most of the storage formats support synchronous and asynchronous modes.
Synchronous mode is blocking, meaning that the storage operation will be executed
and completed before the next line of code is executed. Asynchronous operations are
non-blocking, performed in the background while the rest of the code is executed,
and may be completed at a later stage. Generally a callback function is provided and
called on completion. This is the traditional approach to work with asynchronous
operations in JavaScript, where events and callbacks are used heavily. The JavaScript
code snippets in listings 3.1 and 3.2 show the difference between synchronous and
asynchronous calls.

8



// Fetch a record with id 10 from a database and store in variable
var result = DB.find(10);

Listing 3.1: Synchronous call

/*
Request a record with id 10 from a database, continue code execution

,
and handle result of the database operation in a success handler.

*/
var request = DB.find(10);

request.onsuccess = function(evt) {
// This success handler is executed when the database
// operation is finished at a later stage.
var result = evt.result;

};

// ... other operations

Listing 3.2: Asynchronous call

3.1.1 Web Storage

Web Storage persists data in key-value pairs through a single object in web browsers.
The API is as simple as attaching values as strings on properties of the global
localStorage object as seen in listing 3.3. The localStorage object persists data
through browser sessions, while the sessionStorage object will clear all data when
the browser tab or window is closed.

// Save an item in the local store
localStorage.foo = ’bar’;
// or
localStorage.setItem(’foo’, ’bar’);

var val;
// Retrieve item
val = localStorage.foo;
// or
val = localStorage.getItem(’foo’);

// Delete item
localStorage.removeItem(’foo’);

Listing 3.3: Use of Web Storage

3.1.2 WebSQL

WebSQL is the only client-side storage technology mentioned that tries to mimic a
traditional SQL relational database. It comes with tables, indexing, transactions,
keys, and support for schemas. Regular SQL expressions are used to interact with

9



the database, which means the developer can rely on the vast research that has
been made in SQL query optimization (see listing 3.4). WebSQL is high-performing
thanks to indexing. Developers who are used to work with traditional databases
can start using it in a familiar manner. However, the use of SQL makes the
database vulnerable to SQL injection attacks, unless this is taken into account by
the developer.

// Create or open database with name, version, description and size
of 2MB

var db = openDatabase(’testdb’, ’1.0’, ’Test database’, 2 * 1024 *
1024);

// Create table and insert data
db.transaction(function(tx) {
tx.executeSql(’CREATE TABLE IF NOT EXISTS NAMES (id unique, first,

second)’);
tx.executeSql(’INSERT INTO LOGS (id, first, second) VALUES (1, "

Johan", "Brook")’);
});

// Retrieve all names and print them
db.transaction(function(tx) {

tx.executeSql(’SELECT * FROM NAMES’, [], function(tx, results) {
var len = results.rows.length, item;

for (var i = 0; i < len; i++){
item = results.rows.item(i);
console.log(’Name: ’ + item.first + ’ ’ + item.second);

}
}, null);

});

Listing 3.4: Use of WebSQL

10



3.1.3 FileSystem

The FileSystem API allows for read and write access of files and folders on the user’s
hard drive. Currently, only Google Chrome has a working implementation of the
API. FileSystem is suitable for storing larger binary files, and has good performance
thanks to its asynchronous structure. There is no support for transactions or
indexing. Its API includes methods for manipulating files and folders, as one would
expect from a standard file system (see listing 3.5).

/* Request a sandboxed, persistent file system
with a size of 2MB and success callback.

*/
window.requestFileSystem(window.PERSISTENT, 2 * 1024 * 1024, function

(fs) {
console.log(’Opened filesystem: ’ + fs.name);

// Create a text file
fs.root.getFile(’test.txt’, { create: true, exclusive: true },
function(fileEntry) {
console.log(’Created ’ + fileEntry.name + ’ in ’ + fileEntry.

fullPath);
// => ’Created test.txt in /test.txt’

});

// Reading a file
fs.root.getFile(’test.txt’, {}, function(fileEntry) {

// Get a File object and read its contents with FileReader.
fileEntry.file(function(file) {
var reader = new FileReader();

reader.onloadend = function() {
var contents = this.result;

console.log(contents);
};

reader.readAsText(file);
});

});
});

Listing 3.5: Use of FileSystem

3.1.4 IndexedDB

IndexedDB is a transactional indexed client-side database capable of storing different
types of data structures with an asynchronous API. IndexedDB is actively developed
and implemented in the latest versions of Mozilla Firefox, Google Chrome, Microsoft
Internet Explorer, and Opera. Its specification is a Candidate Recommendation by
the W3C, as of July 2013 [13].

Basic structure

Due to IndexedDB’s object-oriented nature, a database includes a set of object
stores, which act similarly to tables in relational database management systems. An

11



object store can hold objects of different types including binary data and JavaScript
primitives and objects. Each object has a key (either specified by the developer, from
the objects’ properties, or automatically generated and managed by the database)
that is used for indexing and retrieving records. One or several indexes can be
created on a store from an object’s properties for quick querying. A cursor is used
to iterate on the resulting set of objects from a query on the store.

The asynchronous API has patterns that might be daunting and seem complex
to developers not used to NoSQL structures. Unlike WebSQL, IndexedDB does
not support SQL and instead exposes ways for querying and manipulating data
via requests and transactions (see section 3.1.4). A positive side of the rejection of
SQL is the prevention of SQL injection attacks. This comes at the cost of a steeper
learning curve for database developers already experienced with more traditional
databases. Queries to the database will not yield the resulting data set. Instead
requests are returned, which will trigger events when the operation is finished.
When an event is triggered a callback can be passed to handle the scenario and use
the data. See listing 3.6 for common use of IndexedDB.

var request = indexedDB.open(’testdatabase’);

// On database version migrations
request.onupgradeneeded = function(event) {
var db = event.target.result;

// Create an objectStore for this database
var objectStore = db.createObjectStore(’store’);

};

// When the database is ready to use
request.onsuccess = function(event) {
var db = request.result;

// Insert ’foo’ in the store
var insertTransaction = db.transaction([’store’], ’readwrite’).

objectStore(’store’).put(’Foo’);

insertTransaction.onsuccess = function(evt) {
console.log(’Inserted ’foo’’);

};

// Read value with key ’key’ from the store
var readTransaction = db.transaction([’store’], ’read’).objectStore(

’store’).get(’key’);
readTransaction.onsuccess = function(evt) {
console.log(’Found ’ + evt.target.result);

};
};

Listing 3.6: Use of IndexedDB

Security and reliability

IndexedDB is built on a transactional model. This means that all commands run
inside a transaction context. Transactions have a certain lifetime and cannot be
used after they expire. This transactional model is especially useful when several
instances of an application are using the same database and issuing commands
simultaneously: Without transactions, concurrency problems and other collisions

12



might occur with data loss as a result. Transactions are able to abort and roll back
the database to the state it was in before the transaction was started, should an
error occur.

Kimak, Ellman and Laing highlight four important aspects of securing a In-
dexedDB driven application in An Investigation into Possible Attacks on HTML5
IndexedDB and their Prevention [14]:

• Client-side data encryption

• Input validation

• SOP (Same-Origin Policy)

• Code analysis

The database in IndexedDB does not include any kind of bundled encryption
or validation, which means that it is the developer’s responsibility to sanitize and
encrypt sensitive data before insertion into the store. Encryption is vital for the
scenario where the contents of the database are compromised, since the attacker
would need access to the encryption key in order to read the information in plaintext.
Validation is needed in order to prevent malicious content, such as XSS, from being
inserted as the data fields in the store (without the user’s knowledge). Properly
crafted code could otherwise pose a security risk since vulnerable applications could
execute it at a later stage.

Code analysis is divided into static and dynamic analysis. Static analysis seeks
to detect malicious material by reviewing the to-be inserted data. Dynamic analysis
evaluates executed programs by checking the call from the web application to the
database. On success, the database operation is allowed to fully execute [14].

3.2 Communication

In the beginning of the World Wide Web’s history, web browsers performed full
page loads in order to render web pages. Further down the road, techniques
such as AJAX (Asynchronous JavaScript and XML) enabled data to be fetched
asynchronously from servers through the XMLHttpRequest API, thereby enabling
the creation of dynamic web applications. Since then, the advent of the WebSocket
protocol has enabled persistent two-way communication between a client and server.
These techniques are centered around communication between a client and a server.
With the recent initiative of WebRTC (Web Real-Time Communication), which
enables peer-to-peer communication, there are new possibilities in the field. In
order to understand how these technologies work, some inherent problems with the
infrastructure of the internet will be discussed in section 3.2.3.

3.2.1 XMLHttpRequest

XMLHttpRequest (XHR) is a browser API which enables data to be fetched
asynchronously from servers. This means that a web page can retrieve new updates
from the server without a full page reload. The browser is responsible for the
construction of HTTP requests according to parameters passed to the API. In the
use case where real-time updates from the server are desired, a common technique
is to poll the server at regular intervals as the possibilities for streaming are limited.
Although the name of the API suggests that data transfers are limited to XML, this
is not the case and the name is nothing more than a remnant of the past [15]. Today
it is much more common to transport data in the form of JavaScript-serialized
objects, also known as JSON (JavaScript Object Notation).

13



3.2.2 WebSocket

WebSocket (RFC 6455) [16] is a protocol that was standardized in 2011. The
protocol allows two-way communication between a server and a client through
persistent connections. The protocol runs on top of the TCP protocol and is
independent from the HTTP protocol. The implications of this is that the server
does not need to open a new TCP connection for every incoming message as in
XHR, and the high overhead from HTTP is eliminated which eases server workload.

3.2.3 NAT Traversal

Network Address Translation (NAT) [17] was first introduced as as a short-term
solution to the problem of IP address depletion in IPv4. The idea was that by
utilizing NATs, several hosts in a private network could share a single public IP
address.

A NAT is responsible for maintaining a table of entries that map an internal IP
address and port to a public IP address and port and dropping these entries when
they are no longer of relevance. When a host behind a NAT wants to communicate
with an external host, the NAT creates an entry in the table. This is then used to
route the response back to the internal host(See figure 3.1) [18].

Figure 3.1: A NAT maintains a table that maps an internal IP address and port to
a public IP address and port. [19].

The presence of NATs can pose problems to applications leveraging the UDP
protocol for transportation of data and network communication in general. The
different techniques that can be used to resolve problems caused by NATs are often
referred to as NAT Traversal techniques.

The underlying issue with the UDP protocol is the absence of state, as opposed
to the TCP protocol. The statelessness of the UDP protocol makes it difficult for a
NAT to determine when a table entry is no longer relevant and should be dropped,
which leads to the fact that UDP routing entries are expired based on time. If an
entry is predeterminedly expired, it will cause inbound packets to be dropped since
they cannot reach the source. In the case of TCP, which has a well defined state, it
is inherently simple to determine when an entry should be dropped.

A technique commonly used to solve the problem with UDP entries expiring
and being dropped is to utilize keepalives at regular intervals. This is commonly
referred to as UDP hole punching [20].

Another problem is that internal hosts know their internal IP address but not
their public one. If a host runs an application that communicates the IP address as
a part of the payload to hosts outside of the private network, there would obviously
be a mismatch if they communicate their internal address. It is therefore common

14



to utilize a protocol called STUN (Session Traversal Utilities for NAT) [21]. STUN
enables hosts to obtain their public IP addresses with the help of an external STUN
server (See figure 3.2).

Figure 3.2: STUN servers let peers in a private network behind firewalls discover
their public IP-addresses [22].

STUN does not work with all types of NATs however, meaning that the mentioned
techniques are not always adequate. UDP traffic might be blocked by a firewall for
instance. To solve such problems another protocol called TURN (Traversal Using
Relays around NAT) [23] is commonly used. TURN establishes a TCP connection
with a relay server if UDP fails. The relay server is used to tunnel data through
to the other host, meaning that there is no longer a direct peer-to-peer connection
(See figure 3.3).

Figure 3.3: If a peer-to-peer connection cannot be established, a relay through a
TURN server could be used. All peers send their packets through the relay which
makes it more costly. But at least the connection works [22].

3.2.4 WebRTC

Up until recently, browsers lacked support for direct peer-to-peer communication.
In 2011, however, Google released a project called WebRTC, with the purpose
to enabling real-time voice and video streams in the browser [24]. Since then,
WebRTC has evolved to enable more general real-time data communication between
browsers [25]. The technology became usable for arbitrary data streams in major

15



browsers in 2014 [26] [27].
Since the announcement of WebRTC, the organizations W3C and IETF has been

working together on standardizing protocols and drafting APIs. The major browser
vendors Google, Mozilla, and Opera support the project [28]. While Microsoft
supports the concept of WebRTC and contributes to the W3C WebRTC working
group, the company does not support Google’s (or nowadays, W3C’s and IETF’s)
version of it [28]. Microsoft does not want to support the new technology until
it has become a standard and does not fully agree on some constraints placed on
it [28]. Microsoft states that one of their issues with the current WebRTC version
is that it has predetermined paths for choosing codecs and ways of sending media
over the network – sort of a black box. This hinders application developers who
want to optimize to suit their own needs. Microsoft’s answer to this is their own
CU-RTC-WEB (Customizable, Ubiquitous Real Time Communication over the
Web) which attempts to address these issues.

WebRTC’s functionality is abstracted into three different APIs: MediaStream,
RTCPeerConnection and RTCDataChannel [29]. MediaStream, or getUserMedia,
handles synchronized media streams, i.e. synchronized video and sound from a
computer’s camera and microphone. RTCPeerConnection manages reliable and
efficient communication of arbitrary data streams, it utilizes techniques such as
jitter buffering and echo cancellation to ensure a high standard even in unstable
networks. For the intent of file sharing, the RTCDataChannel API is the most
relevant.

At the transport layer, WebRTC makes use of UDP which can be motivated by
the fact that timeliness is vital for real-time communication [30]. The UDP protocol
alone is not enough to construct efficient peer-to-peer applications. For this reason,
WebRTC adds a number of additional protocols on top of UDP (See figure 3.4).

WebRTC’s usage of UDP makes peer-to-peer communication inclined to suffer
from connectivity problems in the presence of NATs. This problem has been taken
into account and is relieved by utilizing the Interactive Connection Establishment
(ICE) protocol [18]. The ICE protocol handles NAT Traversal and is used for
establishing peer-to-peer connections. It makes use of STUN and falls back to
TURN when no other alternatives exists (See figure 3.5).

For the sake of security, data is encrypted according to the DTLS (Datagram
Transport Layer Security) protocol. The DTLS protocol is based on the TLS (Trans-
port Layer Security) protocol, the main difference being that DTLS is constructed
for datagrams while TLS is used for reliable transport protocols such as TCP.

16



Figure 3.4: The underlying protocols of WebRTC [31]

RTCPeerConnection

The RTCPeerConnection API handles the creation of peer-to-peer connections and
takes care of connectivity problems caused by NATs (see section 3.2.3) by utilizing
the ICE protocol.

Figure 3.5: The different ways for ICE to find network interfaces and ports [29]

Before a connection can be initiated between peers, one of two parts must extend
an offer which contains data describing the connection to the other part - this is
often referred to as the signaling phase. The signaling phase depends on two things:

• The existence of a signaling channel - where a connection should be negotiated

• The choice of signaling protocol - which protocol that should be used for the
negotiation

Regarding the choice of signaling channel, a dedicated signaling server is often
used. That is, a server which relays connection offers from one peer to another.
Although this is the most common choice of signaling channel, examples of a
more serverless approach can be found [32]. The standard does not provide any

17



recommendations regarding the choice of a signaling protocol - this is for developers
to decide.

RTCDataChannel

The RTCDataChannel API allows for arbitrary data to be sent peer-to-peer by
leveraging the RTCPeerConnection API. As UDP itself - which WebRTC runs on
top of - is not suitable for reliable data transportation, the RTCDataChannel API
utilizes the SCTP (Stream Control Transport Protocol) protocol. SCTP can be
configured in terms of reliability and message order, and it provides some additional
services such as congestion and flow control [30].

3.3 Distributed storage

With the inherent problems of trust in CAs in a PKI, several approaches to publicly
available distribution of cryptographic keys have emerged in recent years. Some
use a blockchain-based approach derived from Bitcoin. This implies distributing a
cryptographically based ledger over an entire network and taking it beyond that of
a monetary currency to systems that can be used for a wider range of applications.
There are also other ideas on how to solve the trust issue.

3.3.1 Namecoin

A phenomenon that has been on the rise during recent years is that of cryptocur-
rencies such as Bitcoin [33]. A cryptocurrency is a virtual currency that builds on
cryptographical principles to ensure integrity and consistency. Each participant in
the Bitcoin network keeps a ledger of all transactions throughout the history of the
network. This ledger is called the blockchain, because it is a chain of blocks. Each
block constitutes of the hash of the previously generated block, a number of other
recent transactions and a salt. In order for a transaction to be deemed valid, it
needs to be included in one of these blocks. This inclusion is done by volunteering
nodes that perform a brute-force search for a salt that generates a block hash of
a specific form. When such a salt has been found, the block is included in the
blockchain. This search for salts is called mining and constitutes the work done
by miners to keep the network running. As an incentive, each verified block also
includes a reward to the miner that finds the salt. In effect, all transactions ever
made are publicly available and tracked so that anyone can confirm their validity.
This prevents forgery and double-spending of bitcoins.

Namecoin [34], another cryptocurrency, is essentially a fork of Bitcoin with new
transaction types that allows its blockchain to be utilized as a distributed key-value
store. Although similar in nature to Bitcoin, its main purpose is to be used as a
decentralized domain name system (DNS), rather than as a monetary currency.
With a decentralized DNS such as Namecoin, top level domains (such as .com or
.se) can exist without being controlled by any central authority [35]. Also, the DNS
lookup tables where domain names and their IP addresses are stored are shared
in a peer-to-peer manner. The only necessary condition for these domains to be
accessible is that there are participants willing to run the DNS server software.
Although mainly intended to be used as a DNS, it contains several namespaces
where arbitrary strings such as public cryptographic keys can be stored.

3.3.2 Ethereum

Bitcoin and its derivatives have a built-in scripting language that runs on top of the
blockchain. It has limited functionality and is mainly used to set up contracts and
multi-party-signed transactions that enables escrow-like functionality. Ethereum [36]
is a novel crypto-currency built from scratch that extends this idea by building

18



on smart contracts using a Turing complete domain specific language. This makes
it a platform for building arbitrary distributed system. Users running code pay
a small fee of the internal currency ether for each computational step. Ethereum
could therefore work not only as a DHT, but also execute parts of system logic.
Development of Ethereum was announced at the end of 2013 and has a planned
first release in late 2014.

3.3.3 Keybase

Keybase [37] is another recent initiative that intends to solve the distribution of
public keys. It is essentially an HTTP-interface that maps keys to identities. While
keys themselves are stored centrally at Keybase’s servers, it utilizes social media for
proofs. The idea is that a Keybase user will put proofs of their Keybase identity
on public social media services such as Twitter or Github. The Keybase client will
refer to these to make sure that the given key corresponds to the user of these social
media accounts. It ties identities to keys as long as a user’s Keybase and social
media accounts are not all compromised.

3.4 Cryptography

Encryption is the process of running data through an algorithm with the goal of
making the information unreadable for unauthorized parties. The output of an
algorithm depends on the input data and the encryption key used. There are two
types of key schemes: symmetric-key schemes and asymmetric-key schemes (also
known as public-private). In symmetric cryptography schemes such as AES, the
same key is used for both encryption and decryption. Because of this, both sender
and recipient must possess the same key, and the key must therefore somehow be
communicated through a secure channel. Asymmetric key-schemes such as RSA,
on the other hand, work with pairs of keys where the encryption of one corresponds
to the decryption of the other. One of these keys is called private and should only
be known to the person generating the key-pair, and the other is called public
and can be shared freely. In this way, there is no problem with how to transmit
keys. Generally, encryption and decryption in asymmetric schemes are much more
computationally demanding than that of symmetric schemes, so a common approach
is to use symmetric encryption for data and asymmetric keys for the communication
of the symmetric key.

Until recently, the practice of performing cryptographic operations in a web
browser environment has been considered bad practice by security professionals [38].
One reason for this is that it has been impossible to verify the integrity of client-side
source code between executions - something that has now changed with the advent
of signed browser extensions. Another issue is the internal openness of JavaScript -
any cryptographic implementation would unavoidably expose all their primitives1,
as well as raw private and secret key data. With the advent of the new Web
Cryptography API, or WebCrypto, these issues are being addressed [10].

3.4.1 Web Cryptography API

WebCrypto is an open standard for implementation of cryptographic primitives
accessible through web client code [10]. Basically, all primitives and raw material
(the underlying keys and algorithms) would be blackboxed for the client application
and executed natively in the web browser. However, the API is still in an early
stage and at the time of this writing only Chromium [39] and Microsoft Internet
Explorer [40], out of the major browsers have implemented more than a basic

1The basic functions in a cryptographic scheme such as hashing, encryption, decryption, signing,
verification and generation of keys

19



pseudo-random number generator [41]. The exact implementation of the different
features may come to change drastically over time.

3.4.2 Certificates
Certificates are used to confirm the validity of users’ keys [42]. Instead of requesting
keys directly, which could have potentially been compromised by malicious third
parties, certificates are retrieved from trusted CAs. In essence, a certificate contains
a user’s public key along with user data and information about the certificate. The
CA signs the certificate and a hash is embedded as proof that the certificate has
not been unlawfully modified.

These certificates are structured according to a certain format. One commonly
used format for certificates is the X.509 standard [43]. In the X.509 system, a CA
issues a certificate binding a public key to a name such as an e-mail address or a
DNS entry.

3.4.3 Advanced Encryption Standard
The Advanced Encryption Standard [44], AES, is one of the most widespread
symmetric encryption schemes in use today. It is a specification established by the
U.S. National Institute of Standards and Technogy in 2001 and based on the Rijndael
cipher [45], which in turn is based on the idea of substitution-permutation [46]. The
algorithm distorts the inputed value by means of replacement and uses a structure
with a fixed block size. AES was intended as a replacement for DES [47] [48].
Encryption is performed in rounds with the number of rounds depending on the
length of the key.

For reasons of performance and security, symmetric algorithms such as AES
encrypt data in blocks of fixed size. There are different ways to make these blocks
relate to each other, depending on the type of data and application. One of the
more common modes is Cipher Block Chaining, or CBC, where the encryption
function for each subsequent block is fed the encrypted version of the previous block.
This is done to make blocks with the same input plaintext indistinguishable [49].

20



4 | Related work
There is a plethora of technologies for distributing and synchronizing data between
peers that at a first glance may look very similar to Rymd. Below are some more
well-known and similar pieces of software. The features described will hopefully
highlight how they relate to each other and Rymd.

Bittorrent Sync [50] is a distributed peer-to-peer multi-way file syncing software
using the Bittorrent protocol for file transfers. Synchronized folders are
mapped directly to the underlying file system, and each folder is encrypted
using a shared secret key. Public-key cryptography is not employed, and the
only available clients are closed-source binary applications using the network
of the creator, Bittorrent Inc. While they do have a developer API, it requires
developer keys issued from Bittorrent Inc.

RetroShare [51] markets itself as a Friend-2-Friend decentralized communication
platform which uses GPG to create a Web of Trust between peers. The Friend-
2-Friend search works by propagating search and file transfers recursively to
all friends of friends to a certain degree of separation. In this way, users can
search for files from a huge network while still only staying directly connected
to people that they trust. It is, however, a very large project: The application
provides file-sharing, instant messaging, discussion forums, e-mail, Voice over
IP (VoIP) and group chat. It is open source and distributed as cross-platform
binaries.

ShareFest [52] is a peer-to-peer one-to-many file-sharing web based software using
WebRTC data channels. ShareFest can be seen as a more limited and primitive
version of what Rymd aims to be: ShareFest can share files over WebRTC
channels, but does not accommodate authentication, persistence or local
encryption. It does, however, operate on a mesh network similar to Bittorrent.
Other similar WebRTC-based P2P file sharing web applications but without
additional cryptographic properties include RTCCopy and ShareDrop.

Freenet [53] is one of the first darknets, consisting of a distributed, decentralized
data store that uploads files with strong anonymity across a network. Each
node in the network also acts as a cache for the content stored in the network.
Files are generally split up in parts that are distributed, and when fetching
files it is unfeasible to determine the origin and sender of the files. Focusing
on anonymity, free speech and plausible deniability, the encryption is done
in the communication and storage layers. Because of this design, Freenet is
quite slow. Files can be retrieved using the cryptographic key used to upload
them. Freenet is free software built with Java.

Tahoe-LAFS [54], or Tahoe Least-Authority Filesystem, is a distributed, en-
crypted and redundant file system. It distributes encrypted files across a
predetermined set of servers and allows sharing of both mutable and im-
mutable files. There is a web-interface, but similar to all other user-interfaces
it has to go through a gateway where encryption and server-communication is
performed. Users will typically run their own gateways and will thus need to
accommodate hosting for them.

Bitmessage [55] is a P2P distributed messaging system intended to replace e-mail.
Public keys of all participants are distributed over the entire network, and can
be retrieved using their fingerprints (which are used as addresses). In order to
send a message, it is encrypted using the receiver’s public key and sent to the
entire network. Participants try to decrypt every message, and will so be able
to retrieve the ones they can decrypt. Messages are stored in the network for
two days. There is thus no way to tie messages to senders and recipients.

21



Rymd differentiates by being the only project so far that combines the properties
of open source, purely web based, decentralized and cryptographically secured.
Additionally, it is a developer-geared library rather than a user-oriented application.

22



5 | Analysis and System design
This chapter gives a closer analysis of the technologies brought up in chapter 3 in
relation to the overall problems presented in section 1.3. First, we go through the
client-side storage alternatives for web browsers and present the motivation behind
the choice of IndexedDB as the default data store for Rymd. WebRTC as a means
of peer-to-peer communication in Rymd is also briefly presented. This is followed by
an explanation of the authentication scheme in Rymd and how the cryptocurrency
Namecoin is employed in key distribution. A brief explanation of the implications
these design choices have on the decentralization aspect of the system is laid out,
followed by the resource data structures in Rymd and how they are communicated
between peers in a file sharing scenario. This concludes in the high-level design and
modules of Rymd and Shuttle.

5.1 Data storage

Storage of data is crucial for any file sharing system. Since the data store was to be
used by several parts of the application the demands for the module’s interface had
to be as general as possible, adhering to a standard CRUD1 interface, including
methods for creating, fetching, updating and deleting records in the store.

There are essentially four alternatives for persisting data on the client:

• LocalStorage (Web Storage)

• IndexedDB

• WebSQL

• FileSystem API

LocalStorage is included in the HTML5 Web Storage specification [11] and is a
basic key-value store with a simplistic API. It is supported across all major browsers
and has a maximum storage limit of 5 megabytes. The latter was a deal-breaker
since the product would have to support larger files than could possibly fit into that
space. Further, LocalStorage does not support complex structures and indexing,
and storing different data types is complicated and needs manual serialization and
deserialization. Thus this solution was immediately rejected.

IndexedDB and WebSQL are both client-side databases and more sophisticated
storage solutions than LocalStorage. WebSQL is supported by Google Chrome,
Apple Safari (desktop and iOS), Opera and Android. The specification is no longer
maintained by W3C [12] and will probably be deprecated on all browsers in the
future. IndexedDB is supported by all major browsers except for Safari (desktop
and iOS) and is a Candidate Recommendation by W3C [13]. Arbitrary types of
data can be stored in the database, such as strings, numbers, JavaScript objects,
and raw binary data.

The last alternative, The FileSystem API, is a collection of methods for reading
and writing to a sandboxed file system from a browser with client JavaScript code.
It is a very early standard, being currently only supported by Google Chrome and
Opera, and has the status of Working Draft by W3C [8]. While FileSystem has
good performance for larger files and a well-performing asynchronous API, it lacks
support for indexing and search. Mozilla seems to have no plans on implementing
FileSystem for Firefox [56]. In April 2014 it was announced on the Web Applications
Working Group mailing list that the specification should be considered dead, since
other browser vendors have had no interest in implementing it [57].

1Create–Read–Update–Delete

23



IndexedDB WebSQL File System LocalStorage
Google Chrome 34 Yes Yes Yes Yes
Mozilla Firefox 29 Yes No No Yes
Apple Safari 7 No Yes No Yes
Opera 20 Yes Yes Yes Yes
Microsoft IE 11 Yes No No Yes

Table 5.1: Browser support for selected HTML5 APIs at the time of writing

All of the mentioned technologies are sandboxed: The data is tied to a single
origin (http://test.domain.com for instance). All future access to the data must
come from that domain (this includes the protocol and port number as well). The
browser also limits the maximum allowed storage size – the quota. The quota is
different for each storage mechanism, and the browser typically asks the user with
a dialog if they want to let the app exceed the quota.

The conclusion was to use IndexedDB for persisted resource storage. It was
chosen because of its support by Google Chrome, Internet Explorer and Firefox, and
due to the fact that it is actively maintained (while WebSQL is not). Users of the
Safari browser will not be able to utilize the product, but considering the project’s
overall direction with regards to experimental technologies, this is negligible.

5.2 Peer-to-peer communication

Even though there are two projects which seeks to enable peer-to-peer communica-
tion in the browser – WebRTC and CU-RTC-Web – the only viable alternative for
the time being is WebRTC. The project is under development by the organizations
W3C and IETF and is supported by the current versions of Chrome, Firefox and
Opera. CU-RTC-Web on the other hand is not supported by either W3C or IETF
and is not implemented in any browsers.

For the project’s intent of file sharing, the RTCPeerConnection and RTCDat-
aChannel API were found to be most relevant. By using these APIs in conjunction
arbitrary data can be sent peer-to-peer. Relating back to the project goals regarding
privacy and security it is also convenient that data transfers are encrypted according
to the DTLS protocol.

5.3 Peer identity verification

One of the main issues to be resolved in a project of this nature is that of distribution
of cryptographic keys. For a truly decentralized system, it is not acceptable to adapt
a CA-centered approach, because of the high level of trust that is put in central
authorities. While a Web of Trust is interesting, it might be too cumbersome for
users. This issue is addressed in Zooko’s Triangle (See figure 5.1), stating that no
system assigning names to participants in a network can have the property that
names are secure, decentralized and meaningful at the same time [58]. The conjecture
has since been proven false by the design of systems such as the blockchain of the
cryptocurrency Namecoin, which effectively acts as a cryptographically secured
distributed hash table (DHT) with unique keys. Users can reserve a name and
assign to it a value of their choice at the cost of a small amount of the Namecoin
currency (currently 0.01 NMC [59], which is roughly equivalent to 0.03 USD [60]).

Ethereum, which was announced just a couple of weeks before the start of this
project, extends this by their scripting language which not only allows storage of
arbitrary data in the blockchain, but can also be scripted with a Turing complete
programming language and can therefore be used to implement arbitrary systems.
A system similar to Ethereum could be very interesting to explore for a project

24



such as Rymd, but its development is still in such an early stage that it is deemed
too unstable to be useful at this point.

Rymd therefore utilizes Namecoin for storage of keys to achieve all of these
goals: The distributed nature of cryptocurrencies makes it decentralized; peers can
choose their own names (identities), giving meaningful names; the blockchain-based
approach makes it secure. Additionally, the small monetary fee required to register
a name prevents massive name-squatting. However, there are practical limitations
and consequences associated with this approach. The monetary cost associated with
the insertion of a new value means that key insertion needs to be handled outside
of Rymd. That updates can take a significant amount of time to propagate over
the network (up to several hours) is another issue, but since insertion or updates of
keys should happen very seldomly, this should be acceptable. Most importantly,
since Namecoin (or any other currently existing cryptocurrency for that matter)
communicates using their own binary data protocol [61], web applications can not
interact directly with the blockchain to fetch this information before a mutual
peer-to-peer authenticated connection is established. As a consequence, a service
that acts as a bridge between Rymd and the blockchain is needed.

Figure 5.1: Zooko’s Triangle, with the edges representing the achievable combinations
of features [62]

Once a key distribution scheme has been established, an authentication scheme
needs to be determined. There are several schemes for authentication using public-
key cryptography. Among these are Otway Rees (not mutual, attacks exist [63]),
Wide Mouth Frog [64] (depends on timestamps), and Needham-Schroeder [65].
Of the ones examined, Needham-Schroeder stood out as simple to implement
since it does not utilize symmetric keys or timestamps, while it provides mutual
authentication. Consider the scenario where A wants to authenticate to B, assuming
that they have already exchanged public keys KPA and KPB . Then the Needham-
Schroeder protocol flows as shown below:

A→ B : {NA, A}KPB
A generates a random nonce NA, encrypts it together with

their identity and sends it to B.

B → A : {NA, NB}KPA
B responds by generating their own nonce NB , encrypts it

together with NA and sends it back to A. By replying with NA, they prove
that they possess the private key corresponding to KPB .

A→ B : {NB}KPB
A replies with NB . The proof works in the same manner as for

B. A and B are now mutually authenticated.

In 1995, Gavin Lowe described a man-in-the-middle attack on the protocol where
an adversary that can initiate a session with one party can then pose as that party

25



when communicating with a third party [66]. Lowe also proposed a fix to this
vulnerability and this amended Needham-Schroeder-Lowe protocol presented below
is what Rymd utilizes for authentication.

A→ B : {NA, A}KPB

B → A : {NA, NB , B}KPA
B also includes their identity to make sure that this

message can not be reused by other parties posing as someone else.

A→ B : {NB}KPB

5.4 Decentralization

Since the system utilizes the Namecoin blockchain for storage of public keys, there
is an issue of how to interface web applications with the blockchain without putting
too much trust in the HTTP/cryptocurrency gateway. Users could host their own
gateways or retrieve or verify keys manually through their own Namecoin clients.
Additionally, as previously stated, the initial insertion of the key requires monetary
resources and is something that should be solved outside of Rymd. Users can either
provide their existing keys and identity to Rymd or let Rymd generate a new pair
of keys and manually insert the public part in the DHT of choice. While the public
key can be stored in a DHT, private keys need to be stored securely on each client,
preferably without giving client code any direct access to the raw keys.

5.5 Creation and transfers of resources

First, we address the question of how to identify resources. That identifiers should be
memorable, secure and unique holds not only for users, but also for resources. Since
Namecoin is being used for storage of public keys of users, it is therefore natural to
consider using a cryptocurrency for resources, too. However, the practical limitations
on insertion and updates becomes a much bigger issue here, since resources are
created and updated in a much higher frequency than users register or update
their public keys. These practical issues would make such a system practically
unusable. Therefore, the idea of using any current cryptocurrency blockchain for
storing anything resource-related was discarded. File names are not even close
to unique and disclose unnecessary information, should an adversary without the
corresponding secret key get hold of an encrypted resource. Therefore, resources
are simply identified by a random GUID generated at the time of resource creation.

Full access to a resource implies possession of three things: the encrypted resource
data, the cryptographic key used to encrypt said data and the metadata describing
the resource. The creation of a new resource is done as follows:

Generation of metadata Metadata consists of resource name, author identity,
MIME type, a randomly generated GUID, incrementing file version (always 1
in the case of new resource) and a timestamp.

Generation of resource-specific symmetric cryptographic key In the default
implementation, a 256 bit AES-CBC key is used.

Encryption of the resource data using the resource key

Calculation of resource hash based on the metadata and encrypted data
The hash is then added to the metadata.

Creation of resource Metadata and encrypted data are combined into the inter-
nal representation of the resource.

Saving of key to local key store

26



To save a resource locally, a user-specific symmetric master key, generated at
the time of first access, is used to encrypt the metadata before saving it and the
encrypted resource data to a local resource store.

The exact flow involved in a transfer depends on the implementing application.
Generally (and in Shuttle), the metadata and the encrypted data are transferred
separately - maybe even from separate peers. Therefore the hash is important to
verify the integrity of the encrypted data. Resource IDs and hashes could also be
communicated via trusted channels outside of Rymd, for example on web pages
or via e-mail. An interesting possibility is that of Friend-2-Friend search in the
Retroshare network (described under chapter 4), which makes it possible for users
to search for files in a huge network while still only being directly connected to their
trusted friends. The separation of storage, encryption and transfers of metadata and
file data in Rymd allows Rymd-based applications to realize similar functionality.

Once again, verification of integrity and authenticity of resources are achieved
by verifying the hash. It is vital that a sufficiently secure hashing algorithm is used;
MD5, which used to be the de-facto standard for generating file checksums, has
been proven to be weak and contain vulnerabilities to the extent where checksum
collisions are too easy to generate [67]. SHA-1 has for some time been recommended
for verification of data integrity, but due to theoretical collision attacks and advances
in computational capabilities, the U.S. government currently recommends against
the use of SHA-1 for applications that require collision resistance [68]. In the default
Rymd implementation, the superseding SHA-256 algorithm is used. This gives
a strong protection while avoiding the computational overhead of e.g. SHA-512.
Note that hashing provides message integrity, but not authentication (establishment
of author). This could be established by letting the author of the resource sign
the hash with their private key. Peers on the receiving end could then verify the
signature using the author’s public key. Establishing resource authentication has
not been considered a main goal of Rymd and this functionality is therefore not
(yet) implemented.

The metadata and resource data are handled separately in Rymd and the com-
munication flow will differ depending on the implementing application. Generally,
the metadata will be shared with trusted peers to allow them to decrypt the resource.
The encrypted resource can be shared freely since possession of the key is required
to make anything useful from it. In this way untrusted peers could help facilitate
transfers of resources in a distributed fashion. In the example implementation
Shuttle, file sharing is initiated from the sharing end. Consider the case where Bob
wishes to share a resource with Alice (assuming both Alice and Bob are already
connected to the network and know each others’ identity names in the DHT):

1. Bob requests Alice’s public key and endpoint IDs from the DHT.

2. Bob initiates a connection with Alice and they are mutually authenticated.
This process is described in 5.3.

3. Bob sends the metadata and key for the resource to Alice.

4. Alice creates a new resource as described above, but without the encrypted
data, and saves it to her data store.

5. Alice requests the resource data from Bob.

6. Bob sends the encrypted resource data to Alice.

7. Alice adds the encrypted data to the resource and saves it to the data store.

8. When Alice wants to access the resource, she decrypts it.

27



Figure 5.2: The flow involved in Bob sharing a resource with Alice

5.6 Modules in Rymd

Rymd is divided into modules that separates complex areas of the application -
areas that are most likely to change independently over time - into well defined and
easily exchangeable modules. These modules are supplied dynamically to the core
library - which acts as the central hub that binds the different modules together -
through dependency injection. As key features of the project relies on experimental
technologies that are constantly changing, this modular design was imperative in
order to make the system maintainable (as explained in section 2.2.1).

The items shown below represent the general high-level responsibilities for each
module. See chapter 6 for details on the technologies used and accounts of the
modules’ actual implementations.

Cryptography Handles encryption, decryption, signing and verification as well as
key generation and hashing.

Peer-to-peer communication Responsible for setting up initial contact with
another peer, maintaining the connection and transporting data. It also deals
with securing this connection through end-to-end encryption.

DHT interaction Used to interface with a Distributed Hash Table in order to
retrieve peers’ public key and ID.

Data storage Deals with persisting data (as described in section 5.5) to disk.
Different implementations of this module can be used for metadata, resource
data and key storage.

28



In the current implementation, no distinction was made between the data storage
module for resource data and metadata. It would have been appropriate to make
these into separate concerns, for example to allow storage of resource data on the
local file system and metadata in IndexedDB. Furthermore, the current Shuttle
implementation uses the same store for keys and resources.

29



6 | System implementation
With the background of the high-level foundations presented in chapter 5, this
chapter details the underlying implementation of the modules of the whole system.
All source code has been written in JavaScript. DHT is run as a Node.js server and
Shuttle runs as a client-side web application. Rymd is the platform independent
core module containing the business logic of the system. All other modules contain
the specific implementations for each problem area (see figure 6.1). Links to the
source code for all modules are available in appendix A.

In section 5.6 the overall areas of responsibility for the system modules were
defined. This resulted in the following concrete modules described in this chapter:

Rymd The business logic for the system. Has references to the other modules
through dependency injection.

Shuttle The front-end prototype – a client-side web application.

DHT Client Module which looks up records in the Namecoin blockchain through
a NodeJS web service (see appendix A).

RymdCrypto Module for cryptography.

IndexedDBStore Module for data and key storage.

PeerJS Connection Module for communication with the PeerJS service.

Figure 6.1: The modules and external APIs utilized in Rymd and Shuttle

30



6.1 Rymd

The Rymd library is the only truly implementation-agnostic module and should
be runnable on any platform as long as implementation modules are dependency
injected. It defines the business logic for behaviour such as:

• The structure of resources and metadata

• The communication and authentication flow

• The resource store: How resources are saved and identified independent of
implementation

• Management of cryptographic keys

• Session management

Applications utilizing Rymd will generally instantiate a RymdNode object, which
is the main entry point of the library and inject implementation modules. The
RymdNode object will then act as the interface between the application and the
Rymd library. The public interface of RymdNode is listed in listing 6.1 along with
the method signatures and return values.

// Method signatures on the form <name>: [(<parameter>:<type> ...)]:<
Return type>

// Initialize network and connection handlers from an identity
init: (identity:String):Promise

// If the RymdNode is initialized with an identity or not.
isAlive:Boolean

// Set the private key for an identity
setPrivateKey: (key:Key, identity:String):Promise(guid)

// Get the private key for an identity
getPrivateKey: (identity:String):Promise(key)

// Get the public key for an identity
getPublicKey: (identity:String):Promise(key)

// Get the RymdNode’s current identity name
currentIdentity:String

// Connect to another identity (RymdNode)
connect: (identity:String):Promise(connection)

// Share a resource with a guid with another identity
shareResource: (guid:String, identity:String):Promise

// Request (download) a shared resource with a guid
requestResource: (guid:String):Promise

// Destroy a resource with a guid
destroyResource: (guid:String):Promise

Listing 6.1: Public methods of RymdNode

31



RymdNode triggers certain events on itself, which can be used for handling
incoming resource sharing proposals, resource download requests, and more. The
complete list of events are listed in listing 6.2. These events might initially be
triggered inside some injected module, but RymdNode listens to events and triggers
them on itself in order to present a coherent external event interface. For instance,
the request event is triggered inside the PeerJS Connection module (section 6.6)
and bubbled up to RymdNode.

App.rymdNode.on(’init’, function(identity) {
// This RymdNode is finished initializing with a given ’identity’

});

App.rymdNode.on(’resource’, function(peerName, resource) {
// Incoming resource from ’peerName’

});

App.rymdNode.on(’request’, function(peerName, data, connection) {
// Incoming request for a resource (whose metadata are in ’data’)

from ’peerName’
});

App.rymdNode.on(’share’, function(peerName, data, connection) {
// Incoming share request from ’peerName’ with resource metadata in

’data’
});

Listing 6.2: Events triggered on RymdNode

6.2 Shuttle

The front-end prototype was built in order to test and implement the features of
Rymd. Early versions included a minimum viable interface for adding, showing and
sending files. This was further iterated over, ending up letting the user:

• Add files through form control or drag-and-drop

• Share, view and delete files

• Login (verifies with the DHT, see 6.3)

• Get in-app notifications for incoming sharing requests

• Download remote files that have been shared by other users

• Add custom encryption keys

Shuttle uses Rymd’s functionality by instantiating a global RymdNode object
(see 6.1). This effectively makes Shuttle a node in the network. In-app notifications
are shown by listening to certain events on the rymdNode object. Shuttle uses
RymdNode’s external interface in order to control the application logic, such as
responding to and initiating resource sharing requests (see listings 6.3 and ??).

32



// Listen to incoming request events and immediately send the wanted
resource

App.rymdNode.on(’request’, function(peer, data, connection) {
// Access the rymdNode object’s resource store
App.rymdNode.store.getResource(data.guid, true)
.then(connection.sendResource.bind(connection));

});

Listing 6.3: Incoming download request

var guid = <guid fetched from the application interface>;

App.rymdNode.store.getDecryptedResource(guid).then(function(resource)
{

// Create URL to file with correct MIME type and show in new window
var objectUrl = Rymd.Utils.toObjectURL(resource.data.data, resource.

metadata.type);
window.open(objectUrl, "_blank");

});

Listing 6.4: Show a downloaded file

6.3 Authentication (DHT, DHT Client)

Since the default authentication implementation utilizes Namecoin, which can not
be accessed directly from a web application, a gateway service needs to be used.
Therefore, the domain of authentication spans over several parts in separate systems:

DHT A NodeJS1 based server that looks up entries in the Namecoin blockchain.
It is also used to keep track of session-based IDs, as described under 3.2. This
is the only module that runs outside of the Rymd library.

DHT-Client Client-side interface module to the DHT.

ConnectionHandler Submodule in the Rymd library. Implements the Needham-
Schroeder-Lowe authentication business logic.

The idea with this separation is that the authentication algorithm is part
of the core library, while derivative projects should be able to replace DHT and
DHT−client with implementations using other stores such as Ethereum or Keybase
without having to consider writing a secure authentication protocol, should they so
desire.

6.4 RymdCrypto

The implementations of WebCrypto in Chromium supply key generation, but
there is no support for persisting keys between sessions or even exporting private
keys. W3C - the organization behind WebCrypto - have announced their intention
to handle persistent key storage in an upcoming API called WebCrypto Key

1http://nodejs.org

33



Discovery [69]. However, Google has no intention of implementing this in Chromium
before the WebCrypto API is finalized. WebCrypto Key Discovery API was originally
intended to be a part of the WebCrypto API but was extracted in order to decrease
implementation complexity.

6.4.1 Algorithms

Since Rymd uses asymmetric keys for authentication, RymdCrypto should supply
asymmetric signing and encryption schemes using the same keys. Considering the
support in WebCrypto, this leaves RSA based schemes as the only alternatives (See
table 6.1). There are only two RSA based encryption schemes that are part of
WebCrypto: RSAES−PKCS1−v1.5 and RSA−OAEP . RSAES−PKCS1−v1.5
is currently the only one that is implemented in Google Chrome, and is therefore
the current choice for Rymd. Rymd uses RSASSA− PKCS1− v1.5 for signing,
mainly because it is recommended by the working group behind the WebCrypto
API.

For encryption of resources, a symmetric algorithm is used. AES-CBC is a
fast and simple to use symmetric key algorithm based on AES using cipher block
chaining [46].

Finally, a good hashing algorithm is needed in order to avoid collision of hashes,
in other words to avoid having two generated hash values being exactly the same
(similar to the birthday problem 2). For hashing purposes RymdCrypto uses SHA-256
as explained in section 5.5.

Algorithm name Type Encrypt Decrypt Sign Verify ImportKey
RSAES-PKCS1-v1_5 ASYM x x x
RSASSA-PKCS1-v1_5 ASYM x x x
RSA-PSS ASYM x x x
RSA-OAEP ASYM x x x
ECDSA ASYM x x x
AES-CTR SYM x x x
AES-CBC SYM x x x
AES-CMAC SYM x x x
AES-GCM SYM x x x
AES-CFB SYM x x x

Table 6.1: Some WebCrypto API algorithms

Commercial RSA certificates are more widely deployed compared to DSA cer-
tificates. Furthermore, the asymmetric keys are wrapped in PKCS#8 and SPKI
certificates while the symmetric key exist in raw format. The Private-Key Informa-
tion Syntax Standard (PKCS#8) defines a way to store the private key, and the
Simple Public Key Infrastructure (SPKI) defines a way to store the public key. All
three standards was chosen because they are the only three formats that is currently
supported by Chromium [39].

6.4.2 Libraries

Until the WebCrypto Key Discovery API is available, the RymdCrypto module
generates pseudo-random keys through the external library bignumber-jt3. To do
low-level key generation directly in JavaScript is bad practice and is performed in
order to make Rymd runnable until a more solid solution is available.

Furthermore, IndexedDB is used as makeshift storage since the WebCrypto
API lacks functionality for storing keys between sessions, or even exporting private

2http://statistics.about.com/od/ProbHelpandTutorials/a/What-Is-The-Birthday-
Problem.htm

3https://www.npmjs.org/package/bignumber-jt

34



keys. In order to use IndexedDB for the keys they need to be parsed to certificates.
This is also handled by bignumber-jt. All certificates have a static key size where
asymmetric keys are of 1024 bits and symmetric keys are of 256 bits. Key parsing
and generation is currently handled by bignumber-jt.

Hashing is handled by the external library crypto-js4.

6.4.3 Interface

The RymdCrypto library exposes functions handling key generation, encryption,
decryption, signing, verification, and hashing. The methods and their signatures
are presented in listing 6.5.

// Method signatures on the form <name>: [(<parameter>:<type> ...)]:<
Return type>

// Generate symmetric key
generateSymmetric: ():Promise(key)

// Generate asymmetric key pair
generateKeyPair: ():Promise(privateKey, publicKey)

// Import key. purpose: encrypt|sign. type: public|private|secret
importKey: (type:String, purpose:String, key:Uint8Array):Promise(key)

// Export key
exportKey: (WebCrypto::Key key):Promise(key)

// Decrypt data with key
decryptData: (WebCrypto::Key key, Uint8Array data):Promise(Uint8Array

data)
decryptBlob: (WebCrypto::Key key, Blob blob):Promise(Uint8Array data)

// Encrypt data with key
encryptData: (WebCrypto::Key key, Uint8Array data):Promise(Uint8Array

data)
encryptBlob: (WebCrypto::Key key, Blob blob):Promise(Uint8Array data)

// Sign data using asymmetric key
signKey: (WebCrypto::Key key, Uint8Array data):Promise(Uint8Array

signature)

// Verify data signed using asymmetric key.
verifyKey: (WebCrypto::Key key, Uint8Array data, Uint8Array signature)

:Promise(Boolean result)

// Hashes data.
hashString: (String data):Promise(String hash)
hashBlob: (Blob blob):Promise(String hash)

Listing 6.5: Public methods of RymdCrypto

4https://github.com/evanvosberg/crypto-js

35



6.5 IndexedDBStore

The main task for the data storage module was to abstract away the low-level
methods in IndexedDB (the backing store used, see section 3.1.4). An API example
can be found in listing 6.6. The module supports use of multiple object stores and
auto-generation of GUID keys.

var IndexedDbStore = require(’indexeddbstore’)

var Store = new IndexedDbStore(’myStore’)

// Fetch all records as an array
Store.all().then(function(records) { ... })

// Create a record
Store.create(’A record’).then(function(record){ ... })

// Insert a record
Store.save(’A record’).then(function(guid){ ... })

// Fetch a record by GUID
Store.get(guid).then(function(record) { ... })

// Delete a record by GUID
Store.destroy(guid).then(function(record) { ... })

Listing 6.6: Common database operations

The largest challenge came to the edge cases when storing files, or as they are
called in web browser: Blobs. Since at present only Firefox can store blobs directly
in IndexedDB, an alternate route had to be taken for other browsers. Initially the
module used conditionals and converted incoming data to and from ArrayBuffers
(the browser construct for raw byte streams). But since ArrayBuffers are just the
raw data, all metadata for the blobs (such as filename, timestamps, size) would be
lost when saving as an ArrayBuffer. In early versions of the data storage module
this metadata would be stored in a separate store in the database, but this was too
tightly coupled and was removed. The final implementation is storing data as-is –
any metadata must be saved explicitly in a separate operation.

The asynchronous API of IndexedDB is relatively verbose and complex. It
makes heavy use of event driven programming and thus the developer communicates
with the database with callbacks. By the use of Promises [70], the asynchronous,
callback-based methods in the IndexedDB API was made streamlined and simple
to manage.

6.6 PeerJS Connection

Rymd leverages the open source project PeerJS5, which simplifies sending peer-
to-peer data between clients. This module was therefore constructed, in line with
the project guidelines regarding modularity, to contain PeerJS-specific code and to
provide an independent interface which does not reveal the details of PeerJS’s inner
workings. If changes in Rymd’s requirements makes the choice of PeerJS obsolete,

5http://peerjs.com

36



then the changes will be isolated and one should still be able to depend on the same
interface.

PeerJS utilizes WebRTC and is essentially split into two components: a server
which acts as the signaling channel, and a client-side API which interacts with the
server as well as other peers. The server only handles the brokering of connections,
which implies that only the data necessary for negotiating a connection is sent
through this point. For communication between the server and the clients, that is
the signaling protocol, PeerJS utilizes both WebSockets and XMLHttpRequest [71].
After a connection has been setup between two clients, the server is no longer needed
in order for them to communicate.

The following steps explain how PeerJS brokers connections:

1. Two clients connect to the PeerJS server, using the client-side API.

2. The server returns unique IDs for each of the clients.

3. One of the clients connects to the other using the client-side API, where the
unique ID for the other one is provided. The PeerJS server then forwards the
information needed to set up a peer-to-peer connection to the other client.

In order to map the identity registered in the Namecoin blockchain to the ID
supplied by the PeerJS server, the DHT service is used. After a client has connected
to a PeerJS server, it supplies the data regarding the server IP and the generated
ID to the DHT. When another client wants to create a peer-to-peer connection, it
queries the DHT service for the Namecoin identity, which then returns the IP for
the PeerJS server and the ID for the client.

To ensure the integrity of users it is vital that the communication with the
PeerJS server and the DHT service is encrypted. The current implementation utilize
the WebSocket protocol and the XHR API, which are not encrypted per default, for
communication over these channels. Therefore an implementation running on top
of the SSL/TLS protocol has to be in place before the project can be considered to
have reached a releasable state.

37



6.7 Testing

Automatic unit tests have been implemented where possible. Thanks to the use
of isolated modules test suites were able to be short and concise. Mocha was used
as test runner, with Chai as assertion library (please see appendice B for links to
external libraries used). Listing 6.7 shows an excerpt from the test suite, where
simple operations are tested and their results are verified.

describe(’IndexedDBStore’, function() {

var db;

beforeEach(function() {
db = new IndexedDBStore({

dbName: ’test’
});

});

it(’should have a database name’, function() {
db.name.should.equal(’test’);

});

it(’should save a record and return an id’, function() {
return db.save({foo: ’bar’})
.then(function(id) {

id.should.be.a(’String’);
});

});

it(’should retrieve a given record’, function() {
return db.save({foo: ’bar’})
.then(db.get.bind(db))
.then(function(record) {

record.should.be.an(’Object’);
record.data.foo.should.equal(’bar’);

});
});

});

Listing 6.7: Sample test suite

No integration or functional tests have been written for testing larger parts of
the system. This is due to the fast iteration of the library’s interface and constant
change in implementation.

38



7 | Results and Discussion
Here, we lay out the outcome of the project and some of the difficulties that were
met in the process. We then go through the main goals of Rymd and see how well
they could be met, where and why there are shortcomings and how these could
be addressed. Finally, we explore the ethical motivation behind Rymd and the
implications it could have in a non-technological sense.

7.1 Outcome

This project has resulted in a modular peer-to-peer developer library for sending
data, encrypted with public-key encryption, over a secure connection to another
client. The library, Rymd, makes use of several modules for specific areas such as data
storage (section 6.5), cryptography (section 6.4), and communication (section 6.6)
in order to create a foundation for sending files without central file storage.

For demonstrating the capabilities of Rymd, a sample prototype web application
has been created, named Shuttle. This client provides a user interface for showing
local files, sending files to other users registered in the blockchain, and managing
encryption keys. In Shuttle the user can add, list, view, and delete files in their
local data store, where the files are encrypted and stored along with their metadata.
By knowing a recipient’s identity, the user is able to share a file with the recipient
over an encrypted P2P connection. When sharing a file, the receiving end will
instantly show a notification with a remark that the sender wants to share a file. If
the recipient chooses to accept the sharing request, the file will be downloaded to
their local data store.

Figure 7.1: The Shuttle login view

7.2 Decentralizing the system

One of the main initial goals for Rymd was to make the system truly decentralized
and reliable independently of the availability of certain services. To a large extent,
Rymd is successful in this area. Any application, including the prototype Shuttle,
can be downloaded and executed locally. Therefore there are no dependencies on
web servers, since all data transfers between clients are performed in a peer-to-peer
fashion. No central database outside of the local client stores persistent data. There
are, however, two parts where communication with central endpoints still needs

39



Figure 7.2: Files listing in Shuttle

to be done: connecting peers through WebRTC ICE and the interaction with the
Namecoin blockchain.

7.2.1 Connecting peers using WebRTC

As described in section 6.6, establishing WebRTC connections still relies on the
availability of a STUN or TURN server. This makes implementing applications
depend on the availability of such a server. However, there are several public
ICE servers available and in the case of downtime it is trivial to set up a new
one and make the application use the new server instead. Also, since verification
of identities of peers is performed locally and all data is end-to-end encrypted,
there is no possibility for the administrator of these servers to spoof identities or
deduce anything about shared resources. The two things that do leak are identity
names (since these are needed to deduce who to connect to whom) and, if TURN is
used, estimated size of data transferred. We found no way around the former and
considered that the latter was a fair tradeoff - future implementations that care
about leaking of resource size could solve this by also transfer redundant padding
data regardless of resource size.

7.2.2 Accessing the Namecoin blockchain from a web client

The Namecoin blockchain is used to tie identities to their public keys and PeerJS
endpoints. Therefore, an HTTP gateway running the Namecoin software was
developed that acts as a bridge between the blockchain and Rymd nodes. Trust in
the operator of this gateway is crucial, since public keys are fetched and verified
through it. The paranoid user could, however, easily run their own gateway or
manually verify or insert public keys using their own Namecoin client. In theory,
each user could even run their own gateway. On May 6th, at the time of writing
of this report, a public and more general HTTP/Blockchain interface at chain-
api.com [72] was released. Currently it only support Bitcoin, but promises future
integration with the Namecoin blockchain. Once that happens, it would be trivial to
replace the current gateway with Chain if one would like to do so. The buzz around
services such as these shows that this is an emerging area with more interesting
development to come in the near future.

Something that would both solve these issues and be very interesting in many
other areas is a blockchain where nodes can communicate through open web protocols.
This would mean that web clients could interact directly with the blockchain without
going through external gateways such as these, at the same time allowing them
to contribute to the network. Given the premises stated in the introduction and

40



the rapid development of emerging blockchains and cryptocurrencies, we think it is
only a matter of time before this happens.

7.3 Cryptographically securing data

In the application layer, all communication over WebRTC is DTLS encrypted. As
stated in section 5.5, for local storage and sending of resources, every resource
is also AES encrypted with a resource-specific key. Since all existing browser
implementations of the Web Cryptography API are still experimental and partial,
and there is not yet support for secure storage of cryptographic keys, the keys are
stored alongside their encrypted data in IndexedDB. As long as the keys are not
passphrase protected, this effectively means that at the level of the local client,
the encryption adds no extra protection and can be considered redundant. An
adversary gaining access to the database with the encrypted data would also have
access to the decryption key. When the WebCrypto Key Discovery API becomes
finalized and implemented across browsers, separate key storage options will become
available and can be implemented in Rymd.

Despite this problem, the AES encryption still serves a purpose. Consider an
application utilizing Rymd where users communicate through each other in a darknet
fashion - anonymous file sharing where peers are only connected to peers they trust,
but data is relayed through chains of connections to facilitate propagation of data.
In these cases it is imperative that resources can be transmitted separately from
their keys and metadata so that intermediate peers can relay the transfer of resource
data without gaining knowledge of the contents.

Also, systems with updateable resources can and should regenerate keys for each
version and backward secrecy - the property that access to the key for one version
of the resource will not allow decryption of older versions of that resource - will be
achieved.

7.4 Making the system modular and implementa-
tion agnostic

As much of Rymd uses and relies on some of the latest web technologies, great care
was taken during development to not make it rely on any of these implementations,
should they be superseded or complemented by other more fitting alternatives. The
main Rymd library itself handles only the business logic of the system and gets
the modules implementing data storage, cryptography, peer-to-peer communication
and DHT interaction supplied at runtime via dependency injection. Developers
who have their own idea of how these needs should be served in their own projects
could write their own implementation modules. The one area where work needs
to be done is that currently, storage of keys, metadata and resource data are tied
together. Before Rymd can go stable, this should be addressed by treating these as
separate data stores altogether even if the current implementation puts all three
side by side in IndexedDB.

Furthermore, a system with separate interchangeable parts allowed for both
advantages and disadvantages. Easier testing was one of the former, where instead of
a suite covering the whole system, tests could be limited to each module. Something
that proved to be more difficult was the debugging of events that flow through
multiple modules. Data would travel through connecting endpoints between modules
and then be sent far down call hierarchies (perhaps triggering new events or having
more information appended to it) before bubbling back up in the call chain. Any
error occurring in such a flow were hard to pinpoint.

41



7.5 Trusting a distributed web based application

Currently, major web browsers have no way to verify client-side code for web
applications the way that native binaries or Java applets can be cryptographically
verified using signatures. Since system logic is run in a web browser, users can not
know for sure whether the client code is altered between executions or not. This issue
is one of the reasons why a large part of the online community is considering client-
side JavaScript encryption to be a generally bad practice [38]. If the application is
delivered in form of a web browser extension, it can be signed using a certificate.
This means, however, that the application has to be specifically bundled for each
web browser which limits the practical portability of the code. These extensions
are currently mainly available for desktop browsers. In the case of Rymd, it all
depends on how the developers of implementing applications uses it.

7.6 Ethical aspects

Rymd was originally conceived from an ethical issue: that free, private and secret
communication should be easily accessible and usable on the web. As it currently
stands, truly secret and private communication requires running binary files and/or
putting trust in a service provider. Rymd aims to be a step away from that
restriction.

At its current state, Rymd should not be trusted with confidential data. This is
mainly because of the limitations stated in the preceding sections that come from
the choice of still immature, cutting-edge technologies. Also, Rymd is still in an
experimental stage and should not be considered stable or trusted until it has been
exposed to extensive peer review and scrutiny by the community - a reservation
that applies for any project of this nature. However, we are confident that we are
going in the right direction and hope that further development could make Rymd a
contributor in the movement of free communication on the web.

7.6.1 Implications

As always when it comes to services enabling private communication, concerns
are raised on the issue of what they can be used for. Commonly mentioned are
terrorism, drug dealing and child pornography. First, we want to emphasize that
Rymd does not in itself provide any anonymity for its users (though it could easily
be used in conjunction with anonymization services such as TOR1). While Rymd
could indeed be used for these purposes, there are already other services such as
those mentioned in section 4 that are currently used for these purposes - Rymd
does not enable risks that are not already present.

Inevitably, the question of whom is to hold responsible for malicious activity is
raised when a project of this nature is realized. Some argue that developers can be
held responsible since they are enabling this behaviour with less risk of repercussions.
Others argue that as long as surveillance and data mining are increasingly abused
by authorities and private organizations over the world, the access to private and
secret communication is becoming ever more important. Technology exploring new
frontiers is always met with a critical gaze; laws and regulations have merely briefly
halted advancement. One way or other, technological evolution has always prevailed
once the genie is out of the bottle.

Most importantly, however, it is our opinion that private and secure communi-
cation without corporation or government surveillance is a human right, and this
right is effectively nonexistent if it requires significant monetary resources and/or
technical know-how. Putting this standpoint aside, we have mainly treated this

1https://www.torproject.org

42



issue as a technical one and will let the readers of this report decide for themselves
where they stand and how Rymd relates to this.

43



8 | Conclusion
The offered functionality of open web standards is constantly changing to the better,
and so do the potential and capabilities of modern web browsers. Some standards
are still in their infancy. Most notably, the Web Crypto API is still in a experimental
state and lack vital parts such as secure key storage. More progress is needed before
secure authenticated peer-to-peer file sharing can be done by web browsers.

Even so, Rymd and Shuttle show that the future might not be that far away.
Even if the resulting code is not yet ready for production from a security perspective,
we feel that our ambition to create a starting point for a web-centered secure file
sharing platform has gone well. It is our hope that Rymd will get feedback from
the community in order to inspire and play a part in a new wave of file sharing
technologies on the web.

The web is evolving in a incredibly fast rate. This project demonstrates a
fraction of what will soon be possible. We are watching with eager eyes what the
future may hold.

“This is not the end. It’s not even the beginning of the end. But it might be the
end of the beginning.” - Winston Churchill

44



References
[1] OFCOM. (Sep. 2005). Digital Television Update - 2005 Q2, [Online]. Available:

http://stakeholders.ofcom.org.uk/binaries/research/tv-research/
q2_2005.pdf (visited on 05/19/2014).

[2] ——, (Apr. 2005x). The Communications Market 2005 2 Radio, [Online].
Available: http://stakeholders.ofcom.org.uk/binaries/research/cmr/
part2.pdf (visited on 05/19/2014).

[3] J. Constine. (Nov. 2013). Dropbox Hits 200M Users, Unveils New "For Busi-
ness"Client Combining Work And Personal Files, [Online]. Available: http:
//techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-
announces-new-products-for-businesses/ (visited on 05/19/2014).

[4] L. Wang, G. von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C.
Fu. (Apr. 2010). Cloud Computing: a Perspective Study, [Online]. Available:
http://link.springer.com/article/10.1007/s00354- 008- 0081- 5
(visited on 05/19/2014).

[5] J. Crowcroft, T. Moreton, I. Pratt, and A. Twigg. (Apr. 2010). Peer-to-Peer
Systems and the Grid, [Online]. Available: http://www.cl.cam.ac.uk/
teaching/2003/AdvSysTop/grid-p2p-paper.pdf (visited on 05/19/2014).

[6] J. Frank. (2014). Strengthening our policies for investigations, [Online]. Avail-
able: http://blogs.technet.com/b/microsoft_on_the_issues/archive/
2014/03/20/strengthening-our-policies-for-investigations.aspx
(visited on 05/19/2014).

[7] U. Maurer, “Modelling a public-key infrastructure”, Computer Security —
ESORICS 96, ser. Lecture Notes in Computer Science, E. Bertino, H. Kurth, G.
Martella, and E. Montolivo, Eds., vol. 1146, Springer Berlin Heidelberg, 1996,
pp. 325–350, isbn: 978-3-540-61770-9. doi: 10.1007/3-540-61770-1_45.
[Online]. Available: http://dx.doi.org/10.1007/3-540-61770-1_45
(visited on 05/19/2014).

[8] E. Uhrhane. (Apr. 2014). W3C File API: Directories and System, [On-
line]. Available: http: // www. w3. org/ TR/ file- system- api/ (visited
on 05/19/2014).

[9] ——, (Apr. 2014). Web Applications Working Group mailing list: [fileapi-
directories-and-system/filewriter], [Online]. Available: http://lists.w3.
org/Archives/Public/public-webapps/2014AprJun/0010.html (visited
on 05/19/2014).

[10] R. Sleevi and M. Watson. (Apr. 2014). W3C Web Cryptography draft, [Online].
Available: http://www.w3.org/TR/WebCryptoAPI/ (visited on 05/19/2014).

[11] I. Hickson. (Apr. 2014). W3C Web Storage draft, [Online]. Available: http:
//www.w3.org/TR/webstorage/ (visited on 05/19/2014).

[12] ——, (Apr. 2014). W3C Web SQL Database draft, [Online]. Available: http:
//www.w3.org/TR/webdatabase/ (visited on 05/19/2014).

[13] N. Mehta, J. Sicking, E. Graff, A. Popescu, J. Orlow, and J. Bell. (Apr. 2014).
W3C Indexed Database draft, [Online]. Available: http://www.w3.org/TR/
IndexedDB/ (visited on 05/19/2014).

[14] S. Kimak, J. Ellman, and C. Laing. (Apr. 2014). An Investigation into Possible
Attacks on HTML5 IndexedDB and their Prevention, [Online]. Available: http:
//www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.
pdf (visited on 05/19/2014).

[15] I. Grigorik. (2013). High-Performance Browser Networking - XMLHttpRe-
quest, [Online]. Available: http://chimera.labs.oreilly.com/books/
1230000000545/ch15.html (visited on 05/19/2014).

[16] I. Fette and A. Melnikov. (Dec. 2011). The WebSocket Protocol, [Online].
Available: http://tools.ietf.org/html/rfc6455 (visited on 05/19/2014).

45

http://stakeholders.ofcom.org.uk/binaries/research/tv-research/q2_2005.pdf
http://stakeholders.ofcom.org.uk/binaries/research/tv-research/q2_2005.pdf
http://stakeholders.ofcom.org.uk/binaries/research/cmr/part2.pdf
http://stakeholders.ofcom.org.uk/binaries/research/cmr/part2.pdf
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses/
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses/
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses/
http://link.springer.com/article/10.1007/s00354-008-0081-5
http://www.cl.cam.ac.uk/teaching/2003/AdvSysTop/grid-p2p-paper.pdf
http://www.cl.cam.ac.uk/teaching/2003/AdvSysTop/grid-p2p-paper.pdf
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2014/03/20/strengthening-our-policies-for-investigations.aspx
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2014/03/20/strengthening-our-policies-for-investigations.aspx
http://dx.doi.org/10.1007/3-540-61770-1_45
http://dx.doi.org/10.1007/3-540-61770-1_45
http://www.w3.org/TR/file-system-api/
http://lists.w3.org/Archives/Public/public-webapps/2014AprJun/0010.html
http://lists.w3.org/Archives/Public/public-webapps/2014AprJun/0010.html
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/
http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.pdf
http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.pdf
http://www.cms.livjm.ac.uk/pgnet2012/Proceedings/Papers/1569607913.pdf
http://chimera.labs.oreilly.com/books/1230000000545/ch15.html
http://chimera.labs.oreilly.com/books/1230000000545/ch15.html
http://tools.ietf.org/html/rfc6455


[17] K. Egevang and P. Francis. (May 1994). The IP Network Address Translator
(NAT), [Online]. Available: http://www.ietf.org/rfc/rfc1631.txt (visited
on 05/19/2014).

[18] J. Rosenberg. (Apr. 2010). Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols, [Online]. Available: http://tools.ietf.org/html/rfc5245
(visited on 05/19/2014).

[19] I. Grigorik. (2013). High-Performance Browser Networking - UDP and Network
Address Translators, [Online]. Available: http://chimera.labs.oreilly.
com/books/1230000000545/ch03.html (visited on 05/19/2014).

[20] B. Ford, P. Srisuresh, and D. Kegel. (Feb. 2005). Peer-to-Peer Communica-
tion Across Network Address Translators, [Online]. Available: http://www.
brynosaurus.com/pub/net/p2pnat/ (visited on 05/19/2014).

[21] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. (Oct. 2008). Session
Traversal Utilities for NAT (STUN), [Online]. Available: http://tools.ietf.
org/html/rfc5766 (visited on 05/19/2014).

[22] Mozilla Contributors, L. Jouanneau, J. Patonnier, and C. Mills. (Mar. 2014).
Introduction to WebRTC architecture. Available under a Creative Commons
Attribution-ShareAlike 2.5 Generic license, available at
http://creativecommons.org/licenses/by-sa/2.5/, [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC/WebRTC_
architecture (visited on 05/19/2014).

[23] R. Mahy, P. Matthews, and J. Rosenberg. (Apr. 2010). Session Traversal
Utilities for NAT (STUN), [Online]. Available: http://tools.ietf.org/
html/rfc5766 (visited on 05/19/2014).

[24] H. Alvestrand. (Jun. 2011). Google release of WebRTC source code, [Online].
Available: http://lists.w3.org/Archives/Public/public- webrtc/
2011May/0022.html (visited on 05/19/2014).

[25] Google Inc. (Apr. 2014). WebRTC, [Online]. Available: http://www.webrtc.
org/ (visited on 05/19/2014).

[26] ——, (Apr. 2014). WebRTC Chrome, [Online]. Available: http://www.webrtc.
org/chrome (visited on 05/19/2014).

[27] ——, (Apr. 2014). WebRTC Firefox, [Online]. Available: http://www.webrtc.
org/firefox (visited on 05/19/2014).

[28] J. Roettgers. (Aug. 2012). Microsoft commits to WebRTC – just not Google’s
version, [Online]. Available: http://gigaom.com/2012/08/06/microsoft-
webrtc-w3c/ (visited on 05/19/2014).

[29] S. Dutton. (Jul. 2012). Getting Started with WebRTC. Available under a
Creative Commons Attribution 3.0 Unported license, available at
http://creativecommons.org/licenses/by/3.0/legalcode, [Online]. Available:
http://www.html5rocks.com/en/tutorials/webrtc/basics/ (visited on
05/19/2014).

[30] I. Grigorik. (2013). High-Performance Browser Networking - WebRTC, [On-
line]. Available: http://chimera.labs.oreilly.com/books/1230000000545/
ch18.html (visited on 05/19/2014).

[31] ——, (2013). High-Performance Browser Networking - WebRTC, [Online].
Available: http://chimera.labs.oreilly.com/books/1230000000545/
ch18.html (visited on 05/19/2014).

[32] Chris Ball. (May 2013). WebRTC without a signaling server, [Online]. Avail-
able: http://blog.printf.net/articles/2013/05/17/webrtc-without-
a-signaling-server/ (visited on 05/19/2014).

[33] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System May 2009, May
2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf (visited
on 05/19/2014).

[34] Namecoin.info. (Apr. 2014). Namecoin, [Online]. Available: http://namecoin.
info/ (visited on 05/19/2014).

46

http://www.ietf.org/rfc/rfc1631.txt
http://tools.ietf.org/html/rfc5245
http://chimera.labs.oreilly.com/books/1230000000545/ch03.html
http://chimera.labs.oreilly.com/books/1230000000545/ch03.html
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5766
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC/WebRTC_architecture
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC/WebRTC_architecture
https://developer.mozilla.org/en-US/docs/Web/Guide/API/WebRTC/WebRTC_architecture
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5766
http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/chrome
http://www.webrtc.org/chrome
http://www.webrtc.org/firefox
http://www.webrtc.org/firefox
http://gigaom.com/2012/08/06/microsoft-webrtc-w3c/
http://gigaom.com/2012/08/06/microsoft-webrtc-w3c/
http://www.html5rocks.com/en/tutorials/webrtc/basics/
http://chimera.labs.oreilly.com/books/1230000000545/ch18.html
http://chimera.labs.oreilly.com/books/1230000000545/ch18.html
http://chimera.labs.oreilly.com/books/1230000000545/ch18.html
http://chimera.labs.oreilly.com/books/1230000000545/ch18.html
http://blog.printf.net/articles/2013/05/17/webrtc-without-a-signaling-server/
http://blog.printf.net/articles/2013/05/17/webrtc-without-a-signaling-server/
http://www.bitcoin.org/bitcoin.pdf
http://namecoin.info/
http://namecoin.info/


[35] D. Gilson. (Jun. 2013). What are Namecoins and .bit domains?, [Online].
Available: http://www.coindesk.com/what-are-namecoins-and-bit-
domains/ (visited on 05/19/2014).

[36] Ethereum.org. (Apr. 2014). Ethereum, [Online]. Available: https://www.
ethereum.org/ (visited on 05/19/2014).

[37] Keybase.io. (Apr. 2014). Keybase, [Online]. Available: https://keybase.io/
(visited on 05/19/2014).

[38] Matasano Security. (Apr. 2010). JavaScript Cryptography Considered Harmful,
[Online]. Available: http://www.matasano.com/articles/javascript-
cryptography/ (visited on 05/19/2014).

[39] eroman@chromium.org. (Apr. 2010). WebCrypto implementation in Chromium,
[Online]. Available: https://docs.google.com/a/chromium.org/spreadsheet/
ccc?key=0Agiw0cuQZfVGdHNUNXBhZEFkazkyVy1uM1pISnlKRWc#gid=0 (vis-
ited on 05/19/2014).

[40] Microsoft. (2013). Web Cryptography, [Online]. Available: http://msdn.
microsoft.com/en-us/library/ie/dn302338(v=vs.85).aspx (visited on
05/19/2014).

[41] Mozilla. (2013). JavaScript crypto, [Online]. Available: http://msdn.microsoft.
com/en-us/library/ie/dn302338(v=vs.85).aspx (visited on 05/19/2014).

[42] M. Arora. (May 2011), [Online]. Available: http://www.eetimes.com/
document.asp?doc_id=1279264& (visited on 05/19/2014).

[43] Internet Engineering Task Force. (Jan. 1999), [Online]. Available: http://
www.ietf.org/rfc/rfc2459.txt (visited on 05/19/2014).

[44] National Institute of Standards and Technology, Announcing the ADVANCED
ENCRYPTION STANDARD (AES), Federal Information Processing Stan-
dards Publication, 2001. [Online]. Available: http : / / csrc . nist . gov /
publications/fips/fips197/fips-197.pdf (visited on 05/19/2014).

[45] .NET Security Blog. (2006). The Differences Between Rijndael and AES,
[Online]. Available: http://blogs.msdn.com/b/shawnfa/archive/2006/
10/09/the-differences-between-rijndael-and-aes.aspx (visited on
05/19/2014).

[46] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Fergusonk, T.
Kohno, and M. Stay. (Apr. 2010). The Twofish Team’s Final Comments on
AES Selection, [Online]. Available: https://www.schneier.com/paper-
twofish-final.pdf (visited on 05/19/2014).

[47] National Institute of Standards and Technology, “Data Encryption Standard”,
In FIPS PUB 46, Federal Information Processing Standards Publication, 1977,
pp. 46–2.

[48] E. Danielyan. (2001). Goodbye DES, Welcome AES.
[49] M. Rouse. (Jun. 2007). Cipher Block Chaining (CBC), [Online]. Available:

http://searchsecurity.techtarget.com/definition/cipher-block-
chaining (visited on 05/19/2014).

[50] BitTorrent Inc. (Feb. 2014). BitTorrent Sync, [Online]. Available: http://
getsync.com/ (visited on 05/19/2014).

[51] RetroShare Team. (Feb. 2014). RetroShare, [Online]. Available: http://
retroshare.sourceforge.net/team.html (visited on 05/19/2014).

[52] Peer5. (Feb. 2014). Sharefest, [Online]. Available: https://www.sharefest.
me/ (visited on 05/19/2014).

[53] I. Clarke. (Feb. 2014). Freenet, [Online]. Available: https://freenetproject.
org/ (visited on 05/19/2014).

[54] Tahoe-LAFS. (Feb. 2014). Tahoe-LAFS, [Online]. Available: https://tahoe-
lafs.org/trac/tahoe-lafs (visited on 05/19/2014).

[55] Bitmessage Community. (Feb. 2014). Bitmessage, [Online]. Available: https:
//bitmessage.org/wiki/Main_Page (visited on 05/19/2014).

47

http://www.coindesk.com/what-are-namecoins-and-bit-domains/
http://www.coindesk.com/what-are-namecoins-and-bit-domains/
https://www.ethereum.org/
https://www.ethereum.org/
https://keybase.io/
http://www.matasano.com/articles/javascript-cryptography/
http://www.matasano.com/articles/javascript-cryptography/
https://docs.google.com/a/chromium.org/spreadsheet/ccc?key=0Agiw0cuQZfVGdHNUNXBhZEFkazkyVy1uM1pISnlKRWc#gid=0
https://docs.google.com/a/chromium.org/spreadsheet/ccc?key=0Agiw0cuQZfVGdHNUNXBhZEFkazkyVy1uM1pISnlKRWc#gid=0
http://msdn.microsoft.com/en-us/library/ie/dn302338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/dn302338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/dn302338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/dn302338(v=vs.85).aspx
http://www.eetimes.com/document.asp?doc_id=1279264&
http://www.eetimes.com/document.asp?doc_id=1279264&
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://blogs.msdn.com/b/shawnfa/archive/2006/10/09/the-differences-between-rijndael-and-aes.aspx
http://blogs.msdn.com/b/shawnfa/archive/2006/10/09/the-differences-between-rijndael-and-aes.aspx
https://www.schneier.com/paper-twofish-final.pdf
https://www.schneier.com/paper-twofish-final.pdf
http://searchsecurity.techtarget.com/definition/cipher-block-chaining
http://searchsecurity.techtarget.com/definition/cipher-block-chaining
http://getsync.com/
http://getsync.com/
http://retroshare.sourceforge.net/team.html
http://retroshare.sourceforge.net/team.html
https://www.sharefest.me/
https://www.sharefest.me/
https://freenetproject.org/
https://freenetproject.org/
https://tahoe-lafs.org/trac/tahoe-lafs
https://tahoe-lafs.org/trac/tahoe-lafs
https://bitmessage.org/wiki/Main_Page
https://bitmessage.org/wiki/Main_Page


[56] J. Sicking. (Apr. 2014). Why no FileSystem API in Firefox?, [Online]. Available:
https://hacks.mozilla.org/2012/07/why-no-filesystem-api-in-
firefox/ (visited on 05/19/2014).

[57] E. Uhrhane. (Apr. 2014), [Online]. Available: http : / / lists . w3 . org /
Archives/Public/public-webapps/2014AprJun/0010.html (visited on
05/19/2014).

[58] Z. Wilcox-O’Hearn. (Oct. 2001). Names: Distributed, Secure, Human-Readable:
Choose Two, [Online]. Available: http://web.archive.org/web/20011020191610/
http://zooko.com/distnames.html (visited on 05/19/2014).

[59] Namecoin wiki. (Feb. 2014). Register and configure .bit domains, [Online].
Available: https://wiki.namecoin.info/index.php?title=Register_
and_Configure_.bit_Domains&oldid=36 (visited on 05/19/2014).

[60] CryptoCoin Charts. (May 2014). NMC/USD - Namecoin / US Dollar to-
day charts and orderbook from Kraken, [Online]. Available: http://www.
cryptocoincharts.info/v2/pair/nmc/usd/kraken/today (visited on
05/19/2014).

[61] Bitcoin Project. (May 2014). bitcoind source code, [Online]. Available: https:
//github.com/bitcoin/bitcoin/ (visited on 05/19/2014).

[62] Wikimedia Commons. (2006). A diagram of Zooko’s Triangle - a theory
of the qualities of naming systems, [Online]. Available: https://commons.
wikimedia.org/wiki/File:Zooko\%27s_Triangle.svg (visited on 05/19/2014).

[63] G. Wang and S. Quing, Two new attacks against Otway Rees Protocol,
IFIP/SEC2000, Information Security Aug. 2000, 137–139, Aug. 2000. [Online].
Available: http://www.uow.edu.au/~guilin/papers/SEC00-137-fl.pdf
(visited on 05/19/2014).

[64] M. Burrows, M. Abadi, and R. Needham, A logic of authentication, ACM
Transactions on Computer Systems vol. 8 1990, 18–36, 1990.

[65] R. M. Needham and M. D. Schroeder, Using Encryption for Authentication
in Large Networks of Computers, Commun. ACM vol. 21, no. 12 Dec. 1978,
993–999, Dec. 1978, issn: 0001-0782. doi: 10.1145/359657.359659. [Online].
Available: http://doi.acm.org/10.1145/359657.359659 (visited on
05/19/2014).

[66] G. Lowe, An Attack on the Needham-Schroeder Public-key Authentication
Protocol, Inf. Process. Lett. vol. 56, no. 3 Nov. 1995, 131–133, Nov. 1995, issn:
0020-0190. doi: 10.1016/0020-0190(95)00144-2. [Online]. Available: http:
//dx.doi.org/10.1016/0020-0190(95)00144-2 (visited on 05/19/2014).

[67] C. R. Dougherty. (Apr. 2010), [Online]. Available: http://www.kb.cert.
org/vuls/id/836068 (visited on 05/19/2014).

[68] R. Blank and P. D. Gallagher, Recommendation for Key Management – Part
1: General (Revised), Published as NIST Special Publication 800-57, http:
//csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_
rev3_general.pdf, 2012.

[69] M. Watson. (Apr. 2010). WebCrypto Key Discovery, [Online]. Available: http:
//www.w3.org/TR/webcrypto-key-discovery/ (visited on 05/19/2014).

[70] B. Cavalier and D. Denicola. (2014). Promises/A+ specification, [Online].
Available: http://promisesaplus.com/ (visited on 06/05/2014).

[71] Peer.js. (May 2014). Peer.js - Github project, [Online]. Available: https:
//github.com/peers/peerjs (visited on 05/19/2014).

[72] Chain. (May 2014). Chain - Simple, powerful Blockchain APIs, [Online].
Available: http://chain-api.com/ (visited on 05/19/2014).

[73] Crypto Coin Insider. (May 2014). Namecoin, [Online]. Available: http://www.
cryptocoinsinsider.com/namecoins/ (visited on 05/19/2014).

[74] P. Gil. (Apr. 2014). What Are Bitcoins? How Do Bitcoins Work?, [Online].
Available: http://netforbeginners.about.com/od/b/fl/What- Are-
Bitcoins-How-Do-Bitcoins-Work.htm (visited on 05/19/2014).

48

https://hacks.mozilla.org/2012/07/why-no-filesystem-api-in-firefox/
https://hacks.mozilla.org/2012/07/why-no-filesystem-api-in-firefox/
http://lists.w3.org/Archives/Public/public-webapps/2014AprJun/0010.html
http://lists.w3.org/Archives/Public/public-webapps/2014AprJun/0010.html
http://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
http://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
https://wiki.namecoin.info/index.php?title=Register_and_Configure_.bit_Domains&oldid=36
https://wiki.namecoin.info/index.php?title=Register_and_Configure_.bit_Domains&oldid=36
http://www.cryptocoincharts.info/v2/pair/nmc/usd/kraken/today
http://www.cryptocoincharts.info/v2/pair/nmc/usd/kraken/today
https://github.com/bitcoin/bitcoin/
https://github.com/bitcoin/bitcoin/
https://commons.wikimedia.org/wiki/File:Zooko\%27s_Triangle.svg
https://commons.wikimedia.org/wiki/File:Zooko\%27s_Triangle.svg
http://www.uow.edu.au/~guilin/papers/SEC00-137-fl.pdf
http://dx.doi.org/10.1145/359657.359659
http://doi.acm.org/10.1145/359657.359659
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://www.kb.cert.org/vuls/id/836068
http://www.kb.cert.org/vuls/id/836068
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.w3.org/TR/webcrypto-key-discovery/
http://www.w3.org/TR/webcrypto-key-discovery/
http://promisesaplus.com/
https://github.com/peers/peerjs
https://github.com/peers/peerjs
http://chain-api.com/
http://www.cryptocoinsinsider.com/namecoins/
http://www.cryptocoinsinsider.com/namecoins/
http://netforbeginners.about.com/od/b/fl/What-Are-Bitcoins-How-Do-Bitcoins-Work.htm
http://netforbeginners.about.com/od/b/fl/What-Are-Bitcoins-How-Do-Bitcoins-Work.htm


[75] Bitcoin.org. (Apr. 2014). Bitcoin – Open source P2P money, [Online]. Available:
https://bitcoin.org/en/ (visited on 05/19/2014).

[76] F. Daoust, D. Hazaël-Massieux, and H. Alvestrand. (Mar. 2013). Web Real-
Time Communications Working Group Charter, [Online]. Available: http:
//www.w3.org/2011/04/webrtc-charter.html (visited on 05/19/2014).

[77] I. Hickson. (May 2011). HTML5 – Offline Web Applications, [Online]. Avail-
able: http://www.w3.org/TR/2011/WD-html5-20110525/offline.html
(visited on 05/19/2014).

[78] T. Wu. (Apr. 2010). bignumber-jt, [Online]. Available: http://www- cs-
students.stanford.edu/~tjw/jsbn/ (visited on 05/19/2014).

[79] B. Kaliski and J. Staddon. (May 2008). Public-Key Cryptography Standards
(PKCS) #8, [Online]. Available: http://www.ietf.org/rfc/rfc5208.txt
(visited on 05/19/2014).

[80] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
(Sep. 1999). SPKI Requirements, [Online]. Available: http://www.ietf.org/
rfc/rfc5208.txt (visited on 05/19/2014).

[81] B. Smith. (Sep. 1999). Additional steps to protect your privacy, [Online].
Available: http://blogs.technet.com/b/microsoft_on_the_issues/
archive/2014/03/28/we-re-listening-additional-steps-to-protect-
your-privacy.aspx (visited on 05/19/2014).

[82] M. Thomson. (Apr. 2013). Customizable, Ubiquitous Real-Time Communi-
cation over the Web, [Online]. Available: http://lists.w3.org/Archives/
Public/public-webrtc/2012Oct/att-0076/realtime-media.html (vis-
ited on 05/19/2014).

49

https://bitcoin.org/en/
http://www.w3.org/2011/04/webrtc-charter.html
http://www.w3.org/2011/04/webrtc-charter.html
http://www.w3.org/TR/2011/WD-html5-20110525/offline.html
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc5208.txt
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2014/03/28/we-re-listening-additional-steps-to-protect-your-privacy.aspx
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2014/03/28/we-re-listening-additional-steps-to-protect-your-privacy.aspx
http://blogs.technet.com/b/microsoft_on_the_issues/archive/2014/03/28/we-re-listening-additional-steps-to-protect-your-privacy.aspx
http://lists.w3.org/Archives/Public/public-webrtc/2012Oct/att-0076/realtime-media.html
http://lists.w3.org/Archives/Public/public-webrtc/2012Oct/att-0076/realtime-media.html


Appendices

50



A | Source code
Due to the modularity of the system, a number of repositories exist to hold the
source code of the different modules. All source code is available at the project’s
GitHub page: https://github.com/rymdjs. All relevant repositories can be found
below:

Rymd https://github.com/rymdjs/rymd

Shuttle https://github.com/rymdjs/prototype

RymdCrypto https://github.com/rymdjs/crypto. Cryptography module.

IndexedDBStore https://github.com/rymdjs/data-storage. IndexedDB adapter.

PeerJS Connection https://github.com/rymdjs/peerjs-connection. P2P connec-
tion adapter for PeerJS.

DHT Client https://github.com/rymdjs/dht-client. Client module for Namecoin
lookups.

DHT https://github.com/rymdjs/dht. NodeJS HTTP REST adapter for lookups
in the Namecoin blockchain.

Rymd Logger https://github.com/rymdjs/rymd-logger. Custom debug and flow
logger module.

Rymd Utils https://github.com/rymdjs/rymd-utils. Globally used utility func-
tions.

B | List of external libraries
Listed below are external tools and libraries that were used in the development of
Rymd and Shuttle.

Backbone http://backbonejs.org. Lightweight JavaScript frontend framework.

bignumber-jt http://www-cs-students.stanford.edu/ tjw/jsbn/. Library for bignum-
ber arithmetic and RSA component generating.

Browserify http://browserify.org. Node style dependency management in the
browser.

Chai http://chaijs.com. Assertion library used with the test framework.

Crypto.js https://code.google.com/p/crypto-js/. Collection of cryptographical
functions.

gulp http://gulpjs.com. Build system.

jQuery http://jquery.com. JavaScript library for DOM manipulation and more.

Mocha http://visionmedia.github.io/mocha. Test framework for JavaScript.

PeerJS http://peerjs.com. WebRTC library for P2P communication.

Q http://documentup.com/kriskowal/q. Library for working with promises for
asynchronous code.

Underscore http://underscorejs.org. Functional helper toolchain for JavaScript.

I


	Abstract
	Sammanfattning
	Terminology
	Introduction
	Background
	Purpose
	Problem
	Decentralization of system logic
	Peer identity verification
	Resource storage
	Resource identification
	Communication flow and transfer initiation

	Scope
	Structure

	Methodology
	Evaluation of technologies
	Prototyping

	Implementation
	Modularity


	Technical background
	Client-side storage
	Web Storage
	WebSQL
	FileSystem
	IndexedDB

	Communication
	XMLHttpRequest
	WebSocket
	NAT Traversal
	WebRTC

	Distributed storage
	Namecoin
	Ethereum
	Keybase

	Cryptography
	Web Cryptography API
	Certificates
	Advanced Encryption Standard


	Related work
	Analysis and System design
	Data storage
	Peer-to-peer communication
	Peer identity verification
	Decentralization
	Creation and transfers of resources
	Modules in Rymd

	System implementation
	Rymd
	Shuttle
	Authentication (DHT, DHT Client)
	RymdCrypto
	Algorithms
	Libraries
	Interface

	IndexedDBStore
	PeerJS Connection
	Testing

	Results and Discussion
	Outcome
	Decentralizing the system
	Connecting peers using WebRTC
	Accessing the Namecoin blockchain from a web client

	Cryptographically securing data
	Making the system modular and implementation agnostic
	Trusting a distributed web based application
	Ethical aspects
	Implications


	Conclusion
	References
	Appendices
	Source code
	List of external libraries

