
GEOMETRICAL AND EVOLUTIONARY

EFFECTS IN A PREDATOR-PREY SYSTEM

Bachelor of Science Thesis in Computer Science and Engineering

Loanne Berggren Albin Bramst̊ang
Henrik Ernstsson Hanna Kowalska Elleberg
Erik Ramqvist Sebastian Ånerud

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Geometrical and Evolutionary effects in a Predator-Prey System

LOANNE BERGGREN
ALBIN BRAMSTÅNG
HENRIK ERNSTSSON
HANNA KOWALSKA ELLEBERG
ERIK RAMQVIST
SEBASTIAN ÅNERUD

c© LOANNE BERGGREN, June 2013.
c© ALBIN BRAMSTÅNG, June 2013.
c© HENRIK ERNSTSSON, June 2013.
c© HANNA KOWALSKA ELLEBERG, June 2013.
c© ERIK RAMQVIST, June 2013.
c© SEBASTIAN ÅNERUD, June 2013.

Examiner: S. A. ANDREASSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, June 2013

Abstract

The area of investigation is the dynamics of a predator-prey relationship. To
model the relationship, an agent based model is used as a base for a simulation
tool. The tool supports multiple trophic levels, and the agents implement
behaviours such as grouping, focusing of a single prey, path finding, and
inheritance of the parents properties and mutation to simulate evolution.

The system is used to reproduce the emergence of group behaviour between
agents of the same population, as well as to answer how properties of the
environment affect the populations. Also, with the same rules for interac-
tion, known physical phenomena such as the capillary effect and oil forming
droplets in water is reproduced. From this it is concluded that the size of
the environment has a direct impact on the dynamics of the populations.
Grouping with agents of the same population is beneficial for both predators
and prey. The reproduction of well known physical phenomena provides
validation for the model and suggests that the tool could be used for further
studies in many different scientific fields.

iii

Sammanfattning

Det som undersöks är dynamiken i ett rovdjur-byte förh̊allande. För att
modellera förh̊allandet används en agentbaserad modell, som implementeras
som bas för ett simuleringsprogram. Programmet har stöd för agenter p̊a
olika niv̊aer i näringskedjan, och agenterna implementerar beteenden s̊asom
gruppering, fokusering p̊a enskilda byten, hitta vägar i en karta, samt arv
och mutation för att simulera evolution.

Programmet används för att reproducera uppkommandet av gruppbeteen-
den mellan agenter inom samma population, liksom för att besvara fr̊agor
om hur egenskaper i miljön p̊averkar populationerna. Med samma regler
för interaktionen kan även kända fysiska fenomen som kapilläreffekten och
oljedroppar p̊a vatten reproduceras. Med detta som utg̊angspunkt, dras
slutsatsen att storleken p̊a simulationsuniversumet har en direkt p̊averkan p̊a
populationernas beteenden, att gruppera sig med agenter i samma population
är fördelaktigt för b̊ade rovdjur och byten, och återskapandet av välkända fys-
iologiska fenomen kan ses som en bekräftelse p̊a modellens giltighet, och tyder
p̊a att programmet kan användas för fortsatta studier inom olika vetenskapliga
omr̊aden.

iv

Glossary

Agent the individual instance of a population that inhabits the universe.
Environment the walls, obstacles and all other things in the universe that interact with

the agents.
Evolution a population can change its distribution of traits over time, due to the fact

that some traits are more suited for survival than others.
Lotka-Volterra equation an equation describing the relation between a predator and its

prey. Displayed as a graph, it shows how the population sizes oscillate.
Obstacle an area in the universe that agents can not move across.
Parameters the different ways the user can affect the simulation and its outcome.
Population a collection of agents with the same traits; a species.
Predator an agent that hunts and eats other agents (prey).
Prey an agent that is hunted and eaten by other agents (predators).
Vegetation/grass the population that the prey eat.
Trophic level the position a certain agent holds in a food chain.
Universe the area in which the agents can act.
Vector a mathematical object with magnitude and direction, often visualised as an

arrow.

v

Contents

1. Introduction 1
1.1. Objective . 1

1.2. Problem . 2

1.3. Constraints . 3

2. Methods 4
2.1. Work structure . 4

2.2. Pre-study . 4

2.3. Implementation . 5

3. The application 6
3.1. Requirements . 6

3.1.1. Functional . 6

3.1.2. Usability . 7

3.1.3. Reliability . 8

3.1.4. Performance . 8

3.1.5. Supportability . 8

3.2. User Interface . 9

3.2.1. Settings . 9

3.2.2. Simulation and simulation output 10

3.3. Architecture . 11

3.4. Complexity and Performance . 12

3.4.1. Multi-Threaded for performance 13

3.4.2. Taking advantage of the GPU . 14

3.4.3. Reducing unnecessary computations 14

4. The Simulation 16
4.1. Populations . 16

4.1.1. Predator . 17

4.1.2. Prey . 17

4.1.3. Vegetation . 17

4.2. Evolution . 18

4.3. Obstacles . 18

4.4. Shapes . 19

5. Results 20
5.1. Simulating with different shapes . 20

5.2. Simulating with different sizes . 23

5.3. Simulating with different maps . 25

5.3.1. Manually created maps . 26

5.3.2. Randomly generated maps . 28

5.4. Effects of evolution . 29

vi

5.5. Physical experiments . 32

6. Discussion 34
6.1. General Observations . 34
6.2. Shape . 34
6.3. Size . 35
6.4. Obstacles . 36
6.5. Evolution . 36
6.6. Physics . 37

7. Conclusion 39

References 40

A. Mathematics behind agent behaviour 42
A.1. Agent movement and behaviour . 42

A.1.1. Predator force . 43
A.1.2. Prey force . 44
A.1.3. Environment force . 44
A.1.4. Mutual interaction force . 45
A.1.5. Arrayal force . 46
A.1.6. Forward thrust . 46
A.1.7. Random force . 46

A.2. Finding the closest point on a boundary 47
A.2.1. Triangle . 47
A.2.2. Rectangle/Squre . 48
A.2.3. Circle . 48
A.2.4. Ellipse . 48

A.3. Shapes representing the map . 53
A.3.1. Finding the edges of a shape . 54
A.3.2. Checking if a position is inside a shape 55
A.3.3. Finding a random position in a shape 55

A.4. Graphical representation of agents . 57
A.5. Pathfinding . 60
A.6. File-System implementation . 61
A.7. Map Editor . 62

B. Sketches 63
B.1. GUI-Sketches . 63

vii

This page intentionally left empty

viii

1. Introduction

Ecology is a scientific area where living organisms are studied. The organisms can be
divided into different systems based on if they live close to and interact with one another;
such a system is called an ecosystem. The term ecosystem can be used to describe
anything from a limited lab environment to the whole world, and therefore the subject is
interesting for scientists in various areas. Biologists study the behaviour and properties
of living things, computer scientists use nature as a of inspiration for problem solving,
and mathematicians and physicists create models to help explain complex events.

A frequently studied part of ecology is the relationship between predators and prey. It
has been modeled in many different ways, and the most famous is probably the
Lotka-Volterra model. It describes how a predator population and its prey interact on a
macroscopic level, that is with regard to changes in population size. Displayed as a
graph, it shows the population sizes oscillating. In addition to the model’s obvious
biological application, it has also been used to model problems in e.g. economics [6].

The purpose of the project is to create a computer model of an ecosystem with
populations at different trophic levels. The population members, or agents, will have the
ability to evolve and mutate specific traits. The model will also simulate population
behaviour and how the agents move in the environment.

Similar simulations have been created before, and one example is an article published in
2011 where landscape connectivity was being investigated. The authors used an agent
based predator-prey model to study behaviour in a fragmented environment with
patches of land and ways in between to move on. They stated that because of increasing
human populations and global changes, it is important to understand the “consequences
of habitat fragmentation“ in order to conserve biodiversity [1].

1.1. Objective

The objective is to design and implement a system that simulates an ecosystem, with
populations that interact and evolve. The populations take the role of either predator or
prey, or both. They also have features such as grouping, focusing on a single prey and
finding the shortest path around an obstacle. The populations depend on a wide range
of parameters, which determine the predator-prey interaction as well as the interaction
between agents of the same population. The population sizes in the model oscillate in a
similar fashion as the fluctuations in the Lotka-Volterra model, although stochastically.
The simulation environment can be customized by adding obstacles or changing its size
or geometrical form.

The design of the application is user friendly and modular as described in the section for
requirements. The application is designed to be easy to understand, and the data from
the simulation is presented in graphs with clear descriptions. Users are able to customize

1

many of the features of the populations, to test things not covered in this project. This
can be useful for scientists such as biologists, physicists and mathematicians, that
perform research within ecology, population behaviour and physical phenomena.

Based on the simulations generated by the application, there will be an attempt to
answer the questions stated below. If the questions can be answered, the results could be
interesting as a subject for further studies.

1. Is the population behaviour different in rectangular and elliptical environments,
and if so, in what way?

2. How does a decrease in the inhabited area’s size affect the outcome of the
simulation?

3. Does the presence of obstacles interfere with the populations, and if so, in what
way?

4. Can the emergence of group behaviour be reproduced by evolution?

5. What is the most advantageous of a compact and a scattered group?

6. Can the realism of the interactions in the system be validated by reproducing
already known physical phenomena?

1.2. Problem

The main problem is to create an application that simulates a predator-prey relationship,
where the interactions are modelled in a realistic way. There are many variables to be
taken into account, and the variable space is both large and sparse. This is a commonly
known problem when working with these kind of systems and should therefore be taken
seriously [11]. Therefore, a considerable amount of time is required in order to tune the
variables, to achieve realistic behaviour. Realistic would here be achieved by creating a
predator-prey system where the populations manage to survive and move in a way which
is visually satisfying and does not stray too far away from behaviour found in animals.
For example a single prey should not suddenly turn back and fight against the predator,
it should instead try to run away.

In order to obtain realistic behaviour, the populations could be inspired by existing
models such as:

1. Lotka-Volterra equation for predator-prey interaction and more realistic extensions.

2. Evolutionary algorithms, such as Genetic Algorithm.

3. Simulation models for animal grouping.

Another issue is how to validate the results produced by the system. Therefore,
comparisons with existing models can be done to verify correctness and realism. This
implies that the models used for verification have to be found, studied and of course

2

realistic themselves. Concerning the user interface, the main problem will be to validate
if it is intuitive and user friendly. This can be partly avoided by having a design
consistent with existing conventions and through user feedback.

1.3. Constraints

There are hundreds of models to explore in the field of population-, diffusion- and
evolution theory. Seeing as this project has a short time limit it is not possible to
explore and implement all of them. Therefore, this project will only focus on the models
and areas previously listed, which have been selected based on their level of difficulty,
relevancy to this project and the interests of the authors.

Regarding evolution, this project will only focus on genetics at an abstract level. Genes
will be modelled as binary or numerical values, which describe their impact on the gene.
There will be no attempt to model the chemical details of DNA on a molecular level, nor
will the genes have the property of being recessive or dominant, instead all genes will be
equally dominant.

The simulated environment is a two-dimensional representation, which leads to
simplifications regarding the agents’ movement. Therefore, the agents are unable to
interact on different heights. An example of this would be birds flying over agents and
not interacting with them. With two dimensions the birds are forced to interact with
agents living on the ground level.

3

2. Methods

The project was done in weekly iterations, with clear goals for each week and member,
according to the agile development method [8]. Because of the iterative development the
phases of the project are not clearly distinguished from each other; some literature
studies have been done during implementation, as well as some analysis. Additional
literature studies were undertaken when new information was needed in order to solve a
problem.

The implementation phase was the longest, since it required a lot of time and was
combined with the other phases, as mentioned above. During the last three weeks, the
focus was almost exclusively on analyzing the results from the simulations and finishing
the report.

2.1. Work structure

The first step of the project was to gather and read relevant literature, to get a better
sense of what had already been done in the area and to find examples of algorithms that
could be used to simulate the agents behaviour as realistically as possible. Models for
predator-prey relationships were of particular interest because of existing knowledge
within the group. A brief study on design of graphical interfaces was also undertaken, to
ensure better design choices.

The information was retrieved from the Chalmers library, as well as from various
Internet sources. However, since the project was mostly exploratory, the literature
studies have not been very extensive compared to the other phases. Instead, the group
focused on implementing own ideas, inspired by previous knowledge.

2.2. Pre-study

The project was developed using Java, since this is the programming language the group
members were best acquainted with. However, the choice of programming language was
not obvious, since it was known from the start that the program would require a lot of
complex and time consuming computations. For this purpose a low-level language would
be more suitable, but it was concluded that learning a new programming language would
steal too much focus from the original objective.

To allow multiple users to edit the code at the same time, the distributed revision
control system Git was used. For this project, it has proven to be of great importance to
have a well functioning revision control system, since most of the project members have
worked and experimented in their own branches.

4

2.3. Implementation

To enable data collection from simulations, multiple real time graphs are used. They are
described more thoroughly in section 3.2.2. To gather a sufficient amount of data,
enough simulations had to be done to get trustworthy results. The group decided that if
a simulation run 5 times with consistent results, for each independent simulation, it is
sufficient to be able to draw conclusions. With the same reasoning it was concluded that
each simulation should be run for at least 100 000 iterations. The reason for limiting the
iterations and number of simulations in this way, is due to the considerable amount of
time it would otherwise take to get the results. Depending on the experiment, more
iterations might be needed to get the desired result. Examples of such experiments
involve one or multiple genes evolving in a population over a longer time.

The work was divided between the group members in three different categories. Two
members looked at the effects of changing the shape and size of the simulation universe,
two looked at different effects of evolution, and the last two group members looked at
the effects of adding different obstacles to the universe. All simulations were run with
the same default settings, where only the settings relevant to the investigation area were
changed, to ensure that the results could be compared.

5

3. The application

The application is a simulation tool, in which populations can be studied in various
environments. A user can change the environment, modify different parameters, and
follow the outcome on the screen. The outcome is presented on a 2D map, together with
multiple graphs that display relevant data.

3.1. Requirements

The requirements are divided into categories according to the FURPS-model;
Functionality, Usability, Reliability, Performance and Supportability. The separation
provides greater detail and a better overview, to help the developers to make sure all
parts are covered [7].

3.1.1. Functional

The functional requirements decide what features the application will have. For this
project, these are mostly focused on what sort of parameters that can be set for each
simulation.

The user will be able to start, pause and restart a simulation. The simulation can also
be recorded, giving the opportunity to replay it for further analyzation to find
interesting effects and behaviours. Before the simulation is started, the user will be able
to choose how the simulation should run by setting different parameters - such as shape
of universe, population size and iteration time. While the simulation is running, real
time graphs will portray how the populations change and a heat map that display where
in the universe the agents tend to be. The user can also change some of the settings
when a simulation is already running.

Summary
Settings
The application shall allow the following settings to be changed before running a
simulation:

• Shape of the universe.

• Simulation window dimensions.

• What obstacles, if any, to include in the simulation.

• Which prey population(s) to include in the simulation.

• Which predator population(s) to include in the simulation.

• Which vegetation population(s) to include in the simulation.

6

• Population sizes.

• Iteration delay.

• Limit the simulation to a specific number of iterations.

• Amount of concurrent working threads.

• Record simulation.

Simulation Controls
The application shall allow the user to:

• Start a simulation.

• Pause a simulation.

• Restart a simulation.

• Save a run.

• Replay a run.

Output representation

The application shall display:

• The simulation on a 2D map.

• The mean life length of the populations in a graph.

• The population sizes in a graph.

• The number of iterations the simulation has been run in a graph.

• The proportion of grouping behaviour in a population in a graph.

• A heat map for each population giving information where the agents tend to be
most in the simulation universe.

• Statistics after a run.

3.1.2. Usability

Since the application is supposed to be used by users with different background, focus
has been on making the user interface easy to understand and navigate. The user should
not be overwhelmed by choices before starting a simulation, but should be able to get
acquainted with the application in his/her own pace. Therefore, the settings menu can
be found in a separate window accessible from the menu in the main window. Also, the
advanced settings are not visible at first, the user has to explicitly choose to change
them. If the user wants to run the simulation without changing any settings, he/she can
simply run the simulation with the default settings. Since the application is meant to be

7

relatively easy to extend, special attention has been paid to the structure and readability
of the code.

Summary

• The application shall be easy to understand and navigate.

• The design shall abide by existing design conventions, if there is no good reason to
do otherwise.

• The code shall be easy to understand, with descriptive names for variables and
methods, clear structure and java documentation.

3.1.3. Reliability

The simulation should be able to run with a large amount of agents, without throwing
exceptions or crashing. Expected exceptions should be handled properly, and the GUI
should run on a separate thread allowing it to always respond to commands and never
freeze.

3.1.4. Performance

Because the system allows a user to specify the number of agents and how fast each
iteration should take, the performance can vary. If there are too many agents the CPU
might not keep up, and the graphical representation may seem to lag behind.

Most modern computers have several processor cores. This has been taken into account,
and the system must be developed to always keep the cores busy, as running all the
algorithms in one thread slows down performance.

Java might not be the most performance optimized language, but due to optimized code
and multithreading, the system should be able to run with a large amount of agents,
without causing the program to slow down.

3.1.5. Supportability

The application should be built in a modular way, so that it easily can be extended with
new different behaviour and algorithms. Since Java is used, our system will be supported
by Linux, Windows and Mac. Some unit tests should be made in order to minimize bugs
that may occur later on. Other benefits with Unit testing is that problems can be
detected early and it simplifies the integration with the rest of the system. The Java
testing library called JUnit will be used for Unit tests.

8

3.2. User Interface

The user interface is designed to be easy to use for a wide variety of user. This is done
partly by following design conventions, such as grouping things that belong together,
implementing keyboard shortcuts and tool tips, and “hiding” settings that are more
advanced, so less experienced users can use the application without feeling hindered [2].

3.2.1. Settings

The settings menu consists of two parts, a window with the basic settings, and a window
with advanced settings, that can be reached from the first one. The basic settings
include setting the shape of the universe, set different maps with obstacles, choosing
which populations to include and their initial size, as well as if the simulation should be
recorded or not. The advanced settings allows the user to limit the number of iterations,
set a delay between iterations, change number of working threads and set the dimension
of the simulation universe. The simulation is activated from the settings menu.
Figure 3.1 shows the settings menu.

Figure 3.1: The application interface with the settings menu open and no simulation
running.

There is also another settings menu, called Population settings, that allows the user to
make much more sophisticated changes with regard to the agents behaviour. It is
displayed in Figure 3.2. With this menu, the experienced user can make advanced
changes to affect the behaviour of the agents that constitutes the different populations.
The user can e.g. set the vision range or the maximum speed of the agents in a certain
population. The genetic settings can also be changed, for instance if a behaviour such as

9

grouping should be active at birth and/or be mutable. The Population settings menu is
not described in the requirements section, since it was added at a late stage to facilitate
the large amount of simulations that was needed for the analysis phase.

Figure 3.2: The application interface with the settings menu open and no simulation
running.

3.2.2. Simulation and simulation output

The outputs from our application will be represented in a number of ways. The main
one, that is the focus of the application’s interface, is a simulation of all the active
agents, their movements and interactions. The interface with a running simulation is
displayed in Figure 3.3. The predators are represented by red arrows, the prey by blue
arrows, and the grass by green dots. The agents can also be colour coded differently to
show that the agents have different genetic traits. The simulation can be paused and
unpaused using the button at the bottom of the window. The population can also be
restarted with the same settings (but with different initial positions for the agents) from
another button next to the first.

The results are also made visible through a number of graphs, which are placed to the
right of the simulation panel. At the top is a graph that displays the grouping
proportion for the populations. Below are three graphs in different tabs: the first one
shows the populations sizes, the second one the mean life length of the agents in a
population, and the third one simply shows for how many iterations the simulation has
been run. At the bottom is a heatmap that also has three tabs, one for each active
population. The heatmap shows where in the simulation universe the the populations
have been most during the simulation.

10

Figure 3.3: The application interface with a running simulation. The large panel to the
left shows the agents in action. To the right are two graphs displaying the population
mean life length and the population sizes, and below them is a heat map that shows where
in the universe the different populations tend to be the most.

3.3. Architecture

Since the application should be modular and have the possibility to be extended, it will
follow the Model-View-Controller pattern (MVC). MVC separates the system into three
parts, that each have its own area of responsibility [4]. This allows us to make changes
in the model without affecting the presentation layer. To keep the communication
between the model and view simple, they implement the Observer pattern. Which
notifies the listening view when the model changes its state [9].

11

Figure 3.4: A simplification of the abstract architecture of the system. The model is clearly
independent of the controller and the view, as defined by the Model-View-Controller design
pattern.

3.4. Complexity and Performance

The time it takes to compute one iteration can vary between 1 ms to about 100 ms. To
allow an even amount of iterations, a Timer class is used to solve this problem. Its
purpose is to slow down fast iterations, so that every iteration takes about the same
amount of time. The Timer class can be set to an arbitrary value for speeding up or
slowing down the simulation. The result of this is a smooth graphical playback.

Figure 3.5: Algorithm for synchronizing the model and the Timer.

The delay and the updating of the model is done in parallel, as shown in Figure 3.5. If
the model finishes one iteration before the Timer expires, the model has to wait until it
starts a new one. E.g., if the delay is set to 16 milliseconds, it will have a iteration rate

12

of 60 iterations per second. The minimum time each iteration will take is 16 ms, while
there is no limit on maximum iteration time.

3.4.1. Multi-Threaded for performance

To improve the performance, multiple threads are used in almost every part of the
program. The view has its own Swing/AWT threads and the model has its own thread
pools. The gains of using a multithreaded systems are great and outperforms a
single-threaded one. For updating the model, two Java Thread pools are used, T1 and
T2, as shown in Figure 3.6. All threads in the thread pools are reused to improve
performance. The number of workers in T2 can be set to an arbitrary value, default is 4
worker threads.

Figure 3.6: The solution for dividing the populations to a shared work queue.

When one iteration needs to be calculated, T1 divides every population into small work
pieces, each containing about 400 agents, and puts them on a shared thread-safe work
queue, as shown by Figure 3.6. T2 then puts all of its worker threads to execute the
work queue until it is empty. Meanwhile T1 waits for the work in Q to be finished, using
a concurrency principle called barrier synchronization.

T1 only consists of one worker that receives signals from the Controller. It also
synchronizes the timer and T2 for smooth simulation, and notifies T2 when to calculate
the next iteration. For every iteration, T1 divides one model update into small pieces,
puts them into the work queue and tell T2 to execute them with all of its threads, and
finally waits for them to be finished using barrier synchronization.

13

3.4.2. Taking advantage of the GPU

To improve the performance even further, the system takes advantage of the unused
graphics card for the graphical representation of agents and obstacles, instead of having
the CPU taking care of the drawing. This allows the CPU to focus on other important
computations.

The cross-platform graphics library OpenGL is used for handling the drawing. OpenGL
is written in C, so to be able to communicate with OpenGL, a library called JOGL is
used as interface between the Java system and OpenGL. JOGL only elevates the
method-calls to the corresponding C method. The methods used in Java is exactly the
same as in the C version of OpenGL.

Figure 3.7: A benchmark between OpenGL and Java AWT.

To prove this is a good method, a benchmark of the Java AWT software rendered
graphics and the OpenGL rendered graphics was created. Two versions of the same
simulation frame, each containing the same algorithm for drawing agents, and the
output of them then looks almost the same. A benchmark was created to study
performance differences, the result is shown in Figure 3.7

3.4.3. Reducing unnecessary computations

To reduce time spent calculating unnecessary forces, the system has a feature called
neighbour list. This list contains the agents that are closest to one and another. When
the calculations of forces is done, only the agents in the list is taken into account.

14

Every agents neighbour list is updated every 10th iteration, with a random start value,
of 0 to 10, so that not all agents updates its neighbour list at the same time, as this may
be too heavy for the CPU. For improving the performance even further, a limited size
priority queue is used, with a maximum amount of 20 agents and with distance from the
current agent as the priority value.

15

4. The Simulation

The simulation is a central part for this project; seeing as it provides all of the results in
focus of this report. The simulation consists of a number of agents from different
populations that use forces to interact with each other. Calculations are done
individually to simulate how each agent represents a single individual. This chapter
describes the agents involved.

In the simulation an iteration is defined as a discrete time step where the agents’
positions are updated. In each iteration agents can die due to starvation, old age or
predators eating them. Also, new agents can be born if the parent has eaten in the
current iteration. Each iteration is used as the starting point for the next iteration.

4.1. Populations

The agents are gathered in populations, representing the organisms they mimic. There
are three types of populations in the current implementation: predator, prey, and
vegetation. Apart from the grass field, agents are visualized by coloured arrows facing
the direction of the agent, and where the colour and size of the arrow both depend on
the type of agent, as well as the evolutionary traits it possesses. The grass field is
instead drawn as a green circle, to better represent a big field of grass.

The forces that dictate the behaviour of the agents are calculated in the same way for all
types of agents. However, there is a difference in how the forces affect each agent,
depending on which population the agent is a member of. The forces determining the
different behaviours are listed below. A more detailed explanation behind the forces can
be found in Appendix A.

• Fpred - A The force an agent feels from present predator.

• Fprey - The force an agent feels from present prey.

• FFenv - The force an agent feels from the environment (walls and the obstacles).

• Fmi- The force an agent feels from interacting with nearby neutral agents (agents
on the same trophic level). The agent is subject to attraction and repulsion from
other individuals in a group.

• Farray - The tendency for an agent to equalize its velocity with nearby neutral
agents.

• Fforward - The tendency of an agent to keep moving in its current direction.’

• Frand - The force describing the behaviour of an agent that cannot be explained
properly and is therefore said the be random.

16

The first two forces determine the interaction between predators and prey. The
environment force will make sure that no agent is on a position where it cannot be, i.e.
outside the 2-dimensional environment or inside an obstacle. The mutual interaction
force, the arrayal force and the forward thrust are forces that determine how the agent
behaves in the presence of other agents of the same population. These are the forces
that will determine if the agent wants to group with other agents. The forces for
grouping are all taken from the book on ecological diffusion by A. Okubo [10]. The
random force is a force that the agent is affected by that can not be properly explained
and is therefore said to be random. This could for example be the error the agent does
in estimating in what direction it should go.

4.1.1. Predator

The role of the predator is to hunt and eat prey. In the current implementation the
predator population is named “wolves” but is not necessarily implemented to mimic the
behaviour of real wolves. The predator, being on top of the food chain, need not to
worry about being eaten, instead they focus on hunting the prey that are below them in
the food chain. In order to hunt nearby prey they will first try to minimize their
distance to all of them. When a predator finds a prey to be close enough, it will put all
its focus on catching that single prey. If one predator catches a prey, only the predator
that caught the prey will be able to eat it. The predators use a method called path
finding (see appendix A.5) to calculate clever paths to their preys.

4.1.2. Prey

The prey have the the most complex job situation in the simulation. They have to find
vegetation to eat, so they can replenish their energy, and reproduce, at the same time as
they are being chased by the predators. A great dilemma for the prey lies in deciding
which direction they should flee. In the event of being hunted by a single predator, the
best would be to flee in the direction straight away from the predator. If there are
several predators closing in on the prey, from different directions, the best way to flee is
less obvious. In the current implementation the prey tries to maximize the sum of
distances to all nearby predators. The distance from a closer predator is weighted higher
than that of a predator further away, to simulate the higher threat of a nearby predator.

4.1.3. Vegetation

There are two types of vegetation representing the lowest part of the food chain: simple
grass straws, and fields of grass. Both types have the same task: providing food to the
organisms one trophic level above them, but the way they operate and interact with
other agents is quite different.

17

The first type of grass, the straws, spreads into a wider and denser area, up to a space
limit. With a high consuming pressure from the prey, this type of grass may be
completely eaten, leaving the prey to starve.

The second type of grass, the grass fields, are larger than other agents, representing that
grass is often not a small patch, but rather covers a large area. The fields store a larger
amount of energy and, unlike the simple grass, will never be extinct, instead a period of
regrowth is required, in which the energy is increasingly restored allowing, once again, to
be fed upon.

4.2. Evolution

At the moment the agents do not breed, instead they reproduce through cloning. During
a cloning there is a small probability that a gene mutation may occur. The mutation
(algorithm inspired by Wahde M. 2005 [13]) is simulated by randomizing a number r. If
r is less than the mutation probability pmut , a mutation will occur. There are two types
of genes. Type 1 is binary, and simply indicating whether the individual has a certain
behaviour or not. During a mutation the value switches. Type 2 is a numeric value used
for deciding the impact the gene has on the behaviour. For type 2, r is generated and
compared to pmut for every bit used representing the numeric value, and mutation occur
through flipping the bit.

Due to the fact that prey and predators are called deer and wolves, respectively, in the
current implementation, the choice of genes were inspired of the behaviour of the real
animals. The predators have genes for grouping, including separation factor, cohesion,
forward thrust and arrayal force. They also have the ability to focus on a single prey.
The prey have, as the predators, genes deciding group behaviour, as well as genes for
stotting behaviour. The stotting feature has attributes such as a range deciding how
close a predator may come and a length determining how long time the prey will stot.
For further explanation and calculations, see Appendix A.

The vegetation has no specific genetic material.

4.3. Obstacles

In the system there is support for adding obstacles to the simulation environment. The
user can via a map editor (see Appendix A.7 for more details) customize maps by
placing obstacles of different shapes at any location on the map. There are three shapes
of obstacles: triangular, rectangular and elliptical.

Some simplifications were made to the triangles in order not to spend too much time on
the obstacles. The triangles are all isosceles and are parameterized with a width and
height. The rectangular and elliptical obstacles are also represented by a width and a

18

height. All obstacles can be rotated in any angle, which enables complex structures of
the inhabited environment.

One purpose with obstacles is to have the ability to create and simulate situations that
are likely to occur in real life. Adding a rectangular obstacle to the middle of the
inhabited environment can simulate the deforestation of a large area, in an already
existing and well balanced ecosystem. The simulation might suggest that the
deforestation of a large area would set a real ecosystem out of balance, given the same
population dynamics.

4.4. Shapes

There are three different shapes for the simulation universe: square, circle and triangle.
When the shape is changed, the area of the simulation universe is also affected, i.e. the
area of a square of the size 1000*1000 distant units is actually bigger than the area of a
1000*1000 circle. (The distant units refer to the the width and height of the universe.)
This is vital to remember when doing comparisons of the outcome with different shapes.

The objective for the shapes is to make different environments for the agents to move
around in. This is done by giving the agents the positions of the left, right, bottom and
top edges of the world they live in so they can use this information in order to calculate
the environmental forces. These positions depend on the shape and size of the
environment as well as current position of the agent.

For the square, finding these positions is very straightforward. They are a direct result
of the size of the environment, because the square shape covers up the entire
environment. For the circle and triangle it is a basic case of using trigonometry to find
the edges, given the current position and the size of the environment. For further
explanation and calculations, see Appendix A.

19

5. Results

The result produced by the application contains information about: the amount of
agents in each population, the average life length of agents in a population and the
population diversity, i.e how many in each population has a certain evolutionary trait.
Analyses of the agents’ movement in the environment were also made by viewing the
heat map. The results are interpreted based on information visualized by graphs.

All of the results are compared to the environment created with default settings. With
the default settings the environment was rectangular and its size was set to 2000*2000
distance units with no obstacles in it. The predator population was initialized to 50
agents, the prey population to 250, and the grass population to 600. The predator and
prey were set to group up without the possibility to evolve or mutate.

5.1. Simulating with different shapes

For the purpose of investigating what effect the shape of the simulation universe has on
the outcome, the simulation was run 5 times for at least 100 000 iterations with the
square and circular universes respectively. Since alternating the shape also affects the
size, the simulation dimensions had to be set so that the area was the same for all shapes.
The square universe was set to 1772*1772 units and the circular to 2000*2000 units.

When simulating with a square universe the agents were concentrated at the left 6 out of
10 simulations. In 3 of 10 they were spread out over the universe, and only in 1 out of 10
were they concentrated at the right. When simulating with the circular environment, 9
out of 10 cases, the agents were concentrated to the right, and in 1 of 10 they were to
the left. The simulation outputs are presented in Figure 5.1 and 5.2.

The predators move over a smaller area than the deer, for simulations with both the
square and the circle universe. The results are presented in Figure 5.3 and 5.4. There
are no differences in how the population sizes oscillate.

20

Figure 5.1: The output for a simulation run with the square universe. The agents are
mostly at the left of the universe.

Figure 5.2: The output for a simulation run with the circle universe. The agents are
mostly at the right of the universe.

21

Figure 5.3: The deer population move over a large part of the universe. This is the case
with both the square and the circle.

Figure 5.4: The wolf population is concentrated in a small part of the universe. This is
the case with both the square and the circle.

22

5.2. Simulating with different sizes

For the purpose of investigating what effect the size of the simulation universe has on
the outcome, the simulation was run 5 times for at least 100 000 iterations with the four
standard sizes available in the settings menu, that is 500*500, 1000*1000, 1500*1500 and
2000*2000 distant units, and the custom size 4000*4000 units. All simulations were run
with the square universe.

With the universe set to 500*500 distant units, the prey ate all the grass 7/10 times,
resulting in the extinction of all the populations almost immediately. The outcome can
be seen in Figure 5.5. The other 3 times, the predators ate all the prey just as fast,
which led to the grass being the only population left.

Figure 5.5: The simulation run with the size set to 500*500 distant units, an example
when all the populations go extinct.

With the universe set to 1000*1000 distant units, the populations survived through
around 10 000-25 000 iterations, but the simulations invariably ended with the grass
being the only population left, as seen in Figure 5.6.

Figure 5.6: The simulation when the grass is the only agent left, happens sometimes when
the size is 500*500 and for all the runs with the size set to 1000*1000.

The results of the simulation universe set to 1500*1500 distant units did not differ from
when the size was set to 2000*2000 units, at least not in a way that can be seen in the
simulation output, see Figure 5.7. It was slightly more unstable, with the predators

23

eating all of the prey once, at around 20 000 iterations, which led to grass being the sole
survivor in the environment. The heatmaps differ slightly between the sizes in respect to
how much area the populations are concentrated on.

Figure 5.7: To the left, the size set to 1500*1500, and to the right, the size set to
2000*2000.

When simulating with a larger environment, 4000*4000 distans units, it looks a bit
different compared to the smaller sizes. The results are shown in Figure 5.8. The
difference between the amount of agents in each population is significantly changed
compared to a 2000*2000 units big environment. There are more grass agents and more
predators, but not that much more prey.

Figure 5.8: The population amount with the size set to 4000*4000.

24

There is also a difference in the actual life length of the prey when simulating with the
larger environment, see Figure 5.9. For smaller sizes it ends up around 1500 iterations,
but in the big environment they don’t manage to stay alive as long and the average life
length is around 700 iterations

Figure 5.9: To the left, the size set to 2000*2000, and to the right, the size set to
4000*4000.

In one of the five cases the predators died out, which led to there being more prey. The
prey and the grass then lived on together, but with more oscillations, as seen in
Figure 5.10.

Figure 5.10: The population amount with the size set to 4000*4000 when the wolves died
out.

5.3. Simulating with different maps

To test the effects of obstacles the map editor was used, and it was a fast and simple way
to create different maps. They were created both manually and randomly to see if
interesting behaviours could be found, and the results are presented here.

25

5.3.1. Manually created maps

A total of 8 different maps were used in this experiment, and each map were run 5 times
for 100 000 iterations. An empty map without obstacles was also used as a default run.
The populations used were grass, prey and predators.

Figure 5.11: The default run without obstacles.

At the beginning all three populations were randomly distributed on the map, but as the
simulation progressed a high density area in the top right corner formed. It happened
because there were a lot of wolves there, so the grass could grow freely without being
eaten. When the grass on the rest of the map had been depleted, the deer moved to eat
the grass by the wolves. This behaviour resulted in feeding the wolves, without them
having to move, so they remained on the grass. When some deer had been eaten, grass
started to grow everywhere again which made the deer population increase, before they
once more had to return to the wolves. These behaviours looped over and over again,
creating oscillations in each population’s size.

Figure 5.12: An obstacle in the middle which divides the map.

The map in Figure 5.12 provided a result which differed slightly from the default run in
Figure 5.11. The spot with grass and wolves formed on one side of the triangle, and the

26

surrounding deer moved on the remaining area. The population size graph does not
show significant differences compared to the default run, and all populations survived
without difficulty.

Figure 5.13: This map is an example of a fragmented environment. The heat map displays
the grass population, and it shows that the grass moved around a lot.

The fragmented map in Figure 5.13 shows that the populations had difficulties living in
small areas. The grass and deer filled a box quickly, but they were eaten faster than they
could reproduce, leaving the box suddenly empty. Some moved on to reproduce in new
boxes and the behaviour repeated. The population size graph shows a higher fluctuation
rate than the default run, especially for the grass and prey population.

Figure 5.14: This map simulates an open space with some obstacles such as lakes or
mountains.

Figure 5.14 shows an open map with some obstacles. The reason with this map was to
investigate how the populations would behave if they were forced to be spread out, and

27

according to the heat map they were spread out. The population size graph is similar to
the default run.

Figure 5.15: A map divided into two subparts.

Figure 5.15 shows a map that is divided into 2 subparts, of which can be seen as two
ecosystems that agents move between. The effect of this is a more oscillating effect of
the population, than the empty map. The predators guards the grass, eating any prey
coming close to them.

5.3.2. Randomly generated maps

Another strategy was random generation of maps. 100 maps were randomly generated
containing between two and ten obstacles large enough to force the agents to take a
detour around it. Every generated map was run for 100 000 iteration.

Figure 5.16: Randomly generated map.

Most maps did not show any unusual behaviour, but one map that showed some slightly
interesting behaviour was a simple map with two triangular obstacles at the left and

28

Figure 5.17: Grass heat map for a randomly generated map.

right side displayed in Figure 5.16. What was interesting about this map was that the
grass mainly grew at the top of the map and the predators circled around the left side,
guarding the grass. The heat map for the grass is shown in Figure 5.17.

5.4. Effects of evolution

Many simulations were made in order to try and reproduce a certain aspect of evolution.
Starting from a situation where no agents wanted to group with agents of the same
population, and ending with almost every agent grouping with others. Evolution was
also used as a tool for optimizing the parameters for the grouping behaviour.

The grouping behaviour consists of the four forces: Separation, cohesion, arrayal and
forward thrust. The parameters were initialized randomly from start and every child
inherited its parent’s parameters with some small random mutations. In Figure 5.18 and
5.19 box plots are shown for the prey and predator populations. The left box in each plot
represents the random distribution from start, where the right box is the distribution
after hundreds of thousands iterations. The figures suggest that it is favourable for both
populations to have a high separation force, a low cohesion force and arryal force and
and an average forward thrust. Table 1 and 2 shows the means in the start and after
the simulation. A two sample t-test of equal means was made to verify that the observed
changes in mean were not likely to be random. All tests in the tables are significant.

Table 1: Showing the means of the parameters, in the beginning and in the end of the
simulation, for the prey population. The changes in means are all significant according
to a two sample t-test of equal means.

Separation Cohesion Arrayal Forward

old mean 56.99 5.08 5.10 1.01
new mean 101.47 1.62 2.45 1.89

p-value 0.00 0.00 0.00 0.00

29

Figure 5.18: Showing four boxplots for the distributions of parameters for the prey. The
boxes to the left are the distribution from the start and the boxes to the right are the
distribution towards end of the simulation. The changes in the means of the parameters
are significant.

Table 2: Showing the means of the parameters, in the beginning and in the end of the
simulation, for the predator population. The changes in means are all significant according
to a two sample t-test of equal means.

Separation Cohesion Arrayal Forward

old mean 71.06 9.70 5.01 1.28
new mean 131.98 0.89 1.35 0.93

p-value 0.00 0.00 0.00 0.00

The purpose with the main experiment of evolution was to reproduce the emergence of
group behaviour in any of the populations. In the experiment no agents had any group
behaviour at all from the start. With a small probability a gene of a child, which
determined whether the agent had group behaviour or not, was mutated. The top right
panel in Figure 5.20 shows the proportion of agents grouping with each other. The blue
line is the proportion for the prey and the red line is the proportion for the predators. It
can be seen in the figure how no agents have grouping behaviour from the beginning.
Then one agent evolves and gets the chance to spread this gene to its childs. The gene
gets spread and evolved by more agents until finally almost the entire populations is
dominated with agents grouping with each other. The proportion for the grouping
behaviour is also very stable for the predator population. There are some variations in
the proportion for the prey where it during a short time drops below 0.6. However, the
proportion is above 0.8 for most of the time.

30

Figure 5.19: Showing four boxplots for the distributions of parameters for the predators.
The boxes to the left are the distribution from the start and the boxes to the right are the
distribution towards end of the simulation. The changes in the means of the parameters
are significant.

Figure 5.20: Showing the scenario where no agent in the predator and prey populations
have grouping behaviour from the start. In a relatively short time the majority of both
populations have evolved grouping behaviour. It is also shown how the proportion of
agents having grouping behaviour is stable after it is evolved, except from one greater dip
for the prey population around 90 000 iterations.

31

5.5. Physical experiments

In the category for physical experiments mainly two different kinds of simulations were
made. The first experiment managed to reproduce the capillary effect similar to mercury
(the mercury lowers in the tube). The result from this simulation is shown in Figure 5.21.
Many simulations with different parameters were also made in order to try and reproduce
the capillary effect similar to water where the water rises in the tube. Unfortunately, the
capillary effect was not reproduced with the parameters in the simulations.

(a) (b) (c)

Figure 5.21: (a) showing the starting position of the agents with the surface below the
caps. (b) shows the simulation after a few seconds where the agents are almost fully
diffused. (c) Shows the end of the simulation where the capillary effect, similar to the
one for mercury, has taken place.

The second experiment tried to reproduce the effect of oil forming drops in water where
the water completely surrounds the oil. The result of the experiment is shown in
Figure 5.22. In the figure it is shown how the all agents are randomly distributed from
the beginning, and towards the and the blue agents have formed a single drop
surrounded by the red agents. In the experiment behind the figure the blue agents had a
greater intermolecular force, dragging them towards each other, than the red agents.
The separation force between agents of the same color is the same for all agents, and the
red and blue agents also repels from each other.

32

(a) (b) (c)

Figure 5.22: Two populations (red and blue) with different properties are shown. Both red
and blue agents wants to group with agents of the same population. In (a) the random
uniformly starting distribution for the two populations is shown. In (b) the blue agents
have after a short time clumped together in a small number of drops. (c) is showing the
blue agents forming a single drop completely surrounded by the red agents. This is very
similar to what you see if you place a drop of oil in water.

33

6. Discussion

A major part of the project consisted of balancing parameters, since the system is very
sensitive to changes in them. Adding a new parameter to the system often required
rebalancing many of the other parameters. Small changes in the rate of which a
population reproduces could set the whole system out of balance.

It was important to understand the impact each parameter has on the system. An
example of this is how the two parameters reproduction rate and max energy both limit
the size of a population, but in two different ways. The reproduction rate controls how
fast a population reproduces, while the max energy controls how long an agent can
survive without food. In conditions where the predators are many and the prey are few,
the amount of predators need to decrease in order to give space for the prey to
reproduce. The first thought might be to decrease the reproduction rate of predators, to
prevent the population from growing too big. Instead it is the max energy parameter
that is needed to be lowered, making the predators ability to survive lower.

Towards the end of the project, simulations were run to be able to discuss and draw
conclusions from the results. The results are categorized based on what was investigated:
shape, size, the presence of different obstacles and evolution of different traits. Also, a
few simulations of physical experiments were made, to try and reproduce already known
physical phenomena, as a way to validate the interactions between agents.

6.1. General Observations

In the beginning of a simulation all agents are uniformly distributed on the map. Grass
which spawn close to prey will be eaten immediately. However, grass close to predators
have less probability to be eaten as a result of prey avoiding predators. This gives the
grass a chance to grow undisturbed and after a while the density of grass is higher
around the predators, compared to the rest of the map. When the scattered grass has
been consumed, the prey are attracted to the spot of grass, giving the predators the
opportunity to catch them without having to move long distances. The predators
guarding the grass may give the impression of them being intelligent, when in fact the
reason is that there is no need for them to move as the prey are always nearby.

6.2. Shape

The simulations show that the shape of the environment has a negligible impact on the
outcome of the result as long as the total area remains the same. There is a slight
tendency for the agents to be drawn to different sides of the environment depending on
what shape is used, but this is hard to assert without more testing, and more accurate
interpretation than just visual.

34

A more interesting event develops in corners, since the prey in their search for grass
sometimes end up trapped by the predators, with nowhere to escape when they reach a
corner. However, this has no long-term effects on the stability of the simulation, and
does not seem to be a greater issue than prey being caught by predators while following
the edge of the environment. In general the behavioural patterns remain the same no
matter what shape is used for simulation. This could be a result from the fact that grass
tends to group up with predators staying in the same areas which reduces the amount of
hunting needed by the predator. If the grass spawned entirely at random there might be
a bigger difference between the shapes.

6.3. Size

The results of the simulations shows that the size of the inhabited universe very much
affects the outcome. Changing the size upsets the balance in the system, and prevents
the populations from recovering. Different sizes also favours different populations.

With the 500*500 universe, the universe is too small for the populations, and the
outcome is somewhat chaotic. The fact that either the prey or the grass population goes
extinct first, and that it happens almost immediately, shows that sizes this small do not
support any stability for populations.

The 1000*1000 universe is interesting since it always favours the grass. The grass seems
to have an advantage in this particular size. Perhaps because in such a small
environment, the predator can hunt the prey down effectively, since the prey spawn next
to its parent, and is therefore already in the vision range of a predator that hunts the
parent. The grass, however, can spawn far away from the nearest prey, as well as right in
front of it.

When the size of the universe is set to 1500*1500 or 2000*2000, balance between
populations occurs. This was not a surprising result, since the parameters have been
tuned to be balanced for 2000*2000 distance units. The differences in the heat maps
presented in the result section are a natural effect of the total area being smaller.

For larger sizes, such as 4000*4000, the balance shifted again. Because of the large area,
the grass can grow more freely, which leads to the prey having much to eat. But the
amount of prey does not increase as much as the grass. In the smaller universes the
highest amount of prey often reaches the lowest amount of grass, but in the 4000*4000
environment the amount of prey is far below that of the grass, after the initial instability.
Instead it is the amount of predators that reach the amount of prey.

The explanation for this is probably closely related to the fact that the grass groups up.
The prey that are at the outskirts of this patch of grass quickly finds plenty of food to
eat so they can reproduce, but the close proximity to predators lead to easy food for
them as well. The rest of the environment however, is scarcely populated by grass, and
the prey that roam this large area is not in any direct danger of being eaten by

35

predators, but may instead die of starvation due to how long it takes them to find new
grass to refresh their energy. This is reflected in the short life length of the prey.

It is interesting that there was a case when the predator population was the only one to
go extinct, since this did not happen with any other sizes. It happened just in the
beginning of the simulation, while both the grass and prey were spread out which caused
the predators to die of starvation. However, this result, as well as many of the other
ones, need to be viewed critically. Since both the iterations and the number of times
each simulation was run was limited to about 100 000 and 10 respectively, the statistics
can not be fully trusted. There is a, not negligible, possibility that the results could have
been quite different if the simulations were run 100 times with the same configurations,
or for 1 000 000 iterations.

6.4. Obstacles

According to the results, obstacles had no or little impact on the agents. It was not
expected, in fact the opposite seemed more probable. In Figure 5.12 and Figure 5.14 one
large obstacle is used as well as lots of small ones, but none of these maps created any
significant changes compared to the default run in Figure 5.11. The only variation was
the geometrical distribution, but the populations were still stable.

To affect the agents their available space had to be limited, which could be done with
obstacles. One such example is the fragmented map in Figure 5.13, where the obstacles
divide the map into small areas which were too small to support stable populations.
Both the grass and the prey were eaten faster than they could reproduce, which resulted
in high fluctuation rates for the populations. The behaviour was similar to when the size
of the environment was decreased to 500*500 distance units, but because there were
several “boxes”, the agents could move around instead of completely die.

The limited impact of obstacles might be related to where new grass is spawned. New
grass agents are positioned close to their parents, which results in the grass growing in a
limited area significantly smaller than the total area of the environment. If new grass was
spawned randomly, prey, and eventually the predators, would move around and probably
be affected more by obstacles. This issue was discovered late in the project, during the
simulation phase, and therefore no time was left to adjust the spawning behaviour.

6.5. Evolution

When running simulations where the parameters for group behaviour are allowed to
change, there seems to be parameters significantly more favourable for the agents. For
both predators and prey it is highly desirable to keep a certain distance to agents in
their group and in order not to be too close. This can be seen by the increase of the
separation force parameter scaling the force between agents when they come too close. A

36

possible explanation to this is that when prey are keeping the distance from neutral
agents, they are less likely to collide with them when making sudden moves trying to
avoid a predator. For predators it is more favourable to keep the distance in order to
spread out and cut off possible ways that a prey could escape in.

In contrast to the parameter for separation, it is favourable to have a low cohesion
parameter. In this way the agents are allowed to group with each other without it
conflicting with the advantageous behaviour of staying at a certain distance from each
other. It is also suggested from the experiment that the arrayal force parameter should
be greater than zero, but kept relatively small. The effect of the arrayal force being too
large will inflate the agents ability to change their direction quickly, since they will insist
on going in the same direction as agents of the same population. The same can be
argued for the forward thrust parameter. It is important for the agent to keep heading
in its own direction, but blindly insisting on going the same direction (large value of
forward thrust parameter) will ignore both neutral agents, predators and/or prey,
resulting in a certain death.

Another experiment strongly suggested that group behaviour as a whole is favourable for
both the predators and prey. Both populations started with no agent trying to group
with others, and after a relatively small number of iterations the populations were
dominated by agents with group behaviour. A reason for the wolves to evolve group
behaviour could be that it is easier to catch a prey when many wolves are forming a
wide group. In that way it is harder for the prey to escape either right or left. Instead,
the prey are chased straight forward into a wall or until they are caught.

For the prey it is less obvious why it is beneficial to stay together. One possible
explanation is that it helps them find areas with higher density of grass. When a prey
sees an area with grass, it feels the attraction to that area, and inspires nearby prey with
group behaviour to follow his way. It also helps the prey when they have to choose
between moving to a small grass patch that is nearby, and a larger area that is further
away. It is more likely for other prey to be at the larger area of grass, and therefore the
group behaviour helps them choose the large area. This phenomenon will help prey with
group behaviour to reproduce and spread the gene.

6.6. Physics

The experiment with capillary effect is one of the most interesting result. Reproducing a
well known physical phenomenon suggests that the interactions between the agents are
done in a realistic way. This also suggests that the agents in our system have properties
similar to the properties of mercury. It would require more knowledge behind both the
phenomenon and mercury to decide whether our agents do have similar properties or not.
Experiments with different parameters were also made in order to try and reproduce the
capillary effect similar to the one with water. Unfortunately this was done without
success. Again, more knowledge of the phenomenon would probably be required in order

37

to reproduce an experiment with results similar to the capillary effect of water.

The experiment reproducing the effect of oil forming drops on a surface of water is also
an interesting result. A considerable amount of time was spent finding the parameters
making it happen. Noticeable here is that the parameters were changed to specifically
reach the effect of oil floating on water, and not set to be similar to the real properties of
water and oil. Therefore, there is a possibility that the results of this experiment could
not be reproduced in reality with substances having similar properties to the agents in
the simulation. There is also a possibility that there exists substances, with similar
properties to the agents in the simulation, that would behave in this way in reality. If
the latter is true, simulations could be done to predict the behaviour of substances not
yet experimented with.

38

7. Conclusion

From the simulations and discussion it can be concluded that the size of the environment
has a direct impact on the dynamics of the system. The results of the simulations with a
smaller area strongly indicates that drastically decreasing the size of a balanced
ecosystem will have devastating effects for the populations within it. Increasing the size
of the area also has an impact on the populations. Simulations with larger sizes indicates
that both predators and prey sometimes have problems finding food in a large and
sparse environment.

The shape as well as the obstacles have negligible impact on the populations, based on
the performed simulations. Obstacles have the biggest impact when they split the
environment into small parts. This results in chaotic behaviour similar to when
simulating with a smaller environment. A probable cause is the spawning behaviour of
the grass, which directs the movement of the prey and predators.

The evolution simulations showed that group behaviour benefits both the prey and the
predator populations. The prey which evolved grouping managed to survive longer and
had more time to eat and reproduce, which resulted in the majority of prey moving in
groups. The predators which evolved group behaviour were significantly more successful
in catching prey. The predators moving as a group eliminated many of the possible
directions a hunted prey could escape in resulting in the prey getting eaten with a higher
probability.

The fact that already known physical phenomena are able to be reproduced, using the
same rules for agent interaction as in the other simulations, supports the validity of the
models. More in-depth knowledge is needed in order to be able to draw more
sophisticated conclusions. However, it still inspires confidence that the system may be of
further use in simulations of ecosystems as well as for simulating other physical
phenomena.

39

References

[1] J. A. Baggio, K. Salau, et al, ”Landscape connectivity and predator-prey
population dynamics” in Landscape Ecology, vol. 26, Netherlands: Springer, 2011.

[2] J. Berndtsson, I. Domingues. (2013-05-15). Användbarhet i praktiken [Online].
Available: http://anvandbarhet.se/index?page=index.

[3] D. Eberly. (2013-06-05). Distance from a Point to an Ellipse, an Ellipsoid, or a
Hyperellipsoid [PDF]. Available: http://www.geometrictools.com/
Documentation/DistancePointEllipseEllipsoid.pdf.

[4] R. Eckstein. (2013-05-20). Java SE Application Design With MVC [Online].
Available:
http://www.oracle.com/technetwork/articles/javase/index-142890.html.

[5] D. Harabor, A. Grastien. (2013-05-20). The Australian National University, Online
Graph Pruning for Pathfinding on Grid Maps [Online]. Available:
http://www.nicta.com.au/pub?doc=485.

[6] A. Kamimura, G. F. Burani, H. M. França. (2013-05-09). The Economic System
Seen As A Living System: A Lotka-Volterra Framework [Online]. Available:
http://web.ebscohost.com/ehost/detail?sid=

520f50f6-36b2-4646-a997-16142f7d1995\%40sessionmgr4&vid=1&hid=

28&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ\%3d\%3d#db=buh&AN=70109948.

[7] R.S. Kenett, E.R. Baker, Software Process Quality: Management and Control. New
York: Marcel Dekker Inc., 2005.

[8] C. Larman, Agile and iterative development. Boston: Addison-Wesly, 2004.

[9] I. Maier, M. Odersky, T. Rompf. (2013-06-05). Deprecating the Observer Pattern.
Ecole polytechnique fédérale de Lausanne [Online]. Available:
http://lampwww.epfl.ch/~imaier/pub/DeprecatingObserversTR2010.pdf.

[10] A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Mathematical Models.
New york: Springer, 2001.

[11] K.V.S. Prasad, Associate Professor, Department of Computer Science and
Engineering, Chalmers University of Technology, 2013.

[12] A. S. Swaab. (2013-06-05). Random point in a Triangle - Barycentric Coordinates.
Technical Repository [Online]. Available: http://adamswaab.wordpress.com/
2009/12/11/random-point-in-a-triangle-barycentric-coordinates/.

[13] M. Wahde, Biologically inspired optimization methods: an introduction. Great
Britain: Orca/WIT Press, 2008.

40

[14] World Wide Web Consortium. (2005-01-05). Document Object Model [Online].
Available: http://www.w3.org/DOM/.

41

A. Mathematics behind agent behaviour

One essential part of this project is to mathematically model how the agents in the
system will move and interact with each other. Mathematics is also important in other
parts of the application. One example is the graphical representation of agents. If the
agent is to be represented as a triangle on the screen, pointing in the direction that the
agent is heading, the need for mathematical calculations is needed in order for the
triangle to be correctly drawn.

A.1. Agent movement and behaviour

The modelling of agent movement can be done in various ways. In the application the
movement of an agent is based on Newton’s laws and equation of motion. The agent is
affected by a discrete number of forces and the sum of those forces, divided by its mass,
determines its acceleration (a(t) = F (t)/m).

For simplicity, the mass of all agents is set to 1. The acceleration is applied to the
agent’s velocity, which in turn is used to determine the position of the agent in the next
timestep t+ ∆t. The forces, accelerations and velocities are all represented by
2-dimensional vectors, since the agents live and interact in a 2-dimensional space.
According to Newton’s equation of motions the acceleration of an object is the sum of
forces that it is affected by.

The forces listed in Section 4.1 can be split into two groups; the forces explaining the
agent’s own will and the forces an agent have no control over. The predator force, prey
force, mutual interaction force, arrayal force, forward thrust and random force are all
group as the forces explaining the agent’s own will. The environment force is a force that
the agent can not control. An example of this is that an agent chooses to flee from a
predator hunting it, but it can not choose to ignore the force of colliding with a wall.

The acceleration of own will aown
i (t) of an agent is determined by the following equation:

aown
i (t) = C1Fpred + C2Fprey + C3Fmi + C4Farray + C5Fforward + C6Frandom,

where C1,...,C6 are constants weighing the different forces.
(A.1)

If the norm of the acceleration exceeds the value maxAcceleration for the agent, the
norm is scaled back to maxAcceleration. After the acceleration has been scaled, the
environment force is applied to the acceleration of own will to form the final acceleration:

ai(t) = aown
i (t) + C7Fenv,

where C7 is a constant scaling the force to a propriate value.
(A.2)

42

The velocity vi(t) an agent has at time t is given by Newtons equation of motion:

vi(t) = vi(t−∆t) + ai(t) ·∆t (A.3)

If the norm of the velocity exceeds the value maxSpeed for the agent, the norm is scaled
to back to maxSpeed.

The position Pi(t) that an agent will have in the next time step t+ ∆t is then:

Pi(t+ ∆t) = Pi(t) + vi(t) ·∆t, where ∆t is set to 1 for simplicity. (A.4)

A.1.1. Predator force

The prey wants to find the direction, in what to best escape the predators hunting them.
If only one predator is near, the best way to go is straight away from the predator. If
there are two or more predators near, the best direction is no longer as obvious.

In this project some simplifications have been made, in order to get a closed form
solution. Since the maximum distance from all the predators is infinity, this becomes a
difficult problem. It is easier to solve the problem of finding the position that would
minimize the distance to all nearby predators. With the knowledge of that position as a
prey, it would make sense to go as far away from it as possible. The problem now
consists of finding the position that would minimize the distance to all nearby predators.
The fact that predators located closer to the prey are more fearsome also has to be taken
into account.

Let di,j denote the distance between the prey i and the predator j and Pi the position of
agent i. The vector Fi,j = (Pi−Pj) is then the vector pointing from the predator to the
prey. It is then needed to find the vector vb that minimizes the norm of the following
expression:

f(vb) =
∑

nearby j

(Fi,j/d
2
i,j + vb) (A.5)

Since vb is a 2-dimensional vector with coordinates xb and yb the partial derivatives of
f(vb) can be taken with respect xb and yb and set to 0. The xb and yb that satisfies the
two following equations will be the xb and yb that minimizes ||f(vb)||:

df

dx
=
d((

∑
j(xi,j/d

2
i,j + xb))

2 + (
∑

j(yi,j/d
2
i,j + yb))

2)

dx
= 2n(n · xd + Ex),

where n > 0 is the number of nearby predators and Ex =
∑

nearbyj

xi,j/d
2
i,j .

(A.6)

43

df

dy
=
d((

∑
j(xi,j/d

2
i,j + xb))

2 + (
∑

j(yi,j/d
2
i,j + yb))

2)

dy
= 2n(n · yd + Ey),

where n > 0 is the number of nearby predators and Ey =
∑

nearbyj

yi,j/d
2
i,j .

(A.7)

Setting the derivatives to 0 gives:

xd = −Ex/n

yd = −Ey/n

vb = (xd, yd)

The worst position prey i could be in is then Pi + vb. Instead the prey should head in
the opposite direction towards Pi − vb. This makes the predator force be:

Fpred = −vb.

A.1.2. Prey force

The force that any agent feel towards its prey is very similar to the predator force.
Instead of the trying to maximize the distance to its predators, the agent is in this case
trying to minimize the distance to its prey in the same way. The predators in the top of
the food chain also has the ability to focus on single prey. When a any prey comes closer
than the focus range, the predators ignores any other prey and feels a force only to the
focused prey. When there is no prey within the focus range the predator tries to
minimize the distance to all nearby prey.

A.1.3. Environment force

Since the agents should not move outside the universe, or into any obstacles, the
interaction with walls and obstacles need to be modelled in a clever way. To check at
every position update if the new position was valid is not a good approach, since it raises
the question of what to do if the new position is not valid.

The way this interaction is modelled in the application is again with forces. If an agent
is close to the wall, it should feel a force pushing it away from the wall. The closer to the
wall an agent is, the greater force it should feel. On the other hand, if the agent is not
close enough to the wall, it should not be affected by it. This makes sense since, if an

44

agent is not close enough to a wall or an obstacle, it might not see it. Also if it is
running towards a wall, it will come to a point where it would want to stop in order not
to run in to the wall. Before that limit, it can still run with maximum speed.

These two features can be modelled in two steps. The first property, “the closer the wall,
the greater the force”, is modelled with a simple and well recognisable function, namely
y=1/x. Let y be the magnitude of the force and x be the distance to the wall. The
function obtained now fulfills the desired properties. The force should be orthogonal to
the wall and pointing into the universe.

The next property to model is that the agents should not feel the force if they are not
interacting with the wall. This could be modelled with a simple Heaviside step function
(f(x) = 1 if x greater than 0 and = 0 otherwise). A function like that can be seen in
Figure A.1. The direction of the force is the direction of the vector pointing from the
closest point on the wall/boundary to the agent’s position. This is true for the forces an
agent feels from both the walls of the universe and the boundary of an obstacle. The
equation for the force is then:

∑
all obstacles+walls

Heaviside((C − 1/x)/x2)(Pi −Pb),

where Pi −Pb is the vector from obstacle/wall b to agent i

and x is the distance to the obstacle/wall

(A.8)

A.1.4. Mutual interaction force

One other desired property of the agent’s behaviour might be that the neutral agents
want to group with each other. Forming a group might improve the agents chances to
survive against predators. The mutual interaction force will make agents far apart steer
towards each other to form a group (attraction). At the same time, the agents do not
want to collide with each other and will therefore steer away from other agents that are
too close (repulsion). The mutual interaction force is defined as:

(Fmi)i =
∑
j!=i

Q(di,j)(Pi −Pj)/di,j , (A.9)

where Pi and Pj is the position of the two neutral agents i and j, and Q is a function of
the distance between the two agents. Q(di,j) is defined as follows:

45

Q(di, j) = −c0(d0 − di, j), when 0 < di,j < d0 and c0 > 0.

Q(di, j) = c1 > 0, when d0 < di,j < dvision.

Q(di, j) = 0, when dvision < di,j .

An agent is then subject to a linearly varying repulsive force from another agent if the
distance between the two is less than d0. If the agent has vision of another agent, at the
same time as the distance between them is greater than d0, the agent is subject to a
constant attractive force dragging it towards the other agent. If the agents are not in
vision range of each other the mutual interaction force is 0 (no interaction).

A.1.5. Arrayal force

The arrayal force describes the tendency of agents in groups to move in the same
direction. Two neighbouring agents want to equalize the velocities in order to steer in
the same direction. Without this force, the agents would just form a group where the
center of mass is not moving anywhere. The agents are only influenced by other agents
that are within a sphere of influence (Vi). This means that an agent does not try to
equalize its velocity with other agents that are too far away, even if they are in the same
group. The arrayal force that an agent experiences has the following form:

(Farray)i =
1

Ni

∑
j in Vi

h(vi + vj),

where Ni are the number of agents within the sphere of influence.

(A.10)

A.1.6. Forward thrust

The forward thrust is the tendency of an agent to keep moving in the same direction.
The forward thrust is expressed as:

(Fforward)i = avi/|vi|,
where a > 0 is a constant called the coefficient of thrust.

(A.11)

A.1.7. Random force

The random force is a force is a simplification of the behaviour of an agent that cannot
be properly explained and is therefore said to be random. This could also be interpreted
as the error an agent does when estimating in what direction to move. In our system

46

this force is uniformly distributed and implemented to have very little impact. Therefore,
it is almost negligible.

A.2. Finding the closest point on a boundary

To find the point on the boundary of the universe or an obstacle that is the closest to an
agent is essential when calculating the environment force. In the section for the
environment force it was assumed that the closest point was known. In this section
different ways of calculating the closest point will be discussed for a subset of
geometrical shapes. The obstacles and the universe can be represented as triangular,
rectangular and elliptical shapes.

Also any obstacle can be rotated in any angle. Before doing the calculations explained in
this section, the positions of the agent can be rotated into coordinate system of the
obstacle. After the closest position has been found it can be rotated back to the original
coordinate system. Therefore, when calculating the closest point it is assumed that the
obstacles are not rotated at all.

A.2.1. Triangle

A simplification of the triangles were made in order to make the calculations simpler.
The application only supports triangles that are isosceles. Because of that one can
exploit the symmetry of the triangle when finding the closest point on its boundary. All
the positions to the left of the centroid of the triangle could be treated as they were to
the right because of the symmetry. Therefore it is from now on supposed that the agent
is located to the right of the centroid.

Let the top of the triangle always be pointing upwards. If the agent is located above the
top, the closest point will always be on the top of the triangle. If the agent is located
below the triangle, the closest position is in the bottom corner if the agent is also
located to the right of the bottom corner. If the agent is located to the left off the
bottom corner, the closest position is on the base of the triangle where the vector
between the agent and the closest point is perpendicular to the the base.

If the agent is located below the line, perpendicular to the side of the triangle cutting
the bottom corner of the triangle, the closest position is the bottom corner. If the agent
instead is located above the line, perpendicular to the side of the triangle cutting the top
of the triangle, the closest position is the top of the triangle. If not any of the previously
cases explained are true, the closest point will be where the vector between the agent
and point is perpendicular to the side of the triangle.

47

A.2.2. Rectangle/Squre

The case of an agent being inside a rectangular shape is the easiest case of them all. All
that has to be done is to project an agent’s position onto the sides of the rectangle and
compare which of them is the closest. If the agent is positioned outside the rectangular
shape , this becomes another problem. In Figure A.1, 8 areas are drawn. Depending on
which area the agent is located in, the method for finding the closest point differs. If an
agent is located in one of the corner areas (1, 3, 5 and 7), the closest point on the
rectangle is the closest corner. If the agent is located in any of the other areas, the closest
point is given by projecting the agent’s position onto the closest side of the rectangle.

Figure A.1: Showing a rectangular obstacle in blue. The space around the obstacle is
divided into 8 areas. Using the symmetry of the rectangle the areas could be reduced to 3.

A.2.3. Circle

To find the closest point on the border of the circle, regardless of being inside or outside
it, is simple. The closest point is located on the line that crosses the center of the circle
and the agent’s position. There will be two points on the line that intersects with the
boundary of the circle, where the closest one will be chosen.

A.2.4. Ellipse

This is by far the most difficult scenario, since there is no closed form solution for the
closest point. Instead one has to take a different approach when finding the closest point
on an ellipse. Here three different ways will be discussed and evaluated.

48

The first way of finding the closest point is to do an exhaustive search along the border
of the ellipse. Since the equation of the ellipse is known, N points can be generated
along its border. This is a really easy way to find an estimate of the closest point. The
downside is that N must be large in order to get a precise estimate. Since N comparisons
has to be made in order to find the closest of the N generated points, this algorithm
becomes computationally heavy. Especially when there are a lot of agents doing this
calculation every iteration.

A better and faster way is to do a recursive algorithm where the symmetry of the ellipse
is exploited. In each iteration of the algorithm, points that are known to be farther away
than points already found is excluded. In this way the search space will be more limited
in each iteration, and after enough iterations a good estimate will be found. The
algorithm looks as follows:

1. Initialize starting angle α = 0, and step size t = 2π/nstep, where nstep is an even
integer >= 4.

2. Evaluate nstep points on the ellipse, where the points are
(a · cos(α+ n · t), b · sin(α+ n · t)) and n = −nstep/2, ..., nstep/2.

3. Take the n′ for which the point is closest to the agents position.

4. Set αnew = α+ t · n′ and tnew = 2t/nstep

5. Go to step 2 with α = αnew and t = tnew, until t is smaller than a stopping value c.

With this algorithm nstep comparisons will be done in each iterations, and the algorithm
will stop when t is smaller than a threshold c. Since t is divided by nstep/2 in every
iteration, the number of iterations the algorithm will run can be computed. Let x denote
the number of iterations, then the algorithm will stop when π(nstep/2)−x is smaller than
c. The least amount of iterations the algorithm will run is then obtained by solving the
following equation for x:

π(nstep/2)−x = c.

Which gives

x = log(π/c)/log(nstep/2)

.

Since nstep comparisons will be done each iterations, a minimum x · nstep comparisons
will be done with the algorithm. In Figure A.2, a plot for x · nstep as a function of nstep
is given. As seen in the figure, for nstep > 2 the function only has one minimum.

49

Figure A.2: Showing the number of position comparisons as a function of the number
of splits (nstep) in each iteration. The number of position comparisons is minimized for
nstep = 2e.

Taking the derivative of x · nstep and setting it to 0 gives the minimum of the function:

d(x · nstep)
d(nstep)

=
log(π/c)(log(nstep/2)− 1)

(log2(nstep/2))
= 0 (A.12)

Solving the equation for nstep implies:

log(nstep/2)− 1 = 0 (A.13)

This gives nstep = 2e ≈ 5.44. This means that the optimal choice of nstep is either 4 or 6.
To compare this x · nstep is taken for nstep = 6, minus x · nstep for nstep = 4. If the result
is negative, then nstep = 6 is the best choice. If the result however is positive, then
nstep = 4 is the best choice.

6 · log(π/c)/log(6/2)− 4 · log(π/c)/log(4/2) =

= log(π/c) ∗ (6/log(3)− 4/log(2)) =

− 0.31 ∗ log(π/c).

Since log(π/c) is positive for c < π, this gives that nstep = 6 is the best choice for any
choice of c < π.

50

A good choice of the constant c seems to be 0.01. With c = 0.01 the estimate of the
closest point will be good enough for the purposes in this project, and the algorithm will
find the point with log(π/0.01)/log(6/2) = 5.23 iterations. This means that the
algorithm will run for 6 iterations with 6 comparisons in each iterations. This gives a
total of 36 comparisons in order to find the closest point. The estimate retrieved when
doing an exhaustive search on the boundary using only 36 points is much less accurate
than doing the algorithm explained above.

The last algorithm comes from a more analytical approach of the problem. The
calculations for this algorithm are all taken from the paper by David Eberly [3]. The
thoughts behind this algorithm will here be explained in order to give the understanding
needed to implement it.

Let the equation for the ellipse be denoted as:

(x/a)2 + (y/b)2 − 1 = 0 (A.14)

The closest point from an agent’s position (u, v) to the ellipse is found where the vector
(u− x, v − y) is orthogonal to the gradient of the ellipse. This can easily be understood
by drawing a picture. The gradient for an ellipse is:

∇((x/a)2 + (y/b)2 − 1)/2 = (x/a2, y/b2). (A.15)

The condition for orthogonality then says:

(u− x, y − v) = t · (x/a2, y/b2), for some value t. (A.16)

In this case, only the case where the agent is in the first quadrant (u > 0, v > 0) needs
to be looked at, since the other scenarios can be found out using the symmetry of the
ellipse. Also only the case where a >= b needs to be looked at, since the coordinate
system can be transformed to make the ellipse fulfil that inequality constraint.

Solving for x and y gives:

x = a2 · u/(t+ a2)

y = b2 · v/(t+ b2)

Putting x and y into the equation of the ellipse gives the following equation:

F (t) = (
a · u
t+ a2

)2 + (
b · v
t+ b2

)2 − 1 = 0 (A.17)

51

The values for t that satisfies the equation F (t) = 0 gives the candidate solutions for the
closest point to (u, v). Since there is a constraint for x > 0 and y > 0, a constraint for
t > −a2 and t > −b2 is also needed. Since b < a, only the constraint for t > −b2 is
needed.

A problem is that F (t) is a rational function which has no closed form solution for t.
There are then two options; Multiply through by the polynomials in the denominator,
and analyse the roots of the quartic function obtained, or solve the rational equation
numerically. In the paper by David Eberly [3] both solutions are explained, while this
report will only cover the latter solution using Newton’s method to approximate the
roots.

The first derivative of F is:

F ′ =
−2a2u2

(t+ a2)3
+
−2b2v2

(t+ b2)3
(A.18)

The second derivative of F is:

F ′′ =
6a2u2

(t+ a2)4
+

6b2v2

(t+ b2)4
(A.19)

If u > 0 and v > 0, F ′(t) < 0 and F ′′(t) > 0 for all t ∈ (−b2,∞). Analysing the limits of
the function F(t) when t approaches −b2, gives that F(t) approaches infinity. When t
approaches infinity, F(t) approaches -1. This means that F(t) is a strictly decreasing
function with only one root in the interval (−b2,∞).

To approximate the root t∗ using Newton’s method is ideal since F(t) is convex in the
interval of interest. Given a starting value t0 the iterates of the Newton’s method are:

ti+1 = ti − F (ti)/F
′(ti), for i > 0

The only problem is the choice of t0. An inappropriate choice of t0 can make the
algorithm not converge. An initial choice of t0 > t∗ will lead to a new iterate
t1 < t∗.There is a chance that t1 < −b2 which is outside the domain (−b2,∞).
Therefore, one has to choose t0 for which F (t0) < 0 will guarantee that the algorithm
converges to the desired root. A choice of t0 = b · v − b2 fulfils the property of F (t0) < 0
since F (t0) = (au/(bv − b2 + a2))2 > 0. When the root t∗ is found, the closest point is
on the boundary of the ellipse is (a2u/(t∗ + a2), b2u/(t∗ + b2)).

A quick comparison was made to compare the three different methods. In the comparison
the three methods was configured to give approximately the same precision. The time of
algorithms was measured when running the each of the algorithms on 10000 randomly

52

distributed points located outside the ellipse and inside a 1000x1000 square. The ellipse
itself was located at the coordinates (500, 500) with b = 150 and a = 50. This was done
100 times to get a good estimate of the mean of the time. Table 3 reveals the results.

Table 3: Showing a comparison between three different algorithms for finding the closest
point on a boundary of an ellipse. The algorithm using Newtown’s method was by far the
best.

Algorithm Mean of time (ms) Standard deviaton of time (ms)

Brute search 1869.13 77.32
(N=700)

Recursive search 109.30 2.63
(nStep = 6, c = 0.01)

Newton’s method 48.07 1.56
(c = 0.1)

There is no doubt that Newton’s method is the best, followed by the recursive search
with twice the time. Doing an exhaustive search takes more than 17 times longer than
the recursive search, and is almost 39 times slower than Newton’s method. The
algorithm of choice for this project is clearly Newton’s method.

A.3. Shapes representing the map

As previously mentioned the objective for the shape is to calculate positions which the
agent can use to calculate the environmental force which keeps the agent inside the
environment. This has to be calculated upon demand in a way that does not slow down
the runtime of the application in a significant way. This means the agents do not
actually know what the environment looks like, as long as they can ask the shape where
the edges are.

The shapes contain no information or attributes, only pure functions. This way all of the
agents can know the same shape, and ask it whenever it needs information without
knowing the shape actually knowing anything. As mentioned the shapes have methods
to find the edges, but they also have a method to generate a random position inside it to
make it easier when initiating the simulation, and one method to check whether or not a
given position lies inside the shape.

53

A.3.1. Finding the edges of a shape

Finding an edge in a square is a simple method. There is no computation required since
all of the edges are a direct result of the dimensions of the world.

For the circle however, basic trigonometry is needed. For example finding the right wall,
from any given position, is done by:

Xright = r ∗ cos(α)

where r is the radius and α s the angle between the hypotenuse and the base line in the
circle, as can be seen in Figure A.3 below. P is the current position of the agent.

Figure A.3: Showing how to find the position x in a circle given the position p and the
length r.

For this equation, the angle α needs to be calculated so it can be used to calculate x,
which is the length of the adjacent leg in the triangle which is created inside the circle.
The only thing the method receives is the size of the world and the position p. It can
calculate the radius r and the height h of the triangle from this information and use it to
calculate:

α = sin−1
h

r

Xright = r ∗ cos(sin−1h
r

)

This method will return the position (Xright, y) on the right wall. Similar mathematical
functions are used to calculate the top, right and bottom edges.

The edge points on the triangle is calculated much in the same way as the circle. Here
however, the angle only depends on the relation between the height and width of the
triangle and therefore the equation for the angle becomes:

α = tan−1(
b

2h
)

54

where b is the length of the base and h is the height of the triangle as can be seen in
Figure A.4 below. It is then possible to get the right wall from:

Xright = (h− y) ∗ tan(α)

Figure A.4: Showing how to find the position x in a triangle given the height, base width
and Py coordinate.

A.3.2. Checking if a position is inside a shape

Checking if a position is inside a shape of specified dimension is a task without much
computation needed. For the square the position lies inside the shape as long as the
coordinates of the position are greater than zero and smaller than the specified
dimension. If both of these are true, then the position lies inside the square.

For the circle it is not much harder. Here the distance between the position and the
middle of the environment is found, and if the distance is smaller than the radius of the
circle, then it is inside the circle.

The triangle is also easily calculated. The position has to be positive once, just as with
the square, and it has to be positioned below the top of the triangle, which is specified
by the height of the environment. It also uses the other methods in the shape to find the
walls to the right and left at this specific y coordinate, and checks that the x coordinate
lies between these two edges. If these conditions are fulfilled, then the position lies inside
the triangle.

A.3.3. Finding a random position in a shape

The square has the easiest computational job. When it comes to finding a random
position, the only thing that has to be done is generate a random x and y coordinate
which both lies inside the specified size, and the task is done.

55

Finding a random position in a circle can be done in various ways, three ways were
considered during this project, but in the end one them was chosen due to the positions
being equally spread with this method.

The first way is to start out by creating a random y variable. This y coordinate is used
to find the left and right edge at this height, and from get a random x variable which lies
in between these two edges. This method however has the disadvantage that the amount
of x coordinates which can be generated randomly depends on the width of the circle at
that specific height level. Thus it does not generate truly random positions inside the
circle, because it clumps up at the top and bottom of the circle.

The second way is to create a random length smaller than the radius of the circle, and
rotate this one to get it randomly positioned inside the circle. This seemed to work, but
after running simulations it became obvious that this was not the case. Once again the
positions generated were not quite evenly spread. This time most of the positions
generated lied on the cross which goes through the center of the circle to the top,
bottom, left and right edges of a circle.

Because of these issues a third way was chosen to create the random positions. For this
one both a random x and y coordinate is generated, in the same way as for a square. A
simple check is done to see if this position is actually inside the circle or not. If this is
not the case, a new position will be generated. This could in theory loop forever without
a position ever being found. In practice this is not something which has a major impact
on the system, because the chance of generating a position outside the circle is
(1− π/4 = 21.5%). The second time it loops through to find a position the chance is
already at (1− π/4)2 = 4.6%, and the third time this drops down to 0.99%. This
method is also only called upon during the initial setup of the program and therefore
does not impact the runtime of the system after it has been initiated.

For the triangle a safer and better method is used than just checking if the generated
position lies inside the shape. This method relies on math instead, using Barycentric
coordinates. It all starts with the triangle, and its three corners ABC. One is chosen, and
vectors are calculated pointing from this vector to the others. Then a percentage of how
long along both these vectors the new position should be is generated as can be seen in
Figure A.5. To make sure this position does not end up outside the actual triangle a
check is made to see if the amount walked along both these vectors is more than 100%.
If this is the case, both of them are inverted to be one minus the old percentage. This
assures that the calculation gives a random position inside the triangle [12].

56

Figure A.5: How to find a random position p by generating two vectors.

A.4. Graphical representation of agents

To draw objects with OpenGL in java, one must build the objects out of vertex points
that forms a polygon. The simplest geometric form is a triangle (not counting lines and
points). This makes it the fastest object to draw which is also very desirable. The
problem is then how to draw this triangle given the single position of an agent. The
smartest thing would be to draw the triangle with the position of the agent in the center
of mass (centroid). In order to find where the center of mass is located in the triangle, it
is first necessary to make the assumption that the triangle must be isosceles. The next
step is to mathematically calculate where the center of mass is located.

In Figure A.6, b is the width of the triangle and h is the height. The centroid of a
triangle can be found by drawing lines from the median of each side, to the opposite
corner. The triangle’s centroid is located where the lines intersect. Since the triangle is
isosceles it is already know that the centroid will be located at y = 0. It is also only
needed to draw one line in order to find the centroid. The position for where the line
cuts the x-axis gives the position where the centroid is located . The equation for the
line is given by:

y = b/2 + k · x, where

k =
dy

dx
=

(b/2− (−b/4))

(0− h/2)
= −3b/2h

57

Setting y = 0 gives us:

b/2− (3b/2h)x = 0

1− (3/h)x = 0

3x/h = 1

x = h/3

Figure A.6: Showing a triangle drawn into a coordinate system. As shown in the figure,
the centroid of the traingle is located in P3 at the coordinates (0, h

3).

As derived above, the centroid is located at (h3 , 0), and it is not affected by the width of
the triangle, only by the height.

It is now known where the agents location should be in the triangle, but it is also highly
desirable that the triangle points in the direction of the agent’s velocity. Therefore, the
velocity of the agent has to be taken into account when drawing the triangle.

In Figure A.7, there are five different points drawn. The points Ptop, Pleft and Pright

are the points needed in order to draw the triangle with OpenGL. How to get the these
points, given Pcentroid and v will here be explained. To get from Pcentroid to Ptop one can
use the fact that Pcentroid is located at 1

3 of the height of the triangle. Therefore, the
velocity v has to be scaled to have length 2

3 of the height and added to Pcentroid:

Ptop = Pcentroid +
2h

3
v/norm(v)

58

Figure A.7: Showing a triangle pointing in the direction of the agent’s velocity. In the
figure the points P(right), P(left) and P(top) used for drawing the triangle is shown

To get to Pbottom a similar thing is done, but instead the vector is scaled to have length
1
3 of the height and then subtracted from Pcentroid:

Ptop = Pcentroid −
h

3
v/norm(v)

In order to get from Pbottom to Pright and Pleft a vector, orthogonal to v with the length
b
2 , needs to be added to Pbottom. To form the vector v2, which is orthogonal to v, the
fact that the scalar product of two orthogonal vectors are equal to 0 is used:

xv · xv2 + yv · yv2 = 0 (A.20)

and

x2v2
+ y2v2

=
b2

4
(A.21)

solve xv2 from Equation A.20 gives:

xv2 =
yv · yv2

xv
, xv 6= 0

Put that into Equation A.21 and the following is given:

59

yv
xv

2
· y2v2

+ y2v2
=
b2

4

y2v2
(1 + (

yv
xv

)2) =
b2

4

b2

4(1 + (yvxv
)2)

= y2v2

yv2,1 = +
b

2 ·
√

(1 + (yvxv
)2)

yv2,2 = − b

2 ·
√

(1 + (yvxv
)2)

v2 = (xv2 , yv2,1) = −(xv2 , yv2,2)

There will be two solutions for yv2. Depending on which of them is chosen, and the
direction of vector v, either Pright and Pleft is given when the addition Pbottom + v2 is
done. It is not necessary to specifically know if Pbottom + v2 is equal to Pright or Pleft.
For simplicity in, lets call Pbottom + v2 for Pright and Pbottom - v2 for Pleft. If it would
happen that xv = 0, then yv2 = 0 and xv2 = b

2 can be set.

The three points Pbottom to Pright and Pleft are now know. Therefore, the triangle can
be drawn in a desirable way: The agents position is in the center of mass of the triangle,
and the top of the triangle is pointing in the same direction as the velocity of the agent.
In this way it is possible to easily see which way an agent is heading, and where the
agent’s actual position is.

A.5. Pathfinding

One big issue with having obstacles in the simulation, is that agents must be aware of
the environment, where the obstacles are placed. This is solved using an external
shortest path method that calculates the shortest path towards a specific target. The
returning path will not cross any obstacles or go outside the simulation boundaries and
is guaranteed to contain the optimal path. There is also a complexity problem, because
of the nature of shortest path algorithms, it can be very hard to get an optimal path and
compute it in a limited amount of time.

60

Figure A.8: Showing a straight jump point to the left, and a diagonal jump point to the
right.

The algorithm used for finding the shortest path is called Jump Point Search [5]. Which
is a new, very smart and fast algorithm. It finds specific points, “Jump Points”, as
targets towards the end position. From the jump points the algorithm expands the
graph and searches for other jump points or if the current node is the goal. Selected
jump points can be seen in Figure A.8.

A method used for performance improvements is upsampling of positions. Each position
that the algorithm works with, is represented by 10 “real” positions, to make the
computation much more faster. The downside of this is that the resulting path is a little
more coarse than it would normally be if run with normal positions. The upsampling
amount can be changed easily by changing a constant for decreasing or improving
performance. The pathfinding is also implemented to be lazy. It first checks if theres any
obstacle between the goal and start before it runs the shortest path algorithm, if there
isn’t any obstacle between the points, there is no need to do the shortest path algorithm,
since the shortest way always is a straight line between the points.

A.6. File-System implementation

The Simulation program has support for saving and loading simulations to a simulation
file. The simulation file is a custom made file type, of which has document object model
[14] syntax similarities. The file consists of a header part that contains simulation
specific settings, such as obstacle, simulation shape and dimensions. The rest consists of
frame-by-frame data in the form of agents in each row, with coordinates, velocity,
interaction range and colour. Every character in the saved files is encoded in UTF-8 to
reduce the amount of space it takes storing it.

Different maps can also be saved to the disk using our map editor. The syntax of these

61

files is also simple. The first row in each file contains the name of the map, and the
following rows contain one obstacle each. If any file is corrupt or in the wrong encoding,
it ignores it.

A.7. Map Editor

The Map Editor is a semi-standalone program, that can be used to graphically create
simulation maps. It features some basic functions regarding obstacles, such as adding,
removing and changing obstacle properties. One other feature is exporting and importing
maps to the editor, it allows the user to view them and edit them as normal maps.

When the user has finished one map, she may choose to save them. If she does, the map
will then automatically be imported to the simulation system as a choosable map to run
with as the other ones. The user interface of the map editor is shown in Figure A.9.

Figure A.9: User interface of the Map Editor

62

B. Sketches

B.1. GUI-Sketches

Figure B.1: An early sketch of the simulation view.

Figure B.2: Another example of an early sketch of the simulation view.

63

Figure B.3: A more refined sketch of the application interface.

64

